Sample records for increased cooling load

  1. Cooling load estimation methods

    SciTech Connect (OSTI)

    McFarland, R.D.

    1984-01-01T23:59:59.000Z

    Ongoing research on quantifying the cooling loads in residential buildings, particularly buildings with passive solar heating systems, is described. Correlations are described that permit auxiliary cooling estimates from monthly average insolation and weather data. The objective of the research is to develop a simple analysis method, useful early in design, to estimate the annual cooling energy required of a given building.

  2. Cooling load design tool for UFAD systems.

    E-Print Network [OSTI]

    Bauman, Fred; Schiavon, Stefano; Webster, Tom; Lee, Kwang Ho

    2010-01-01T23:59:59.000Z

    De- velopment of a Simplified Cooling Load Design Tool forand C. Benedek. 2007. “Cooling airflow design calculationscalculation method for design cooling loads in underfloor

  3. Cooling load differences between radiant and air systems

    E-Print Network [OSTI]

    Feng, Jingjuan Dove; Schiavon, Stefano; Bauman, Fred

    2013-01-01T23:59:59.000Z

    radiant heating and cooling systems, in: Proceedings ofInc, Altanta,GA, 2009. Cooling load differences betweensurface level 24-hour total cooling energy between radiant

  4. ANALYTICAL APPROACH TO TRANSIENT HEAT CONDUCTION IN COOLING LOAD CALCULATIONS

    E-Print Network [OSTI]

    Michal Duška; Martin Barták; František Drkal; Jan Hensen

    equation in cooling load calculations. The performance of nine different procedures (the four methods and

  5. Strategy Guideline: Accurate Heating and Cooling Load Calculations

    SciTech Connect (OSTI)

    Burdick, A.

    2011-06-01T23:59:59.000Z

    This guide presents the key criteria required to create accurate heating and cooling load calculations and offers examples of the implications when inaccurate adjustments are applied to the HVAC design process. The guide shows, through realistic examples, how various defaults and arbitrary safety factors can lead to significant increases in the load estimate. Emphasis is placed on the risks incurred from inaccurate adjustments or ignoring critical inputs of the load calculation.

  6. CoolCab Thermal Load Reduction Project: CoolCalc HVAC Tool Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal Load Reduction Project: CoolCalc HVAC Tool Development CoolCab Thermal Load Reduction Project: CoolCalc HVAC Tool Development 2010 DOE Vehicle Technologies and Hydrogen...

  7. Cooling load differences between radiant and air systems

    E-Print Network [OSTI]

    Feng, Jingjuan Dove; Schiavon, Stefano; Bauman, Fred

    2013-01-01T23:59:59.000Z

    radiant heat transfer for cooling load calculation.heat gain is well recognized by cooling load calculationload calculation approach for radiant systems, Corgnati [17] also tackled the direct radiant heat

  8. Using Utility Load Data to Estimate Demand for Space Cooling and Potential for Shiftable Loads

    SciTech Connect (OSTI)

    Denholm, P.; Ong, S.; Booten, C.

    2012-05-01T23:59:59.000Z

    This paper describes a simple method to estimate hourly cooling demand from historical utility load data. It compares total hourly demand to demand on cool days and compares these estimates of total cooling demand to previous regional and national estimates. Load profiles generated from this method may be used to estimate the potential for aggregated demand response or load shifting via cold storage.

  9. 514 ASHRAE Transactions: Symposia Design cooling load calculation methods are, by the

    E-Print Network [OSTI]

    Handbook--Fundamentals (ASHRAE 1997) and the Cooling and Heating Load Calculation Manual (Mc514 ASHRAE Transactions: Symposia ABSTRACT Design cooling load calculation methods are Load Calculation Methods (942-RP)" are also given. INTRODUCTION Design cooling load calculation

  10. Cooling load design tool for UFAD systems.

    E-Print Network [OSTI]

    Bauman, Fred; Schiavon, Stefano; Webster, Tom; Lee, Kwang Ho

    2010-01-01T23:59:59.000Z

    fraction (SPF) of cooling Supply Plenum SPF heat transfer bythrough the supply ple- Figure 2: Design day cooling loadsupply represent the????????????????????????????????????????????? air temperature, diffuser type and number, room setpoint instantaneous cooling

  11. Indoor design condition and the cooling load calculation

    SciTech Connect (OSTI)

    Sun, T.Y. [Sun (Tseng-Yao), Rancho Palos Verde, CA (United States)

    1997-12-01T23:59:59.000Z

    Cooling load calculation involves two steps. The first is to determine the basic building load. This consists of external loads through the building envelope and internal loads from people, lights, appliances, and other heat sources. The required supply air quantity for each conditioned space generally is determined in the first step. This is because each relates only to the coil leaving and required room dry bulb temperatures (unless reheat is required to control the humidity level in the conditioned space). The second step, after completing the above, is to calculate the system cooling load. This step adapts the selected air distribution system to the building load and involves the introduction of the required outdoor air volume into the air conditioning system for ventilation. Proper psychrometric analysis is required to calculate the entering and leaving wet bulb conditions of the air passing through the cooling coil. These, together with the corresponding dry bulb temperatures, will determine the system cooling load.

  12. IMPROVEMENTS TO THE RADIANT TIME SERIES METHOD COOLING LOAD CALCULATION

    E-Print Network [OSTI]

    IMPROVEMENTS TO THE RADIANT TIME SERIES METHOD COOLING LOAD CALCULATION PROCEDURE By BEREKET, Australia 1998 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial TO THE RADIANT TIME SERIES METHOD COOLING LOAD CALCULATION PROCEDURE Dissertation Approved: Dr. Jeffrey D

  13. Development of a simplified cooling load design tool for underfloor air distribution (UFAD) systems.

    E-Print Network [OSTI]

    Schiavon, Stefano; Lee, Kwang Ho; Bauman, Fred; Webster, Tom

    2010-01-01T23:59:59.000Z

    occupants) W = zone cooling load (supply and return plenumm]. W L is the zone cooling load (supply and return plenumthe total UFAD cooling load between the supply plenum, the

  14. Simplified calculation method for design cooling loads in underfloor air distribution (UFAD) systems

    E-Print Network [OSTI]

    Schiavon, Stefano; Lee, Kwang Ho; Bauman, Fred; Webster, Tom

    2010-01-01T23:59:59.000Z

    of the UFAD cooling load between the supply plenum, zone (split the UFAD cooling load into the supply plenum, the zonesplit the UFAD cooling load into the supply plenum, zone and

  15. Comparison of Zone Cooling Load for Radiant and All-Air Conditioning Systems

    E-Print Network [OSTI]

    Feng, Jingjuan; Schiavon, Stefano; Bauman, Fred

    2012-01-01T23:59:59.000Z

    heat gain is well recognized by cooling load calculationheat gain and building thermal mass, which is particularly important in cooling load calculation,

  16. Cooling load calculations for radiant systems: are they the same traditional methods?

    E-Print Network [OSTI]

    Bauman, Fred; Feng, Jingjuan Dove; Schiavon, Stefano

    2013-01-01T23:59:59.000Z

    heat transfer is handled in traditional cooling load calculationheat gain is well recognized by cooling load calculationload calculations for radiant systems should use the ASHRAE heat

  17. Cooling load calculations for radiant systems: are they the same traditional methods?

    E-Print Network [OSTI]

    Bauman, Fred; Feng, Jingjuan Dove; Schiavon, Stefano

    2013-01-01T23:59:59.000Z

    B. 2008. “Radiant floor cooling systems. ” ASHRAE Journal 4.gain on radiant floor cooling system design. ” Proceedings,of designing radiant slab cooling systems, including load

  18. Comparison of Zone Cooling Load for Radiant and All-Air Conditioning Systems

    E-Print Network [OSTI]

    Feng, Jingjuan; Schiavon, Stefano; Bauman, Fred

    2012-01-01T23:59:59.000Z

    described in future papers. While the high peak-cooling ratecooling load can be in the range of 10-40% higher depending on the load conditions. Future

  19. Economics of cool storage for electric load leveling

    SciTech Connect (OSTI)

    Asbury, J.G. (Argonne National Lab., IL); Dougherty, D.

    1981-01-01T23:59:59.000Z

    Equipment and methods for cold storage in commercial buildings to effect reduced summer peak load demands for electric utilities are described and the economics of this load leveling means is examined using the Potomac Electric Power Co. (PEPCO) studies and data. This examination reveals that investments in this technology can offer attractive paybacks (3 to 5 y) in new building applications. Partial storage, because of chiller-capacity savings, offers faster payback than full-storage systems. Estimates of its market potential indicate that cool storage will play an important role in PEPCO's Energy Use Management Plan. (LCL)

  20. Heat Transfer Performance and Piping Strategy Study for Chilled Water Systems at Low Cooling Loads 

    E-Print Network [OSTI]

    Li, Nanxi 1986-

    2012-12-05T23:59:59.000Z

    cooling loads, it may lead to the laminar flow of the chilled water in the cooling coils. The main objective of this thesis is to explain the heat transfer performance of the cooling coils under low cooling loads. The water side and air side heat transfer...

  1. Coolerado Cooler Helps to Save Cooling Energy and Dollars: New Cooling Technology Targets Peak Load Reduction

    SciTech Connect (OSTI)

    Robichaud, R.

    2007-06-01T23:59:59.000Z

    This document is about a new evaporative cooling technology that can deliver cooler supply air temperatures than either direct or indirect evaporative cooling systems, without increasing humidity. The Coolerado Cooler technology can help Federal agencies reach the energy-use reduction goals of EPAct 2005, particularly in the western United States.

  2. Laser cooling of a trapped particle with increased Rabi frequencies

    SciTech Connect (OSTI)

    Blake, Tony; Kurcz, Andreas; Saleem, Norah S.; Beige, Almut [School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT (United Kingdom)

    2011-11-15T23:59:59.000Z

    This paper analyzes the cooling of a single particle in a harmonic trap with red-detuned laser light with fewer approximations than previously done in the literature. We avoid the adiabatic elimination of the excited atomic state but are still interested in Lamb-Dicke parameters {eta}<<1. Our results show that the Rabi frequency of the cooling laser can be chosen higher than previously assumed, thereby increasing the effective cooling rate but not affecting the final outcome of the cooling process. Since laser cooling is already a well-established experimental technique, the main aim of this paper is to present a model which can be extended to more complex scenarios, like cavity-mediated laser cooling.

  3. Laser cooling of a trapped particle with increased Rabi frequencies

    E-Print Network [OSTI]

    Tony Blake; Andreas Kurcz; Norah S. Saleem; Almut Beige

    2011-10-14T23:59:59.000Z

    This paper analyses the cooling of a single particle in a harmonic trap with red-detuned laser light with fewer approximations than previously done in the literature. We avoid the adiabatic elimination of the excited atomic state but are still interested in Lamb-Dicke parameters $\\eta \\ll 1$. Our results show that the Rabi frequency of the cooling laser can be chosen higher than previously assumed, thereby increasing the effective cooling rate but {\\em not} affecting the final outcome of the cooling process. Since laser cooling is already a well established experimental technique, the main aim of this paper is to present a model which can be extended to more complex scenarios, like cavity-mediated laser cooling.

  4. Cooling load differences between radiant and air systems

    E-Print Network [OSTI]

    Feng, Jingjuan Dove; Schiavon, Stefano; Bauman, Fred

    2013-01-01T23:59:59.000Z

    radiant heating and cooling systems, in: Proceedings ofof radiant heating and cooling systems versus air systems,Gain on Radiant Floor Cooling System Design, in: Proceedings

  5. Numerical Model for Conduction-Cooled Current Lead Heat Loads

    SciTech Connect (OSTI)

    White, M.J.; Wang, X.L.; /Fermilab; Brueck, H.D.; /DESY

    2011-06-10T23:59:59.000Z

    Current leads are utilized to deliver electrical power from a room temperature junction mounted on the vacuum vessel to a superconducting magnet located within the vacuum space of a cryostat. There are many types of current leads used at laboratories throughout the world; however, conduction-cooled current leads are often chosen for their simplicity and reliability. Conduction-cooled leads have the advantage of using common materials, have no superconducting/normal state transition, and have no boil-off vapor to collect. This paper presents a numerical model for conduction-cooled current lead heat loads. This model takes into account varying material and fluid thermal properties, varying thicknesses along the length of the lead, heat transfer in the circumferential and longitudinal directions, electrical power dissipation, and the effect of thermal intercepts. The model is validated by comparing the numerical model results to ideal cases where analytical equations are valid. In addition, the XFEL (X-Ray Free Electron Laser) prototype current leads are modeled and compared to the experimental results from testing at DESY's XFEL Magnet Test Stand (XMTS) and Cryomodule Test Bench (CMTB).

  6. Options for Cryogenic Load Cooling with Forced Flow Helium Circulation

    SciTech Connect (OSTI)

    Peter Knudsen, Venkatarao Ganni, Roberto Than

    2012-06-01T23:59:59.000Z

    Cryogenic pumps designed to circulate super-critical helium are commonly deemed necessary in many super-conducting magnet and other cooling applications. Acknowledging that these pumps are often located at the coldest temperature levels, their use introduces risks associated with the reliability of additional rotating machinery and an additional load on the refrigeration system. However, as it has been successfully demonstrated, this objective can be accomplished without using these pumps by the refrigeration system, resulting in lower system input power and improved reliability to the overall cryogenic system operations. In this paper we examine some trade-offs between using these pumps vs. using the refrigeration system directly with examples of processes that have used these concepts successfully and eliminated using such pumps

  7. EXPERIMENTAL VALIDATION OF THE RADIANT TIME SERIES METHOD FOR COOLING LOAD

    E-Print Network [OSTI]

    EXPERIMENTAL VALIDATION OF THE RADIANT TIME SERIES METHOD FOR COOLING LOAD CALCULATIONS By IP SENG College of the Oklahoma State University in partial fulfillment of the requirements for the Degree LOAD CALCULATIONS Thesis Approved: _______________________________________ Thesis Advisor

  8. Cooling-load implications for residential passive-solar-heating systems

    SciTech Connect (OSTI)

    Jones, R.W.; McFarland, R.D.

    1983-01-01T23:59:59.000Z

    Ongoing research on quantifying the cooling loads in residential buildings, particularly buildings with passive solar heating systems, is described, along with the computer simulation model used for calculating cooling loads. A sample of interim results is also presented. The objective of the research is to develop a simple analysis method, useful early in design, to estimate the annual cooling energy requirement of a given building.

  9. Daylighting Design Tools in Atria for Minimum Cooling Loads in Atrium Buildings

    E-Print Network [OSTI]

    Atif, M. R.; Boyer, L. L.; Degelman, L. O.; Claridge, D. E.

    The daylighting and sunlighting value of an atrium are considered the main reasons for including the atrium use in the built environment. However, most atria today are either overlit, which causes tremendous cooling loads, or underlit, requiring...

  10. Field Validation of the ASHRAI Transfer Function Method for Calculating Cooling Load

    E-Print Network [OSTI]

    Braud, H. J.; Quille, T.; Shih, J. C.

    1988-01-01T23:59:59.000Z

    had a calibrated, thermostatically controlled window air conditioning unit and two south-facing windows. The study included a parametric analysis of the thermostat setpoint and fenestration load effect on space heat extraction rate and cooling energy...

  11. Impact of Different Glazing Systems on Cooling Load of a Detached Residential Building at Bhubaneswar, India

    E-Print Network [OSTI]

    Sahoo, P. K.; Sahoo, R.

    2010-01-01T23:59:59.000Z

    ] and passive solar ventilation [Hamdy and Firky, 1998]. Impact of windows on thermal comfort and passive cooling is addressed by Chaiyapinunt et al. [2005] and Lyons et al. [1999]. Studies related to space cooling load characteristics in residential... load are investigated and analyzed using Design Builder simulation program [DesignBuilder, 2009]. The weather conditions and a detached residential building in the tropical Bhubaneswar are used in the simulation study. The premise of this study is...

  12. A Control Scheme of Enhanced Reliability for Multiple Chiller Plants Using Mergerd Building Cooling Load Measurements

    E-Print Network [OSTI]

    Wang, S.; Sun, Y.; Huang, G.; Zhu, N.

    , according to the surveys in Hong Kong and elsewhere, the direct measurement of building cooling load cannot always provide reliable measurements of building cooling load in practice due to the noises, outliers and systematic errors in measuring the water... ? is the water density (kg/L). In practice, w M is usually measured by water flow meters and and are measured by temperature sensors. It is known that these measurements are easily corrupted by measurement noises, outliers or systematic errors...

  13. Loading of a surface electrode ion trap from a remote, pre-cooled source

    E-Print Network [OSTI]

    Sage, Jeremy M; Chiaverini, John

    2012-01-01T23:59:59.000Z

    We demonstrate for the first time the loading of ions into a surface electrode trap (SET) from a remote, laser-cooled source of neutral atoms. We first cool and load $\\sim$ $10^6$ neutral $^{88}$Sr atoms into a magneto-optical trap (MOT) from an oven that has no line-of-sight with the SET. The cold atoms are then pushed with a resonant laser into the trap region where they are subsequently photoionized and trapped in an SET operated at a cryogenic temperature of 4.6 K. We present studies of the loading process and show that our technique achieves ion loading into a shallow (15 meV depth) trap at rates as high as 125 ions/s while drastically reducing the amount of deposition of metal on the trap surface as compared with direct loading from a hot vapor. Furthermore, we note that due to multiple stages of isotopic filtering in our loading process, this technique has enhanced isotopic selectivity over other loading methods. Rapid loading from a clean, isotopically pure, and pre-cooled source will potentially enab...

  14. Enhanced Raman sideband cooling of caesium atoms in a vapour-loaded magneto-optical trap

    E-Print Network [OSTI]

    Li, Y; Feng, G; Nute, J; Piano, S; Hackermuller, L; Ma, J; Xiao, L; Jia, S

    2015-01-01T23:59:59.000Z

    We report enhanced three-dimensional degenerated Raman sideband cooling (3D DRSC) of caesium (Cs) atoms in a standard single-cell vapour-loading magneto-optical trap. Our improved scheme involves using a separate repumping laser and optimized lattice detuning. We load $1.5 \\times 10^7$ atoms into the Raman lattice with a detuning of -15.5 GHz (to the ground F = 3 state). Enhanced 3D DRSC is used to cool them from 60 $\\mu$K to 1.7 $\\mu$K within 12 ms and the number of obtained atoms is about $1.2 \\times 10^7$. A theoretical model is proposed to simulate the measured number of trapped atoms. The result shows good agreement with the experimental data. The technique paves the way for loading a large number of ultracold Cs atoms into a crossed dipole trap and efficient evaporative cooling in a single-cell system.

  15. Auxiliary Cooling Loads in Passively Cooled Buildings: An Experimental Research Study

    E-Print Network [OSTI]

    Fairey, P.; Vieira, R.; Chandra, S.; Kerestecioglu, A.; Kalaghchy, S.

    1984-01-01T23:59:59.000Z

    Solar Energy Center (FSEC) is examining the auxiliary cooling requirements of residences in warm, humid climates. The study addresses both the thermal and moisture response of buildings. A total of eight wall systems, three frame wall types and five...

  16. Overview of Existing Literature On Diversity Factors and Schedules for Energy and Cooling Load Calculations

    E-Print Network [OSTI]

    Abushakra, B.; Haberl, J.S.; Claridge, D.E

    used in simulation. The goal of ASHRAE 1093-RP was to compile a library of schedules and diversity factors based on measured electricity consumption data for use in energy simulations and peak cooling load calculations in office buildings... consumption data for commercial buildings. The literature on diversity factors and load shapes was examined with particular attention to the descriptions of methods used, references to existing databases of monitored whole-building energy use and end...

  17. Wind Concurrent Cooling Could Increase Power Transmission Potential...

    Office of Environmental Management (EM)

    systems dynamically with concurrent cooling processes. "This type of technology is a win-win for the industry because we are able to make better use of existing transmission...

  18. CoolCab: Reducing Thermal Loads in Long-Haul Trucks (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-02-01T23:59:59.000Z

    This fact sheet describes how the National Renewable Energy Laboratory's CoolCab project tested and modeled the effects of several thermal-load reduction strategies applied to long-haul truck cabs. NREL partnered with two major truck manufacturers to evaluate three long-haul trucks at NREL's outdoor test facility in Golden, Colorado.

  19. Preconditioning Outside Air: Cooling Loads from Building Ventilation

    E-Print Network [OSTI]

    Kosar, D.

    1998-01-01T23:59:59.000Z

    HVAC equipment manufacturers, specifiers and end users interacting in the marketplace today are only beginning to address the series of issues promulgated by the increased outside air requirements in ASHRAE Standard 62- 1989, "Ventilation...

  20. CoolCalc: A Long-Haul Truck Thermal Load Estimation Tool: Preprint

    SciTech Connect (OSTI)

    Lustbader, J. A.; Rugh, J. P.; Rister, B. R.; Venson, T. S.

    2011-05-01T23:59:59.000Z

    In the United States, intercity long-haul trucks idle approximately 1,800 hrs annually for sleeper cab hotel loads, consuming 838 million gallons of diesel fuel per year. The objective of the CoolCab project is to work closely with industry to design efficient thermal management systems for long-haul trucks that keep the cab comfortable with minimized engine idling. Truck engine idling is primarily done to heat or cool the cab/sleeper, keep the fuel warm in cold weather, and keep the engine warm for cold temperature startup. Reducing the thermal load on the cab/sleeper will decrease air conditioning system requirements, improve efficiency, and help reduce fuel use. CoolCalc is an easy-to-use, simplified, physics-based HVAC load estimation tool that requires no meshing, has flexible geometry, excludes unnecessary detail, and is less time-intensive than more detailed computer-aided engineering modeling approaches. It is intended for rapid trade-off studies, technology impact estimation, and preliminary HVAC sizing design and to complement more detailed and expensive CAE tools by exploring and identifying regions of interest in the design space. This paper describes the CoolCalc tool, provides outdoor long-haul truck thermal testing results, shows validation using these test results, and discusses future applications of the tool.

  1. Heat Transfer Performance and Piping Strategy Study for Chilled Water Systems at Low Cooling Loads

    E-Print Network [OSTI]

    Li, Nanxi 1986-

    2012-12-05T23:59:59.000Z

    Cooling Coil Efficiency Water viscosity at the water bulk temperature Water fluid viscosity at the pipe wall temperature Fin Pitch ix TABLE OF CONTENTS... of the analysis will be compared with the weather data and chilled water system data of the DFW Airport during 2010. Other possible causes of the reduced delta-T at low loads exist and will be investigated. 8 2 LITERATURE REVIEW 2.1 Heat transfer...

  2. Dynamic Analysis of Moisture Transport Through Walls and Associated Cooling Loads in the Hot/Humid Climate of Florianopolis, Brazil 

    E-Print Network [OSTI]

    Mendes, N.; Winkelmann, F. C.; Lamberts, R.; Philippi, P. C.; Da Cunha, Neto, J. A. B.

    1996-01-01T23:59:59.000Z

    . The simulation results were compared to those obtained by pure conduction heat transfer without moisture effects. Also analyzed were the influence on cooling loads of high moisture content due to rain soaking of materials. and the influence of solar radiation...

  3. Dynamic Analysis of Moisture Transport Through Walls and Associated Cooling Loads in the Hot/Humid Climate of Florianopolis, Brazil

    E-Print Network [OSTI]

    Mendes, N.; Winkelmann, F. C.; Lamberts, R.; Philippi, P. C.; Da Cunha, Neto, J. A. B.

    1996-01-01T23:59:59.000Z

    We describe the use of a dynamic model of combined heat and mass transfer to analyze the effects on cooling loads of transient moisture storage and transport through walls with porous building materials, under varying boundary conditions...

  4. Compilation of Diversity Factors and Schedules for Energy and Cooling Load Calculations, Phase II Report - Identified Relevant Data Sets, Methods, and Variability Analysis

    E-Print Network [OSTI]

    Abushakra, B.; Haberl, J. S.; Claridge, D. E.

    1999-01-01T23:59:59.000Z

    for classifying the Office building categories; (3) the relevant methods for daytyping necessary for creating the typical load shapes for energy and cooling load calculation; (4) the relevant robust variability (uncertainty) analysis; (5) typical load shapes...

  5. Method of energy load management using PCM for heating and cooling of buildings

    DOE Patents [OSTI]

    Stovall, Therese K. (Knoxville, TN); Tomlinson, John J. (Knoxville, TN)

    1996-01-01T23:59:59.000Z

    A method of energy load management for the heating and cooling of a building. The method involves utilizing a wallboard as a portion of the building, the wallboard containing about 5 to about 30 wt. % a phase change material such that melting of the phase change material occurs during a rise in temperature within the building to remove heat from the air, and a solidification of the phase change material occurs during a lowering of the temperature to dispense heat into the air. At the beginning of either of these cooling or heating cycles, the phase change material is preferably "fully charged". In preferred installations one type of wallboard is used on the interior surfaces of exterior walls, and another type as the surface on interior walls. The particular PCM is chosen for the desired wall and room temperature of these locations. In addition, load management is achieved by using PCM-containing wallboard that form cavities of the building such that the cavities can be used for the air handling duct and plenum system of the building. Enhanced load management is achieved by using a thermostat with reduced dead band of about the upper half of a normal dead band of over three degree. In some applications, air circulation at a rate greater than normal convection provides additional comfort.

  6. Method of energy load management using PCM for heating and cooling of buildings

    DOE Patents [OSTI]

    Stovall, T.K.; Tomlinson, J.J.

    1996-03-26T23:59:59.000Z

    A method is described for energy load management for the heating and cooling of a building. The method involves utilizing a wallboard as a portion of the building, the wallboard containing about 5 to about 30 wt.% phase change material such that melting of the phase change material occurs during a rise in temperature within the building to remove heat from the air, and a solidification of the phase change material occurs during a lowering of the temperature to dispense heat into the air. At the beginning of either of these cooling or heating cycles, the phase change material is preferably ``fully charged``. In preferred installations one type of wallboard is used on the interior surfaces of exterior walls, and another type as the surface on interior walls. The particular PCM is chosen for the desired wall and room temperature of these locations. In addition, load management is achieved by using PCM-containing wallboards that form cavities of the building such that the cavities can be used for the air handling duct and plenum system of the building. Enhanced load management is achieved by using a thermostat with reduced dead band of about the upper half of a normal dead band of over three degrees. In some applications, air circulation at a rate greater than normal convection provides additional comfort. 7 figs.

  7. Solution of Air Conditioning Cooling Load Temperature for New Energy-Saving Walls

    E-Print Network [OSTI]

    Wang, X.; Hong, J.; Deying, L.

    2006-01-01T23:59:59.000Z

    ICEBO2006, Shenzhen, China Enve lope Technologies for Building Energy Efficiency Vol.II-3-5 Solution of Air Conditioning Cooling Load Temperature for New Energy-Saving Walls Xuejin Wang Jing Hong Deying Li School of Building.... The formula used to calculate the heat transfer ICEBO2006, Shenzhen, China Enve lope Technologies for Building Energy Efficiency Vol.II-3-5 thermal response factors are as follows: 0j = ? ? ? = ??+= 1 i )e1(BK)0(Y i ? ? Tab.1 New energy...

  8. Cooling load calculations for radiant systems: are they the same traditional methods?

    E-Print Network [OSTI]

    Bauman, Fred; Feng, Jingjuan Dove; Schiavon, Stefano

    2013-01-01T23:59:59.000Z

    B. 2008. “Radiant floor cooling systems. ” ASHRAE Journal 4.embedded radiant heating and cooling. Geneva: InternationalM. Deru. 2010. “Radiant slab cooling for retail. ” ASHRAE

  9. Experimental comparison of zone cooling load between radiant and air systems

    E-Print Network [OSTI]

    Feng, Jingjuan Dove; Bauman, Fred; Schiavon, Stefano

    2014-01-01T23:59:59.000Z

    Olesen, Radiant floor cooling systems, ASHRAE Journal, 50 (radiant heating and cooling systems -- Part 2: Determinationradiant heating and cooling systems -- Part 4: Dimensioning

  10. Comparison of Zone Cooling Load for Radiant and All-Air Conditioning Systems

    E-Print Network [OSTI]

    Feng, Jingjuan; Schiavon, Stefano; Bauman, Fred

    2012-01-01T23:59:59.000Z

    Radiant Heating and Cooling Systems. Olesen, B. (2012). "surface heating and cooling systems: . Brussels, Europeanperformance in radiant cooling systems (Babiak, Olesen et

  11. Experimental validation of advanced regulations for superconducting magnet cooling undergoing periodic heat loads

    SciTech Connect (OSTI)

    Lagier, B.; Rousset, B.; Hoa, C.; Bonnay, P. [CEA Grenoble INAC/SBT, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France)

    2014-01-29T23:59:59.000Z

    Superconducting magnets used in tokamaks undergo periodic heat load caused by cycling plasma operations inducing AC losses, neutrons fluxes and eddy currents in magnet structures. In the cryogenic system of JT60-SA tokamak, the Auxiliary Cold Box (ACB) distributes helium from the refrigerator to the cryogenic users and in particular to the superconducting magnets. ACB comprises a saturated helium bath with immersed heat exchangers, extracting heat from independent cooling loops. The supercritical helium flow in each cooling loop is driven by a cold circulator. In order to safely operate the refrigerator during plasma pulses, the interface between the ACB and the refrigerator shall be as stable as possible, with well-balanced bath inlet and outlet mass flows during cycling operation. The solution presented in this paper relies on a combination of regulations to smooth pulsed heat loads and to keep a constant refrigeration power during all the cycle. Two smoothing strategies are presented, both regulating the outlet mass flow of the bath: the first one using the bath as a thermal buffer and the second one storing energy in the loop by varying the cold circulator speed. The bath outlet mass flow is also controlled by an immersed resistive heater which enables a constant evaporation rate in the bath when power coming from the loops is decreasing. The refrigeration power is controlled so that the compensating power remains within an acceptable margin. Experimental validation is achieved using the HELIOS facility. This facility running at CEA Grenoble since 2010 is a scaled down model of the ACB bath and Central Solenoid magnet cooling loop of the JT60-SA tokamak. Test results show performances and robustness of the regulations.

  12. Towards Increased Waste Loading in High Level Waste Glasses: Developing a Better Understanding of Crystallization Behavior

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Marra, James C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kim, Dong -Sang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-01-01T23:59:59.000Z

    A number of waste components in US defense high level radioactive wastes (HLW) have proven challenging for current Joule heated ceramic melter (JCHM) operations and have limited the ability to increase waste loadings beyond already realized levels. Many of these ''troublesome'' waste species cause crystallization in the glass melt that can negatively impact product quality or have a deleterious effect on melter processing. Recent efforts at US Department of Energy laboratories have focused on understanding crystallization behavior within HLW glass melts and investigating approaches to mitigate the impacts of crystallization so that increases in waste loading can be realized. Advanced glass formulations have been developed to highlight the unique benefits of next-generation melter technologies such as the Cold Crucible Induction Melter (CCIM). Crystal-tolerant HLW glasses have been investigated to allow sparingly soluble components such as chromium to crystallize in the melter but pass out of the melter before accumulating. The Hanford site AZ-101 tank waste composition represents a waste group that is waste loading limited primarily due to high concentrations of Fe2O3 (with higher Al2O3). Systematic glass formulation development utilizing slightly higher process temperatures and higher tolerance to spinel crystals demonstrated that an increase in waste loading of more than 20% could be achieved for this waste composition, and by extension higher loadings for wastes in the same group.

  13. Towards Increased Waste Loading in High Level Waste Glasses: Developing a Better Understanding of Crystallization Behavior

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Marra, James C.; Kim, Dong -Sang

    2014-01-01T23:59:59.000Z

    A number of waste components in US defense high level radioactive wastes (HLW) have proven challenging for current Joule heated ceramic melter (JCHM) operations and have limited the ability to increase waste loadings beyond already realized levels. Many of these ''troublesome'' waste species cause crystallization in the glass melt that can negatively impact product quality or have a deleterious effect on melter processing. Recent efforts at US Department of Energy laboratories have focused on understanding crystallization behavior within HLW glass melts and investigating approaches to mitigate the impacts of crystallization so that increases in waste loading can be realized. Advancedmore »glass formulations have been developed to highlight the unique benefits of next-generation melter technologies such as the Cold Crucible Induction Melter (CCIM). Crystal-tolerant HLW glasses have been investigated to allow sparingly soluble components such as chromium to crystallize in the melter but pass out of the melter before accumulating. The Hanford site AZ-101 tank waste composition represents a waste group that is waste loading limited primarily due to high concentrations of Fe2O3 (with higher Al2O3). Systematic glass formulation development utilizing slightly higher process temperatures and higher tolerance to spinel crystals demonstrated that an increase in waste loading of more than 20% could be achieved for this waste composition, and by extension higher loadings for wastes in the same group.« less

  14. Development of a simplified cooling load design tool for underfloor air distribution (UFAD) systems.

    E-Print Network [OSTI]

    Schiavon, Stefano; Lee, Kwang Ho; Bauman, Fred; Webster, Tom

    2010-01-01T23:59:59.000Z

    into account in the heat load calculation; (2) for the firststratification on heat load calculations was raised but itload calculation section the following advice was given: (1) the convective heat

  15. Unintended Impacts of Increased Truck Loads on Pavement Supply-Chain Emissions

    E-Print Network [OSTI]

    California at Berkeley, University of

    Unintended Impacts of Increased Truck Loads on Pavement Supply-Chain Emissions Nakul Sathaye, Arpad by pavements. The supply chain associated with pavement maintenance and construction releases significant air tailpipe versus pavement supplychain emissions. In some cases, unintended emissions from the pavement

  16. Phase change based cooling for high burst mode heat loads with temperature regulation above the phase change temperature

    DOE Patents [OSTI]

    The United States of America as represented by the United States Department of Energy (Washington, DC)

    2009-12-15T23:59:59.000Z

    An apparatus and method for transferring thermal energy from a heat load is disclosed. In particular, use of a phase change material and specific flow designs enables cooling with temperature regulation well above the fusion temperature of the phase change material for medium and high heat loads from devices operated intermittently (in burst mode). Exemplary heat loads include burst mode lasers and laser diodes, flight avionics, and high power space instruments. Thermal energy is transferred from the heat load to liquid phase change material from a phase change material reservoir. The liquid phase change material is split into two flows. Thermal energy is transferred from the first flow via a phase change material heat sink. The second flow bypasses the phase change material heat sink and joins with liquid phase change material exiting from the phase change material heat sink. The combined liquid phase change material is returned to the liquid phase change material reservoir. The ratio of bypass flow to flow into the phase change material heat sink can be varied to adjust the temperature of the liquid phase change material returned to the liquid phase change material reservoir. Varying the flowrate and temperature of the liquid phase change material presented to the heat load determines the magnitude of thermal energy transferred from the heat load.

  17. Laser cooling of a semiconductor load to 165 K Denis V. Seletskiy1,*

    E-Print Network [OSTI]

    Sheik-Bahae, Mansoor

    : We demonstrate cooling of a 2 micron thick GaAs/InGaP double- heterostructure to 165 K from ambient efficiency in GaAs/ InGaP double heterostructures for laser cooling applications," Proc. SPIE 7614, 76140B

  18. Cooling load calculations for radiant systems: are they the same traditional methods?

    E-Print Network [OSTI]

    Bauman, Fred; Feng, Jingjuan Dove; Schiavon, Stefano

    2013-01-01T23:59:59.000Z

    FEATURE A Radiant Air Radiant Air COOLING RATE (BTU/H· FT2 ) COOLING RATE (BTU/H· FT 2 ) B HOUR HOUR FIGURE 2total internal heat gain (4.8 Btu/h·ft 2 [15 W/m 2 ]) during

  19. Effects of Material Moisture Adsorption and Desorption on Building Cooling Loads

    E-Print Network [OSTI]

    Fairey, P.; Kosar, D.

    1988-01-01T23:59:59.000Z

    ventilation of buildings in hot, humid climates has been shown to induce higher latent loads and higher room relative humidities during periods following the ventilation....

  20. Influence of raised floor on zone design cooling load in commercial buildings.

    E-Print Network [OSTI]

    Schiavon, Stefano; Lee, Kwang Ho; Bauman, Fred; Webster, Tom

    2010-01-01T23:59:59.000Z

    A future study will analyze the difference in zone coolingcooling load for a UFAD system was not included because the topic will be covered in a future

  1. Depletion Analysis of Modular High Temperature Gas-cooled Reactor Loaded with LEU/Thorium Fuel

    SciTech Connect (OSTI)

    Sonat Sen; Gilles Youinou

    2013-02-01T23:59:59.000Z

    Thorium based fuel has been considered as an option to uranium-based fuel, based on considerations of resource utilization (Thorium is more widely available when compared to Uranium). The fertile isotope of Thorium (Th-232) can be converted to fissile isotope U-233 by neutron capture during the operation of a suitable nuclear reactor such as High Temperature Gas-cooled Reactor (HTGR). However, the fertile Thorium needs a fissile supporter to start and maintain the conversion process such as U-235 or Pu-239. This report presents the results of a study that analyzed the thorium utilization in a prismatic HTGR, namely Modular High Temperature Gas-Cooled Reactor (MHTGR) that was designed by General Atomics (GA). The collected for the modeling of this design come from Chapter 4 of MHTGR Preliminary Safety Information Document that GA sent to Department of Energy (DOE) on 1995. Both full core and unit cell models were used to perform this analysis using SCALE 6.1 and Serpent 1.1.18. Because of the long mean free paths (and migration lengths) of neutrons in HTRs, using a unit cell to represent a whole core can be non-trivial. The sizes of these cells were set to match the spectral index between unit cell and full core domains. It was found that for the purposes of this study an adjusted unit cell model is adequate. Discharge isotopics and one-group cross-sections were delivered to the transmutation analysis team. This report provides documentation for these calculations

  2. Cost-Effective Integration of Efficient Low-Lift Base Load Cooling Equipment

    SciTech Connect (OSTI)

    Jiang, Wei; Winiarski, David W.; Katipamula, Srinivas; Armstrong, Peter R.

    2008-01-14T23:59:59.000Z

    The long-term goal of DOE’s Commercial Buildings Integration subprogram is to develop cost-effective technologies and building practices that will enable the design and construction of net Zero Energy Buildings — commercial buildings that produce as much energy as they use on an annual basis — by 2025. To support this long-term goal, DOE further called for — as part of its FY07 Statement of Needs — the development by 2010 of “five cost-effective design technology option sets using highly efficient component technologies, integrated controls, improved construction practices, streamlined commissioning, maintenance and operating procedures that will make new and existing commercial buildings durable, healthy and safe for occupants.” In response, PNNL proposed and DOE funded a scoping study investigation of one such technology option set, low-lift cooling, that offers potentially exemplary HVAC energy performance relative to ASHRAE Standard 90.1-2004. The primary purpose of the scoping study was to estimate the national technical energy savings potential of this TOS.

  3. Assessment of Nanofluids for HEV Cooling Applications

    Broader source: Energy.gov (indexed) [DOE]

    Results - Heat Flux Double-Sided Cooling 8 A nanofluid TC ratio of 1.5 increases heat load by 50% with TIM and by 70% without TIM. Results - Junction Temperature -...

  4. Increasing High-Level Waste Loading In Glass Without Changing The Baseline Melter Technology

    SciTech Connect (OSTI)

    Hrma, Pavel R.; Alton, Jesse; Plaisted, Trevor J.; Klouzek, Jaroslav; Matyas, Josef; Mika, Martin; Schill, Petr; Trochta, Miroslav; Nemec, Lubomir

    2001-02-25T23:59:59.000Z

    The main factors that determine the cost of high-level waste (HLW) vitrification are the waste loading (which determines the volume of glass) and the melting rate. Product quality should be the only factor determining the waste loading while melter design should provide a rapid melting technology. In reality, the current HLW melters are slow in glass-production rate and are subjected to operational risks that require waste loading to be kept far below its intrinsic level. One of the constraints that decrease waste loading is the liquidus-temperature limit. close inspection reveals that this constraint is probably too severe, even for the current technology. The purpose of the liquidus-temperature constraint is to prevent solids from settling on the melter bottom. It appears that some limited settling would niether interfere with melter operation nor shorten its lifetime and that the rate of settling can be greatly reduced if only small crystals are allowed to form.

  5. Modified vector control algorithm for increasing partial-load efficiency of fractional-slot concentrated-winding surface PM machines

    SciTech Connect (OSTI)

    El-Refaie, Ayman M [ORNL; Jahns, Thomas M [ORNL; Reddy, Patel [University of Wisconsin; McKeever, John W [ORNL

    2008-01-01T23:59:59.000Z

    This paper presents a modified vector control algorithm for a fractional-slot concentrated-winding surface permanent magnet (SPM) machine that has been developed to maximize the machine's partial-load efficiency over a wide range of operating conditions. By increasing the amplitude of the negative d-axis current, the resulting increase in the stator copper losses can be more than offset by the reduction in the iron core losses achieved by lowering the stator d-axis flux amplitude. The effectiveness of this technique has been demonstrated using both analytical models and finite element analysis for a 55-kW (peak) SPM machine design developed for a demanding set of traction drive performance requirements. For this example, the modified control strategy increases the partial-load efficiency at 20% of rated torque by > 6% at 2000 r/min compared to the maximum torque/ampere algorithm, making the machine much more attractive for its intended application.

  6. Sensible and Latent Cooling Load Control Using Centrally-Ducted, Variable-Capacity Space Conditioning Systems in Low Sensible Load Environments

    Broader source: Energy.gov [DOE]

    This presentation was given at the Summer 2012 DOE Building America meeting on July 26, 2012, and addressed the question ŤWhat are the best HVAC solutions for low-load, high performance homes?"

  7. The Heat Balance Method (HBM) is used for estimating the heating and cooling loads encountered in a vehicle cabin. A

    E-Print Network [OSTI]

    Bahrami, Majid

    is directly linked to AC system. This trend is evidenced by new features such as multi-zone climate control energy consuming system after the electric motor [3]. Further, AC loads are the most significant

  8. INCREASE

    ScienceCinema (OSTI)

    None

    2013-07-22T23:59:59.000Z

    The Interdisciplinary Consortium for Research and Educational Access in Science and Engineering (INCREASE), assists minority-serving institutions in gaining access to world-class research facilities.

  9. Liquid Cooling in Data Centers

    SciTech Connect (OSTI)

    Cader, Tahir; Sorell,, Vali; Westra, Levi; Marquez, Andres

    2009-05-01T23:59:59.000Z

    Semiconductor manufacturers have aggressively attacked the problem of escalating microprocessor power consumption levels. Today, server manufacturers can purchase microprocessors that currently have power consumption levels capped at 100W maximum. However, total server power levels continue to increase, with the increase in power consumption coming from the supportin chipsets, memory, and other components. In turn, full rack heat loads are very aggressivley climbing as well, and this is making it increasingly difficult and cost-prohibitive for facility owners to cool these high power racks. As a result, facilities owners are turning to alternative, and more energy efficient, cooling solutions that deploy liquids in one form or another. The paper discusses the advent of the adoption of liquid-cooling in high performance computing centers. An overview of the following competing rack-based, liquid-cooling, technologies is provided: in-row, above rack, refrigerated/enclosed rack, rear door heat exchanger, and device-level (i.e., chip-level). Preparation for a liquid-cooled data center, retroft and greenfield (new), is discussed, with a focus on the key issues that are common to all liquid-cooling technologies that depend upon the delivery of water to the rack (or in some deployments, a Coolant Distribution Unit). The paper then discusses, in some detail, the actual implementation and deployment of a liquid device-level cooled (spray cooled) supercomputer at the Pacific Northwest National Laboratory. Initial results from a successful 30 day compliance test show excellent hardware stability, operating system (OS) and software stack stability, application stability and performance, and an availability level that exceeded expectations at 99.94%. The liquid-cooled supercomputer achieved a peak performance of 9.287 TeraFlops, which placed it at number 101 in the June 2007 Top500 fastest supercomputers worldwide. Long-term performance and energy efficiency testing is currently underway, and detailed results will be reported in upcoming publications.

  10. Thermal Energy Storage for Cooling of Commercial Buildings

    E-Print Network [OSTI]

    Akbari, H.

    2010-01-01T23:59:59.000Z

    trates a design load profile for a partial storage system.load management / full storage / ice storage / partialfor partial storage) because part of the cooling load is

  11. Pressure loadings of Soviet-designed VVER (Water-Cooled, Water-Moderated Energy Reactor) reactor release mitigation structures from large-break LOCAs

    SciTech Connect (OSTI)

    Sienicki, J.J.; Horak, W.C. (Argonne National Lab., IL (USA); Brookhaven National Lab., Upton, NY (USA))

    1989-01-01T23:59:59.000Z

    Analyses have been carried out of the pressurization of the accident release mitigation structures of Soviet-designed VVER (Water-Cooled, Water-Moderated Energy Reactor) pressurized water reactors following large-break loss-of-coolant accidents. Specific VVER systems for which calculations were performed are the VVER-440 model V230, VVER-440 model V213, and VVER-1000 model V320. Descriptions of the designs of these and other VVER models are contained in the report DOE/NE-0084. The principal objective of the current analyses is to calculate the time dependent pressure loadings inside the accident localization or containment structures immediately following the double-ended guillotine rupture of a primary coolant pipe. In addition, the pressures are compared with the results of calculations of the response of the structures to overpressure. Primary coolant system thermal hydraulic conditions and the fluid conditions at the break location were calculated with the RETRAN-02 Mod2 computer code (Agee, 1984). Pressures and temperatures inside the building accident release mitigation structures were obtained from the PACER (Pressurization Accompanying Coolant Escape from Ruptures) multicompartment containment analysis code developed at Argonne National Laboratory. The analyses were carried out using best estimate models and conditions rather than conservative, bounding-type assumptions. In particular, condensation upon structure and equipment was calculated using correlations based upon analyses of the HDR, Marviken, and Battelle Frankfurt containment loading experiments. The intercompartment flow rates incorporate an effective discharge coefficient and liquid droplet carryover fraction given by expressions of Schwan determined from analyses of the Battelle Frankfurt and Marviken tests. 5 refs., 4 figs.

  12. CCHP System with Interconnecting Cooling and Heating Network 

    E-Print Network [OSTI]

    Fu, L.; Geng, K.; Zheng, Z.; Jiang, Y.

    2006-01-01T23:59:59.000Z

    The consistency between building heating load, cooling load and power load are analyzed in this paper. The problem of energy waste and low equipment usage in a traditional CCHP (combined cooling, heating and power) system with generated electricity...

  13. CCHP System with Interconnecting Cooling and Heating Network

    E-Print Network [OSTI]

    Fu, L.; Geng, K.; Zheng, Z.; Jiang, Y.

    2006-01-01T23:59:59.000Z

    The consistency between building heating load, cooling load and power load are analyzed in this paper. The problem of energy waste and low equipment usage in a traditional CCHP (combined cooling, heating and power) system with generated electricity...

  14. Global Cooling: Policies to Cool the World and Offset Global Warming from CO2 Using Reflective Roofs and Pavements

    E-Print Network [OSTI]

    Akbari, Hashem

    2010-01-01T23:59:59.000Z

    cooling load from cool roofs. While important, the annual CO2008. Evolution of cool roof standards in the United States.2005. “Cool Colored Roofs to Save Energy and Improve Air

  15. Cooling Enhancement Using Inhomogeneous Thermoelectric Materials Zhixi Bian and Ali Shakouri

    E-Print Network [OSTI]

    and Peltier cooling profiles along the current and heat flow directions. The cooling efficiency can also be increased by a moderate amount. Numerical simulations are used to optimize the doping profile the heat load density of the subsequent stage. This introduces extra thermal resistance and reduces

  16. Cooling our Communities. A Guidebook on Tree Planting and Light-Colored Surfacing

    E-Print Network [OSTI]

    Akbari, H.

    2009-01-01T23:59:59.000Z

    Huang. 1988. "Residential Cooling Loads and the Urban Heaton Energy Efficient Cooling (San Jose, CA). Akbari, H. ,mer Heat Islands on Residential Cooling Energy Consumption."

  17. Cool Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cool Links Explore Science Explore Explore these Topics Activities Videos Cool Links Favorite Q&A invisible utility element Cool Links Los Alamos National Laboratory links Los...

  18. Increasing runoff and sediment load from the Greenland ice sheet at kangerlussuaq (Sonder Stromfjord) in a 30-year perspective, 1979-2008

    SciTech Connect (OSTI)

    Mernild, Sebastian Haugard [Los Alamos National Laboratory; Liston, Glen [COLORADO STATE UNIV.; Hasholt, Bent [UNIV OF COPENGAGEN; Steffen, Konrad [UNIV OF COLORADO; Van Den Broeke, Michiel [UTRECHT UNIV; Mcgrath, Daniel [UNIV OF COLORADO; Yde, Jacob [UNIV OF AARHUS

    2009-01-01T23:59:59.000Z

    This observation and modeling study provides insights into runoff and sediment load exiting the Watson River drainage basin, Kangerlussuaq, West Greenland during a 30 year period (1978/79-2007/08) when the climate experienced increasing temperatures and precipitation. The 30-year simulations quantify the terrestrial freshwater and sediment output from part of the Greenland Ice Sheet (GrIS) and the land between the GrIS and the ocean, in the context of global warming and increasing GrIS surface melt. We used a snow-evolution modeling system (SnowModel) to simulate the winter accumulation and summer ablation processes, including runoff and surface mass balance (SMB), of the Greenland ice sheet. Observed sediment concentrations were related to observed runoff, producing a sediment-load time series. To a large extent, the SMB fluctuations could be explained by changes in net precipitation (precipitation minus evaporation and sublimation), with 8 out of 30 years having negative SMB, mainly because of relatively low annual net precipitation. The overall trend in net precipitation and runoff increased significantly, while 5MB increased insignificantly throughout the simulation period, leading to enhanced precipitation of 0.59 km{sup 3} w.eq. (or 60%), runoff of 0.43 km{sup 3} w.eq (or 54%), and SMB of 0.16 km3 w.eq. (or 86%). Runoff rose on average from 0.80 km{sup 3} w.eq. in 1978/79 to 1.23 km{sup 3} w.eq. in 2007/08. The percentage of catchment oudet runoff explained by runoff from the GrIS decreased on average {approx} 10%, indicating that catchment runoff throughout the simulation period was influenced more by precipitation and snowmelt events, and less by runoff from the GrIS. Average variations in the increasing Kangerlussuaq runoff from 1978/79 through 2007/08 seem to follow the overall variations in satellite-derived GrIS surface melt, where 64% of the variations in simulated runoff were explained by regional melt conditions on the GrIS. Throughout the simulation period, the sediment load varied from a minimum of 0.96 x 10{sup 6} t y{sup -1} in 1991/92 to a maximum of 3.52 x 10{sup 6} t y{sup -1} in 2006/07, showing an average increase of sediment load of 9.42 x 10{sup 5} t (or 72%) throughout the period.

  19. Direct Liquid Cooling for Electronic Equipment

    SciTech Connect (OSTI)

    Coles, Henry; Greenberg, Steve

    2014-03-01T23:59:59.000Z

    This report documents a demonstration of an electronic--equipment cooling system in the engineering prototype development stage that can be applied in data centers. The technology provides cooling by bringing a water--based cooling fluid into direct contact with high--heat--generating electronic components. This direct cooling system improves overall data center energy efficiency in three ways: High--heat--generating electronic components are more efficiently cooled directly using water, capturing a large portion of the total electronic equipment heat generated. This captured heat reduces the load on the less--efficient air--based data center room cooling systems. The combination contributes to the overall savings. The power consumption of the electronic equipment internal fans is significantly reduced when equipped with this cooling system. The temperature of the cooling water supplied to the direct cooling system can be much higher than that commonly provided by facility chilled water loops, and therefore can be produced with lower cooling infrastructure energy consumption and possibly compressor-free cooling. Providing opportunities for heat reuse is an additional benefit of this technology. The cooling system can be controlled to produce high return water temperatures while providing adequate component cooling. The demonstration was conducted in a data center located at Lawrence Berkeley National Laboratory in Berkeley, California. Thirty--eight servers equipped with the liquid cooling system and instrumented for energy measurements were placed in a single rack. Two unmodified servers of the same configuration, located in an adjacent rack, were used to provide a baseline. The demonstration characterized the fraction of heat removed by the direct cooling technology, quantified the energy savings for a number of cooling infrastructure scenarios, and provided information that could be used to investigate heat reuse opportunities. Thermal measurement data were used with data center energy use modeling software to estimate overall site energy use. These estimates show that an overall data center energy savings of approximately 20 percent can be expected if a center is retrofitted as specified in the models used. Increasing the portion of heat captured by this technology is an area suggested for further development.

  20. Evaluating the Long-term Impact of a Continuously Increasing Harmonic Load Demand on Feeder Level Voltage Distortion

    E-Print Network [OSTI]

    Simőes, Marcelo Godoy

    , fluorescent tube lighting, pc's and laptops have become more prominent in the residential household. With an expectation of higher penetrations of electric vehicle chargers and renewable energy devices the increased usage of nonlinear devices by type. The disadvantage to this approach is that it relies upon

  1. Base reinforcement results from the addition of a geosynthetic at the bottom or within a base course to increase the structural or load-carrying capacity of a pavement system. While there is clear evidence that geosynthetic

    E-Print Network [OSTI]

    Zornberg, Jorge G.

    course to increase the structural or load-carrying capacity of a pavement system. While there is clear evidence that geosynthetic reinforcements can lead to improved pavement performance, the identification, pavement structures deteriorate under the combined effects of traffic loading and environmental conditions

  2. STOCHASTIC COOLING

    E-Print Network [OSTI]

    Bisognano, J.

    2010-01-01T23:59:59.000Z

    L. Thorndahl, Stochastic Cooling o f Momentum Spread by F ion Stochastic Cooling i n ICE, IEEE Transaction's in Nucl. Sand S. A. Kheifhets', On Stochastic Cooling, P a r t i c l e

  3. STOCHASTIC COOLING

    E-Print Network [OSTI]

    Bisognano, J.

    2010-01-01T23:59:59.000Z

    the stochastic cooling technique. This work directly led tol . . Physics and Techniques o f Stochastic Cooling, PhysicsCooling o f Momentum Spread by F i l t e r Techniques, CERN-

  4. Utilization of municipal wastewater for cooling in thermoelectric power plants: Evaluation of the combined cost of makeup water treatment and increased condenser fouling

    SciTech Connect (OSTI)

    Walker, Michael E.; Theregowda, Ranjani B.; Safari, Iman; Abbasian, Javad; Arastoopour, Hamid; Dzombak, David A.; Hsieh, Ming-Kai; Miller, David C.

    2013-10-01T23:59:59.000Z

    A methodology is presented to calculate the total combined cost (TCC) of water sourcing, water treatment and condenser fouling in the recirculating cooling systems of thermoelectric power plants. The methodology is employed to evaluate the economic viability of using treated municipal wastewater (MWW) to replace the use of freshwater as makeup water to power plant cooling systems. Cost analyses are presented for a reference power plant and five different tertiary treatment scenarios to reduce the scaling tendencies of MWW. Results indicate that a 550 MW sub-critical coal fired power plant with a makeup water requirement of 29.3 ML/day has a TCC of $3.0 - 3.2 million/yr associated with the use of treated MWW for cooling. (All costs USD 2009). This translates to a freshwater conservation cost of $0.29/kL, which is considerably lower than that of dry air cooling technology, $1.5/kL, as well as the 2020 conservation cost target set by the U.S. Department of Energy, $0.74/kL. Results also show that if the available price of freshwater exceeds that of secondarytreated MWW by more than $0.13-0.14/kL, it can be economically advantageous to purchase secondary MWW and treat it for utilization in the recirculating cooling system of a thermoelectric power plant.

  5. Compilation of Diversity Factors and Schedules for Energy and Cooling Load Calculations, ASHRAE Research Project 1093, Preliminary Report, Literature Review and Database Search

    E-Print Network [OSTI]

    Abushakra, B.; Haberl, J. S.; Claridge, D. E.

    buildings). This study provides some guidelines as to what to look for in the current database search. Wall et al. (1984) presented an extensive data collection effort for new energy-efficient commercial buildings, in a continuing systematic... and refrigerators on the peak day, (3) to determine the effect of substituting more energy efficient ACs and refrigerators, and (4) to attempt to develop a model for estimating end-use profiles based on total load and demographic data without the need for end...

  6. Climate Change Impacts on Residential and Commercial Loads in the Western U.S. Grid

    SciTech Connect (OSTI)

    Lu, Ning; Taylor, Zachary T.; Jiang, Wei; Xie, YuLong; Leung, Lai R.; Correia, James; Wong, Pak C.; Mackey, Patrick S.; Paget, Maria L.

    2008-09-30T23:59:59.000Z

    This report presents a multi-disciplinary modeling approach to quickly quantify climate change impacts on energy consumption, peak load, and load composition of residential and commercial buildings. This research focuses on addressing the impact of temperature changes on the building cooling load in 10 major cities across the Western United States and Canada. Our results have shown that by the mid-century, building yearly energy consumption and peak load will increase in the Southwest. Moreover, the peak load months will spread out to not only the summer months but also spring and autumn months. The Pacific Northwest will experience more hot days in the summer months. The penetration of the air conditioning (a/c) system in this area is likely to increase significantly over the years. As a result, some locations in the Pacific Northwest may be shifted from winter peaking to summer peaking. Overall, the Western U.S. grid may see more simultaneous peaks across the North and South in summer months. Increased cooling load will result in a significant increase in the motor load, which consumes more reactive power and requires stronger voltage support from the grid. This study suggests an increasing need for the industry to implement new technology to increase the efficiency of temperature-sensitive loads and apply proper protection and control to prevent possible adverse impacts of a/c motor loads.

  7. Stochastic Cooling

    SciTech Connect (OSTI)

    Blaskiewicz, M.

    2011-01-01T23:59:59.000Z

    Stochastic Cooling was invented by Simon van der Meer and was demonstrated at the CERN ISR and ICE (Initial Cooling Experiment). Operational systems were developed at Fermilab and CERN. A complete theory of cooling of unbunched beams was developed, and was applied at CERN and Fermilab. Several new and existing rings employ coasting beam cooling. Bunched beam cooling was demonstrated in ICE and has been observed in several rings designed for coasting beam cooling. High energy bunched beams have proven more difficult. Signal suppression was achieved in the Tevatron, though operational cooling was not pursued at Fermilab. Longitudinal cooling was achieved in the RHIC collider. More recently a vertical cooling system in RHIC cooled both transverse dimensions via betatron coupling.

  8. DOAS, Radiant Cooling Revisited

    SciTech Connect (OSTI)

    Hastbacka, Mildred; Dieckmann, John; Bouza, Antonio

    2012-12-01T23:59:59.000Z

    The article discusses dedicated outdoor air systems (DOAS) and radiant cooling technologies. Both of these topics were covered in previous ASHRAE Journal columns. This article reviews the technologies and their increasing acceptance. The two steps that ASHRAE is taking to disseminate DOAS information to the design community, available energy savings and the market potential of radiant cooling systems are addressed as well.

  9. Gas turbine cooling system

    DOE Patents [OSTI]

    Bancalari, Eduardo E. (Orlando, FL)

    2001-01-01T23:59:59.000Z

    A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

  10. axial compressive load: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    as the electromagnetic and thermal contraction loads are large but also for the heat load from the AC coupling loss. Reduction of the transverse load and warm-up cool-down...

  11. axial loads: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    as the electromagnetic and thermal contraction loads are large but also for the heat load from the AC coupling loss. Reduction of the transverse load and warm-up cool-down...

  12. axial loaded mri: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    as the electromagnetic and thermal contraction loads are large but also for the heat load from the AC coupling loss. Reduction of the transverse load and warm-up cool-down...

  13. axial compressive loading: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    as the electromagnetic and thermal contraction loads are large but also for the heat load from the AC coupling loss. Reduction of the transverse load and warm-up cool-down...

  14. Superfast Cooling

    E-Print Network [OSTI]

    S. Machnes; M. B. Plenio; B. Reznik; A. M. Steane; A. Retzker

    2010-01-15T23:59:59.000Z

    Currently laser cooling schemes are fundamentally based on the weak coupling regime. This requirement sets the trap frequency as an upper bound to the cooling rate. In this work we present a numerical study that shows the feasibility of cooling in the strong coupling regime which then allows cooling rates that are faster than the trap frequency with state of the art experimental parameters. The scheme we present can work for trapped atoms or ions as well as mechanical oscillators. It can also cool medium size ions chains close to the ground state.

  15. Improving the Water Efficiency of Cooling Production System

    E-Print Network [OSTI]

    Maheshwari, G.; Al-Hadban, Y.; Al-Taqi, H. H.; Alasseri, R.

    2010-01-01T23:59:59.000Z

    For most of the time, cooling towers (CTs) of cooling systems operate under partial load conditions and by regulating the air circulation with a variable frequency drive (VFD), significant reduction in the fan power can be achieved. In Kuwait...

  16. Effects of cooling time on a closed LWR fuel cycle

    SciTech Connect (OSTI)

    Arnold, R. P.; Forsberg, C. W.; Shwageraus, E. [Massachusetts Inst. of Technology, 401 Shady Ave, Apt B506, Pittsburgh, PA 15206 (United States)

    2012-07-01T23:59:59.000Z

    In this study, the effects of cooling time prior to reprocessing spent LWR fuel has on the reactor physics characteristics of a PWR fully loaded with homogeneously mixed U-Pu or U-TRU oxide (MOX) fuel is examined. A reactor physics analysis was completed using the CASM04e code. A void reactivity feedback coefficient analysis was also completed for an infinite lattice of fresh fuel assemblies. Some useful conclusions can be made regarding the effect that cooling time prior to reprocessing spent LWR fuel has on a closed homogeneous MOX fuel cycle. The computational analysis shows that it is more neutronically efficient to reprocess cooled spent fuel into homogeneous MOX fuel rods earlier rather than later as the fissile fuel content decreases with time. Also, the number of spent fuel rods needed to fabricate one MOX fuel rod increases as cooling time increases. In the case of TRU MOX fuel, with time, there is an economic tradeoff between fuel handling difficulty and higher throughput of fuel to be reprocessed. The void coefficient analysis shows that the void coefficient becomes progressively more restrictive on fuel Pu content with increasing spent fuel cooling time before reprocessing. (authors)

  17. CoolCab Truck Thermal Load Reduction

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - On-board idle reduction technologies * Bergstrom battery electric AC * Airtronic diesel-fired heater * Objectives - Quantify truck cabin heat transfer - Identify potential...

  18. Beam heat load in superconducting wigglers

    E-Print Network [OSTI]

    Casalbuoni, S

    2013-01-01T23:59:59.000Z

    The beam heat load is a fundamental input parameter for the design of superconducting wigglers since it is needed to specify the cooling power. In this presentation I will review the possible beam heat load sources and the measurements of beam heat load performed and planned onto the cold vacuum chambers installed at different synchrotron light sources.

  19. Cooled railplug

    DOE Patents [OSTI]

    Weldon, William F. (Austin, TX)

    1996-01-01T23:59:59.000Z

    The railplug is a plasma ignitor capable of injecting a high energy plasma jet into a combustion chamber of an internal combustion engine or continuous combustion system. An improved railplug is provided which has dual coaxial chambers (either internal or external to the center electrode) that provide for forced convective cooling of the electrodes using the normal pressure changes occurring in an internal combustion engine. This convective cooling reduces the temperature of the hot spot associated with the plasma initiation point, particularly in coaxial railplug configurations, and extends the useful life of the railplug. The convective cooling technique may also be employed in a railplug having parallel dual rails using dual, coaxial chambers.

  20. Ventilative cooling

    E-Print Network [OSTI]

    Graça, Guilherme Carrilho da, 1972-

    1999-01-01T23:59:59.000Z

    This thesis evaluates the performance of daytime and nighttime passive ventilation cooling strategies for Beijing, Shanghai and Tokyo. A new simulation method for cross-ventilated wind driven airflow is presented . This ...

  1. Space Cooling in North America: Market Overview and Future Impacts

    SciTech Connect (OSTI)

    Baxter, Van D [ORNL; Khowailed, Gannate [Sentech, Inc.; Sikes, Karen [SRA International, Inc.; Grubbs, Tyler [SRA International, Inc.

    2015-01-01T23:59:59.000Z

    The North American space cooling market, particularly in the United States, is experiencing shifts in regulatory regimes, population patterns, economic conditions, and consumer preferences-all catalyzed further by rapid technological innovation. Taken together these factors may result in a slight reduction in air conditioning shipments in the short term, however the longer term trends indicate a continuing increase in the number of air conditioning systems in the U.S. markets. These increases will be greatest in the warmer and more humid (e.g. higher load demand) regions. This will result in increasing pressure on the U.S. electricity supply system to meet the energy peak and consumption demands for building space cooling.

  2. Performance Evaluation for Modular, Scalable Liquid-Rack Cooling Systems in Data Centers

    E-Print Network [OSTI]

    Xu, TengFang

    2009-01-01T23:59:59.000Z

    performance for its partial load operation in this study.performance for its partial load operation in this study.s cooling performance for its partial load operation, which

  3. Solar Roof Cooling by Evaporation

    E-Print Network [OSTI]

    Patterson, G. V.

    1981-01-01T23:59:59.000Z

    It is generally recognized that as much as 60% of the air conditioning load in a building is generated by solar heat from the roof. This paper on SOLAR ROOF COOLING BY EVAPORATION is presented in slide form, tracing the history of 'nature's way...

  4. Cooling system for superconducting magnet

    DOE Patents [OSTI]

    Gamble, B.B.; Sidi-Yekhlef, A.

    1998-12-15T23:59:59.000Z

    A cooling system is configured to control the flow of a refrigerant by controlling the rate at which the refrigerant is heated, thereby providing an efficient and reliable approach to cooling a load (e.g., magnets, rotors). The cooling system includes a conduit circuit connected to the load and within which a refrigerant circulates; a heat exchanger, connected within the conduit circuit and disposed remotely from the load; a first and a second reservoir, each connected within the conduit, each holding at least a portion of the refrigerant; a heater configured to independently heat the first and second reservoirs. In a first mode, the heater heats the first reservoir, thereby causing the refrigerant to flow from the first reservoir through the load and heat exchanger, via the conduit circuit and into the second reservoir. In a second mode, the heater heats the second reservoir to cause the refrigerant to flow from the second reservoir through the load and heat exchanger via the conduit circuit and into the first reservoir. 3 figs.

  5. Variable area fuel cell cooling

    DOE Patents [OSTI]

    Kothmann, Richard E. (Churchill Borough, PA)

    1982-01-01T23:59:59.000Z

    A fuel cell arrangement having cooling fluid flow passages which vary in surface area from the inlet to the outlet of the passages. A smaller surface area is provided at the passage inlet, which increases toward the passage outlet, so as to provide more uniform cooling of the entire fuel cell. The cooling passages can also be spaced from one another in an uneven fashion.

  6. Wet-dry cooling demonstration. Test results

    SciTech Connect (OSTI)

    Allemann, R.T.; DeBellis, D.E.; Werry, E.V.; Johnson, B.M.

    1986-05-01T23:59:59.000Z

    A large-scale test of dry/wet cooling using the ammonia phase-change system, designated the Advanced Concepts Test (ACT), has been operated at Pacific Gas and Electric Company's Kern Station at Bakersfield, California. The facility is capable of condensing 60,000 lbs/h of steam from a small house turbine. Two different modes of combining dry and evaporative cooling have been tested. One uses deluge cooling in which water is allowed to flow over the fins of the dry (air-cooled) heat exchanger on hot days; the other uses a separate evaporative condenser in parallel to the dry heat exchanger. A third mode of enhancing the dry cooling system, termed capacitive cooling has been tested. In this system, the ammonia-cooled steam condenser is supplemented by a parallel conventional water-cooled condenser with water supplied from a closed system. This water is cooled during off-peak hours each night by an ammonia heat pump which rejects heat through the ACT Cooling Tower. If operated over the period of a year, each of the wet/dry systems would use only 25% of the water normally required to reject this heat load in an evaporative cooling tower. The third would consume no water, the evaporative cooling being replaced by the delayed cooling of the closed system water supply.

  7. Reducing residential cooling requirements through the use of electrochromic windows

    SciTech Connect (OSTI)

    Sullivan, R.; Rubin, M.; Selkowitz, S.

    1995-05-01T23:59:59.000Z

    This paper presents the results of a study investigating the energy performance of electrochromic windows in a prototypical residential building under a variety of state switching control strategies. We used the DOE-2.1E energy simulation program to analyze the annual cooling energy and peak demand as a function of glazing type, size, and electrochromic control strategy. A single-story ranch-style home located in the cooling-dominated locations of Miami, FL and Phoenix, AZ was simulated. Electrochromic control strategies analyzed were based on incident total solar radiation, space cooling load, and outside air temperature. Our results show that an electrochromic material with a high reflectance in the colored state provides the best performance for all control strategies. On the other hand, electrochromic switching using space cooling load provides the best performance for all the electrochromic materials. The performance of the incident total solar radiation control strategy varies as a function of the values of solar radiation which trigger the bleached and colored states of the electrochromic (setpoint range); i.e., required cooling decreases as the setpoint range decreases; also, performance differences among electrochromics increases. The setpoint range of outside air temperature control of electrochromics must relate to the ambient weather conditions prevalent in a particular location. If the setpoint range is too large, electrochromic cooling performance is very poor. Electrochromics compare favorably to conventional low-E clear glazings that have high solar heat gain coefficients that are used with overhangs. However, low-E tinted glazings with low solar heat gain coefficients can outperform certain electrochromics. Overhangs should be considered as a design option for electrochromics whose state properties do not change significantly between bleached and colored states.

  8. The European Electricity Grid System and Winter Peak Load Stress: For how long can the european grid system survive the ever increasing demand during cold winter days?

    E-Print Network [OSTI]

    Dittmar, Michael

    2008-01-01T23:59:59.000Z

    The rich countries of Western Europe and its citizens benefited during at least the last 30 years from an extraordinary stable electricity grid. This stability was achieved by the european grid system and a large flexible and reliable spare power plant capacity. This system allowed a continuous demand growth during the past 10-20 years of up to a few % per year. However, partially due to this overcapacity, no new large power plants have been completed during the past 10-15 years. The obvious consequence is that the reliable spare capacity has been reduced and that a further yearly demand growth of 1-2% for electric energy can only be achieved if new power plants will be constructed soon. Data from various European countries, provided by the UCTE, indicate that the system stress during peak load times and especially during particular cold winter days is much larger than generally assumed. In fact, the latest UCTE data on reliable power capacity indicate that already during the Winter 2007/8 only a few very col...

  9. Cooled railplug

    DOE Patents [OSTI]

    Weldon, W.F.

    1996-05-07T23:59:59.000Z

    The railplug is a plasma ignitor capable of injecting a high energy plasma jet into a combustion chamber of an internal combustion engine or continuous combustion system. An improved railplug is provided which has dual coaxial chambers (either internal or external to the center electrode) that provide for forced convective cooling of the electrodes using the normal pressure changes occurring in an internal combustion engine. This convective cooling reduces the temperature of the hot spot associated with the plasma initiation point, particularly in coaxial railplug configurations, and extends the useful life of the railplug. The convective cooling technique may also be employed in a railplug having parallel dual rails using dual, coaxial chambers. 10 figs.

  10. Air Cooling for High Temperature Power Electronics (Presentation)

    SciTech Connect (OSTI)

    Waye, S.; Musselman, M.; King, C.

    2014-09-01T23:59:59.000Z

    Current emphasis on developing high-temperature power electronics, including wide-bandgap materials such as silicon carbide and gallium nitride, increases the opportunity for a completely air-cooled inverter at higher powers. This removes the liquid cooling system for the inverter, saving weight and volume on the liquid-to-air heat exchanger, coolant lines, pumps, and coolant, replacing them with just a fan and air supply ducting. We investigate the potential for an air-cooled heat exchanger from a component and systems-level approach to meet specific power and power density targets. A proposed baseline air-cooled heat exchanger design that does not meet those targets was optimized using a parametric computational fluid dynamics analysis, examining the effects of heat exchanger geometry and device location, fixing the device heat dissipation and maximum junction temperature. The CFD results were extrapolated to a full inverter, including casing, capacitor, bus bar, gate driver, and control board component weights and volumes. Surrogate ducting was tested to understand the pressure drop and subsequent system parasitic load. Geometries that met targets with acceptable loads on the system were down-selected for experimentation. Nine baseline configuration modules dissipated the target heat dissipation, but fell below specific power and power density targets. Six optimized configuration modules dissipated the target heat load, exceeding the specific power and power density targets. By maintaining the same 175 degrees C maximum junction temperature, an optimized heat exchanger design and higher device heat fluxes allowed a reduction in the number of modules required, increasing specific power and power density while still maintaining the inverter power.

  11. Methods of Beam Cooling

    E-Print Network [OSTI]

    Sessler, A. M.

    2008-01-01T23:59:59.000Z

    of Optical Stochastic Cooling", presented at PAC, (1995).1991). Hangst, J. , "Laser Cooling of a Stored Ion Beam - ATheorem and Phase Space Cooling", Proceedings of the

  12. Mixed-mode cooling.

    E-Print Network [OSTI]

    Brager, Gail

    2006-01-01T23:59:59.000Z

    ASHRAE’s permission. Mixed-Mode Cooling Photo Credit: Paulnatural ventilation for cooling. Buildings typically had1950s of large-scale mechanical cooling, along with other

  13. Evaporative Roof Cooling- A Simple Solution to Cut Cooling Costs

    E-Print Network [OSTI]

    Abernethy, D.

    Since the “Energy Crisis” Evaporative Roof Cooling Systems have gained increased acceptance as a cost effective method to reduce the high cost of air conditioning. Documented case histories in retro-fit installations show direct energy savings...

  14. Assessing and Reducing Plug and Process Loads in Retail Buildings (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-06-01T23:59:59.000Z

    Plug and process loads (PPLs) in commercial buildings account for almost 5% of U.S. primary energy consumption. Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. PPLs are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. They use an increasingly large fraction of the building energy use pie because the number and variety of electrical devices have increased along with building system efficiency. Reducing PPLs is difficult because energy efficiency opportunities and the equipment needed to address PPL energy use in retail spaces are poorly understood.

  15. Office Buildings: Assessing and Reducing Plug and Process Loads in Office Buildings (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-04-01T23:59:59.000Z

    Plug and process loads (PPLs) in commercial buildings account for almost 5% of U.S. primary energy consumption. Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. PPLs are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. They use an increasingly large fraction of the building energy use pie because the number and variety of electrical devices have increased along with building system efficiency. Reducing PPLs is difficult because energy efficiency opportunities and the equipment needed to address PPL energy use in office spaces are poorly understood.

  16. Retail Buildings: Assessing and Reducing Plug and Process Loads in Retail Buildings (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-04-01T23:59:59.000Z

    Plug and process loads (PPLs) in commercial buildings account for almost 5% of U.S. primary energy consumption. Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. PPLs are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. They use an increasingly large fraction of the building energy use pie because the number and variety of electrical devices have increased along with building system efficiency. Reducing PPLs is difficult because energy efficiency opportunities and the equipment needed to address PPL energy use in retail spaces are poorly understood.

  17. Assessing and Reducing Plug and Process Loads in Office Buildings (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-06-01T23:59:59.000Z

    Plug and process loads (PPLs) in commercial buildings account for almost 5% of U.S. primary energy consumption. Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. PPLs are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. They use an increasingly large fraction of the building energy use pie because the number and variety of electrical devices have increased along with building system efficiency. Reducing PPLs is difficult because energy efficiency opportunities and the equipment needed to address PPL energy use in office spaces are poorly understood.

  18. The Damaging Effects of Earthquake Excitation on Concrete Cooling Towers

    SciTech Connect (OSTI)

    Abedi-Nik, Farhad [SADRA Institute of Higher Education, Tehran (Iran, Islamic Republic of); Sabouri-Ghomi, Saeid [K.N.T University of Technology, Tehran (Iran, Islamic Republic of)

    2008-07-08T23:59:59.000Z

    Reinforced concrete cooling towers of hyperbolic shell configuration find widespread application in utilities engaged in the production of electric power. In design of critical civil infrastructure of this type, it is imperative to consider all the possible loading conditions that the cooling tower may experience, an important loading condition in many countries is that of the earthquake excitation, whose influence on the integrity and stability of cooling towers is profound. Previous researches have shown that the columns supporting a cooling tower are sensitive to earthquake forces, as they are heavily loaded elements that do not possess high ductility, and understanding the behavior of columns under earthquake excitation is vital in structural design because they provide the load path for the self weight of the tower shell. This paper presents the results of a finite element investigation of a representative 'dry' cooling tower, using realistic horizontal and vertical acceleration data obtained from the recent and widely-reported Tabas, Naghan and Bam earthquakes in Iran. The results of both linear and nonlinear analyses are reported in the paper, the locations of plastic hinges within the supporting columns are identified and the ramifications of the plastic hinges on the stability of the cooling tower are assessed. It is concluded that for the (typical) cooling tower configuration analyzed, the columns that are instrumental in providing a load path are influenced greatly by earthquake loading, and for the earthquake data used in this study the representative cooling tower would be rendered unstable and would collapse under the earthquake forces considered.

  19. Gas hydrate cool storage system

    DOE Patents [OSTI]

    Ternes, M.P.; Kedl, R.J.

    1984-09-12T23:59:59.000Z

    The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

  20. Cool Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site Office (FSO) FSOConverting Biomass toCool Links

  1. Film cooling for a closed loop cooled airfoil

    DOE Patents [OSTI]

    Burdgick, Steven Sebastian (Schenectady, NY); Yu, Yufeng Phillip (Simpsonville, SC); Itzel, Gary Michael (Simpsonville, SC)

    2003-01-01T23:59:59.000Z

    Turbine stator vane segments have radially inner and outer walls with vanes extending therebetween. The inner and outer walls are compartmentalized and have impingement plates. Steam flowing into the outer wall plenum passes through the impingement plate for impingement cooling of the outer wall upper surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. At least one film cooling hole is defined through a wall of at least one of the cavities for flow communication between an interior of the cavity and an exterior of the vane. The film cooling hole(s) are defined adjacent a potential low LCF life region, so that cooling medium that bleeds out through the film cooling hole(s) reduces a thermal gradient in a vicinity thereof, thereby the increase the LCF life of that region.

  2. Using measured equipment load profiles to 'right-size' HVACsystems and reduce energy use in laboratory buildings (Pt. 2)

    SciTech Connect (OSTI)

    Mathew, Paul; Greenberg, Steve; Frenze, David; Morehead, Michael; Sartor, Dale; Starr, William

    2005-06-29T23:59:59.000Z

    There is a general paucity of measured equipment load datafor laboratories and other complex buildings and designers often useestimates based on nameplate rated data or design assumptions from priorprojects. Consequently, peak equipment loads are frequentlyoverestimated, and load variation across laboratory spaces within abuilding is typically underestimated. This results in two design flaws.Firstly, the overestimation of peak equipment loads results in over-sizedHVAC systems, increasing initial construction costs as well as energy usedue to inefficiencies at low part-load operation. Secondly, HVAC systemsthat are designed without accurately accounting for equipment loadvariation across zones can significantly increase simultaneous heatingand cooling, particularly for systems that use zone reheat fortemperature control. Thus, when designing a laboratory HVAC system, theuse of measured equipment load data from a comparable laboratory willsupport right-sizing HVAC systems and optimizing their configuration tominimize simultaneous heating and cooling, saving initial constructioncosts as well as life-cycle energy costs.In this paper, we present datafrom recent studies to support the above thesis. We first presentmeasured equipment load data from two sources: time-series measurementsin several laboratory modules in a university research laboratorybuilding; and peak load data for several facilities recorded in anational energy benchmarking database. We then contrast this measureddata with estimated values that are typically used for sizing the HVACsystems in these facilities, highlighting the over-sizing problem. Next,we examine the load variation in the time series measurements and analyzethe impact of this variation on energy use, via parametric energysimulations. We then briefly discuss HVAC design solutions that minimizesimultaneous heating and cooling energy use.

  3. The Analysis of Dynamic Thermal Performance of Insulated Wall and Building Cooling Energy Consumption in Guangzhou

    E-Print Network [OSTI]

    Zhao, L.; Li, X.; Li, L.; Gao, Y.

    2006-01-01T23:59:59.000Z

    ST. The simulation predictions indicate that reductions in the cooling load and maximum cooling demand are obtained when the insulation is added in the wall, but the potential of energy saving is quite limited when the wall only is insulated....

  4. Performance Evaluation for Modular, Scalable Liquid-Rack Cooling Systems in Data Centers

    E-Print Network [OSTI]

    Xu, TengFang

    2009-01-01T23:59:59.000Z

    cooling higher-density servers in today’s and future dataand future generations of servers has created significant opportunities for precision coolingfuture generations of the product, allowing significant fan energy savings even at its partial load cooling.

  5. New Approaches to Final Cooling

    E-Print Network [OSTI]

    Neuffer, David

    2015-01-01T23:59:59.000Z

    A high-energy muon collider scenario requires a "final cooling" system that reduces transverse emittance by a factor of ~10 while allowing longitudinal emittance increase. The baseline approach has low-energy transverse cooling within high-field solenoids, with strong longitudinal heating. This approach and its recent simulation are discussed. Alternative approaches which more explicitly include emittance exchange are also presented. Round-to-flat beam transform, transverse slicing, and longitudinal bunch coalescence are possible components of the alternative approach. A more explicit understanding of solenoidal cooling beam dynamics is introduced.

  6. Cooling Towers: Understanding Key Components of Cooling Towers...

    Office of Environmental Management (EM)

    Cooling Towers: Understanding Key Components of Cooling Towers and How to Improve Water Efficiency Cooling Towers: Understanding Key Components of Cooling Towers and How to Improve...

  7. Algorithmic Cooling in Liquid State NMR

    E-Print Network [OSTI]

    Yosi Atia; Yuval Elias; Tal Mor; Yossi Weinstein

    2014-11-17T23:59:59.000Z

    Algorithmic cooling is a method that employs thermalization to increase the qubits' purification level, namely it reduces the qubit-system's entropy. We utilized gradient ascent pulse engineering (GRAPE), an optimal control algorithm, to implement algorithmic cooling in liquid state nuclear magnetic resonance. Various cooling algorithms were applied onto the three qubits of 13C2-trichloroethylene, cooling the system beyond Shannon's entropy bound in several different ways. For example, in one experiment a carbon qubit was cooled by a factor of 4.61. This work is a step towards potentially integrating tools of NMR quantum computing into in vivo magnetic resonance spectroscopy.

  8. Cool and Save: Cooling Aware Dynamic Workload Scheduling in Multi-socket CPU Systems

    E-Print Network [OSTI]

    Simunic, Tajana

    Cool and Save: Cooling Aware Dynamic Workload Scheduling in Multi-socket CPU Systems Raid Ayoub, dissipating the high temper- ature requires a large and energy hungry cooling system which increases the cost and fan control in multi-socket systems have been designed sep- arately leading to less efficient

  9. Evaporative cooling of the dipolar radical OH

    E-Print Network [OSTI]

    Stuhl, Benjamin K; Yeo, Mark; Quéméner, Goulven; Bohn, John L; Ye, Jun

    2012-01-01T23:59:59.000Z

    Atomic physics was revolutionized by the development of forced evaporative cooling: it led directly to the observation of Bose-Einstein condensation, quantum-degenerate Fermi gases, and ultracold optical lattice simulations of condensed matter phenomena. More recently, great progress has been made in the production of cold molecular gases, whose permanent electric dipole moment is expected to generate rich, novel, and controllable phases, dynamics, and chemistry in these ultracold systems. However, while many strides have been made in both direct cooling and cold-association techniques, evaporative cooling has not yet been achieved due to unfavorable elastic-to-inelastic ratios and impractically slow thermalization rates in the available trapped species. We now report the observation of microwave-forced evaporative cooling of hydroxyl (OH) molecules loaded from a Stark-decelerated beam into an extremely high-gradient magnetic quadrupole trap. We demonstrate cooling by at least an order of magnitude in tempera...

  10. Debris trap in a turbine cooling system

    DOE Patents [OSTI]

    Wilson, Ian David (Clifton Park, NY)

    2002-01-01T23:59:59.000Z

    In a turbine having a rotor and a plurality of stages, each stage comprising a row of buckets mounted on the rotor for rotation therewith; and wherein the buckets of at least one of the stages are cooled by steam, the improvement comprising at least one axially extending cooling steam supply conduit communicating with an at least partially annular steam supply manifold; one or more axially extending cooling steam feed tubes connected to the manifold at a location radially outwardly of the cooling steam supply conduit, the feed tubes arranged to supply cooling steam to the buckets of at least one of the plurality of stages; the manifold extending radially beyond the feed tubes to thereby create a debris trap region for collecting debris under centrifugal loading caused by rotation of the rotor.

  11. Quantum-mechanical theory of optomechanical Brillouin cooling

    SciTech Connect (OSTI)

    Tomes, Matthew; Bahl, Gaurav; Carmon, Tal [Department of Electrical Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Marquardt, Florian [Institut fuer Theoretische Physik, Universitaet Erlangen-Nuernberg, Staudtstrasse 7, D-91058 Erlangen (Germany); Max Planck Institute for the Science of Light, Guenther-Scharowsky-Strasse 1/Bau 24, D-91058 Erlangen (Germany)

    2011-12-15T23:59:59.000Z

    We analyze how to exploit Brillouin scattering of light from sound for the purpose of cooling optomechanical devices and present a quantum-mechanical theory for Brillouin cooling. Our analysis shows that significant cooling ratios can be obtained with standard experimental parameters. A further improvement of cooling efficiency is possible by increasing the dissipation of the optical anti-Stokes resonance.

  12. Stochastic cooling in muon colliders

    SciTech Connect (OSTI)

    Barletta, W.A.; Sessler, A.M.

    1993-09-01T23:59:59.000Z

    Analysis of muon production techniques for high energy colliders indicates the need for rapid and effective beam cooling in order that one achieve luminosities > 10{sup 30} cm{sup {minus}2}s{sup {minus}1} as required for high energy physics experiments. This paper considers stochastic cooling to increase the phase space density of the muons in the collider. Even at muon energies greater than 100 GeV, the number of muons per bunch must be limited to {approximately}10{sup 3} for the cooling rate to be less than the muon lifetime. With such a small number of muons per bunch, the final beam emittance implied by the luminosity requirement is well below the thermodynamic limit for beam electronics at practical temperatures. Rapid bunch stacking after the cooling process can raise the number of muons per bunch to a level consistent with both the luminosity goals and with practical temperatures for the stochastic cooling electronics. A major advantage of our stochastic cooling/stacking scheme over scenarios that employ only ionization cooling is that the power on the production target can be reduced below 1 MW.

  13. Introducing an Online Cooling Tower Performance Analysis Tool

    E-Print Network [OSTI]

    Muller, M.R.; Muller, M.B.; Rao, P.

    2012-01-01T23:59:59.000Z

    and variable nature of all of the factors that can influence performance; fan speed, wind speed, sump temperature, heat load, ambient temperature, relative humidity, etc. This can be overwhelming for a regular operator resulting in many cooling towers being set...

  14. Potential of Evaporative Cooling Systems for Buildings in India

    E-Print Network [OSTI]

    Maiya, M. P.; Vijay, S.

    2010-01-01T23:59:59.000Z

    Evaporative cooling potential for building in various climatic zones in India is investigated. Maintainable indoor conditions are obtained from the load - capacity analysis for the prevailing ambient conditions. For the assumed activity level...

  15. Heating and Cooling Equipment Selection

    SciTech Connect (OSTI)

    Not Available

    2002-01-01T23:59:59.000Z

    This is one of a series of technology fact sheets created to help housing designers and builders adopt a whole-house design approach and energy efficient design practices. The fact sheet helps people choose the correct equipment for heating and cooling to reduce initial costs, increase homeowner comfort, increase operating efficiency, and greatly reduce utility costs.

  16. Cooling using complimentary tapered plenums

    DOE Patents [OSTI]

    Hall, Shawn Anthony (Pleasantville, NY)

    2006-08-01T23:59:59.000Z

    Where a fluid cooling medium cools a plurality of heat-producing devices arranged in a row along a generalized coordinate direction, with a space between each adjacent pair of devices, each space may have a partition that defines a boundary between a first plenum and a second plenum. The first plenum carries cooling medium across an entrance and thence into a first heat-producing device located on a first side of the partition facing the first plenum. The second plenum carries cooling medium away from a second heat-producing device located on a second side of the partition facing the second plenum and thence across an exit. The partition is disposed so that the first plenum becomes smaller in cross-sectional area as distance increases from the entrance, and the second plenum becomes larger in cross sectional area as distance decreases toward the exit.

  17. Cool Storage Economic Feasibility Analysis for a Large Industrial Facility

    E-Print Network [OSTI]

    Fazzolari, R.; Mascorro, J. A.; Ballard, R. H.

    1988-01-01T23:59:59.000Z

    The analysis of economic feasibility for adding a cool storage facility to shift electric demand to off-peak hours for a large industrial facility is presented. DOE-2 is used to generate the necessary cooling load profiles for the analysis...

  18. A Microcomputer Model of Crossflow Cooling Tower Performance 

    E-Print Network [OSTI]

    Reichelt, G. E; Jones, J. W.

    1984-01-01T23:59:59.000Z

    that use both sensible heat transfer and mass transfer to cool. The heat and mass transfer process for a crossflow cooling tower has been modeled on an Apple II microcomputer. Various heat loads or weather conditions can be imposed on a given tower...

  19. Cooling devices and methods for use with electric submersible pumps

    DOE Patents [OSTI]

    Jankowski, Todd A; Hill, Dallas D

    2014-12-02T23:59:59.000Z

    Cooling devices for use with electric submersible pump motors include a refrigerator attached to the end of the electric submersible pump motor with the evaporator heat exchanger accepting all or a portion of the heat load from the motor. The cooling device can be a self-contained bolt-on unit, so that minimal design changes to existing motors are required.

  20. Resolved Sideband Cooling of a Micromechanical Oscillator

    E-Print Network [OSTI]

    A. Schliesser; R. Rivičre; G. Anetsberger; O. Arcizet; T. J. Kippenberg

    2007-09-26T23:59:59.000Z

    Micro- and nanoscale opto-mechanical systems provide radiation pressure coupling of optical and mechanical degree of freedom and are actively pursued for their ability to explore quantum mechanical phenomena of macroscopic objects. Many of these investigations require preparation of the mechanical system in or close to its quantum ground state. Remarkable progress in ground state cooling has been achieved for trapped ions and atoms confined in optical lattices. Imperative to this progress has been the technique of resolved sideband cooling, which allows overcoming the inherent temperature limit of Doppler cooling and necessitates a harmonic trapping frequency which exceeds the atomic species' transition rate. The recent advent of cavity back-action cooling of mechanical oscillators by radiation pressure has followed a similar path with Doppler-type cooling being demonstrated, but lacking inherently the ability to attain ground state cooling as recently predicted. Here we demonstrate for the first time resolved sideband cooling of a mechanical oscillator. By pumping the first lower sideband of an optical microcavity, whose decay rate is more than twenty times smaller than the eigen-frequency of the associated mechanical oscillator, cooling rates above 1.5 MHz are attained. Direct spectroscopy of the motional sidebands reveals 40-fold suppression of motional increasing processes, which could enable reaching phonon occupancies well below unity (cooling as reported here should find widespread use in opto-mechanical cooling experiments. Apart from ground state cooling, this regime allows realization of motion measurement with an accuracy exceeding the standard quantum limit.

  1. Oil cooled, hermetic refrigerant compressor

    DOE Patents [OSTI]

    English, William A. (Murrysville, PA); Young, Robert R. (Murrysville, PA)

    1985-01-01T23:59:59.000Z

    A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler 18 and is then delivered through the shell to the top of the motor rotor 24 where most of it is flung radially outwardly within the confined space provided by the cap 50 which channels the flow of most of the oil around the top of the stator 26 and then out to a multiplicity of holes 52 to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber 58 to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole 62 also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator 68 from which the suction gas passes by a confined path in pipe 66 to the suction plenum 64 and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum 64.

  2. Oil cooled, hermetic refrigerant compressor

    DOE Patents [OSTI]

    English, W.A.; Young, R.R.

    1985-05-14T23:59:59.000Z

    A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler and is then delivered through the shell to the top of the motor rotor where most of it is flung radially outwardly within the confined space provided by the cap which channels the flow of most of the oil around the top of the stator and then out to a multiplicity of holes to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator from which the suction gas passes by a confined path in pipe to the suction plenum and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum. 3 figs.

  3. Cooling and Dehumidification HVAC Technology for 1990s

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    of desiccant by hot air from solar, waste heat, natural gas, or off-peak electricity (Separate handling * Need for humidity control * Economic benefits to low humidity · High latent load vs. sensible load #12;Desiccant Cooling Markets * Supermarkets * Restaurants/fast foods e Office buildings * Hospitals

  4. AGN and Cooling Flows

    E-Print Network [OSTI]

    James Binney

    2001-03-23T23:59:59.000Z

    For two decades the steady-state cooling-flow model has dominated the literature of cluster and elliptical-galaxy X-ray sources. For ten years this model has been in severe difficulty from a theoretical point of view, and it is now coming under increasing pressure observationally. For two decades the steady-state cooling-flow model has dominated the literature of cluster and elliptical-galaxy X-ray sources. For ten years this model has been in severe difficulty from a theoretical point of view, and it is now coming under increasing pressure observationally. A small number of enthusiasts have argued for a radically different interpretation of the data, but had little impact on prevailing opinion because the unsteady heating picture that they advocate is extremely hard to work out in detail. Here I explain why it is difficult to extract robust observational predictions from the heating picture. Major problems include the variability of the sources, the different ways in which a bi-polar flow can impact on X-ray emission, the weakness of synchrotron emission from sub-relativistic flows, and the sensitivity of synchrotron emission to a magnetic field that is probably highly localized.

  5. Two-phase refrigerant flow instability analysis and active control in transient electronics cooling systems

    E-Print Network [OSTI]

    Peles, Yoav

    Two-phase refrigerant flow instability analysis and active control in transient electronics cooling Pressure-drop oscillation Refrigeration system Two-phase cooling Active control Transient heat load a b s t r a c t Two-loop refrigeration systems are being explored for two-phase cooling of ultra high power

  6. Cooling output optimization of an air handling unit Andrew Kusiak *, Mingyang Li

    E-Print Network [OSTI]

    Kusiak, Andrew

    supply temperature and supply air temperature in response to the dynamic cooling load and changingCooling output optimization of an air handling unit Andrew Kusiak *, Mingyang Li Department mining Neural network Multi-objective optimization Evolutionary computation Dynamic modeling Cooling

  7. Evaporative cooling of the dipolar radical OH

    E-Print Network [OSTI]

    Benjamin K. Stuhl; Matthew T. Hummon; Mark Yeo; Goulven Quéméner; John L. Bohn; Jun Ye

    2012-09-27T23:59:59.000Z

    Atomic physics was revolutionized by the development of forced evaporative cooling: it led directly to the observation of Bose-Einstein condensation, quantum-degenerate Fermi gases, and ultracold optical lattice simulations of condensed matter phenomena. More recently, great progress has been made in the production of cold molecular gases, whose permanent electric dipole moment is expected to generate rich, novel, and controllable phases, dynamics, and chemistry in these ultracold systems. However, while many strides have been made in both direct cooling and cold-association techniques, evaporative cooling has not yet been achieved due to unfavorable elastic-to-inelastic ratios and impractically slow thermalization rates in the available trapped species. We now report the observation of microwave-forced evaporative cooling of hydroxyl (OH) molecules loaded from a Stark-decelerated beam into an extremely high-gradient magnetic quadrupole trap. We demonstrate cooling by at least an order of magnitude in temperature and three orders in phase-space density, limited only by the low-temperature sensitivity of our spectroscopic thermometry technique. With evaporative cooling and sufficiently large initial populations, much colder temperatures are possible, and even a quantum-degenerate gas of this dipolar radical -- or anything else it can sympathetically cool -- may now be in reach.

  8. Fighting Fire with Fire: Superlattice Cooling of Silicon Hotspots to Reduce Global Cooling Requirements

    SciTech Connect (OSTI)

    Biswas, S; Tiwari, M; Sherwood, T; Theogarajan, L; Chong, F T

    2010-10-05T23:59:59.000Z

    The running costs of data centers are dominated by the need to dissipate heat generated by thousands of server machines. Higher temperatures are undesirable as they lead to premature silicon wear-out; in fact, mean time to failure has been shown to decrease exponentially with temperature (Black's law). Although other server components also generate heat, microprocessors still dominate in most server configurations and are also the most vulnerable to wearout as the feature sizes shrink. Even as processor complexity and technology scaling have increased the average energy density inside a processor to maximally tolerable levels, modern microprocessors make extensive use of hardware structures such as the load-store queue and other CAM-based units, and the peak temperatures on chip can be much worse than even the average temperature of the chip. In recent studies, it has been shown that hot-spots inside a processor can generate {approx} 800W/cm{sup 2} heat flux whereas the average heat flux is only 10-50W/cm{sup 2}, and due to this disparity in heat generation, the temperature in hot spots may be up to 30 C more than average chip temperature. The key problem processor hot-spots create is that in order to prevent some critical hardware structures from wearing out faster, the air conditioners in a data center have to be provisioned for worst case requirements. Worse yet, air conditioner efficiencies decrease exponentially as the desired ambient temperature decreases relative to the air outside. As a result, the global cooling costs in data centers, which nearly equals the IT equipment power consumption, are directly correlated with the maximum hot spot temperatures of processors, and there is a distinct requirement for a cooling technique to mitigate hot-spots selectively so that the global air conditioners can operate at higher, more efficient, temperatures. We observe that localized cooling via superlattice microrefrigeration presents exactly this opportunity whereby hot-spots can be cooled selectively and allow global coolers to operate at much more efficient temperatures. Recent advances in processor cooling technologies have demonstrated that thermoelectric coolers (TEC), which use a Peltier effect to form heat pumps, can be used to reduce the temperature of hot spots. By applying a thermoelectric cooler between the heat spreader and the processor die and applying current selectively at the hot spots, heat from the hot-spots can be spread much more efficiently. The ability to implement such thermoelectric coolers on a real silicon device has been demonstrated recently, albeit for small prototype chips. The key question then, that needs to be answered before such thermoelectric coolers can be integrated in commodity server processors, is 'What is the potential for superlattice microrefrigeration to reduce global cooling costs in data centers?'. In order to answer this question, we present a comprehensive analysis of the impact of thermoelectric coolers on global cooling costs. Our thermal analysis covers all aspects of cooling a server in a data center, and integrates on-chip dynamic and leakage power sources with a detailed heat diffusion model of a processor (that models the silicon to the thermoelectric cooler to the heat spreader and the heat sink) and finally the computer room air conditioner (CRAC) efficiency, as shown in Figure 1. In Section II, we present the components of the system model.

  9. Simulation of radiant cooling performance with evaporative cooling sources

    E-Print Network [OSTI]

    Moore, Timothy

    2008-01-01T23:59:59.000Z

    2000. “Closed Circuit Cooling Tower Selection Program”S R. Lay, 2003 “Radiant Cooling Systems – A Solution forH. 1994. “Hydronic Radiant Cooling Systems. ” Center for

  10. Simulation of radiant cooling performance with evaporative cooling sources

    E-Print Network [OSTI]

    Moore, Timothy

    2008-01-01T23:59:59.000Z

    energy sources of cooling supply water and an aggressiveas the primary source of cooling supply water. The analysisthermal mass to the cooling supply water source, nighttime

  11. Cool Roof Systems; What is the Condensation Risk?

    SciTech Connect (OSTI)

    Kehrer, Manfred [ORNL; Pallin, Simon B [ORNL

    2014-01-01T23:59:59.000Z

    A white roof, or cool roof, is constructed to decrease thermal loads from solar radiation, therefore saving energy by decreasing the cooling demands. Unfortunately, cool roofs with a mechanically attached membrane have shown a higher risk of intermediate condensation in the materials below the membrane in certain climates (Ennis & Kehrer, 2011) and in comparison with similar constructions with a darker exterior surface (Bludau, Zirkelbach, & Kuenzel, 2009). As a consequence, questions have been raised regarding the sustainability and reliability of using cool roof membranes in northern U.S. climate zones.

  12. Plug Load

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPOPetroleum38 (1996)representative of thePlug-Load Sign In

  13. Radiant cooling research scoping study

    E-Print Network [OSTI]

    Moore, Timothy; Bauman, Fred; Huizenga, Charlie

    2006-01-01T23:59:59.000Z

    www.Zurn.com PAGE 35 Radiant Cooling Research Scoping Study1988. “Radiant Heating and Cooling, Displacement VentilationHeat Recovery and Storm Water Cooling: An Environmentally

  14. "Hot" for Warm Water Cooling

    E-Print Network [OSTI]

    Coles, Henry

    2012-01-01T23:59:59.000Z

    C: DIRECT LIQUID AND AIR COOLING COMPONENT TCASE FORECASTGRAPHICS Direct Liquid Cooling Thermal Components andThermal Design Margins Air Cooling Thermal Components and

  15. Three-Dimensional Laser Cooling

    E-Print Network [OSTI]

    Okamato, H.

    2008-01-01T23:59:59.000Z

    Three-Dimensional Laser Cooling H. Okamoto, A.M. Sessler,effective transverse laser cooling simultaneously withlongitudinal laser cooling, two possibilities are

  16. "Hot" for Warm Water Cooling

    E-Print Network [OSTI]

    Coles, Henry

    2012-01-01T23:59:59.000Z

    points for maximum cooling liquid supply temperatures thatLiquid cooling guidelines may include: Supply temperatureliquid supply temperature for liquid cooling guidelines. Due

  17. "Hot" for Warm Water Cooling

    E-Print Network [OSTI]

    Coles, Henry

    2012-01-01T23:59:59.000Z

    defining liquid cooling guidelines for future use. The goalis key to reducing cooling energy consumption for futureliquid-cooling temperatures to guide future supercomputer

  18. Cooling Water System Optimization

    E-Print Network [OSTI]

    Aegerter, R.

    2005-01-01T23:59:59.000Z

    During summer months, many manufacturing plants have to cut back in rates because the cooling water system is not providing sufficient cooling to support higher production rates. There are many low/no-cost techniques available to improve tower...

  19. High power density self-cooled lithium-vanadium blanket.

    SciTech Connect (OSTI)

    Gohar, Y.; Majumdar, S.; Smith, D.

    1999-07-01T23:59:59.000Z

    A self-cooled lithium-vanadium blanket concept capable of operating with 2 MW/m{sup 2} surface heat flux and 10 MW/m{sup 2} neutron wall loading has been developed. The blanket has liquid lithium as the tritium breeder and the coolant to alleviate issues of coolant breeder compatibility and reactivity. Vanadium alloy (V-4Cr-4Ti) is used as the structural material because it can accommodate high heat loads. Also, it has good mechanical properties at high temperatures, high neutron fluence capability, low degradation under neutron irradiation, good compatibility with the blanket materials, low decay heat, low waste disposal rating, and adequate strength to accommodate the electromagnetic loads during plasma disruption events. Self-healing electrical insulator (CaO) is utilized to reduce the MHD pressure drop. A poloidal coolant flow with high velocity at the first wall is used to reduce the peak temperature of the vanadium structure and to accommodate high surface heat flux. The blanket has a simple blanket configuration and low coolant pressure to reduce the fabrication cost, to improve the blanket reliability, and to increase confidence in the blanket performance. Spectral shifter, moderator, and reflector are utilized to improve the blanket shielding capability and energy multiplication, and to reduce the radial blanket thickness. Natural lithium is used to avoid extra cost related to the lithium enrichment process.

  20. Flow distribution analysis on the cooling tube network of ITER thermal shield

    SciTech Connect (OSTI)

    Nam, Kwanwoo; Chung, Wooho; Noh, Chang Hyun; Kang, Dong Kwon; Kang, Kyoung-O; Ahn, Hee Jae; Lee, Hyeon Gon [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of)

    2014-01-29T23:59:59.000Z

    Thermal shield (TS) is to be installed between the vacuum vessel or the cryostat and the magnets in ITER tokamak to reduce the thermal radiation load to the magnets operating at 4.2K. The TS is cooled by pressurized helium gas at the inlet temperature of 80K. The cooling tube is welded on the TS panel surface and the composed flow network of the TS cooling tubes is complex. The flow rate in each panel should be matched to the thermal design value for effective radiation shielding. This paper presents one dimensional analysis on the flow distribution of cooling tube network for the ITER TS. The hydraulic cooling tube network is modeled by an electrical analogy. Only the cooling tube on the TS surface and its connecting pipe from the manifold are considered in the analysis model. Considering the frictional factor and the local loss in the cooling tube, the hydraulic resistance is expressed as a linear function with respect to mass flow rate. Sub-circuits in the TS are analyzed separately because each circuit is controlled by its own control valve independently. It is found that flow rates in some panels are insufficient compared with the design values. In order to improve the flow distribution, two kinds of design modifications are proposed. The first one is to connect the tubes of the adjacent panels. This will increase the resistance of the tube on the panel where the flow rate is excessive. The other design suggestion is that an orifice is installed at the exit of tube routing where the flow rate is to be reduced. The analysis for the design suggestions shows that the flow mal-distribution is improved significantly.

  1. Impact of Paint Color on Rest Period Climate Control Loads in Long-Haul Trucks: Preprint

    SciTech Connect (OSTI)

    Lustbader, J.; Kreutzer, C.; Jeffers, M.; Adelman, S.; Yeakel, S.; Brontz, P.; Olson, K.; Ohlinger, J.

    2014-02-01T23:59:59.000Z

    Cab climate conditioning is one of the primary reasons for operating the main engine in a long-haul truck during driver rest periods. In the United States, sleeper cab trucks use approximately 667 million gallons of fuel annually for rest period idling. The U.S. Department of Energy's National Renewable Energy Laboratory's (NREL) CoolCab Project works closely with industry to design efficient thermal management systems for long-haul trucks that minimize engine idling and fuel use while maintaining occupant comfort. Heat transfer to the vehicle interior from opaque exterior surfaces is one of the major heat pathways that contribute to air conditioning loads during long-haul truck daytime rest period idling. To quantify the impact of paint color and the opportunity for advanced paints, NREL collaborated with Volvo Group North America, PPG Industries, and Dometic Environmental Corporation. Initial screening simulations using CoolCalc, NREL's rapid HVAC load estimation tool, showed promising air-conditioning load reductions due to paint color selection. Tests conducted at NREL's Vehicle Testing and Integration Facility using long-haul truck cab sections, 'test bucks,' showed a 31.1% of maximum possible reduction in rise over ambient temperature and a 20.8% reduction in daily electric air conditioning energy use by switching from black to white paint. Additionally, changing from blue to an advanced color-matched solar reflective blue paint resulted in a 7.3% reduction in daily electric air conditioning energy use for weather conditions tested in Colorado. National-level modeling results using weather data from major U.S. cities indicated that the increase in heating loads due to lighter paint colors is much smaller than the reduction in cooling loads.

  2. Optimized Design of a Furnace Cooling System

    E-Print Network [OSTI]

    Morelli, F.; Bretschneider, R.; Dauzat, J.; Guymon, M.; Studebaker, J.; Rasmussen, B. P.

    2013-01-01T23:59:59.000Z

    at higher temperatures. The second mechanism considers the introduction of forced argon convection. Argon is used in the process to mitigate part oxidation. Cycling argon through the furnace during cooling increases convection over the parts and removes heat...

  3. Optimized Design of a Furnace Cooling System 

    E-Print Network [OSTI]

    Morelli, F.; Bretschneider, R.; Dauzat, J.; Guymon, M.; Studebaker, J.; Rasmussen, B. P.

    2013-01-01T23:59:59.000Z

    at higher temperatures. The second mechanism considers the introduction of forced argon convection. Argon is used in the process to mitigate part oxidation. Cycling argon through the furnace during cooling increases convection over the parts and removes heat...

  4. Study on Auto-DR and Pre-Cooling of Commercial Buildings with Thermal Mass in California

    E-Print Network [OSTI]

    Yin, Rongxin

    2010-01-01T23:59:59.000Z

    loads account for the majority of electricity usage – these loads significantly influenced the whole building power profile.power under extreme cold weather conditions to estimate the actual lighting and equipment end use load profiles.power profile during the peak period. The “Pre-cooling with linear temp set up” strategy load

  5. Development of an Integrated Residential Heating, Ventilation, Cooling, and Dehumidification System for Residences

    SciTech Connect (OSTI)

    Hoeschele, M.A.; D.A. Springer

    2008-06-18T23:59:59.000Z

    The Need and the Opportunity Codes such as ASHRAE 90.2 and IECC, and programs such as Energy Star and Builders Challenge, are causing new homes to be built to higher performance standards. As a result sensible cooling loads in new homes are going down, but indoor air quality prerogatives are causing ventilation rates and moisture loads to increase in humid climates. Conventional air conditioners are unable to provide the low sensible heat ratios that are needed to efficiently cool and dehumidify homes since dehumidification potential is strongly correlated with cooling system operating hours. The project team saw an opportunity to develop a system that is at least as effective as a conventional air conditioner plus dehumidifier, removes moisture without increasing the sensible load, reduces equipment cost by integrating components, and simplifies installation. Project Overview Prime contractor Davis Energy Group led a team in developing an Integrated Heating, Ventilation, Cooling, and Dehumidification (I-HVCD) system under the DOE SBIR program. Phase I and II SBIR project activities ran from July 2003 through December 2007. Tasks included: (1) Mechanical Design and Prototyping; (2) Controls Development; (3) Laboratory and Field Testing; and (4) Commercialization Activities Technology Description. Key components of the prototype I-HVCD system include an evaporator coil assembly, return and outdoor air damper, and controls. These are used in conjunction with conventional components that include a variable speed air handler or furnace, and a two-stage condensing unit. I-HVCD controls enable the system to operate in three distinct cooling modes to respond to indoor temperature and relative humidity (RH) levels. When sensible cooling loads are high, the system operates similar to a conventional system but varies supply airflow in response to indoor RH. In the second mode airflow is further reduced, and the reheat coil adds heat to the supply air. In the third mode, the reheat coil adds additional heat to maintain the supply air temperature close to the return air temperature (100% latent cooling). Project Outcomes Key Phase II objectives were to develop a pre-production version of the system and to demonstrate its performance in an actual house. The system was first tested in the laboratory and subsequently underwent field-testing at a new house in Gainesville, Florida. Field testing began in 2006 with monitoring of a 'conventional best practices' system that included a two stage air conditioner and Energy Star dehumidifier. In September 2007, the I-HVCD components were installed for testing. Both systems maintained uniform indoor temperatures, but indoor RH control was considerably better with the I-HVCD system. The daily variation from average indoor humidity conditions was less than 2% for the I-HVCD vs. 5-7% for the base case system. Data showed that the energy use of the two systems was comparable. Preliminary installed cost estimates suggest that production costs for the current I-HVCD integrated design would likely be lower than for competing systems that include a high efficiency air conditioner, dehumidifier, and fresh air ventilation system. Project Benefits This project verified that the I-HVCD refrigeration compacts are compact (for easy installation and retrofit) and can be installed with air conditioning equipment from a variety of manufacturers. Project results confirmed that the system can provide precise indoor temperature and RH control under a variety of climate conditions. The I-HVCD integrated approach offers numerous benefits including integrated control, easier installation, and reduced equipment maintenance needs. Work completed under this project represents a significant step towards product commercialization. Improved indoor RH control and fresh air ventilation are system attributes that will become increasingly important in the years ahead as building envelopes improve and sensible cooling loads continue to fall. Technologies like I-HVCD will be instrumental in meeting goals set by Building America

  6. Cooling water distribution system

    DOE Patents [OSTI]

    Orr, Richard (Pittsburgh, PA)

    1994-01-01T23:59:59.000Z

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  7. Detecting Load Imbalance on the Cray XT

    E-Print Network [OSTI]

    @cray.com) © Cray Inc. Slide 10 Profile with Load Distribution by Groups Table 1: Profile by Function GroupDetecting Load Imbalance on the Cray XT Luiz DeRose Programming Environment Director Cray Inc. ldr@cray.com #12;Slide 2 Motivation for Load Imbalance Analysis Increasing system software and architecture

  8. The Cooling of Particle Beams

    E-Print Network [OSTI]

    Sessler, Andrew M.

    2008-01-01T23:59:59.000Z

    achieved), is laser cooling. In the future, we may expectachieved), is laser cooling. In the future, we may expect

  9. I. IONIZATION COOLING A. Introduction

    E-Print Network [OSTI]

    McDonald, Kirk

    ionization cooling techniques to reduce the 6­dimensional phase space emittance. B. Cooling TheoryI. IONIZATION COOLING A. Introduction The muon beam at the end of the decay channel is very intense for beam cooling. Cooling by synchrotron radiation, conventional stochastic cooling and conventional

  10. Micro-scale heat-exchangers for Joule-Thomson cooling.

    SciTech Connect (OSTI)

    Gross, Andrew John

    2014-01-01T23:59:59.000Z

    This project focused on developing a micro-scale counter flow heat exchangers for Joule-Thomson cooling with the potential for both chip and wafer scale integration. This project is differentiated from previous work by focusing on planar, thin film micromachining instead of bulk materials. A process will be developed for fabricating all the devices mentioned above, allowing for highly integrated micro heat exchangers. The use of thin film dielectrics provides thermal isolation, increasing efficiency of the coolers compared to designs based on bulk materials, and it will allow for wafer-scale fabrication and integration. The process is intended to implement a CFHX as part of a Joule-Thomson cooling system for applications with heat loads less than 1mW. This report presents simulation results and investigation of a fabrication process for such devices.

  11. Stochastic cooling in RHIC

    SciTech Connect (OSTI)

    Brennan J. M.; Blaskiewicz, M.; Mernick, K.

    2012-05-20T23:59:59.000Z

    The full 6-dimensional [x,x'; y,y'; z,z'] stochastic cooling system for RHIC was completed and operational for the FY12 Uranium-Uranium collider run. Cooling enhances the integrated luminosity of the Uranium collisions by a factor of 5, primarily by reducing the transverse emittances but also by cooling in the longitudinal plane to preserve the bunch length. The components have been deployed incrementally over the past several runs, beginning with longitudinal cooling, then cooling in the vertical planes but multiplexed between the Yellow and Blue rings, next cooling both rings simultaneously in vertical (the horizontal plane was cooled by betatron coupling), and now simultaneous horizontal cooling has been commissioned. The system operated between 5 and 9 GHz and with 3 x 10{sup 8} Uranium ions per bunch and produces a cooling half-time of approximately 20 minutes. The ultimate emittance is determined by the balance between cooling and emittance growth from Intra-Beam Scattering. Specific details of the apparatus and mathematical techniques for calculating its performance have been published elsewhere. Here we report on: the method of operation, results with beam, and comparison of results to simulations.

  12. An Energy and Peak Loads Analysis of the Texas Department of Health Building, Final Report, Prepared for the Energy Efficiency Division, Texas Public Utility Commission 

    E-Print Network [OSTI]

    Katipamula, S.; O'Neal, D. L.

    1986-01-01T23:59:59.000Z

    design temperatures, lighting levels, and requires a heat pump for heating, the total energy con- sumption has dropped by 44%. The major reduction in cooling energy use 18 Table 4.5-Comparison of Peak Loads of the Base Case for the Health Building... because of an increase in the design cooling temperature. The reduction of the total heating energy is basically from the use of a heat pump and also due to the decrease in design heating temperature. Although implementing the California standards shows a...

  13. Cooling the dark energy camera instrument

    SciTech Connect (OSTI)

    Schmitt, R.L.; Cease, H.; /Fermilab; DePoy, D.; /Ohio State U.; Diehl, H.T.; Estrada, J.; Flaugher, B.; /Fermilab; Kuhlmann, S.; /Ohio State U.; Onal, Birce; Stefanik, A.; /Fermilab

    2008-06-01T23:59:59.000Z

    DECam, camera for the Dark Energy Survey (DES), is undergoing general design and component testing. For an overview see DePoy, et al in these proceedings. For a description of the imager, see Cease, et al in these proceedings. The CCD instrument will be mounted at the prime focus of the CTIO Blanco 4m telescope. The instrument temperature will be 173K with a heat load of 113W. In similar applications, cooling CCD instruments at the prime focus has been accomplished by three general methods. Liquid nitrogen reservoirs have been constructed to operate in any orientation, pulse tube cryocoolers have been used when tilt angles are limited and Joule-Thompson or Stirling cryocoolers have been used with smaller heat loads. Gifford-MacMahon cooling has been used at the Cassegrain but not at the prime focus. For DES, the combined requirements of high heat load, temperature stability, low vibration, operation in any orientation, liquid nitrogen cost and limited space available led to the design of a pumped, closed loop, circulating nitrogen system. At zenith the instrument will be twelve meters above the pump/cryocooler station. This cooling system expected to have a 10,000 hour maintenance interval. This paper will describe the engineering basis including the thermal model, unbalanced forces, cooldown time, the single and two-phase flow model.

  14. Evolution of cool-roof standards in the United States

    SciTech Connect (OSTI)

    Akbari, Hashem; Akbari, Hashem; Levinson, Ronnen

    2008-07-11T23:59:59.000Z

    Roofs that have high solar reflectance and high thermal emittance stay cool in the sun. A roof with lower thermal emittance but exceptionally high solar reflectance can also stay cool in the sun. Substituting a cool roof for a noncool roof decreases cooling-electricity use, cooling-power demand, and cooling-equipment capacity requirements, while slightly increasing heating-energy consumption. Cool roofs can also lower citywide ambient air temperature in summer, slowing ozone formation and increasing human comfort. Provisions for cool roofs in energy-efficiency standards can promote the building- and climate-appropriate use of cool roofing technologies. Cool-roof requirements are designed to reduce building energy use, while energy-neutral cool-roof credits permit the use of less energy-efficient components (e.g., larger windows) in a building that has energy-saving cool roofs. Both types of measures can reduce the life-cycle cost of a building (initial cost plus lifetime energy cost). Since 1999, several widely used building energy-efficiency standards, including ASHRAE 90.1, ASHRAE 90.2, the International Energy Conservation Code, and California's Title 24 have adopted cool-roof credits or requirements. This paper reviews the technical development of cool-roof provisions in the ASHRAE 90.1, ASHRAE 90.2, and California Title 24 standards, and discusses the treatment of cool roofs in other standards and energy-efficiency programs. The techniques used to develop the ASHRAE and Title 24 cool-roof provisions can be used as models to address cool roofs in building energy-efficiency standards worldwide.

  15. Advanced Refrigerant-Based Cooling Technologies for Information...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Data Center Heat Exchanger with Increased Cooling Efficiency Reduces Energy Usage Between 2005 and 2010 electricity consumption in the information and...

  16. GE, Aavid Commercialize Dual Cool Jets Technology | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    market. GE's broad array of industrial businesses requires highly advanced and reliable electronics that are increasingly driving the need for advanced cooling solutions to...

  17. ANNUAL HEATING AND COOLING REQUIREMENTS AND DESIGN DAY PERFORMANCE FOR A RESIDENTIAL MODEL IN SIX CLIMATES: A COMPARISON OF NBSLD, BLAST 2, AND DOE-2.1

    E-Print Network [OSTI]

    Carroll, William L.

    2011-01-01T23:59:59.000Z

    Lf.20 i 2.4E (1) Cumulative heating and cooling loads only.at the American Society of Heating, Refrigerating, and AirDecember 3-5, 1979 ANNUAL HEATING AND COOLING REQUIREMENTS

  18. Cool Storage Performance

    E-Print Network [OSTI]

    Eppelheimer, D. M.

    1985-01-01T23:59:59.000Z

    . This article covers three thermal storage topics. The first section catalogs various thermal storage systems and applications. Included are: load shifting and load leveling, chilled water storage systems, and ice storage systems using Refrigerant 22 or ethylene...

  19. A data-driven approach for steam load prediction in buildings Andrew Kusiak *, Mingyang Li, Zijun Zhang

    E-Print Network [OSTI]

    Kusiak, Andrew

    A data-driven approach for steam load prediction in buildings Andrew Kusiak *, Mingyang Li, Zijun mining Building load estimation Steam load prediction Neural network ensemble Energy forecasting Monte in energy management. This load is often the result of steam heating and cooling of buildings. In this paper

  20. Power electronics cooling apparatus

    DOE Patents [OSTI]

    Sanger, Philip Albert (Monroeville, PA); Lindberg, Frank A. (Baltimore, MD); Garcen, Walter (Glen Burnie, MD)

    2000-01-01T23:59:59.000Z

    A semiconductor cooling arrangement wherein a semiconductor is affixed to a thermally and electrically conducting carrier such as by brazing. The coefficient of thermal expansion of the semiconductor and carrier are closely matched to one another so that during operation they will not be overstressed mechanically due to thermal cycling. Electrical connection is made to the semiconductor and carrier, and a porous metal heat exchanger is thermally connected to the carrier. The heat exchanger is positioned within an electrically insulating cooling assembly having cooling oil flowing therethrough. The arrangement is particularly well adapted for the cooling of high power switching elements in a power bridge.

  1. Power electronics cooling apparatus

    SciTech Connect (OSTI)

    Sanger, P.A.; Lindberg, F.A.; Garcen, W.

    2000-01-18T23:59:59.000Z

    A semiconductor cooling arrangement wherein a semiconductor is affixed to a thermally and electrically conducting carrier such as by brazing. The coefficient of thermal expansion of the semiconductor and carrier are closely matched to one another so that during operation they will not be overstressed mechanically due to thermal cycling. Electrical connection is made to the semiconductor and carrier, and a porous metal heat exchanger is thermally connected to the carrier. The heat exchanger is positioned within an electrically insulating cooling assembly having cooling oil flowing therethrough. The arrangement is particularly well adapted for the cooling of high power switching elements in a power bridge.

  2. Data Center Cooling

    SciTech Connect (OSTI)

    Rutberg, Michael; Cooperman, Alissa; Bouza, Antonio

    2013-10-31T23:59:59.000Z

    The article discusses available technologies for reducing energy use for cooling data center facilities. This article addresses the energy savings and market potential of these strategies as well.

  3. Energy 101: Cool Roofs

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    This edition of Energy 101 takes a look at how switching to a cool roof can save you money and benefit the environment.

  4. Energy 101: Cool Roofs

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    This edition of Energy 101 takes a look at how switching to a cool roof can save you money and benefit the environment.

  5. Passive containment cooling system

    DOE Patents [OSTI]

    Conway, Lawrence E. (Robinson Township, Allegheny County, PA); Stewart, William A. (Penn Hills Township, Allegheny County, PA)

    1991-01-01T23:59:59.000Z

    A containment cooling system utilizes a naturally induced air flow and a gravity flow of water over the containment shell which encloses a reactor core to cool reactor core decay heat in two stages. When core decay heat is greatest, the water and air flow combine to provide adequate evaporative cooling as heat from within the containment is transferred to the water flowing over the same. The water is heated by heat transfer and then evaporated and removed by the air flow. After an initial period of about three to four days when core decay heat is greatest, air flow alone is sufficient to cool the containment.

  6. Liquid metal cooled nuclear reactors with passive cooling system

    DOE Patents [OSTI]

    Hunsbedt, Anstein (Los Gatos, CA); Fanning, Alan W. (San Jose, CA)

    1991-01-01T23:59:59.000Z

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of cooling medium flow circuits which cooperate to remove and carry heat away from the fuel core upon loss of the normal cooling flow circuit to areas external thereto.

  7. Feedback Cooling of a Single Neutral Atom

    E-Print Network [OSTI]

    Markus Koch; Christian Sames; Alexander Kubanek; Matthias Apel; Maximilian Balbach; Alexei Ourjoumtsev; Pepijn W. H. Pinkse; Gerhard Rempe

    2010-10-15T23:59:59.000Z

    We demonstrate feedback cooling of the motion of a single rubidium atom trapped in a high-finesse optical resonator to a temperature of about 160 \\mu K. Time-dependent transmission and intensity-correlation measurements prove the reduction of the atomic position uncertainty. The feedback increases the 1/e storage time into the one second regime, 30 times longer than without feedback. Feedback cooling therefore rivals state-of-the-art laser cooling, but with the advantages that it requires less optical access and exhibits less optical pumping.

  8. Cooling trapped atoms in optical resonators

    E-Print Network [OSTI]

    Stefano Zippilli; Giovanna Morigi

    2007-03-20T23:59:59.000Z

    We derive an equation for the cooling dynamics of the quantum motion of an atom trapped by an external potential inside an optical resonator. This equation has broad validity and allows us to identify novel regimes where the motion can be efficiently cooled to the potential ground state. Our result shows that the motion is critically affected by quantum correlations induced by the mechanical coupling with the resonator, which may lead to selective suppression of certain transitions for the appropriate parameters regimes, thereby increasing the cooling efficiency.

  9. Muon Beam Helical Cooling Channel Design

    SciTech Connect (OSTI)

    Johnson, Rolland; Ankenbrandt, Charles; Flanagan, G.; Kazakevich, G.M.; Marhauser, Frank; Neubauer, Michael; Roberts, T.; Yoshikawa, C.; Derbenev, Yaroslav; Morozov, Vasiliy; Kashikhin, V.S.; Lopes, Mattlock; Tollestrup, A.; Yonehara, Katsuya; Zloblin, A.

    2013-06-01T23:59:59.000Z

    The Helical Cooling Channel (HCC) achieves effective ionization cooling of the six-dimensional (6d) phase space of a muon beam by means of a series of 21st century inventions. In the HCC, hydrogen-pressurized RF cavities enable high RF gradients in strong external magnetic fields. The theory of the HCC, which requires a magnetic field with solenoid, helical dipole, and helical quadrupole components, demonstrates that dispersion in the gaseous hydrogen energy absorber provides effective emittance exchange to enable longitudinal ionization cooling. The 10-year development of a practical implementation of a muon-beam cooling device has involved a series of technical innovations and experiments that imply that an HCC of less than 300 m length can cool the 6d emittance of a muon beam by six orders of magnitude. We describe the design and construction plans for a prototype HCC module based on oxygen-doped hydrogen-pressurized RF cavities that are loaded with dielectric, fed by magnetrons, and operate in a superconducting helical solenoid magnet.

  10. Study of thermosiphon cooling scheme for the production solenoid of the Mu2e experiment at Fermilab

    SciTech Connect (OSTI)

    Dhanaraj, N.; Kashikhin, V.; Peterson, T.; Pronskikh, V.; Nicol, T. [Fermi National Accelerator Laboratory, P. O. Box 500, Batavia, IL 60510 (United States)

    2014-01-29T23:59:59.000Z

    A thermosiphon cooling scheme is envisioned for the Production Solenoid of the Mu2e experiment at Fermi National Accelerator Laboratory. The thermosiphon cooling is achieved by indirect cooling with helium at 4.7 K. The siphon tubes are welded to the solenoid outer structure. The anticipated heat loads in the solenoid is presented as well as the cooling scheme design. A thermal model using ANSYS to simulate the temperature gradient is presented. The thermal analysis also makes provisions for including the heat load generated in the coils and structures by the secondary radiation simulated using the MARS 15 code. The impact of the heat loads from supports on the solenoid cooling is studied. The thermosiphon cooling scheme is also validated using pertinent correlations to study flow reversals and the cooling regime.

  11. Measure Guideline: Ventilation Cooling

    SciTech Connect (OSTI)

    Springer, D.; Dakin, B.; German, A.

    2012-04-01T23:59:59.000Z

    The purpose of this measure guideline on ventilation cooling is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  12. Cool Earth Solar

    ScienceCinema (OSTI)

    Lamkin, Rob; McIlroy, Andy; Swalwell, Eric; Rajan, Kish

    2014-02-26T23:59:59.000Z

    In a public-private partnership that takes full advantage of the Livermore Valley Open Campus (LVOC) for the first time, Sandia National Laboratories and Cool Earth Solar have signed an agreement that could make solar energy more affordable and accessible. In this piece, representatives from Sandia, Cool Earth Solar, and leaders in California government all discuss the unique partnership and its expected impact.

  13. Why Cool Roofs?

    ScienceCinema (OSTI)

    Chu, Steven

    2013-05-29T23:59:59.000Z

    By installing a cool roof at DOE, the federal government and Secretary Chu are helping to educate families and businesses about the important energy and cost savings that can come with this simple, low-cost technology. Cool roofs have the potential to quickly and dramatically reduce global carbon emissions while saving money every month on consumers' electrical bills.

  14. Why Cool Roofs?

    SciTech Connect (OSTI)

    Chu, Steven

    2010-01-01T23:59:59.000Z

    By installing a cool roof at DOE, the federal government and Secretary Chu are helping to educate families and businesses about the important energy and cost savings that can come with this simple, low-cost technology. Cool roofs have the potential to quickly and dramatically reduce global carbon emissions while saving money every month on consumers' electrical bills.

  15. Cool Earth Solar

    SciTech Connect (OSTI)

    Lamkin, Rob; McIlroy, Andy; Swalwell, Eric; Rajan, Kish

    2013-04-22T23:59:59.000Z

    In a public-private partnership that takes full advantage of the Livermore Valley Open Campus (LVOC) for the first time, Sandia National Laboratories and Cool Earth Solar have signed an agreement that could make solar energy more affordable and accessible. In this piece, representatives from Sandia, Cool Earth Solar, and leaders in California government all discuss the unique partnership and its expected impact.

  16. Load Management for Industry

    E-Print Network [OSTI]

    Konsevick, W. J., Jr.

    1982-01-01T23:59:59.000Z

    customer management programs exist. EPRI Report (EM-1606) loads to beneficially alter a'utility's load curve. (Page 1-2) list them as: Load management alternatives are covered. 1. Direct or voluntary control of customer Load management methods can... and Electric Power Research Institute (EPRI) Report energy management programs. (EM-1606) states that "the objective of load manage ment is to alter the real or apparent pattern of Our load management program was designed electricity use in order to...

  17. Water cooled steam jet

    DOE Patents [OSTI]

    Wagner, Jr., Edward P. (Idaho Falls, ID)

    1999-01-01T23:59:59.000Z

    A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed therebetween. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock.

  18. Turbine blade cooling

    DOE Patents [OSTI]

    Staub, Fred Wolf (Schenectady, NY); Willett, Fred Thomas (Niskayuna, NY)

    2000-01-01T23:59:59.000Z

    A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number.

  19. Turbine blade cooling

    DOE Patents [OSTI]

    Staub, Fred Wolf (Schenectady, NY); Willett, Fred Thomas (Niskayuna, NY)

    1999-07-20T23:59:59.000Z

    A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number.

  20. Turbine blade cooling

    DOE Patents [OSTI]

    Staub, F.W.; Willett, F.T.

    1999-07-20T23:59:59.000Z

    A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number. 13 figs.

  1. Hydronic rooftop cooling systems

    DOE Patents [OSTI]

    Bourne, Richard C. (Davis, CA); Lee, Brian Eric (Monterey, CA); Berman, Mark J. (Davis, CA)

    2008-01-29T23:59:59.000Z

    A roof top cooling unit has an evaporative cooling section that includes at least one evaporative module that pre-cools ventilation air and water; a condenser; a water reservoir and pump that captures and re-circulates water within the evaporative modules; a fan that exhausts air from the building and the evaporative modules and systems that refill and drain the water reservoir. The cooling unit also has a refrigerant section that includes a compressor, an expansion device, evaporator and condenser heat exchangers, and connecting refrigerant piping. Supply air components include a blower, an air filter, a cooling and/or heating coil to condition air for supply to the building, and optional dampers that, in designs that supply less than 100% outdoor air to the building, control the mixture of return and ventilation air.

  2. INCREMENTAL COOLING LOAD DETERMINATION FOR PASSIVE DIRECT GAIN HEATING SYSTEMS

    E-Print Network [OSTI]

    Sullivan, Paul W.

    2013-01-01T23:59:59.000Z

    American Society of Heating, Refrigeration, and AirFOR PASSIVE DIRECT GAIN HEATING SYSTEMS Paul W. Sullivan,FOR PASSIVE DIRECT GAIN HEATING SYSTEMS* Paul W. Sullivan,t

  3. Cooling load differences between radiant and air systems

    E-Print Network [OSTI]

    Feng, Jingjuan Dove; Schiavon, Stefano; Bauman, Fred

    2013-01-01T23:59:59.000Z

    Radiant success: Design for energy-efficient comfort inHill, [10] Z. Tian, Design of energy efficient building withenergy efficient approach for conditioning buildings [1-3]. The design

  4. Cooling load differences between radiant and air systems

    E-Print Network [OSTI]

    Feng, Jingjuan Dove; Schiavon, Stefano; Bauman, Fred

    2013-01-01T23:59:59.000Z

    the influences of envelope thermal insulation, thermal mass,following parameters: envelope thermal insulation, thermalthermal mass and higher heat loss through the building envelope

  5. CoolCab Truck Thermal Load Reduction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJuly 30, 2013 Sanyo:MarchPracticesPresentation from the U.S.

  6. CoolCab Truck Thermal Load Reduction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJuly 30, 2013 Sanyo:MarchPracticesPresentation from the

  7. HOTSPOTS OF CLIMATEDRIVEN INCREASES IN RESIDENTIAL

    E-Print Network [OSTI]

    . This paper provides reduced form estimates of changes in electricity consumption due to increased use to higher projections of electricity consumption. These increases in projected electricity consumption were: climate change, vulnerability, electricity consumption, heating, cooling Please use the following citation

  8. Coherent Electron Cooling: JLab Effort Helps to Cool Particle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    labmanager.com?articles.viewarticleNo7392titleCoherent-Electron-Cooling--Combining-Methods-to-Cool-Parti... Submitted: Friday, April 13...

  9. Simulation of radiant cooling performance with evaporative cooling sources

    E-Print Network [OSTI]

    Moore, Timothy

    2008-01-01T23:59:59.000Z

    and the Future Integration of Alternative Cooling Systems infuture developments include refinement of four essential components of the radiant cooling and

  10. Cooling System Basics | Department of Energy

    Energy Savers [EERE]

    Homes & Buildings Space Heating & Cooling Cooling System Basics Cooling System Basics August 16, 2013 - 1:08pm Addthis Cooling technologies used in homes and buildings...

  11. Load controller and method to enhance effective capacity of a photovoltaic power supply using a dynamically determined expected peak loading

    DOE Patents [OSTI]

    Perez, Richard

    2005-05-03T23:59:59.000Z

    A load controller and method are provided for maximizing effective capacity of a non-controllable, renewable power supply coupled to a variable electrical load also coupled to a conventional power grid. Effective capacity is enhanced by monitoring power output of the renewable supply and loading, and comparing the loading against the power output and a load adjustment threshold determined from an expected peak loading. A value for a load adjustment parameter is calculated by subtracting the renewable supply output and the load adjustment parameter from the current load. This value is then employed to control the variable load in an amount proportional to the value of the load control parameter when the parameter is within a predefined range. By so controlling the load, the effective capacity of the non-controllable, renewable power supply is increased without any attempt at operational feedback control of the renewable supply.

  12. The Cooling of Particle Beams

    E-Print Network [OSTI]

    Sessler, Andrew M.

    2008-01-01T23:59:59.000Z

    67, 15. Hangst, J "Laser Cooling of a Stored Ion Beam - ATheorem an.d Phase Space Cooling", Proceedings of theWorkshop on Beam Cooling and Related Topics, Montreaux, CERN

  13. Stochastic Cooling in Muon Colliders

    E-Print Network [OSTI]

    Barletta, W.A.

    2008-01-01T23:59:59.000Z

    Research Division Stochastic Cooling in Muon Colliders W.A.AC03-76SFOOO98. STOCHASTIC COOLING IN MUON COLLIDERS Williamcan consider the stochastic cooling option as more than a

  14. STOCHASTIC COOLING OF BUNCHED BEAMS

    E-Print Network [OSTI]

    Bisognano, J.J.

    2010-01-01T23:59:59.000Z

    March 11-13, 1981 STOCHASTIC COOLING OF BUNCHED BEAMS J.J.W-7406-BW-48 STOCHASTIC COOLING OF BUNCHED BEAMS* J.J.longitudinal stochastic cooling of bunched particle beams.

  15. Radiant cooling research scoping study

    E-Print Network [OSTI]

    Moore, Timothy; Bauman, Fred; Huizenga, Charlie

    2006-01-01T23:59:59.000Z

    61–65° F (16–18°C) cooling supply air temperatures requiredprovide appropriate cooling with supply water no cooler thancirculation of the cooling/heating supply water through the

  16. Indoor Humidity Analysis of an Integrated Radiant Cooling and Desiccant Ventilation System

    E-Print Network [OSTI]

    Gong, X.; Claridge, D. E.

    2006-01-01T23:59:59.000Z

    latent heat, they normally are used in conjunction with an independent ventilation system, which is capable of decoupling the space sensible and latent loads. Condensation concerns limit the application of radiant cooling. This paper studies...

  17. Use of Plant Toom Logbook Data to Establish Performance of a Cooling Production System

    E-Print Network [OSTI]

    Hajiah, A. E.; Maheshwari, G. P.; ElSherbini, A. I.

    2006-01-01T23:59:59.000Z

    and applies the same for an office building in Kuwait. Data collected between March and October 2004 were analyzed. Inadequate control of supply water temperature and low chiller loading were identified as the key parameters leading to inefficiency of cooling...

  18. TASK 2.5.7 FIELD EXPERIMENTS TO EVALUATE COOL-COLORED ROOFING

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    ) demonstrated that white barrel and white flat tiles reduced cooling energy consumption by 22% of the base load the exterior face of the roof sheathing and the underside of the tile. The greater the tile's profile

  19. Multiphase cooling flows

    E-Print Network [OSTI]

    Peter A. Thomas

    1996-08-20T23:59:59.000Z

    I discuss the multiphase nature of the intracluster medium whose neglect can lead to overestimates of the baryon fraction of clusters by up to a factor of two. The multiphase form of the cooling flow equations are derived and reduced to a simple form for a wide class of self-similar density distributions. It is shown that steady-state cooling flows are \\emph{not} consistent with all possible emissivity profiles which can therefore be used as a test of the theory. In combination, they provide strong constraints on the mass distribution within the cooling radius.

  20. Air Cooling R&D

    Broader source: Energy.gov (indexed) [DOE]

    or otherwise restricted information. 2 State of the Art Everything on a vehicle is air cooled, ultimately... Air cooling can be done... When?... How? Honda Insight Power...

  1. Green Data Center Cooling: Achieving 90% Reduction: Airside Economization and Unique Indirect Evaporative Cooling

    SciTech Connect (OSTI)

    Weerts, B. A.; Gallaher, D.; Weaver, R.; Van Geet, O.

    2012-01-01T23:59:59.000Z

    The Green Data Center Project was a successful effort to significantly reduce the energy use of the National Snow and Ice Data Center (NSIDC). Through a full retrofit of a traditional air conditioning system, the cooling energy required to meet the data center's constant load has been reduced by over 70% for summer months and over 90% for cooler winter months. This significant change is achievable through the use of airside economization and a new indirect evaporative cooling system. One of the goals of this project was to create awareness of simple and effective energy reduction strategies for data centers. This project's geographic location allowed maximizing the positive effects of airside economization and indirect evaporative cooling, but these strategies may also be relevant for many other sites and data centers in the U.S.

  2. Cool Farming: Climate impacts

    E-Print Network [OSTI]

    Levi, Ran

    Cool Farming: Climate impacts of agriculture and mitigation potential greenpeace.org Campaigningfor meat categories as well as milk and selected plant products for comparison. 36 Figure 1: Total global

  3. Global Cool Cities Alliance

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) is currently supporting the Global Cool Cities Alliance (GCCA), a non-profit organization that works with cities, regions, and national governments to speed the...

  4. Optimization of Cooling Water

    E-Print Network [OSTI]

    Matson, J.

    A cooling water system can be optimized by operation at the highest possible cycles of concentration without risking sealing and fouling on heat exchanger surfaces. The way to optimize will be shown, with a number of examples of new systems....

  5. Why Cool Roofs?

    Broader source: Energy.gov [DOE]

    By installing a cool roof at DOE, the federal government and Secretary Chu are helping to educate families and businesses about the important energy and cost savings that can come with this simple,...

  6. RHIC stochastic cooling motion control

    SciTech Connect (OSTI)

    Gassner, D.; DeSanto, L.; Olsen, R.H.; Fu, W.; Brennan, J.M.; Liaw, CJ; Bellavia, S.; Brodowski, J.

    2011-03-28T23:59:59.000Z

    Relativistic Heavy Ion Collider (RHIC) beams are subject to Intra-Beam Scattering (IBS) that causes an emittance growth in all three-phase space planes. The only way to increase integrated luminosity is to counteract IBS with cooling during RHIC stores. A stochastic cooling system for this purpose has been developed, it includes moveable pick-ups and kickers in the collider that require precise motion control mechanics, drives and controllers. Since these moving parts can limit the beam path aperture, accuracy and reliability is important. Servo, stepper, and DC motors are used to provide actuation solutions for position control. The choice of motion stage, drive motor type, and controls are based on needs defined by the variety of mechanical specifications, the unique performance requirements, and the special needs required for remote operations in an accelerator environment. In this report we will describe the remote motion control related beam line hardware, position transducers, rack electronics, and software developed for the RHIC stochastic cooling pick-ups and kickers.

  7. Structural stability of cooling flows

    E-Print Network [OSTI]

    Henrik Omma; James Binney

    2003-12-31T23:59:59.000Z

    Three-dimensional hydrodynamical simulations are used to investigate the structural stability of cooling flows that are episodically heated by jets from a central AGN. The radial profile of energy deposition is controlled by (a) the power of the jets, and (b) the pre-outburst density profile. A delay in the ignition of the jets causes more powerful jets to impact on a more centrally concentrated medium. The net effect is a sufficient increase in the central concentration of energy deposition to cause the post-outburst density profile to be less centrally concentrated than that of an identical cluster in which the outburst happened earlier and was weaker. These results suggest that the density profiles of cooling flows oscillate around an attracting profile, thus explaining why cooling flows are observed to have similar density profiles. The possibility is raised that powerful FR II systems are ones in which this feedback mechanism has broken down and a runaway growth of the source parameters has occurred.

  8. Closed loop air cooling system for combustion turbines

    DOE Patents [OSTI]

    Huber, D.J.; Briesch, M.S.

    1998-07-21T23:59:59.000Z

    Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts. 1 fig.

  9. Closed loop air cooling system for combustion turbines

    DOE Patents [OSTI]

    Huber, David John (North Canton, OH); Briesch, Michael Scot (Orlando, FL)

    1998-01-01T23:59:59.000Z

    Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts.

  10. Thermal loading considerations for synchrotron radiation mirrors

    SciTech Connect (OSTI)

    Holdener, F.R.; Berglin, E.J.; Fuchs, B.A.; Humpal, H.H.; Karpenko, V.P.; Martin, R.W.; Tirsell, K.G.

    1986-03-26T23:59:59.000Z

    Grazing incidence mirrors used to focus synchrotron radiation beams through small distant apertures have severe optical requirements. The surface distortion due to heat loading of the first mirror in a bending magnet beam line is of particular concern when a large fraction of the incident beam is absorbed. In this paper we discuss mirror design considerations involved in minimizing the thermal/mechanical loading on vertically deflecting first surface mirrors required for SPEAR synchrotron radiation beam lines. Topics include selection of mirror material and cooling method, the choice of SiC for the substrate, optimization of the thickness, and the design of the mirror holder and cooling mechanism. Results obtained using two-dimensional, finite-element thermal/mechanical distortion analysis are presented for the case of a 6/sup 0/ grazing incidence SiC mirror absorbing up to 260 W at Beam Line VIII on the SPEAR ring. Test descriptions and results are given for the material used to thermally couple this SiC mirror to a water-cooled block. The interface material is limited to applications for which the equivalent normal heat load is less than 20 W/cm/sup 2/.

  11. Laser cooling of solids

    SciTech Connect (OSTI)

    Epstein, Richard I [Los Alamos National Laboratory; Sheik-bahae, Mansoor [UNM

    2008-01-01T23:59:59.000Z

    We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocooler. We chart the evolution of this science in rare-earth doped solids and semiconductors.

  12. Refrigerant directly cooled capacitors

    DOE Patents [OSTI]

    Hsu, John S. (Oak Ridge, TN); Seiber, Larry E. (Oak Ridge, TN); Marlino, Laura D. (Oak Ridge, TN); Ayers, Curtis W. (Kingston, TN)

    2007-09-11T23:59:59.000Z

    The invention is a direct contact refrigerant cooling system using a refrigerant floating loop having a refrigerant and refrigeration devices. The cooling system has at least one hermetic container disposed in the refrigerant floating loop. The hermetic container has at least one electronic component selected from the group consisting of capacitors, power electronic switches and gating signal module. The refrigerant is in direct contact with the electronic component.

  13. Cooling with Superfluid Helium

    E-Print Network [OSTI]

    Lebrun, P

    2014-01-01T23:59:59.000Z

    The technical properties of helium II (‘superfluid’ helium) are presented in view of its applications to the cooling of superconducting devices, particularly in particle accelerators. Cooling schemes are discussed in terms of heat transfer performance and limitations. Large-capacity refrigeration techniques below 2 K are reviewed, with regard to thermodynamic cycles as well as process machinery. Examples drawn from existing or planned projects illustrate the presentation. Keywords: superfluid helium, cryogenics

  14. 1993 Pacific Northwest Loads and Resources Study.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1993-12-01T23:59:59.000Z

    The Loads and Resources Study is presented in three documents: (1) this summary of Federal system and Pacific Northwest region loads and resources; (2) a technical appendix detailing forecasted Pacific Northwest economic trends and loads, and (3) a technical appendix detailing the loads and resources for each major Pacific Northwest generating utility. In this loads and resources study, resource availability is compared with a range of forecasted electricity consumption. The forecasted future electricity demands -- firm loads -- are subtracted from the projected capability of existing and {open_quotes}contracted for{close_quotes} resources to determine whether Bonneville Power Administration (BPA) and the region will be surplus or deficit. If resources are greater than loads in any particular year or month, there is a surplus of energy and/or capacity, which BPA can sell to increase revenues. Conversely, if firm loads exceed available resources, there is a deficit of energy and/or capacity, and additional conservation, contract purchases, or generating resources will be needed to meet load growth. The Pacific Northwest Loads and Resources Study analyzes the Pacific Northwest`s projected loads and available generating resources in two parts: (1) the loads and resources of the Federal system, for which BPA is the marketing agency; and (2) the larger Pacific Northwest regional power system, which includes loads and resource in addition to the Federal system. The loads and resources analysis in this study simulates the operation of the power system under the Pacific Northwest Coordination Agreement (PNCA) produced by the Pacific Northwest Coordinating Group. This study presents the Federal system and regional analyses for five load forecasts: high, medium-high, medium, medium-low, and low. This analysis projects the yearly average energy consumption and resource availability for Operating Years (OY) 1994--95 through 2003--04.

  15. e-Cooling High Cavity & Cryomodule Systems, Inc.

    E-Print Network [OSTI]

    Beta Cavity & Cryomodule Final Design Review Cryomodule Design Brookhaven National Laboratory July 22;e-Cooling High Cavity & Cryomodule Advanced Energy Systems, Inc. Slide 7 of 24 Cavity Cold Model) 40.0 85.0 Wall Thickness (mm) 4 mm 3 mm Cavity Configuration Freq. Cells Tuner Load (400 kHz) Tuning

  16. Serial cooling of a combustor for a gas turbine engine

    DOE Patents [OSTI]

    Abreu, Mario E. (Poway, CA); Kielczyk, Janusz J. (Escondido, CA)

    2001-01-01T23:59:59.000Z

    A combustor for a gas turbine engine uses compressed air to cool a combustor liner and uses at least a portion of the same compressed air for combustion air. A flow diverting mechanism regulates compressed air flow entering a combustion air plenum feeding combustion air to a plurality of fuel nozzles. The flow diverting mechanism adjusts combustion air according to engine loading.

  17. Hydraulic Modeling of Large District Cooling Systems for Master Planning Purposes

    E-Print Network [OSTI]

    Xu, C.; Chen, Q.; Claridge, D. E.; Turner, W. D.; Deng, S.

    2006-01-01T23:59:59.000Z

    equipment or computers require more cooling energy. If some chilled water consumption data for certain types of buildings is available, it can be used to estimate cooling requirements of other un- metered buildings of this type. The average cooling load... developed. This method uses actual metered data and a variety of information and data to categorize the building energies and differential temperatures and then determine the building peak flow demands based on mass conservation. The effectiveness...

  18. NREL Works to Increase Electric Vehicle Efficiency Through Enhanced Thermal Management (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-06-01T23:59:59.000Z

    Researchers at NREL are providing new insight into how heating and cooling systems affect the distance that electric vehicles can travel on a single charge. Electric vehicle range can be reduced by as much as 68% per charge because of climate-control demands. NREL engineers are investigating opportunities to change this dynamic and increase driving range by improving vehicle thermal management. NREL experts are collaborating with automotive industry partners to investigate promising thermal management technologies and strategies, including zone-based cabin temperature controls, advanced heating and air conditioning controls, seat-based climate controls, vehicle thermal preconditioning, and thermal load reduction technologies.

  19. Muon Cooling Channels Eberhard Keil

    E-Print Network [OSTI]

    Keil, Eberhard

    Muon Cooling Channels Eberhard Keil Katharinenstr. 17, DE-10711 Berlin, Germany Abstract Parameters of muon cooling channels are discussed that achieve cooling of a muon beam from initial to final emittances in all three degrees of freedom in a given length. Published theories of ionisation cooling yield

  20. Laser Cooling of Matter INTRODUCTION

    E-Print Network [OSTI]

    Kaiser, Robin

    - velopment of techniques that have allowed the ion motion to be cooled into the ground state of the confiningLaser Cooling of Matter INTRODUCTION Laser cooling of neutral atoms in the past decades has been a breakthrough in the understanding of their dy- namics and led to the seminal proposals of laser cooling

  1. Numerical Simulation of Transpiration Cooling

    E-Print Network [OSTI]

    University, Templergraben 55, 52056 Aachen SUMMARY Transpiration cooling using ceramic matrix composite (CMC

  2. CoolCab Thermal Load Reduction Project: CoolCalc HVAC Tool Development |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJuly 30, 2013 Sanyo:MarchPractices

  3. Cryo Utilities Room Cooling System

    SciTech Connect (OSTI)

    Ball, G.S.; /Fermilab

    1989-01-26T23:59:59.000Z

    Many of the mechanical equipment failures at the Laboratory are due to the loss of cooling water. In order to insure the proper operating temperatures and to increase the reliability of the mechanical equipment in the D0 Cryo Utilities Room it is necessary to provide an independent liquid cooling system. To this end, an enclosed glycoVwater cooling system which transfers heat from two vane-type vacuum pumps and an air compressor to the outside air has been installed in the Cryo Utilities Room. From the appended list it can be seen that only the Thermal Precision PFC-121-D and Ingersoll-Rand WAC 16 deserve closer investigation based on price. The disadvantages of the WAC 16 are that: it runs a little warmer, it requires more valving to properly install a backup pump, inlet and outlet piping are not included, and temperature and pressure indicators are not included. Its only advantage is that it is $818 cheaper than the PFC-121-D. The advantages of the PFC-121-D are that: it has automatic pump switching during shutdown, it has a temperature regulator on one fan control, it has a switch which indicates proper operation, has a sight glass on the expansion tank, and comes with an ASME approved expansion tank and relief valve. For these reasons the Thermal Precision PFC-121-D was chosen. In the past, we have always found the pond water to be muddy and to sometimes contain rocks of greater than 1/2 inch diameter. Thus a system completely dependent on the pond water from the accelerator was deemed unacceptable. A closed system was selected based on its ability to greatly improve reliability, while remaining economical. It is charged with a 50/50 glycol/water mixture capable of withstanding outside temperatures down to -33 F. The fluid will be circulated by a totally enclosed air cooled Thermal Precision PFC-121-D pump. The system will be on emergency power and an automatically controlled backup pump, identical to the primary, is available should the main pump fail. The fan unit is used as a primary cooler and the trim cooler cools the fluid further on extremely hot days. The trim cooler has also been sized to cool the system in the event of a total shutdown provided that the pond water supply has adequate pressure. Due to a broken filter, we found it necessary to install a strainer in the pond water supply line. The expansion tank separates air bubbles, ensures a net positive suction head, protects against surges and over pressurization of the system, and allows for the filling of the system without shutting it off. All piping has been installed, flushed, charged with the glycol/water mix, and hydrostatically tested to 55 psi. The condition of all pumps and flow conditions will be recorded at the PLC. It has been decided not to include the regulator valve in the pond water return line. This valve was designated by the manufacturer to reduce the amount of water flowing through the trim cooler. This is not necessary in our application. There is some concern that the cooling fluid may cool the mechanical eqUipment too much when they are not operating or during very cold days. This issue will be addressed and the conclusion appended to this engineering note.

  4. Wet-dry cooling demonstration: A transfer of technology: Final report

    SciTech Connect (OSTI)

    Allemann, R.T.; Johnson, B.M.; Werry, E.V.

    1987-01-01T23:59:59.000Z

    Wet-dry cooling using the ammonia phase-change system, designated the Advanced Concepts Test, was tested on a large-scale at Pacific Gas and Electric Company's Kern Station at Bakersfield, California. The facility is capable of condensing 60,000 lb/h of steam from a small house turbine. Two different modes of combining dry and evaporative cooling were tested. One uses deluge cooling in which water is allowed to flow over the fins of the dry (air-cooled) heat exchanger on hot days; the other uses a separate evaporative condenser in parallel to the dry heat exchanger. A third mode of enhancing the dry-cooling system, termed capacitive cooling, was tested. In this system, the ammonia-cooled steam condenser is supplemented by a parallel conventional water-cooled condenser with water supplied from a closed system. This water is cooled during off-peak hours each night by an ammonia heat pump that rejects heat through the cooling tower. If operated over the period of a year, each of the wet-dry systems would use only 25% of the water normally required to reject this heat load in an evaporative cooling tower. The third would consume no water, the evaporative cooling being replaced by the delayed cooling of the closed system water supply.

  5. Global Cooling: Policies to Cool the World and Offset Global Warming from CO2 Using Reflective Roofs and Pavements

    SciTech Connect (OSTI)

    Akbari, Hashem; Levinson, Ronnen; Rosenfeld, Arthur; Elliot, Matthew

    2009-08-28T23:59:59.000Z

    Increasing the solar reflectance of the urban surface reduce its solar heat gain, lowers its temperatures, and decreases its outflow of thermal infrared radiation into the atmosphere. This process of 'negative radiative forcing' can help counter the effects of global warming. In addition, cool roofs reduce cooling-energy use in air conditioned buildings and increase comfort in unconditioned buildings; and cool roofs and cool pavements mitigate summer urban heat islands, improving outdoor air quality and comfort. Installing cool roofs and cool pavements in cities worldwide is a compelling win-win-win activity that can be undertaken immediately, outside of international negotiations to cap CO{sub 2} emissions. We propose an international campaign to use solar reflective materials when roofs and pavements are built or resurfaced in temperate and tropical regions.

  6. Recovery Act: Federspiel Controls (now Vigilent) and State of California Department of General Services Data Center Energy Efficient Cooling Control Demonstration. Final technical project report

    SciTech Connect (OSTI)

    Federspiel, Clifford; Evers, Myah

    2011-09-30T23:59:59.000Z

    Eight State of California data centers were equipped with an intelligent energy management system to evaluate the effectiveness, energy savings, dollar savings and benefits that arise when powerful artificial intelligence-based technology measures, monitors and actively controls cooling operations. Control software, wireless sensors and mesh networks were used at all sites. Most sites used variable frequency drives as well. The system dynamically adjusts temperature and airflow on the fly by analyzing real-time demands, thermal behavior and historical data collected on site. Taking into account the chaotic interrelationships of hundreds to thousands of variables in a data center, the system optimizes the temperature distribution across a facility while also intelligently balancing loads, outputs, and airflow. The overall project will provide a reduction in energy consumption of more than 2.3 million kWh each year, which translates to $240,000 saved and a reduction of 1.58 million pounds of carbon emissions. Across all sites, the cooling energy consumption was reduced by 41%. The average reduction in energy savings across all the sites that use VFDs is higher at 58%. Before this case study, all eight data centers ran the cooling fans at 100% capacity all of the time. Because of the new technology, cooling fans run at the optimum fan speed maintaining stable air equilibrium while also expending the least amount of electricity. With lower fan speeds, the life of the capital investment made on cooling equipment improves, and the cooling capacity of the data center increases. This case study depicts a rare technological feat: The same process and technology worked cost effectively in eight very different environments. The results show that savings were achieved in centers with diverse specifications for the sizes, ages and types of cooling equipment. The percentage of cooling energy reduction ranged from 19% to 78% while keeping temperatures substantially within the limits recommended by the American Society of Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE) for data center facilities.

  7. California customer load reductions during the electricity crisis: Did they help to keep the lights on?

    E-Print Network [OSTI]

    Goldman, Charles A.; Eto, Joseph H.; Barbose, Galen L.

    2002-01-01T23:59:59.000Z

    Sustainability of Customer Load Reductions Customers reduced their electricity loads during summer 2001 through conservation behavior, increased attention to managing energy

  8. Loading a planar RF Paul Trap from a cold Yb? source

    E-Print Network [OSTI]

    Shields, Brendan John

    2006-01-01T23:59:59.000Z

    In this thesis, we demonstrate a functioning planar radio frequency, three-rod Paul Trap, loaded with Yb+ ions that have been photoionized from a source of neutral atoms, which were cooled in a magneto-optical trap. Planar ...

  9. BN-97-4-4 (RP-875) The Radiant Time Series Cooling

    E-Print Network [OSTI]

    of the proceduresare described in chapters 2 and 10 of the current ASHRAECool#zg and Heating LoadCalculation ManualBN-97-4-4 (RP-875) The Radiant Time Series Cooling Load Calculation Procedure Jeffrey D. Spitler calculations, derived from the heat balancemethod.It effectively replacesall other simpli- fied (non-heat

  10. Buildings Stock Load Control

    E-Print Network [OSTI]

    Joutey, H. A.; Vaezi-Nejad, H.; Clemoncon, B.; Rosenstein, F.

    2006-01-01T23:59:59.000Z

    and distribution electricity infrastructures The second part presents the approach used to rise the objectives : ? To aggregat the individual loads and to analyze the impact of different strategies from load shedding to reduce peak power demand by: ? Developing...

  11. Wind Concurrent Cooling Could Increase Power Transmission Potential by as

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradley NickellApril 16, 2008 TBD-0075 -In theWide Bandgap3Below

  12. Wind Concurrent Cooling Could Increase Power Transmission Potential by as

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment of EnergyThe U.S. DepartmentEnergyWilliam E.Much as 40% |

  13. Optimized core design of a supercritical carbon dioxide-cooled fast reactor

    E-Print Network [OSTI]

    Handwerk, Christopher S. (Christopher Stanley), 1974-

    2007-01-01T23:59:59.000Z

    Spurred by the renewed interest in nuclear power, Gas-cooled Fast Reactors (GFRs) have received increasing attention in the past decade. Motivated by the goals of the Generation-IV International Forum (GIF), a GFR cooled ...

  14. Passive containment cooling system

    DOE Patents [OSTI]

    Billig, P.F.; Cooke, F.E.; Fitch, J.R.

    1994-01-25T23:59:59.000Z

    A passive containment cooling system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and a gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel and is vented to the drywell. An isolation pool is disposed above the GDCS pool and includes an isolation condenser therein. The condenser has an inlet line disposed in flow communication with the drywell for receiving the non-condensable gas along with any steam released therein following a loss-of-coolant accident (LOCA). The condenser also has an outlet line disposed in flow communication with the drywell for returning to the drywell both liquid condensate produced upon cooling of the steam and the non-condensable gas for reducing pressure within the containment vessel following the LOCA. 1 figure.

  15. Passive containment cooling system

    DOE Patents [OSTI]

    Billig, Paul F. (San Jose, CA); Cooke, Franklin E. (San Jose, CA); Fitch, James R. (San Jose, CA)

    1994-01-01T23:59:59.000Z

    A passive containment cooling system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and a gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel and is vented to the drywell. An isolation pool is disposed above the GDCS pool and includes an isolation condenser therein. The condenser has an inlet line disposed in flow communication with the drywell for receiving the non-condensable gas along with any steam released therein following a loss-of-coolant accident (LOCA). The condenser also has an outlet line disposed in flow communication with the drywell for returning to the drywell both liquid condensate produced upon cooling of the steam and the non-condensable gas for reducing pressure within the containment vessel following the LOCA.

  16. Load sensing system

    DOE Patents [OSTI]

    Sohns, Carl W. (Oak Ridge, TN); Nodine, Robert N. (Knoxville, TN); Wallace, Steven Allen (Knoxville, TN)

    1999-01-01T23:59:59.000Z

    A load sensing system inexpensively monitors the weight and temperature of stored nuclear material for long periods of time in widely variable environments. The system can include an electrostatic load cell that encodes weight and temperature into a digital signal which is sent to a remote monitor via a coaxial cable. The same cable is used to supply the load cell with power. When multiple load cells are used, vast

  17. Combustor liner cooling system

    DOE Patents [OSTI]

    Lacy, Benjamin Paul; Berkman, Mert Enis

    2013-08-06T23:59:59.000Z

    A combustor liner is disclosed. The combustor liner includes an upstream portion, a downstream end portion extending from the upstream portion along a generally longitudinal axis, and a cover layer associated with an inner surface of the downstream end portion. The downstream end portion includes the inner surface and an outer surface, the inner surface defining a plurality of microchannels. The downstream end portion further defines a plurality of passages extending between the inner surface and the outer surface. The plurality of microchannels are fluidly connected to the plurality of passages, and are configured to flow a cooling medium therethrough, cooling the combustor liner.

  18. Marketing Cool Storage Technology

    E-Print Network [OSTI]

    McCannon, L.

    ~nized for a means to provide for technology transfer and dissemination of current information in the field. The International Thermal Stora~e Advisorv Council was formed to help meet this perceived need. This paper will review activities of EPRI... of cool stora~e. At the same time, +n educational effort was needed to infotm en~ineers and end-users on the use of t~e technol02V. and of the ener~v cost savin~s th t could result. The EPRI "Commercialization of Cool Stora e Technolo~v" project (RP...

  19. Quantum thermodynamic cooling cycle

    E-Print Network [OSTI]

    Jose P. Palao; Ronnie Kosloff; Jeffrey M. Gordon

    2001-06-08T23:59:59.000Z

    The quantum-mechanical and thermodynamic properties of a 3-level molecular cooling cycle are derived. An inadequacy of earlier models is rectified in accounting for the spontaneous emission and absorption associated with the coupling to the coherent driving field via an environmental reservoir. This additional coupling need not be dissipative, and can provide a thermal driving force - the quantum analog of classical absorption chillers. The dependence of the maximum attainable cooling rate on temperature, at ultra-low temperatures, is determined and shown to respect the recently-established fundamental bound based on the second and third laws of thermodynamics.

  20. Quantum thermodynamic cooling cycle

    E-Print Network [OSTI]

    Palao, J P; Gordon, J M; Palao, Jose P.; Kosloff, Ronnie; Gordon, Jeffrey M.

    2001-01-01T23:59:59.000Z

    The quantum-mechanical and thermodynamic properties of a 3-level molecular cooling cycle are derived. An inadequacy of earlier models is rectified in accounting for the spontaneous emission and absorption associated with the coupling to the coherent driving field via an environmental reservoir. This additional coupling need not be dissipative, and can provide a thermal driving force - the quantum analog of classical absorption chillers. The dependence of the maximum attainable cooling rate on temperature, at ultra-low temperatures, is determined and shown to respect the recently-established fundamental bound based on the second and third laws of thermodynamics.

  1. Superconductor rotor cooling system

    DOE Patents [OSTI]

    Gamble, Bruce B.; Sidi-Yekhlef, Ahmed; Schwall, Robert E.; Driscoll, David I.; Shoykhet, Boris A.

    2004-11-02T23:59:59.000Z

    A system for cooling a superconductor device includes a cryocooler located in a stationary reference frame and a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with a rotating reference frame in which the superconductor device is located. A method of cooling a superconductor device includes locating a cryocooler in a stationary reference frame, and transferring heat from a superconductor device located in a rotating reference frame to the cryocooler through a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with the rotating reference frame.

  2. Superconductor rotor cooling system

    DOE Patents [OSTI]

    Gamble, Bruce B. (Wellesley, MA); Sidi-Yekhlef, Ahmed (Framingham, MA); Schwall, Robert E. (Northborough, MA); Driscoll, David I. (South Euclid, OH); Shoykhet, Boris A. (Beachwood, OH)

    2002-01-01T23:59:59.000Z

    A system for cooling a superconductor device includes a cryocooler located in a stationary reference frame and a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with a rotating reference frame in which the superconductor device is located. A method of cooling a superconductor device includes locating a cryocooler in a stationary reference frame, and transferring heat from a superconductor device located in a rotating reference frame to the cryocooler through a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with the rotating reference frame.

  3. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site Office (FSO) FSOConverting Biomass toCoolCool

  4. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would likeConstitution AndControlling Graphene'sPortalofExploreCoolCool

  5. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would likeConstitution AndControllingCool Magnetic Molecules Cool Magnetic

  6. Turbomachine rotor with improved cooling

    DOE Patents [OSTI]

    Hultgren, K.G.; McLaurin, L.D.; Bertsch, O.L.; Lowe, P.E.

    1998-05-26T23:59:59.000Z

    A gas turbine rotor has an essentially closed loop cooling air scheme in which cooling air drawn from the compressor discharge air that is supplied to the combustion chamber is further compressed, cooled, and then directed to the aft end of the turbine rotor. Downstream seal rings attached to the downstream face of each rotor disc direct the cooling air over the downstream disc face, thereby cooling it, and then to cooling air passages formed in the rotating blades. Upstream seal rings attached to the upstream face of each disc direct the heated cooling air away from the blade root while keeping the disc thermally isolated from the heated cooling air. From each upstream seal ring, the heated cooling air flows through passages in the upstream discs and is then combined and returned to the combustion chamber from which it was drawn. 5 figs.

  7. Turbomachine rotor with improved cooling

    DOE Patents [OSTI]

    Hultgren, Kent Goran (Winter Park, FL); McLaurin, Leroy Dixon (Winter Springs, FL); Bertsch, Oran Leroy (Titusville, FL); Lowe, Perry Eugene (Oviedo, FL)

    1998-01-01T23:59:59.000Z

    A gas turbine rotor has an essentially closed loop cooling air scheme in which cooling air drawn from the compressor discharge air that is supplied to the combustion chamber is further compressed, cooled, and then directed to the aft end of the turbine rotor. Downstream seal rings attached to the downstream face of each rotor disc direct the cooling air over the downstream disc face, thereby cooling it, and then to cooling air passages formed in the rotating blades. Upstream seal rings attached to the upstream face of each disc direct the heated cooling air away from the blade root while keeping the disc thermally isolated from the heated cooling air. From each upstream seal ring, the heated cooling air flows through passages in the upstream discs and is then combined and returned to the combustion chamber from which it was drawn.

  8. 524 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 4, APRIL 2013 GreenCool: An Energy-Efficient Liquid Cooling

    E-Print Network [OSTI]

    Coskun, Ayse

    multiprocessor system-on-chips (MPSoCs). Microchannel- based liquid cooling, however, can substantially increaseCs. GreenCool simultaneously minimizes the cooling energy for a given system while maintaining thermal memory chips, package-on-package integration, and 2.5-D systems. Recently, research efforts for building

  9. Disaggregating Cooling Energy Use of Commercial Buildings Into Sensible and Latent Fractions From Whole-Building Monitored Data: Methodology and Advantages

    E-Print Network [OSTI]

    Katipamula, S.; Reddy, T. A.; Claridge, D. E.

    In hot and humid climates, where summers are both warm and humid, the latent cooling can be a significant portion of the total cooling load (as much as 40%). Typically the monitored data only includes whole-building heating and cooling energy use...

  10. Simulation of plasmaneutral dynamics for radiation cooling

    E-Print Network [OSTI]

    Najmabadi, Farrokh

    the heat flux effectively for future power plants. That is, radiation due to impurities will lower and increase the required pumping speed con- siderably in a power plant. In principle, the plasma energySimulation of plasma­neutral dynamics for radiation cooling Bong Ju Lee , F. Najmabadi Fusion

  11. Water-cooled solid-breeder concept for ITER

    SciTech Connect (OSTI)

    Gohar, Y.; Baker, C.C.; Attaya, H.; Billone, M.; Clemmer, R.C.; Finn, P.A.; Hassanein, A.; Johnson, C.E.; Majumdar, S.; Mattas, R.F.

    1988-08-01T23:59:59.000Z

    A water-cooled solid-breeder blanket concept was developed for ITER. The main function of this blanket is to produce the necessary tritium for the ITER operation. Several design features are incorporated in this blanket concept to increase its attractiveness. It is assumed that the blanket operation at commercial power reactor conditions can be sacrificed to achieve a high tritium breeding ratio with minimum additional research and development, and minimal impact on reactor design and operation. Operating temperature limits are enforced for each material to insure a satisfactory blanket performance. In fact, the design was iterated to maximize the tritium breeding ratio and satisfy these temperature limits. The other design constraint is to permit a large increase in the neutron wall loading without exceeding the temperature limits for the different blanket materials. The blanket concept contains 1.8 cm of Li/sub 2/O and 22.5 cm of beryllium both with a 0.8 density factor. The water coolant is isolated from the breeder material by several zones which reduces the tritium buildup in the water by permeation, reduces the chance for water-breeder interaction, and permits the breeder to operate at high temperature with a low temperature coolant. This improves the safety and environmental aspects of the blanket and eliminates the costly process of the tritium recovery from the water. The key features and design analysis of this blanket are summarized in this paper. 11 refs., 2 figs., 3 tabs.

  12. Field measurements in the Fermilab electron cooling solenoid prototype

    SciTech Connect (OSTI)

    A. C. Crawford et al.

    2003-10-02T23:59:59.000Z

    To increase the Tevatron luminosity, Fermilab is developing a high-energy electron cooling system [1] to cool 8.9-GeV/c antiprotons in the Recycler ring. The schematic layout of the Recycler Electron Cooling (REC) system is shown in Figure 1. Cooling of antiprotons requires a round electron beam with a small angular spread propagating through a cooling section with a kinetic energy of 4.3 MeV. To confine the electron beam tightly and to keep its transverse angles below 10{sup -4} rad, the cooling section will be immersed into a solenoidal field of 50-150G. As part of the R&D effort, a cooling section prototype consisting of 9 modules (90% of the total length of a future section) was assembled and measured. This paper describes the technique of measuring and adjusting the magnetic field quality in the cooling section and presents preliminary results of solenoid prototype field measurements. The design of the cooling section solenoid is discussed in Chapter 2. Chapter 3 describes details of a dedicated measurement system, capable of measuring small transverse field components, while the system's measurement errors are analyzed in Chapter 4. Chapter 5 contains measured field distributions of individual elements of the cooling section as well as an evaluation of the magnetic shielding efficiency. An algorithm of field adjustments for providing lowest possible electron trajectory perturbations is proposed in Chapter 6; also, this chapter shows the results of our first attempts of implementing the algorithm.

  13. Condensation Risk in a Room with High Latent Load and Chilled Ceiling

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    proposed a new ventilation system with radiant cooling panel and air supplied from a liquid desiccant dehumidification system, which provided very dry supply air and chilled water for radiant cooling. This study usedCondensation Risk in a Room with High Latent Load and Chilled Ceiling Panel and with Air Supplied

  14. Gas Cooling Through Galaxy Formations

    E-Print Network [OSTI]

    Mariwan A. Rasheed; Mohamad A. Brza

    Abstract-- Gas cooling was studied in two different boxes of sizes and by simulation at same redshifts. The gas cooling is shown in four different redshifts (z=1.15, 0.5, 0.1 and 0). In the simulation the positions of the clumps of cooled gas were studied with slices of the two volumes and also the density of cooled gas of the two volumes shown in the simulation. From the process of gas cooling it is clear that this process gives different results in the two cases. Index Term- Gas Cooling, Simulation, galaxy Formation. I.

  15. Cooling Towers, The Debottleneckers

    E-Print Network [OSTI]

    Burger, R.

    Power generating plants and petro-chemical works are always expanding. An on-going problem is to identify and de-bottle neck restricting conditions of growth. The cooling tower is a highly visible piece of equipment. Most industrial crossflow units...

  16. TETRA MUON COOLING RING

    SciTech Connect (OSTI)

    KAHN,S.A.FERNOW,R.C.BALBEKOV,V.RAJA,R.USUBOV,Z.

    2003-11-18T23:59:59.000Z

    We give a brief overview of recent simulation activities on the design of neutrino factories. Simulation work is ongoing on many aspects of a potential facility, including proton drivers, pion collection and decay channels, phase rotation, ionization cooling, and muon accelerators.

  17. Cooling Dry Cows

    E-Print Network [OSTI]

    Stokes, Sandra R.

    2000-07-17T23:59:59.000Z

    , little work has been done on the responses of cooling cows in this period. The dry period is particularly crucial because it involves regen- eration of the mammary gland and rapid fetal growth. This is also when follicles begin develop- ing and maturing...

  18. Cooling Towers, The Debottleneckers 

    E-Print Network [OSTI]

    Burger, R.

    1998-01-01T23:59:59.000Z

    looking into the function of the cooling tower, which is to produce colder water- and question the quality of water discharged from that simple appearing box. These cross-flow structures are quite large, ranging up to 60 feet tall with as many as 6 or more...

  19. The nominal cooling tower

    SciTech Connect (OSTI)

    Burger, R. [Burger Associates, Dallas, TX (United States)

    1995-12-31T23:59:59.000Z

    The heat Rejection Industry defines a nominal cooling tower as circulating three gallons of water per minute (GPM) per ton of refrigeration from entering the tower at 95{degrees}F. Hot Water temperature (HWT) Leaving at 85{degrees}F Cold Water Temperature (CWT) at a Design Wet Bulb of 70{degrees}F (WBT). Manufacturers then provide a selection chart based on various wet bulb temperatures and HWTs. The wet bulb fluctuates and varies through out the world since it is the combination ambient temperature, relative humidity, and/or dew point. Different HWT and CWT requirements are usually charted as they change, so that the user can select the nominal cooling tower model recommended by the manufacturer. Ask any HVAC operator, refinery manager, power generating station operator what happens when the Wet Bulb reaches or exceeds the design WBT of the area. He probably will tell you, {open_quotes}My cooling tower works quite well, but in the summer time, I usually have trouble with it.{close_quotes} This occurs because he is operating a nominal cooling tower.

  20. Cooling Towers- Energy Conservation Strategies Understanding Cooling Towers 

    E-Print Network [OSTI]

    Smith, M.

    1991-01-01T23:59:59.000Z

    Cooling towers are energy conservation devices that Management, more often than not, historically overlooks in the survey of strategies for plant operating efficiencies. The utilization of the colder water off the cooling tower is the money maker!...

  1. Cooling Towers- Energy Conservation Strategies Understanding Cooling Towers

    E-Print Network [OSTI]

    Smith, M.

    Cooling towers are energy conservation devices that Management, more often than not, historically overlooks in the survey of strategies for plant operating efficiencies. The utilization of the colder water off the cooling tower is the money maker!...

  2. Compressor ported shroud for foil bearing cooling

    DOE Patents [OSTI]

    Elpern, David G. (Los Angeles, CA); McCabe, Niall (Torrance, CA); Gee, Mark (South Pasadena, CA)

    2011-08-02T23:59:59.000Z

    A compressor ported shroud takes compressed air from the shroud of the compressor before it is completely compressed and delivers it to foil bearings. The compressed air has a lower pressure and temperature than compressed outlet air. The lower temperature of the air means that less air needs to be bled off from the compressor to cool the foil bearings. This increases the overall system efficiency due to the reduced mass flow requirements of the lower temperature air. By taking the air at a lower pressure, less work is lost compressing the bearing cooling air.

  3. Park Load Reduction by Preconditioning of Buildings at Night

    E-Print Network [OSTI]

    Rabl, A.; Norford, L. K.

    1988-01-01T23:59:59.000Z

    Cooling loads during the peak period can be reduced if a building is subcooled a few degrees below its normal thermostat setpoint during the preceding night. During the day, the thermostat must control the warmup in such a way that the stored energy...

  4. Cooling airflow design calculations for UFAD

    E-Print Network [OSTI]

    Bauman, Fred; Webster, Tom; Benedek, Corinne

    2007-01-01T23:59:59.000Z

    written permission. Cooling Airflow Design Calculations form) height. Table 2: Design cooling airflow performance fortool predictions of UFAD cooling airflow rates and associ-

  5. Natural vs. mechanical ventilation and cooling.

    E-Print Network [OSTI]

    Brager, Gail; Alspach, Peter; Nall, Daniel H.

    2011-01-01T23:59:59.000Z

    both the ventila- tion and cooling effects of outdoorair exchange, including coolingpeople, cooling the space during the day, or cooling the

  6. CONTROL SYSTEM FOR SOLAR HEATING and COOLING

    E-Print Network [OSTI]

    Dols, C.

    2010-01-01T23:59:59.000Z

    solar heating and cooling systems covering a wide range ofpractical heating and cooling system configurations andexperimental heating and cooling system, the main purpose of

  7. Hybrid Radiator Cooling System | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiator Cooling System Technology available for licensing: Hybrid radiator cooling system uses conventional finned air cooling under most driving conditions that would be...

  8. STOCHASTIC COOLING FOR BUNCHED BEAMS.

    SciTech Connect (OSTI)

    BLASKIEWICZ, M.

    2005-05-16T23:59:59.000Z

    Problems associated with bunched beam stochastic cooling are reviewed. A longitudinal stochastic cooling system for RHIC is under construction and has been partially commissioned. The state of the system and future plans are discussed.

  9. Surface Power Radiative Cooling Tests

    SciTech Connect (OSTI)

    Vaughn, Jason; Schneider, Todd [Environmental Effects Branch, EM50, NASA Marshall Space Flight Center, AL 35812 (United States)

    2006-01-20T23:59:59.000Z

    Terrestrial nuclear power plants typically maintain their temperature through convective cooling, such as water and forced air. However, the space environment is a vacuum environment, typically 10-8 Torr pressure, therefore in proposed missions to the lunar surface, power plants would have to rely on radiative cooling to remove waste heat. Also, the Martian surface has a very tenuous atmosphere (e.g. {approx}5 Torr CO2), therefore, the main heat transfer method on the Martian surface is also radiative. Because of the lack of atmosphere on the Moon and the tenuous atmosphere on Mars, surface power systems on both the Lunar and Martian surface must rely heavily on radiative heat transfer. Because of the large temperature swings on both the lunar and the Martian surfaces, trying to radiate heat is inefficient. In order to increase power system efficiency, an effort is underway to test various combinations of materials with high emissivities to demonstrate their ability to survive these degrading atmospheres to maintain a constant radiator temperature improving surface power plant efficiency. An important part of this effort is the development of a unique capability that would allow the determination of a materials emissivity at high temperatures. A description of the test capability as well as initial data is presented.

  10. Diesel lubrication and cooling systems

    SciTech Connect (OSTI)

    NONE

    1994-12-31T23:59:59.000Z

    The film describes the parts of diesel lubricating and cooling systems and how they work in relation to each other.

  11. Diesel lubrication and cooling systems

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    The film describes the parts of diesel lubricating and cooling systems and how they work in relation to each other.

  12. Small high cooling power space cooler

    SciTech Connect (OSTI)

    Nguyen, T. V.; Raab, J.; Durand, D.; Tward, E. [Northrop Grumman Aerospace Systems Redondo Beach, Ca, 90278 (United States)

    2014-01-29T23:59:59.000Z

    The small High Efficiency pulse tube Cooler (HEC) cooler, that has been produced and flown on a number of space infrared instruments, was originally designed to provide cooling of 10 W @ 95 K. It achieved its goal with >50% margin when limited by the 180 W output ac power of its flight electronics. It has also been produced in 2 stage configurations, typically for simultaneously cooling of focal planes to temperatures as low as 35 K and optics at higher temperatures. The need for even higher cooling power in such a low mass cryocooler is motivated by the advent of large focal plane arrays. With the current availability at NGAS of much larger power cryocooler flight electronics, reliable long term operation in space with much larger cooling powers is now possible with the flight proven 4 kg HEC mechanical cooler. Even though the single stage cooler design can be re-qualified for those larger input powers without design change, we redesigned both the linear and coaxial version passive pulse tube cold heads to re-optimize them for high power cooling at temperatures above 130 K while rejecting heat to 300 K. Small changes to the regenerator packing, the re-optimization of the tuned inertance and no change to the compressor resulted in the increased performance at 150 K. The cooler operating at 290 W input power achieves 35 W@ 150 K corresponding to a specific cooling power at 150 K of 8.25 W/W and a very high specific power of 72.5 W/Kg. At these powers the cooler still maintains large stroke, thermal and current margins. In this paper we will present the measured data and the changes to this flight proven cooler that were made to achieve this increased performance.

  13. Empirical Modeling of a Rolling-Piston Compressor Heat Pump for Predictive Control in Low-Lift Cooling

    E-Print Network [OSTI]

    Gayeski, Nicholas

    Inverter-driven variable-capacity air conditioners, heat pumps, and chillers can provide energy-efficient cooling, particularly at part-load capacity. Varying the capacity of vapor compression systems enables operation at ...

  14. Evaporative Cooling for Energy Conservation

    E-Print Network [OSTI]

    Meyer, J. R.

    1983-01-01T23:59:59.000Z

    cooling. A recent application of evaporative air cooling equipment in a heat treat area at the John Deere Component Works in Waterloo, Iowa provided the required cooling at an operating cost of 30% of a city water coil and 10% of a chilled water system...

  15. Static Heat Loads in the LHC Arc Cryostats: Final Assessment

    E-Print Network [OSTI]

    Parma, V

    2010-01-01T23:59:59.000Z

    This note presents the final assessment of the static heat loads in the LHC arc cryostats, using different experimental methods during the first commissioning period in 2007. This assessment further develops and completes previous estimates made during the commissioning of sector 7_8 [1]. The estimate of the helium inventory, a prerequisite for the heat load calculation, is also presented. Heat loads to the cold mass are evaluated from the internal energy balance during natural as well as powered warm-ups of the helium baths in different subsector. The helium inventory is calculated from the internal energy balance during powered warm-ups and matched with previous assessments. Furthermore, heat loads to the thermal shield are estimated from the non-isothermal cooling of the supercritical helium in line E. The comparison of measured heat loads with previous estimates and with budgeted values is then presented, while their correlation with some important parameters like insulation vacuum pressure and some heat ...

  16. Cooling by heating

    E-Print Network [OSTI]

    A. Mari; J. Eisert

    2011-04-01T23:59:59.000Z

    We introduce the idea of actually cooling quantum systems by means of incoherent thermal light, hence giving rise to a counter-intuitive mechanism of "cooling by heating". In this effect, the mere incoherent occupation of a quantum mechanical mode serves as a trigger to enhance the coupling between other modes. This notion of effectively rendering states more coherent by driving with incoherent thermal quantum noise is applied here to the opto-mechanical setting, where this effect occurs most naturally. We discuss two ways of describing this situation, one of them making use of stochastic sampling of Gaussian quantum states with respect to stationary classical stochastic processes. The potential of experimentally demonstrating this counter-intuitive effect in opto-mechanical systems with present technology is sketched.

  17. Cooled particle accelerator target

    DOE Patents [OSTI]

    Degtiarenko, Pavel V.

    2005-06-14T23:59:59.000Z

    A novel particle beam target comprising: a rotating target disc mounted on a retainer and thermally coupled to a first array of spaced-apart parallel plate fins that extend radially inwardly from the retainer and mesh without physical contact with a second array of spaced-apart parallel plate fins that extend radially outwardly from and are thermally coupled to a cooling mechanism capable of removing heat from said second array of spaced-apart fins and located within the first array of spaced-apart parallel fins. Radiant thermal exchange between the two arrays of parallel plate fins provides removal of heat from the rotating disc. A method of cooling the rotating target is also described.

  18. A Novel VLSI Technology to Manufacture High-Density Thermoelectric Cooling Devices

    E-Print Network [OSTI]

    H. Chen; L. Hsu; X. Wei

    2008-01-07T23:59:59.000Z

    This paper describes a novel integrated circuit technology to manufacture high-density thermoelectric devices on a semiconductor wafer. With no moving parts, a thermoelectric cooler operates quietly, allows cooling below ambient temperature, and may be used for temperature control or heating if the direction of current flow is reversed. By using a monolithic process to increase the number of thermoelectric couples, the proposed solid-state cooling technology can be combined with traditional air cooling, liquid cooling, and phase-change cooling to yield greater heat flux and provide better cooling capability.

  19. Natural Cooling Retrofit

    E-Print Network [OSTI]

    Fenster, L. C.; Grantier, A. J.

    1981-01-01T23:59:59.000Z

    Figure V). Tower Water Injection Natural Cool ing consists of crossover piping between the chillers, condenser and chiller water piping, switching valves, con trols, a strainer and/or a filtration system, and a water treatment system, in addition..., if not impera tive, to utilize a combination of strainers, filters, and/or sophisticated water treatment to ensure that the thermal efficiency of the chilled water system is not degraded due to scal ing, corro sion, and microbial growth. A routine water...

  20. Conduction cooled tube supports

    DOE Patents [OSTI]

    Worley, Arthur C. (Mt. Tabor, NJ); Becht, IV, Charles (Morristown, NJ)

    1984-01-01T23:59:59.000Z

    In boilers, process tubes are suspended by means of support studs that are in thermal contact with and attached to the metal roof casing of the boiler and the upper bend portions of the process tubes. The support studs are sufficiently short that when the boiler is in use, the support studs are cooled by conduction of heat to the process tubes and the roof casing thereby maintaining the temperature of the stud so that it does not exceed 1400.degree. F.

  1. Influence of Tropical Tropopause Layer Cooling on Atlantic Hurricane Activity

    E-Print Network [OSTI]

    Solomon, Susan

    Virtually all metrics of Atlantic tropical cyclone activity show substantial increases over the past two decades. It is argued here that cooling near the tropical tropopause and the associated decrease in tropical cyclone ...

  2. Cooling Towers - Energy Conservation and Money Making Mechanisms 

    E-Print Network [OSTI]

    Burger, R.

    1981-01-01T23:59:59.000Z

    The utilization of colder water conserves energy, creates profits, increases product output. In an effort to obtain greater efficiencies and conserve both energy and dollars, all too many engineers neglect the potential of the cooling tower. Many...

  3. Lamination cooling system

    DOE Patents [OSTI]

    Rippel, Wally E.; Kobayashi, Daryl M.

    2005-10-11T23:59:59.000Z

    An electric motor, transformer or inductor having a lamination cooling system including a stack of laminations, each defining a plurality of apertures at least partially coincident with apertures of adjacent laminations. The apertures define a plurality of cooling-fluid passageways through the lamination stack, and gaps between the adjacent laminations are sealed to prevent a liquid cooling fluid in the passageways from escaping between the laminations. The gaps are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. The apertures of each lamination can be coincident with the same-sized apertures of adjacent laminations to form straight passageways, or they can vary in size, shape and/or position to form non-axial passageways, angled passageways, bidirectional passageways, and manifold sections of passageways that connect a plurality of different passageway sections. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.

  4. Cab Heating and Cooling

    SciTech Connect (OSTI)

    Damman, Dennis

    2005-10-31T23:59:59.000Z

    Schneider National, Inc., SNI, has concluded the Cab Heating and Cooling evaluation of onboard, engine off idling solutions. During the evaluation period three technologies were tested, a Webasto Airtronic diesel fired heater for cold weather operation, and two different approaches to cab cooling in warm weather, a Webasto Parking Cooler, phase change storage system and a Bergstrom Nite System, a 12 volt electrical air conditioning approach to cooling. Diesel fired cab heaters were concluded to provide adequate heat in winter environments down to 10 F. With a targeted idle reduction of 17%, the payback period is under 2 years. The Webasto Parking Cooler demonstrated the viability of this type of technology, but required significant driver involvement to achieve maximum performance. Drivers rated the technology as ''acceptable'', however, in individual discussions it became apparent they were not satisfied with the system limitations in hot weather, (over 85 F). The Bergstrom Nite system was recognized as an improvement by drivers and required less direct driver input to operate. While slightly improved over the Parking Cooler, the hot temperature limitations were only slightly better. Neither the Parking Cooler or the Nite System showed any payback potential at the targeted 17% idle reduction. Fleets who are starting at a higher idle baseline may have a more favorable payback.

  5. Load controller and method to enhance effective capacity of a photovotaic power supply using a dynamically determined expected peak loading

    DOE Patents [OSTI]

    Perez, Richard (Delmar, NY)

    2003-04-01T23:59:59.000Z

    A load controller and method are provided for maximizing effective capacity of a non-controllable, renewable power supply coupled to a variable electrical load also coupled to a conventional power grid. Effective capacity is enhanced by monitoring power output of the renewable supply and loading, and comparing the loading against the power output and a load adjustment threshold determined from an expected peak loading. A value for a load adjustment parameter is calculated by subtracting the renewable supply output and the load adjustment parameter from the current load. This value is then employed to control the variable load in an amount proportional to the value of the load control parameter when the parameter is within a predefined range. By so controlling the load, the effective capacity of the non-controllable, renewable power supply is increased without any attempt at operational feedback control of the renewable supply. The expected peak loading of the variable load can be dynamically determined within a defined time interval with reference to variations in the variable load.

  6. Load sensing system

    DOE Patents [OSTI]

    Sohns, C.W.; Nodine, R.N.; Wallace, S.A.

    1999-05-04T23:59:59.000Z

    A load sensing system inexpensively monitors the weight and temperature of stored nuclear material for long periods of time in widely variable environments. The system can include an electrostatic load cell that encodes weight and temperature into a digital signal which is sent to a remote monitor via a coaxial cable. The same cable is used to supply the load cell with power. When multiple load cells are used, vast inventories of stored nuclear material can be continuously monitored and inventoried of minimal cost. 4 figs.

  7. Load regulating expansion fixture

    DOE Patents [OSTI]

    Wagner, Lawrence M. (San Jose, CA); Strum, Michael J. (San Jose, CA)

    1998-01-01T23:59:59.000Z

    A free standing self contained device for bonding ultra thin metallic films, such as 0.001 inch beryllium foils. The device will regulate to a predetermined load for solid state bonding when heated to a bonding temperature. The device includes a load regulating feature, whereby the expansion stresses generated for bonding are regulated and self adjusting. The load regulator comprises a pair of friction isolators with a plurality of annealed copper members located therebetween. The device, with the load regulator, will adjust to and maintain a stress level needed to successfully and economically complete a leak tight bond without damaging thin foils or other delicate components.

  8. Load regulating expansion fixture

    DOE Patents [OSTI]

    Wagner, L.M.; Strum, M.J.

    1998-12-15T23:59:59.000Z

    A free standing self contained device for bonding ultra thin metallic films, such as 0.001 inch beryllium foils is disclosed. The device will regulate to a predetermined load for solid state bonding when heated to a bonding temperature. The device includes a load regulating feature, whereby the expansion stresses generated for bonding are regulated and self adjusting. The load regulator comprises a pair of friction isolators with a plurality of annealed copper members located therebetween. The device, with the load regulator, will adjust to and maintain a stress level needed to successfully and economically complete a leak tight bond without damaging thin foils or other delicate components. 1 fig.

  9. Cooling, AGN Feedback and Star Formation in Simulated Cool-Core Galaxy Clusters

    E-Print Network [OSTI]

    Li, Yuan; Ruszkowski, Mateusz; Voit, G Mark; O'Shea, Brian W; Donahue, Megan

    2015-01-01T23:59:59.000Z

    Numerical simulations of active galactic nuclei (AGN) feedback in cool-core galaxy clusters have successfully avoided classical cooling flows, but often produce too much cold gas. We perform adaptive mesh simulations that include momentum-driven AGN feedback, self-gravity, star formation and stellar feedback, focusing on the interplay between cooling, AGN heating and star formation in an isolated cool-core cluster. Cold clumps triggered by AGN jets and turbulence form filamentary structures tens of kpc long. This cold gas feeds both star formation and the supermassive black hole (SMBH), triggering an AGN outburst that increases the entropy of the ICM and reduces its cooling rate. Within 1-2 Gyr, star formation completely consumes the cold gas, leading to a brief shutoff of the AGN. The ICM quickly cools and redevelops multiphase gas, followed by another cycle of star formation/AGN outburst. Within 6.5 Gyr, we observe three such cycles. There is good agreement between our simulated cluster and the observations...

  10. Retrofitting unreinforced concrete masonry to resist tornado loading

    E-Print Network [OSTI]

    Dorshorst, Evan G. (Evan Gregory)

    2013-01-01T23:59:59.000Z

    Advances in structural design and building materials have significantly increased the performance of many structures under the extreme loading conditions associated with natural disasters such as earthquakes. However, ...

  11. Stochastic Cooling Studies in J.M. Brennan, M. Blaskiewicz, J. Wei

    E-Print Network [OSTI]

    Stochastic Cooling Studies in RHIC J.M. Brennan, M. Blaskiewicz, J. Wei Brookhaven National Labs showed that momentum cooling could counteract IBS and increase integrated luminosity by x 2-3 [J. Wei and A.G. Ruggiero, AD/RHIC-71 1990] #12;Bunched-beam Stochastic Cooling · What would be required

  12. Rate of cooling and power consumption of farm milk coolers

    E-Print Network [OSTI]

    McCardle, Arthur, Jr

    1952-01-01T23:59:59.000Z

    "tcd;vater bstir with- out ics bar. k - night load, birch QO, 1962. The ambler t tem-erature was no v: 61 ~ 6 A+ ~ ~ ~ ~ ~ 1 i ~ ~ ~ 1 I \\ 4 ~ 9 ~~ical data sheet for rate of cooling milk usia, ster spray wit3' ice bank mcrnin~ load~;;, rch RG, 1968. i 'ihe... ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0 33 XXIX Average milk temperatures and temperatures at center of milk while coolin5. Ths amoient temperature was 81. 8o F. ~ . . . . ~ 45 XIV Avsraws milk temperatures and temperatures at center of milk while coolingi The ambient temperature...

  13. Comparison of heating and cooling energy consumption by HVAC system with mixing and displacement air distribution for a restaurant dining area in different climates

    SciTech Connect (OSTI)

    Zhivov, A.M. [International Air Technologies, Inc., Savoy, IL (United States); Rymkevich, A.A. [St. Petersburg Academy of Refrigeration and Food Technology (Russian Federation). Dept. of Refrigeration Machines and Air-Conditioning Systems

    1998-12-31T23:59:59.000Z

    Different ventilation strategies to improve indoor air quality and to reduce HVAC system operating costs in a restaurant with nonsmoking and smoking areas and a bar are discussed in this paper. A generic sitting-type restaurant is used for the analysis. Prototype designs for the restaurant chain with more than 200 restaurants in different US climates were analyzed to collect the information on building envelope, dining area size, heat and contaminant sources and loads, occupancy rates, and current design practices. Four constant air volume HVAC systems wit h a constant and variable (demand-based) outdoor airflow rate, with a mixing and displacement air distribution, were compared in five representative US climates: cold (Minneapolis, MN); Maritime (Seattle, WA); moderate (Albuquerque, NM); hot-dry (Phoenix, AZ); and hot-humid (Miami, FL). For all four compared cases and climatic conditions, heating and cooling consumption by the HVAC system throughout the year-round operation was calculated and operation costs were compared. The analysis shows: Displacement air distribution allows for better indoor air quality in the breathing zone at the same outdoor air supply airflow rate due to contaminant stratification along the room height. The increase in outdoor air supply during the peak hours in Miami and Albuquerque results in an increase of both heating and cooling energy consumption. In other climates, the increase in outdoor air supply results in reduced cooling energy consumption. For the Phoenix, Minneapolis, and Seattle locations, the HVAC system operation with a variable outdoor air supply allows for a decrease in cooling consumption up to 50% and, in some cases, eliminates the use of refrigeration machines. The effect of temperature stratification on HVAC system parameters is the same for all locations; displacement ventilation systems result in decreased cooling energy consumption but increased heating consumption.

  14. 16 Load Data Cleansing and Bus Load

    E-Print Network [OSTI]

    Wang, Ke

    -to-day operations, system analysis in smart grids, system visualization, system performance reliability, energy..............................................................................................................397 #12;376 Smart Grids The load forecast generally provides annual peak values for the whole system saving, and accuracy in system planning [1­4]. * This work is partly supported by a collaborative

  15. Taking a Bite out of Lighting Loads 

    E-Print Network [OSTI]

    Williams, S.

    2013-01-01T23:59:59.000Z

    = 100w PAR38 • No maintenance for years ? 50,000 LED vs.10,000 CFL • Improved light quality ? 80 CRI LED vs. 25 CRI HPS • Reduce HVAC cooling load • Advanced control options ESL-KT-13-12-34 CATEE 2013: Clean Air Through Energy Efficiency Conference, San... Fragile Durable Optical Efficiency 50 50 70-80 Indoor LED Advantages ESL-KT-13-12-34 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Expected ROI 1.17 Years Case Study: LUGGAGE & LEATHER Sugar Land, Texas ESL-KT-13...

  16. Characterization of Engine Control Authority on HCCI Combustion as the High Load Limit is Approached

    SciTech Connect (OSTI)

    Szybist, James P [ORNL] [ORNL; Edwards, Kevin Dean [ORNL] [ORNL; Foster, Matthew [Delphi] [Delphi; Confer, Keith [Delphi] [Delphi; Moore, Wayne [Delphi] [Delphi

    2013-01-01T23:59:59.000Z

    While the potential emissions and efficiency benefits of homogeneous charge compression ignition (HCCI) combustion are well known, realizing the potentials on a production intent engine presents numerous challenges. In this study we focus on characterizing the authority of the available engine controls as the high load limit of HCCI combustion is approached. The experimental work is performed on a boosted single-cylinder research engine equipped with direct injection (DI) fueling, cooled external exhaust gas recirculation (EGR), and a hydraulic valve actuation (HVA) valve train to enable the negative valve overlap (NVO) breathing strategy. Valve lift and duration are held constant while phasing is varied in an effort to make the results as relevant as possible to production intent cam-based variable valve actuation (VVA) systems on multi-cylinder engines. Results presented include engine loads from 350 to 650 kPa IMEPnet and manifold pressure from 98 to 190 kPaa at 2000 rpm. It is found that in order to increase engine load to 650 kPa IMEPnet, it is necessary to increase manifold pressure and external EGR while reducing the NVO duration. Both NVO duration and fuel injection timing are effective means of controlling combustion phasing, with NVO duration being a coarse control and fuel injection timing being a fine control. NOX emissions are low throughout the study, with emissions below 0.1 g/kW-h at all boosted HCCI conditions, while good combustion efficiency is maintained (>96.5%). Net indicated thermal efficiency increases with load up to 600 kPa IMEPnet, where a peak efficiency of 41% is achieved. Results of independent parametric investigations are presented on the effect of external EGR, intake effect of manifold pressure, and the effect of NVO duration. It is found that increasing EGR at a constant manifold pressure and increasing manifold pressure at a constant EGR rate both have the effect of retarding combustion phasing. It is also found that combustion phasing becomes increasingly sensitive to NVO duration as engine load increases. Finally, comparisons are made between three commonly used noise metrics (AVL noise meter, ringing intensity (RI), and maximum pressure rise rate (MPRR)). It is found that compared to the AVL noise meter, RI significantly underestimates combustion noise under boosted conditions.

  17. Modeled and measured effects of compressor downsizing in an existing air conditioner/heat pump in the cooling mode

    SciTech Connect (OSTI)

    Levins, W.P.; Rice, C.K.; Baxter, V.D.

    1996-05-01T23:59:59.000Z

    It is not uncommon to find oversized central air conditioners in residences. HVAC contractors sometimes oversize central air conditioners for one reason or another--some to the point that they may be 100% larger than needed to meet the load. Retrofit measures done to improve house envelope and distribution system efficiency also contribute to HVAC oversizing, as they reduce house heating and cooling loads. Proper sizing of an air conditioner or heat pump allows more efficient operation and provides a more comfortable environment than a highly oversized unit. Another factor that lowers operating efficiency is an improper refrigerant charge. Field inspections have revealed that about half of the units checked were not properly charged. An option available to homeowners with oversized air conditioners is to replace the existing compressor with a smaller, more efficient compressor, rather than purchasing a new, smaller unit. Such a retrofit may be economically justified, especially during a compressor failure, provided the oversizing of the existing unit is not too great. A used, 15-year old, single-package heat pump with a capillary tube expansion device on the indoor coil was purchased and tested in a set of environmental chambers to determine its cooling performance at various conditions. The system was also modeled to estimate its existing performance, and that with two different types of retrofitted state-of-the-art (SOA) efficient compressors with about 30% less capacity than the original compressor. This reduced the overall system cooling capacity by about 25%. Modeling estimated that the retrofit would increase system EER at 95 F by 30%, SEER by 34%, and reduce power demand by 39% compared to the existing unit. Reduced cycling losses account for the higher increase in SEER.

  18. Enhanced heat transfer surface for cast-in-bump-covered cooling surfaces and methods of enhancing heat transfer

    DOE Patents [OSTI]

    Chiu, Rong-Shi Paul (Glenmont, NY); Hasz, Wayne Charles (Pownal, VT); Johnson, Robert Alan (Simpsonville, SC); Lee, Ching-Pang (Cincinnati, OH); Abuaf, Nesim (Lincoln City, OR)

    2002-01-01T23:59:59.000Z

    An annular turbine shroud separates a hot gas path from a cooling plenum containing a cooling medium. Bumps are cast in the surface on the cooling side of the shroud. A surface coating overlies the cooling side surface of the shroud, including the bumps, and contains cooling enhancement material. The surface area ratio of the cooling side of the shroud with the bumps and coating is in excess of a surface area ratio of the cooling side surface with bumps without the coating to afford increased heat transfer across the element relative to the heat transfer across the element without the coating.

  19. Cooling apparatus and method

    DOE Patents [OSTI]

    Mayes, James C. (Sugar Land, TX)

    2009-05-05T23:59:59.000Z

    A device and method provide for cooling of a system having an energy source, one or more devices that actively consume energy, and one or more devices that generate heat. The device may include one or more thermoelectric coolers ("TECs") in conductive engagement with at least one of the heat-generating devices, and an energy diverter for diverting at least a portion of the energy from the energy source that is not consumed by the active energy-consuming devices to the TECs.

  20. Cooled, temperature controlled electrometer

    DOE Patents [OSTI]

    Morgan, John P. (Idaho Falls, ID)

    1992-01-01T23:59:59.000Z

    A cooled, temperature controlled electrometer for the measurement of small currents. The device employs a thermal transfer system to remove heat from the electrometer circuit and its environment and dissipate it to the external environment by means of a heat sink. The operation of the thermal transfer system is governed by a temperature regulation circuit which activates the thermal transfer system when the temperature of the electrometer circuit and its environment exceeds a level previously inputted to the external variable temperature control circuit. The variable temperature control circuit functions as subpart of the temperature control circuit. To provide temperature stability and uniformity, the electrometer circuit is enclosed by an insulated housing.

  1. Cooled, temperature controlled electrometer

    DOE Patents [OSTI]

    Morgan, John P.

    1992-08-04T23:59:59.000Z

    A cooled, temperature controlled electrometer for the measurement of small currents. The device employs a thermal transfer system to remove heat from the electrometer circuit and its environment and dissipate it to the external environment by means of a heat sink. The operation of the thermal transfer system is governed by a temperature regulation circuit which activates the thermal transfer system when the temperature of the electrometer circuit and its environment exceeds a level previously inputted to the external variable temperature control circuit. The variable temperature control circuit functions as subpart of the temperature control circuit. To provide temperature stability and uniformity, the electrometer circuit is enclosed by an insulated housing.

  2. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site Office (FSO) FSOConverting Biomass toCool

  3. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would likeConstitution AndControlling Graphene'sPortalofExplore »Cool

  4. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would likeConstitution AndControlling Graphene'sPortalofExploreCool

  5. cooling | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ . :,2013constantconvert program |cooling

  6. Laser system for secondary cooling of {sup 87}Sr atoms

    SciTech Connect (OSTI)

    Khabarova, K Yu; Slyusarev, S N; Strelkin, S A; Belotelov, G S; Kostin, A S; Pal'chikov, Vitaly G; Kolachevsky, Nikolai N

    2012-11-30T23:59:59.000Z

    A laser system with a narrow generation line for secondary laser cooling of {sup 87}Sr atoms has been developed and investigated. It is planned to use ultracold {sup 87}Sr atoms loaded in an optical lattice in an optical frequency standard. To this end, a 689-nm semiconductor laser has been stabilised using an external reference ultrastable cavity with vibrational and temperature compensation near the critical point. The lasing spectral width was 80 Hz (averaging time 40 ms), and the frequency drift was at a level of 0.3 Hz s{sup -1}. Comparison of two independent laser systems yielded a minimum Allan deviation: 2 Multiplication-Sign 10{sup -14} for 300-s averaging. It is shown that this system satisfies all requirements necessary for secondary cooling of 87Sr atoms using the spectrally narrow {sup 1}S{sub 0} - {sup 3}P{sub 1} transition ({lambda} = 689 nm). (cooling of atoms)

  7. Control of cooling losses at high pulverized coal injection rates

    SciTech Connect (OSTI)

    Bonte, L.; Nieuwerburgh, H. Van [Sidmar N.V., Gent (Belgium)

    1996-12-31T23:59:59.000Z

    One of the problems which is encountered by many blast furnace operators is the appropriate control of the cooling losses of the blast furnace. This problem has been aggravated by the introduction of pulverized coal injection. Even with equal burden and coke composition, both Sidmar furnaces behave differently with respect to the cooling losses. This phenomenon is possibly attributable to the different profile and cooling circuitry of the furnaces. Among other parameters the angles of bosh and stack may favor the formation of scabs or not. Some operators experience a decrease of their cooling losses, other operators have problems to limit their cooling losses to an acceptable level. As a result, different operating practices exist with respect to the burden distribution. The increase of the ore to coke ratio with pulverized coal injection suggests that the coke and sinter quality has to be monitored very carefully in order to avoid permeability problems.

  8. THE COOLING OF CORONAL PLASMAS. IV. CATASTROPHIC COOLING OF LOOPS

    SciTech Connect (OSTI)

    Cargill, P. J. [Space and Atmospheric Physics, The Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom); Bradshaw, S. J., E-mail: p.cargill@imperial.ac.uk [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States)

    2013-07-20T23:59:59.000Z

    We examine the radiative cooling of coronal loops and demonstrate that the recently identified catastrophic cooling is due to the inability of a loop to sustain radiative/enthalpy cooling below a critical temperature, which can be >1 MK in flares, 0.5-1 MK in active regions, and 0.1 MK in long tenuous loops. Catastrophic cooling is characterized by a rapid fall in coronal temperature, while the coronal density changes by a small amount. Analytic expressions for the critical temperature are derived and show good agreement with numerical results. This effect considerably limits the lifetime of coronal plasmas below the critical temperature.

  9. Indirect passive cooling system for liquid metal cooled nuclear reactors

    DOE Patents [OSTI]

    Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA)

    1990-01-01T23:59:59.000Z

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

  10. Passive cooling safety system for liquid metal cooled nuclear reactors

    DOE Patents [OSTI]

    Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA); Hui, Marvin M. (Sunnyvale, CA); Berglund, Robert C. (Saratoga, CA)

    1991-01-01T23:59:59.000Z

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

  11. Simulation of radiant cooling performance with evaporative cooling sources

    E-Print Network [OSTI]

    Moore, Timothy

    2008-01-01T23:59:59.000Z

    Systems for Low-Energy Buildings, Proved in Practice”with optimized building envelopes, low-energy cooling waterbuilding perspective, thermal performance for the low-energy

  12. Some ideas on the choice of designs and materials for cooled mirrors

    SciTech Connect (OSTI)

    Howells, M.R.

    1994-12-01T23:59:59.000Z

    This paper expresses some views on the fabrication of future synchrotron beam-line optics; more particularly the metallurgical issues in high-quality metal mirrors. A simple mirror with uniform cooling channels is first analyzed theoretically, followed by the cullular-pin-post system with complex coolant flow path. Choice of mirror material is next considered. For the most challenging situations (need for intensive cooling), the present practice is to use nickel-plated glidcop or silicon; for less severe challenges, Si carbide may be used and cooling may be direct or indirect; and for the mildest heat loads, fused silica or ulf are popular. For the highest performance mirrors (extreme heat load), the glidcop developments should be continued perhaps to cellular-pin-post systems. For extreme distortion, Si is indicated and invar offers both improved performance and lower price. For less extreme challenges but still with cooling, Ni-plated metals have the cost advantage and SXA and other Al alloys can be added to glidcop and invar. For mirrors with mild cooling requirements, stainless steel would have many advantages. Once the internal cooling designs are established, they will be seen as more cost-effective and reliable than clamp-on schemes. Where no cooling is needed, Si, Si carbide, and the glasses can be used. For the future, the effect of electroless Ni layers on cooling design need study, and a way to finish nickel that is compatible with multilayers should be developed.

  13. Emergency core cooling system

    DOE Patents [OSTI]

    Schenewerk, William E. (Sherman Oaks, CA); Glasgow, Lyle E. (Westlake Village, CA)

    1983-01-01T23:59:59.000Z

    A liquid metal cooled fast breeder reactor provided with an emergency core cooling system includes a reactor vessel which contains a reactor core comprising an array of fuel assemblies and a plurality of blanket assemblies. The reactor core is immersed in a pool of liquid metal coolant. The reactor also includes a primary coolant system comprising a pump and conduits for circulating liquid metal coolant to the reactor core and through the fuel and blanket assemblies of the core. A converging-diverging venturi nozzle with an intermediate throat section is provided in between the assemblies and the pump. The intermediate throat section of the nozzle is provided with at least one opening which is in fluid communication with the pool of liquid sodium. In normal operation, coolant flows from the pump through the nozzle to the assemblies with very little fluid flowing through the opening in the throat. However, when the pump is not running, residual heat in the core causes fluid from the pool to flow through the opening in the throat of the nozzle and outwardly through the nozzle to the assemblies, thus providing a means of removing decay heat.

  14. Review of cavity optomechanical cooling

    E-Print Network [OSTI]

    Yong-Chun Liu; Yu-Wen Hu; Chee Wei Wong; Yun-Feng Xiao

    2014-11-14T23:59:59.000Z

    Quantum manipulation of macroscopic mechanical systems is of great interest in both fundamental physics and applications ranging from high-precision metrology to quantum information processing. A crucial goal is to cool the mechanical system to its quantum ground state. In this review, we focus on the cavity optomechanical cooling, which exploits the cavity enhanced interaction between optical field and mechanical motion to reduce the thermal noise. Recent remarkable theoretical and experimental efforts in this field have taken a major step forward in preparing the motional quantum ground state of mesoscopic mechanical systems. This review first describes the quantum theory of cavity optomechanical cooling, including quantum noise approach and covariance approach; then the up-to-date experimental progresses are introduced. Finally, new cooling approaches are discussed along the directions of cooling in the strong coupling regime and cooling beyond the resolved sideband limit.

  15. Load research manual. Volume 3. Load research for advanced technologies

    SciTech Connect (OSTI)

    None

    1980-11-01T23:59:59.000Z

    This three-volume manual presents technical guidelines for electric utility load research. Special attention is given to issues raised by the load data reporting requirements of the Public Utility Regulatory Policies Act of 1978 and to problems faced by smaller utilities that are initiating load research programs. The manual includes guides to load research literature and glossaries of load research and statistical terms. In Volume 3, special load research procedures are presented for solar, wind, and cogeneration technologies.

  16. Performance Evaluation of a 4.5 kW (1.3 Refrigeration Tons) Air-Cooled Lithium Bromide/Water Solar Powered (Hot-Water-Fired) Absorption Unit

    SciTech Connect (OSTI)

    Zaltash, Abdolreza [ORNL; Petrov, Andrei Y [ORNL; Linkous, Randall Lee [ORNL; Vineyard, Edward Allan [ORNL

    2007-01-01T23:59:59.000Z

    During the summer months, air-conditioning (cooling) is the single largest use of electricity in both residential and commercial buildings with the major impact on peak electric demand. Improved air-conditioning technology has by far the greatest potential impact on the electric industry compared to any other technology that uses electricity. Thermally activated absorption air-conditioning (absorption chillers) can provide overall peak load reduction and electric grid relief for summer peak demand. This innovative absorption technology is based on integrated rotating heat exchangers to enhance heat and mass transfer resulting in a potential reduction of size, cost, and weight of the "next generation" absorption units. Rotartica Absorption Chiller (RAC) is a 4.5 kW (1.3 refrigeration tons or RT) air-cooled lithium bromide (LiBr)/water unit powered by hot water generated using the solar energy and/or waste heat. Typically LiBr/water absorption chillers are water-cooled units which use a cooling tower to reject heat. Cooling towers require a large amount of space, increase start-up and maintenance costs. However, RAC is an air-cooled absorption chiller (no cooling tower). The purpose of this evaluation is to verify RAC performance by comparing the Coefficient of Performance (COP or ratio of cooling capacity to energy input) and the cooling capacity results with those of the manufacturer. The performance of the RAC was tested at Oak Ridge National Laboratory (ORNL) in a controlled environment at various hot and chilled water flow rates, air handler flow rates, and ambient temperatures. Temperature probes, mass flow meters, rotational speed measuring device, pressure transducers, and a web camera mounted inside the unit were used to monitor the RAC via a web control-based data acquisition system using Automated Logic Controller (ALC). Results showed a COP and cooling capacity of approximately 0.58 and 3.7 kW respectively at 35 C (95 F) design condition for ambient temperature with 40 C (104 F) cooling water temperature. This is in close agreement with the manufacturer data of 0.60 for COP and 3.9 kW for cooling capacity. This study resulted in a complete performance map of RAC which will be used to evaluate the potential benefits of rotating heat exchangers in making the "next-generation" absorption chillers more compact and cost effective without any significant degradation in the performance. In addition, the feasibility of using rotating heat exchangers in other applications will be evaluated.

  17. Heat transfer issues in high-heat-load synchrotron x-ray beams

    SciTech Connect (OSTI)

    Khounsary, A.M.; Mills, D.M.

    1994-09-01T23:59:59.000Z

    In this paper, a short description of the synchrotron radiation x-ray sources and the associated power loads is given, followed by a brief description of typical synchrotron components and their heat load. It is emphasized that the design goals for most of these components is to limit (a) temperature, (b) stresses, or (c) strains in the system. Each design calls for a different geometry, material selection, and cooling scheme. Cooling schemes that have been utilized so far are primarily single phase and include simple macrochannel cooling, microchannel cooling, contact cooling, pin-post cooling, porous-flow cooling, jet cooling, etc. Water, liquid metals, and various cryogenic coolants have been used. Because the trend in x-ray beam development is towards brighter (i.e., more powerful) beams and assuming that no radical changes in the design of x-ray generating machines occurs in the next few years, it is fair to state that the utilization of various effective cooling schemes and, in particular, two-phase flow (e.g., subcooled boiling) warrants further investigation. This, however, requires a thorough examination of stability and reliability of two-phase flows for high-heat-flux components operating in ultrahigh vacuum with stringent reliability requirements.

  18. Laser cooling of infrared sensors.

    SciTech Connect (OSTI)

    Hasselbeck, M. P. (Michael P.); Sheik-Bahae, M (Mansoor); Thiede, J. (Jared); Distel, J. R. (James R.); Greenfield, S. R. (Scott R.); Patterson, Wendy M.; Bigotta, S.; Imangholi, B.; Seletskiy, D. (Denis); Bender, D.; Vankipuram, V.; Vadiee, N.; Epstein, Richard I.

    2004-01-01T23:59:59.000Z

    We present an overview of laser cooling of solids. In this all-solid-state approach to refrigeration, heat is removed radiatively when an engineered material is exposed to high power laser light. We report a record amount of net cooling (88 K below ambient) that has been achieved with a sample made from doped fluoride glass. Issues involved in the design of a practical laser cooler are presented. The possibility of laser cooling of semiconductor sensors is discussed.

  19. Alternative technique for laser cooling with superradiance

    SciTech Connect (OSTI)

    Nemova, Galina [Advanced Photonics Concepts Laboratory, Department of Engineering Physics, Ecole Polytechnique de Montreal, P.O. Box 6079, Station Centre-ville, Montreal (Canada); Kashyap, Raman [Advanced Photonics Concepts Laboratory, Department of Engineering Physics, Ecole Polytechnique de Montreal, P.O. Box 6079, Station Centre-ville, Montreal (Canada); Advanced Photonics Concepts Laboratory, Department of Electrical Engineering, Ecole Polytechnique de Montreal, P.O. Box 6079, Station Centre-ville, Montreal (Canada)

    2011-01-15T23:59:59.000Z

    We present a theoretical scheme for laser cooling of rare-earth-doped solids with optical superradiance (SR), which is the coherent, sharply directed spontaneous emission of photons by a system of laser-excited rare-earth ions in the solid-state host (glass or crystal). We consider an Yb{sup +}-doped ZnF{sub 4}-BaF{sub 2}-LaF{sub 3}-AlF{sub 3}-NaF (ZBLAN) sample pumped at a wavelength 1015 nm, with a rectangular pulsed source with a power of {approx}433 W and a duration of 10 ns. The intensity of the SR is proportional to the square of the number of excited ions. This unique feature of SR permits an increase in the rate of the cooling process in comparison with the traditional laser cooling of the rare-earth-doped solids with anti-Stokes spontaneous incoherent radiation (fluorescence). This scheme overcomes the limitation of using only low phonon energy glasses for laser cooling.

  20. Flexible Residential Test Facility: Impact of Infiltration and Ventilation on Measured Cooling Season Energy and Moisture Levels

    SciTech Connect (OSTI)

    Parker, D.; Kono, J.; Vieira, R.; Fairey, P.; Sherwin, J.; Withers, C.; Hoak, D.; Beal, D.

    2014-05-01T23:59:59.000Z

    Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC has conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season.

  1. Understanding the Dehumidification Performance of Air-Conditioning Equipment at Part-Load Conditions

    SciTech Connect (OSTI)

    Don B. Shirey III; Hugh I. Henderson Jr; Richard A. Raustad

    2006-01-01T23:59:59.000Z

    Air conditioner cooling coils typically provide both sensible cooling and moisture removal. Data from a limited number of field studies (Khattar et al. 1985; Henderson and Rengarajan 1996; Henderson 1998) have demonstrated that the moisture removal capacity of a cooling coil degrades at part-load conditions--especially when the supply fan operates continuously while the cooling coil cycles on and off. Degradation occurs because moisture that condenses on the coil surfaces during the cooling cycle evaporates back into air stream when the coil is off. This degradation affects the ability of cooling equipment to maintain proper indoor humidity levels and may negatively impact indoor air quality. This report summarizes the results of a comprehensive project to better understand and quantify the moisture removal (dehumidification) performance of cooling coils at part-load conditions. A review of the open literature was initially conducted to learn from previous research on this topic. Detailed performance measurements were then collected for eight cooling coils in a controlled laboratory setting to understand the impact of coil geometry and operating conditions on transient moisture condensation and evaporation by the coils. Measurements of cooling coil dehumidification performance and space humidity levels were also collected at seven field test sites. Finally, an existing engineering model to predict dehumidification performance degradation for single-stage cooling equipment at part-load conditions (Henderson and Rengarajan 1996) was enhanced to include a broader range of fan control strategies and an improved theoretical basis for modeling off-cycle moisture evaporation from cooling coils. The improved model was validated with the laboratory measurements, and this report provides guidance for users regarding proper model inputs. The model is suitable for use in computerized calculation procedures such as hourly or sub-hourly building energy simulation programs (e.g., DOE's EnergyPlus building energy simulation program, http://www.energyplus.gov ).

  2. Load Monitoring CEC/LMTF Load Research Program

    SciTech Connect (OSTI)

    Huang, Zhenyu; Lesieutre, B.; Yang, Steve; Ellis, A.; Meklin, A.; Wong, B.; Gaikwad, A.; Brooks, D.; Hammerstrom, Donald J.; Phillips, John; Kosterev, Dmitry; Hoffman, M.; Ciniglio, O.; Hartwell, R.; Pourbeik, P.; Maitra, A.; Lu, Ning

    2007-11-30T23:59:59.000Z

    This white paper addresses the needs, options, current practices of load monitoring. Recommendations on load monitoring applications and future directions are also presented.

  3. Direct cooled power electronics substrate

    DOE Patents [OSTI]

    Wiles, Randy H [Powell, TN; Wereszczak, Andrew A [Oak Ridge, TN; Ayers, Curtis W. (Kingston, TN) [Kingston, TN; Lowe, Kirk T. (Knoxville, TN) [Knoxville, TN

    2010-09-14T23:59:59.000Z

    The disclosure describes directly cooling a three-dimensional, direct metallization (DM) layer in a power electronics device. To enable sufficient cooling, coolant flow channels are formed within the ceramic substrate. The direct metallization layer (typically copper) may be bonded to the ceramic substrate, and semiconductor chips (such as IGBT and diodes) may be soldered or sintered onto the direct metallization layer to form a power electronics module. Multiple modules may be attached to cooling headers that provide in-flow and out-flow of coolant through the channels in the ceramic substrate. The modules and cooling header assembly are preferably sized to fit inside the core of a toroidal shaped capacitor.

  4. Application of Distribution Transformer Thermal Life Models to Electrified Vehicle Charging Loads Using Monte-Carlo Method: Preprint

    SciTech Connect (OSTI)

    Kuss, M.; Markel, T.; Kramer, W.

    2011-01-01T23:59:59.000Z

    Concentrated purchasing patterns of plug-in vehicles may result in localized distribution transformer overload scenarios. Prolonged periods of transformer overloading causes service life decrements, and in worst-case scenarios, results in tripped thermal relays and residential service outages. This analysis will review distribution transformer load models developed in the IEC 60076 standard, and apply the model to a neighborhood with plug-in hybrids. Residential distribution transformers are sized such that night-time cooling provides thermal recovery from heavy load conditions during the daytime utility peak. It is expected that PHEVs will primarily be charged at night in a residential setting. If not managed properly, some distribution transformers could become overloaded, leading to a reduction in transformer life expectancy, thus increasing costs to utilities and consumers. A Monte-Carlo scheme simulated each day of the year, evaluating 100 load scenarios as it swept through the following variables: number of vehicle per transformer, transformer size, and charging rate. A general method for determining expected transformer aging rate will be developed, based on the energy needs of plug-in vehicles loading a residential transformer.

  5. Advanced Refrigerant-Based Cooling Technologies for Information and Communication Infrastructure (ARCTIC)

    SciTech Connect (OSTI)

    Todd Salamon

    2012-12-13T23:59:59.000Z

    Faster, more powerful and dense computing hardware generates significant heat and imposes considerable data center cooling requirements. Traditional computer room air conditioning (CRAC) cooling methods are proving increasingly cost-ineffective and inefficient. Studies show that using the volume of room air as a heat exchange medium is wasteful and allows for substantial mixing of hot and cold air. Further, it limits cabinet/frame/rack density because it cannot effectively cool high heat density equipment that is spaced closely together. A more cost-effective, efficient solution for maximizing heat transfer and enabling higher heat density equipment frames can be accomplished by utilizing properly positioned �¢����phase change�¢��� or �¢����two-phase�¢��� pumped refrigerant cooling methods. Pumping low pressure, oil-free phase changing refrigerant through microchannel heat exchangers can provide up to 90% less energy consumption for the primary cooling loop within the room. The primary benefits of such a solution include reduced energy requirements, optimized utilization of data center space, and lower OPEX and CAPEX. Alcatel-Lucent recently developed a modular cooling technology based on a pumped two-phase refrigerant that removes heat directly at the shelf level of equipment racks. The key elements that comprise the modular cooling technology consist of the following. A pump delivers liquid refrigerant to finned microchannel heat exchangers mounted on the back of equipment racks. Fans drive air through the equipment shelf, where the air gains heat dissipated by the electronic components therein. Prior to exiting the rack, the heated air passes through the heat exchangers, where it is cooled back down to the temperature level of the air entering the frame by vaporization of the refrigerant, which is subsequently returned to a condenser where it is liquefied and recirculated by the pump. All the cooling air enters and leaves the shelves/racks at nominally the same temperature. Results of a 100 kW prototype data center installation of the refrigerant-based modular cooling technology were dramatic in terms of energy efficiency and the ability to cool high-heat-density equipment. The prototype data center installation consisted of 10 racks each loaded with 10 kW of high-heat-density IT equipment with the racks arranged in a standard hot-aisle/cold-aisle configuration with standard cabinet spacing. A typical chilled-water CRAC unit would require approximately 16 kW to cool such a heat load. In contrast, the refrigerant-based modular cooling technology required only 2.3 kW of power for the refrigerant pump and shelf-level fans, a reduction of 85 percent. Differences in hot-aisle and cold-aisle temperature were also substantially reduced, mitigating many issues that arise in purely air-based cooling systems, such as mixing of hot and cold air streams, or from placing high-heat-density equipment in close proximity. The technology is also such that it is able to retro-fit live equipment without service interruption, which is particularly important to the large installed ICT customer base, thereby providing a means of mitigating reliability and performance concerns during the installation, training and validation phases of product integration. Moreover, the refrigerant used in our approach, R134a, is a widely-used, non-toxic dielectric liquid which, unlike water, is non-conducting and non-corrosive and will not damage electronics in the case of a leak�¢����a triple-play win over alternative water-based liquid coolant technologies. Finally, through use of a pumped refrigerant, pressures are modest (~60 psi), and toxic lubricants and oils are not required, in contrast to compressorized refrigerant systems�¢����another environmental win. Project Activities - The ARCTIC project goal was to further develop an

  6. Electron cooling for low-energy RHIC program

    SciTech Connect (OSTI)

    Fedotov, A.; Ben-Zvi, I.; Chang, X.; Kayran, D.; Litvinenko, V.N.; Pendzick, A.; Satogata, T.

    2009-08-31T23:59:59.000Z

    Electron cooling was proposed to increase luminosity of the RHIC collider for heavy ion beam energies below 10 GeV/nucleon. Providing collisions at such energies, termed RHIC 'low-energy' operation, will help to answer one of the key questions in the field of QCD about existence and location of critical point on the QCD phase diagram. The electron cooling system should deliver electron beam of required good quality over energies of 0.9-5 MeV. Several approaches to provide such cooling were considered. The baseline approach was chosen and design work started. Here we describe the main features of the cooling system and its expected performance. We have started design work on a low-energy RHIC electron cooler which will operate with kinetic electron energy range 0.86-2.8 (4.9) MeV. Several approaches to an electron cooling system in this energy range are being investigated. At present, our preferred scheme is to transfer the Fermilab Pelletron to BNL after Tevatron shutdown, and to use it for DC non-magnetized cooling in RHIC. Such electron cooling system can significantly increase RHIC luminosities at low-energy operation.

  7. Parametric Study of Turbine Blade Internal Cooling and Film Cooling

    E-Print Network [OSTI]

    Rallabandi, Akhilesh P.

    2010-10-12T23:59:59.000Z

    is used to remove heat from the hot turbine blade. This air flows through passages in the hollow blade (internal cooling), and is also ejected onto the surface of the blade to form an insulating film (film cooling). Modern land-based gas turbine engines...

  8. COOL03 Workshop September 27, 2003 Muon Cooling Channels

    E-Print Network [OSTI]

    Keil, Eberhard

    , Japan 19 to 23 May 2003 My WWW home directory: http://keil.home.cern.ch/keil/ MuMu/Doc/COOL03/talk03.pdf and II and have ­ no dispersion ­ transverse cooling ­ no wedge-shaped absorbers ­ longitudinal heating and heating by multiple scattering and straggling rate of change per unit length of RMS relative momentum

  9. Power System load management

    SciTech Connect (OSTI)

    Rudenko, Yu.N.; Semenov, V.A.; Sovalov, S.A.; Syutkin, B.D.

    1984-01-01T23:59:59.000Z

    The variation in demand nonuniformity is analyzed for the Unified Electric Power System of the USSR and certain interconnected power systems; the conditions for handling such nonuniformity with utilization of generating equipment having differing flexibility capabilities are also considered. On this basis approaches and techniques for acting on user loads, load management, in order to assure a balance between generated and consumed power are considered.

  10. Dynamic Transfer Capability Analysis with Wind Farms and Dynamic Loads

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    . An investigation on the effect of dynamics loads, wind farms and flexible AC transmission system (FACTS) devices capability unnecessarily limits the power transfers and is a costly and inefficient use of a network with increasing loads, the need to transfer power over long transmission lines increases. Deregulation

  11. Composite Load Model Evaluation

    SciTech Connect (OSTI)

    Lu, Ning; Qiao, Hong (Amy)

    2007-09-30T23:59:59.000Z

    The WECC load modeling task force has dedicated its effort in the past few years to develop a composite load model that can represent behaviors of different end-user components. The modeling structure of the composite load model is recommended by the WECC load modeling task force. GE Energy has implemented this composite load model with a new function CMPLDW in its power system simulation software package, PSLF. For the last several years, Bonneville Power Administration (BPA) has taken the lead and collaborated with GE Energy to develop the new composite load model. Pacific Northwest National Laboratory (PNNL) and BPA joint force and conducted the evaluation of the CMPLDW and test its parameter settings to make sure that: • the model initializes properly, • all the parameter settings are functioning, and • the simulation results are as expected. The PNNL effort focused on testing the CMPLDW in a 4-bus system. An exhaustive testing on each parameter setting has been performed to guarantee each setting works. This report is a summary of the PNNL testing results and conclusions.

  12. Spectropolarimetry of cool stars

    E-Print Network [OSTI]

    P. Petit

    2007-03-27T23:59:59.000Z

    In recent years, the development of spectropolarimetric techniques deeply modified our knowledge of stellar magnetism. In the case of solar-type stars, the challenge is to measure a geometrically complex field and determine its evolution over very different time frames. In this article, I summarize some important observational results obtained in this field over the last two decades and detail what they tell us about the dynamo processes that orchestrate the activity of cool stars. I also discuss what we learn from such observations about the ability of magnetic fields to affect the formation and evolution of Sun-like stars. Finally, I evoke promising directions to be explored in the coming years, thanks to the advent of a new generation of instruments specifically designed to progress in this domain.

  13. Thermoelectrically cooled water trap

    DOE Patents [OSTI]

    Micheels, Ronald H. (Concord, MA)

    2006-02-21T23:59:59.000Z

    A water trap system based on a thermoelectric cooling device is employed to remove a major fraction of the water from air samples, prior to analysis of these samples for chemical composition, by a variety of analytical techniques where water vapor interferes with the measurement process. These analytical techniques include infrared spectroscopy, mass spectrometry, ion mobility spectrometry and gas chromatography. The thermoelectric system for trapping water present in air samples can substantially improve detection sensitivity in these analytical techniques when it is necessary to measure trace analytes with concentrations in the ppm (parts per million) or ppb (parts per billion) partial pressure range. The thermoelectric trap design is compact and amenable to use in a portable gas monitoring instrumentation.

  14. Integrated Modeling of Building Energy Requirements IncorporatingSolar Assisted Cooling

    SciTech Connect (OSTI)

    Firestone, Ryan; Marnay, Chris; Wang, Juan

    2005-08-10T23:59:59.000Z

    This paper expands on prior Berkeley Lab work on integrated simulation of building energy systems by the addition of active solar thermal collecting devices, technology options not previously considered (Siddiqui et al 2005). Collectors can be used as an alternative or additional source of hot water to heat recovery from reciprocating engines or microturbines. An example study is presented that evaluates the operation of solar assisted cooling at a large mail sorting facility in southern California with negligible heat loads and year-round cooling loads. Under current conditions solar thermal energy collection proves an unattractive option, but is a viable carbon emission control strategy.

  15. Thermal energy storage for cooling of commercial buildings

    SciTech Connect (OSTI)

    Akbari, H. (Lawrence Berkeley Lab., CA (USA)); Mertol, A. (Science Applications International Corp., Los Altos, CA (USA))

    1988-07-01T23:59:59.000Z

    The storage of coolness'' has been in use in limited applications for more than a half century. Recently, because of high electricity costs during utilities' peak power periods, thermal storage for cooling has become a prime target for load management strategies. Systems with cool storage shift all or part of the electricity requirement from peak to off-peak hours to take advantage of reduced demand charges and/or off-peak rates. Thermal storage technology applies equally to industrial, commercial, and residential sectors. In the industrial sector, because of the lack of economic incentives and the custom design required for each application, the penetration of this technology has been limited to a few industries. The penetration rate in the residential sector has been also very limited due to the absence of economic incentives, sizing problems, and the lack of compact packaged systems. To date, the most promising applications of these systems, therefore, appear to be for commercial cooling. In this report, the current and potential use of thermal energy storage systems for cooling commercial buildings is investigated. In addition, a general overview of the technology is presented and the applicability and cost-effectiveness of this technology for developed and developing countries are discussed. 28 refs., 12 figs., 1 tab.

  16. Modeling and control of thermostatically controlled loads

    SciTech Connect (OSTI)

    Backhaus, Scott N [Los Alamos National Laboratory; Sinitsyn, Nikolai [Los Alamos National Laboratory; Kundu, S. [UNIV OF MICHIGAN; Hiskens, I. [UNIV OF MICHIGAN

    2011-01-04T23:59:59.000Z

    As the penetration of intermittent energy sources grows substantially, loads will be required to play an increasingly important role in compensating the fast time-scale fluctuations in generated power. Recent numerical modeling of thermostatically controlled loads (TCLs) has demonstrated that such load following is feasible, but analytical models that satisfactorily quantify the aggregate power consumption of a group of TCLs are desired to enable controller design. We develop such a model for the aggregate power response of a homogeneous population of TCLs to uniform variation of all TCL setpoints. A linearized model of the response is derived, and a linear quadratic regulator (LQR) has been designed. Using the TCL setpoint as the control input, the LQR enables aggregate power to track reference signals that exhibit step, ramp and sinusoidal variations. Although much of the work assumes a homogeneous population of TCLs with deterministic dynamics, we also propose a method for probing the dynamics of systems where load characteristics are not well known.

  17. Solar Roof Cooling by Evaporation

    E-Print Network [OSTI]

    Patterson, G. V.

    1982-01-01T23:59:59.000Z

    Evaporation is nature's way of cooling. By the application of a thin film of water, in the form of a mist, on the roof of the building, roof temperatures can be reduced from as high as 165o to a cool 86oF. Thus, under-roof temperatures are reduced...

  18. Temperature initiated passive cooling system

    DOE Patents [OSTI]

    Forsberg, C.W.

    1994-11-01T23:59:59.000Z

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature. 1 fig.

  19. Temperature initiated passive cooling system

    DOE Patents [OSTI]

    Forsberg, Charles W. (Oak Ridge, TN)

    1994-01-01T23:59:59.000Z

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature.

  20. Future Cooling Experiments R. B. Palmer (BNL)

    E-Print Network [OSTI]

    McDonald, Kirk

    Future Cooling Experiments R. B. Palmer (BNL) FNAL June 13 2008 1 #12;Short Term 6D cooling Experiments Demonstrate 6D cooling without acceleration using a wedge at MICE Tracks can be selected off lineH or polyethylene wedge will show 6D cooling Later re-acceleration can be included 2 #12;Long Term 6D Cooling

  1. Prediction of Air Conditioning Load Response for Providing Spinning Reserve - ORNL Report

    SciTech Connect (OSTI)

    Kueck, John D [ORNL; Kirby, Brendan J [ORNL; Ally, Moonis Raza [ORNL; Rice, C Keith [ORNL

    2009-02-01T23:59:59.000Z

    This report assesses the use of air conditioning load for providing spinning reserve and discusses the barriers and opportunities. Air conditioning load is well suited for this service because it often increases during heavy load periods and can be curtailed for short periods with little impact to the customer. The report also provides an appendix describing the ambient temperature effect on air conditioning load.

  2. Closed loop steam cooled airfoil

    DOE Patents [OSTI]

    Widrig, Scott M.; Rudolph, Ronald J.; Wagner, Gregg P.

    2006-04-18T23:59:59.000Z

    An airfoil, a method of manufacturing an airfoil, and a system for cooling an airfoil is provided. The cooling system can be used with an airfoil located in the first stages of a combustion turbine within a combined cycle power generation plant and involves flowing closed loop steam through a pin array set within an airfoil. The airfoil can comprise a cavity having a cooling chamber bounded by an interior wall and an exterior wall so that steam can enter the cavity, pass through the pin array, and then return to the cavity to thereby cool the airfoil. The method of manufacturing an airfoil can include a type of lost wax investment casting process in which a pin array is cast into an airfoil to form a cooling chamber.

  3. Photoionisation loading of large Sr+ ion clouds with ultrafast pulses

    E-Print Network [OSTI]

    Sébastien Removille; Romain Dubessy; Quentin Glorieux; Samuel Guibal; Thomas Coudreau; Luca Guidoni; Jean-Pierre Likforman

    2008-12-05T23:59:59.000Z

    This paper reports on photoionisation loading based on ultrafast pulses of singly-ionised strontium ions in a linear Paul trap. We take advantage of an autoionising resonance of Sr neutral atoms to form Sr+ by two-photon absorption of femtosecond pulses at a wavelength of 431nm. We compare this technique to electron-bombardment ionisation and observe several advantages of photoionisation. It actually allows the loading of a pure Sr+ ion cloud in a low radio-frequency voltage amplitude regime. In these conditions up to 4x10^4 laser-cooled Sr+ ions were trapped.

  4. Cool roofs as an energy conservation measure for federal buildings

    SciTech Connect (OSTI)

    Taha, Haider; Akbari, Hashem

    2003-04-07T23:59:59.000Z

    We have developed initial estimates of the potential benefits of cool roofs on federal buildings and facilities (building scale) as well as extrapolated the results to all national facilities under the administration of the Federal Energy Management Program (FEMP). In addition, a spreadsheet ''calculator'' is devised to help FEMP estimate potential energy and cost savings of cool roof projects. Based on calculations for an average insulation level of R-11 for roofs, it is estimated that nationwide annual savings in energy costs will amount to $16M and $32M for two scenarios of increased roof albedo (moderate and high increases), respectively. These savings, corresponding to about 3.8 percent and 7.5 percent of the base energy costs for FEMP facilities, include the increased heating energy use (penalties) in winter. To keep the cost of conserved energy (CCE) under $0.08 kWh-1 as a nationwide average, the calculations suggest that the incremental cost for cool roofs should not exceed $0.06 ft-2, assuming that cool roofs have the same life span as their non-cool counterparts. However, cool roofs usually have extended life spans, e.g., 15-30 years versus 10 years for conventional roofs, and if the costs of re-roofing are also factored in, the cutoff incremental cost to keep CCE under $0.08 kWh-1 can be much higher. In between these two ends, there is of course a range of various combinations and options.

  5. Liquid Cooling v. Air Cooling Evaluation in the Maui High-Performance...

    Office of Environmental Management (EM)

    Liquid Cooling v. Air Cooling Evaluation in the Maui High-Performance Computing Center Liquid Cooling v. Air Cooling Evaluation in the Maui High-Performance Computing Center Study...

  6. Predictive pre-cooling control for low lift radiant cooling using building thermal mass

    E-Print Network [OSTI]

    Gayeski, Nicholas (Nicholas Thomas)

    2010-01-01T23:59:59.000Z

    Low lift cooling systems (LLCS) hold the potential for significant energy savings relative to conventional cooling systems. An LLCS is a cooling system which leverages existing HVAC technologies to provide low energy cooling ...

  7. Study on Performance Verification and Evaluation of District Heating and Cooling System Using Thermal Energy of River Water

    E-Print Network [OSTI]

    Takahashi,N.; Niwa, H.; Kawano,M.; Koike,K.; Koga,O.; Ichitani, K.; Mishima,N.

    2014-01-01T23:59:59.000Z

    source and cooling water overall (in comparison with normal system 15% of energy saving) -Adopt large-scale ice heat storage system and realize equalization of electricity load -Adopt turbo chiller and heat recovery facilities as high efficiency heat... screw heat pump - 838MJ/? 1 IHP/Water source screw heat pump (Ice storage and heat recovery) Cool water? 3,080MJ/h Ice Storage? 1,936MJ/h Cool water heat recovery? 3,606MJ/h Ice storage heat recovery? 2,448MJ/h 8Unit ?16? TR1 Water cooling turbo...

  8. Film cooling air pocket in a closed loop cooled airfoil

    DOE Patents [OSTI]

    Yu, Yufeng Phillip (Simpsonville, SC); Itzel, Gary Michael (Simpsonville, SC); Osgood, Sarah Jane (East Thetford, VT); Bagepalli, Radhakrishna (Schenectady, NY); Webbon, Waylon Willard (Greenville, SC); Burdgick, Steven Sebastian (Schenectady, NY)

    2002-01-01T23:59:59.000Z

    Turbine stator vane segments have radially inner and outer walls with vanes extending between them. The inner and outer walls are compartmentalized and have impingement plates. Steam flowing into the outer wall plenum passes through the impingement plate for impingement cooling of the outer wall upper surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. To provide for air film cooing of select portions of the airfoil outer surface, at least one air pocket is defined on a wall of at least one of the cavities. Each air pocket is substantially closed with respect to the cooling medium in the cavity and cooling air pumped to the air pocket flows through outlet apertures in the wall of the airfoil to cool the same.

  9. Monitoring peak power and cooling energy savings of shade trees and white surfaces in the Sacramento Municipal Utility District (SMUD) service area: Project design and preliminary results

    SciTech Connect (OSTI)

    Akbari, H.; Bretz, S.; Hanford, J.; Rosenfeld, A.; Sailor, D.; Taha, H. [Lawrence Berkeley Lab., CA (United States); Bos, W. [Sacramento Municipal Utility District, CA (United States)

    1992-12-01T23:59:59.000Z

    Urban areas in warm climates create summer heat islands of daily average intensity of 3--5{degrees}C, adding to discomfort and increasing air-conditioning loads. Two important factors contributing to urban heat islands are reductions in albedo (lower overall city reflectance) and loss of vegetation (less evapotranspiration). Reducing summer heat islands by planting vegetation (shade trees) and increasing surface albedos, saves cooling energy, allows down-sizing of air conditioners, lowers air-conditioning peak demand, and reduces the emission of CO{sub 2} and other pollutants from electric power plants. The focus of this multi-year project, jointly sponsored by SMUD and the California Institute for Energy Efficiency (CIEE), was to measure the direct cooling effects of trees and white surfaces (mainly roofs) in a few buildings in Sacramento. The first-year project was to design the experiment and obtain base case data. We also obtained limited post retrofit data for some sites. This report provides an overview of the project activities during the first year at six sites. The measurement period for some of the sites was limited to September and October, which are transitional cooling months in Sacramento and hence the interpretation of results only apply to this period. In one house, recoating the dark roof with a high-albedo coating rendered air conditioning unnecessary for the month of September (possible savings of up to 10 kWh per day and 2 kW of non-coincidental peak power). Savings of 50% relative to an identical base case bungalow were achieved when a school bungalow`s roof and southeast wall were coated with a high-albedo coating during the same period. Our measured data for the vegetation sites do not indicate conclusive results because shade trees were small and the cooling period was almost over. We need to collect more data over a longer cooling season in order to demonstrate savings conclusively.

  10. Thirty Years of Near Room Temperature Magnetic Cooling: Where we are Today and Future Prospects

    SciTech Connect (OSTI)

    K.A. Gschneidner, Jr; V.K. Pecharsky'

    2008-05-01T23:59:59.000Z

    The seminal study by Brown in 1976 showed that it was possible to use the magnetocaloric effect to produce a substantial cooling effect near room temperature. About 15 years later Green et al. built a device which actually cooled a load other than the magnetocaloric material itself and the heat exchange fluid. The major breakthrough, however, occurred in 1997 when the Ames Laboratory/Astronautics proof-of-principle refrigerator showed that magnetic refrigeration was competitive with conventional gas compression cooling. Since then, over 25 magnetic cooling units have been built and tested throughout the world. The current status of near room temperature magnetic cooling is reviewed, including a discussion of the major problems facing commercialization and potential solutions thereof. The future outlook for this revolutionary technology is discussed.

  11. Field Monitoring and Data Validation for Evaluating the Performance of Cool Storage Systems

    E-Print Network [OSTI]

    Elleson, J.S; Haberl, J.S.; Reddy, T.A.

    of site #t2 showing the configuration of the chillers, storage tank and campus load, and the locationsof the monitoringpoints. Note that a number of essential control valves are not shown in this diagram. In general, three operating modes are used at site... and ..", cooling from storage carry the campus load during on-peak periods. Instrumentation The instrumentation at this site consisted of sensors and data loggers that had been previously installed, and additional sensors that were added to complete the measurement...

  12. Compound cooling flow turbulator for turbine component

    DOE Patents [OSTI]

    Lee, Ching-Pang; Jiang, Nan; Marra, John J; Rudolph, Ronald J

    2014-11-25T23:59:59.000Z

    Multi-scale turbulation features, including first turbulators (46, 48) on a cooling surface (44), and smaller turbulators (52, 54, 58, 62) on the first turbulators. The first turbulators may be formed between larger turbulators (50). The first turbulators may be alternating ridges (46) and valleys (48). The smaller turbulators may be concave surface features such as dimples (62) and grooves (54), and/or convex surface features such as bumps (58) and smaller ridges (52). An embodiment with convex turbulators (52, 58) in the valleys (48) and concave turbulators (54, 62) on the ridges (46) increases the cooling surface area, reduces boundary layer separation, avoids coolant shadowing and stagnation, and reduces component mass.

  13. An all-optical ion-loading technique for scalable microtrap architectures

    E-Print Network [OSTI]

    R. J. Hendricks; D. M. Grant; P. F. Herskind; A. Dantan; M. Drewsen

    2007-05-01T23:59:59.000Z

    An experimental demonstration of a novel all-optical technique for loading ion traps, that has particular application to microtrap architectures, is presented. The technique is based on photo-ionisation of an atomic beam created by pulsed laser ablation of a calcium target, and provides improved temporal control compared to traditional trap loading methods. Ion loading rates as high as 125 ions per second have so far been observed. Also described are observations of trap loading where Rydberg state atoms are photo-ionised by the ion Doppler cooling laser.

  14. Data Center Economizer Cooling with Tower Water; Demonstration of a Dual Heat Exchanger Rack Cooling Device

    E-Print Network [OSTI]

    Greenberg, Steve

    2014-01-01T23:59:59.000Z

    eliminating the need for compressor cooling. The plant modelunique design (using compressor cooling only when needed by

  15. SRS reactor control rod cooling without normal forced convection cooling

    SciTech Connect (OSTI)

    Smith, D.C. (SAIC, Albuquerque, NM (United States)); Easterling, T.C. (Westinghouse Savannah River Co., Aiken, SC (United States))

    1993-01-01T23:59:59.000Z

    This paper describes an analytical study of the coolability of the control rods in the Savannah River site (SRS) K production reactor under conditions of loss of normal forced convection cooling. The study was performed as part of the overall safety analysis of the reactor supporting its restart. The analysis addresses the buoyancy-driven boiling flow over the control rods that occurs when forced cooling is lost. The objective of the study was to demonstrate that the control rods will remain cooled (i.e., no melting) at powers representative of those anticipated for restart of the reactor.

  16. High field solenoids for muon cooling

    E-Print Network [OSTI]

    Green, M.A.

    2011-01-01T23:59:59.000Z

    Field Solenoids for Muon Cooling M. A. Green a , Y. EyssaField Solenoids for Muon Cooling · M. A. Green a, Y. EyssaABSTRA CT The proposed cooling system for the muon collider

  17. Cooling arrangement for a tapered turbine blade

    DOE Patents [OSTI]

    Liang, George (Palm City, FL)

    2010-07-27T23:59:59.000Z

    A cooling arrangement (11) for a highly tapered gas turbine blade (10). The cooling arrangement (11) includes a pair of parallel triple-pass serpentine cooling circuits (80,82) formed in an inner radial portion (50) of the blade, and a respective pair of single radial channel cooling circuits (84,86) formed in an outer radial portion (52) of the blade (10), with each single radial channel receiving the cooling fluid discharged from a respective one of the triple-pass serpentine cooling circuit. The cooling arrangement advantageously provides a higher degree of cooling to the most highly stressed radially inner portion of the blade, while providing a lower degree of cooling to the less highly stressed radially outer portion of the blade. The cooling arrangement can be implemented with known casting techniques, thereby facilitating its use on highly tapered, highly twisted Row 4 industrial gas turbine blades that could not be cooled with prior art cooling arrangements.

  18. Load Response Fundamentally Matches Power System Reliability Requirements

    SciTech Connect (OSTI)

    Kirby, Brendan J [ORNL] [ORNL

    2007-01-01T23:59:59.000Z

    Responsive load is the most underutilized reliability resource available to the power system. Loads are frequently barred from providing the highest value and most critical reliability services; regulation and spinning reserve. Advances in communications and control technology now make it possible for some loads to provide both of these services. The limited storage incorporated in some loads better matches their response capabilities to the fast reliability-service markets than to the hourly energy markets. Responsive loads are frequently significantly faster and more accurate than generators, increasing power system reliability. Incorporating fast load response into microgrids further extends the reliability response capabilities that can be offered to the interconnected power system. The paper discusses the desired reliability responses, why this matches some loads' capabilities, what the advantages are for the power system, implications for communications and monitoring requirements, and how this resource can be exploited.

  19. A Momentum-Zonal Model for Predicting Zone Airflow and Temperature Distributions to Enhance Building Load and Energy Simulations

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    and to err on the side of complete mixing. The model has been coupled to the heat balance model and tested/kg·K ] air specific heat at constant pressure g [m/s2 ] gravity force vector hc [W/m2 ·K] surface convection on load calculations. Results for cooling and heating loads are compared to the traditional complete

  20. Low reflectance radio frequency load

    DOE Patents [OSTI]

    Ives, R. Lawrence; Mizuhara, Yosuke M

    2014-04-01T23:59:59.000Z

    A load for traveling microwave energy has an absorptive volume defined by cylindrical body enclosed by a first end cap and a second end cap. The first end cap has an aperture for the passage of an input waveguide with a rotating part that is coupled to a reflective mirror. The inner surfaces of the absorptive volume consist of a resistive material or are coated with a coating which absorbs a fraction of incident RF energy, and the remainder of the RF energy reflects. The angle of the reflector and end caps is selected such that reflected RF energy dissipates an increasing percentage of the remaining RF energy at each reflection, and the reflected RF energy which returns to the rotating mirror is directed to the back surface of the rotating reflector, and is not coupled to the input waveguide. Additionally, the reflector may have a surface which generates a more uniform power distribution function axially and laterally, to increase the power handling capability of the RF load. The input waveguide may be corrugated for HE11 mode input energy.

  1. Non-intrusive cooling system

    DOE Patents [OSTI]

    Morrison, Edward F. (Burnt Hills, NY); Bergman, John W. (Barrington, NH)

    2001-05-22T23:59:59.000Z

    A readily replaceable heat exchange cooling jacket for applying fluid to a system conduit pipe. The cooling jacket comprises at least two members, separable into upper and lower portions. A chamber is formed between the conduit pipe and cooling jacket once the members are positioned about the pipe. The upper portion includes a fluid spray means positioned above the pipe and the bottom portion includes a fluid removal means. The heat exchange cooling jacket is adaptable with a drain tank, a heat exchanger, a pump and other standard equipment to provide a system for removing heat from a pipe. A method to remove heat from a pipe, includes the steps of enclosing a portion of the pipe with a jacket to form a chamber between an outside surface of the pipe and the cooling jacket; spraying cooling fluid at low pressure from an upper portion of the cooling jacket, allowing the fluid to flow downwardly by gravity along the surface of the pipe toward a bottom portion of the chamber; and removing the fluid at the bottom portion of the chamber.

  2. Cool Cities, Cool Planet (LBNL Science at the Theater)

    ScienceCinema (OSTI)

    Rosenfeld, Arthur; Pomerantz, Melvin; Levinson, Ronnen

    2011-04-28T23:59:59.000Z

    Science at the Theater: Berkeley Lab scientists discuss how cool roofs can cool your building, your city ... and our planet. Arthur Rosenfeld, Professor of Physics Emeritus at UC Berkeley, founded the Berkeley Lab Center for Building Science in 1974. He served on the California Energy Commission from 2000 to 2010 and is commonly referred to as California's godfather of energy efficiency. Melvin Pomerantz is a member of the Heat Island Group at Berkeley Lab. Trained as a physicist at UC Berkeley, he specializes in research on making cooler pavements and evaluating their effects. Ronnen Levinson is a staff scientist at Berkeley Lab and the acting leader of its Heat Island Group. He has developed cool roofing and paving materials and helped bring cool roof requirements into building energy efficiency standards.

  3. The Cooling of Compact Stars

    E-Print Network [OSTI]

    Dany Page; Ulrich Geppert; Fridolin Weber

    2005-08-01T23:59:59.000Z

    The cooling of a compact star depends very sensitively on the state of dense matter at supranuclear densities, which essentially controls the neutrino emission, as well as on the structure of the stellar outer layers which control the photon emission. Open issues concern the hyperon population, the presence of meson condensates, superfluidity and superconductivity, and the transition of confined hadronic matter to quark matter. This paper describes these issues and presents cooling calculations based on a broad collection of equations of state for neutron star matter and strange matter. These results are tested against the body of observed cooling data.

  4. CO$_2$ cooling experience (LHCb)

    E-Print Network [OSTI]

    Van Lysebetten, Ann; Verlaat, Bart

    2007-01-01T23:59:59.000Z

    The thermal control system of the LHCb VErtex LOcator (VELO) is a two-phase C0$_2$ cooling system based on the 2-Phase Accumulator Controlled Loop (2PACL) method. Liquid carbon dioxide is mechanically pumped in a closed loop, chilled by a water-cooled freon chiller and evaporated in the VELO detector. The main goal of the system is the permanent cooling of the VELO silicon sensors and of the heat producing front-end electronics inside a vacuum environment. This paper describes the design and the performance of the system. First results obtained during commissioning are also presented.

  5. Improving Process Cooling Tower Eddiciency

    E-Print Network [OSTI]

    Turpish, W.

    2013-01-01T23:59:59.000Z

    -Fifth Industrial Energy Technology Conference New Orleans, LA. May 21-24, 2013 2 Types of Cooling Towers Forced Draft Towers ESL-IE-13-05-08 Proceedings of the Thrity-Fifth Industrial Energy Technology Conference New Orleans, LA. May 21-24, 2013 3 Types... of Cooling Towers Induced draft Cross-flow ESL-IE-13-05-08 Proceedings of the Thrity-Fifth Industrial Energy Technology Conference New Orleans, LA. May 21-24, 2013 4 Types of Cooling Towers Induced Draft-Counter Flow Two-cell Single Cell Four Cell...

  6. NightCool: An Innovative Residential Nocturnal Radiation Cooling Concept

    E-Print Network [OSTI]

    Parker, D. S.

    2006-01-01T23:59:59.000Z

    ) will store sensible cooling to reduce daytime space conditioning needs. The concept may also be able to help with daytime heating needs in cold climates as well by using a darker roof as a solar collector. SIMULATION MODEL Within the assessment, we...NIGHTCOOL: AN INNOVATIVE RESIDENTIAL NOCTURNAL RADIATION COOLING CONCEPT Danny S. Parker John Sherwin Principal Research Scientist Research Engineer Florida Solar Energy Center Cocoa, FL ABSTRACT Using a...

  7. Best Management Practice #10: Cooling Tower Management

    Broader source: Energy.gov [DOE]

    Cooling towers regulate temperature by dissipating heat from recirculating water used to cool chillers, air-conditioning equipment, or other process equipment. Heat is rejected from the tower...

  8. Direct-Cooled Power Electronic Substrate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    70C standalone cooling loop * Three dimensional inverter packaging and eliminating the heat exchanger volume by directly cooling the DBC result in compact, light weight design...

  9. Compressor bleed cooling fluid feed system

    DOE Patents [OSTI]

    Donahoo, Eric E; Ross, Christopher W

    2014-11-25T23:59:59.000Z

    A compressor bleed cooling fluid feed system for a turbine engine for directing cooling fluids from a compressor to a turbine airfoil cooling system to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The compressor bleed cooling fluid feed system may enable cooling fluids to be exhausted from a compressor exhaust plenum through a downstream compressor bleed collection chamber and into the turbine airfoil cooling system. As such, the suction created in the compressor exhaust plenum mitigates boundary layer growth along the inner surface while providing flow of cooling fluids to the turbine airfoils.

  10. Load calculation and system evaluation for electric vehicle climate control

    SciTech Connect (OSTI)

    Aceves-Saborio, S.; Comfort, W.J. III

    1993-10-27T23:59:59.000Z

    Providing air conditioning for electric vehicles (EVs) represents an important challenge, because vapor compression air conditioners, which are common in gasoline powered vehicles, may consume a substantial part of the total energy stored in the EV battery. This report consists of two major parts. The first part is a cooling and heating load calculation for electric vehicles. The second part is an evaluation of several systems that can be used to provide the desired cooling and heating in EVs. Four cases are studied. Short range and full range EVs are each analyzed twice, first with the regular vehicle equipment, and then with a fan and heat reflecting windows, to reduce hot soak. Recent legislation has allowed the use of combustion heating whenever the ambient temperature drops below 5{degrees}C. This has simplified the problem of heating, and made cooling the most important problem. Therefore, systems described in this project are designed for cooling, and their applicability to heating at temperatures above 5{degrees}C is described. If the air conditioner systems cannot be used to cover the whole heating load at 5{degrees}C, then the vehicle requires a complementary heating system (most likely a heat recovery system or electric resistance heating). Air conditioners are ranked according to their overall weight. The overall weight is calculated by adding the system weight and the weight of the battery necessary to provide energy for system operation.

  11. Load research manual. Volume 1. Load research procedures

    SciTech Connect (OSTI)

    Brandenburg, L.; Clarkson, G.; Grund, Jr., C.; Leo, J.; Asbury, J.; Brandon-Brown, F.; Derderian, H.; Mueller, R.; Swaroop, R.

    1980-11-01T23:59:59.000Z

    This three-volume manual presents technical guidelines for electric utility load research. Special attention is given to issues raised by the load data reporting requirements of the Public Utility Regulatory Policies Act of 1978 and to problems faced by smaller utilities that are initiating load research programs. In Volumes 1 and 2, procedures are suggested for determining data requirements for load research, establishing the size and customer composition of a load survey sample, selecting and using equipment to record customer electricity usage, processing data tapes from the recording equipment, and analyzing the data. Statistical techniques used in customer sampling are discussed in detail. The costs of load research also are estimated, and ongoing load research programs at three utilities are described. The manual includes guides to load research literature and glossaries of load research and statistical terms.

  12. Test Report on ISR Double-Loop, Spray-Cooled Inverter

    SciTech Connect (OSTI)

    Hsu, John S [ORNL; Coomer, Chester [ORNL; Campbell, Steven L [ORNL; Wiles, Randy H [ORNL; Lowe, Kirk T [ORNL; McFee, Marshall T [ORNL

    2007-02-01T23:59:59.000Z

    The Isothermal Systems Research, Inc. (ISR) double-loop, two-phase spray cooling system was designed to use 85 C transmission oil to cool a heat exchanger via a second cooling loop. The heat exchanger condenses the working fluid vapor back to liquid inside a sealed enclosure to allow for continuous spray cooling of electronics. In the ORNL tests, 85 C water/ethylene/glycol (WEG), which has better thermal properties than transmission oil, was substituted for the transmission oil. Because the ISR spray-cooling system requires a second cooling loop, the final inverter might be inherently larger than inverters that do not require a second-loop cooling system. The ISR test setup did not include a dc bus capacitor. Because the insulated gate bipolar transistor (IGBT) conduction test indicated that the ISR test setup could not be properly loaded thermally, no switching tests were conducted. Therefore it was not necessary to attach external capacitors outside the test setup. During load situations not exceeding 400A, the WEG inlet temperature was higher than the WEG outlet temperature. This meant that the 85 C WEG heat exchanger was not cooling the inverter and became a thermal load to the inverter. Only when the load was higher than 400A with a higher coolant temperature and the release valve actuated did the WEG heat exchanger start to cool the 2-phase coolant. The inverter relied strongly on the cooling of the huge aluminum enclosure located inside the ventilation chamber. In a hybrid vehicle, the inverter is situated under the hood, where the dependency on cooling provided by the enclosure may become a problem. The IGBT power dissipation with both sides being spray cooled was around 34 W/cm{sup 2} at 403A, with 995W total IGBT loss at 113.5 C projected junction temperature before the release valve was actuated. The current loading could rise higher than 403 A before reaching the 125 C junction temperature limit if the pressure buildup inside the enclosure could be prevented by improving the secondary cooling loop. This 34 w/cm{sup 2} was an average across all dies. There is no doubt that the cooling capability of the ISR spray-cooling test setup can be improved by (1) lowering the WEG inlet temperature from 85 C to say 70 C, this would condense the vapor better and lower the container pressure, (2) modification of the vapor condenser inside the container to cool both the vapor and the liquid of the 2-phase coolant, in the present setup only the vapor is cooled by the condenser inside the container, and (3) lower the liquid temperature through (1) and (2) to avoid the vaporization that causes cavitations in the pump for ensuring the pump's life expectance.

  13. contingency Nominal loading margin

    E-Print Network [OSTI]

    Member Member Fellow Electrical and Computer Engineering Department University of Wisconsin, Madison WI 53706 USA Abstract: The change in the loading margin to voltage collapse when line outages occur the line outages of the IEEE 118 bus system. The results show the effective ranking of contingencies

  14. Cool Storage Performance 

    E-Print Network [OSTI]

    Eppelheimer, D. M.

    1985-01-01T23:59:59.000Z

    Utilities have promoted the use of electric heat and thermal storage to increase off peak usage of power. High daytime demand charges and enticing discounts for off peak power have been used as economic incentives to promote thermal storage systems...

  15. Advance in MEIC cooling studies

    SciTech Connect (OSTI)

    Zhang, Yuhong [JLAB, Newport News, VA (United States); Derbenev, Ya. [JLAB, Newport News, VA (United States); Douglas, D. [JLAB, Newport News, VA (United States); Hutton, A. [JLAB, Newport News, VA (United States); Kimber, A. [JLAB, Newport News, VA (United States); Li, R. [JLAB, Newport News, VA (United States); Nissen, E. [JLAB, Newport News, VA (United States); Tennant, [JLAB, Newport News, VA (United States); Zhang, H. [JLAB, Newport News, VA (United States)

    2013-06-01T23:59:59.000Z

    Cooling of ion beams is essential for achieving a high luminosity for MEIC at Jefferson Lab. In this paper, we present the design concept of the electron cooling system for MEIC. In the design, two facilities are required for supporting a multi-staged cooling scheme; one is a 2 MeV DC cooler in the ion pre-booster; the other is a high electron energy (up to 55 MeV) ERL-circulator cooler in the collider ring. The simulation studies of beam dynamics in an ERL-circulator cooler are summarized and followed by a report on technology development for this cooler. We also discuss two proposed experiments for demonstrating high energy cooling with a bunched electron beam and the ERL-circulator cooler.

  16. Qantum theory of optomechanical cooling

    E-Print Network [OSTI]

    Florian Marquardt; A. A. Clerk; S. M. Girvin

    2008-03-07T23:59:59.000Z

    We review the quantum theory of cooling of a mechanical oscillator subject to the radiation pressure force due to light circulating inside a driven optical cavity. Such optomechanical setups have been used recently in a series of experiments by various groups to cool mechanical oscillators (such as cantilevers) by factors reaching $10^{5}$, and they may soon go to the ground state of mechanical motion. We emphasize the importance of the sideband-resolved regime for ground state cooling, where the cavity ring-down rate is smaller than the mechanical frequency. Moreover, we illustrate the strong coupling regime, where the cooling rate exceeds the cavity ring-down rate and where the driven cavity resonance and the mechanical oscillation hybridize.

  17. Cooling Towers, Energy Conservation Machines

    E-Print Network [OSTI]

    Burger, R.

    1980-01-01T23:59:59.000Z

    Cooling towers, in all too many industrial plants, are often the neglected units of the process chain which are hidden bonanzas for energy conservation and dollar savings. By lowering the entire systems temperature by the use of colder water...

  18. Cooling Towers, Energy Conservation Strategies

    E-Print Network [OSTI]

    Burger, R.

    1983-01-01T23:59:59.000Z

    system. While our engineers are pretty well convinced of the importance of their sophisticated equipment, and rightly so, they take the cooling towers and the cold water returning from them for granted. Design Conditions are specified...

  19. A Successful Cool Storage Rate 

    E-Print Network [OSTI]

    Ahrens, A. C.; Sobey, T. M.

    1994-01-01T23:59:59.000Z

    Houston Lighting & Power (HL&P) initiated design and development of its commercial cool storage program as part of an integrated resource planning process with a targeted 225 MW of demand reduction through DSM. Houston's ...

  20. A Successful Cool Storage Rate

    E-Print Network [OSTI]

    Ahrens, A. C.; Sobey, T. M.

    1994-01-01T23:59:59.000Z

    Houston Lighting & Power (HL&P) initiated design and development of its commercial cool storage program as part of an integrated resource planning process with a targeted 225 MW of demand reduction through DSM. Houston's extensive commercial air...

  1. A resting bottom sodium cooled fast reactor

    SciTech Connect (OSTI)

    Costes, D. [Consultant (France)

    2012-07-01T23:59:59.000Z

    This follows ICAPP 2011 paper 11059 'Fast Reactor with a Cold Bottom Vessel', on sodium cooled reactor vessels in thermal gradient, resting on soil. Sodium is frozen on vessel bottom plate, temperature increasing to the top. The vault cover rests on the safety vessel, the core diagrid welded to a toric collector forms a slab, supported by skirts resting on the bottom plate. Intermediate exchangers and pumps, fixed on the cover, plunge on the collector. At the vessel top, a skirt hanging from the cover plunges into sodium, leaving a thin circular slit partially filled by sodium covered by argon, providing leak-tightness and allowing vessel dilatation, as well as a radial relative holding due to sodium inertia. No 'air conditioning' at 400 deg. C is needed as for hanging vessels, and this allows a large economy. The sodium volume below the slab contains isolating refractory elements, stopping a hypothetical corium flow. The small gas volume around the vessel limits any LOCA. The liner cooling system of the concrete safety vessel may contribute to reactor cooling. The cold resting bottom vessel, proposed by the author for many years, could avoid the complete visual inspection required for hanging vessels. However, a double vessel, containing support skirts, would allow introduction of inspecting devices. Stress limiting thermal gradient is obtained by filling secondary sodium in the intermediate space. (authors)

  2. Turbine airfoil with controlled area cooling arrangement

    DOE Patents [OSTI]

    Liang, George

    2010-04-27T23:59:59.000Z

    A gas turbine airfoil (10) includes a serpentine cooling path (32) with a plurality of channels (34,42,44) fluidly interconnected by a plurality of turns (38,40) for cooling the airfoil wall material. A splitter component (50) is positioned within at least one of the channels to bifurcate the channel into a pressure-side channel (46) passing in between the outer wall (28) and the inner wall (30) of the pressure side (24) and a suction-side channel (48) passing in between the outer wall (28) and the inner wall (30) of the suction side (26) longitudinally downstream of an intermediate height (52). The cross-sectional area of the pressure-side channel (46) and suction-side channel (48) are thereby controlled in spite of an increasing cross-sectional area of the airfoil along its longitudinal length, ensuring a sufficiently high mach number to provide a desired degree of cooling throughout the entire length of the airfoil.

  3. Cool Roofs: Your Questions Answered

    Broader source: Energy.gov [DOE]

    When Secretary Chu announced that the Department of Energy had installed a “cool roof” atop the west building of our Washington, DC headquarters, it elicited a fair number of questions from his Facebook fans. We decided to reach out to the people behind the project for their insight on the specific benefits of switching to a cool roof, and the process that went into making that choice.

  4. Cooling Techniques for Trapped Ions

    E-Print Network [OSTI]

    Daniel M. Segal; Christof Wunderlich

    2014-09-24T23:59:59.000Z

    This book chapter gives an introduction to, and an overview of, methods for cooling trapped ions. The main addressees are researchers entering the field. It is not intended as a comprehensive survey and historical account of the extensive literature on this topic. We present the physical ideas behind several cooling schemes, outline their mathematical description, and point to relevant literature useful for a more in-depth study of this topic.

  5. Quantum limit of photothermal cooling

    E-Print Network [OSTI]

    Simone De Liberato; Neill Lambert; Franco Nori

    2010-11-30T23:59:59.000Z

    We study the problem of cooling a mechanical oscillator using the photothermal (bolometric) force. Contrary to previous attempts to model this system, we take into account the noise effects due to the granular nature of photon absorption. This allows us to tackle the cooling problem down to the noise dominated regime and to find reasonable estimates for the lowest achievable phonon occupation in the cantilever.

  6. An assessment of desiccant cooling and dehumidification technology

    SciTech Connect (OSTI)

    Mei, V.C.; Chen, F.C. (Oak Ridge National Lab., TN (United States)); Lavan, Z. (Illinois Inst. of Tech., Chicago, IL (United States)); Collier, R.K. Jr. (Collier Engineering Services, Merritt Island, FL (United States)); Meckler, G. (Gershon Meckler Associates, P.C., Herndon, VA (United States))

    1992-07-01T23:59:59.000Z

    Desiccant systems are heat-actuated cooling and dehumidification technology. With the recent advances in this technology, desiccant systems can now achieve a primary energy coefficient of performance (COP) between 1.3 and 1.5, with potential to go to 1.7 and higher. It is becoming one of the most promising alternatives to conventional cooling systems. Two important and well-known advantages of desiccant cooling systems are that they are CFC free and they can reduce the electricity peak load. Another important but lesser-known advantage of desiccant technology is its potential for energy conservation. The energy impact study in this report indicated that a possible 13% energy saving in residential cooling and 8% in commercial cooling is possible. Great energy saving potential also exists in the industrial sector if industrial waste heat can be used for desiccant regeneration. The latest study on desiccant-integrated building heating, ventilating, and air conditioning (HVAC) systems indicated that the initial cost for the conventional cooling equipment was greatly reduced by using desiccant technology because of downsized compressors, fans, and ductworks. This cost reduction was more than enough to offset the cost of desiccant equipment. Besides, the system operation cost was also reduced. All these indicate that desiccant systems are also cost effective. This study provides an updated state-of-the-art assessment forsiccant technology in the field of desiccant materials, systems, computer models, and theoretical analyses. From this information the technology options were derived and the future research and development needs were identified. Because desiccant technology has already been applied in the commercial building sector with very encouraging results, it is expected that future market breakthroughs will probably start in this sector. A market analysis for the commercial building application is therefore included.

  7. Effectiveness of Cool Roof Coatings with Ceramic Particles

    SciTech Connect (OSTI)

    Brehob, Ellen G [ORNL] [ORNL; Desjarlais, Andre Omer [ORNL] [ORNL; Atchley, Jerald Allen [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    Liquid applied coatings promoted as cool roof coatings, including several with ceramic particles, were tested at Oak Ridge National Laboratory (ORNL), Oak Ridge, Tenn., for the purpose of quantifying their thermal performances. Solar reflectance measurements were made for new samples and aged samples using a portable reflectometer (ASTM C1549, Standard Test Method for Determination of Solar Reflectance Near Ambient Temperature Using a Portable Solar Reflectometer) and for new samples using the integrating spheres method (ASTM E903, Standard Test Method for Solar Absorptance, Reflectance, and Transmittance of Materials Using Integrating Spheres). Thermal emittance was measured for the new samples using a portable emissometer (ASTM C1371, Standard Test Method for Determination of Emittance of Materials Near Room 1 Proceedings of the 2011 International Roofing Symposium Temperature Using Portable Emissometers). Thermal conductivity of the coatings was measured using a FOX 304 heat flow meter (ASTM C518, Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus). The surface properties of the cool roof coatings had higher solar reflectance than the reference black and white material, but there were no significant differences among coatings with and without ceramics. The coatings were applied to EPDM (ethylene propylene diene monomer) membranes and installed on the Roof Thermal Research Apparatus (RTRA), an instrumented facility at ORNL for testing roofs. Roof temperatures and heat flux through the roof were obtained for a year of exposure in east Tennessee. The field tests showed significant reduction in cooling required compared with the black reference roof (~80 percent) and a modest reduction in cooling compared with the white reference roof (~33 percent). The coating material with the highest solar reflectivity (no ceramic particles) demonstrated the best overall thermal performance (combination of reducing the cooling load cost and not incurring a large heating penalty cost) and suggests solar reflectivity is the significant characteristic for selecting cool roof coatings.

  8. 1999 Pacific Northwest Loads and Resources Study.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1999-12-01T23:59:59.000Z

    The Pacific Northwest Loads and Resources Study (White Book) is published annually by BPA and establishes the planning basis for supplying electricity to customers. It serves a dual purpose. First, the White Book presents projections of regional and Federal system load and resource capabilities, along with relevant definitions and explanations. Second, the White Book serves as a benchmark for annual BPA determinations made pursuant to its regional power sales contracts. Specifically, BPA uses the information in the White Book for determining the notice required when customers request to increase or decrease the amount of power purchased from BPA. The White Book will not be used in calculations for the 2002 regional power sales contract subscription process. The White Book compiles information obtained from several formalized resource planning reports and data submittals, including those from the Northwest Power Planning Council (Council) and the Pacific Northwest Utilities Conference Committee (PNUCC). The White Book is not an operational planning guide, nor is it used for determining BPA revenues. Operation of the Federal Columbia River Power System (FCRPS) is based on a set of criteria different from that used for resource planning decisions. Operational planning is dependent upon real-time or near-term knowledge of system conditions, including expectations of river flows and runoff, market opportunities, availability of reservoir storage, energy exchanges, and other factors affecting the dynamics of operating a power system. In this loads and resources study, resource availability is compared with a medium forecast of electricity consumption. The forecasted future electricity demands--firm loads--are subtracted from the projected capability of existing and ''contracted for'' resources to determine whether BPA and the region will be surplus or deficit. If Federal system resources are greater than loads in any particular year or month, there is a surplus of energy and/or capacity, which BPA may use or market to increase revenues. Conversely, if Federal system firm loads exceed available resources, there is a deficit of energy and/or capacity and BPA would add conservation or contract purchases as needed to meet its firm loads. The load forecast is derived by using econometric models and analysis to predict the loads that will be placed on electric utilities in the region. This study incorporates information on contract obligations and contract resources, combined with the resource capabilities obtained from public utility and investor-owned utility (IOU) customers through their annual data submittals to the PNUCC, from BPA's Firm Resource Exhibit (FRE Exhibit I) submittals, and through analysis of the Federal hydroelectric power system. The loads and resources analysis in this study simulates the operation of the power system under the Pacific Northwest Coordination Agreement (PNCA) produced by the Pacific Northwest Coordinating Group. The PNCA defines the planning and operation of the regional hydrosystem. The 1999 White Book is presented in two documents: (1) this summary of Federal system and Pacific Northwest region loads and resources; and (2) a technical appendix (available electronically only) detailing the loads and resources for each major Pacific Northwest generating utility. This analysis updates the December 1998 Pacific Northwest Loads and Resources Study. This analysis projects the yearly average energy consumption and resource availability for Operating Years (OY) 2000-01 through 2009-10. The study shows the Federal system's and the region's monthly estimated maximum electricity demand, monthly energy demand, monthly energy generation, and monthly maximum generating capability--capacity--for OY 2000-01, 2004-05, and 2009-10. The Federal system and regional monthly capacity surplus/deficit projections are summarized for 10 operating years. This document analyzes the Pacific Northwest's projected loads and available generating resources in two parts: (1) the loads and resources of the Federal system, for wh

  9. Air-to-Water Heat Pumps With Radiant Delivery in Low-Load Homes

    SciTech Connect (OSTI)

    Backman, C.; German, A.; Dakin, B.; Springer, D.

    2013-12-01T23:59:59.000Z

    Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump (AWHP) systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 to test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

  10. "Hot" for Warm Water Cooling

    SciTech Connect (OSTI)

    IBM Corporation; Energy Efficient HPC Working Group; Hewlett Packard Corporation; SGI; Cray Inc.; Intel Corporation; U.S. Army Engineer Research Development Center; Coles, Henry; Ellsworth, Michael; Martinez, David J.; Bailey, Anna-Maria; Banisadr, Farhad; Bates, Natalie; Coghlan, Susan; Cowley, David E.; Dube, Nicholas; Fields, Parks; Greenberg, Steve; Iyengar, Madhusudan; Kulesza, Peter R.; Loncaric, Josip; McCann, Tim; Pautsch, Greg; Patterson, Michael K.; Rivera, Richard G.; Rottman, Greg K.; Sartor, Dale; Tschudi, William; Vinson, Wade; Wescott, Ralph

    2011-08-26T23:59:59.000Z

    Liquid cooling is key to reducing energy consumption for this generation of supercomputers and remains on the roadmap for the foreseeable future. This is because the heat capacity of liquids is orders of magnitude larger than that of air and once heat has been transferred to a liquid, it can be removed from the datacenter efficiently. The transition from air to liquid cooling is an inflection point providing an opportunity to work collectively to set guidelines for facilitating the energy efficiency of liquid-cooled High Performance Computing (HPC) facilities and systems. The vision is to use non-compressor-based cooling, to facilitate heat re-use, and thereby build solutions that are more energy-efficient, less carbon intensive and more cost effective than their air-cooled predecessors. The Energy Efficient HPC Working Group is developing guidelines for warmer liquid-cooling temperatures in order to standardize facility and HPC equipment, and provide more opportunity for reuse of waste heat. This report describes the development of those guidelines.

  11. Stopping Cooling Flows with Jets

    E-Print Network [OSTI]

    Fabrizio Brighenti; William G. Mathews

    2006-01-24T23:59:59.000Z

    We describe 2D gasdynamical models of jets that carry mass as well as energy to the hot gas in galaxy clusters. These flows have many attractive attributes for solving the galaxy cluster cooling flow problem: Why the hot gas temperature and density profiles resemble cooling flows but show no spectral evidence of cooling to low temperatures. Using an approximate model for the cluster A1795, we show that mass-carrying jets can reduce the overall cooling rate to or below the low values implied by X-ray spectra. Biconical subrelativistic jets, described with several ad hoc parameters, are assumed to be activated when gas flows toward or cools near a central supermassive black hole. As the jets proceed out from the center they entrain more and more ambient gas. The jets lose internal pressure by expansion and are compressed by the ambient cluster gas, becoming rather difficult to observe. For a wide variety of initial jet parameters and several feedback scenarios the global cooling can be suppressed for many Gyrs while maintaining cluster temperature profiles similar to those observed. The intermittancy of the feedback generates multiple generations of X-ray cavities similar to those observed in the Perseus Cluster and elsewhere.

  12. Energy Efficient Electronics Cooling Project

    SciTech Connect (OSTI)

    Steve O'Shaughnessey; Tim Louvar; Mike Trumbower; Jessica Hunnicutt; Neil Myers

    2012-02-17T23:59:59.000Z

    Parker Precision Cooling Business Unit was awarded a Department of Energy grant (DE-EE0000412) to support the DOE-ITP goal of reducing industrial energy intensity and GHG emissions. The project proposed by Precision Cooling was to accelerate the development of a cooling technology for high heat generating electronics components. These components are specifically related to power electronics found in power drives focused on the inverter, converter and transformer modules. The proposed cooling system was expected to simultaneously remove heat from all three of the major modules listed above, while remaining dielectric under all operating conditions. Development of the cooling system to meet specific customer's requirements and constraints not only required a robust system design, but also new components to support long system functionality. Components requiring further development and testing during this project included pumps, fluid couplings, cold plates and condensers. All four of these major categories of components are required in every Precision Cooling system. Not only was design a key area of focus, but the process for manufacturing these components had to be determined and proven through the system development.

  13. WRI 50: Strategies for Cooling Electric Generating Facilities Utilizing Mine Water

    SciTech Connect (OSTI)

    Joseph J. Donovan; Brenden Duffy; Bruce R. Leavitt; James Stiles; Tamara Vandivort; Paul Ziemkiewicz

    2004-11-01T23:59:59.000Z

    Power generation and water consumption are inextricably linked. Because of this relationship DOE/NETL has funded a competitive research and development initiative to address this relationship. This report is part of that initiative and is in response to DOE/NETL solicitation DE-PS26-03NT41719-0. Thermal electric power generation requires large volumes of water to cool spent steam at the end of the turbine cycle. The required volumes are such that new plant siting is increasingly dependent on the availability of cooling circuit water. Even in the eastern U.S., large rivers such as the Monongahela may no longer be able to support additional, large power stations due to subscription of flow to existing plants, industrial, municipal and navigational requirements. Earlier studies conducted by West Virginia University (WV 132, WV 173 phase I, WV 173 Phase II, WV 173 Phase III, and WV 173 Phase IV in review) have identified that a large potential water resource resides in flooded, abandoned coal mines in the Pittsburgh Coal Basin, and likely elsewhere in the region and nation. This study evaluates the technical and economic potential of the Pittsburgh Coal Basin water source to supply new power plants with cooling water. Two approaches for supplying new power plants were evaluated. Type A employs mine water in conventional, evaporative cooling towers. Type B utilizes earth-coupled cooling with flooded underground mines as the principal heat sink for the power plant reject heat load. Existing mine discharges in the Pittsburgh Coal Basin were evaluated for flow and water quality. Based on this analysis, eight sites were identified where mine water could supply cooling water to a power plant. Three of these sites were employed for pre-engineering design and cost analysis of a Type A water supply system, including mine water collection, treatment, and delivery. This method was also applied to a ''base case'' river-source power plant, for comparison. Mine-water system cost estimates were then compared to the base-case river source estimate. We found that the use of net-alkaline mine water would under current economic conditions be competitive with a river-source in a comparable-size water cooling system. On the other hand, utilization of net acidic water would be higher in operating cost than the river system by 12 percent. This does not account for any environmental benefits that would accrue due to the treatment of acid mine drainage, in many locations an existing public liability. We also found it likely that widespread adoption of mine-water utilization for power plant cooling will require resolution of potential liability and mine-water ownership issues. In summary, Type A mine-water utilization for power plant cooling is considered a strong option for meeting water needs of new plant in selected areas. Analysis of the thermal and water handling requirements for a 600 megawatt power plant indicated that Type B earth coupled cooling would not be feasible for a power plant of this size. It was determined that Type B cooling would be possible, under the right conditions, for power plants of 200 megawatts or less. Based on this finding the feasibility of a 200 megawatt facility was evaluated. A series of mines were identified where a Type B earth-coupled 200 megawatt power plant cooling system might be feasible. Two water handling scenarios were designed to distribute heated power-plant water throughout the mines. Costs were developed for two different pumping scenarios employing a once-through power-plant cooling circuit. Thermal and groundwater flow simulation models were used to simulate the effect of hot water injection into the mine under both pumping strategies and to calculate the return-water temperature over the design life of a plant. Based on these models, staged increases in required mine-water pumping rates are projected to be part of the design, due to gradual heating and loss of heat-sink efficiency of the rock sequence above the mines. Utilizing pumping strategy No.1 (two mines) capital costs were 25 percent lower a

  14. Charge Separation for Muon Collider Cooling

    SciTech Connect (OSTI)

    Palmer, R.B.; Fernow; R.C.

    2011-03-28T23:59:59.000Z

    Most schemes for six dimensional muon ionization cooling work for only one sign. It is then necessary to have charge separation prior to that cooling. Schemes of charge separation using bent solenoids are described, and their simulated performances reported. It is found that for efficient separation, it should take place at somewhat higher momenta than commonly used for the cooling. Charge separation using bent solenoids can be effective if carefully designed. Bent solenoids can generate dispersion from 'momentum drift', but can spoil emittance from 'amplitude drift'. Abrupt entry into a bent solenoid causes emittance growth, but matching using integral {lambda} lengths, or Norem's method, corrects this problem. Reverse bending removes the dispersion and reduces 'amplitude drift', but only if there is no rf until after all bending. The main problem is bunch lengthening and distortion from the long transports without rf. At 230 MeV/c, even with a higher field of 3 T, non-linearities increase the 6D emittance by 117% and give 13% loss, which is not acceptable. Raising the momentum from 230 to 300 MeV gives a 6D emittance growth of 38% and the loss 5%, which may be acceptable. Raising the momentum further to 400 MeV/c gives very good results: 6D growth of 24% and 2.5% loss. Further optimization should include the acceleration to the higher momenta prior to the separation, and the higher momentum cooling immediately after it. The longitudinal phase space prior to the separation should be rotated to minimize the total bunch lengthening.

  15. 192 ASHRAE Transactions: Research Ground-source heat pumps for cooling-dominated

    E-Print Network [OSTI]

    Ghajar, Afshin J.

    192 ASHRAE Transactions: Research ABSTRACT Ground-source heat pumps for cooling- tion of the heat pump performance is avoided by offsetting the annual load imbalance in the borefield operating and control strategies in a hybrid ground-source heat pump application using an hourly system

  16. JETC: Joint Energy, Thermal and Cooling Management for CPU and Memory

    E-Print Network [OSTI]

    Simunic, Tajana

    JETC: Joint Energy, Thermal and Cooling Management for CPU and Memory Subsystems in Servers Raid Ayoub, Rajib Nath, Tajana Rosing, UCSD 2052.002 Observation Model of Thermal Coupling Between CPU: No Memory Management NCM: No CPU Migration DLB: Dynamic Load Balancing DTM-CM+PI: Dynamic Thermal Management

  17. Electricity pricing for conservation and load shifting

    SciTech Connect (OSTI)

    Orans, Ren; Woo, C.K.; Horii, Brian; Chait, Michele; DeBenedictis, Andrew

    2010-04-15T23:59:59.000Z

    The electricity industry is facing the challenge of increasing costs of reliably meeting demand growth and fully complying with legislative renewable portfolio standards and greenhouse gas reduction targets. However, an electric utility's existing tariffs often don't have rates that increase with consumption volume or vary by time of use, thus not fully exploiting the potential benefits from customer conservation and load shifting. (author)

  18. Simulation of cooling and solidification of three-dimensional bulk borosilicate glass: effect of structural relaxations

    SciTech Connect (OSTI)

    Barth, N.; George, D.; Ahzi, Said; Remond, Y.; Joulaee, N.; Khaleel, Mohammad A.; Bouyer, F.

    2014-02-28T23:59:59.000Z

    Abstract The modeling of the viscoelastic stress evolution and specific volume relaxation of a bulky glass cast is presented in this article and is applied to the experimental cooling process of an inactive nuclear waste vitrification process. The concerned borosilicate glass is solidified and cooled down to ambient temperature in a stainless steel canister, and the thermomechanical response of the package is simulated. There exists a deviant compression of the liquid core due to the large glass package compared to standard tempered glass plates. The stress load development of the glass cast is finally studied for different thermal load scenarios, where the cooling process parameters or the final cooldown rates were changed, and we found a great influence of the studied cooldown rates on the maximum stress buildup at ambient temperature.

  19. Telemetering system supports load curtailment and billing

    SciTech Connect (OSTI)

    Mabry, R. (Potomac Electric Power Co., Washington, DC (United States)); Biagini, D. (Landis and Gyr Systems, Inc., San Jose, CA (United States))

    1993-04-01T23:59:59.000Z

    One of the greatest challenges facing electric utilities today is satisfying increasing peak demand without adding new generating capacity. Supporting utilities in this quest are state-of-the-art computer systems designed to accommodate complex load management as well as billing and load survey programs. The Potomac Electric Power Company (PEPCO) is utilizing such computer technology along with an innovative organizational approach to implement a comprehensive energy plan for its customers. The plan is enabling the utility to meet the growing demand placed on its power system by intensive expansion in the greater Washington DC area.

  20. Cool Colored Roofs to Save Energy and Improve Air Quality

    SciTech Connect (OSTI)

    Akbari, Hashem; Levinson, Ronnen; Miller, William; Berdahl, Paul

    2005-08-23T23:59:59.000Z

    Urban areas tend to have higher air temperatures than their rural surroundings as a result of gradual surface modifications that include replacing the natural vegetation with buildings and roads. The term ''Urban Heat Island'' describes this phenomenon. The surfaces of buildings and pavements absorb solar radiation and become extremely hot, which in turn warm the surrounding air. Cities that have been ''paved over'' do not receive the benefit of the natural cooling effect of vegetation. As the air temperature rises, so does the demand for air-conditioning (a/c). This leads to higher emissions from power plants, as well as increased smog formation as a result of warmer temperatures. In the United States, we have found that this increase in air temperature is responsible for 5-10% of urban peak electric demand for a/c use, and as much as 20% of population-weighted smog concentrations in urban areas. Simple ways to cool the cities are the use of reflective surfaces (rooftops and pavements) and planting of urban vegetation. On a large scale, the evapotranspiration from vegetation and increased reflection of incoming solar radiation by reflective surfaces will cool a community a few degrees in the summer. As an example, computer simulations for Los Angeles, CA show that resurfacing about two-third of the pavements and rooftops with reflective surfaces and planting three trees per house can cool down LA by an average of 2-3K. This reduction in air temperature will reduce urban smog exposure in the LA basin by roughly the same amount as removing the basin entire onroad vehicle exhaust. Heat island mitigation is an effective air pollution control strategy, more than paying for itself in cooling energy cost savings. We estimate that the cooling energy savings in U.S. from cool surfaces and shade trees, when fully implemented, is about $5 billion per year (about $100 per air-conditioned house).

  1. Selecting a Control Strategy for Plug and Process Loads

    SciTech Connect (OSTI)

    Lobato, C.; Sheppy, M.; Brackney, L.; Pless, S.; Torcellini, P.

    2012-09-01T23:59:59.000Z

    Plug and Process Loads (PPLs) are building loads that are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the building occupants. PPLs in commercial buildings account for almost 5% of U.S. primary energy consumption. On an individual building level, they account for approximately 25% of the total electrical load in a minimally code-compliant commercial building, and can exceed 50% in an ultra-high efficiency building such as the National Renewable Energy Laboratory's (NREL) Research Support Facility (RSF) (Lobato et al. 2010). Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. A complex array of technologies that measure and manage PPLs has emerged in the marketplace. Some fall short of manufacturer performance claims, however. NREL has been actively engaged in developing an evaluation and selection process for PPLs control, and is using this process to evaluate a range of technologies for active PPLs management that will cap RSF plug loads. Using a control strategy to match plug load use to users' required job functions is a huge untapped potential for energy savings.

  2. Thermal Performance of Phase Change Wallboard for Residential Cooling Application

    E-Print Network [OSTI]

    Feustel, H.E.

    2011-01-01T23:59:59.000Z

    Alternatives to the Compressor Cooling Project sponsored byAlternatives to Compressor Cooling in Residences," Energy

  3. July 25, 2006 RHIC Stochastic Cooling

    E-Print Network [OSTI]

    (abandoned at SppS and Tevatron) ­ Not part of RHIC base line design #12;July 25, 2006 Heavy ions should before (red) and after (blue) cooling, Wall Current Monitor Schottky spectrum before cooling: blue trace "hot" beam best ·Good for counteracting IBS ·Effective for tails of distribution ·E-cooling cools "cold

  4. Numerical Simulation of Cooling Gas Injection Using

    E-Print Network [OSTI]

    Numerical Simulation of Cooling Gas Injection Using Adaptive Multiscale Techniques Wolfgang Dahmen: finite volume method, film cooling, cooling gas injection, multiscale techniques, grid adaptation AMS@igpm.rwth-aachen.de (Thomas Gotzen) #12;Numerical simulation of cooling gas injection using adaptive multiscale techniques

  5. Muon Cooling via Ionization Andrea Kay Forget

    E-Print Network [OSTI]

    Cinabro, David

    decay, as a result of their short lives many of the known cooling techniques (electron, stochastic this cooling technique has never been used many bugs need to be worked out, such as the setup and layout for muon ionization cooling to work efficiently. I. INTRODUCTION Muons need a faster beam cooling technique

  6. ANNUAL REPORT WESTERN COOLING EFFICIENCY CENTER

    E-Print Network [OSTI]

    California at Davis, University of

    Sinks for Unitary Air Conditioners 10 Graywater Reuse for Evaporative Cooling 14 In-Home Energy Display COOLING EFFICIENCY CENTER WESTERN COOLING EFFICIENCY CENTER EXPLORING MANY OPTIONS FOR ENERGY EFFICIENCY and leadership in the field of energy efficiency. This document, the second Annual Report on Cooling in the West

  7. CONTROL SYSTEM FOR SOLAR HEATING and COOLING

    E-Print Network [OSTI]

    Dols, C.

    2010-01-01T23:59:59.000Z

    Research Applied to National Needs. EXPERIMENTAL SYSTEM A generalized system for solar heating and cooling

  8. Cooled snubber structure for turbine blades

    DOE Patents [OSTI]

    Mayer, Clinton A; Campbell, Christian X; Whalley, Andrew; Marra, John J

    2014-04-01T23:59:59.000Z

    A turbine blade assembly in a turbine engine. The turbine blade assembly includes a turbine blade and a first snubber structure. The turbine blade includes an internal cooling passage containing cooling air. The first snubber structure extends outwardly from a sidewall of the turbine blade and includes a hollow interior portion that receives cooling air from the internal cooling passage of the turbine blade.

  9. Improved Alumina Loading in High-Level Waste Glasses

    SciTech Connect (OSTI)

    Kim, D.; Vienna, J.D. [Pacific Northwest National Laboratory, Richland, WA (United States); Peeler, D.K.; Fox, K.M. [Savannah River National Laboratory, Aiken, SC (United States); Aloy, A.; Trofimenko, A.V. [V.G. Khlopin Radium Institute, St. Petersburg (Russian Federation); Gerdes, K.D. [EM-21, Office of Waste Processing, U.S. Department of Energy, Washington, DC (United States)

    2008-07-01T23:59:59.000Z

    Recent tank retrieval, blending, and treatment strategies at both the Savannah River Site (SRS) and Hanford have identified increased amounts of high-Al{sub 2}O{sub 3} waste streams that are scheduled to be processed through their respective high-level waste (HLW) vitrification facilities. It is well known that the addition of small amounts of Al{sub 2}O{sub 3} to borosilicate glasses generally enhances the durability of the waste glasses. However, at higher Al{sub 2}O{sub 3} concentrations nepheline (NaAlSiO{sub 4}) formation can result in a severe deterioration of the chemical durability of the slowly cooled glass near the center of the canister. Additionally, higher concentrations of Al{sub 2}O{sub 3} generally increase the liquidus temperature of the melt and decrease the processing rate. Pacific Northwest National Laboratory (PNNL), Savannah River National Laboratory (SRNL), and Khlopin Radium Institute (KRI) are jointly performing laboratory and scaled-melter tests, through US Department of Energy, EM-21 Office of Waste Processing program, to develop glass formulations with increased Al{sub 2}O{sub 3} concentrations. These glasses are formulated for specific DOE waste compositions at Hanford and Savannah River Site. The objectives are to avoid nepheline formation while maintaining or meeting waste loading and/or waste throughput expectations as well as satisfying critical process and product performance related constraints such as viscosity, liquidus temperature, and glass durability. This paper summarizes the results of recent tests of simulated Hanford HLW glasses containing up to 26 wt% Al{sub 2}O{sub 3} in glass. In summary: Glasses with Al{sub 2}O{sub 3} loading ranging from 25 to 27 wt% were formulated and tested at a crucible scale. Successful glass formulations with up to 26 wt% Al{sub 2}O{sub 3} that do not precipitate nepheline during CCC treatment and had spinel crystals 1 vol% or less after 24 hr heat treatment at 950 deg. C were obtained. The selected glass, HAL-17 with 26 wt% Al{sub 2}O{sub 3}, had viscosity and electrical conductivity within the boundaries for adequate processing in the Joule heated melters operated at 1150 deg. C. This HAL-17 glass was successfully processed using small-scale (SMK) and larger scale (EP-5) melters. There was no indication of spinel settling during processing. The product glass samples from these melter tests contained 1 to 4 vol% spinel crystals that are likely formed during cooling. The PCT tests on the product glasses are underway. The present study demonstrated that it is possible to formulate the glasses with up to 26 wt% Al{sub 2}O{sub 3} that satisfy the property requirements and is processable with Joule-heated melters operated at 1150 deg. C. The 'nepheline discriminator' for HAL-17 glass is 0.45, which supports that claim that the current rule ('nepheline discriminator' < 0.62) is too restrictive. Considering that the cost of HLW treatment is highly dependent on loading of waste in glass, this result provides a potential for significant cost saving for Hanford. The maximum Al{sub 2}O{sub 3} loading that can be achieved will also depend on concentrations of other components in wastes. For example, the loading of waste used in this study was also limited by the spinel crystallization after 950 deg. C 24 hr heat treatment, which suggests that the concentrations of spinel-forming components such as Fe{sub 2}O{sub 3}, Cr{sub 2}O{sub 3}, NiO, ZnO, and MnO would be critical in addition to Al{sub 2}O{sub 3} for the maximum Al{sub 2}O{sub 3} loading achievable. The observed glass production rate per unit melter surface area of 0.75 MT/(d.m{sup 2}) for SMK test is comparable to the design capacity of WTP HLW melters at 0.8 MT/(d.m{sup 2}). However, the test with EP-5 melter achieved 0.38 MT/(d.m{sup 2}), which is roughly a half of the WTP design capacity. This result may imply that the glass with 26 wt% Al{sub 2}O{sub 3} may not achieve the WTP design production rate. However, this hypothesis is not conclusive because of unknown effects of melter size and operation

  10. Load responsive hydrodynamic bearing

    DOE Patents [OSTI]

    Kalsi, Manmohan S. (Houston, TX); Somogyi, Dezso (Sugar Land, TX); Dietle, Lannie L. (Stafford, TX)

    2002-01-01T23:59:59.000Z

    A load responsive hydrodynamic bearing is provided in the form of a thrust bearing or journal bearing for supporting, guiding and lubricating a relatively rotatable member to minimize wear thereof responsive to relative rotation under severe load. In the space between spaced relatively rotatable members and in the presence of a liquid or grease lubricant, one or more continuous ring shaped integral generally circular bearing bodies each define at least one dynamic surface and a plurality of support regions. Each of the support regions defines a static surface which is oriented in generally opposed relation with the dynamic surface for contact with one of the relatively rotatable members. A plurality of flexing regions are defined by the generally circular body of the bearing and are integral with and located between adjacent support regions. Each of the flexing regions has a first beam-like element being connected by an integral flexible hinge with one of the support regions and a second beam-like element having an integral flexible hinge connection with an adjacent support region. A least one local weakening geometry of the flexing region is located intermediate the first and second beam-like elements. In response to application of load from one of the relatively rotatable elements to the bearing, the beam-like elements and the local weakening geometry become flexed, causing the dynamic surface to deform and establish a hydrodynamic geometry for wedging lubricant into the dynamic interface.

  11. The International Mass Loading Service

    E-Print Network [OSTI]

    Petrov, Leonid

    2015-01-01T23:59:59.000Z

    The International Mass Loading Service computes four loadings: a) atmospheric pressure loading; b) land water storage loading; c) oceanic tidal loading; and d) non-tidal oceanic loading. The service provides to users the mass loading time series in three forms: 1) pre-computed time series for a list of 849 space geodesy stations; 2) pre-computed time series on the global 1deg x 1deg grid; and 3) on-demand Internet service for a list of stations and a time range specified by the user. The loading displacements are provided for the time period from 1979.01.01 through present, updated on an hourly basis, and have latencies 8-20 hours.

  12. Impact of urban heat island on cooling and environment: A demonstration project

    SciTech Connect (OSTI)

    Not Available

    1993-04-01T23:59:59.000Z

    Landscaping has been shown in simulation and field studies to reduce building cooling loads by affecting microclimatic factors such as solar radiation, wind speed and air temperature. A demonstration project was undertaken to determine the magnitude of landscape induced changes in microclimate on building cooling loads and water use on four typical residences in Phoenix, Arizona. The energy use and microclimate of three unlandscaped (bare soil, rock mulch) and one landscaped (turf) home were monitored during summer 1990. In the fall, turf was placed around one of the unlandscaped houses, and shade trees planted on the west and south sides of another. Measurements continued during the summer of 1991. Total house air conditioning and selected appliance electrical data were collected, as well as inside and outside air temperatures. Detailed microclimate measurements were obtained for one to two week periods during both summers. Maximum reductions of hourly outside air temperatures of 1 to 1.5{degrees}C, and of daily average air temperatures of up to 1{degrees}C, resulted from the addition of turf landscaping. Addition of small trees to the south and west sides of another treatment did not have a noticeable effect on air temperature. Cooling load reductions of 10% to 17% were observed between years when well-watered turf landscaping was added to a house previously surrounded by bare soil. Addition of small trees to another bare landscape did not produce a detectable change in cooling load. The results of the study are used as input to a standard building energy use simulation model to predict landscape effects on cooling load and water usage for three typical houses, and to develop guidelines for use of energy efficient residential landscapes in Phoenix, Arizona.

  13. Metal Cooling in Simulations of Cosmic Structure Formation

    E-Print Network [OSTI]

    Britton D. Smith; Steinn Sigurdsson; Tom Abel

    2008-01-03T23:59:59.000Z

    The addition of metals to any gas can significantly alter its evolution by increasing the rate of radiative cooling. In star-forming environments, enhanced cooling can potentially lead to fragmentation and the formation of low-mass stars, where metal-free gas-clouds have been shown not to fragment. Adding metal cooling to numerical simulations has traditionally required a choice between speed and accuracy. We introduce a method that uses the sophisticated chemical network of the photoionization software, Cloudy, to include radiative cooling from a complete set of metals up to atomic number 30 (Zn) that can be used with large-scale three-dimensional hydrodynamic simulations. Our method is valid over an extremely large temperature range (10 K 10^-4 Zsun, regions of density and temperature exist where gas is both thermally unstable and has a cooling time less than its dynamical time. We identify these doubly unstable regions as the most inducive to fragmentation. At high redshifts, the CMB inhibits efficient cooling at low temperatures and, thus, reduces the size of the doubly unstable regions, making fragmentation more difficult.

  14. Introduction Increasing demands on limited water resources have made

    E-Print Network [OSTI]

    Sanderson, Mike

    (reclamation or reuse) an attractive option for extending water supplies. Treatment technologies have evolved has increasingly been used for municipal irrigation, toilet flushing, industrial cooling, and other varyconsiderablybetweensystems.Theuseofrecycledwater is particularly beneficial to extending water supplies in arid climates

  15. Laser cooling with ultrafast pulse trains

    E-Print Network [OSTI]

    David Kielpinski

    2003-06-14T23:59:59.000Z

    We propose a new laser cooling method for atomic species whose level structure makes traditional laser cooling difficult. For instance, laser cooling of hydrogen requires vacuum-ultraviolet laser light, while multielectron atoms need laser light at many widely separated frequencies. These restrictions can be eased by laser cooling on two-photon transitions with ultrafast pulse trains. Laser cooling of hydrogen, antihydrogen, and carbon appears feasible, and extension of the technique to molecules may be possible.

  16. Cooling Towers--Energy Conservation Strategies 

    E-Print Network [OSTI]

    Matson, J.

    1991-01-01T23:59:59.000Z

    COOLING TOWERS -- ENERGY CONSERVATION STRATEGIES Cooling Water Optimization Dr. JACK MATSON Environmental Engg. Dept. University of Houston Houston, Texas A cooling water system can be optimized by operating the cooling tower... pressures on generating turbines and all of the good things listed above can be achieved with a well upgraded modernized cooling tower, but if minimum or no attention is paid to the water chemistry, poor performance, and loss of energy and dollar...

  17. Blowing Ratio Effects on Film Cooling Effectiveness

    E-Print Network [OSTI]

    Liu, Kuo-Chun

    2010-01-14T23:59:59.000Z

    cooling Rib turbulators Shaped internal cooling passage Trailing edge ejection Cooling air 3 Among the variety of film cooling hole designs, compound angle and shaped holes are generally considered in modern high pressure and high temperature gas turbine... ratio of 1.85. As compared to cylindrical hole, both shaped holes showed significant improved thermal protection of the surface downstream of the ejection location. Yu et al. [7] studied film cooling effectiveness and heat transfer distributions on a...

  18. Apparatus for loading shape memory gripper mechanisms

    DOE Patents [OSTI]

    Lee, Abraham P. (Walnut Creek, CA); Benett, William J. (Livermore, CA); Schumann, Daniel L. (Concord, CA); Krulevitch, Peter A. (Pleasanton, CA); Fitch, Joseph P. (Livermore, CA)

    2001-01-01T23:59:59.000Z

    A method and apparatus for loading deposit material, such as an embolic coil, into a shape memory polymer (SMP) gripping/release mechanism. The apparatus enables the application of uniform pressure to secure a grip by the SMP mechanism on the deposit material via differential pressure between, for example, vacuum within the SMP mechanism and hydrostatic water pressure on the exterior of the SMP mechanism. The SMP tubing material of the mechanism is heated to above the glass transformation temperature (Tg) while reshaping, and subsequently cooled to below Tg to freeze the shape. The heating and/or cooling may, for example, be provided by the same water applied for pressurization or the heating can be applied by optical fibers packaged to the SMP mechanism for directing a laser beam, for example, thereunto. At a point of use, the deposit material is released from the SMP mechanism by reheating the SMP material to above the temperature Tg whereby it returns to its initial shape. The reheating of the SM material may be carried out by injecting heated fluid (water) through an associated catheter or by optical fibers and an associated beam of laser light, for example.

  19. The Asymptotic Cooling of Heat-Bath Algorithmic Cooling

    E-Print Network [OSTI]

    Sadegh Raeisi; Michele Mosca

    2014-12-02T23:59:59.000Z

    The purity of quantum states is a key requirement for many quantum applications. Improving the purity is limited by fundamental laws of thermodynamics. Here we are probing the fundamental limits for a natural approach to this problem, namely heat-bath algorithmic cooling(HBAC). The existence of the cooling limit for HBAC techniques was proved by Schulman et al. in, the limit however remained unknown for the past decade. Here for the first time we find this limit. In the context of quantum thermodynamics, this corresponds to the maximum extractable work from the quantum system.

  20. A better cooling water system

    SciTech Connect (OSTI)

    Gale, T.E.; Beecher, J.

    1987-12-01T23:59:59.000Z

    To prepare their newly constructed reduced crude conversion (RCC) open recirculating cooling water system for the implementation of a corrosion and deposit control water treatment program, Ashland Petroleum, Catlettsburg, Ky., made plans for and carried out precleaning and passivation procedures. Here, the authors share the results, and some potential guidelines for one's own operations. Inspection of equipment after precleaning showed that the precleaning procedures was very effective in removing undesirable matter. After precleaning and passivation of the system, the recommended cooling water treatment program was started. Corrosion rates for mild steel specimens ranged from 0.5 to 1.5 mils per year (mpy), with an average of 1.0 mpy. The corrosion rates for admiralty specimens ranged from 0.1 to 0.2 mpy. Benefits of the precleaning and passivating programs greatly outweigh the costs, since the normal cooling water treatment program for corrosion and deposit control can then operate more effectively.

  1. A framework for non-intrusive load monitoring and diagnostics

    E-Print Network [OSTI]

    Paris, James, Ph. D. Massachusetts Institute of Technology

    2006-01-01T23:59:59.000Z

    The widespread use of electrical and electromechanical systems places increasing demands on monitoring and diagnostic techniques. The non-intrusive load monitor (NILM) provides a low-cost, low-maintenance way to perform ...

  2. Investigation of residential central air conditioning load shapes in NEMS

    SciTech Connect (OSTI)

    Hamachi LaCommare, Kristina; Marnay, Chris; Gumerman, Etan; Chan, Peter; Rosenquist, Greg; Osborn, Julie

    2002-05-01T23:59:59.000Z

    This memo explains what Berkeley Lab has learned about how the residential central air-conditioning (CAC) end use is represented in the National Energy Modeling System (NEMS). NEMS is an energy model maintained by the Energy Information Administration (EIA) that is routinely used in analysis of energy efficiency standards for residential appliances. As part of analyzing utility and environmental impacts related to the federal rulemaking for residential CAC, lower-than-expected peak utility results prompted Berkeley Lab to investigate the input load shapes that characterize the peaky CAC end use and the submodule that treats load demand response. Investigations enabled a through understanding of the methodology by which hourly load profiles are input to the model and how the model is structured to respond to peak demand. Notably, it was discovered that NEMS was using an October-peaking load shape to represent residential space cooling, which suppressed peak effects to levels lower than expected. An apparent scaling down of the annual load within the load-demand submodule was found, another significant suppressor of the peak impacts. EIA promptly responded to Berkeley Lab's discoveries by updating numerous load shapes for the AEO2002 version of NEMS; EIA is still studying the scaling issue. As a result of this work, it was concluded that Berkeley Lab's customary end-use decrement approach was the most defensible way for Berkeley Lab to perform the recent CAC utility impact analysis. This approach was applied in conjunction with the updated AEO2002 load shapes to perform last year's published rulemaking analysis. Berkeley Lab experimented with several alternative approaches, including modifying the CAC efficiency level, but determined that these did not sufficiently improve the robustness of the method or results to warrant their implementation. Work in this area will continue in preparation for upcoming rulemakings for the other peak coincident end uses, commercial air conditioning and distribution transformers.

  3. Optimal design of ground source heat pump system integrated with phase change cooling storage tank in an office building 

    E-Print Network [OSTI]

    Zhu, N.

    2014-01-01T23:59:59.000Z

    Optimal design of ground source heat pump system integrated with phase change cooling storage tank in an office building Na Zhu*, Yu Lei, Pingfang Hu, Linghong Xu, Zhangning Jiang Department of Building Environment and Equipment Engineering... heat pump system integrated with phase change cooling storage technology could save energy and shift peak load. This paper studied the optimal design of a ground source heat pump system integrated with phase change thermal storage tank in an office...

  4. Single-Photon Molecular Cooling

    E-Print Network [OSTI]

    Edvardas Narevicius; S. Travis Bannerman; Mark G. Raizen

    2009-01-04T23:59:59.000Z

    We propose a general method to cool the translational motion of molecules. Our method is an extension of single photon atomic cooling which was successfully implemented in our laboratory. Requiring a single event of absorption followed by a spontaneous emission, this method circumvents the need for a cycling transition and can be applied to any paramagnetic or polar molecule. In our approach, trapped molecules would be captured near their classical turning points in an optical dipole or RF-trap following an irreversible transition process.

  5. Unparticle effects in Supernovae cooling

    E-Print Network [OSTI]

    Prasanta Kumar Das

    2007-11-08T23:59:59.000Z

    Recently H. Georgi suggested that a scale invariant unparticle ${\\mathcal{U}}$ sector with an infrared fixed point at high energy can couple with the SM matter via a higher-dimensional operator suppressed by a high cut-off scale. Intense phenomenological search of this unparticle sector in the collider and flavour physics context has already been made. Here we explore it's impact in cosmology, particularly it's possible role in the supernovae cooling. We found that the energy-loss rate (and thus the cooling) is strongly dependent on the effective scale \\LdaU and the anomalous dimension \\dU of this unparticle theory.

  6. Lamination cooling system formation method

    DOE Patents [OSTI]

    Rippel, Wally E. (Altadena, CA); Kobayashi, Daryl M. (Monrovia, CA)

    2012-06-19T23:59:59.000Z

    An electric motor, transformer or inductor having a cooling system. A stack of laminations have apertures at least partially coincident with apertures of adjacent laminations. The apertures define straight or angled cooling-fluid passageways through the lamination stack. Gaps between the adjacent laminations are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.

  7. Lamination cooling system formation method

    DOE Patents [OSTI]

    Rippel, Wally E [Altadena, CA; Kobayashi, Daryl M [Monrovia, CA

    2009-05-12T23:59:59.000Z

    An electric motor, transformer or inductor having a cooling system. A stack of laminations have apertures at least partially coincident with apertures of adjacent laminations. The apertures define straight or angled cooling-fluid passageways through the lamination stack. Gaps between the adjacent laminations are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.

  8. Quantum noise in photothermal cooling

    SciTech Connect (OSTI)

    De Liberato, Simone [Department of Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Lambert, Neill [Advanced Science Institute, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Nori, Franco [Advanced Science Institute, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Physics Department, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2011-03-15T23:59:59.000Z

    We study the problem of cooling a mechanical oscillator using the photothermal (bolometric) force. Contrary to previous attempts to model this system, we take into account the noise effects due to the granular nature of photon absorption. We achieve this by developing a Langevin formalism for the motion of the cantilever, valid in the bad-cavity limit, which includes both photon absorption shot noise and the noise due to radiation pressure. This allows us to tackle the cooling problem down to the noise-dominated regime and to find reasonable estimates for the lowest achievable phonon occupation in the cantilever.

  9. Cooling assembly for fuel cells

    DOE Patents [OSTI]

    Kaufman, Arthur (West Orange, NJ); Werth, John (Princeton, NJ)

    1990-01-01T23:59:59.000Z

    A cooling assembly for fuel cells having a simplified construction whereby coolant is efficiently circulated through a conduit arranged in serpentine fashion in a channel within a member of such assembly. The channel is adapted to cradle a flexible, chemically inert, conformable conduit capable of manipulation into a variety of cooling patterns without crimping or otherwise restricting of coolant flow. The conduit, when assembled with the member, conforms into intimate contact with the member for good thermal conductivity. The conduit is non-corrodible and can be constructed as a single, manifold-free, continuous coolant passage means having only one inlet and one outlet.

  10. CoolCab Test and Evaluation and CoolCalc HVAC Tool Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation and CoolCalc HVAC Tool Development CoolCab Test and Evaluation and CoolCalc HVAC Tool Development 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies...

  11. Multidimensional spectral load balancing

    SciTech Connect (OSTI)

    Hendrickson, B.; Leland, R.

    1993-01-01T23:59:59.000Z

    We describe an algorithm for the static load balancing of scientific computations that generalizes and improves upon spectral bisection. Through a novel use of multiple eigenvectors, our new spectral algorithm can divide a computation into 4 or 8 pieces at once. These multidimensional spectral partitioning algorithms generate balanced partitions that have lower communication overhead and are less expensive to compute than those produced by spectral bisection. In addition, they automatically work to minimize message contention on a hypercube or mesh architecture. These spectral partitions are further improved by a multidimensional generalization of the Kernighan-Lin graph partitioning algorithm. Results on several computational grids are given and compared with other popular methods.

  12. Right-Sizing Laboratory Equipment Loads

    SciTech Connect (OSTI)

    Frenze, David; Greenberg, Steve; Mathew, Paul; Sartor, Dale; Starr, William

    2005-11-29T23:59:59.000Z

    Laboratory equipment such as autoclaves, glass washers, refrigerators, and computers account for a significant portion of the energy use in laboratories. However, because of the general lack of measured equipment load data for laboratories, designers often use estimates based on 'nameplate' rated data, or design assumptions from prior projects. Consequently, peak equipment loads are frequently overestimated. This results in oversized HVAC systems, increased initial construction costs, and increased energy use due to inefficiencies at low part-load operation. This best-practice guide first presents the problem of over-sizing in typical practice, and then describes how best-practice strategies obtain better estimates of equipment loads and right-size HVAC systems, saving initial construction costs as well as life-cycle energy costs. This guide is one in a series created by the Laboratories for the 21st Century ('Labs21') program, a joint program of the U.S. Environmental Protection Agency and U.S. Department of Energy. Geared towards architects, engineers, and facilities managers, these guides provide information about technologies and practices to use in designing, constructing, and operating safe, sustainable, high-performance laboratories.

  13. Influence of hole shape on the performance of a turbine vane endwall film-cooling scheme

    E-Print Network [OSTI]

    Thole, Karen A.

    Rising combustor exit temperatures in gas turbine engines necessitate active cooling for the downstream industrial gas turbine engines. One means of achieving this goal is to increase the combustion temper- ature are so high in today's gas turbine engines that in the absence of complex cooling schemes the turbine

  14. Kinetics for evaporative cooling of a trapped gas Kirstine BergSrensen \\Lambda

    E-Print Network [OSTI]

    Berg-Sørensen, Kirstine

    the kinetic theory for evaporative cooling of a dilute collisional gas in a trap. The analysis in 0. J. Luiten and increase the phase­space density of an atomic, bosonic gas towards a Bose­Einstein condensate (BECKinetics for evaporative cooling of a trapped gas Kirstine Berg­Sørensen \\Lambda The Rowland

  15. Annual Simulation Results for an Air-Cooled Binary Power Cycle Employing Flash Cooling Enhancement

    SciTech Connect (OSTI)

    Buys, A.; Gladden, C.; Kutscher, C.

    2006-01-01T23:59:59.000Z

    Objective is to perform detailed simulation of air cooled cycle with flash supplied cooling water using two types of evaporative enhancement, spray nozzels and evaporative media.

  16. Closed circuit steam cooled turbine shroud and method for steam cooling turbine shroud

    DOE Patents [OSTI]

    Burdgick, Steven Sebastian (Schenectady, NY); Sexton, Brendan Francis (Simpsonville, SC); Kellock, Iain Robertson (Simpsonville, SC)

    2002-01-01T23:59:59.000Z

    A turbine shroud cooling cavity is partitioned to define a plurality of cooling chambers for sequentially receiving cooling steam and impingement cooling of the radially inner wall of the shoud. An impingement baffle is provided in each cooling chamber for receiving the cooling media from a cooling media inlet in the case of the first chamber or from the immediately upstream chamber in the case of the second through fourth chambers and includes a plurality of impingement holes for effecting the impingement cooling of the shroud inner wall.

  17. Evaporative cooling enhanced cold storage system

    DOE Patents [OSTI]

    Carr, P.

    1991-10-15T23:59:59.000Z

    The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream. 3 figures.

  18. Multi-pass cooling for turbine airfoils

    DOE Patents [OSTI]

    Liang, George (Palm City, FL)

    2011-06-28T23:59:59.000Z

    An airfoil for a turbine vane of a gas turbine engine. The airfoil includes an outer wall having pressure and suction sides, and a radially extending cooling cavity located between the pressure and suction sides. A plurality of partitions extend radially through the cooling cavity to define a plurality of interconnected cooling channels located at successive chordal locations through the cooling cavity. The cooling channels define a serpentine flow path extending in the chordal direction. Further, the cooling channels include a plurality of interconnected chambers and the chambers define a serpentine path extending in the radial direction within the serpentine path extending in the chordal direction.

  19. Evaporative cooling enhanced cold storage system

    DOE Patents [OSTI]

    Carr, Peter (Cary, NC)

    1991-01-01T23:59:59.000Z

    The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream.

  20. Apparatus and method for rapid cooling of large area substrates in vacuum

    DOE Patents [OSTI]

    Barth, Kurt L.; Enzenroth, Robert A.; Sampath, Walajabad S.

    2012-11-06T23:59:59.000Z

    The present invention is directed to an apparatus and method for rapid cooling of a large substrate in a vacuum environment. A first cooled plate is brought into close proximity with one surface of a flat substrate. The spatial volume between the first cooling plate and the substrate is sealed and brought to a higher pressure than the surrounding vacuum level to increase the cooling efficiency. A second cooled plate is brought into close proximity with the opposite surface of the flat substrate. A second spatial volume between the second cooling plate and the substrate is sealed and the gas pressure is equalized to the gas pressure in the first spatial volume. The equalization of the gas pressure on both sides of the flat substrate eliminates deflection of the substrate and bending stress in the substrate.

  1. Apparatus and method for rapid cooling of large area substrates in vacuum

    DOE Patents [OSTI]

    Barth, Kurt L.; Enzenroth, Robert A.; Sampath, Walajabad S.

    2010-09-28T23:59:59.000Z

    The present invention is directed to an apparatus and method for rapid cooling of a large substrate in a vacuum environment. A first cooled plate is brought into close proximity with one surface of a flat substrate. The spatial volume between the first cooling plate and the substrate is sealed and brought to a higher pressure than the surrounding vacuum level to increase the cooling efficiency. A second cooled plate is brought into close proximity with the opposite surface of the flat substrate. A second spatial volume between the second cooling plate and the substrate is sealed and the gas pressure is equalized to the gas pressure in the first spatial volume. The equalization of the gas pressure on both sides of the flat substrate eliminates deflection of the substrate and bending stress in the substrate.

  2. Engineering Design Cooling flow design

    E-Print Network [OSTI]

    McDonald, Kirk

    · Moderators 2 x H2O (0.5 L) Gd poison + Boral decoupler CH4 (0.5 L) Gd poison + Boral decoupler H2 (0.8 L) no poison + Boral decoupler · Reflector - Rods of Beryllium (D2O cooled) · 17 Neutron Beam lines Upgrade

  3. Solar-powered cooling system

    DOE Patents [OSTI]

    Farmer, Joseph C

    2013-12-24T23:59:59.000Z

    A solar-powered adsorption-desorption refrigeration and air conditioning system uses nanostructural materials made of high specific surface area adsorption aerogel as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material. A circulation system circulates refrigerant from the nanostructural material to a cooling unit.

  4. Cooling Flows or Heating Flows?

    E-Print Network [OSTI]

    James Binney

    2003-10-08T23:59:59.000Z

    It is now clear that AGN heat cooling flows, largely by driving winds. The winds may contain a relativistic component that generates powerful synchrotron radiation, but it is not clear that all winds do so. The spatial and temporal stability of the AGN/cooling flow interaction are discussed. Collimation of the winds probably provides spatial stability. Temporal stability may be possible only for black holes with masses above a critical value. Both the failure of cooling flows to have adiabatic cores and the existence of X-ray cavities confirm the importance of collimated outflows. I quantify the scale of the convective flow that the AGN Hydra would need to drive if it balanced radiative inward flow by outward flow parallel to the jets. At least in Virgo any such flow must be confined to r<~20 kpc. Hydrodynamical simulations suggest that AGN outbursts cannot last longer than ~25 Myr. Data for four clusters with well studied X-ray cavities suggests that heating associated with cavity formation approximately balances radiative cooling. The role of cosmic infall and the mechanism of filament formation are briefly touched on.

  5. 2006 Pacific Northwest Loads and Resources Study.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    2006-03-01T23:59:59.000Z

    The Pacific Northwest Loads and Resources Study (White Book), which is published annually by the Bonneville Power Administration (BPA), establishes one of the planning bases for supplying electricity to customers. The White Book contains projections of regional and Federal system load and resource capabilities, along with relevant definitions and explanations. The White Book also contains information obtained from formalized resource planning reports and data submittals including those from individual utilities, the Northwest Power and Conservation Council (Council), and the Pacific Northwest Utilities Conference Committee (PNUCC). The White Book is not an operational planning guide, nor is it used for determining BPA revenues, although the database that generates the data for the White Book analysis contributes to the development of BPA's inventory and ratemaking processes. Operation of the Federal Columbia River Power System (FCRPS) is based on a set of criteria different from that used for resource planning decisions. Operational planning is dependent upon real-time or near-term knowledge of system conditions that include expectations of river flows and runoff, market opportunities, availability of reservoir storage, energy exchanges, and other factors affecting the dynamics of operating a power system. The load resource balance of both the Federal system and the region is determined by comparing resource availability to an expected level of total retail electricity consumption. Resources include projected energy capability plus contract purchases. Loads include a forecast of retail obligations plus contract obligations. Surplus energy is available when resources are greater than loads. This surplus energy could be marketed to increase revenues. Energy deficits occur when resources are less than loads. These energy deficits will be met by any combination of the following: better-than-critical water conditions, demand-side management and conservation programs, permanent loss of loads due to economic conditions or closures, additional contract purchases, and/or the addition of new generating resources. This study incorporates information on Pacific Northwest (PNW) regional retail loads, contract obligations, and contract resources. This loads and resources analysis simulates the operation of the power system in the PNW. The simulated hydro operation incorporates plant characteristics, streamflows, and non-power requirements from the current Pacific Northwest Coordination Agreement (PNCA). Additional resource capability estimates were provided by BPA, PNW Federal agency, public agency, cooperative, U.S. Bureau of Reclamation (USBR), and investor-owned utility (IOU) customers furnished through annual PNUCC data submittals for 2005 and/or direct submittals to BPA. The 2006 White Book is presented in two documents: (1) this summary document of Federal system and PNW region loads and resources, and (2) a technical appendix which presents regional loads, grouped by major PNW utility categories, and detailed contract and resource information. The technical appendix is available only in electronic form. Individual customer information for marketer contracts is not detailed due to confidentiality agreements. The 2006 White Book analysis updates the 2004 White Book. This analysis shows projections of the Federal system and region's yearly average annual energy consumption and resource availability for the study period, OY 2007-2016. The study also presents projections of Federal system and region expected 1-hour monthly peak demand, monthly energy demand, monthly 1-hour peak generating capability, and monthly energy generation for OY 2007, 2011, and 2016. BPA is investigating a new approach in capacity planning depicting the monthly Federal system 120-hour peak generating capability and 120-hour peak surplus/deficit for OY 2007, 2011, and 2016. This document analyzes the PNW's projected loads and available generating resources in two parts: (1) the loads and resources of the Federal system, for which BPA is the marketing agency;

  6. Analysis of the Thermal Loads on the KSTAR Cryogenic System

    SciTech Connect (OSTI)

    Kim, Y.S.; Oh, Y.K.; Kim, W.C.; Park, Y.M.; Lee, Y.J.; Jin, S.B.; Sa, J.W.; Choi, C.H.; Cho, K.W.; Bak, J.S.; Lee, G.S. [Korea Basic Science Institute, Yusung-Ku, Daejeon 305-806 (Korea, Republic of)

    2004-06-23T23:59:59.000Z

    A large-scale helium refrigeration system is one of the key components for the KSTAR (Korea Superconducting Tokamak Advanced Research) device. In the design of the refrigeration system, an estimation of the thermal loads on the cold mass is an important issue according to the operation scenario. The cold mass of the KSTAR device is about 250 tons including 30 superconducting (SC) coils and the magnet structure. In addition to the static thermal loads, pulsed thermal loads to the refrigeration system have been considered in the operation stage. The main pulsed thermal loads on magnet system are AC losses in the SC coils and eddy current losses in the magnet structure that depend on the magnetic field variation rate. The nuclear radiation loss due to plasma pulse operation is also considered. The designed cooling capacity of the refrigeration system is estimated to be about 9 kW at 4.5 K isothermal. In this paper, calculation of the various kinds of thermal loads on KSTAR cryogenic system and design of the large-scale helium refrigeration system are presented.

  7. Vehicle Cooling Systems: Improvements to efficiently, safely, and inexpensively cool vehicles during prolonged sun exposure

    Energy Innovation Portal (Marketing Summaries) [EERE]

    2010-07-02T23:59:59.000Z

    Vehicles left in sunny areas can quickly heat up to temperatures as high as 50-70 degrees C (122-158 degrees F) or even up to 121 degrees C (250 degrees F) in certain geographical areas. The windows and windshields of vehicles cause this greenhouse effect. Excess heat damages instrument panels (dash boards) and electronic equipment, causes passenger thermal discomfort, and increases fuel consumption and emissions with heavy air conditioning loads. Scientists at NREL have designed efficient,...

  8. A proposal for Coulomb assisted laser cooling of piezoelectric semiconductors

    SciTech Connect (OSTI)

    Nia, Iman Hassani; Mohseni, Hooman, E-mail: hmohseni@ece.northwestern.edu [Bio-Inspired Sensors and Optoelectronics Laboratory (BISOL), Department of Electrical Engineering, Northwestern University, Evanston, Illinois 60208 (United States)

    2014-07-28T23:59:59.000Z

    Anti-Stokes laser cooling of semiconductors as a compact and vibration-free method is very attractive. While it has achieved significant milestones, increasing its efficiency is highly desirable. The main limitation is the lack of the pristine material quality with high luminescence efficiency. Here, we theoretically demonstrate that the Coulomb interaction among electrons and holes in piezoelectric heterostructures could lead to coherent damping of acoustic phonons; rendering a significantly higher efficiency that leads to the possibility of cooling a broad range of semiconductors.

  9. Rapid heating and cooling in two-dimensional Yukawa systems

    E-Print Network [OSTI]

    Yan Feng; Bin Liu; J. Goree

    2011-04-19T23:59:59.000Z

    Simulations are reported to investigate solid superheating and liquid supercooling of two-dimensional (2D) systems with a Yukawa interparticle potential. Motivated by experiments where a dusty plasma is heated and then cooled suddenly, we track particle motion using a simulation with Langevin dynamics. Hysteresis is observed when the temperature is varied rapidly in a heating and cooling cycle. As in the experiment, transient solid superheating, but not liquid supercooling, is observed. Solid superheating, which is characterized by solid structure above the melting point, is found to be promoted by a higher rate of temperature increase.

  10. Beam Cooling with ionisation losses

    E-Print Network [OSTI]

    C. Rubbia; A. Ferrari; Y. Kadi; V. Vlachoudis

    2006-02-03T23:59:59.000Z

    A novel type of particle "cooling", called Ionization Cooling, is applicable to slow (v of the order of 0.1c) ions stored in a small ring. The many traversals through a thin foil enhance the nuclear reaction probability, in a steady configuration in which ionisation losses are recovered at each turn by a RF-cavity. For a uniform target "foil" the longitudinal momentum spread diverges exponentially since faster (slower) particles ionise less (more) than the average. In order to "cool" also longitudinally, a chromaticity has to be introduced with a wedge shaped "foil". Multiple scattering and straggling are then "cooled" in all three dimensions, with a method similar to the one of synchrotron cooling, but valid for low energy ions. Particles then stably circulate in the beam indefinitely, until they undergo for instance nuclear processes in the thin target foil. This new method is under consideration for the nuclear production of a few MeV/A ion beams. Simple reactions, for instance Li 7 + D Li 8 + p, are more favourably exploited with the heavier ion colliding against a gas-jet D2 target. Kinematics is generally very favourable, with emission angles in a narrow angular cone and a relatively concentrated outgoing energy spectrum which allows an efficient collection as a neutral gas in a tiny volume with a technology at high temperatures perfected at ISOLDE. It is however of a much more general applicability. The method appears capable of producing a "table top" storage ring with an accumulation rate in excess of 10**14 Li-8 radioactive ion/s for possible use for radioactive beams for physics studies (for example for beta-beams) or for therapy.

  11. FINAL PROJECT REPORT LOAD MODELING TRANSMISSION RESEARCH

    E-Print Network [OSTI]

    Lesieutre, Bernard

    2013-01-01T23:59:59.000Z

    components such as power sources, loads,  transformers and components such as power sources, loads,  transformers and 

  12. Adaptive Environmentally Contained Power and Cooling IT Infrastructure for the Data Center

    SciTech Connect (OSTI)

    Mann, Ron; Chavez, Miguel, E.

    2012-06-27T23:59:59.000Z

    The objectives of this program were to research and develop a fully enclosed Information Technology (IT) rack system for 100 kilowatts (KW) of IT load that provides its own internal power and cooling with High Voltage Alternating Current (HVAC defined as 480 volt) and chilled water as the primary inputs into the system and accepts alternative energy power sources such as wind and solar. For maximum efficiency, internal power to the IT equipment uses distributed High Voltage Direct Current power (HVDC defined as 360-380 volt) from the power source to the IT loads. The management scheme aggressively controls energy use to insure the best utilization of available power and cooling resources. The solution incorporates internal active management controls that not only optimizes the system environment for the given dynamic IT loads and changing system conditions, but also interfaces with data center Building Management Systems (BMS) to provide a complete end-to-end view of power and cooling chain. This technology achieves the goal of a Power Usage Effectiveness (PUE) of 1.25, resulting in a 38% reduction in the total amount of energy needed to support a 100KW IT load compared to current data center designs.

  13. Micro Cooling, Heating, and Power (Micro-CHP) and Bio-Fuel Center, Mississippi State University

    SciTech Connect (OSTI)

    Louay Chamra

    2008-09-26T23:59:59.000Z

    Initially, most micro-CHP systems will likely be designed as constant-power output or base-load systems. This implies that at some point the power requirement will not be met, or that the requirement will be exceeded. Realistically, both cases will occur within a 24-hour period. For example, in the United States, the base electrical load for the average home is approximately 2 kW while the peak electrical demand is slightly over 4 kW. If a 3 kWe micro- CHP system were installed in this situation, part of the time more energy will be provided than could be used and for a portion of the time more energy will be required than could be provided. Jalalzadeh-Azar [6] investigated this situation and presented a comparison of electrical- and thermal-load-following CHP systems. In his investigation he included in a parametric analysis addressing the influence of the subsystem efficiencies on the total primary energy consumption as well as an economic analysis of these systems. He found that an increase in the efficiencies of the on-site power generation and electrical equipment reduced the total monthly import of electricity. A methodology for calculating performance characteristics of different micro-CHP system components will be introduced in this article. Thermodynamic cycles are used to model each individual prime mover. The prime movers modeled in this article are a spark-ignition internal combustion engine (Otto cycle) and a diesel engine (Diesel cycle). Calculations for heat exchanger, absorption chiller, and boiler modeling are also presented. The individual component models are then linked together to calculate total system performance values. Performance characteristics that will be observed for each system include maximum fuel flow rate, total monthly fuel consumption, and system energy (electrical, thermal, and total) efficiencies. Also, whether or not both the required electrical and thermal loads can sufficiently be accounted for within the system specifications is observed. Case study data for various micro-CHP system configurations have been discussed and compared. Comparisons are made of the different prime mover/fuel combinations. Also, micro- CHP monthly energy cost results are compared for each system configuration to conventional monthly utility costs for equivalent monthly building power, heating, and cooling requirements.

  14. Efficient Photoionization-Loading of Trapped Cadmium Ions with Ultrafast Pulses

    E-Print Network [OSTI]

    L. Deslauriers; M. Acton; B. B. Blinov; K. -A. Brickman; P. C. Haljan; W. K. Hensinger; D. Hucul; S. Katnik; R. N. Kohn, Jr.; P. J. Lee; M. J. Madsen; P. Maunz; S. Olmschenk; D. L. Moehring; D. Stick; J. Sterk; M. Yeo; K. C. Younge; C. Monroe

    2006-08-04T23:59:59.000Z

    Atomic cadmium ions are loaded into radiofrequency ion traps by photoionization of atoms in a cadmium vapor with ultrafast laser pulses. The photoionization is driven through an intermediate atomic resonance with a frequency-quadrupled mode-locked Ti:Sapphire laser that produces pulses of either 100 fsec or 1 psec duration at a central wavelength of 229 nm. The large bandwidth of the pulses photoionizes all velocity classes of the Cd vapor, resulting in high loading efficiencies compared to previous ion trap loading techniques. Measured loading rates are compared with a simple theoretical model, and we conclude that this technique can potentially ionize every atom traversing the laser beam within the trapping volume. This may allow the operation of ion traps with lower levels of background pressures and less trap electrode surface contamination. The technique and laser system reported here should be applicable to loading most laser-cooled ion species.

  15. Experimental Tests of Cooling: Expectations and Additional Needs

    E-Print Network [OSTI]

    Zisman, Michael S

    2008-01-01T23:59:59.000Z

    of established techniques for cooling a beam, the choice forionization cooling is a viable technique. The large initialionization cooling, so an experimental test of the technique

  16. Critical review of water based radiant cooling system design methods

    E-Print Network [OSTI]

    Feng, Jingjuan Dove; Bauman, Fred; Schiavon, Stefano

    2014-01-01T23:59:59.000Z

    Embedded Radiant Heating and Cooling Systems, InternationalWATER BASED RADIANT COOLING SYSTEM DESIGN METHODS Jingjuan (Keywords: Radiant Cooling System, Design Approach,

  17. Design and Control of Hydronic Radiant Cooling Systems

    E-Print Network [OSTI]

    Feng, Jingjuan Dove

    2014-01-01T23:59:59.000Z

    embedded heating and cooling systems. Brussels, Belgium,of radiant heating/cooling systems for non-residentalSimulations of floor cooling system capacity." Applied

  18. Model Predictive Control for the Operation of Building Cooling Systems

    E-Print Network [OSTI]

    Ma, Yudong

    2010-01-01T23:59:59.000Z

    storage in building cooling systems. Technical report,storage in building cooling systems. Decision and Control,for the Operation of Building Cooling Systems Yudong Ma ? ,

  19. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    E-Print Network [OSTI]

    Widyolar, Bennett

    2013-01-01T23:59:59.000Z

    solar powered cooling system by producing a seamless output of cooling powersolar COP is the ratio of cooling output per available solar power

  20. Sandia National Laboratories: Cool Earth Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cool Earth Solar Cool Earth Solar and Sandia Team Up in First-Ever Public-Private Partnership on Livermore Valley Open Campus On February 26, 2013, in Concentrating Solar Power,...

  1. IMPLEMENTATION OF ONCE-THROUGH COOLING

    E-Print Network [OSTI]

    IMPLEMENTATION OF ONCE-THROUGH COOLING MITIGATION THROUGH ENERGY INFRASTRUCTURE PLANNING AND PROCUREMENT Michael R. Jaske Electricity Supply Analysis Division California Energy Commission Dennis C ...........................................................................................................................................1 Energy Agencies' Presumptions About Once-through Cooling Mitigation

  2. Cooling Towers--Energy Conservation Strategies

    E-Print Network [OSTI]

    Matson, J.

    A cooling water system can be optimized by operating the cooling tower at the highest possible cycles of concentration without risking sealing and fouling of heat exchanger surfaces, tube bundles, refrigeration equipment, overhead condensers...

  3. High temperature cooling system and method

    DOE Patents [OSTI]

    Loewen, Eric P.

    2006-12-12T23:59:59.000Z

    A method for cooling a heat source, a method for preventing chemical interaction between a vessel and a cooling composition therein, and a cooling system. The method for cooling employs a containment vessel with an oxidizable interior wall. The interior wall is oxidized to form an oxide barrier layer thereon, the cooling composition is monitored for excess oxidizing agent, and a reducing agent is provided to eliminate excess oxidation. The method for preventing chemical interaction between a vessel and a cooling composition involves introducing a sufficient quantity of a reactant which is reactive with the vessel in order to produce a barrier layer therein that is non-reactive with the cooling composition. The cooling system includes a containment vessel with oxidizing agent and reducing agent delivery conveyances and a monitor of oxidation and reduction states so that proper maintenance of a vessel wall oxidation layer occurs.

  4. Alternate Cooling Methods for Industrial Plants

    E-Print Network [OSTI]

    Brown, M.; Moore, D.

    refrigerants has caused many plants to evaluate existing cooling methods. This paper presents case studies on alternate cooling methods used for space conditioning at several different industrial facilities. Methods discussed include direct and indirect...

  5. Cool Cluster Correctly Correlated

    SciTech Connect (OSTI)

    Sergey Aleksandrovich Varganov

    2005-12-17T23:59:59.000Z

    Atomic clusters are unique objects, which occupy an intermediate position between atoms and condensed matter systems. For a long time it was thought that physical and chemical properties of atomic dusters monotonically change with increasing size of the cluster from a single atom to a condensed matter system. However, recently it has become clear that many properties of atomic clusters can change drastically with the size of the clusters. Because physical and chemical properties of clusters can be adjusted simply by changing the cluster's size, different applications of atomic clusters were proposed. One example is the catalytic activity of clusters of specific sizes in different chemical reactions. Another example is a potential application of atomic clusters in microelectronics, where their band gaps can be adjusted by simply changing cluster sizes. In recent years significant advances in experimental techniques allow one to synthesize and study atomic clusters of specified sizes. However, the interpretation of the results is often difficult. The theoretical methods are frequently used to help in interpretation of complex experimental data. Most of the theoretical approaches have been based on empirical or semiempirical methods. These methods allow one to study large and small dusters using the same approximations. However, since empirical and semiempirical methods rely on simple models with many parameters, it is often difficult to estimate the quantitative and even qualitative accuracy of the results. On the other hand, because of significant advances in quantum chemical methods and computer capabilities, it is now possible to do high quality ab-initio calculations not only on systems of few atoms but on clusters of practical interest as well. In addition to accurate results for specific clusters, such methods can be used for benchmarking of different empirical and semiempirical approaches. The atomic clusters studied in this work contain from a few atoms to tens of atoms. Therefore, they are quantum objects. Some qualitative information about the geometries of such clusters can be obtained with classical empirical methods, for example geometry optimization using an empirical Lennard-Jones potential. However, to predict their accurate geometries and other physical and chemical properties it is necessary to solve a Schroedinger equation. If one is not interested in dynamics of clusters it is enough to solve the stationary (time-independent) Schroedinger equation (H{Phi}=E{Phi}). This equation represents a multidimensional eigenvalue problem. The solution of the Schroedinger equation is a set of eigenvectors (wave functions) and their eigenvalues (energies). The lowest energy solution (wave function) corresponds to the ground state of the cluster. The other solutions correspond to excited states. The wave function gives all information about the quantum state of the cluster and can be used to calculate different physical and chemical properties, such as photoelectron, X-ray, NMR, EPR spectra, dipole moment, polarizability etc. The dimensionality of the Schroedinger equation is determined by the number of particles (nuclei and electrons) in the cluster. The analytic solution is only known for a two particle problem. In order to solve the equation for clusters of interest it is necessary to make a number of approximations and use numerical methods.

  6. Demand Response: Load Management Programs

    E-Print Network [OSTI]

    Simon, J.

    2012-01-01T23:59:59.000Z

    CenterPoint Load Management Programs CATEE Conference October, 2012 Agenda Outline I. General Demand Response Definition II. General Demand Response Program Rules III. CenterPoint Commercial Program IV. CenterPoint Residential Programs... V. Residential Discussion Points Demand Response Definition of load management per energy efficiency rule 25.181: ? Load control activities that result in a reduction in peak demand, or a shifting of energy usage from a peak to an off...

  7. Dynamic load balancing of applications

    DOE Patents [OSTI]

    Wheat, S.R.

    1997-05-13T23:59:59.000Z

    An application-level method for dynamically maintaining global load balance on a parallel computer, particularly on massively parallel MIMD computers is disclosed. Global load balancing is achieved by overlapping neighborhoods of processors, where each neighborhood performs local load balancing. The method supports a large class of finite element and finite difference based applications and provides an automatic element management system to which applications are easily integrated. 13 figs.

  8. Guide to Minimizing Compress-based Cooling

    Broader source: Energy.gov [DOE]

    Guide describes best practices for reducing energy use and total-cost-of-ownership for data center cooling systems.

  9. MEASUREMENT OF WASTE LOADING IN SALTSTONE

    SciTech Connect (OSTI)

    Harbour, J; Vickie Williams, V

    2008-07-18T23:59:59.000Z

    One of the goals of the Saltstone variability study is to identify the operational and compositional variables that control or influence the important processing and performance properties of Saltstone grout mixtures. One of those properties of importance is the Waste Loading (WL) of the decontaminated salt solution (DSS) in the Saltstone waste form. Waste loading is a measure of the amount of waste that can be incorporated within a waste form. The value of the Saltstone waste loading ultimately determines the number of vaults that will be required to disposition all of the DSS. In this report, the waste loading is defined as the volume in milliliters of DSS per liter of Saltstone waste form. The two most important parameters that determine waste loading for Saltstone are water to cementitious material (w/cm) ratio and the cured grout density. Data are provided that show the dependence of waste loading on the w/cm ratio for a fixed DSS composition using the current premix material (45% Blast Furnace Slag (BFS), 45% Fly Ash (FA) and 10% Ordinary Portland Cement (OPC)). The impact of cured grout density on waste loading was also demonstrated. Mixes (at 0.60 w/cm) made with a Modular Caustic side extraction Unit (MCU) simulant and either OPC or BFS have higher cured grout densities than mixes made with premix and increase the WL to 709 mL/L for the OPC mix and 689 mL/L for the BFS mix versus the value of 653 mL/L for MCU in premix at 0.60 w/cm ratio. Bleed liquid reduces the waste loading and lowers the effective w/cm ratio of Saltstone. A method is presented (and will be used in future tasks) for correcting the waste loading and the w/cm ratio of the as-batched mixes in those cases where bleed liquid is present. For example, the Deliquification, Dissolution and Adjustment (DDA) mix at an as-batched 0.60 w/cm ratio, when corrected for % bleed, gives a mix with a 0.55 w/cm ratio and a WL that has been reduced from 662 to 625 mL/L. An example is provided that demonstrated the quantitative impact of WL on the number of cells (each Saltstone vault contains two cells) required to disposition all of the {approx}100 million gallons of DSS available in the tanks. This calculation revealed that the number of cells required over the range of 0.48 to 0.62 w/cm ratio (equivalent to a WL range of 591 to 666 mL/L) varies from 65 to 57 cells (33 to 29 vaults). The intent of this oversimplified example was to show the range of variation in vaults expected due to w/cm ratio rather than to estimate the actual number of vaults required. There is a tradeoff between the waste loading and the processing and performance properties of Saltstone. The performance properties improve in general as the w/cm ratio decreases whereas the waste loading is reduced at lower w/cm ratios resulting in a larger number of Saltstone vaults. The final performance and processing requirements of Saltstone will determine the maximum waste loading achievable.

  10. Sandia National Laboratories: hydrodynamic loading

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    loading High-Fidelity Hydrostructural Analysis of Ocean Renewable Power Company's (ORPC's) TidGen Turbine On March 19, 2014, in Computational Modeling & Simulation, Energy, News,...

  11. High-Power Rf Load

    DOE Patents [OSTI]

    Tantawi, Sami G. (San Mateo, CA); Vlieks, Arnold E. (Livermore, CA)

    1998-09-01T23:59:59.000Z

    A compact high-power RF load comprises a series of very low Q resonators, or chokes [16], in a circular waveguide [10]. The sequence of chokes absorb the RF power gradually in a short distance while keeping the bandwidth relatively wide. A polarizer [12] at the input end of the load is provided to convert incoming TE.sub.10 mode signals to circularly polarized TE.sub.11 mode signals. Because the load operates in the circularly polarized mode, the energy is uniformly and efficiently absorbed and the load is more compact than a rectangular load. Using these techniques, a load having a bandwidth of 500 MHz can be produced with an average power dissipation level of 1.5 kW at X-band, and a peak power dissipation of 100 MW. The load can be made from common lossy materials, such as stainless steel, and is less than 15 cm in length. These techniques can also produce loads for use as an alternative to ordinary waveguide loads in small and medium RF accelerators, in radar systems, and in other microwave applications. The design is easily scalable to other RF frequencies and adaptable to the use of other lossy materials.

  12. Berkeley Lab's Cool Your School Program

    SciTech Connect (OSTI)

    Ivan Berry

    2012-07-30T23:59:59.000Z

    Cool Your School is a series of 6th-grade, classroom-based, science activities rooted in Berkeley Lab's cool-surface and cool materials research and aligned with California science content standards. The activities are designed to build knowledge, stimulate curiosity, and carry the conversation about human-induced climate change, and what can be done about it, into the community.

  13. Sympathetic cooling of 9 for quantum logic

    E-Print Network [OSTI]

    Sympathetic cooling of 9 Beż and 24 Mgż for quantum logic M. D. Barrett, B. DeMarco, T. Schaetz, D, USA Received 4 June 2003; published 3 October 2003 We demonstrate the cooling of a two species ion crystal consisting of one 9 Be and one 24 Mg ion. Since the respective cooling transitions of these two

  14. Continuous Cooling Transformation (CCT) Assistant Professor

    E-Print Network [OSTI]

    Cambridge, University of

    Continuous Cooling Transformation (CCT) Diagrams R. Manna Assistant Professor Centre of Advanced.ac.uk #12;Continuous cooling transformation (CCT) diagram There are two types of CCT diagrams I) Plot and transformation finish temperature against transformation time on each cooling curve II) Plot of (for each type

  15. Electron Cooling for RHIC V. Parkhomchuk

    E-Print Network [OSTI]

    C-A/AP/47 April 2001 Electron Cooling for RHIC V. Parkhomchuk Budker Institute of Nuclear Physics I Upton, NY 11973 #12;C-A/AP/47 April 2001 Electron Cooling for RHIC V. Parkhomchuk Budker Institute National Laboratory Upton, NY 11973 #12;ELECTRON COOLING FOR RHIC Review of the Principles of Electron

  16. Laser cooling of trapped ions Jurgen Eschner

    E-Print Network [OSTI]

    Blatt, Rainer

    of the art is reported, and several new cooling techniques are outlined. The principles of ion trapping by elucidating several milestone experiments. In addition, a number of special cooling techniques pertainingLaser cooling of trapped ions Ju¨rgen Eschner Institut fu¨ r Experimentalphysik, Universita

  17. Optomechanical laser cooling with mechanical modulations

    E-Print Network [OSTI]

    Marc Bienert; Pablo Barberis-Blostein

    2014-12-15T23:59:59.000Z

    We theoretically study the laser cooling of cavity optomechanics when the mechanical resonance frequency and damping depend on time. In the regime of weak optomechanical coupling we extend the theory of laser cooling using an adiabatic approximation. We discuss the modifications of the cooling dynamics and compare it with numerical simulations in a wide range of modulation frequencies.

  18. Towards Occupancy-Driven Heating and Cooling

    E-Print Network [OSTI]

    Whitehouse, Kamin

    Burke Parabola Architects Galen Staengl Staengl Engineering h HEATING, VENTILATION, AND cooling (HVAC required for heating, ventilation, and cooling (HVAC) by 20%­30% by tailoring the conditioning of buildingsTowards Occupancy-Driven Heating and Cooling Kamin Whitehouse, Juhi Ranjan, Jiakang Lu, Tamim

  19. A ROOFING TILE FOR NATURAL COOLING

    E-Print Network [OSTI]

    SUNGUARD: A ROOFING TILE FOR NATURAL COOLING Prepared For: California Energy Commission Energy (FAR) SUNGUARD: A ROOFING TILE FOR NATURAL COOLING EISG AWARDEE PowerLight Corporation 2954 San Pablo://www.energy.ca.gov/research/index.html. #12;Page 1 Sunguard: A Roofing Tile For Natural Cooling EISG Grant # 99-07 Awardee: Power

  20. CALIFORNIA ENERGY COMMISSION STAFF COOLING WATER MANAGEMENT

    E-Print Network [OSTI]

    1 CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY COMMISSION STAFF COOLING WATER MANAGEMENT PROGRAM GUIDELINES For Wet and Hybrid Cooling Towers at Power Plants MAY 17, 2004 DRAFTGUIDELINES NOVEMBER 2005 CEC-700-2005-025 Arnold Schwarzenegger, Governor #12;2 DRAFT CALIFORNIA ENERGY COMMISSION STAFF COOLING