Powered by Deep Web Technologies
Note: This page contains sample records for the topic "increased cooling demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

EIA forecasts increased oil demand, need for additional supply ...  

U.S. Energy Information Administration (EIA)

World oil demand is forecast to increase by 1.7 million barrels per day (bbl/d) ... Cooling demand in the Middle East is expected to rise to record levels this summer.

2

Production Will Meet Demand Increase This Summer  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: Production must meet increases in demand this year. Last year, increased imports met most of the summer demand increase, and increases in stock draws met almost all of the remainder. Production did not increase much. But this year, inventories will not be available, and increased imports seem unlikely. Thus, increases in production will be needed to meet increased demand. Imports availability is uncertain this summer. Imports in 1999 were high, and with Phase II RFG product requirements, maintaining this level could be challenging since not all refineries exporting to the U.S. will be able to meet the new gasoline specifications. Stocks will also contribute little supply this summer. Last year's high gasoline stocks allowed for a stock draw that was 58 MB/D higher than

3

Rapid increases in electricity demand challenge both ...  

U.S. Energy Information Administration (EIA)

... on April 1 was the steepest so far this year in SPP. The rate of increase in electricity demand peaked at 12.4% between 6 a.m. and 7 a.m. ...

4

Space cooling demands from office plug loads  

Science Conference Proceedings (OSTI)

Undersizing space cooling systems for office buildings can result in uncomfortable and angry tenants on peak cooling days. However, oversizing wastes money because more capacity is installed than is needed, and oversized systems have a lower energy efficiency which makes operating costs higher than necessary. Oversizing can adversely affect comfort as well, because oversized systems may provide poor humidity control and large temperature variations. Correct system sizing requires estimating building heat loads accurately. This paper discusses the heat load generated by the plug load, which includes any electrical equipment that is plugged into outlets.

Komor, P.

1997-12-01T23:59:59.000Z

5

Potential of solar cooling systems for peak demand reduction  

DOE Green Energy (OSTI)

We investigated the technical feasibility of solar cooling for peak demand reduction using a building energy simulation program (DOE2.1D). The system studied was an absorption cooling system with a thermal coefficient of performance of 0.8 driven by a solar collector system with an efficiency of 50% with no thermal storage. The analysis for three different climates showed that, on the day with peak cooling load, about 17% of the peak load could be met satisfactorily with the solar-assisted cooling system without any thermal storage. A performance availability analysis indicated that the solar cooling system should be designed for lower amounts of available solar resources that coincide with the hours during which peak demand reduction is required. The analysis indicated that in dry climates, direct-normal concentrating collectors work well for solar cooling; however, in humid climates, collectors that absorb diffuse radiation work better.

Pesaran, A.A. [National Renewable Energy Lab., Golden, CO (United States); Neymark, J. [Neymark (Joel), Golden, CO (United States)

1994-11-01T23:59:59.000Z

6

Increased demand spurs gas compression industry  

Science Conference Proceedings (OSTI)

The increasing demand for natural gas in the last five years has led to dynamic development in the gas compression industry as producers and transmission companies expand operations to supply gas. To handle the increase, for example, transmission companies have been steadily adding new lines to the pipeline infrastructure--3,437 miles in 1995 and an estimated 4,088 miles in 1997. New compression for pipelines has also increased from 212,637 horsepower added in 1989 to an estimated 311,685 horsepower to be added in 1997. Four key trends which influence the gas compression business have developed since the mid 1980s: first, a steady resurgence of demand for natural gas each year; second, a phenomenal number of mergers and buyouts among gas compression companies; third, an alarming drop in average daily gas production per well since 1972; and fourth, high drilling activity in the Gulf of Mexico.

Honea, M. [Weatherford Enterra, Inc., Houston, TX (United States)

1997-10-01T23:59:59.000Z

7

Using Utility Load Data to Estimate Demand for Space Cooling and Potential for Shiftable Loads  

SciTech Connect

This paper describes a simple method to estimate hourly cooling demand from historical utility load data. It compares total hourly demand to demand on cool days and compares these estimates of total cooling demand to previous regional and national estimates. Load profiles generated from this method may be used to estimate the potential for aggregated demand response or load shifting via cold storage.

Denholm, P.; Ong, S.; Booten, C.

2012-05-01T23:59:59.000Z

8

Peak Demand Reduction from Pre-Cooling with Zone Temperature Reset in an Office Building  

E-Print Network (OSTI)

Peak Demand Reduction from Pre-Cooling with Zone TemperatureUniversity of California. Peak Demand Reduction from Pre-shifted in time and the peak demand is reduced. The building

Xu, Peng

2010-01-01T23:59:59.000Z

9

Laser cooling of a trapped particle with increased Rabi frequencies  

Science Conference Proceedings (OSTI)

This paper analyzes the cooling of a single particle in a harmonic trap with red-detuned laser light with fewer approximations than previously done in the literature. We avoid the adiabatic elimination of the excited atomic state but are still interested in Lamb-Dicke parameters {eta}cooling laser can be chosen higher than previously assumed, thereby increasing the effective cooling rate but not affecting the final outcome of the cooling process. Since laser cooling is already a well-established experimental technique, the main aim of this paper is to present a model which can be extended to more complex scenarios, like cavity-mediated laser cooling.

Blake, Tony; Kurcz, Andreas; Saleem, Norah S.; Beige, Almut [School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT (United Kingdom)

2011-11-15T23:59:59.000Z

10

Rapid increases in electricity demand challenge both generating ...  

U.S. Energy Information Administration (EIA)

Because supply and demand for electricity must balance in real-time, rapid changes in demand create operational challenges for the electric system and generating unit ...

11

Thermal energy storage for space cooling. Technology for reducing on-peak electricity demand and cost  

DOE Green Energy (OSTI)

Cool storage technology can be used to significantly reduce energy costs by allowing energy intensive, electrically driven cooling equipment to be predominantly operated during off-peak hours when electricity rates are lower. In addition, some system configurations may result in lower first costs and/or lower operating costs. Cool storage systems of one type or another could potentially be cost-effectively applied in most buildings with a space cooling system. A survey of approximately 25 manufacturers providing cool storage systems or components identified several thousand current installations, but less than 1% of these were at Federal facilities. With the Federal sector representing nearly 4% of commercial building floor space and 5% of commercial building energy use, Federal utilization would appear to be lagging. Although current applications are relatively few, the estimated potential annual savings from using cool storage in the Federal sector is $50 million. There are many different types of cool storage systems representing different combinations of storage media, charging mechanisms, and discharging mechanisms. The basic media options are water, ice, and eutectic salts. Ice systems can be further broken down into ice harvesting, ice-on-coil, ice slurry, and encapsulated ice options. Ice-on-coil systems may be internal melt or external melt and may be charged and discharged with refrigerant or a single-phase coolant (typically a water/glycol mixture). Independent of the technology choice, cool storage systems can be designed to provide full storage or partial storage, with load-leveling and demand-limiting options for partial storage. Finally, storage systems can be operated on a chiller-priority or storage priority basis whenever the cooling load is less than the design conditions. The first section describes the basic types of cool storage technologies and cooling system integration options. The next three sections define the savings potential in the Federal sector, present application advice, and describe the performance experience of specific Federal users. A step-by-step methodology illustrating how to evaluate cool storage options is presented next, followed by a case study of a GSA building using cool storage. Latter sections list manufacturers, selected Federal users, and reference materials. Finally, the appendixes give Federal life-cycle costing procedures and results for a case study.

None

2000-12-01T23:59:59.000Z

12

Energy Consumption and Demand as Affected by Heat Pumps that Cool, Heat and Heat Domestic Water  

E-Print Network (OSTI)

Products or systems that heat, cool and heat domestic water, which are also referred to as integrated systems, have been available for several years. The concept is simple and appeals to consumers. This paper presents methods for evaluating the potential savings by using an integrated system that heats water by desuperheating discharge gas in the refrigeration cycle. The methods may be applied for any specific location, and their accuracy will depend on the accuracy of building loads and water usage estimates. Power demand can also be affected by electric water heaters. The methods presented demonstrate how integrated systems can be of value in reducing daily summertime peaks.

Cawley, R.

1992-05-01T23:59:59.000Z

13

The Relative Effects of U.S. Population Shifts (1930-80) on Potential Heating, Cooling and Water Demand  

Science Conference Proceedings (OSTI)

The effects on potential heating, cooling and water demand induced by the shift and growth of population from cooler and wetter regions of the country to warmer and drier areas were examined. Heating and cooling degree day totals for each of the ...

Henry F. Diaz; Ronald L. Holle

1984-03-01T23:59:59.000Z

14

Impact of Reflective Roofing on Cooling Electrical Use and Peak Demand in a Florida Retail Mall  

E-Print Network (OSTI)

Architects in hot climates have long recognized that reflective roof colors can reduce building cooling load. Experimentation spanning nearly three decades has shown that white roofing surfaces can significantly reduce surface temperatures and cooling loads (Givoni and Hoffmann, 1968; Reagan and Acklam, 1979; Griggs and Shipp, 1988; Anderson, 1989; Anderson et al., 1991 and Bansal et al., 1992). More importantly, measured cooling energy savings of white surfaces have been significant in California's climate (Akbari et al., 1991, 1992, 1997). In Florida, field research by the Florida Solar Energy Center (FSEC) since 1993 has quantified the impact of reflective roof coatings on sub-metered air conditioning (AC) consumption in tests in a dozen occupied homes (Parker et al., 1993; 1994; 1995; 1997). The coatings were applied to the roofs of each home in mid-summer after a month-long period of monitoring during which meteorological conditions, building temperatures and AC energy use were recorded. Using weather periods with similar temperatures and solar insolation, air conditioning energy use was reduced by 10% - 43% in the homes. The average drop in space cooling energy use was about 7.4 kWh/day or 19% of the pre-application air conditioning consumption. Unfortunately, until this project there has been little objective testing of the impact of roof whitening on the AC load of commercial buildings in Florida. Two demonstration sites have been monitored. The first was an elementary school in Cocoa Beach, Florida, which was monitored for a year before and after a white roof coating was applied. A final report on this project was published in the CADDET Newsletter (Parker et al., 1996a, b). The project demonstrated a 10% annual savings in chiller energy with a 30% reduction in peak cooling electrical demand. This paper summarizes the findings from the second demonstration at a commercial strip mall.

Parker, D. S.; Sonne, J. K.; Sherwin, J. R.

2002-01-01T23:59:59.000Z

15

Muffled Price Signals: Household Water Demand Under Increasing-Block Prices  

E-Print Network (OSTI)

The distinction has been quite important in the electricity demand literature, in which long-run price elasticity and electricity pricing, and volume discounts in general. Under increasing blocks, the budget constraintMuffled Price Signals: Household Water Demand Under Increasing-Block Prices Sheila M. Cavanagh, W

Kammen, Daniel M.

16

Peak Demand Reduction from Pre-Cooling with Zone Temperature Reset in an Office Building  

E-Print Network (OSTI)

Use of Building Thermal Mass to Offset Cooling Loads. ASHRAEThe Role of Thermal Mass on the Cooling Load of Buildings.to reduce peak cooling loads with thermal mass control.

Xu, Peng

2010-01-01T23:59:59.000Z

17

Peak demand reduction from pre-cooling with zone temperature reset in an office building  

E-Print Network (OSTI)

Use of Building Thermal Mass to Offset Cooling Loads. ASHRAEThe Role of Thermal Mass on the Cooling Load of Buildings.to reduce peak cooling loads with thermal mass control.

Xu, Peng; Haves, Philip; Piette, Mary Ann; Braun, James

2004-01-01T23:59:59.000Z

18

Peak demand reduction from pre-cooling with zone temperature reset in an office building  

E-Print Network (OSTI)

an Energy-Efficient Economy. Peak Demand Reduction from Pre-No. DE-AC03-76SF00098. Peak Demand Reduction from Pre-shifted in time and the peak demand is reduced. The building

Xu, Peng; Haves, Philip; Piette, Mary Ann; Braun, James

2004-01-01T23:59:59.000Z

19

Trends in Heating and Cooling Degree Days: Implications for Energy Demand Issues  

Reports and Publications (EIA)

Weather-related energy use, in the form of heating, cooling, and ventilation, accounted for more than 40 percent of all delivered energy use in residential and commercial buildings in 2006. Given the relatively large amount of energy affected by ambient temperature in the buildings sector, EIA has reevaluated what it considers normal weather for purposes of projecting future energy use for heating, cooling, and ventilation. In AEO2008, estimates of normal heating and cooling degree-days are based on the population-weighted average for the 10-year period from 1997 through 2006.

2011-02-07T23:59:59.000Z

20

Trends in Heating and Cooling Degree Days: Implications for Energy Demand Issues (released in AEO2008)  

Reports and Publications (EIA)

Weather-related energy use, in the form of heating, cooling, and ventilation, accounted for more than 40 percent of all delivered energy use in residential and commercial buildings in 2006. Given the relatively large amount of energy affected by ambient temperature in the buildings sector, EIA has reevaluated what it considers normal weather for purposes of projecting future energy use for heating, cooling, and ventilation. In AEO2008, estimates of normal heating and cooling degree-days are based on the population-weighted average for the 10-year period from 1997 through 2006.

Information Center

2008-09-24T23:59:59.000Z

Note: This page contains sample records for the topic "increased cooling demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Wetland Water Cooling Partnership: The Use of Restored Wetlands to Enhance Thermoelectric Power Plant Cooling and Mitigate the Demand on Surface Water Use  

NLE Websites -- All DOE Office Websites (Extended Search)

Pierina noceti Pierina noceti Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-5428 pierina.noceti@netl.doe.gov steven I. apfelbaum Principal Investigator Applied Ecological Services, Inc. 17921 Smith Road P.O. Box 256 Brodhead, WI 53520 608-897-8641 steve@appliedeco.com Wetland Water Cooling PartnershiP: the Use of restored Wetlands to enhanCe thermoeleCtriC PoWer Plant Cooling and mitigate the demand on sUrfaCe Water Use Background Thermoelectric power plants require a significant volume of water to operate, accounting for 39 percent of freshwater (136 billion gallons per day) withdrawn in the United States in 2000, according to a U.S. Geological Survey study. This significant use of water ranks second only to the agricultural sector

22

Intelligent Commercial Lighting: Demand-Responsive Conditioning and Increased User Satisfaction  

E-Print Network (OSTI)

algorithm. The preferred demand response strategy was foundimplements the specific demand response policy chosen by theload shedding and demand response, a literature review of

Agogino, Alice M.

2005-01-01T23:59:59.000Z

23

Global cooling: increasing world-wide urban albedos to offset...  

NLE Websites -- All DOE Office Websites (Extended Search)

In addition, increasing urban albedo can result in less absorption of incoming solar radiation by the surface-troposphere system, countering to some extent the global scale...

24

How Increased Crude Oil Demand by China and India Affects the International Market  

E-Print Network (OSTI)

-WTI Spot Cushing US$/BBL Brent Crude Oil-Brent Dated FOB US$/BBL Dubai Crude Oil-Arab Gulf Dubai FOB US$/BBL Tapis Crude Oil-Malaysia Tapis FOB US$/BBL Urals Crude Oil-Urals FOB US$/BBL Bonny Crude Oil-Africa FOB1 How Increased Crude Oil Demand by China and India Affects the International Market

25

Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response  

E-Print Network (OSTI)

cooling offset by absorption cooling, but mostly extensivecooling demand increases, this can constitute a stable heat sink if waste heat for absorption

Stadler, Michael

2009-01-01T23:59:59.000Z

26

United States, France and Japan Increase Cooperation on Sodium-Cooled Fast  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United States, France and Japan Increase Cooperation on United States, France and Japan Increase Cooperation on Sodium-Cooled Fast Reactor Prototypes United States, France and Japan Increase Cooperation on Sodium-Cooled Fast Reactor Prototypes February 1, 2008 - 11:13am Addthis WASHINGTON, DC -The U.S Department of Energy (DOE), the French Atomic Energy Commission (CEA) and Japan Atomic Energy Agency (JAEA) today expanded cooperation to coordinate Sodium-Cooled Fast Reactor Prototype development through a Memorandum of Understanding (MOU) signed by DOE Assistant Secretary for Nuclear Energy Dennis R. Spurgeon, CEA Chairman Alain Bugat and JAEA President Toshio Okazaki. The MOU establishes a collaborative framework with the ultimate goal of deploying sodium-cooled fast reactor prototypes. A sodium-cooled fast reactor uses liquid sodium

27

Intelligent Commercial Lighting: Demand-Responsive Conditioning and Increased User Satisfaction  

E-Print Network (OSTI)

Constraints on Occupant Lighting choices and Satisfaction: A007 "Intelligent Commercial Lighting: Demand-Responsivedirectly. Intelligent Commercial Lighting: Demand-Responsive

Agogino, Alice M.

2005-01-01T23:59:59.000Z

28

Hot Thermal Storage/Selective Energy System Reduces Electric Demand for Space Cooling As Well As Heating in Commercial Application  

E-Print Network (OSTI)

Based on an experimental residential retrofit incorporating thermal storage, and extensive subsequent modeling, a commercial design was developed and implemented to use hot thermal storage to significantly reduce electric demand and utility energy costs during the cooling season as well as the heating season. To achieve air conditioning savings, the system separates dehumidification from sensible cooling; dehumidifies by desiccant absorption, using heat from storage to dry the desiccant; and then cools at an elevated temperature improving overall system efficiency. Efficient heat for desiccant regeneration is provided by a selective-energy system coupled with thermal storage. The selective-energy system incorporates diesel cogeneration, solar energy and off-peak electric resistance heating. Estimated energy and first cost savings, as compared with an all-electric VAV HVAC system, are: 30 to 50% in ductwork size and cost; 30% in fan energy; 25% in air handling equipment; 20 to 40% in utility energy for refrigeration; 10 to 20% in refrigeration equipment; and space savings due to smaller ductwork and equipment.

Meckler, G.

1985-01-01T23:59:59.000Z

29

Consumer demand analysis: solar heating and cooling of buildings. Final report  

DOE Green Energy (OSTI)

This study concerns the acceptability of solar heating and cooling to homebuyers for residential applications. The study assesses the extent of homeowner awareness of solar technologies, estimates the acceptability of elevated first costs including willingness to trade higher initial costs for life cycle savings, and investigates the impact of solar aesthetics. Also explored are other areas of potential concern to homeowners in evaluating a solar alternative as well as positive motivations that would encourage purchase. Finally, the socioeconomic and attitudinal characteristics of individuals more likely to purchase a solar home rather than a conventional home were studied. The results are based on group depth interviews and personal interviews with active homeseekers, top executives of large residential development firms, and architects. The sample was split evenly between Denver, Colorado and the Philadelphia, Pa./Wilmington, Del. areas. Implications of the results for the commercialization of solar energy and possible public policy decisions are also discussed.

Scott, J.E.

1976-09-01T23:59:59.000Z

30

6.25 KHZ -MAXIMUM SPECTRUM EFFICIENCY The demand for wireless connectivity is increasing. Emerging technologies create  

E-Print Network (OSTI)

6.25 KHZ - MAXIMUM SPECTRUM EFFICIENCY The demand for wireless connectivity is increasing. Emerging technologies create applications that require instant information. Wireless SCADA solutions demand RF channels is ready today to utilize the existing spectrum for maximum efficiency. Until now, 6.25 kHz bandwidth

Allen, Gale

31

Program Design Analysis using BEopt Building Energy Optimization Software: Defining a Technology Pathway Leading to New Homes with Zero Peak Cooling Demand; Preprint  

SciTech Connect

An optimization method based on the evaluation of a broad range of different combinations of specific energy efficiency and renewable-energy options is used to determine the least-cost pathway to the development of new homes with zero peak cooling demand. The optimization approach conducts a sequential search of a large number of possible option combinations and uses the most cost-effective alternatives to generate a least-cost curve to achieve home-performance levels ranging from a Title 24-compliant home to a home that uses zero net source energy on an annual basis. By evaluating peak cooling load reductions on the least-cost curve, it is then possible to determine the most cost-effective combination of energy efficiency and renewable-energy options that both maximize annual energy savings and minimize peak-cooling demand.

Anderson, R.; Christensen, C.; Horowitz, S.

2006-08-01T23:59:59.000Z

32

The demand for high performance computing research has been significantly increasing over the past few years. Various  

E-Print Network (OSTI)

The demand for high performance computing research has been significantly increasing over the past to promote the effective use of High Performance Computing in the research environment. In addition facility has enabled cutting-edge computations material research, "Having a high-performance computing

Akhmedov, Azer

33

SOLERAS solar cooling project  

Science Conference Proceedings (OSTI)

In view of the increasing demand for cooling in both the United States and Saudi Arabia, solar cooling systems are being considered as serious alternatives to the energy intensive conventional systems, especially when confronted with rising fossil fuel costs. Saudi Arabia and the hot, southern regions of the United States, having abundant sunshine and high cooling demand, are obvious candidates for solar active cooling systems and passive cooling design. Solar active cooling has yet to be shown to be either technologically mature or economically feasible, but efforts have been, and are presently being made within the United States National Solar Cooling Program to develop reliable systems which can compete economically with conventional cooling systems. Currently, the program is funding research and development projects in the areas of absorption, Rankine, dessicant, and advanced technologies. Saudi Arabia has a long and successful tradition of building cooling using passive architectural designs. Combining these past achievements with a program of research and development in both active and passive solar cooling should permit an early economical introduction of entirely solar cooled buildings to Saudi Arabia and the southern United States.

Corcoleotes, G.; Williamson, J.S.

1982-01-01T23:59:59.000Z

34

Statistical Information of the Increased Demand for Watch the VOD with the Increased Sophistication in the Mobile Devices,Communications and Internet Penetration in Asia  

E-Print Network (OSTI)

As the rapid progress of the media streaming applications such as video streaming can be classified into two types of streaming, Live video streaming, Video on Demand (VoD). Live video streaming is a service which allows the clients to watch many TV channels over the internet and the clients able to use one operation to perform is to switch the channels. Video on Demand (VoD) is one of the most important applications for the internet of the future and has become an interactive multimedia service which allows the users to start watching the video of their choice at anytime and anywhere, especially after the rapid deployment of the wireless networks and mobile devices. In this paper provide statistical information about the Internet, communications and mobile devices etc. This has led to an increased demand for the development, communication and computational powers of many of the mobile wireless subscribers/mobile devices such as laptops, PDAs, smart phones and notebook. These techniques are utilized to obtain...

Alomari, Saleh Ali

2011-01-01T23:59:59.000Z

35

Global Cooling: Increasing World-Wide Urban Albedos to Offset CO2  

Science Conference Proceedings (OSTI)

Modification of urban albedos reduces summertime urban temperatures, resulting in a better urban air quality and building air-conditioning savings. Furthermore, increasing urban albedos has the added benefit of reflecting some of the incoming global solar radiation and countering to some extent the effects of global warming. In many urban areas, pavements and roofs constitute over 60% of urban surfaces (roof 20-25%, pavements about 40%). Using reflective materials, both roof and the pavement albedos can be increased by about 0.25 and 0.10, respectively, resulting in a net albedo increase for urban areas of about 0.1. Many studies have demonstrated building cooling-energy savings in excess of 20% upon raising roof reflectivity from an existing 10-20% to about 60% (a U.S. potential savings in excess of $1 billion (B) per year in net annual energy bills). On a global basis, our preliminary estimate is that increasing the world-wide albedos of urban roofs and paved surfaces will induce a negative radiative forcing on the earth equivalent to removing {approx} 22-40 Gt of CO{sub 2} from the atmosphere. Since, 55% of the emitted CO{sub 2} remains in the atmosphere, removal of 22-40 Gt of CO{sub 2} from the atmosphere is equivalent to reducing global CO{sub 2} emissions by 40-73 Gt. At {approx} $25/tonne of CO{sub 2}, a 40-73 Gt CO{sub 2} emission reduction from changing the albedo of roofs and paved surfaces is worth about $1,000B to 1800B. These estimated savings are dependent on assumptions used in this study, but nevertheless demonstrate considerable benefits that may be obtained from cooler roofs and pavements.

Akbari, Hashem; Menon, Surabi; Rosenfeld, Arthur

2008-01-14T23:59:59.000Z

36

Differential impact of gas shortages and fuel-price increases on demand: the case of the hotel industry in New York State  

SciTech Connect

The authors assess the impact of the energy crisis on the lodging industry in New York (excluding New York City) by estimating the effects of two related, but not necessarily correlated, variables: gas shortages and energy price increases. Strong evidence supports the conclusion that energy shortages dampen hotel demand while price increases encourage international, intrastate, and interstate shifts in distance distributions of travel destinations as well as changes in number of trips and length of stay, resulting in a slight aggregate increase in demand. Recent industry data relating to occupancy rates and profitability seem to support this conclusion. 16 references, 2 tables.

Arbel, A. (Cornell Univ., Ithaca, NY); Ravid, A.

1983-04-01T23:59:59.000Z

37

Experimental and Analytical Simulation of MFCI (Molten Fuel Coolant Interaction) during CDA (Core Disruptive Accident) in Sodium Cooled Fast Reactor.  

E-Print Network (OSTI)

??With increasing demand for understanding Severe Accident Scenario in Sodium Cooled Fast Reactors, there is an urgent need of enhancing numerical and experimental simulation techniques.… (more)

Natarajan, Venkataraman

2011-01-01T23:59:59.000Z

38

Advanced Control Technologies and Strategies Linking Demand Response and Energy Efficiency  

E-Print Network (OSTI)

demand shifting are thermal energy storage systems, whichlockout, pre-cooling, thermal energy storage, cooling loadlockout • Pre-cooling • Thermal energy storage • Cooling

Kiliccote, Sila; Piette, Mary Ann

2005-01-01T23:59:59.000Z

39

Influence of the greenhouse effect on human health through stratospheric cooling: Possible increase in acquired immunodeficient syndrome  

SciTech Connect

The greenhouse effect cools the stratosphere and increases formation of PSC (polar stratospheric cloud) in polar regions and enhances ozone depletion. If the enhanced ozone depletion diffused to lower latitudes, it could increase ultraviolet radiation (UV), which might increase acquired immunodeficiency syndrome (AIDS). Epidemiological studies are made to test this hypothesis. The relation between AIDS prevalence R and latitude {theta}. Comparison of analyses shows that R of Caucasians would be higher than Non-Caucasians at the same {theta}. These trends are similar to those of skin cancers known to be caused by UV. In developing countries poverty, malnutrition, etc., could cause high R, and since most developing countries are located at low {theta}, the low {theta} increase may be due to these factors. However if so in Africa they are about the same and the low {theta} increase would disappear, but data on African countries also show the low {theta} increase and the significant correlation. Some countries at low {theta} have low R, probably because HIV is not prevalent for them. Then the upper envelope of the distribution of R would be cases when HIV is prevalent and UV is most effective. Therefore analyses are repeated using maxima of R within intervals of {theta} of 1, 3 and 5{degree}. In all cases the low {theta} increase and the correlation becomes more significant. These results support the hypothesis that AIDS is promoted by UV.

Okamoto, Kazuto; Tsushima, Hiroshi; Tanimoto, Shin [Toyo Gakuen Univ. Chiba (Japan)

1996-09-01T23:59:59.000Z

40

Energy Demands and Efficiency Strategies in Data Center Buildings  

E-Print Network (OSTI)

DX Cooling Total Annual Energy Usage Peak Electric DemandDX Cooling Total Annual Energy Usage Scenario Supply/ ReturnDX Cooling Total Annual Energy Usage Peak Electric Demand

Shehabi, Arman

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "increased cooling demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

California Energy Demand Scenario Projections to 2050  

E-Print Network (OSTI)

Minimum demand and Maximum demand incorporate assumptionslevels, or very minor Maximum demand household size, growthvehicles in Increasing Maximum demand 23 mpg truck share

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

42

Study on Auto-DR and Pre-cooling of Commercial Buildings with...  

NLE Websites -- All DOE Office Websites (Extended Search)

072010 Keywords auto-dr, demand response, demand response and distributed energy resources center, demand response research center, demand shed, demand shifting (pre-cooling),...

43

Monitoring the Energy-Use Effects of Cool Roofs on California Commercial Buildings  

E-Print Network (OSTI)

can also reduce peak electricity demand. Cool roofs transferthe cool roof on peak electricity demand, we inspected theEstimate of Peak Electricity Demand Use and Savings Using

Akbari, Hashem; Levinson, Ronnen; Konopaki, Steve; Rainer, Leo

2004-01-01T23:59:59.000Z

44

Current trends in commercial cool storage. Final report. [Use of chilled water and ice storage to reduce demand charges and electric bills; 85 projects  

DOE Green Energy (OSTI)

The objectives of this study were to identify, by means of a phone-and-mail survey, recent installations of off-peak cool storage air conditioning systems in commercial buildings; to monitor new developments; and to indicate trends. This report contains descriptions of over 80 systems installed since 1981, plus findings and conclusions based on site-specific information. Analysis of the findings suggests that storage cooling systems in commercial buildings can, in many cases, offer technical and cost advantages over nonstorage systems. The detailed information should be of value to potential customers and HVAC engineers in making cooling equipment decisions that would be advantageous to customer, utility, and HVAC industry alike. 20 refs.

Hersh, H.N.

1985-07-01T23:59:59.000Z

45

Cooling Plant Optimization Guide  

Science Conference Proceedings (OSTI)

Central cooling plants or district cooling systems account for 22 percent of energy costs for cooling commercial buildings. Improving the efficiency of central cooling plants will significantly impact peak demand and energy usage for both building owners and utilities. This guide identifies opportunities for optimizing a central cooling plant and provides a simplified optimization procedure. The guide focuses on plant optimization from the standpoint of minimizing energy costs and maximizing efficiencies...

1998-09-29T23:59:59.000Z

46

A functional magnetic resonance imaging study of overt letter verbal fluency using a clustered acquisition sequence: greater anterior cingulate activation with increased task demand  

E-Print Network (OSTI)

Regional cerebral activation during a cognitive task can vary with task demand and task performance. In a functional magnetic resonance imaging study, we examined the effect of manipulating task demand on activation during verbal fluency by using “easy ” and “hard ” letters. A “clustered ” image acquisition sequence allowed overt verbal responses to be made in the absence of scanner noise which facilitated “online” measurement of task performance. Eleven righthanded, healthy male volunteers participated. Twice as many errors were produced with hard as with easy letters (20.8 ? 13.6 and 10.1 ? 10.7 % errors, respectively). For both conditions, the distribution of regional activation was comparable to that reported in studies of covert verbal fluency, but with greater engagement of subcortical areas. The hard condition was associated with greater dorsal anterior cingulate activation than the easy condition. This may reflect the greater demands of the former, particularly in terms of arousal responses with increased task difficulty and the monitoring of potential response errors. © 2002 Elsevier Science (USA)

Cynthia H. Y. Fu; Kevin Morgan; John Suckling; Steve C. R. Williams; Chris Andrew; Goparlen N. Vythelingum; Philip K. Mcguire

2002-01-01T23:59:59.000Z

47

Comparison of energy modeling and laboratory tests on green roof potential to decrease the cooling demand for North European office buildings  

Science Conference Proceedings (OSTI)

Greenroofs have been shown to reduce the rooftop heat transfer, offering enhancement to a building's thermal resistance or R-value in warm climate zones. However a comprehensive study of neither the magnitude of that effect, nor the impact of green roof ... Keywords: cooling load, energy efficiency, energy modeling, greenroofs

Hendrik Voll; Teet-Andrus Kõiv

2011-05-01T23:59:59.000Z

48

Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Peak load diagram Demand Response Demand Response (DR) is a set of time-dependent activities that reduce or shift electricity use to improve electric grid reliability, manage...

49

Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Peak load diagram Demand Response Demand response (DR) is a set of time-dependent activities that reduce or shift electricity use to improve electric grid reliability, manage...

50

As the world economy continues to expand the demand for petroleum based fuel increases and the price of these fuels rises  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 Structural Studies of Catalytically Stabilized Industrial Hydrotreating Catalysts Myriam Perez De la Rosa 1 , Gilles Berhault 2 , Apurva Mehta 3 , Russell R. Chianelli 1 1 University of Texas at El Paso, Materials Research Technology Institute, El Paso, TX 2 Institut de Recherches sur la Catalyse, CNRS, Villeurbanne cedex, France 3 Stanford Synchrotron Radiation Laboratory, Menlo Park, CA Figure 1: MoS 2 layered structure. As the world economy continues to expand the demand for petroleum based fuel increases and the price of these fuels rises. The rising price of fuel has another consequence: refiners tend to purchase cheaper fuels of poorer quality. These poor quality fuels contain increasing amounts of sulfur and other pollutants leading to a decline

51

Renewable and cooling aware workload management for sustainable data centers  

Science Conference Proceedings (OSTI)

Recently, the demand for data center computing has surged, increasing the total energy footprint of data centers worldwide. Data centers typically comprise three subsystems: IT equipment provides services to customers; power infrastructure supports the ... Keywords: cooling optimization, demand shaping, renewable energy, scheduling, sustainable data center

Zhenhua Liu; Yuan Chen; Cullen Bash; Adam Wierman; Daniel Gmach; Zhikui Wang; Manish Marwah; Chris Hyser

2012-06-01T23:59:59.000Z

52

Demand Shifting with Thermal Mass in Light and Heavy Mass Commercial Buildings  

E-Print Network (OSTI)

effort to understand pre-cooling thermal mass as a Demandof Building Thermal Mass to Offset Cooling Loads. ” ASHRAEKey words: Pre-cooling, demand response, thermal mass

Xu, Peng

2010-01-01T23:59:59.000Z

53

Electricity demand changes in predictable patterns - Today in ...  

U.S. Energy Information Administration (EIA)

... winter months tend to be higher than demand levels during the fall and spring "shoulder" seasons when system demand for space conditioning (heating or cooling) ...

54

Demand Response Programs Oregon Public Utility Commission  

E-Print Network (OSTI)

(at 97 deg. F) #12;Cool Keeper Unit Installation #12;Cool Keeper Test Shed Load Profile 3350 3400 3450 operating according to their 'Natural Duty Cycle' 93 o F Expected load profile w/o Cool Keeper intervention, Demand Side Management #12;Current Programs/Tariffs ­ Load Control Programs Cool Keeper, Utah (currently

55

Demand Trading Toolkit  

Science Conference Proceedings (OSTI)

Download report 1006017 for FREE. The global movement toward competitive markets is paving the way for a variety of market mechanisms that promise to increase market efficiency and expand customer choice options. Demand trading offers customers, energy service providers, and other participants in power markets the opportunity to buy and sell demand-response resources, just as they now buy and sell blocks of power. EPRI's Demand Trading Toolkit (DTT) describes the principles and practice of demand trading...

2001-12-10T23:59:59.000Z

56

Energy 101: Cool Roofs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy 101: Cool Roofs Energy 101: Cool Roofs Energy 101: Cool Roofs February 1, 2011 - 10:50am Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs Editor's Note: This entry has been cross-posted from DOE's Energy Blog. In this edition of Energy 101 we take a look at one of Secretary Chu's favorite energy efficiency techniques, cool roofs. Traditional dark-colored roofing materials absorb a great deal of sunlight, which in turn transfers heat to a building. Cool roofs use light-colored, highly reflective materials to regulate building temperatures without increasing electricity demand, which can result in energy savings of up to 10 to 15 percent. Cool roofs can also reduce the "heat island" effect in cities and suburbs, a phenomenon that produces higher temperatures in densely populated areas

57

Addressing Energy Demand through Demand Response: International...  

NLE Websites -- All DOE Office Websites (Extended Search)

Addressing Energy Demand through Demand Response: International Experiences and Practices Title Addressing Energy Demand through Demand Response: International Experiences and...

58

Addressing Energy Demand through Demand Response: International...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Demand through Demand Response: International Experiences and Practices Title Addressing Energy Demand through Demand Response: International Experiences and Practices...

59

Thermal Performance of Phase Change Wallboard for Residential Cooling Application  

E-Print Network (OSTI)

USA ABSTRACT Cooling of residential California buildings contributes significantly to electrical consumption and peak power demand

Feustel, H.E.

2011-01-01T23:59:59.000Z

60

Evaluation of the Heating & Cooling Energy Demand of a Case Residential Building by Comparing The National Calculation Methodology of Turkey and EnergyPlus through Thermal Capacity Calculations  

E-Print Network (OSTI)

In all around the world, because of the rapid population growth and exhausting energy sources over time, energy efficiency and energy conservation gradually come into prominence. Hence, in 2002, a directive (EPBD) which obligates reducing energy usage and energy performance in buildings was published by European Union. In this scope, Turkey has developed a National Building Energy Performance Calculation Methodology, BepTr, which is based on simple hourly method in ISO EN 13790 Umbrella Document to determine the energy performance of buildings. The aim of the paper is to display the energy demand differences resultant from only the envelope’s thermal capacity between simplified method which is projected in ISO EN 13790 Umbrella Document and EnergyPlus which is based on full dynamic simulation method.

Atamaca, Merve; Kalaycioglu, Ece; Yilmaz, Zerrin

2011-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "increased cooling demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

The energy water nexus : increasing water supply by desalination integrated with renewable power and reducing water demand by corporate water footprinting.  

E-Print Network (OSTI)

??Growing populations and periodic drought conditions have exacerbated water stress in many areas worldwide. Consequently, it would be valuable to manage both supply and demand… (more)

Clayton, Mary Elizabeth

2013-01-01T23:59:59.000Z

62

Applying risk informed methodologies to improve the economics of sodium-cooled fast reactors  

E-Print Network (OSTI)

In order to support the increasing demand for clean sustainable electricity production and for nuclear waste management, the Sodium-Cooled Fast Reactor (SFR) is being developed. The main drawback has been its high capital ...

Nitta, Christopher C

2010-01-01T23:59:59.000Z

63

Energy 101: Cool Roofs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cool Roofs Cool Roofs Energy 101: Cool Roofs January 31, 2011 - 12:38pm Addthis This edition of Energy 101 takes a look at how switching to a cool roof can save you money and benefit the environment. John Schueler John Schueler Former New Media Specialist, Office of Public Affairs How does it work? Dark-colored roofing materials absorb a great deal of sunlight, which transfers heat into a building. This can also cause the "heat island" effect in cities and suburbs, a phenomenon that produces higher temperatures in densely populated areas due to extensive changes in the landscape. Cool roofs use light-colored, highly reflective materials to regulate building temperatures without increasing electricity demand, which can result in energy savings of up to 10 to 15 percent.

64

Cool Storage Technology Guide  

Science Conference Proceedings (OSTI)

It is a fact that avoiding load growth is cheaper than constructing new power plants. Cool storage technologies offer one method for strategically stemming the impact of future peak demand growth. This guide provides a comprehensive resource for understanding and evaluating cool storage technologies.

2000-08-14T23:59:59.000Z

65

Measure Guideline: Ventilation Cooling  

SciTech Connect

The purpose of this measure guideline on ventilation cooling is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

Springer, D.; Dakin, B.; German, A.

2012-04-01T23:59:59.000Z

66

Hybrid Cooling Systems  

Science Conference Proceedings (OSTI)

Water consumption by power plants has become an increasingly contentious siting issue. In nearly all fossil-fired and nuclear plants, water for plant cooling is by far the greatest water requirement. Therefore, the use of water-conserving cooling systems such as dry or hybrid cooling is receiving increasing attention. This technology overview from the Electric Power Research Institute (EPRI) provides a brief introduction to hybrid cooling systems. As defined in the report, the term "hybrid cooling" refer...

2011-11-23T23:59:59.000Z

67

Evolution of cool-roof standards in the United States  

SciTech Connect

Roofs that have high solar reflectance and high thermal emittance stay cool in the sun. A roof with lower thermal emittance but exceptionally high solar reflectance can also stay cool in the sun. Substituting a cool roof for a noncool roof decreases cooling-electricity use, cooling-power demand, and cooling-equipment capacity requirements, while slightly increasing heating-energy consumption. Cool roofs can also lower citywide ambient air temperature in summer, slowing ozone formation and increasing human comfort. Provisions for cool roofs in energy-efficiency standards can promote the building- and climate-appropriate use of cool roofing technologies. Cool-roof requirements are designed to reduce building energy use, while energy-neutral cool-roof credits permit the use of less energy-efficient components (e.g., larger windows) in a building that has energy-saving cool roofs. Both types of measures can reduce the life-cycle cost of a building (initial cost plus lifetime energy cost). Since 1999, several widely used building energy-efficiency standards, including ASHRAE 90.1, ASHRAE 90.2, the International Energy Conservation Code, and California's Title 24 have adopted cool-roof credits or requirements. This paper reviews the technical development of cool-roof provisions in the ASHRAE 90.1, ASHRAE 90.2, and California Title 24 standards, and discusses the treatment of cool roofs in other standards and energy-efficiency programs. The techniques used to develop the ASHRAE and Title 24 cool-roof provisions can be used as models to address cool roofs in building energy-efficiency standards worldwide.

Akbari, Hashem; Akbari, Hashem; Levinson, Ronnen

2008-07-11T23:59:59.000Z

68

Response to CO2 Transient Increase in the GISS Coupled Model:Regional Coolings in a Warming Climate  

Science Conference Proceedings (OSTI)

The GISS coupled atmosphere–ocean model is used to investigate the effect of increased atmospheric CO2 by comparing a compounded 1% CO2 increase experiment with a control simulation. After 70 yr of integration, the global surface air temperature ...

Gary L. Russell; David Rind

1999-02-01T23:59:59.000Z

69

Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

page intentionally left blank page intentionally left blank 69 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Transportation Demand Module The NEMS Transportation Demand Module estimates transportation energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), buses, freight and passenger aircraft, freight and passenger rail, freight shipping, and miscellaneous

70

The European Electricity Grid System and Winter Peak Load Stress: For how long can the european grid system survive the ever increasing demand during cold winter days?  

E-Print Network (OSTI)

The rich countries of Western Europe and its citizens benefited during at least the last 30 years from an extraordinary stable electricity grid. This stability was achieved by the european grid system and a large flexible and reliable spare power plant capacity. This system allowed a continuous demand growth during the past 10-20 years of up to a few % per year. However, partially due to this overcapacity, no new large power plants have been completed during the past 10-15 years. The obvious consequence is that the reliable spare capacity has been reduced and that a further yearly demand growth of 1-2% for electric energy can only be achieved if new power plants will be constructed soon. Data from various European countries, provided by the UCTE, indicate that the system stress during peak load times and especially during particular cold winter days is much larger than generally assumed. In fact, the latest UCTE data on reliable power capacity indicate that already during the Winter 2007/8 only a few very col...

Dittmar, Michael

2008-01-01T23:59:59.000Z

71

New coal plant technologies will demand more water  

Science Conference Proceedings (OSTI)

Population shifts, growing electricity demand, and greater competition for water resources have heightened interest in the link between energy and water. The US Energy Information Administration projects a 22% increase in US installed generating capacity by 2030. Of the 259 GE of new capacity expected to have come on-line by then, more than 192 GW will be thermoelectric and thus require some water for cooling. Our challenge will become balancing people's needs for power and for water. 1 ref., 7 figs.

Peltier, R.; Shuster, E.; McNemar, A.; Stiegel, G.J.; Murphy, J.

2008-04-15T23:59:59.000Z

72

HVAC ENERGY EFFICIENCY CASE STUDY Evaporcool condenser air pre-cooler retrofit for air-cooled chillers  

E-Print Network (OSTI)

in Figure 2. The figure shows that electricity use in the post-retrofit period is significantly lower than part wear--both lead to increased costs. It also means that cooling causes building electrical demand 280 kWh/yr-ton COOLING ENERGY & C02 SAVINGS 22% WATER USAGE 0.9 gal/day-ton #12;2 | SPEED PROGRAM CASE

California at Davis, University of

73

The Greenest Way to Stay Cool - NREL  

Coolerado The ‘Elevator Brief” Patented Heat Exchanger that cools air using 50 -90% less energy – peak demand and total KWh -than conventional AC

74

Gas cooling for large commercial buildings  

SciTech Connect

Energy costs typically account for 10% to 20% of the operating costs for commercial buildings. These costs have continued to rise over the past several years notwithstanding the implementation of energy conservation programs. Increasing electric demand charges have been a major cause of the problem, and as capital-intensive nuclear and coal plants under construction are rolled into the rate base, these demand penalties are likely to become more severe. Electric cooling is the major contributor to seasonal and daily electric peaks. The use of natural gas for cooling can provide relief from high peak period electric prices either directly through absorption systems and engine-driven chillers or indirectly via cogeneration and recovered heat-driven absorption cooling. Although a window of opportunity exists for gas cooling in some parts of the country today, technological advancement and cost reduction are required in order for gas cooling to realize widespread applicability. The Gas Research Institute has implemented a comprehensive development program in cooperation with industry to evolve engine-driven chiller systems in the 100-ton and larger size range with gas coefficients of performance of 2.4, first-cost premiums of less than $100/ton, and service intervals of 4000 hours. Maintenance records of several engine-driven systems installed in the early 1970's were studied. System reliability was found to be in-line with HVAC market requirements.

Davidson, K.; Brattin, H.D.

1986-01-01T23:59:59.000Z

75

Demand Response  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment for Eastern Interconnection Youngsun Baek, Stanton W. Hadley, Rocio Martinez, Gbadebo Oladosu, Alexander M. Smith, Fran Li, Paul Leiby and Russell Lee Prepared for FY12 DOE-CERTS Transmission Reliability R&D Internal Program Review September 20, 2012 2 Managed by UT-Battelle for the U.S. Department of Energy DOE National Laboratory Studies Funded to Support FOA 63 * DOE set aside $20 million from transmission funding for national laboratory studies. * DOE identified four areas of interest: 1. Transmission Reliability 2. Demand Side Issues 3. Water and Energy 4. Other Topics * Argonne, NREL, and ORNL support for EIPC/SSC/EISPC and the EISPC Energy Zone is funded through Area 4. * Area 2 covers LBNL and NREL work in WECC and

76

Rising Asian demand drives global coal consumption growth ...  

U.S. Energy Information Administration (EIA)

Global coal demand has almost doubled since 1980, driven by increases in Asia, where demand is up over 400% from 1980-2010. In turn, Asian demand is ...

77

Demand Shifting with Thermal Mass in Large Commercial Buildings in a  

NLE Websites -- All DOE Office Websites (Extended Search)

Shifting with Thermal Mass in Large Commercial Buildings in a Shifting with Thermal Mass in Large Commercial Buildings in a California Hot Climate Zone Title Demand Shifting with Thermal Mass in Large Commercial Buildings in a California Hot Climate Zone Publication Type Report LBNL Report Number LBNL-3898e Year of Publication 2009 Authors Xu, Peng, Rongxin Yin, Carrie Brown, and DongEun Kim Date Published June 2009 Publisher CEC/LBNL Keywords demand response, demand shifting (pre-cooling), DRQAT, hot climates, market sectors, office buildings, pre-cooling, technologies, testbed tools and guides, thermal mass Abstract The potential for using building thermal mass for load shifting and peak energy demand reduction has been demonstrated in a number of simulation, laboratory, and field studies. Previous Lawrence Berkeley National Laboratory research has demonstrated that the approach is very effective in cool and moderately warm climate conditions (California Climate Zones 2-4). However, this method had not been tested in hotter climate zones.This project studied the potential of pre-cooling the building early in the morning and increasing temperature setpoints during peak hours to reduce cooling-related demand in two typical office buildings in hotter California climates - one in Visalia (CEC Climate Zone 13) and the other in San Bernardino (CEC Climate Zone 10). The conclusion of the work to date is that pre-cooling in hotter climates has similar potential to that seen previously in cool and moderate climates. All other factors being equal, results to date indicate that pre-cooling increases the depth (kW) and duration (kWh) of the possible demand shed of a given building. The effectiveness of night pre-cooling in typical office building under hot weather conditions is very limited. However, night pre-cooling is helpful for office buildings with an undersized HVAC system. Further work is required to duplicate the tests in other typical buildings and in other hot climate zones and prove that pre-cooling is truly effective.

78

Hydronic Radiant Cooling Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 Hydronic Radiant Cooling Systems Cooling nonresidential buildings in the U.S. contributes significantly to electrical power consumption and peak power demand. Part of the electrical energy used to cool buildings is drawn by fans transporting cool air through the ducts. The typical thermal cooling peak load component for California office buildings can be divided as follows: 31% for lighting, 13% for people, 14% for air transport, and 6% for equipment (in the graph below, these account for 62.5% of the electrical peak load, labeled "chiller"). Approximately 37% of the electrical peak power is required for air transport, and the remainder is necessary to operate the compressor. DOE-2 simulations for different California climates using the California

79

Demand Shifting with Thermal Mass in Large Commercial Buildings in a California Hot Climate Zone  

E-Print Network (OSTI)

of Building Thermal Mass to Offset Cooling Loads. ” ASHRAEThe Role of Thermal Mass on the Cooling Load of Buildings.Keywords: Pre-cooling, demand response, thermal mass, hot

Xu, Peng

2010-01-01T23:59:59.000Z

80

A comparative assessment of alternative combustion turbine inlet air cooling system  

SciTech Connect

Interest in combustion turbine inlet air cooling (CTAC) has increased during the last few years as electric utilities face increasing demand for peak power. Inlet air cooling increases the generating capacity and decreases the heat rate of a combustion turbine during hot weather when the demand for electricity is generally the greatest. Several CTAC systems have been installed, but the general applicability of the concept and the preference for specific concepts is still being debated. Concurrently, Rocky Research of Boulder City, Nevada has been funded by the U.S. Department of Energy to conduct research on complex compound (ammoniated salt) chiller systems for low-temperature refrigeration applications.

Brown, D.R.; Katipamula, S.; Konynenbelt, J.H.

1996-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "increased cooling demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Spray Cooling Enhancement of Air-Cooled Condensers  

Science Conference Proceedings (OSTI)

Dry cooling of power plants may be an attractive alternative to wet cooling, particularly where water conservation and environmental protection pose critical siting issues. However, dry cooling technology may be unable to maintain design plant output during the hottest periods of the year, which are often periods of peak system demand. This study—cosponsored by EPRI, the California Energy Commission, and Crockett Cogeneration Co.—evaluated the use of a low-pressure spray enhancement system to...

2003-09-29T23:59:59.000Z

82

Implications of office building thermal mass and multi-day temperature profiles for cooling strategies  

DOE Green Energy (OSTI)

This paper describes a study of the cooling energy requirements that result from thermal storage in building mass, and suggests methods for predicting and controlling its energy cost implications. The study relies on computer simulations of energy use for a large office building prototype in El Paso, TX using the DOE-2 building energy analysis program. Increased Monday cooling energy requirements resulting from the weekend shut-down of HVAC systems are documented. Predictors of energy use and peak demands, which account for thermal storage in building mass, are described. Load-shifting, sub-cooling and pre-cooling equipment operating strategies are evaluated with explicit reference to utility rate schedules.

Eto, J.H.; Powell, G.

1985-08-01T23:59:59.000Z

83

Automated Demand Response Today  

Science Conference Proceedings (OSTI)

Demand response (DR) has progressed over recent years beyond manual and semi-automated DR to include growing implementation and experience with fully automated demand response (AutoDR). AutoDR has been shown to be of great value over manual and semi-automated DR because it reduces the need for human interactions and decisions, and it increases the speed and reliability of the response. AutoDR, in turn, has evolved into the specification known as OpenADR v1.0 (California Energy Commission, PIER Program, C...

2012-03-29T23:59:59.000Z

84

High Temperatures & Electricity Demand  

E-Print Network (OSTI)

High Temperatures & Electricity Demand An Assessment of Supply Adequacy in California Trends.......................................................................................................1 HIGH TEMPERATURES AND ELECTRICITY DEMAND.....................................................................................................................7 SECTION I: HIGH TEMPERATURES AND ELECTRICITY DEMAND ..........................9 BACKGROUND

85

The Analysis of Dynamic Thermal Performance of Insulated Wall and Building Cooling Energy Consumption in Guangzhou  

E-Print Network (OSTI)

The summer in Guangzhou, China, is hot and long. Heat proofing is very important for the energy efficiency of buildings and improvement of the indoor thermal environment. The residential buildings in the southern region are cooled by air conditioning mainly with the increase of the live level. This study investigates the influence of the thermal dynamic performance on the yearly cooling load and yearly maximum cooling demand in typical residential flats by employing KVALUE and DeST. The simulation predictions indicate that reductions in the cooling load and maximum cooling demand are obtained when the insulation is added in the wall, but the potential of energy saving is quite limited when the wall only is insulated.

Zhao, L.; Li, X.; Li, L.; Gao, Y.

2006-01-01T23:59:59.000Z

86

Demand Shifting With Thermal Mass in Large Commercial Buildings: Field Tests, Simulation and Audits  

E-Print Network (OSTI)

Braun (Purdue). 2004. Peak demand reduction from pre-coolingmass for load shifting and peak demand reduction has beenpre-cooling strategies on peak demand. In addition, a set of

Xu, Peng; Haves, Philip; Piette, Mary Ann; Zagreus, Leah

2005-01-01T23:59:59.000Z

87

Demand Shifting with Thermal Mass in Large Commercial Buildings in a California Hot Climate Zone  

E-Print Network (OSTI)

J. E. Braun. 2004. “Peak demand reduction from pre-coolingReducing electrical peak demand has a huge economic andmass for load shifting and peak demand reduction has been

Xu, Peng

2010-01-01T23:59:59.000Z

88

Annual World Oil Demand Growth  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: Following relatively small increases of 1.3 million barrels per day in 1999 and 0.9 million barrels per day in 2000, EIA is estimating world demand may grow by 1.6 million barrels per day in 2001. Of this increase, about 3/5 comes from non-OECD countries, while U.S. oil demand growth represents more than half of the growth projected in OECD countries. Demand in Asia grew steadily during most of the 1990s, with 1991-1997 average growth per year at just above 0.8 million barrels per day. However, in 1998, demand dropped by 0.3 million barrels per day as a result of the Asian economic crisis that year. Since 1998, annual growth in oil demand has rebounded, but has not yet reached the average growth seen during 1991-1997. In the Former Soviet Union, oil demand plummeted during most of the

89

Projecting market demand for residential heat pumps  

SciTech Connect

Primarily because of technological improvements and sharp increases in energy prices after the 1970s energy crises, the sale of residential electric heat pumps rose ninefold from 1970 to 1983. This report describes current and future market demand for heat pumps used for space heating and cooling. A three-step approach was followed. In the first step, the historical growth of residential electric heat pumps was analyzed, and factors that may have affected market growth were examined. Also examined were installation trends of heat pumps in new single-family and multifamily homes. A market segmentation analysis was used to estimate market size by categories. In the second step, several methods for forecasting future market demand were reviewed and evaluated to select the most suitable one for this study. The discrete-choice approach was chosen. In the third step, a market penetration model based on selected discrete-choice methods was developed to project heat pump demand in key market segments such as home type (single-family or multifamily), new or existing construction, and race-ethnic origin of household (black, Hispanic, or white).

Teotia, A.P.S.; Raju, P.S.; Karvelas, D.; Anderson, J.

1987-04-01T23:59:59.000Z

90

Stochastic Cooling  

Science Conference Proceedings (OSTI)

Stochastic Cooling was invented by Simon van der Meer and was demonstrated at the CERN ISR and ICE (Initial Cooling Experiment). Operational systems were developed at Fermilab and CERN. A complete theory of cooling of unbunched beams was developed, and was applied at CERN and Fermilab. Several new and existing rings employ coasting beam cooling. Bunched beam cooling was demonstrated in ICE and has been observed in several rings designed for coasting beam cooling. High energy bunched beams have proven more difficult. Signal suppression was achieved in the Tevatron, though operational cooling was not pursued at Fermilab. Longitudinal cooling was achieved in the RHIC collider. More recently a vertical cooling system in RHIC cooled both transverse dimensions via betatron coupling.

Blaskiewicz, M.

2011-01-01T23:59:59.000Z

91

Thermal performance of phase change wallboard for residential cooling application  

DOE Green Energy (OSTI)

Cooling of residential California buildings contributes significantly to electrical consumption and peak power demand mainly due to very poor load factors in milder climates. Thermal mass can be utilized to reduce the peak-power demand, downsize the cooling systems, and/or switch to low-energy cooling sources. Large thermal storage devices have been used in the past to overcome the shortcomings of alternative cooling sources, or to avoid high demand charges. The manufacturing of phase change material (PCM) implemented in gypsum board, plaster or other wall-covering material, would permit the thermal storage to become part of the building structure. PCMs have two important advantages as storage media: they can offer an order-of-magnitude increase in thermal storage capacity, and their discharge is almost isothermal. This allows the storage of high amounts of energy without significantly changing the temperature of the room envelope. As heat storage takes place inside the building, where the loads occur, rather than externally, additional transport energy is not required. RADCOOL, a thermal building simulation program based on the finite difference approach, was used to numerically evaluate the latent storage performance of treated wallboard. Extended storage capacity obtained by using double PCM-wallboard is able to keep the room temperatures close to the upper comfort limits without using mechanical cooling. Simulation results for a living room with high internal loads and weather data for Sunnyvale, California, show significant reduction of room air temperature when heat can be stored in PCM-treated wallboards.

Feustel, H.E.; Stetiu, C.

1997-04-01T23:59:59.000Z

92

Demand Shifting With Thermal Mass in Large Commercial Buildings: Case  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Shifting With Thermal Mass in Large Commercial Buildings: Case Demand Shifting With Thermal Mass in Large Commercial Buildings: Case Studies and Tools Speaker(s): Peng Xu Date: March 9, 2007 - 12:00pm Location: 90-3122 The idea of pre-cooling and demand limiting is to pre-cool buildings at night or in the morning during off-peak hours, storing cooling energy in the building thermal mass and thereby reducing cooling loads during the peak periods. Savings are achieved by reducing on-peak energy and demand charges. The potential for utilizing building thermal mass for load shifting and peak demand reduction has been demonstrated in a number of simulation, laboratory, and field studies. Case studies in a number of office buildings in California has found that a simple demand limiting strategy reduced the chiller power by 20-100% (0.5-2.3W/ft2) during six

93

Solar heating and cooling of buildings: activities of the private sector of the building community and its perceived needs relative to increased activity  

SciTech Connect

A description of the state of affairs existing in the private sector of the building community between mid-1974 and mid-1975 with regard to solar heating and cooling of buildings is presentd. Also, information on the needs perceived by the private sector with regard to governmental actions (besides research) required to induce widespread application of solar energy for the heating and cooling of buildings is given. The information is based on surveys, data obtained at workshops, sales literature of manufacturers, symposia, and miscellaneous correspondence. Selected interests and projects of individuals and organizations are described. (WHK)

1976-01-01T23:59:59.000Z

94

A Comparative Demonstration of Alternative Milk Cooling  

Science Conference Proceedings (OSTI)

A newly-designed groundwater-ice bank milk cooling system significantly reduces energy use and peak electric demand by about 30% over a conventional direct expansion bulk tank cooling system. This study compared the energy efficiency, electrical demands, and milk quality obtained using the new and conventional systems. Overall, the new system represents a viable, cost-effective alternative for dairy farms that are upgrading or replacing milk cooling equipment.

1993-10-01T23:59:59.000Z

95

Reduce Demand Rather than Increase Supply  

E-Print Network (OSTI)

floor area) 8. Annual cost per square foot for Eco Passes (square fe 6. Annual cost per square foot for cash ou $0.10parking cash out costs 10¢ a year per square foot of office

Shoup, Donald C.

2006-01-01T23:59:59.000Z

96

Performance Evaluation for Modular, Scalable Overhead Cooling Systems In Data Centers  

E-Print Network (OSTI)

provisions of alternative cooling solutions to either theiralternative metric, defined as the module’s power index, PI, is the ratio of power demand for the cooling

Xu, TengFang T.

2009-01-01T23:59:59.000Z

97

Performance Evaluation for Modular, Scalable Cooling Systems with Hot Aisle Containment in Data Centers  

E-Print Network (OSTI)

provisions of alternative cooling solutions to either theiralternative metric, defined as the module’s power utilization index, PI , is the ratio of power demand for the cooling

Adams, Barbara J

2009-01-01T23:59:59.000Z

98

Development of Materials for Supercritical-Water-Cooled Reactor |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development of Materials for Supercritical-Water-Cooled Reactor Development of Materials for Supercritical-Water-Cooled Reactor Development of Materials for Supercritical-Water-Cooled Reactor Supercritical-Water-Cooled Reactor (SCWR) was selected as one of the promising candidates in Generation IV reactors for its prominent advantages; those are the high thermal efficiency, the system simplification, the R&D cost minimization and the flexibility for core design. As the demand for advanced nuclear system increases, Japanese R&D project started in 1999 aiming to provide technical information essential to demonstration of SCPR technologies through three sub-themes of 1. Plant conceptual design, 2. Thermal-hydraulics, and 3. Material. Although the material development is critical issue of SCWR development, previous studies were limited for the screening tests on commercial alloys

99

Distillate Demand Strong Last Winter  

Gasoline and Diesel Fuel Update (EIA)

4 Notes: Well, distillate fuel demand wasn't the reason that stocks increased in January 2001 and kept prices from going higher. As you will hear shortly, natural gas prices spiked...

100

Gas turbine cooling system  

SciTech Connect

A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

Bancalari, Eduardo E. (Orlando, FL)

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "increased cooling demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Demand Response Opportunities and Enabling Technologies for Data Centers:  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Opportunities and Enabling Technologies for Data Centers: Demand Response Opportunities and Enabling Technologies for Data Centers: Findings From Field Studies Title Demand Response Opportunities and Enabling Technologies for Data Centers: Findings From Field Studies Publication Type Report LBNL Report Number LBNL-5763E Year of Publication 2012 Authors Ghatikar, Girish, Venkata Ganti, Nance Matson, and Mary Ann Piette Publisher PG&E/SDG&E/CEC/LBNL Keywords communication and standards, control systems, data centers, demand response, enabling technologies, end-use technologies, load migration, market sectors, technologies Abstract The energy use in data centers is increasing and, in particular, impacting the data center energy cost and electric grid reliability during peak and high price periods. As per the 2007 U.S. Environmental Protection Agency (EPA), in the Pacific Gas and Electric Company territory, data centers are estimated to consume 500 megawatts of annual peak electricity. The 2011 data confirm the increase in data center energy use, although it is slightly lower than the EPA forecast. Previous studies have suggested that data centers have significant potential to integrate with supply-side programs to reduce peak loads. In collaboration with California data centers, utilities, and technology vendors, this study conducted field tests to improve the understanding of the demand response opportunities in data centers. The study evaluated an initial set of control and load migration strategies and economic feasibility for four data centers. The findings show that with minimal or no impact to data center operations a demand savings of 25% at the data center level or 10% to 12% at the whole building level can be achieved with strategies for cooling and IT equipment, and load migration. These findings should accelerate the grid-responsiveness of data centers through technology development, integration with the demand response programs, and provide operational cost savings.

102

Cost analysis of power plant cooling using aquifer thermal energy storage  

DOE Green Energy (OSTI)

Most utilities in the US experience their peak demand for electric power during periods with high ambient temperature. Unfortunately, the performance of many power plants decreases with high ambient temperature. The use of aquifer thermal energy storage (ATES) for seasonal storage of chill can be an alternative method for heat rejection. Cold water produced during the previous winter is stored in the aquifer and can be used to provide augmented cooling during peak demand periods increasing the output of many Rankine cycle power plants. This report documents an investigation of the technical and economic feasibility of using aquifer thermal energy storage for peak cooling of power plants. 9 refs., 15 figs., 5 tabs.

Zimmerman, P.W.; Drost, M.K.

1989-05-01T23:59:59.000Z

103

Demand Response - Policy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

over the last 11 years when interest in demand response increased. Demand response is an electricity tariff or program established to motivate changes in electric use by end-use...

104

Advanced Demand Responsive Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Demand Responsive Lighting Host: Francis Rubinstein Demand Response Research Center Technical Advisory Group Meeting August 31, 2007 10:30 AM - Noon Meeting Agenda * Introductions (10 minutes) * Main Presentation (~ 1 hour) * Questions, comments from panel (15 minutes) Project History * Lighting Scoping Study (completed January 2007) - Identified potential for energy and demand savings using demand responsive lighting systems - Importance of dimming - New wireless controls technologies * Advanced Demand Responsive Lighting (commenced March 2007) Objectives * Provide up-to-date information on the reliability, predictability of dimmable lighting as a demand resource under realistic operating load conditions * Identify potential negative impacts of DR lighting on lighting quality Potential of Demand Responsive Lighting Control

105

Demand Response Spinning Reserve  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Spinning Reserve Title Demand Response Spinning Reserve Publication Type Report Year of Publication 2007 Authors Eto, Joseph H., Janine Nelson-Hoffman, Carlos...

106

Transportation Demand This  

Annual Energy Outlook 2012 (EIA)

69 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Transportation Demand Module The NEMS Transportation Demand Module estimates...

107

Addressing Energy Demand  

NLE Websites -- All DOE Office Websites (Extended Search)

Addressing Energy Demand through Demand Response: International Experiences and Practices Bo Shen, Girish Ghatikar, Chun Chun Ni, and Junqiao Dudley Environmental Energy...

108

Propane Sector Demand Shares  

U.S. Energy Information Administration (EIA)

... agricultural demand does not impact regional propane markets except when unusually high and late demand for propane for crop drying combines with early cold ...

109

cooling | OpenEI  

Open Energy Info (EERE)

cooling cooling Dataset Summary Description The following data-set is for a benchmark residential home for all TMY3 locations across all utilities in the US. The data is indexed by utility service provider which is described by its "unique" EIA ID ( Source National Renewable Energy Laboratory Date Released April 05th, 2012 (2 years ago) Date Updated April 06th, 2012 (2 years ago) Keywords AC apartment CFL coffeemaker Computer cooling cost demand Dishwasher Dryer Furnace gas HVAC Incandescent Laptop load Microwave model NREL Residential television tmy3 URDB Data text/csv icon Residential Cost Data for Common Household Items (csv, 14.5 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL)

110

Cool Colored Roofs to Save Energy and Improve Air Quality  

Science Conference Proceedings (OSTI)

Urban areas tend to have higher air temperatures than their rural surroundings as a result of gradual surface modifications that include replacing the natural vegetation with buildings and roads. The term ''Urban Heat Island'' describes this phenomenon. The surfaces of buildings and pavements absorb solar radiation and become extremely hot, which in turn warm the surrounding air. Cities that have been ''paved over'' do not receive the benefit of the natural cooling effect of vegetation. As the air temperature rises, so does the demand for air-conditioning (a/c). This leads to higher emissions from power plants, as well as increased smog formation as a result of warmer temperatures. In the United States, we have found that this increase in air temperature is responsible for 5-10% of urban peak electric demand for a/c use, and as much as 20% of population-weighted smog concentrations in urban areas. Simple ways to cool the cities are the use of reflective surfaces (rooftops and pavements) and planting of urban vegetation. On a large scale, the evapotranspiration from vegetation and increased reflection of incoming solar radiation by reflective surfaces will cool a community a few degrees in the summer. As an example, computer simulations for Los Angeles, CA show that resurfacing about two-third of the pavements and rooftops with reflective surfaces and planting three trees per house can cool down LA by an average of 2-3K. This reduction in air temperature will reduce urban smog exposure in the LA basin by roughly the same amount as removing the basin entire onroad vehicle exhaust. Heat island mitigation is an effective air pollution control strategy, more than paying for itself in cooling energy cost savings. We estimate that the cooling energy savings in U.S. from cool surfaces and shade trees, when fully implemented, is about $5 billion per year (about $100 per air-conditioned house).

Akbari, Hashem; Levinson, Ronnen; Miller, William; Berdahl, Paul

2005-08-23T23:59:59.000Z

111

Demand Response and Open Automated Demand Response Opportunities...  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response and Open Automated Demand Response Opportunities for Data Centers Title Demand Response and Open Automated Demand Response Opportunities for Data Centers...

112

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network (OSTI)

of integrating demand response and energy efficiencyand D. Kathan (2009), Demand Response in U.S. ElectricityFRAMEWORKS THAT PROMOTE DEMAND RESPONSE 3.1. Demand Response

Shen, Bo

2013-01-01T23:59:59.000Z

113

Demand Trading: Building Liquidity  

Science Conference Proceedings (OSTI)

Demand trading holds substantial promise as a mechanism for efficiently integrating demand-response resources into regional power markets. However, regulatory uncertainty, the lack of proper price signals, limited progress toward standardization, problems in supply-side markets, and other factors have produced illiquidity in demand-trading markets and stalled the expansion of demand-response resources. This report shows how key obstacles to demand trading can be overcome, including how to remove the unce...

2002-11-27T23:59:59.000Z

114

Use of reclaimed water for power plant cooling.  

SciTech Connect

Freshwater demands are steadily increasing throughout the United States. As its population increases, more water is needed for domestic use (drinking, cooking, cleaning, etc.) and to supply power and food. In arid parts of the country, existing freshwater supplies are not able to meet the increasing demands for water. New water users are often forced to look to alternative sources of water to meet their needs. Over the past few years, utilities in many locations, including parts of the country not traditionally water-poor (e.g., Georgia, Maryland, Massachusetts, New York, and North Carolina) have needed to reevaluate the availability of water to meet their cooling needs. This trend will only become more extreme with time. Other trends are likely to increase pressure on freshwater supplies, too. For example, as populations increase, they will require more food. This in turn will likely increase demands for water by the agricultural sector. Another example is the recent increased interest in producing biofuels. Additional water will be required to grow more crops to serve as the raw materials for biofuels and to process the raw materials into biofuels. This report provides information about an opportunity to reuse an abundant water source -- treated municipal wastewater, also known as 'reclaimed water' -- for cooling and process water in electric generating facilities. The report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Innovations for Existing Plants research program (Feeley 2005). This program initiated an energy-water research effort in 2003 that includes the availability and use of 'nontraditional sources' of water for use at power plants. This report represents a unique reference for information on the use of reclaimed water for power plant cooling. In particular, the database of reclaimed water user facilities described in Chapter 2 is the first comprehensive national effort to identify and catalog those plants that are using reclaimed water for cooling.

Veil, J. A.; Environmental Science Division

2007-10-16T23:59:59.000Z

115

Buffer Gas Cooling: A Tool for Trapping Neutral Atoms  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends High Technology and Industrial Buildings Lighting Systems Residential Buildings...

116

Occupancy based demand response HVAC control strategy  

Science Conference Proceedings (OSTI)

Heating, cooling and ventilation accounts for 30% energy usage and for 50% of the electricity usage in the United States. Currently, most modern buildings still condition rooms assuming maximum occupancy rather than actual usage. As a result, rooms are ... Keywords: HVAC, demand response, energy savings, occupancy, ventilation

Varick L. Erickson; Alberto E. Cerpa

2010-11-01T23:59:59.000Z

117

Gas-cooled reactors  

SciTech Connect

Experience to date with operation of high-temperature gas-cooled reactors has been quite favorable. Despite problems in completion of construction and startup, three high-temperature gas-cooled reactor (HTGR) units have operated well. The Windscale Advanced Gas-Cooled Reactor (AGR) in the United Kingdom has had an excellent operating history, and initial operation of commercial AGRs shows them to be satisfactory. The latter reactors provide direct experience in scale-up from the Windscale experiment to fullscale commercial units. The Colorado Fort St. Vrain 330-MWe prototype helium-cooled HTGR is now in the approach-to-power phase while the 300-MWe Pebble Bed THTR prototype in the Federal Republic of Germany is scheduled for completion of construction by late 1978. THTR will be the first nuclear power plant which uses a dry cooling tower. Fuel reprocessing and refabrication have been developed in the laboratory and are now entering a pilot-plant scale development. Several commercial HTGR power station orders were placed in the U.S. prior to 1975 with similar plans for stations in the FRG. However, the combined effects of inflation, reduced electric power demand, regulatory uncertainties, and pricing problems led to cancellation of the 12 reactors which were in various stages of planning, design, and licensing.

Schulten, R.; Trauger, D.B.

1976-01-01T23:59:59.000Z

118

Demand Shifting With Thermal Mass in Large Commercial Buildings...  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Shifting With Thermal Mass in Large Commercial Buildings: Case Studies and Tools Speaker(s): Peng Xu Date: March 9, 2007 - 12:00pm Location: 90-3122 The idea of pre-cooling...

119

Economic Evaluation of Alternative Cooling Technologies  

Science Conference Proceedings (OSTI)

Water use and conservation at electric power plants are becoming increasingly important siting issues. At most plants, the requirement for condensing exhaust steam from the steam turbine, generically known as power plant cooling, is the major use of water. Alternative cooling systems exist, including once-through cooling, wet-recirculating cooling, dry cooling, and hybrid (or wet/dry cooling), some of which offer significant opportunity for water conservation. These water savings normally, but perhaps no...

2012-01-25T23:59:59.000Z

120

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network (OSTI)

Non-vehicle demand load factor Natural gas price Carbon tax89). They increase with demand (and gross natural gas-firedelectricity demand and by changing natural gas price and CO

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "increased cooling demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Demand Response Research in Spain  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Research in Spain Demand Response Research in Spain Speaker(s): Iñigo Cobelo Date: August 22, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Mary Ann Piette The Spanish power system is becoming increasingly difficult to operate. The peak load grows every year, and the permission to build new transmission and distribution infrastructures is difficult to obtain. In this scenario Demand Response can play an important role, and become a resource that could help network operators. The present deployment of demand response measures is small, but this situation however may change in the short term. The two main Spanish utilities and the transmission network operator are designing research projects in this field. All customer segments are targeted, and the research will lead to pilot installations and tests.

122

Demand Impacted by Weather  

U.S. Energy Information Administration (EIA)

When you look at demand, it’s also interesting to note the weather. The weather has a big impact on the demand of heating fuels, if it’s cold, consumers will use ...

123

Mass Market Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Mass Market Demand Response Mass Market Demand Response Speaker(s): Karen Herter Date: July 24, 2002 - 12:00pm Location: Bldg. 90 Demand response programs are often quickly and poorly crafted in reaction to an energy crisis and disappear once the crisis subsides, ensuring that the electricity system will be unprepared when the next crisis hits. In this paper, we propose to eliminate the event-driven nature of demand response programs by considering demand responsiveness a component of the utility obligation to serve. As such, demand response can be required as a condition of service, and the offering of demand response rates becomes a requirement of utilities as an element of customer service. Using this foundation, we explore the costs and benefits of a smart thermostat-based demand response system capable of two types of programs: (1) a mandatory,

124

California Energy Demand Scenario Projections to 2050  

E-Print Network (OSTI)

In Maximum demand, year 2050 electricity consumption reachesefficiency, year 2050 electricity consumption is 357 TWh,capita electricity consumption increases from 7,421 kWh/year

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

125

Cooled railplug  

DOE Patents (OSTI)

The railplug is a plasma ignitor capable of injecting a high energy plasma jet into a combustion chamber of an internal combustion engine or continuous combustion system. An improved railplug is provided which has dual coaxial chambers (either internal or external to the center electrode) that provide for forced convective cooling of the electrodes using the normal pressure changes occurring in an internal combustion engine. This convective cooling reduces the temperature of the hot spot associated with the plasma initiation point, particularly in coaxial railplug configurations, and extends the useful life of the railplug. The convective cooling technique may also be employed in a railplug having parallel dual rails using dual, coaxial chambers.

Weldon, William F. (Austin, TX)

1996-01-01T23:59:59.000Z

126

Modeling and Simulation of a Solar Assisted Desiccant Cooling System  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling and Simulation of a Solar Assisted Desiccant Cooling System Modeling and Simulation of a Solar Assisted Desiccant Cooling System Speaker(s): Chadi Maalouf Date: December 2, 2004 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Peng Xu Increased living standards and high occupants comfort demands lead to a growth in air conditioning market. This results in high energy consumption and high CO2 emissions. For these reasons, the solar desiccant cooling system is proposed as an alternative to traditional air conditioning systems. This system comprises a desiccant wheel containing Lithium Chloride in tandem with a rotating heat exchanger and two humidifiers on both supply and return air. The required regeneration temperature for the desiccant wheel varies between 40oC and 70oC which makes possible the use

127

FOCUS COOLING  

NLE Websites -- All DOE Office Websites (Extended Search)

www.datacenterdynamics.com www.datacenterdynamics.com FOCUS COOLING Issue 28, March/April 2013 LBNL'S NOVEL APPROACH TO COOLING Lawrence Berkeley National Laboratory and APC by Schneider Electric test a unique double-exchanger cooling system LBNL program manager Henry Coles says can cut energy use by half A s part of a demonstration sponsored by the California Energy Commission in support of the Silicon Valley Leadership Group's data center summit, Lawrence Berkeley National Laboratory (LBNL) collaborated with APC by Schneider Electric to demonstrate a novel prototype data center cooling device. The device was installed at an LBNL data center in Berkeley, California. It included two air-to-water heat exchangers. Unlike common single-heat-exchanger configurations, one of these was supplied with

128

Ventilative cooling  

E-Print Network (OSTI)

This thesis evaluates the performance of daytime and nighttime passive ventilation cooling strategies for Beijing, Shanghai and Tokyo. A new simulation method for cross-ventilated wind driven airflow is presented . This ...

Graça, Guilherme Carrilho da, 1972-

1999-01-01T23:59:59.000Z

129

Recent Summer Rainfall Increase and Surface Cooling over Northern Australia since the Late 1970s: A Response to Warming in the Tropical Western Pacific  

Science Conference Proceedings (OSTI)

Rainfall over northern Australia (NA) in austral summer is the largest water source of Australia. Previous studies have suggested a strong zonal-dipole trend pattern in austral summer rainfall since 1950, with rainfall increasing in northwest ...

Xiao-Feng Li; Jingjing Yu; Yun Li

2013-09-01T23:59:59.000Z

130

Sensor-based demand controlled ventilation  

SciTech Connect

In most buildings, occupancy and indoor pollutant emission rates vary with time. With sensor-based demand-controlled ventilation (SBDCV), the rate of ventilation (i.e., rate of outside air supply) also varies with time to compensate for the changes in pollutant generation. In other words, SBDCV involves the application of sensing, feedback and control to modulate ventilation. Compared to ventilation without feedback, SBDCV offers two potential advantages: (1) better control of indoor pollutant concentrations; and (2) lower energy use and peak energy demand. SBDCV has the potential to improve indoor air quality by increasing the rate of ventilation when indoor pollutant generation rates are high and occupants are present. SBDCV can also save energy by decreasing the rate of ventilation when indoor pollutant generation rates are low or occupants are absent. After providing background information on indoor air quality and ventilation, this report provides a relatively comprehensive discussion of SBDCV. Topics covered in the report include basic principles of SBDCV, sensor technologies, technologies for controlling air flow rates, case studies of SBDCV, application of SBDCV to laboratory buildings, and research needs. SBDCV appears to be an increasingly attractive technology option. Based on the review of literature and theoretical considerations, the application of SBDCV has the potential to be cost-effective in applications with the following characteristics: (a) a single or small number of dominant pollutants, so that ventilation sufficient to control the concentration of the dominant pollutants provides effective control of all other pollutants; (b) large buildings or rooms with unpredictable temporally variable occupancy or pollutant emission; and (c) climates with high heating or cooling loads or locations with expensive energy.

De Almeida, A.T. [Universidade de Coimbra (Portugal). Dep. Eng. Electrotecnica; Fisk, W.J. [Lawrence Berkeley National Lab., CA (United States)

1997-07-01T23:59:59.000Z

131

Dry Cooling: Perspectives on Future Needs  

Science Conference Proceedings (OSTI)

The total number of dry-cooled power plants in the United States has increased significantly in recent years. This is because nonutility generators are using dry-cooling systems to meet environmental protection and water conservation requirements. A survey shows that utility planners expect that dry cooling could become an important cooling-system option for new utility plants.

1991-08-19T23:59:59.000Z

132

Demand Response and Open Automated Demand Response Opportunities...  

NLE Websites -- All DOE Office Websites (Extended Search)

Response and Open Automated Demand Response Opportunities for Data Centers Title Demand Response and Open Automated Demand Response Opportunities for Data Centers Publication Type...

133

Cooling tower waste reduction  

SciTech Connect

At Lawrence Livermore National Laboratory (LLNL), the two main cooling tower systems (central and northwest) were upgraded during the summer of 1997 to reduce the generation of hazardous waste. In 1996, these two tower systems generated approximately 135,400 lbs (61,400 kg) of hazardous sludge, which is more than 90 percent of the hazardous waste for the site annually. At both, wet decks (cascade reservoirs) were covered to block sunlight. Covering the cascade reservoirs reduced the amount of chemical conditioners (e.g. algaecide and biocide), required and in turn the amount of waste generated was reduced. Additionally, at the northwest cooling tower system, a sand filtration system was installed to allow cyclical filtering and backflushing, and new pumps, piping, and spray nozzles were installed to increase agitation. the appurtenance upgrade increased the efficiency of the cooling towers. The sand filtration system at the northwest cooling tower system enables operators to continuously maintain the cooling tower water quality without taking the towers out of service. Operational costs (including waste handling and disposal) and maintenance activities are compared for the cooling towers before and after upgrades. Additionally, the effectiveness of the sand filter system in conjunction with the wet deck covers (northwest cooling tower system), versus the cascade reservoir covers alone (south cooling tower south) is discussed. the overall expected return on investment is calculated to be in excess of 250 percent. this upgrade has been incorporated into the 1998 DOE complex-wide water conservation project being led by Sandia National Laboratory/Albuquerque.

Coleman, S.J.; Celeste, J.; Chine, R.; Scott, C.

1998-05-01T23:59:59.000Z

134

Electrical Demand Management  

E-Print Network (OSTI)

The Demand Management Plan set forth in this paper has proven to be a viable action to reduce a 3 million per year electric bill at the Columbus Works location of Western Electric. Measures are outlined which have reduced the peak demand 5% below the previous year's level and yielded $150,000 annual savings. These measures include rescheduling of selected operations and demand limiting techniques such as fuel switching to alternate power sources during periods of high peak demand. For example, by rescheduling the startup of five heat treat annealing ovens to second shift, 950 kW of load was shifted off peak. Also, retired, non-productive steam turbine chillers and a diesel air compressor have been effectively operated to displaced 1330 kW during peak periods each day. Installed metering devices have enabled the recognition of critical demand periods. The paper concludes with a brief look at future plans and long range objectives of the Demand Management Plan.

Fetters, J. L.; Teets, S. J.

1983-01-01T23:59:59.000Z

135

Cooled railplug  

DOE Patents (OSTI)

The railplug is a plasma ignitor capable of injecting a high energy plasma jet into a combustion chamber of an internal combustion engine or continuous combustion system. An improved railplug is provided which has dual coaxial chambers (either internal or external to the center electrode) that provide for forced convective cooling of the electrodes using the normal pressure changes occurring in an internal combustion engine. This convective cooling reduces the temperature of the hot spot associated with the plasma initiation point, particularly in coaxial railplug configurations, and extends the useful life of the railplug. The convective cooling technique may also be employed in a railplug having parallel dual rails using dual, coaxial chambers. 10 figs.

Weldon, W.F.

1996-05-07T23:59:59.000Z

136

Demand Dispatch-Intelligent  

NLE Websites -- All DOE Office Websites (Extended Search)

and energy efficiency throughout the value chain resulting in the most economical price for electricity. Having adequate quantities and capacities of demand resources is a...

137

Study on Auto-DR and Pre-Cooling of Commercial Buildings with Thermal Mass in California  

E-Print Network (OSTI)

Keywords: Pre-cooling; Demand response; Thermal mass; Auto-discharged cooling energy from building thermal mass. If theand Pre-cooling of Commercial Buildings with Thermal Mass in

Yin, Rongxin

2010-01-01T23:59:59.000Z

138

Automated Demand Response and Commissioning  

E-Print Network (OSTI)

Fully-Automated Demand Response Test in Large Facilities14in DR systems. Demand Response using HVAC in Commercialof Fully Automated Demand Response in Large Facilities”

Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

2005-01-01T23:59:59.000Z

139

Demand Response Spinning Reserve Demonstration  

E-Print Network (OSTI)

F) Enhanced ACP Date RAA ACP Demand Response – SpinningReserve Demonstration Demand Response – Spinning Reservesupply spinning reserve. Demand Response – Spinning Reserve

2007-01-01T23:59:59.000Z

140

U.S. Propane Demand  

U.S. Energy Information Administration (EIA)

Demand is higher in 1999 due to higher petrochemical demand and a strong economy. We are also seeing strong demand in the first quarter of 2000; however, ...

Note: This page contains sample records for the topic "increased cooling demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Demand Response Valuation Frameworks Paper  

E-Print Network (OSTI)

xxxv Option Value of Electricity Demand Response, Osmanelasticity in aggregate electricity demand. With these newii) reduction in electricity demand during peak periods (

Heffner, Grayson

2010-01-01T23:59:59.000Z

142

Turkey's energy demand and supply  

SciTech Connect

The aim of the present article is to investigate Turkey's energy demand and the contribution of domestic energy sources to energy consumption. Turkey, the 17th largest economy in the world, is an emerging country with a buoyant economy challenged by a growing demand for energy. Turkey's energy consumption has grown and will continue to grow along with its economy. Turkey's energy consumption is high, but its domestic primary energy sources are oil and natural gas reserves and their production is low. Total primary energy production met about 27% of the total primary energy demand in 2005. Oil has the biggest share in total primary energy consumption. Lignite has the biggest share in Turkey's primary energy production at 45%. Domestic production should be to be nearly doubled by 2010, mainly in coal (lignite), which, at present, accounts for almost half of the total energy production. The hydropower should also increase two-fold over the same period.

Balat, M. [Sila Science, Trabzon (Turkey)

2009-07-01T23:59:59.000Z

143

Oriented spray-assisted cooling tower  

Science Conference Proceedings (OSTI)

Apparatus useful for heat exchange by evaporative cooling when employed in conjunction with a conventional cooling tower. The arrangement includes a header pipe which is used to divert a portion of the water in the cooling tower supply conduit up stream of the cooling tower to a multiplicity of vertical pipes and spray nozzles which are evenly spaced external to the cooling tower so as to produce a uniform spray pattern oriented toward the central axis of the cooling tower and thereby induce an air flow into the cooling tower which is greater than otherwise achieved. By spraying the water to be cooled towards the cooling tower in a region external to the cooling tower in a manner such that the spray falls just short of the cooling tower basin, the spray does not interfere with the operation of the cooling tower, proper, and the-maximum increase in air velocity is achieved just above the cooling tower basin where it is most effective. The sprayed water lands on a concrete or asphalt apron which extends from the header pipe to the cooling tower basin and is gently sloped towards the cooling tower basin such that the sprayed water drains into the basin. By diverting a portion of the water to be cooled to a multiplicity of sprays external to the cooling tower, thermal performance is improved. 4 figs.

Bowman, C.F.

1995-04-18T23:59:59.000Z

144

Variable area fuel cell cooling  

DOE Patents (OSTI)

A fuel cell arrangement having cooling fluid flow passages which vary in surface area from the inlet to the outlet of the passages. A smaller surface area is provided at the passage inlet, which increases toward the passage outlet, so as to provide more uniform cooling of the entire fuel cell. The cooling passages can also be spaced from one another in an uneven fashion.

Kothmann, Richard E. (Churchill Borough, PA)

1982-01-01T23:59:59.000Z

145

CONSULTANT REPORT DEMAND FORECAST EXPERT  

E-Print Network (OSTI)

CONSULTANT REPORT DEMAND FORECAST EXPERT PANEL INITIAL forecast, end-use demand modeling, econometric modeling, hybrid demand modeling, energyMahon, Carl Linvill 2012. Demand Forecast Expert Panel Initial Assessment. California Energy

146

A Successful Cool Storage Rate  

E-Print Network (OSTI)

Houston Lighting & Power (HL&P) initiated design and development of its commercial cool storage program as part of an integrated resource planning process with a targeted 225 MW of demand reduction through DSM. Houston's extensive commercial air conditioning load, which is highly coincident with HL&P's system peak, provided a large market for cool storage technologies. Initial market research made it very clear that a special cool storage rate was required to successfully market the technology. Development of the rate required an integrated, multidepartment effort and extensive use of DSManager, an integrated resource planning model. An experimental version of the rate was initially implemented as part of the initial phase of the cool storage program. A permanent rate, incorporating lessons learned from the experimental rate, was then developed for the long term implementation of the program. The permanent rate went through a lengthy regulatory approval process which included intervention by a local natural gas distribution company. The end result is a very successful cool storage program with 52 projects and 31 megawatts of demand reduction in the first three and one-half years of program implementation.

Ahrens, A. C.; Sobey, T. M.

1994-01-01T23:59:59.000Z

147

Simulated energy savings of cool roofs applied to industrial premises in the Mediterranean Area  

E-Print Network (OSTI)

The thermal insulation affects the sensible cooling savingshigh thermal insulation reduces the sensible cooling energyof a high thermal insulation increases the sensible cooling

De Carli, Michele; Scarpa, Massimiliano; Schiavon, Stefano; Zecchin, Roberto

2007-01-01T23:59:59.000Z

148

Automated Demand Response and Commissioning  

E-Print Network (OSTI)

internal conditions. Maximum Demand Saving Intensity [W/ft2]automated electric demand sheds. The maximum electric shed

Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

2005-01-01T23:59:59.000Z

149

Evaporative Roof Cooling - A Simple Solution to Cut Cooling Costs  

E-Print Network (OSTI)

Since the "Energy Crisis" Evaporative Roof Cooling Systems have gained increased acceptance as a cost effective method to reduce the high cost of air conditioning. Documented case histories in retrofit installations show direct energy savings and paybacks from twelve to thirty months. The main operating cost of an Evaporative Roof Cooling System is water. One thousand gallons of water, completely evaporated, will produce over 700 tons of cooling capability. Water usage seldom averages over 100 gallons per 1000 ft^2 of roof area per day or 10 oz. of water per 100 ft^2 every six minutes. Roof Cooling Systems, when planned in new construction, return 1-1/2 times the investment the first year in equipment savings and operating costs. Roof sprays are a low cost cooling solution for warehouses, distribution centers and light manufacturing or assembly areas with light internal loads. See text "Flywheel Cooling."

Abernethy, D.

1985-01-01T23:59:59.000Z

150

Demand management : a cross-industry analysis of supply-demand planning  

E-Print Network (OSTI)

Globalization increases product variety and shortens product life cycles. These lead to an increase in demand uncertainty and variability. Outsourcing to low-cost countries increases supply lead-time and supply uncertainty ...

Tan, Peng Kuan

2006-01-01T23:59:59.000Z

151

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2035. The definition of the commercial sector is consistent with EIA's State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA

152

Heat exchanger with auxiliary cooling system  

DOE Patents (OSTI)

A heat exchanger with an auxiliary cooling system capable of cooling a nuclear reactor should the normal cooling mechanism become inoperable. A cooling coil is disposed around vertical heat transfer tubes that carry secondary coolant therethrough and is located in a downward flow of primary coolant that passes in heat transfer relationship with both the cooling coil and the vertical heat transfer tubes. A third coolant is pumped through the cooling coil which absorbs heat from the primary coolant which increases the downward flow of the primary coolant thereby increasing the natural circulation of the primary coolant through the nuclear reactor.

Coleman, John H. (Salem Township, Westmoreland County, PA)

1980-01-01T23:59:59.000Z

153

Rotating Heat Transfer in High Aspect Ratio Rectangular Cooling...  

NLE Websites -- All DOE Office Websites (Extended Search)

Reynolds Number (Nu Nu o ) (f f o ) 24% Increase in Cooling Performance Rotating Heat Transfer in High Aspect Ratio Rectangular Cooling Passages with Shaped Turbulators...

154

An analysis of electrothermodynamic heating and cooling  

E-Print Network (OSTI)

Current advances in semiconductor manufacturing have brought about an increasing use of thermoelectricity in a variety of applications. Most of these applications, however, have involved the steady state application of this phenomenon. As a result, few have considered the transient aspect of this field (Gray 1960). In recent years there has been an increasing demand to heat and cool objects very quickly. One particular proposal to use the transient nature of thermoelectricity was made by Lagoudas and Kinra (I 993) in regard to shape memory alloy (SMA) actuators. In general, SMA actuators have been largely limited by the rate that heat may be extracted from the SMA. In their investigation, they proposed the concept of using the SMA directly as the cold junction of a thermocouple. By way of the Peltier effect, then, heat could be added or removed at the interfaces at a rate proportional to the current density and local temperature; by increasing the current, the rate of cooling would be increased, albeit at the expense of the Joule heating within the conductor. This investigation explores the dynamic nature of thermoelectrically cooled/heated regions in effort to gain a greater understanding of the transient application of thermoelectricity, including the role of the surrounding material properties. To this end, we consider a pair of semi-infinite rods of equal cross-sectional area in perfect thermoelectric contact. At time t = 0, a DC current begins to flow in the axial direction. The electrothermodynamic response of the composite rod at the interface is calculated. The transient interface temperature is completely described by a single dimensionless parameter called the MOET number (Modulus Of ElectroThermodynamics). Perhaps the most interesting result is that the minimum temperature at the interface is independent of the current density. Of course, the time required to reach this minimum temperature does depend on the current density; it varies as 1/J2.

Honea, Mark Stephen

1998-01-01T23:59:59.000Z

155

Designing presentations for on-demand viewing  

Science Conference Proceedings (OSTI)

Increasingly often, presentations are given before a live audience, while simultaneously being viewed remotely and recorded for subsequent viewing on-demand over the Web. How should video presentations be designed for web access? How is video accessed ... Keywords: digital library, streaming media, video on-demand

Liwei He; Jonathan Grudin; Anoop Gupta

2000-12-01T23:59:59.000Z

156

Global Cool Cities Alliance | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Global Cool Cities Alliance Global Cool Cities Alliance Global Cool Cities Alliance The Department of Energy (DOE) is currently supporting the Global Cool Cities Alliance (GCCA), a non-profit organization that works with cities, regions, and national governments to speed the worldwide installation of cool roofs, pavements, and other surfaces. GCCA is dedicated to advancing policies and actions that increase the solar reflectance of our buildings and pavements as a cost-effective way to promote cool buildings, cool cities, and to mitigate the effects of climate change through global cooling. The alliance was launched in June of 2011. Cool reflective surfaces are an important near-term strategy for improving city sustainability by delivering significant benefits such as increased building efficiency and comfort, improved urban health, and heat

157

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and non-energy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Demand Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Demand Module calculates energy consumption for the four Census Regions (see Figure 5) and disaggregates the energy consumption

158

demand | OpenEI  

Open Energy Info (EERE)

demand demand Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

159

Demand Response Database & Demo  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Database & Demo Speaker(s): Mike Graveley William M. Smith Date: June 7, 2005 - 12:00pm Location: Bldg. 90 Seminar HostPoint of Contact: Mary Ann Piette Infotility...

160

Tankless Demand Water Heaters  

Energy.gov (U.S. Department of Energy (DOE))

Demand (tankless or instantaneous) water heaters have heating devices that are activated by the flow of water, so they provide hot water only as needed and without the use of a storage tank. They...

Note: This page contains sample records for the topic "increased cooling demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Residential Sector Demand Module  

Reports and Publications (EIA)

Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

Owen Comstock

2012-12-19T23:59:59.000Z

162

Industrial Demand Module  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Module. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

Kelly Perl

2013-05-14T23:59:59.000Z

163

Industrial Demand Module  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Module. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

Kelly Perl

2013-09-30T23:59:59.000Z

164

Residential Sector Demand Module  

Reports and Publications (EIA)

Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

Owen Comstock

2013-11-05T23:59:59.000Z

165

Transportation Demand This  

U.S. Energy Information Administration (EIA) Indexed Site

Transportation Demand Transportation Demand This page inTenTionally lefT blank 75 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Transportation Demand Module The NEMS Transportation Demand Module estimates transportation energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific and associated technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), buses, freight and passenger aircraft, freight

166

Electricity Demand and Energy Consumption Management System  

E-Print Network (OSTI)

This project describes the electricity demand and energy consumption management system and its application to the Smelter Plant of Southern Peru. It is composted of an hourly demand-forecasting module and of a simulation component for a plant electrical system. The first module was done using dynamic neural networks, with backpropagation training algorithm; it is used to predict the electric power demanded every hour, with an error percentage below of 1%. This information allows management the peak demand before this happen, distributing the raise of electric load to other hours or improving those equipments that increase the demand. The simulation module is based in advanced estimation techniques, such as: parametric estimation, neural network modeling, statistic regression and previously developed models, which simulates the electric behavior of the smelter plant. These modules allow the proper planning because it allows knowing the behavior of the hourly demand and the consumption patterns of the plant, in...

Sarmiento, Juan Ojeda

2008-01-01T23:59:59.000Z

167

Automated Demand Response Tests  

Science Conference Proceedings (OSTI)

This report includes assessments and test results of four end-use technologies, representing products in the residential, commercial, and industrial sectors, each configured to automatically receive real-time pricing information and critical peak pricing (CPP) demand response (DR) event notifications. Four different vendors were asked to follow the interface requirements set forth in the Open Automated Demand Response (OpenADR) standard that was introduced to the public in 2008 and currently used in two ...

2008-12-22T23:59:59.000Z

168

Automated Demand Response Tests  

Science Conference Proceedings (OSTI)

This report, which is an update to EPRI Report 1016082, includes assessments and test results of four end-use vendor technologies. These technologies represent products in the residential, commercial, and industrial sectors, each configured to automatically receive real-time pricing information and critical peak pricing (CPP) demand response (DR) event notifications. Four different vendors were asked to follow the interface requirements set forth in the Open Automated Demand Response (OpenADR) Communicat...

2009-03-30T23:59:59.000Z

169

Energy Demand | Open Energy Information  

Open Energy Info (EERE)

Energy Demand Energy Demand Jump to: navigation, search Click to return to AEO2011 page AEO2011 Data Figure 55 From AEO2011 report . Market Trends Growth in energy use is linked to population growth through increases in housing, commercial floorspace, transportation, and goods and services. These changes affect not only the level of energy use, but also the mix of fuels used. Energy consumption per capita declined from 337 million Btu in 2007 to 308 million Btu in 2009, the lowest level since 1967. In the AEO2011 Reference case, energy use per capita increases slightly through 2013, as the economy recovers from the 2008-2009 economic downturn. After 2013, energy use per capita declines by 0.3 percent per year on average, to 293 million Btu in 2035, as higher efficiency standards for vehicles and

170

Demand Response and Risk Management  

Science Conference Proceedings (OSTI)

For several decades, power companies have deployed various types of demand response (DR), such as interruptible contracts, and there is substantial ongoing research and development on sophisticated mechanisms for triggering DR. In this white paper, EPRI discusses the increasing use of electricity DR in the power industry and how this will affect the practice of energy risk management. This paper outlines 1) characteristics of a common approach to energy risk management, 2) the variety of types of DR impl...

2008-12-18T23:59:59.000Z

171

Gas hydrate cool storage system  

DOE Patents (OSTI)

The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

Ternes, M.P.; Kedl, R.J.

1984-09-12T23:59:59.000Z

172

"Hot" for Warm Water Cooling  

E-Print Network (OSTI)

liquid cooling, dry cooler, cooling tower 1. INTRODUCTIONsolutions for cooling. Substituting cooling towers,hybrid cooling towers, or dry coolers that provide warmer

Coles, Henry

2012-01-01T23:59:59.000Z

173

Dynamic Controls for Energy Efficiency and Demand Response: Framework Concepts and a New Construction Study Case in New York  

E-Print Network (OSTI)

and J.E. Braun. 2004. “Peak Demand Reduction from Pre-contributor to summer peak demand, with large increases inin driving summer peak demands suggest that commercial

Kiliccote, Sila; Piette, Mary Ann; Watson, David S.; Hughes, Glenn

2006-01-01T23:59:59.000Z

174

REACTOR COOLING  

DOE Patents (OSTI)

A nuclear reactor with provisions for selectively cooling the fuel elements is described. The reactor has a plurality of tubes extending throughout. Cylindrical fuel elements are disposed within the tubes and the coolant flows through the tubes and around the fuel elements. The fuel elements within the central portion of the reactor are provided with roughened surfaces of material. The fuel elements in the end portions of the tubes within the reactor are provlded with low conduction jackets and the fuel elements in the region between the central portion and the end portions are provided with smooth surfaces of high heat conduction material.

Quackenbush, C.F.

1959-09-29T23:59:59.000Z

175

Thermal Storage with Conventional Cooling Systems  

E-Print Network (OSTI)

The newly opened Pennsylvania Convention Center in Philadelphia, PA; Exxon's Computer Facility at Florham Park, NJ; The Center Square Building in Philadelphia, are success stories for demand shifting through thermal storage. These buildings employ a simple thermal energy storage system that already exists in almost every structure - concrete. Thermal storage calculations simulate sub-cooling of a building's structure during unoccupied times. During occupied times, the sub-cooled concrete reduces peak cooling demand, thereby lowering demand and saving money. In addition, significant savings are possible in the first cost of chilled water equipment, and the smaller chillers run at peak capacity and efficiency during a greater portion of their run time. The building, controlled by an Energy Management and Control System (EMCS), "learns" from past experience how to run the building efficiently. The result is an optimized balance between energy cost and comfort.

Kieninger, R. T.

1994-01-01T23:59:59.000Z

176

Demand and Price Volatility: Rational Habits in International Gasoline Demand  

E-Print Network (OSTI)

shift in the short-run price elasticity of gasoline demand.A meta-analysis of the price elasticity of gasoline demand.2007. Consumer demand un- der price uncertainty: Empirical

Scott, K. Rebecca

2011-01-01T23:59:59.000Z

177

California Independent System Operator demand response & proxy demand resources  

Science Conference Proceedings (OSTI)

Demand response programs are designed to allow end use customers to contribute to energy load reduction individually or through a demand response provider. One form of demand response can occur when an end use customer reduces their electrical usage ...

John Goodin

2012-01-01T23:59:59.000Z

178

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network (OSTI)

time. 4 Reducing this peak demand through DR programs meansthat a 5% reduction in peak demand would have resulted insame 5% reduction in the peak demand of the US as a whole.

Shen, Bo

2013-01-01T23:59:59.000Z

179

A residential energy demand system for Spain  

E-Print Network (OSTI)

Sharp price fluctuations and increasing environmental and distributional concerns, among other issues, have led to a renewed academic interest in energy demand. In this paper we estimate, for the first time in Spain, an ...

Labandeira Villot, Xavier

2005-01-01T23:59:59.000Z

180

EIA - Annual Energy Outlook 2009 - Energy Demand  

Gasoline and Diesel Fuel Update (EIA)

demand for renewable fuels increasing the fastestincluding E85 and biodiesel fuels for light-duty vehicles, biomass for co-firing at coal-fired electric power plants, and...

Note: This page contains sample records for the topic "increased cooling demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 39 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2035. The definition of the commercial sector is consistent with EIA's State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial.

182

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 12 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module forecasts energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region forecast using the SEDS 27 data.

183

Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Residential Demand Module The NEMS Residential Demand Module projects future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimate of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the "unit energy consumption" (UEC) by appliance (in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type

184

Success Stories: Cool Color Roofs  

NLE Websites -- All DOE Office Websites (Extended Search)

instead of absorbing, solar heat. So the question for scientists interested in increasing energy efficiency is, can one make a roof that is both cool and dark? Hashem Akbari, Paul...

185

Demand Response In California  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency & Energy Efficiency & Demand Response Programs Dian M. Grueneich, Commissioner Dian M. Grueneich, Commissioner California Public Utilities Commission California Public Utilities Commission FUPWG 2006 Fall Meeting November 2, 2006 Commissioner Dian M. Grueneich November 2, 2006 1 Highest Priority Resource Energy Efficiency is California's highest priority resource to: Meet energy needs in a low cost manner Aggressively reduce GHG emissions November 2, 2006 2 Commissioner Dian M. Grueneich November 2, 2006 3 http://www.cpuc.ca.gov/PUBLISHED/REPORT/51604.htm Commissioner Dian M. Grueneich November 2, 2006 4 Energy Action Plan II Loading order continued "Pursue all cost-effective energy efficiency, first." Strong demand response and advanced metering

186

Travel Demand Modeling  

SciTech Connect

This chapter describes the principal types of both passenger and freight demand models in use today, providing a brief history of model development supported by references to a number of popular texts on the subject, and directing the reader to papers covering some of the more recent technical developments in the area. Over the past half century a variety of methods have been used to estimate and forecast travel demands, drawing concepts from economic/utility maximization theory, transportation system optimization and spatial interaction theory, using and often combining solution techniques as varied as Box-Jenkins methods, non-linear multivariate regression, non-linear mathematical programming, and agent-based microsimulation.

Southworth, Frank [ORNL; Garrow, Dr. Laurie [Georgia Institute of Technology

2011-01-01T23:59:59.000Z

187

United States lubricant demand  

Science Conference Proceedings (OSTI)

This paper examines United States Lubricant Demand for Automotive and Industrial Lubricants by year from 1978 to 1992 and 1997. Projected total United States Lubricant Demand for 1988 is 2,725 million (or MM) gallons. Automotive oils are expected to account for 1,469MM gallons or (53.9%), greases 59MM gallons (or 2.2%), and Industrial oils will account for the remaining 1,197MM gallons (or 43.9%) in 1988. This proportional relationship between Automotive and Industrial is projected to remain relatively constant until 1992 and out to 1997. Projections for individual years between 1978 to 1992 and 1997 are summarized.

Solomon, L.K.; Pruitt, P.R.

1988-01-01T23:59:59.000Z

188

Demand Response Valuation Frameworks Paper  

E-Print Network (OSTI)

No. ER06-615-000 CAISO Demand Response Resource User Guide -8 2.1. Demand Response Provides a Range of Benefits to8 2.2. Demand Response Benefits can be Quantified in Several

Heffner, Grayson

2010-01-01T23:59:59.000Z

189

How much electricity is used for cooling in the United States ...  

U.S. Energy Information Administration (EIA)

How much electricity is used for cooling in the United States? In 2011, EIA estimates that about 440 billion kilowatt-hours ... tariff, and demand charge data?

190

Absorption cooling in district heating network: Temperature difference examination in hot water circuit.  

E-Print Network (OSTI)

?? Absorption cooling system driven by district heating network is relized as a smart strategy in Sweden. During summer time when the heating demand is… (more)

Yuwardi, Yuwardi

2013-01-01T23:59:59.000Z

191

Propane Demand is Highly Seasonal, But Fresh Supply is Not  

Gasoline and Diesel Fuel Update (EIA)

4 Notes: Propane, like heating oil, has a highly seasonal demand pattern. Demand increases about 50% from its low point to its peak. Production and net imports, on the other hand,...

192

On Demand Guarantees in Iran.  

E-Print Network (OSTI)

??On Demand Guarantees in Iran This thesis examines on demand guarantees in Iran concentrating on bid bonds and performance guarantees. The main guarantee types and… (more)

Ahvenainen, Laura

2009-01-01T23:59:59.000Z

193

Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards"Top-Runner Approach"  

SciTech Connect

As one of the measures to achieve the reduction in greenhouse gas emissions agreed to in the"Kyoto Protocol," an institutional scheme for determining energy efficiency standards for energy-consuming appliances, called the"Top-Runner Approach," was developed by the Japanese government. Its goal is to strengthen the legal underpinnings of various energy conservation measures. Particularly in Japan's residential sector, where energy demand has grown vigorously so far, this efficiency standard is expected to play a key role in mitigating both energy demand growth and the associated CO2 emissions. This paper presents an outlook of Japan's residential energy demand, developed by a stochastic econometric model for the purpose of analyzing the impacts of the Japan's energy efficiency standards, as well as the future stochastic behavior of income growth, demography, energy prices, and climate on the future energy demand growth to 2030. In this analysis, we attempt to explicitly take into consideration more than 30 kinds of electricity uses, heating, cooling and hot water appliances in order to comprehensively capture the progress of energy efficiency in residential energy end-use equipment. Since electricity demand, is projected to exhibit astonishing growth in Japan's residential sector due to universal increasing ownership of electric and other appliances, it is important to implement an elaborate efficiency standards policy for these appliances.

Lacommare, Kristina S H; Komiyama, Ryoichi; Marnay, Chris

2008-05-15T23:59:59.000Z

194

Film cooling for a closed loop cooled airfoil  

DOE Patents (OSTI)

Turbine stator vane segments have radially inner and outer walls with vanes extending therebetween. The inner and outer walls are compartmentalized and have impingement plates. Steam flowing into the outer wall plenum passes through the impingement plate for impingement cooling of the outer wall upper surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. At least one film cooling hole is defined through a wall of at least one of the cavities for flow communication between an interior of the cavity and an exterior of the vane. The film cooling hole(s) are defined adjacent a potential low LCF life region, so that cooling medium that bleeds out through the film cooling hole(s) reduces a thermal gradient in a vicinity thereof, thereby the increase the LCF life of that region.

Burdgick, Steven Sebastian (Schenectady, NY); Yu, Yufeng Phillip (Simpsonville, SC); Itzel, Gary Michael (Simpsonville, SC)

2003-01-01T23:59:59.000Z

195

Transportation Demand Management Plan  

E-Print Network (OSTI)

Transportation Demand Management Plan FALL 2009 #12;T r a n s p o r t a t i o n D e m a n d M a n the transportation impacts the expanded enrollment will have. Purpose and Goal The primary goal of the TDM plan is to ensure that adequate measures are undertaken and maintained to minimize the transportation impacts

196

Commercial Sector Demand Module  

Reports and Publications (EIA)

Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components.

Kevin Jarzomski

2012-11-15T23:59:59.000Z

197

Commercial Sector Demand Module  

Reports and Publications (EIA)

Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components.

Kevin Jarzomski

2013-10-10T23:59:59.000Z

198

Scenario Analysis of Peak Demand Savings for Commercial Buildings with  

NLE Websites -- All DOE Office Websites (Extended Search)

Scenario Analysis of Peak Demand Savings for Commercial Buildings with Scenario Analysis of Peak Demand Savings for Commercial Buildings with Thermal Mass in California Title Scenario Analysis of Peak Demand Savings for Commercial Buildings with Thermal Mass in California Publication Type Conference Paper LBNL Report Number LBNL-3636e Year of Publication 2010 Authors Yin, Rongxin, Sila Kiliccote, Mary Ann Piette, and Kristen Parrish Conference Name 2010 ACEEE Summer Study on Energy Efficiency in Buildings Conference Location Pacific Grove, CA Keywords demand response and distributed energy resources center, demand response research center, demand shifting (pre-cooling), DRQAT Abstract This paper reports on the potential impact of demand response (DR) strategies in commercial buildings in California based on the Demand Response Quick Assessment Tool (DRQAT), which uses EnergyPlus simulation prototypes for office and retail buildings. The study describes the potential impact of building size, thermal mass, climate, and DR strategies on demand savings in commercial buildings. Sensitivity analyses are performed to evaluate how these factors influence the demand shift and shed during the peak period. The whole-building peak demand of a commercial building with high thermal mass in a hot climate zone can be reduced by 30% using an optimized demand response strategy. Results are summarized for various simulation scenarios designed to help owners and managers understand the potential savings for demand response deployment. Simulated demand savings under various scenarios were compared to field-measured data in numerous climate zones, allowing calibration of the prototype models. The simulation results are compared to the peak demand data from the Commercial End-Use Survey for commercial buildings in California. On the economic side, a set of electricity rates are used to evaluate the impact of the DR strategies on economic savings for different thermal mass and climate conditions. Our comparison of recent simulation to field test results provides an understanding of the DR potential in commercial buildings.

199

Inclusion of cool roofs in nonresidential Title 24 prescriptive requirements  

SciTech Connect

Roofs that have high solar reflectance (high ability to reflect sunlight) and high thermal emittance (high ability to radiate heat) tend to stay cool in the sun. The same is true of low-emittance roofs with exceptionally high solar reflectance. Substituting a cool roof for a noncool roof tends to decrease cooling electricity use, cooling power demand, and cooling-equipment capacity requirements, while slightly increasing heating energy consumption. Cool roofs can also lower the ambient air temperature in summer, slowing ozone formation and increasing human comfort. DOE-2.1E building energy simulations indicate that use of a cool roofing material on a prototypical California nonresidential building with a low-sloped roof yields average annual cooling energy savings of approximately 300 kWh/1000 ft2 [3.2 kWh/m2], average annual natural gas deficits of 4.9 therm/1000 ft2 [5.6 MJ/m2], average source energy savings of 2.6 MBTU/1000 ft2 [30 MJ/m2], and average peak power demand savings of 0. 19 kW/1000 ft2 [2.1 W/m2]. The 15-year net present value (NPV) of energy savings averages $450/1000 ft2 [$4.90/m2] with time dependent valuation (TDV), and $370/1000 ft2 [$4.00/m2] without TDV. When cost savings from downsizing cooling equipment are included, the average total savings (15-year NPV + equipment savings) rises to $550/1000 ft2 [$5.90/m2] with TDV, and to $470/1000 ft2 [$5.00/m2] without TDV. Total savings range from 0.18 to 0.77 $/ft2 [1.90 to 8.30 $/m2] with TDV, and from 0.16 to 0.66 $/ft2 [1.70 to 7.10 $/m2] without TDV, across California's 16 climate zones. The typical cost premium for a cool roof is 0.00 to 0.20 $/ft2 [0.00 to 2.20 $/m2]. Cool roofs with premiums up to $0.20/ft2 [$2.20/m2] are expected to be cost effective in climate zones 2 through 16; those with premiums not exceeding $0.18/ft2 [$1.90/m2] are expected to be also cost effective in climate zone 1. Hence, this study recommends that the year-2005 California building energy efficiency code (Title 24, Pa rt 6 of the California Code of Regulations) for nonresidential buildings with low-sloped roofs include a cool-roof prescriptive requirement in all California climate zones. Buildings with roofs that do not meet prescriptive requirements may comply with the code via an ''overall-envelope'' approach (non-metal roofs only), or via a performance approach (all roof types).

Levinson, Ronnen; Akbari, Hashem; Konopacki, Steve; Bretz, Sarah

2002-12-15T23:59:59.000Z

200

Air-Cooled Condensers in Next-Generation Conversion Systems Geothermal Lab  

Open Energy Info (EERE)

Air-Cooled Condensers in Next-Generation Conversion Systems Geothermal Lab Air-Cooled Condensers in Next-Generation Conversion Systems Geothermal Lab Call Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Air-Cooled Condensers in Next-Generation Conversion Systems Project Type / Topic 1 Laboratory Call for Submission of Applications for Research, Development and Analysis of Geothermal Technologies Project Type / Topic 2 Air-Cooling Project Description As the geothermal industry moves to use geothermal resources that are more expensive to develop, there will be increased incentive to use more efficient power plants. Because of increasing demand on finite supplies of water, this next generation of more efficient plants will likely need to reject heat sensibly to the ambient (air-cooling). This will be especially true in western states having higher grade Enhanced Geothermal Systems (EGS) resources, as well as most hydrothermal resources. If one had a choice, an evaporative heat rejection system would be selected because it would provide both cost and performance advantages. The evaporative system, however, consumes a significant amount of water during heat rejection that would require makeup. Though they use no water, air-cooling systems have higher capital costs, reduced power output (heat is rejected at a higher temperature), lower power sales due to higher parasitics (fan power), and greater variability in power output (because of large variation in the dry-bulb temperature).

Note: This page contains sample records for the topic "increased cooling demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Cooling Tower Fan Motor Power Optimization Study  

Science Conference Proceedings (OSTI)

Cooling towers are in use at more than 200 major electric generating plants in the United States, representing approximately 800 units and a total of more than 210,000 MW. The auxiliary power consumed by cooling tower fan motors can significantly reduce the net power output of steam-cycle power plants. Cooling tower specifications are established by the economic and operational requirements of maximum unit load and the most demanding environmental conditions expected in the tower’s locale. Since power pl...

2011-11-16T23:59:59.000Z

202

Reducing residential cooling requirements through the use of electrochromic windows  

Science Conference Proceedings (OSTI)

This paper presents the results of a study investigating the energy performance of electrochromic windows in a prototypical residential building under a variety of state switching control strategies. We used the DOE-2.1E energy simulation program to analyze the annual cooling energy and peak demand as a function of glazing type, size, and electrochromic control strategy. A single-story ranch-style home located in the cooling-dominated locations of Miami, FL and Phoenix, AZ was simulated. Electrochromic control strategies analyzed were based on incident total solar radiation, space cooling load, and outside air temperature. Our results show that an electrochromic material with a high reflectance in the colored state provides the best performance for all control strategies. On the other hand, electrochromic switching using space cooling load provides the best performance for all the electrochromic materials. The performance of the incident total solar radiation control strategy varies as a function of the values of solar radiation which trigger the bleached and colored states of the electrochromic (setpoint range); i.e., required cooling decreases as the setpoint range decreases; also, performance differences among electrochromics increases. The setpoint range of outside air temperature control of electrochromics must relate to the ambient weather conditions prevalent in a particular location. If the setpoint range is too large, electrochromic cooling performance is very poor. Electrochromics compare favorably to conventional low-E clear glazings that have high solar heat gain coefficients that are used with overhangs. However, low-E tinted glazings with low solar heat gain coefficients can outperform certain electrochromics. Overhangs should be considered as a design option for electrochromics whose state properties do not change significantly between bleached and colored states.

Sullivan, R.; Rubin, M.; Selkowitz, S.

1995-05-01T23:59:59.000Z

203

Climate policy implications for agricultural water demand  

SciTech Connect

Energy, water and land are scarce resources, critical to humans. Developments in each affect the availability and cost of the others, and consequently human prosperity. Measures to limit greenhouse gas concentrations will inevitably exact dramatic changes on energy and land systems and in turn alter the character, magnitude and geographic distribution of human claims on water resources. We employ the Global Change Assessment Model (GCAM), an integrated assessment model to explore the interactions of energy, land and water systems in the context of alternative policies to limit climate change to three alternative levels: 2.5 Wm-2 (445 ppm CO2-e), 3.5 Wm-2 (535 ppm CO2-e) and 4.5 Wm-2 (645 ppm CO2-e). We explore the effects of two alternative land-use emissions mitigation policy options—one which taxes terrestrial carbon emissions equally with fossil fuel and industrial emissions, and an alternative which only taxes fossil fuel and industrial emissions but places no penalty on land-use change emissions. We find that increasing populations and economic growth could be anticipated to almost triple demand for water for agricultural systems across the century even in the absence of climate policy. In general policies to mitigate climate change increase agricultural demands for water still further, though the largest changes occur in the second half of the century, under both policy regimes. The two policies examined profoundly affected both the sources and magnitudes of the increase in irrigation water demands. The largest increases in agricultural irrigation water demand occurred in scenarios where only fossil fuel emissions were priced (but not land-use change emission) and were primarily driven by rapid expansion in bioenergy production. In these scenarios water demands were large relative to present-day total available water, calling into question whether it would be physically possible to produce the associated biomass energy. We explored the potential of improved water delivery and irrigation system efficiencies. These could potentially reduce demands substantially. However, overall demands remained high under our fossil-fuel-only tax policy. In contrast, when all carbon was priced, increases in agricultural water demands were smaller than under the fossil-fuel-only policy and were driven primarily by increased demands for water by non-biomass crops such as rice. Finally we estimate the geospatial pattern of water demands and find that regions such as China, India and other countries in south and east Asia might be expected to experience greatest increases in water demands.?

Chaturvedi, Vaibhav; Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Wise, Marshall A.; Calvin, Katherine V.

2013-03-28T23:59:59.000Z

204

Secretary Chu Announces Steps to Implement Cool Roofs at DOE...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

in cities around the world can help reduce the demand for air conditioning, cool entire cities, and potentially cancel the heating effect of up to two years of worldwide carbon...

205

ENERGY DEMAND FORECAST METHODS REPORT  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION ENERGY DEMAND FORECAST METHODS REPORT Companion Report to the California Energy Demand 2006-2016 Staff Energy Demand Forecast Report STAFFREPORT June 2005 CEC-400 .......................................................................................................................................1-1 ENERGY DEMAND FORECASTING AT THE CALIFORNIA ENERGY COMMISSION: AN OVERVIEW

206

Demand Forecast INTRODUCTION AND SUMMARY  

E-Print Network (OSTI)

Demand Forecast INTRODUCTION AND SUMMARY A 20-year forecast of electricity demand is a required of any forecast of electricity demand and developing ways to reduce the risk of planning errors that could arise from this and other uncertainties in the planning process. Electricity demand is forecast

207

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 51 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and nonenergy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Module calculates

208

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

4 4 The commercial module forecasts consumption by fuel 15 at the Census division level using prices from the NEMS energy supply modules, and macroeconomic variables from the NEMS Macroeconomic Activity Module (MAM), as well as external data sources (technology characterizations, for example). Energy demands are forecast for ten end-use services 16 for eleven building categories 17 in each of the nine Census divisions (see Figure 5). The model begins by developing forecasts of floorspace for the 99 building category and Census division combinations. Next, the ten end-use service demands required for the projected floorspace are developed. The electricity generation and water and space heating supplied by distributed generation and combined heat and power technologies are projected. Technologies are then

209

On Demand Paging Using  

E-Print Network (OSTI)

The power consumption of the network interface plays a major role in determining the total operating lifetime of wireless handheld devices. On demand paging has been proposed earlier to reduce power consumption in cellular networks. In this scheme, a low power secondary radio is used to wake up the higher power radio, allowing the latter to sleep or remain off for longer periods of time. In this paper we present use of Bluetooth radios to serve as a paging channel for the 802.11 wireless LAN. We have implemented an on-demand paging scheme on a WLAN consisting of iPAQ PDAs equipped with Bluetooth radios and Cisco Aironet wireless networking cards. Our results show power saving ranging from 19% to 46% over the present 802.11b standard operating modes with negligible impact on performance.

Bluetooth Radios On; Yuvraj Agarwal; Rajesh K. Gupta

2003-01-01T23:59:59.000Z

210

Ice Thermal Storage Systems for LWR Supplemental Cooling and Peak Power Shifting  

SciTech Connect

Availability of enough cooling water has been one of the major issues for the nuclear power plant site selection. Cooling water issues have frequently disrupted the normal operation at some nuclear power plants during heat waves and long draught. The issues become more severe due to the new round of nuclear power expansion and global warming. During hot summer days, cooling water leaving a power plant may become too hot to threaten aquatic life so that environmental regulations may force the plant to reduce power output or even temporarily to be shutdown. For new nuclear power plants to be built at areas without enough cooling water, dry cooling can be used to remove waste heat directly into the atmosphere. However, dry cooling will result in much lower thermal efficiency when the weather is hot. One potential solution for the above mentioned issues is to use ice thermal storage systems (ITS) that reduce cooling water requirements and boost the plant’s thermal efficiency in hot hours. ITS uses cheap off-peak electricity to make ice and uses those ice for supplemental cooling during peak demand time. ITS is suitable for supplemental cooling storage due to its very high energy storage density. ITS also provides a way to shift large amount of electricity from off peak time to peak time. Some gas turbine plants already use ITS to increase thermal efficiency during peak hours in summer. ITSs have also been widely used for building cooling to save energy cost. Among three cooling methods for LWR applications: once-through, wet cooling tower, and dry cooling tower, once-through cooling plants near a large water body like an ocean or a large lake and wet cooling plants can maintain the designed turbine backpressure (or condensation temperature) during 99% of the time; therefore, adding ITS to those plants will not generate large benefits. For once-through cooling plants near a limited water body like a river or a small lake, adding ITS can bring significant economic benefits and avoid forced derating and shutdown during extremely hot weather. For the new plants using dry cooling towers, adding the ice thermal storage systems can effectively reduce the efficiency loss and water consumption during hot weather so that new LWRs could be considered in regions without enough cooling water. \\ This paper presents the feasibility study of using ice thermal storage systems for LWR supplemental cooling and peak power shifting. LWR cooling issues and ITS application status will be reviewed. Two ITS application case studies will be presented and compared with alternative options: one for once-through cooling without enough cooling for short time, and the other with dry cooling. Because capital cost, especially the ice storage structure/building cost, is the major cost for ITS, two different cost estimation models are developed: one based on scaling method, and the other based on a preliminary design using Building Information Modeling (BIM), an emerging technology in Architecture/Engineering/Construction, which enables design options, performance analysis and cost estimating in the early design stage.

Haihua Zhao; Hongbin Zhang; Phil Sharpe; Blaise Hamanaka; Wei Yan; WoonSeong Jeong

2010-06-01T23:59:59.000Z

211

Thermal Energy Storage for Cooling of Commercial Buildings  

E-Print Network (OSTI)

of reduction in on-peak demand and the ratio of electrlcaluntil recently [1-3]. Peak demand is important becauseexpected increases in peak demand. Peak load energy is also

Akbari, H.

2010-01-01T23:59:59.000Z

212

Net Demand3 Production  

E-Print Network (OSTI)

Contract Number: DE-FE0004002 (Subcontract: S013-JTH-PPM4002 MOD 00) Summary The US DOE has identified a number of materials that are both used by clean energy technologies and are at risk of supply disruptions in the short term. Several of these materials, especially the rare earth elements (REEs) yttrium, cerium, and lanthanum were identified by DOE as critical (USDOE 2010) and are crucial to the function and performance of solid oxide fuel cells (SOFCs) 1. In addition, US DOE has issued a second Request For Information regarding uses of and markets for these critical materials (RFI;(USDOE 2011)). This report examines how critical materials demand for SOFC applications could impact markets for these materials and vice versa, addressing categories 1,2,5, and 6 in the RFI. Category 1 – REE Content of SOFC Yttria (yttrium oxide) is the only critical material (as defined for the timeframe of interest for SOFC) used in SOFC 2. Yttrium is used as a dopant in the SOFC’s core ceramic cells.. In addition, continuing developments in SOFC technology will likely further reduce REE demand for SOFC, providing credible scope for at least an additional 50 % reduction in REE use if desirable. Category 2 – Supply Chain and Market Demand SOFC developers expect to purchase

J. Thijssen Llc

2011-01-01T23:59:59.000Z

213

Coordination of Energy Efficiency and Demand Response  

Science Conference Proceedings (OSTI)

This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025. Improving energy efficiency in our homes, businesses, schools, governments, and industries - which consume more than 70 percent of the nation's natural gas and electricity - is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that 'the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW' by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

Goldman, Charles; Reid, Michael; Levy, Roger; Silverstein, Alison

2010-01-29T23:59:59.000Z

214

Measuring the capacity impacts of demand response  

Science Conference Proceedings (OSTI)

Critical peak pricing and peak time rebate programs offer benefits by increasing system reliability, and therefore, reducing capacity needs of the electric power system. These benefits, however, decrease substantially as the size of the programs grows relative to the system size. More flexible schemes for deployment of demand response can help address the decreasing returns to scale in capacity value, but more flexible demand response has decreasing returns to scale as well. (author)

Earle, Robert; Kahn, Edward P.; Macan, Edo

2009-07-15T23:59:59.000Z

215

RADIATIVE AND PASSIVE COOLING  

E-Print Network (OSTI)

at the 3rd Annual Solar Heating and Cooling R&D Contractors'been supported by the Solar Heating and Cooling Research andof Energy. 3rd Annual Solar Heating and Cooling R&D

Martin, M.

2011-01-01T23:59:59.000Z

216

California Energy Demand Scenario Projections to 2050  

E-Print Network (OSTI)

Natural Gas Demands..xi Annual natural gas demand for each alternativeused in natural gas demand projections. 34

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

217

Energy Basics: Evaporative Cooling  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

absorbent material. Evaporative cooling uses evaporated water to naturally and energy-efficiently cool. How Evaporative Coolers Work There are two types of evaporative...

218

Dividends with Demand Response  

SciTech Connect

To assist facility managers in assessing whether and to what extent they should participate in demand response programs offered by ISOs, we introduce a systematic process by which a curtailment supply curve can be developed that integrates costs and other program provisions and features. This curtailment supply curve functions as bid curve, which allows the facility manager to incrementally offer load to the market under terms and conditions acceptable to the customer. We applied this load curtailment assessment process to a stylized example of an office building, using programs offered by NYISO to provide detail and realism.

Kintner-Meyer, Michael CW; Goldman, Charles; Sezgen, O.; Pratt, D.

2003-10-31T23:59:59.000Z

219

Stochastic cooling in muon colliders  

SciTech Connect

Analysis of muon production techniques for high energy colliders indicates the need for rapid and effective beam cooling in order that one achieve luminosities > 10{sup 30} cm{sup {minus}2}s{sup {minus}1} as required for high energy physics experiments. This paper considers stochastic cooling to increase the phase space density of the muons in the collider. Even at muon energies greater than 100 GeV, the number of muons per bunch must be limited to {approximately}10{sup 3} for the cooling rate to be less than the muon lifetime. With such a small number of muons per bunch, the final beam emittance implied by the luminosity requirement is well below the thermodynamic limit for beam electronics at practical temperatures. Rapid bunch stacking after the cooling process can raise the number of muons per bunch to a level consistent with both the luminosity goals and with practical temperatures for the stochastic cooling electronics. A major advantage of our stochastic cooling/stacking scheme over scenarios that employ only ionization cooling is that the power on the production target can be reduced below 1 MW.

Barletta, W.A.; Sessler, A.M.

1993-09-01T23:59:59.000Z

220

A study of industrial equipment energy use and demand control  

E-Print Network (OSTI)

Demand and duty factors were measured for selected equipment [air compressors, electric furnaces, injection-molding machines, a welder, a granulator (plastics grinder), a sheet metal press and brake, a lathe, a process chiller, and cooling tower pumps and fans] in two industrial plants. Demand factors for heavily loaded air compressors were found to be near 100 %, for lightly loaded centrifugal equipment (lathe, sheet metal shear and brake, and granulator) near 10 %, and for injection-molding machines near 50 %. The measured demand factors differ from those often estimated during energy surveys. Duty factors for some equipment were found to exceed 100 %, showing that some loads were on for longer periods than that indicated by plant personnel. Comparing a detailed summary of equipment rated loads to annual utility bills, when measurements are not available, can prevent over-estimation of the demand and duty factors for a plant. Raw unadjusted estimates of demand factors of 60 % or higher are often made, yet comparisons of rated loads to utility bills show that some equipment demand factors may be 50 % or less. This project tested a simple beacon alerting system, which used a blue strobe light to alert plant personnel when a preset demand limit had been reached. Tests of load shedding verified that the estimated demand savings of 50 kVA were realized (out of a total demand of almost 1200 kVA) when lighting and air conditioning loads were turned off.

Dooley, Edward Scott

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "increased cooling demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Coordination of Energy Efficiency and Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Coordination of Energy Efficiency and Demand Response Coordination of Energy Efficiency and Demand Response Title Coordination of Energy Efficiency and Demand Response Publication Type Report Refereed Designation Unknown Year of Publication 2010 Authors Goldman, Charles A., Michael Reid, Roger Levy, and Alison Silverstein Pagination 74 Date Published 01/2010 Publisher LBNL City Berkeley Keywords electricity markets and policy group, energy analysis and environmental impacts department Abstract This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025.1 Improving energy efficiency in our homes, businesses, schools, governments, and industries-which consume more than 70 percent of the nation's natural gas and electricity-is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that "the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW" by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

222

Forecasting Uncertain Hotel Room Demand  

E-Print Network (OSTI)

Economic systems are characterized by increasing uncertainty in their dynamics. This increasing uncertainty is likely to incur bad decisions that can be costly in financial terms. This makes forecasting of uncertain economic variables an instrumental activity in any organization. This paper takes the hotel industry as a practical application of forecasting using the Holt-Winters method. The problem here is to forecast the uncertain demand for rooms at a hotel for each arrival day. Forecasting is part of hotel revenue management system whose objective is to maximize the revenue by making decisions regarding when to make rooms available for customers and at what price. The forecast approach discussed in this paper is based on quantitative models and does not incorporate management expertise. Even though, forecast results are found to be satisfactory for certain days, this is not the case for other arrival days. It is believed that human judgment is important when dealing with ...

Mihir Rajopadhye Mounir; Mounir Ben Ghaliay; Paul P. Wang; Timothy Baker; Craig V. Eister

2001-01-01T23:59:59.000Z

223

Chinese demand drives global deforestation Chinese demand drives global deforestation  

E-Print Network (OSTI)

Chinese demand drives global deforestation Chinese demand drives global deforestation By Tansa Musa zones and do not respect size limits in their quest for maximum financial returns. "I lack words economy. China's demand for hardwood drives illegal logging says "Both illegal and authorized

224

Estimating a Demand System with Nonnegativity Constraints: Mexican Meat Demand  

E-Print Network (OSTI)

: Properties of the AIDS Generalized Maximum Entropy Estimator 24 #12;Estimating a Demand SystemEstimating a Demand System with Nonnegativity Constraints: Mexican Meat Demand Amos Golan* Jeffrey with nonnegativity constraints is presented. This approach, called generalized maximum entropy (GME), is more

Perloff, Jeffrey M.

225

CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST Demand Forecast report is the product of the efforts of many current and former California Energy Commission staff. Staff contributors to the current forecast are: Project Management and Technical Direction

226

Cooling Energy and Cost Savings with Daylighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Cooling Energy and Cost Savings with Daylighting Cooling Energy and Cost Savings with Daylighting Title Cooling Energy and Cost Savings with Daylighting Publication Type Conference Paper LBNL Report Number LBL-19734 Year of Publication 1985 Authors Arasteh, Dariush K., Russell Johnson, Stephen E. Selkowitz, and Deborah J. Connell Conference Name 2nd Annual Symposium on Improving Building Energy Efficiency in Hot and Humid Climates Date Published 09/1985 Conference Location Texas A&M University Call Number LBL-19734 Abstract Fenestration performance in nonresidentialsbuildings in hot climates is often a large coolingsload liability. Proper fenestration design andsthe use of daylight-responsive dimming controls onselectric lights can, in addition to drasticallysreducing lighting energy, lower cooling loads,speak electrical demand, operating costs, chillerssizes, and first costs. Using the building energyssimulation programs DOE-2.1B and DOE-2.1C , wesfirst discuss lighting energy savings from daylighting.sThe effects of fenestration parametersson cooling loads, total energy use, peak demand,schiller sizes, and initial and operating costs aresalso discussed. The impact of daylighting, asscompared to electric lighting, on cooling requirementssis discussed as a function of glazingscharacteristics, location, and shading systems.

227

Ethanol Demand in United States Gasoline Production  

SciTech Connect

The Oak Ridge National Laboratory (OWL) Refinery Yield Model (RYM) has been used to estimate the demand for ethanol in U.S. gasoline production in year 2010. Study cases examine ethanol demand with variations in world oil price, cost of competing oxygenate, ethanol value, and gasoline specifications. For combined-regions outside California summer ethanol demand is dominated by conventional gasoline (CG) because the premised share of reformulated gasoline (RFG) production is relatively low and because CG offers greater flexibility for blending high vapor pressure components like ethanol. Vapor pressure advantages disappear for winter CG, but total ethanol used in winter RFG remains low because of the low RFG production share. In California, relatively less ethanol is used in CG because the RFG production share is very high. During the winter in California, there is a significant increase in use of ethanol in RFG, as ethanol displaces lower-vapor-pressure ethers. Estimated U.S. ethanol demand is a function of the refiner value of ethanol. For example, ethanol demand for reference conditions in year 2010 is 2 billion gallons per year (BGY) at a refiner value of $1.00 per gallon (1996 dollars), and 9 BGY at a refiner value of $0.60 per gallon. Ethanol demand could be increased with higher oil prices, or by changes in gasoline specifications for oxygen content, sulfur content, emissions of volatile organic compounds (VOCS), and octane numbers.

Hadder, G.R.

1998-11-24T23:59:59.000Z

228

China End-Use Energy Demand Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

China End-Use Energy Demand Modeling China End-Use Energy Demand Modeling Speaker(s): Nan Zhou Date: October 8, 2009 (All day) Location: 90-3122 As a consequence of soaring energy demand due to the staggering pace of its economic growth, China overtook the United States in 2007 to become the world's biggest contributor to CO2 emissions (IEA, 2007). Since China is still in an early stage of industrialization and urbanization, economic development promises to keep China's energy demand growing strongly. Furthermore, China's reliance on fossil fuel is unlikely to change in the long term, and increased needs will only heighten concerns about energy security and climate change. In response, the Chinese government has developed a series of policies and targets aimed at improving energy efficiency, including both short-term targets and long-term strategic

229

National Action Plan on Demand Response  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

David Kathan, Ph.D David Kathan, Ph.D Federal Energy Regulatory Commission U.S. DOE Electricity Advisory Committee October 29, 2010 Demand Response as Power System Resources The author's views do not necessarily represent the views of the Federal Energy Regulatory Commission 2 Demand Response * FERC (Order 719) defines demand response as: - A reduction in the consumption of electric energy by customers from their expected consumption in response to an increase in the price of electric energy or to in incentive payments designed to induce lower consumption of electric energy. * The National Action Plan on Demand Response released by FERC staff broadens this definition to include - Consumer actions that can change any part of the load profile of a utility or region, not just the period of peak usage

230

EIA - Annual Energy Outlook 2008 - Electricity Demand  

Gasoline and Diesel Fuel Update (EIA)

Electricity Demand Electricity Demand Annual Energy Outlook 2008 with Projections to 2030 Electricity Demand Figure 60. Annual electricity sales by sector, 1980-2030 (billion kilowatthours). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 61. Electricity generation by fuel, 2006 and 2030 (billion kilowatthours). Need help, contact the National Energy Information Center at 202-586-8800. figure data Residential and Commercial Sectors Dominate Electricity Demand Growth Total electricity sales increase by 29 percent in the AEO2008 reference case, from 3,659 billion kilowatthours in 2006 to 4,705 billion in 2030, at an average rate of 1.1 percent per year. The relatively slow growth follows the historical trend, with the growth rate slowing in each succeeding

231

Alternatives to compressor cooling in California climates  

SciTech Connect

This review and discussion has been prepared for the California Institute for Energy Efficiency (CIEE) to examine research on alternatives to compressor cooling. The report focuses on strategies for eliminating compressors in California's transition climates -- moderately warm areas located between the cool coastal regions and the hot central regions. Many of these strategies could also help reduce compressor use in hotter climates. Compressor-driven cooling of residences in California's transition climate regions is an undesirable load for California's electric utilities because load factor is poor and usage is typically high during periods of system peak demand. We review a number of alternatives to compressors, including low-energy strategies: evaporative cooling, natural and induced ventilation, reflective coatings, shading with vegetation and improved glazing, thermal storage, and radiative cooling. Also included are two energy-intensive strategies: absorption cooling and desiccant cooling. Our literature survey leads us to conclude that many of these strategies, used either singly or in combination, are technically and economically feasible alternatives to compressor-driven cooling. 78 refs., 8 figs.

Feustel, H. (Lawrence Berkeley Lab., CA (United States)); de Almeida, A. (Coimbra Univ. (Portugal). Dept. of Electrical Engineering); Blumstein, C. (California Univ., Berkeley, CA (United States). Universitywide Energy Research Group)

1991-01-01T23:59:59.000Z

232

Efficient cooling: Making it happen  

SciTech Connect

This article presents a series of solutions that can help everyone to some basic questions about air conditioning: what`s the best way to size a residential air conditioner? to what extent do air conditioners tend to be oversized? how can energy research and programs help promote optimal sizing of cooling systems? Topics covered include the following: defining the debate over sizing of air conditioners; methods for sizing; evaluating simple {open_quotes}rules of thumb{close_quotes}; working with HVAC contractors; creating consumer demand for proper sizing. 1 fig. 1 tab.

Sherman, C.; Hildebrandt, E. [Sacramento Municipal Utility District, CA (United States)

1998-03-01T23:59:59.000Z

233

Quantum-mechanical theory of optomechanical Brillouin cooling  

SciTech Connect

We analyze how to exploit Brillouin scattering of light from sound for the purpose of cooling optomechanical devices and present a quantum-mechanical theory for Brillouin cooling. Our analysis shows that significant cooling ratios can be obtained with standard experimental parameters. A further improvement of cooling efficiency is possible by increasing the dissipation of the optical anti-Stokes resonance.

Tomes, Matthew; Bahl, Gaurav; Carmon, Tal [Department of Electrical Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Marquardt, Florian [Institut fuer Theoretische Physik, Universitaet Erlangen-Nuernberg, Staudtstrasse 7, D-91058 Erlangen (Germany); Max Planck Institute for the Science of Light, Guenther-Scharowsky-Strasse 1/Bau 24, D-91058 Erlangen (Germany)

2011-12-15T23:59:59.000Z

234

'Radio Wave Cooling' Offers New Twist on Laser Cooling  

Science Conference Proceedings (OSTI)

'Radio Wave Cooling' Offers New Twist on Laser Cooling. From NIST Tech Beat: September 13, 2007. ...

2013-07-08T23:59:59.000Z

235

Proceedings: Cooling Tower and Advanced Cooling Systems Conference  

Science Conference Proceedings (OSTI)

Cooling towers and associated systems performance strongly affects availability and heat rate in fossil and nuclear power plants. Papers presented at EPRI's 1994 Cooling Tower and Advanced Cooling Systems Conference discuss research results, industry experience, and case histories of cooling tower problems and solutions. Specific topics include cooling tower upgrades and retrofits, cooling tower performance, cooling tower fouling, and dry and hybrid cooling systems.

1995-03-09T23:59:59.000Z

236

Demand Response | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Demand Response Demand Response Demand Response Demand response provides an opportunity for consumers to play a significant role in the operation of the electric grid by reducing or shifting their electricity usage during peak periods in response to time-based rates or other forms of financial incentives. Demand response programs are being used by electric system planners and operators as resource options for balancing supply and demand. Such programs can lower the cost of electricity in wholesale markets, and in turn, lead to lower retail rates. Methods of engaging customers in demand response efforts include offering time-based rates such as time-of-use pricing, critical peak pricing, variable peak pricing, real time pricing, and critical peak rebates. It also includes direct load control programs which provide the

237

OCCUPATIONAL COOLING TOWERS  

E-Print Network (OSTI)

HEALTH SCIENCES LIBRARY COOLING TOWERS EMPLOYEE HEALTH B C D F E CHILDREN'S ELEVATORS MEDICAL SCHOOL

Crews, Stephen

238

ELECTRICITY DEMAND FORECAST COMPARISON REPORT  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION ELECTRICITY DEMAND FORECAST COMPARISON REPORT STAFFREPORT June 2005 ..............................................................................3 Residential Forecast Comparison ..............................................................................................5 Nonresidential Forecast Comparisons

239

Preliminary Analysis of Energy Consumption for Cool Roofing Measures  

SciTech Connect

The spread of cool roofing has been more than prolific over the last decade. Driven by public demand and by government initiatives cool roofing has been a recognized low cost method to reduce energy demand by reflecting sunlight away from structures and back in to the atmosphere. While much of the country can benefit from the use of cool coatings it remains to be seen whether the energy savings described are appropriate in cooler climates. By use of commonly available calculators one can analyze the potential energy savings based on environmental conditions and construction practices.

Mellot, Joe [The Garland Company; Sanyal, Jibonananda [ORNL; New, Joshua Ryan [ORNL

2013-01-01T23:59:59.000Z

240

Demand Side Bidding. Final Report  

SciTech Connect

This document sets forth the final report for a financial assistance award for the National Association of Regulatory Utility Commissioners (NARUC) to enhance coordination between the building operators and power system operators in terms of demand-side responses to Location Based Marginal Pricing (LBMP). Potential benefits of this project include improved power system reliability, enhanced environmental quality, mitigation of high locational prices within congested areas, and the reduction of market barriers for demand-side market participants. NARUC, led by its Committee on Energy Resources and the Environment (ERE), actively works to promote the development and use of energy efficiency and clean distributive energy policies within the framework of a dynamic regulatory environment. Electric industry restructuring, energy shortages in California, and energy market transformation intensifies the need for reliable information and strategies regarding electric reliability policy and practice. NARUC promotes clean distributive generation and increased energy efficiency in the context of the energy sector restructuring process. NARUC, through ERE's Subcommittee on Energy Efficiency, strives to improve energy efficiency by creating working markets. Market transformation seeks opportunities where small amounts of investment can create sustainable markets for more efficient products, services, and design practices.

Spahn, Andrew

2003-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "increased cooling demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Overview of Demand Response  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

08 PJM 08 PJM www.pjm.com ©2003 PJM Overview of Demand Response PJM ©2008 PJM www.pjm.com ©2003 PJM Growth, Statistics, and Current Footprint AEP, Dayton, ComEd, & DUQ Dominion Generating Units 1,200 + Generation Capacity 165,000 MW Peak Load 144,644 MW Transmission Miles 56,070 Area (Square Miles) 164,250 Members 500 + Population Served 51 Million Area Served 13 States and DC Generating Units 1,200 + Generation Capacity 165,000 MW Peak Load 144,644 MW Transmission Miles 56,070 Area (Square Miles) 164,250 Members 500 + Population Served 51 Million Area Served 13 States and DC Current PJM RTO Statistics Current PJM RTO Statistics PJM Mid-Atlantic Integrations completed as of May 1 st , 2005 ©2008 PJM

242

Advances in Energy Efficiency, Capital Cost, and Installation Schedules for Large Capacity Cooling Applications Using a Packaged Chiller Plant Approach  

E-Print Network (OSTI)

Cooling equipment, whether used to meet air-conditioning or process cooling loads, represents a large consumer of energy. Even more to the point, cooling loads and the associated cooling equipment energy consumption tend to be at maximum levels during periods of high ambient air temperatures. It is precisely at those times that the general demand for energy is at its peak and therefore the price or value of energy is also at its highest level. Cooling loads often drive the peak electric power demand of energy users and thus affect not only the level of consumption of high cost energy, but also affect the peak power demand. Together, the energy and demand costs equate to very high unit costs for operating cooling equipment. Accordingly, it is of interest to minimize cooling energy use and costs by maximizing the energy efficiency of cooling equipment installations. A relatively new approach has been developed and is being increasingly used to maximize chiller plant efficiency. The approach involves the use of a standardized, pre-engineered, shop-fabricated approach to entire chiller plant installations. Compared to the traditional, piece-meal approach to chiller plants that utilize individual component specification, procurement and installation, the "packaged" or modular chiller plant approach often delivers substantially improved energy efficiencies. Also, the packaged plant approach achieves further benefits for large cooling system owners and operators. These additional benefits include: 1) dramatic reductions in unit capital costs of installed chiller plant capacity on a dollar per ton basis, 2) marked improvements in total procurement and installation schedules, 3) significantly smaller space requirements, and 4) enhanced control over total system quality and performance. The capacities and performance characteristics of available chiller plant modules are described, including both electric and non-electric chiller technologies. Examples are presented to illustrate the typical sizes and locations of actual installations as well as the growth and extent of the use of this technology to-date. Case studies document the energy efficiency improvements, cost reductions in both operating and capital costs, and improvements in schedule and space utilization, of the packaged chiller plant approach relative to the traditional chiller plant approach.

Pierson, T. L.; Andrepont, J. S.

2003-05-01T23:59:59.000Z

243

Utilization of Rainwater as a Supplementary Water Source for Cooling Tower Makeup: A Sustainability Strategy for Potable Water Use Reduction.  

E-Print Network (OSTI)

?? The use of rainwater as a supplementary water source for cooling water makeup was explored in an effort to reduce the potable water demand… (more)

Costello, Elizabeth Stassun

2012-01-01T23:59:59.000Z

244

On demand responsiveness in additive cost sharing  

E-Print Network (OSTI)

Abstract. We propose two new axioms of demand responsiveness for additive cost sharing with variable demands. Group Monotonicity requires that if a group of agents increase their demands, not all of them pay less. Solidarity says that if agent i demands more, j should not pay more if k pays less. Both axioms are compatible in the partial responsibility theory postulating Strong Ranking, i.e., the ranking of cost shares should never contradict that of demands. The combination of Strong Ranking, Solidarity and Monotonicity characterizes the quasi-proportional methods, under which cost shares are proportional to ‘rescaled ’ demands. The alternative full responsibility theory is based on Separability, ruling out cross-subsidization when costs are additively separable. Neither the Aumann-Shapley nor the Shapley-Shubik method is group monotonic. On the other hand, convex combinations of “nearby ” …xed-path methods are group-monotonic: the subsidy-free serial method is the main example. No separable method meets Solidarity, yet restricting the axiom to submodular (or supermodular) cost functions leads to a characterization of the …xed-‡ow methods, containing the Shapley-Shubik and serial methods. JEL Classi…cation numbers: C 71, D 63.

Hervé Moulin; Yves Sprumont

2005-01-01T23:59:59.000Z

245

Oxygenate Supply/Demand Balances  

Gasoline and Diesel Fuel Update (EIA)

Oxygenate Supply/Demand Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model By Tancred C.M. Lidderdale This article first appeared in the Short-Term Energy Outlook Annual Supplement 1995, Energy Information Administration, DOE/EIA-0202(95) (Washington, DC, July 1995), pp. 33-42, 83-85. The regression results and historical data for production, inventories, and imports have been updated in this presentation. Contents * Introduction o Table 1. Oxygenate production capacity and demand * Oxygenate demand o Table 2. Estimated RFG demand share - mandated RFG areas, January 1998 * Fuel ethanol supply and demand balance o Table 3. Fuel ethanol annual statistics * MTBE supply and demand balance o Table 4. EIA MTBE annual statistics * Refinery balances

246

Oil cooled, hermetic refrigerant compressor  

DOE Patents (OSTI)

A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler and is then delivered through the shell to the top of the motor rotor where most of it is flung radially outwardly within the confined space provided by the cap which channels the flow of most of the oil around the top of the stator and then out to a multiplicity of holes to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator from which the suction gas passes by a confined path in pipe to the suction plenum and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum. 3 figs.

English, W.A.; Young, R.R.

1985-05-14T23:59:59.000Z

247

Oil cooled, hermetic refrigerant compressor  

DOE Patents (OSTI)

A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler 18 and is then delivered through the shell to the top of the motor rotor 24 where most of it is flung radially outwardly within the confined space provided by the cap 50 which channels the flow of most of the oil around the top of the stator 26 and then out to a multiplicity of holes 52 to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber 58 to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole 62 also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator 68 from which the suction gas passes by a confined path in pipe 66 to the suction plenum 64 and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum 64.

English, William A. (Murrysville, PA); Young, Robert R. (Murrysville, PA)

1985-01-01T23:59:59.000Z

248

Demand Shifting With Thermal Mass in Large Commercial Buildings:Field Tests, Simulation and Audits  

SciTech Connect

The principle of pre-cooling and demand limiting is to pre-cool buildings at night or in the morning during off-peak hours, storing cooling in the building thermal mass and thereby reducing cooling loads and reducing or shedding related electrical demand during the peak periods. Cost savings are achieved by reducing on-peak energy and demand charges. The potential for utilizing building thermal mass for load shifting and peak demand reduction has been demonstrated in a number of simulation, laboratory, and field studies (Braun 1990, Ruud et al. 1990, Conniff 1991, Andresen and Brandemuehl 1992, Mahajan et al. 1993, Morris et al. 1994, Keeney and Braun 1997, Becker and Paciuk 2002, Xu et al. 2003). This technology appears to have significant potential for demand reduction if applied within an overall demand response program. The primary goal associated with this research is to develop information and tools necessary to assess the viability of and, where appropriate, implement demand response programs involving building thermal mass in buildings throughout California. The project involves evaluating the technology readiness, overall demand reduction potential, and customer acceptance for different classes of buildings. This information can be used along with estimates of the impact of the strategies on energy use to design appropriate incentives for customers.

Xu, Peng; Haves, Philip; Piette, Mary Ann; Zagreus, Leah

2005-09-01T23:59:59.000Z

249

Fuzzy financial profitability analyses of demand side management alternatives from participant perspective  

Science Conference Proceedings (OSTI)

This paper derives fuzzy profitability models for the financial evaluation of different demand side management (DSM) alternatives. The present value of cost (PVC) and equivalent uniform annual cost (EUAC) models are selected to determine the least-cost ... Keywords: Mellin transform, cogeneration, cooling energy storage, demand side management, fuzzy mathematics, fuzzy ranking, profitability analyses

J. N. Sheen

2005-02-01T23:59:59.000Z

250

Thermal Performance of Phase-Change Wallboard for Residential Cooling  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 Thermal Performance of Phase-Change Wallboard for Residential Cooling Cooling residential buildings in milder climates contributes significantly to peak demand mainly because of poor load factors. Peak cooling load determines the size of equipment and the cooling source. Several measures reduce cooling-system size and allow the use of lower-energy cooling sources; they include incorporating exterior walls or other elements that effectively shelter interiors from outside heat and cold, and providing thermal mass, to cool interior spaces during the day by absorbing heat and warm them at night as the mass discharges its heat. Thermal mass features may be used for storage only or serve as structural elements. Concrete, steel, adobe, stone, and brick all satisfy requirements

251

Increasing primary energy and electricity demand. Persistent energy deficit situation.  

E-Print Network (OSTI)

March 12 ~ 15, 2012 Westmark Hotel, Fairbanks, Alaska "50 Years... Honor the Past; Embrace the Present Meeting ~ Westmark Hotel Page 2 3/6/2012~ 11:23:30 AM If you need any assistance logging on, please of Directors Meeting ~ Westmark Hotel Page 3 3/6/2012~ 11:23:30 AM MONDAY, MARCH 12, 2012 ~ TRIBAL OVERVIEW

252

Demand Response Programs, 6. edition  

Science Conference Proceedings (OSTI)

The report provides a look at the past, present, and future state of the market for demand/load response based upon market price signals. It is intended to provide significant value to individuals and companies who are considering participating in demand response programs, energy providers and ISOs interested in offering demand response programs, and consultants and analysts looking for detailed information on demand response technology, applications, and participants. The report offers a look at the current Demand Response environment in the energy industry by: defining what demand response programs are; detailing the evolution of program types over the last 30 years; discussing the key drivers of current initiatives; identifying barriers and keys to success for the programs; discussing the argument against subsidization of demand response; describing the different types of programs that exist including:direct load control, interruptible load, curtailable load, time-of-use, real time pricing, and demand bidding/buyback; providing examples of the different types of programs; examining the enablers of demand response programs; and, providing a look at major demand response programs.

NONE

2007-10-15T23:59:59.000Z

253

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network (OSTI)

2007 EMCS EPACT ERCOT FCM FERC FRCC demand side managementEnergy Regulatory Commission (FERC). EPAct began the processin wholesale markets, which FERC Order 888 furthered by

Shen, Bo

2013-01-01T23:59:59.000Z

254

Tape storage solutions: meeting growing data demands  

Science Conference Proceedings (OSTI)

The exponential data growth caused by content-rich applications and new data compliance regulations has led to an increased demand for tape storage due to tape's low cost per GB and long shelf-life. However, tape technology suffers from several disadvantages: ...

Xianbo Zhang / David H. Du

2006-01-01T23:59:59.000Z

255

Energy Demand (released in AEO2010)  

Reports and Publications (EIA)

Growth in U.S. energy use is linked to population growth through increases in demand for housing, commercial floorspace, transportation, manufacturing, and services. This affects not only the level of energy use, but also the mix of fuels and consumption by sector.

Information Center

2010-05-11T23:59:59.000Z

256

An investigation of solar powered absorption cooling systems for South Africa.  

E-Print Network (OSTI)

??Increased standards of living and indoor comfort demands have led to an increase in the demand for air-conditioning in buildings in South Africa. Conventional vapor… (more)

Bvumbe, Tatenda Joseph.

2012-01-01T23:59:59.000Z

257

DOE Science Showcase - Cool roofs, cool research, at DOE | OSTI...  

Office of Scientific and Technical Information (OSTI)

Accelerator returns cool roof documents from 6 DOE Databases Executive Order on Sustainability Secretary Chu Announces Steps to Implement One Cool Roof Cool Roofs Lead to Cooler...

258

electricity demand | OpenEI  

Open Energy Info (EERE)

demand demand Dataset Summary Description The New Zealand Ministry of Economic Development publishes energy data including many datasets related to electricity. Included here are three electricity consumption and demand datasets, specifically: annual observed electricity consumption by sector (1974 to 2009); observed percentage of consumers by sector (2002 - 2009); and regional electricity demand, as a percentage of total demand (2009). Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated July 03rd, 2009 (5 years ago) Keywords Electricity Consumption electricity demand energy use by sector New Zealand Data application/vnd.ms-excel icon Electricity Consumption by Sector (1974 - 2009) (xls, 46.1 KiB) application/vnd.ms-excel icon Percentage of Consumers by Sector (2002 - 2009) (xls, 43.5 KiB)

259

Space Heating and Cooling  

Energy.gov (U.S. Department of Energy (DOE))

A wide variety of technologies are available for heating and cooling homes and other buildings. In addition, many heating and cooling systems have certain supporting equipment in common, such as...

260

Automated Demand Response and Commissioning  

NLE Websites -- All DOE Office Websites (Extended Search)

and Commissioning Title Automated Demand Response and Commissioning Publication Type Conference Paper LBNL Report Number LBNL-57384 Year of Publication 2005 Authors Piette, Mary...

Note: This page contains sample records for the topic "increased cooling demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Demand Response Valuation Frameworks Paper  

E-Print Network (OSTI)

lvi Southern California Edison filed its SmartConnectinfrastructure (e.g. , Edison Electric Institute, DemandSouthern California Edison Standard Practice Manual

Heffner, Grayson

2010-01-01T23:59:59.000Z

262

Demand Uncertainty and Price Dispersion.  

E-Print Network (OSTI)

??Demand uncertainty has been recognized as one factor that may cause price dispersion in perfectly competitive markets with costly and perishable capacity. With the persistence… (more)

Li, Suxi

2007-01-01T23:59:59.000Z

263

1995 Demand-Side Managment  

U.S. Energy Information Administration (EIA)

U.S. Electric Utility Demand-Side Management 1995 January 1997 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels

264

Commercial Cool Storage Design Guide  

Science Conference Proceedings (OSTI)

This state-of-the-art handbook provides comprehensive guidance for designing ice and chilled-water storage systems for commercial buildings. HVAC engineers can take advantage of attractive rates and incentives offered by utilities to increase the market for cool storage systems.

1985-05-01T23:59:59.000Z

265

Cooling System Functions  

Science Conference Proceedings (OSTI)

...size Flow restrictions Heat exchanger size and design All of these factors must be considered. Every component in the cooling

266

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

energy efficiency and demand response programs and tariffs.energy efficiency and demand response program and tariffenergy efficiency and demand response programs and tariffs.

Goldman, Charles

2010-01-01T23:59:59.000Z

267

Wireless Demand Response Controls for HVAC Systems  

E-Print Network (OSTI)

Strategies Linking Demand Response and Energy Efficiency,”Fully Automated Demand Response Tests in Large Facilities,technical support from the Demand Response Research Center (

Federspiel, Clifford

2010-01-01T23:59:59.000Z

268

Demand Response Quick Assessment Tool (DRQAT)  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Quick Assessment Tool (DRQAT) The opportunities for demand reduction and cost saving with building demand responsive control vary tremendously with building type...

269

Demand Responsive Lighting: A Scoping Study  

E-Print Network (OSTI)

2 2.0 Demand ResponseFully Automated Demand Response Tests in Large Facilities,was coordinated by the Demand Response Research Center and

Rubinstein, Francis; Kiliccote, Sila

2007-01-01T23:59:59.000Z

270

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network (OSTI)

8.4 Demand Response Integration . . . . . . . . . . .for each day type for the demand response study - moderatefor each day type for the demand response study - moderate

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

271

Installation and Commissioning Automated Demand Response Systems  

E-Print Network (OSTI)

their partnership in demand response automation research andand Techniques for Demand Response. LBNL Report 59975. Mayof Fully Automated Demand Response in Large Facilities.

Kiliccote, Sila; Global Energy Partners; Pacific Gas and Electric Company

2008-01-01T23:59:59.000Z

272

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

and D. Kathan (2009). Demand Response in U.S. ElectricityEnergy Financial Group. Demand Response Research Center [2008). Assessment of Demand Response and Advanced Metering.

Goldman, Charles

2010-01-01T23:59:59.000Z

273

Strategies for Demand Response in Commercial Buildings  

E-Print Network (OSTI)

Fully Automated Demand Response Tests in Large Facilities”of Fully Automated Demand Response in Large Facilities”,was coordinated by the Demand Response Research Center and

Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

2006-01-01T23:59:59.000Z

274

Retail Demand Response in Southwest Power Pool  

E-Print Network (OSTI)

23 ii Retail Demand Response in SPP List of Figures and10 Figure 3. Demand Response Resources by11 Figure 4. Existing Demand Response Resources by Type of

Bharvirkar, Ranjit

2009-01-01T23:59:59.000Z

275

Option Value of Electricity Demand Response  

E-Print Network (OSTI)

Table 1. “Economic” demand response and real time pricing (Implications of Demand Response Programs in CompetitiveAdvanced Metering, and Demand Response in Electricity

Sezgen, Osman; Goldman, Charles; Krishnarao, P.

2005-01-01T23:59:59.000Z

276

Demand Responsive Lighting: A Scoping Study  

E-Print Network (OSTI)

8 Figure 7: Maximum Demands Savings Intensity due toaddressed in this report. Maximum Demand Savings Intensity (Echelon Figure 7: Maximum Demands Savings Intensity due to

Rubinstein, Francis; Kiliccote, Sila

2007-01-01T23:59:59.000Z

277

Cooling Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

technologies used in homes and buildings include ventilation, evaporative cooling, air conditioning, absorption cooling, and radiant cooling. Learn more about how these...

278

Cooling load estimation methods  

DOE Green Energy (OSTI)

Ongoing research on quantifying the cooling loads in residential buildings, particularly buildings with passive solar heating systems, is described. Correlations are described that permit auxiliary cooling estimates from monthly average insolation and weather data. The objective of the research is to develop a simple analysis method, useful early in design, to estimate the annual cooling energy required of a given building.

McFarland, R.D.

1984-01-01T23:59:59.000Z

279

Cooling Water System Optimization  

E-Print Network (OSTI)

During summer months, many manufacturing plants have to cut back in rates because the cooling water system is not providing sufficient cooling to support higher production rates. There are many low/no-cost techniques available to improve tower performance. To understand the importance of the optimization techniques, cooling tower theory will be discussed first.

Aegerter, R.

2005-01-01T23:59:59.000Z

280

Stochastic cooling in RHIC  

SciTech Connect

After the success of longitudinal stochastic cooling of bunched heavy ion beam in RHIC, transverse stochastic cooling in the vertical plane of Yellow ring was installed and is being commissioned with proton beam. This report presents the status of the effort and gives an estimate, based on simulation, of the RHIC luminosity with stochastic cooling in all planes.

Brennan,J.M.; Blaskiewicz, M. M.; Severino, F.

2009-05-04T23:59:59.000Z

Note: This page contains sample records for the topic "increased cooling demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Natural Cooling Retrofit  

E-Print Network (OSTI)

Substantial numbers of existing plants and buildings are found to depend solely upon Mechanical Cooling even though Natural Cooling techniques could be employed utilizing ambient air. Most of these facilities were constructed without Natural Cooling capability due to 'first cost' budget constraints when the cost and availability of energy were of little concern.

Fenster, L. C.; Grantier, A. J.

1981-01-01T23:59:59.000Z

282

Supply and demand of lube oils  

Science Conference Proceedings (OSTI)

Lube oil consumption in the world has reached about 40 million tonnes per year, of which 24 million tonnes is used outside the communist areas. There are large regional differences in annual consumption per head from one kilogramme (kg) in India to 35 kg in North America. A statistical analysis of historical data over twenty years in about ninety countries has lead to the conclusion that national income, measured as GDP per head, is the key determinant of total lube oil consumption per head. The functional relationship, however, is different in different countries. Starting from GDP projections until the year 2000, regional forecasts of lube oil demand have been made which show that the share of developing nations outside the communist area in world demand will grow. This will increase the regional imbalance between base oil capacity and demand.

Vlemmings, J.M.L.M.

1988-01-01T23:59:59.000Z

283

Liquid cooled counter flow turbine bucket  

DOE Patents (OSTI)

Means and a method are provided whereby liquid coolant flows radially outward through coolant passages in a liquid cooled turbine bucket under the influence of centrifugal force while in contact with countercurrently flowing coolant vapor such that liquid is entrained in the flow of vapor resulting in an increase in the wetted cooling area of the individual passages.

Dakin, James T. (Schenectady, NY)

1982-09-21T23:59:59.000Z

284

Changing fuel formulations will boost hydrogen demand  

SciTech Connect

Refinery demand in the U.S. for on-purpose hydrogen will continue to increase by 5-10 %/year, depending on the extent of implementation of the 1990 U.S. Clean Air Act Amendments (CAAA) and other proposed environmental legislation. Although the debate on the economic wisdom of the legislation still rages, it is evident that refiners likely will see a large upswing in hydrogen demand while existing hydrogen production may decline. To better understand the potential impact various reformulation scenarios may have on the refining industry, and specifically, on the demand for hydrogen, Texaco analyzed the hydrogen supply/demand scenario in great detail. Two cases were studied in this analysis: mild and severe reformulation. The mild reformulation case is based on current CAAA legislation along with minor modifications to automobile hardware. The severe case is based on a nationwide implementation of Phase 2 of the CAAA and California's proposed reformulated fuels. The paper discusses the current capacity balance; growth in demand; reformulated gasoline; steam methane reforming; and partial oxidation technology.

Simonsen, K.A.; O' Keefe, L.F. (Texaco Inc., White Plains, N.Y. (United States)); Fong, W.F. (Texaco Development Corp., White Plains, N.Y. (United States))

1993-03-22T23:59:59.000Z

285

Market-based airport demand management : theory, model and applications  

E-Print Network (OSTI)

The ever-increasing demand for access to the world's major commercial airports combined with capacity constraints at many of these airports have led to increasing air traffic congestion. In particular, the scarcity of ...

Fan, Terence P

2004-01-01T23:59:59.000Z

286

Automated Demand Response: The Missing Link in the Electricity Value Chain  

SciTech Connect

In 2006, the Public Interest Energy Research Program (PIER) Demand Response Research Center (DRRC) at Lawrence Berkeley National Laboratory initiated research into Automated Demand Response (OpenADR) applications in California industry. The goal is to improve electric grid reliability and lower electricity use during periods of peak demand. The purpose of this research is to begin to define the relationship among a portfolio of actions that industrial facilities can undertake relative to their electricity use. This 'electricity value chain' defines energy management and demand response (DR) at six levels of service, distinguished by the magnitude, type, and rapidity of response. One element in the electricity supply chain is OpenADR, an open-standards based communications system to send signals to customers to allow them to manage their electric demand in response to supply conditions, such as prices or reliability, through a set of standard, open communications. Initial DRRC research suggests that industrial facilities that have undertaken energy efficiency measures are probably more, not less, likely to initiate other actions within this value chain such as daily load management and demand response. Moreover, OpenADR appears to afford some facilities the opportunity to develop the supporting control structure and to 'demo' potential reductions in energy use that can later be applied to either more effective load management or a permanent reduction in use via energy efficiency. Under the right conditions, some types of industrial facilities can shift or shed loads, without any, or minimal disruption to operations, to protect their energy supply reliability and to take advantage of financial incentives. In 2007 and 2008, 35 industrial facilities agreed to implement OpenADR, representing a total capacity of nearly 40 MW. This paper describes how integrated or centralized demand management and system-level network controls are linked to OpenADR systems. Case studies of refrigerated warehouses and wastewater treatment facilities are used to illustrate OpenADR load reduction potential. Typical shed and shift strategies include: turning off or operating compressors, aerator blowers and pumps at reduced capacity, increasing temperature set-points or pre-cooling cold storage areas and over-oxygenating stored wastewater prior to a DR event. This study concludes that understanding industrial end-use processes and control capabilities is a key to support reduced service during DR events and these capabilities, if DR enabled, hold significant promise in reducing the electricity demand of the industrial sector during utility peak periods.

McKane, Aimee; Rhyne, Ivin; Piette, Mary Ann; Thompson, Lisa; Lekov, Alex

2008-08-01T23:59:59.000Z

287

Automated Demand Response: The Missing Link in the Electricity Value Chain  

SciTech Connect

In 2006, the Public Interest Energy Research Program (PIER) Demand Response Research Center (DRRC) at Lawrence Berkeley National Laboratory initiated research into Automated Demand Response (OpenADR) applications in California industry. The goal is to improve electric grid reliability and lower electricity use during periods of peak demand. The purpose of this research is to begin to define the relationship among a portfolio of actions that industrial facilities can undertake relative to their electricity use. This 'electricity value chain' defines energy management and demand response (DR) at six levels of service, distinguished by the magnitude, type, and rapidity of response. One element in the electricity supply chain is OpenADR, an open-standards based communications system to send signals to customers to allow them to manage their electric demand in response to supply conditions, such as prices or reliability, through a set of standard, open communications. Initial DRRC research suggests that industrial facilities that have undertaken energy efficiency measures are probably more, not less, likely to initiate other actions within this value chain such as daily load management and demand response. Moreover, OpenADR appears to afford some facilities the opportunity to develop the supporting control structure and to 'demo' potential reductions in energy use that can later be applied to either more effective load management or a permanent reduction in use via energy efficiency. Under the right conditions, some types of industrial facilities can shift or shed loads, without any, or minimal disruption to operations, to protect their energy supply reliability and to take advantage of financial incentives. In 2007 and 2008, 35 industrial facilities agreed to implement OpenADR, representing a total capacity of nearly 40 MW. This paper describes how integrated or centralized demand management and system-level network controls are linked to OpenADR systems. Case studies of refrigerated warehouses and wastewater treatment facilities are used to illustrate OpenADR load reduction potential. Typical shed and shift strategies include: turning off or operating compressors, aerator blowers and pumps at reduced capacity, increasing temperature set-points or pre-cooling cold storage areas and over-oxygenating stored wastewater prior to a DR event. This study concludes that understanding industrial end-use processes and control capabilities is a key to support reduced service during DR events and these capabilities, if DR enabled, hold significant promise in reducing the electricity demand of the industrial sector during utility peak periods.

McKane, Aimee; Rhyne, Ivin; Piette, Mary Ann; Thompson, Lisa; Lekov, Alex

2008-08-01T23:59:59.000Z

288

Automated Demand Response: The Missing Link in the Electricity Value Chain  

Science Conference Proceedings (OSTI)

In 2006, the Public Interest Energy Research Program (PIER) Demand Response Research Center (DRRC) at Lawrence Berkeley National Laboratory initiated research into Automated Demand Response (OpenADR) applications in California industry. The goal is to improve electric grid reliability and lower electricity use during periods of peak demand. The purpose of this research is to begin to define the relationship among a portfolio of actions that industrial facilities can undertake relative to their electricity use. This ?electricity value chain? defines energy management and demand response (DR) at six levels of service, distinguished by the magnitude, type, and rapidity of response. One element in the electricity supply chain is OpenADR, an open-standards based communications system to send signals to customers to allow them to manage their electric demand in response to supply conditions, such as prices or reliability, through a set of standard, open communications. Initial DRRC research suggests that industrial facilities that have undertaken energy efficiency measures are probably more, not less, likely to initiate other actions within this value chain such as daily load management and demand response. Moreover, OpenADR appears to afford some facilities the opportunity to develop the supporting control structure and to"demo" potential reductions in energy use that can later be applied to either more effective load management or a permanent reduction in use via energy efficiency. Under the right conditions, some types of industrial facilities can shift or shed loads, without any, or minimal disruption to operations, to protect their energy supply reliability and to take advantage of financial incentives.1 In 2007 and 2008, 35 industrial facilities agreed to implement OpenADR, representing a total capacity of nearly 40 MW. This paper describes how integrated or centralized demand management and system-level network controls are linked to OpenADR systems. Case studies of refrigerated warehouses and wastewater treatment facilities are used to illustrate OpenADR load reduction potential. Typical shed and shift strategies include: turning off or operating compressors, aerator blowers and pumps at reduced capacity, increasing temperature set-points or pre-cooling cold storage areas and over-oxygenating stored wastewater prior to a DR event. This study concludes that understanding industrial end-use processes and control capabilities is a key to support reduced service during DR events and these capabilities, if DR enabled, hold significant promise in reducing the electricity demand of the industrial sector during utility peak periods.

McKane, Aimee; Rhyne, Ivin; Lekov, Alex; Thompson, Lisa; Piette, MaryAnn

2009-08-01T23:59:59.000Z

289

Use of Degraded Water Sources as Cooling Water in Power Plants  

Science Conference Proceedings (OSTI)

In electricity production, nearly all thermal power plants reject heat either to a large body of water (once-through cooling) or to the atmosphere via wet cooling towers — the predominant form of cooling in California. These towers, however, use considerable quantities of water. Competing state demands for freshwater have forced California thermal power plants to consider alternative cooling water supplies, though the availability of such supplies and data on their use and impact is limited. In fac...

2003-10-13T23:59:59.000Z

290

Gas utilities to increase outlays  

Science Conference Proceedings (OSTI)

Despite rising natural gas prices and falling consumer demand for gas, experts predict a 16% increase in US gas transmission and distribution expenditures for 1983. Production and storage outlays will probably decrease because of the current gas surplus. The demand for natural gas has been below production levels since 1981. Increases in residential and commercial requirements have been offset by a drop in industrial use, which represents 50% of total gas demand.

O'Donnell, J.P.

1983-02-01T23:59:59.000Z

291

New demands, new supplies : a national look at the water balance of carbon dioxide capture and sequestration.  

Science Conference Proceedings (OSTI)

Concerns over rising concentrations of greenhouse gases in the atmosphere have resulted in serious consideration of policies aimed at reduction of anthropogenic carbon dioxide (CO2) emissions. If large scale abatement efforts are undertaken, one critical tool will be geologic sequestration of CO2 captured from large point sources, specifically coal and natural gas fired power plants. Current CO2 capture technologies exact a substantial energy penalty on the source power plant, which must be offset with make-up power. Water demands increase at the source plant due to added cooling loads. In addition, new water demand is created by water requirements associated with generation of the make-up power. At the sequestration site however, saline water may be extracted to manage CO2 plum migration and pressure build up in the geologic formation. Thus, while CO2 capture creates new water demands, CO2 sequestration has the potential to create new supplies. Some or all of the added demand may be offset by treatment and use of the saline waters extracted from geologic formations during CO2 sequestration. Sandia National Laboratories, with guidance and support from the National Energy Technology Laboratory, is creating a model to evaluate the potential for a combined approach to saline formations, as a sink for CO2 and a source for saline waters that can be treated and beneficially reused to serve power plant water demands. This presentation will focus on the magnitude of added U.S. power plant water demand under different CO2 emissions reduction scenarios, and the portion of added demand that might be offset by saline waters extracted during the CO2 sequestration process.

Krumhansl, James Lee; McNemar, Andrea (National Energy Technology Laboratory (NETL), Morgantown, WV); Kobos, Peter Holmes; Roach, Jesse Dillon; Klise, Geoffrey Taylor

2010-12-01T23:59:59.000Z

292

Warm Winters Held Heating Oil Demand Down While Diesel Grew  

Gasoline and Diesel Fuel Update (EIA)

8 8 Notes: To understand the inventory situation, we must look the balance between demand and supply that drives inventories up or down. First consider demand. Most of the remaining charts deal with total distillate demand. Total distillate demand includes both diesel and heating oil. These are similar products physically, and prior to the low sulfur requirements for on-road diesel fuel, were used interchangeably. But even today, low sulfur diesel can be used in the heating oil market, but low sulfur requirements keep heating oil from being used in the on-road transportation sector. The seasonal increases and decreases in stocks stem from the seasonal demand in heating oil shown as the bottom red line. Heating oil demand increases by more than 50 percent from its low point to its high

293

Harnessing the power of demand  

Science Conference Proceedings (OSTI)

Demand response can provide a series of economic services to the market and also provide ''insurance value'' under low-likelihood, but high-impact circumstances in which grid reliablity is enhanced. Here is how ISOs and RTOs are fostering demand response within wholesale electricity markets. (author)

Sheffrin, Anjali; Yoshimura, Henry; LaPlante, David; Neenan, Bernard

2008-03-15T23:59:59.000Z

294

China, India demand cushions prices  

SciTech Connect

Despite the hopes of coal consumers, coal prices did not plummet in 2006 as demand stayed firm. China and India's growing economies, coupled with solid supply-demand fundamentals in North America and Europe, and highly volatile prices for alternatives are likely to keep physical coal prices from wide swings in the coming year.

Boyle, M.

2006-11-15T23:59:59.000Z

295

Cooling water distribution system  

DOE Patents (OSTI)

A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

Orr, Richard (Pittsburgh, PA)

1994-01-01T23:59:59.000Z

296

Demand Response for Ancillary Services  

Science Conference Proceedings (OSTI)

Many demand response resources are technically capable of providing ancillary services. In some cases, they can provide superior response to generators, as the curtailment of load is typically much faster than ramping thermal and hydropower plants. Analysis and quantification of demand response resources providing ancillary services is necessary to understand the resources economic value and impact on the power system. Methodologies used to study grid integration of variable generation can be adapted to the study of demand response. In the present work, we describe and illustrate a methodology to construct detailed temporal and spatial representations of the demand response resource and to examine how to incorporate those resources into power system models. In addition, the paper outlines ways to evaluate barriers to implementation. We demonstrate how the combination of these three analyses can be used to translate the technical potential for demand response providing ancillary services into a realizable potential.

Alkadi, Nasr E [ORNL; Starke, Michael R [ORNL

2013-01-01T23:59:59.000Z

297

Potential use of dry cooling in support of advanced energy generation systems  

SciTech Connect

Advanced energy technologies were investigated for filling the energy supply and demand gap, including fuel cells, thermionic converters, and fusion. Technologies that have the potential for supplying energy in the future are solar, geothermal, coal gasification and liquefaction, clean solid fuel from coal, and oil shale. Results are presented of an analysis of the advanced energy generation systems, the potential for using dry cooling, and the waste heat generation characteristics of the advanced technologies. The magnitude of the waste heat expected to be generated indicates the following percentages of total cooling requirements would be needed by advanced energy technologies: (a) 1% to 2% in 1985, (b) 17% to 40% in 2000, and (c) 24% to 76% in 2025. Dry cooling could be required for flashed steam and dry steam geothermal plants if balancing withdrawal and reinjection of the geothermal fluid becomes a requirement. Binary cycle geothermal plants and plants using the hot dry rocks geothermmal resource are even more likely to require dry cooling since these plants will need an outside source of water. Solar central tower plants have a high potential for the use of dry cooling since they are likely to be located in the Southwest where water availability problems are already apparent. The high water consumption associated with the projected synthetic fuel production levels indicates that dry cooling will be desirable, perhaps even mandatory, to achieve a high level of synthetic fuel production. In the year 2000, between 2.5 and 13 GW of electrical energy produced by advanced power generation systems may require dry cooling. In the year 2025, this requirement may increase to between 4.5 and 81 GW/sub e/.

Mayer, D.W.; Arnold, E.M.; Allemann, R.T.

1979-09-01T23:59:59.000Z

298

Electric Demand Cost Versus Labor Cost: A Case Study  

E-Print Network (OSTI)

Electric Utility companies charge industrial clients for two things: demand and usage. Depending on type of business and hours operation, demand cost could be very high. Most of the operations scheduling in a plant is achieved considering labor cost. For small plants, it is quite possible that a decrease in labor could result in an increase in electric demand and cost or vice versa. In this paper two cases are presented which highlight the dependence of one on other.

Agrawal, S.; Jensen, R.

1998-04-01T23:59:59.000Z

299

Parametric Study of Turbine Blade Internal Cooling and Film Cooling  

E-Print Network (OSTI)

Gas turbine engines are extensively used in the aviation and power generation industries. They are used as topping cycles in combined cycle power plants, or as stand alone power generation units. Gains in thermodynamic efficiency can be realized by increasing the turbine inlet temperatures. Since modern turbine inlet temperatures exceed the melting point of the constituent superalloys, it is necessary to provide an aggressive cooling system. Relatively cool air, ducted from the compressor of the engine is used to remove heat from the hot turbine blade. This air flows through passages in the hollow blade (internal cooling), and is also ejected onto the surface of the blade to form an insulating film (film cooling). Modern land-based gas turbine engines use high Reynolds number internal flow to cool their internal passages. The first part of this study focuses on experiments pertaining to passages with Reynolds numbers of up to 400,000. Common turbulator designs (45degree parallel sharp-edged and round-edged) ribs are studied. Older correlations are found to require corrections in order to be valid in the high Reynolds number parameter space. The effect of rotation on heat transfer in a typical three-pass serpentine channel is studied using a computational model with near-wall refinement. Results from this computational study indicate that the hub experiences abnormally high heat transfer under rotation. An experimental study is conducted at Buoyancy numbers similar to an actual engine on a wedge shaped model trailing edge, roughened with pin-fins and equipped with slot ejection. Results show an asymmetery between the leading and trailing surfaces due to rotation - a difference which is subdued due to the provision of pin-fins. Film cooling effectiveness is measured by the PSP mass transfer analogy technique in two different configurations: a flat plate and a typical high pressure turbine blade. Parameters studied include a step immediately upstream of a row of holes; the Strouhal number (quantifying rotor-stator interaction) and coolant to mainstream density ratio. Results show a deterioration in film cooling effectiveness with on increasing the Strouhal number. Using a coolant with a higher density results in higher film cooling effectiveness.

Rallabandi, Akhilesh P.

2010-08-01T23:59:59.000Z

300

Duct Leakage Impacts on Airtightness, Infiltration, and Peak Electrical Demand in Florida Homes  

E-Print Network (OSTI)

Testing for duct leakage was done in 155 homes. Tracer gas tests found that infiltration rates were three times greater when the air handler was operating than when it was off. Infiltration averaged 0.85 air changes per hour (ach) with the air handler (AH) operating continuously and 0.29 ach with the AH off. Return leaks were found to average 10.3% of AH total flow. House airtightness, in 90 of these homes, determined by blower door testing, averaged 12.58 air changes per hour at 50 Pascals (ACHSO). When the duct registers were sealed, ACHSO decreased to 11.04, indicating that 12.2% of the house leaks were in the duct system. Duct leaks have a dramatic impact upon peak electrical demand. Based on theoretical analysis, a fifteen percent return leak from the attic can increase cooling electrical demand by 100%. Duct repairs in a typical. electrically heated Florida home reduce winter peak demand by about 1.6 kW per house at about one-sixth the cost of building new electrical generation capacity.

Cummings, J. B.; Tooley, J. J.; Moyer, N.

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "increased cooling demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Demand Response Opportunities in Industrial Refrigerated Warehouses...  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Opportunities in Industrial Refrigerated Warehouses in California Title Demand Response Opportunities in Industrial Refrigerated Warehouses in California...

302

Strategies for Demand Response in Commercial Buildings  

E-Print Network (OSTI)

the average and maximum peak demand savings. The electricity1: Average and Maximum Peak Electric Demand Savings during

Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

2006-01-01T23:59:59.000Z

303

Demand Responsive Lighting: A Scoping Study  

SciTech Connect

The objective of this scoping study is: (1) to identify current market drivers and technology trends that can improve the demand responsiveness of commercial building lighting systems and (2) to quantify the energy, demand and environmental benefits of implementing lighting demand response and energy-saving controls strategies Statewide. Lighting systems in California commercial buildings consume 30 GWh. Lighting systems in commercial buildings often waste energy and unnecessarily stress the electrical grid because lighting controls, especially dimming, are not widely used. But dimmable lighting equipment, especially the dimming ballast, costs more than non-dimming lighting and is expensive to retrofit into existing buildings because of the cost of adding control wiring. Advances in lighting industry capabilities coupled with the pervasiveness of the Internet and wireless technologies have led to new opportunities to realize significant energy saving and reliable demand reduction using intelligent lighting controls. Manufacturers are starting to produce electronic equipment--lighting-application specific controllers (LAS controllers)--that are wirelessly accessible and can control dimmable or multilevel lighting systems obeying different industry-accepted protocols. Some companies make controllers that are inexpensive to install in existing buildings and allow the power consumed by bi-level lighting circuits to be selectively reduced during demand response curtailments. By intelligently limiting the demand from bi-level lighting in California commercial buildings, the utilities would now have an enormous 1 GW demand shed capability at hand. By adding occupancy and light sensors to the remotely controllable lighting circuits, automatic controls could harvest an additional 1 BkWh/yr savings above and beyond the savings that have already been achieved. The lighting industry's adoption of DALI as the principal wired digital control protocol for dimming ballasts and increased awareness of the need to standardize on emerging wireless technologies are evidence of this transformation. In addition to increased standardization of digital control protocols controller capabilities, the lighting industry has improved the performance of dimming lighting systems over the last two years. The system efficacy of today's current dimming ballasts is approaching that of non-dimming program start ballasts. The study finds that the benefits of applying digital controls technologies to California's unique commercial buildings market are enormous. If California were to embark on an concerted 20 year program to improve the demand responsiveness and energy efficiency of commercial building lighting systems, the State could avoid adding generation capacity, improve the elasticity of the grid, save Californians billion of dollars in avoided energy charges and significantly reduce greenhouse gas emissions.

Rubinstein, Francis; Kiliccote, Sila

2007-01-03T23:59:59.000Z

304

Demand Responsive Lighting: A Scoping Study  

SciTech Connect

The objective of this scoping study is: (1) to identify current market drivers and technology trends that can improve the demand responsiveness of commercial building lighting systems and (2) to quantify the energy, demand and environmental benefits of implementing lighting demand response and energy-saving controls strategies Statewide. Lighting systems in California commercial buildings consume 30 GWh. Lighting systems in commercial buildings often waste energy and unnecessarily stress the electrical grid because lighting controls, especially dimming, are not widely used. But dimmable lighting equipment, especially the dimming ballast, costs more than non-dimming lighting and is expensive to retrofit into existing buildings because of the cost of adding control wiring. Advances in lighting industry capabilities coupled with the pervasiveness of the Internet and wireless technologies have led to new opportunities to realize significant energy saving and reliable demand reduction using intelligent lighting controls. Manufacturers are starting to produce electronic equipment--lighting-application specific controllers (LAS controllers)--that are wirelessly accessible and can control dimmable or multilevel lighting systems obeying different industry-accepted protocols. Some companies make controllers that are inexpensive to install in existing buildings and allow the power consumed by bi-level lighting circuits to be selectively reduced during demand response curtailments. By intelligently limiting the demand from bi-level lighting in California commercial buildings, the utilities would now have an enormous 1 GW demand shed capability at hand. By adding occupancy and light sensors to the remotely controllable lighting circuits, automatic controls could harvest an additional 1 BkWh/yr savings above and beyond the savings that have already been achieved. The lighting industry's adoption of DALI as the principal wired digital control protocol for dimming ballasts and increased awareness of the need to standardize on emerging wireless technologies are evidence of this transformation. In addition to increased standardization of digital control protocols controller capabilities, the lighting industry has improved the performance of dimming lighting systems over the last two years. The system efficacy of today's current dimming ballasts is approaching that of non-dimming program start ballasts. The study finds that the benefits of applying digital controls technologies to California's unique commercial buildings market are enormous. If California were to embark on an concerted 20 year program to improve the demand responsiveness and energy efficiency of commercial building lighting systems, the State could avoid adding generation capacity, improve the elasticity of the grid, save Californians billion of dollars in avoided energy charges and significantly reduce greenhouse gas emissions.

Rubinstein, Francis; Kiliccote, Sila

2007-01-03T23:59:59.000Z

305

Electric supply additions are not keeping pace with increased ...  

U.S. Energy Information Administration (EIA)

... potentially leading to increased calls on emergency demand response programs or even rolling blackouts. ...

306

CoolEarth formerly Cool Earth Solar | Open Energy Information  

Open Energy Info (EERE)

CoolEarth formerly Cool Earth Solar CoolEarth formerly Cool Earth Solar Jump to: navigation, search Name CoolEarth (formerly Cool Earth Solar) Place Livermore, California Zip 94550 Product CoolEarth is a concentrated PV developer using inflatable concentrators to focus light onto triple-junction cells. References CoolEarth (formerly Cool Earth Solar)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. CoolEarth (formerly Cool Earth Solar) is a company located in Livermore, California . References ↑ "CoolEarth (formerly Cool Earth Solar)" Retrieved from "http://en.openei.org/w/index.php?title=CoolEarth_formerly_Cool_Earth_Solar&oldid=343892" Categories: Clean Energy Organizations

307

China's Coal: Demand, Constraints, and Externalities  

Science Conference Proceedings (OSTI)

This study analyzes China's coal industry by focusing on four related areas. First, data are reviewed to identify the major drivers of historical and future coal demand. Second, resource constraints and transport bottlenecks are analyzed to evaluate demand and growth scenarios. The third area assesses the physical requirements of substituting coal demand growth with other primary energy forms. Finally, the study examines the carbon- and environmental implications of China's past and future coal consumption. There are three sections that address these areas by identifying particular characteristics of China's coal industry, quantifying factors driving demand, and analyzing supply scenarios: (1) reviews the range of Chinese and international estimates of remaining coal reserves and resources as well as key characteristics of China's coal industry including historical production, resource requirements, and prices; (2) quantifies the largest drivers of coal usage to produce a bottom-up reference projection of 2025 coal demand; and (3) analyzes coal supply constraints, substitution options, and environmental externalities. Finally, the last section presents conclusions on the role of coal in China's ongoing energy and economic development. China has been, is, and will continue to be a coal-powered economy. In 2007 Chinese coal production contained more energy than total Middle Eastern oil production. The rapid growth of coal demand after 2001 created supply strains and bottlenecks that raise questions about sustainability. Urbanization, heavy industrial growth, and increasing per-capita income are the primary interrelated drivers of rising coal usage. In 2007, the power sector, iron and steel, and cement production accounted for 66% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units would save only 14% of projected 2025 coal demand for the power sector. A new wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. If coal to chemicals capacity reaches 70 million tonnes and coal-to-liquids capacity reaches 60 million tonnes, coal feedstock requirements would add an additional 450 million tonnes by 2025. Even with more efficient growth among these drivers, China's annual coal demand is expected to reach 3.9 to 4.3 billion tonnes by 2025. Central government support for nuclear and renewable energy has not reversed China's growing dependence on coal for primary energy. Substitution is a matter of scale: offsetting one year of recent coal demand growth of 200 million tonnes would require 107 billion cubic meters of natural gas (compared to 2007 growth of 13 BCM), 48 GW of nuclear (compared to 2007 growth of 2 GW), or 86 GW of hydropower capacity (compared to 2007 growth of 16 GW). Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on a high growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China has a low proportion of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport capacity. Furthermore, transporting coal to users has overloaded the train system and dramatically increased truck use, raising transportation oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 million tonnes by 2025, significantly impacting regional markets.

Aden, Nathaniel; Fridley, David; Zheng, Nina

2009-07-01T23:59:59.000Z

308

Demand and Price Volatility: Rational Habits in International Gasoline Demand  

E-Print Network (OSTI)

A Joint Model of the Global Crude Oil Market and the U.S.Noureddine. 2002. World crude oil and natural gas: a demandelasticity of demand for crude oil, not gasoline. Results

Scott, K. Rebecca

2011-01-01T23:59:59.000Z

309

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network (OSTI)

A Joint Model of the Global Crude Oil Market and the U.S.Noureddine. 2002. World crude oil and natural gas: a demandelasticity of demand for crude oil, not gasoline. Results

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

310

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network (OSTI)

Model of the Global Crude Oil Market and the U.S. RetailNoureddine. 2002. World crude oil and natural gas: a demandanalysis of the demand for oil in the Middle East. Energy

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

311

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network (OSTI)

global gasoline and diesel price and income elasticities.shift in the short-run price elasticity of gasoline demand.Habits and Uncertain Relative Prices: Simulating Petrol Con-

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

312

Stochastic cooling in RHIC  

SciTech Connect

The full 6-dimensional [x,x'; y,y'; z,z'] stochastic cooling system for RHIC was completed and operational for the FY12 Uranium-Uranium collider run. Cooling enhances the integrated luminosity of the Uranium collisions by a factor of 5, primarily by reducing the transverse emittances but also by cooling in the longitudinal plane to preserve the bunch length. The components have been deployed incrementally over the past several runs, beginning with longitudinal cooling, then cooling in the vertical planes but multiplexed between the Yellow and Blue rings, next cooling both rings simultaneously in vertical (the horizontal plane was cooled by betatron coupling), and now simultaneous horizontal cooling has been commissioned. The system operated between 5 and 9 GHz and with 3 x 10{sup 8} Uranium ions per bunch and produces a cooling half-time of approximately 20 minutes. The ultimate emittance is determined by the balance between cooling and emittance growth from Intra-Beam Scattering. Specific details of the apparatus and mathematical techniques for calculating its performance have been published elsewhere. Here we report on: the method of operation, results with beam, and comparison of results to simulations.

Brennan J. M.; Blaskiewicz, M.; Mernick, K.

2012-05-20T23:59:59.000Z

313

Green Cooling: Improving Chiller Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Green Cooling: Improving Chiller Efficiency This new chiller simulation module being developed by Building Performance Assurance Project members will help building managers compare optimal and actual chiller efficiency. Chillers are the single largest energy consumers in commercial buildings. These machines create peaks in electric power consumption, typically during summer afternoons. In fact, 23% of electricity generation is associated with powering chillers that use CFCs and HCFCs, ozone-depleting refrigerants. Satisfying the peak demand caused by chillers forces utilities to build new power plants. However, because chiller plants run the most when the weather is hot and very little at other times, their load factors - and hence the utilities' load factors (the percentage of time the

314

Effects of the drought on California electricity supply and demand  

E-Print Network (OSTI)

Acknowledgments SUMMARY Electricity Demand ElectricityAdverse Impacts ELECTRICITY DEMAND . . . .Demand forElectricity Sales Electricity Demand by Major Utility

Benenson, P.

2010-01-01T23:59:59.000Z

315

Proceedings: International Workshop on Innovative DSM [Demand Side Management] Techniques  

Science Conference Proceedings (OSTI)

Demand-side management (DSM) is becoming more important in the utility environment characterized by increasing competition and major uncertainties in demand and supply. EPRI and CIGRE, a leading international organization for the electric power industry, cosponsored this workshop to discuss strategies for designing and implementing DSM programs.

None

1989-04-01T23:59:59.000Z

316

Towards continuous policy-driven demand response in data centers  

Science Conference Proceedings (OSTI)

Demand response (DR) is a technique for balancing electricity supply and demand by regulating power consumption instead of generation. DR is a key technology for emerging smart electric grids that aim to increase grid efficiency, while incorporating ... Keywords: blink, power, renewable energy, storage

David Irwin; Navin Sharma; Prashant Shenoy

2011-08-01T23:59:59.000Z

317

Quantifying the Variable Effects of Systems with Demand Response Resources  

E-Print Network (OSTI)

Quantifying the Variable Effects of Systems with Demand Response Resources Anupama Kowli and George, USA Abstract--The growing environmental concerns and increasing electricity prices have led to wider implementation of demand- side activities and created a new class of consumers, called de- mand response

Gross, George

318

Optimized Design of a Furnace Cooling System  

E-Print Network (OSTI)

This paper presents a case study of manufacturing furnace optimized re-design. The bottleneck in the production process is the cooling of heat treatment furnaces. These ovens are on an approximate 24-hour cycle, heating for 12 hours and cooling for 12 hours. Pressurized argon and process water are used to expedite cooling. The proposed modifications aim to minimize cycling by reducing cooling time; they are grouped into three fundamental mechanisms. The first is a recommendation to modify current operating procedures. This entails opening the furnace doors at higher than normal temperatures. A furnace temperature model based on current parameters is used to show the reduction in cooling time in response to opening the furnace doors at higher temperatures. The second mechanism considers the introduction of forced argon convection. Argon is used in the process to mitigate part oxidation. Cycling argon through the furnace during cooling increases convection over the parts and removes heat from the furnace envelope. Heat transfer models based on convective Nusselt correlations are used to determine the increase in heat transfer rate. The last mechanism considers a modification to the current heat exchanger. By decreasing the temperature of the water jacket and increasing heat exchanger efficiency, heat transfer from the furnace is increased and cooling time is shortened. This analysis is done using the Effectiveness-NTU method.

Morelli, F.; Bretschneider, R.; Dauzat, J.; Guymon, M.; Studebaker, J.; Rasmussen, B. P.

2013-01-01T23:59:59.000Z

319

EIA - AEO2010 - Electricity Demand  

Gasoline and Diesel Fuel Update (EIA)

Electricity Demand Electricity Demand Annual Energy Outlook 2010 with Projections to 2035 Electricity Demand Figure 69. U.S. electricity demand growth 1950-2035 Click to enlarge » Figure source and data excel logo Figure 60. Average annual U.S. retail electricity prices in three cases, 1970-2035 Click to enlarge » Figure source and data excel logo Figure 61. Electricity generation by fuel in three cases, 2008 and 2035 Click to enlarge » Figure source and data excel logo Figure 62. Electricity generation capacity additions by fuel type, 2008-2035 Click to enlarge » Figure source and data excel logo Figure 63. Levelized electricity costs for new power plants, 2020 and 2035 Click to enlarge » Figure source and data excel logo Figure 64. Electricity generating capacity at U.S. nuclear power plants in three cases, 2008, 2020, and 2035

320

Winter Demand Impacted by Weather  

Gasoline and Diesel Fuel Update (EIA)

8 Notes: Heating oil demand is strongly influenced by weather. The "normal" numbers are the expected values for winter 2000-2001 used in EIA's Short-Term Energy Outlook. The chart...

Note: This page contains sample records for the topic "increased cooling demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Demand for money in China .  

E-Print Network (OSTI)

??This research investigates the long-run equilibrium relationship between money demand and its determinants in China over the period 1952-2004 for three definitions of money –… (more)

Zhang, Qing

2006-01-01T23:59:59.000Z

322

building demand | OpenEI  

Open Energy Info (EERE)

demand demand Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

323

STEO December 2012 - coal demand  

U.S. Energy Information Administration (EIA) Indexed Site

coal demand seen below 1 billion tons in 2012 for fourth year in a row Coal consumption by U.S. power plants to generate electricity is expected to fall below 1 billion tons in...

324

Thermal Mass and Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Mass and Demand Response Speaker(s): Gregor Henze Phil C. Bomrad Date: November 2, 2011 - 12:00pm Location: 90-4133 Seminar HostPoint of Contact: Janie Page The topic of...

325

Automated Demand Response and Commissioning  

E-Print Network (OSTI)

Conference on Building Commissioning: May 4-6, 2005 Motegi,National Conference on Building Commissioning: May 4-6, 2005Demand Response and Commissioning Mary Ann Piette, David S.

Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

2005-01-01T23:59:59.000Z

326

Leslie Mancebo (7234) Transportation Demand &  

E-Print Network (OSTI)

Leslie Mancebo (7234) Transportation Demand & Marketing Coordinator 1 FTE, 1 HC Administrative Vice Chancellor Transportation and Parking Services Clifford A. Contreras (0245) Director 30.10 FTE Alternative Transportation & Marketing Reconciliation Lourdes Lupercio (4723) Michelle McArdle (7512) Parking

Hammock, Bruce D.

327

Cool Storage Economic Feasibility Analysis for a Large Industrial Facility  

E-Print Network (OSTI)

The analysis of economic feasibility for adding a cool storage facility to shift electric demand to off-peak hours for a large industrial facility is presented. DOE-2 is used to generate the necessary cooling load profiles for the analysis. The aggregation of building information for predicting central plant behavior at the site is discussed. The dollar benefits and costs for the project are favorable, providing a payback in the neighborhood of 4 to 5 years.

Fazzolari, R.; Mascorro, J. A.; Ballard, R. H.

1988-01-01T23:59:59.000Z

328

Demand Response Spinning Reserve Demonstration  

Science Conference Proceedings (OSTI)

The Demand Response Spinning Reserve project is a pioneeringdemonstration of how existing utility load-management assets can providean important electricity system reliability resource known as spinningreserve. Using aggregated demand-side resources to provide spinningreserve will give grid operators at the California Independent SystemOperator (CAISO) and Southern California Edison (SCE) a powerful, newtool to improve system reliability, prevent rolling blackouts, and lowersystem operating costs.

Eto, Joseph H.; Nelson-Hoffman, Janine; Torres, Carlos; Hirth,Scott; Yinger, Bob; Kueck, John; Kirby, Brendan; Bernier, Clark; Wright,Roger; Barat, A.; Watson, David S.

2007-05-01T23:59:59.000Z

329

Evaluation of Demand Shifting with Thermal Mass in Two Large Commercial Buildings  

SciTech Connect

Building thermal mass can be used to reduce the peak cooling load. For example, in summer, the building mass can be pre-cooled during non-peak hours in order to reduce the cooling load in the peak hours. As a result, the cooling load is shifted in time and the peak demand is reduced. The building mass can be cooled most effectively during unoccupied hours because it is possible to relax the comfort constraints. While the benefits of demand shift are certain, different thermal mass discharge strategies result in different cooling load reduction and savings. The goal of an optimized discharge strategy is to maximize the thermal mass discharge and minimize the possibility of rebounds before the shed period ends. A series of filed tests were carefully planned and conducted in two commercial buildings in Northern California to investigate the effects of various precooling and demand shed strategies. Field tests demonstrated the potential of cooling load reduction in peak hours and importance of discharge strategies to avoid rebounds. EnergyPlus simulation models were constructed and calibrated to investigate different kind of recovery strategies. The results indicate the value of pre-cooling in maximizing the electrical shed in the on-peak period. The results also indicate that the dynamics of the shed need to be managed in order to avoid discharging the thermal capacity of the building too quickly, resulting in high cooling load and electric demand before the end of the shed period. An exponential trajectory for the zone set-point during the discharge period yielded good results and is recommended for practical implementation.

Xu, Peng

2006-08-01T23:59:59.000Z

330

Energy Basics: Absorption Cooling  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

cooling. Other potential heat sources include propane, solar-heated water, or geothermal-heated water. Although mainly used in industrial or commercial settings, absorption...

331

Passive containment cooling system  

DOE Patents (OSTI)

A containment cooling system utilizes a naturally induced air flow and a gravity flow of water over the containment shell which encloses a reactor core to cool reactor core decay heat in two stages. When core decay heat is greatest, the water and air flow combine to provide adequate evaporative cooling as heat from within the containment is transferred to the water flowing over the same. The water is heated by heat transfer and then evaporated and removed by the air flow. After an initial period of about three to four days when core decay heat is greatest, air flow alone is sufficient to cool the containment.

Conway, Lawrence E. (Robinson Township, Allegheny County, PA); Stewart, William A. (Penn Hills Township, Allegheny County, PA)

1991-01-01T23:59:59.000Z

332

Power electronics cooling apparatus  

DOE Patents (OSTI)

A semiconductor cooling arrangement wherein a semiconductor is affixed to a thermally and electrically conducting carrier such as by brazing. The coefficient of thermal expansion of the semiconductor and carrier are closely matched to one another so that during operation they will not be overstressed mechanically due to thermal cycling. Electrical connection is made to the semiconductor and carrier, and a porous metal heat exchanger is thermally connected to the carrier. The heat exchanger is positioned within an electrically insulating cooling assembly having cooling oil flowing therethrough. The arrangement is particularly well adapted for the cooling of high power switching elements in a power bridge.

Sanger, Philip Albert (Monroeville, PA); Lindberg, Frank A. (Baltimore, MD); Garcen, Walter (Glen Burnie, MD)

2000-01-01T23:59:59.000Z

333

Energy Basics: Cooling Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

or "swamp cooling" provides an experience like air conditioning, but with much lower energy use. An evaporative cooler uses the outside air's heat to evaporate water inside the...

334

Process Cooling Systems  

E-Print Network (OSTI)

Cooling towers have been on the scene for more than 50 years. It is because they have proven to be an economic choice for waste heat dissipation. But it seems, for some reason, that after installation very little attention is paid to the cooling-tower and its effect on plant operating efficiency and production. This paper will describe the value of working with a cooling tower specialist to establish the physical and thermal potential of an existing cooling tower. It also demonstrates that a repair and thermal upgrade project to improve efficiency will have a better than average return on investment.

McCann, C. J.

1983-01-01T23:59:59.000Z

335

Adaptive cooling of integrated circuits using digital microfluidics  

Science Conference Proceedings (OSTI)

Thermal management is critical for integrated circuit (IC) design. With each new IC technology generation, feature sizes decrease, while operating speeds and package densities increase. These factors contribute to elevated die temperatures detrimental ... Keywords: adaptive cooling, chip cooling, digital microfluidics, electrowetting, hot-spot cooling, microfluidics

Philip Y. Paik; Vamsee K. Pamula; Krishnendu Chakrabarty

2008-04-01T23:59:59.000Z

336

Liquid metal cooled nuclear reactors with passive cooling system  

SciTech Connect

A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of cooling medium flow circuits which cooperate to remove and carry heat away from the fuel core upon loss of the normal cooling flow circuit to areas external thereto.

Hunsbedt, Anstein (Los Gatos, CA); Fanning, Alan W. (San Jose, CA)

1991-01-01T23:59:59.000Z

337

National Action Plan on Demand Response  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Action Plan on Demand National Action Plan on Demand Action Plan on Demand National Action Plan on Demand Response Response Federal Utilities Partnership Working Group Federal Utilities Partnership Working Group November 18, 2008 November 18, 2008 Daniel Gore Daniel Gore Office of Energy Market Regulation Office of Energy Market Regulation Federal Energy Regulatory Commission Federal Energy Regulatory Commission The author's views do not necessarily represent the views of the Federal Energy Regulatory Commission Presentation Contents Presentation Contents Statutory Requirements Statutory Requirements National Assessment [Study] of Demand Response National Assessment [Study] of Demand Response National Action Plan on Demand Response National Action Plan on Demand Response General Discussion on Demand Response and Energy Outlook

338

Coolerado Cooler Helps to Save Cooling Energy and Dollars: New Cooling Technology Targets Peak Load Reduction  

SciTech Connect

This document is about a new evaporative cooling technology that can deliver cooler supply air temperatures than either direct or indirect evaporative cooling systems, without increasing humidity. The Coolerado Cooler technology can help Federal agencies reach the energy-use reduction goals of EPAct 2005, particularly in the western United States.

Robichaud, R.

2007-06-01T23:59:59.000Z

339

Cooling Tower Technology Conference  

Science Conference Proceedings (OSTI)

Cooling towers and associated systems cause significant loss of availability and heat rate degradation in both nuclear and fossil-fired power plants. Twenty-one papers presented at a 2003 conference in Charleston, South Carolina discussed industrial experience and provided case histories of cooling tower problems and solutions.

2003-08-12T23:59:59.000Z

340

Solar Energy to Drive Absorption Cooling Systems Suitable for Small Building Applications  

E-Print Network (OSTI)

Air conditioning systems have a major impact on energy demand. With fossil fuels fast depleting, it is imperative to look for cooling systems that require less high-grade energy for their operation. In this context, absorption cooling systems have become increasingly popular in recent years from the viewpoints of energy and environment. Two types of the absorption chillers, the single effect and the half-effect systems, can operate using low temperature hot water. This paper presents the simulation results and an overview of the performance of low capacity single stage and half-effect absorption cooling systems, suitable for residential and small building applications. The primary heat source is solar energy supplied from flat plate collectors. The complete systems (solar collectors and absorption cooling system) were simulated using a developed software program. The energy and exergy analysis is carried out for each component of the two systems. When evaporator temperature is maintained constant at 5 C and the condenser temperature is fixed at 28 C, 32 C and 36 C respectively the percentage of the used energy covered by solar collectors and the percentage of auxiliary heating load were calculated versus time of day.

Gomri, R.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "increased cooling demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Recent Innovations in Muon Beam Cooling and Prospects for Muon Colliders  

DOE Green Energy (OSTI)

A six-dimensional(6D)cooling channel based on helical magnets surrounding RF cavities filled with dense hydrogen gas* is used to achieve the small transverse emittances demanded by a high-luminosity muon collider. This helical cooling channel**(HCC) has solenoidal, helical dipole, and helical quadrupole magnetic fields to generate emittance exchange. Simulations verify the analytic predictions and have shown a 6D emittance reduction of over 3 orders of magnitude in a 100 m HCC segment. Using three such sequential HCC segments, where the RF frequencies are increased and transverse dimensions reduced as the beams become cooler, implies a 6D emittance reduction of almost six orders of magnitude. After this, two new post-cooling ideas can be employed to reduce transverse emittances to one or two mm-mr, which allows high luminosity with fewer muons than previously imagined. In this report we discuss the status of and the plans for the HCC simulation and engineering efforts. We also describe the new post-cooling ideas and comment on the prospects for a Higgs factory or energy frontier muon collider using existing laboratory infrastructure.

R.P. Johnson; M. Alsharo'a; P.M. Hanlet; R. E. Hartline; M. Kuchnir; K. Paul; T.J. Roberts; C.M. Ankenbrandt; E. Barzi; L. DelFrate; I.G. Gonin; A. Moretti; D.V. Neuffer; M. Popovic; G. Romanov; D. Turrioni; V. Yarba; K. Beard; S.A. Bogacz; Y.S. Derbenev; D.M. Kaplan; K. Yonehara

2005-05-16T23:59:59.000Z

342

Solar Desiccant Cooling  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Desiccant Cooling Solar Desiccant Cooling Speaker(s): Paul Bourdoukan Date: December 6, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Ashok Gadgil The development of HVAC systems is a real challenge regarding its environmental impact. An innovative technique operating only by means of water and solar energy, is desiccant cooling. The principle is evaporative cooling with the introduction of a dehumidification unit, the desiccant wheel to control the humidity levels. The regeneration of the desiccant wheel requires a preheated airstream. A solar installation is a very interesting option for providing the preheated airstream. In France, at the University of La Rochelle, and at the National Institute of Solar Energy (INES), the investigation of the solar desiccant cooling technique has been

343

Water cooled steam jet  

DOE Patents (OSTI)

A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed therebetween. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock.

Wagner, Jr., Edward P. (Idaho Falls, ID)

1999-01-01T23:59:59.000Z

344

Cool Roof Colored Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Roof Colored Materials Cool Roof Colored Materials Speaker(s): Hashem Akbari Date: May 29, 2003 - 12:00pm Location: Bldg. 90 Raising roof reflectivity from an existing 10-20% to about 60% can reduce cooling-energy use in buildings in excess of 20%. Cool roofs also result in a lower ambient temperature that further decreases the need for air conditioning and retards smog formation. Reflective roofing products currently available in the market are typically used for low-sloped roofs. For the residential buildings with steep-sloped roofs, non-white (colored) cool roofing products are generally not available and most consumers prefer colors other than white. In this collaborative project LBNL and ORNL are working with the roofing industry to develop and produce reflective, colored roofing products and make yhrm a market reality within three to

345

Cool Magnetic Molecules  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Magnetic Molecules Cool Magnetic Molecules Cool Magnetic Molecules Print Wednesday, 25 May 2011 00:00 Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

346

Turbine blade cooling  

DOE Patents (OSTI)

A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number.

Staub, Fred Wolf (Schenectady, NY); Willett, Fred Thomas (Niskayuna, NY)

1999-07-20T23:59:59.000Z

347

Turbine blade cooling  

DOE Patents (OSTI)

A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number.

Staub, Fred Wolf (Schenectady, NY); Willett, Fred Thomas (Niskayuna, NY)

2000-01-01T23:59:59.000Z

348

Turbine blade cooling  

DOE Patents (OSTI)

A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number. 13 figs.

Staub, F.W.; Willett, F.T.

1999-07-20T23:59:59.000Z

349

Hydronic rooftop cooling systems  

DOE Patents (OSTI)

A roof top cooling unit has an evaporative cooling section that includes at least one evaporative module that pre-cools ventilation air and water; a condenser; a water reservoir and pump that captures and re-circulates water within the evaporative modules; a fan that exhausts air from the building and the evaporative modules and systems that refill and drain the water reservoir. The cooling unit also has a refrigerant section that includes a compressor, an expansion device, evaporator and condenser heat exchangers, and connecting refrigerant piping. Supply air components include a blower, an air filter, a cooling and/or heating coil to condition air for supply to the building, and optional dampers that, in designs that supply less than 100% outdoor air to the building, control the mixture of return and ventilation air.

Bourne, Richard C. (Davis, CA); Lee, Brian Eric (Monterey, CA); Berman, Mark J. (Davis, CA)

2008-01-29T23:59:59.000Z

350

Home Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooling Cooling Home Cooling Ventilation Systems for Cooling Learn how to avoid heat buildup and keep your home cool with ventilation. Read more Cooling with a Whole House Fan A whole-house fan, in combination with other cooling systems, can meet all or most of your home cooling needs year round. Read more Although your first thought for cooling may be air conditioning, there are many alternatives that provide cooling with less energy use. You might also consider fans, evaporative coolers, or heat pumps as your primary means of cooling. In addition, a combination of proper insulation, energy-efficient windows and doors, daylighting, shading, and ventilation will usually keep homes cool with a low amount of energy use in all but the hottest climates. Although ventilation is not an effective cooling strategy in hot, humid

351

Demand Response and Open Automated Demand Response Opportunities for Data Centers  

E-Print Network (OSTI)

Standardized Automated Demand Response Signals. Presented atand Automated Demand Response in Industrial RefrigeratedActions for Industrial Demand Response in California. LBNL-

Mares, K.C.

2010-01-01T23:59:59.000Z

352

Open Automated Demand Response Communications in Demand Response for Wholesale Ancillary Services  

E-Print Network (OSTI)

A. Barat, D. Watson. 2006 Demand Response Spinning ReserveKueck, and B. Kirby 2008. Demand Response Spinning ReserveReport 2009. Open Automated Demand Response Communications

Kiliccote, Sila

2010-01-01T23:59:59.000Z

353

Late January Cold Impacted Both Supply & Demand  

Gasoline and Diesel Fuel Update (EIA)

A brief cold spell occurred in the second half of January on top of A brief cold spell occurred in the second half of January on top of the low stocks. Cold weather increases demand, but it also can interfere with supply, as happened this past January. During the week ending January 22, temperatures in the New England and the Mid-Atlantic areas shifted from being15 percent and 17 percent warmer than normal, respectively, to 24 percent and 22 percent colder than normal. The weather change increased weekly heating requirements by about 40 percent. Temperature declines during the winter affect heating oil demand in a number of ways: Space heating demand increases; Electricity peaking demand increases and power generators must turn to distillate to meet the new peak needs; Fuel switching from natural gas to distillate occurs among large

354

Electrical ship demand modeling for future generation warships  

E-Print Network (OSTI)

The design of future warships will require increased reliance on accurate prediction of electrical demand as the shipboard consumption continues to rise. Current US Navy policy, codified in design standards, dictates methods ...

Sievenpiper, Bartholomew J. (Bartholomew Jay)

2013-01-01T23:59:59.000Z

355

Annual World Oil Demand Growth - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Following relatively small increases of 1.3 million barrels per day in 1999 and 0.8 million barrels per day in 2000, EIA is estimating world demand may grow by 1.5 ...

356

Successful demand-side management  

Science Conference Proceedings (OSTI)

This article is a brief summary of a series of case studies of five publicly-owned utilities that are noted for their success with demand-side management. These utilities are: (1) city of Austin, Texas, (2) Burlington Electric Department in Vermont, (3) Sacramento Municipal Utility District in California, (4) Seattle City Light, and (5) Waverly Light and Power in Iowa. From these case studies, the authors identified a number of traits associated with a successful demand-side management program. These traits are: (1) high rates, (2) economic factors, (3) environmental awareness, (4) state emphasis on integrated resource planning/demand side management, (5) local political support, (6) large-sized utilities, and (7) presence of a champion.

Hadley, S. [Oak Ridge National Laboratory, TN (United States); Flanigan, T. [Results Center, Aspen, CO (United States)

1995-05-01T23:59:59.000Z

357

Definition: Demand | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Definition Edit with form History Facebook icon Twitter icon » Definition: Demand Jump to: navigation, search Dictionary.png Demand The rate at which electric energy is delivered to or by a system or part of a system, generally expressed in kilowatts or megawatts, at a given instant or averaged over any designated interval of time., The rate at which energy is being used by the customer.[1] Related Terms energy, electricity generation References ↑ Glossary of Terms Used in Reliability Standards An i Like Like You like this.Sign Up to see what your friends like. nline Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Demand&oldid=480555"

358

Winter Demand Impacted by Weather  

Gasoline and Diesel Fuel Update (EIA)

8 8 Notes: Heating oil demand is strongly influenced by weather. The "normal" numbers are the expected values for winter 2000-2001 used in EIA's Short-Term Energy Outlook. The chart indicates the extent to which the last winter exhibited below-normal heating degree-days (and thus below-normal heating demand). Temperatures were consistently warmer than normal throughout the 1999-2000 heating season. This was particularly true in November 1999, February 2001 and March 2001. For the heating season as a whole (October through March), the 1999-2000 winter yielded total HDDs 10.7% below normal. Normal temperatures this coming winter would, then, be expected to bring about 11% higher heating demand than we saw last year. Relative to normal, the 1999-2000 heating season was the warmest in

359

Is Demand-Side Management Economically Justified?  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 Is Demand-Side Management Economically Justified? With billions of dollars being spent on demand-side management programs in the U.S. every year, the rationale for and performance of these programs are coming under increasing scrutiny. Three projects in the Energy Analysis Program are making significant contributions to the DSM debate. *Total Resource Cost Test Ratio = ratio of utility avoided costs (i.e., benefits) divided by total cost of program (i.e., Administrative Cost + Incentive Cost + Consumer Cost) In May, Joe Eto, Ed Vine, Leslie Shown, Chris Payne, and I released the first in a series of reports we authored from the Database on Energy Efficiency Programs (DEEP) project. The objective of DEEP is to document the measured cost and performance of utility-sponsored energy-efficiency

360

California Energy Demand Scenario Projections to 2050  

E-Print Network (OSTI)

residential electricity consumption, the flattening of the demand curves (except Maximum demand) reflects decreasing population growth ratesresidential electricity demand are described in Table 11. For simplicity, end use-specific UEC and saturation rates

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "increased cooling demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

percent of 2008 summer peak demand (FERC, 2008). Moreover,138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).non-coincident summer peak demand by 157 GW” by 2030, or 14–

Goldman, Charles

2010-01-01T23:59:59.000Z

362

Retail Demand Response in Southwest Power Pool  

E-Print Network (OSTI)

pricing tariffs have a peak demand reduction potential ofneed to reduce summer peak demand that is used to set demandcustomers and a system peak demand of over 43,000 MW. SPP’s

Bharvirkar, Ranjit

2009-01-01T23:59:59.000Z

363

Demand Responsive Lighting: A Scoping Study  

E-Print Network (OSTI)

with total Statewide peak demand and on peak days isto examine the electric peak demand related to lighting inDaily) - TOU Savings - Peak Demand Charges - Grid Peak -Low

Rubinstein, Francis; Kiliccote, Sila

2007-01-01T23:59:59.000Z

364

Tankless Demand Water Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demand Water Heaters Tankless Demand Water Heaters August 19, 2013 - 2:57pm Addthis Illustration of an electric demand water heater. At the top of the image, the heating unit is...

365

CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST Volume 2: Electricity Demand.Oglesby Executive Director #12;i ACKNOWLEDGEMENTS The demand forecast is the combined product to the contributing authors listed previously, Mohsen Abrishami prepared the commercial sector forecast. Mehrzad

366

CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST Volume 2: Electricity Demand The demand forecast is the combined product of the hard work and expertise of numerous California Energy previously, Mohsen Abrishami prepared the commercial sector forecast. Mehrzad Soltani Nia helped prepare

367

CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST Volume 2: Electricity Demand Robert P. Oglesby Executive Director #12;i ACKNOWLEDGEMENTS The demand forecast is the combined prepared the commercial sector forecast. Mehrzad Soltani Nia helped prepare the industrial forecast

368

EIA projections of coal supply and demand  

SciTech Connect

Contents of this report include: EIA projections of coal supply and demand which covers forecasted coal supply and transportation, forecasted coal demand by consuming sector, and forecasted coal demand by the electric utility sector; and policy discussion.

Klein, D.E.

1989-10-23T23:59:59.000Z

369

Energy Department Completes Cool Roof Installation on DC Headquarters  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Completes Cool Roof Installation on DC Completes Cool Roof Installation on DC Headquarters Building to Save Money by Saving Energy Energy Department Completes Cool Roof Installation on DC Headquarters Building to Save Money by Saving Energy December 14, 2010 - 12:00am Addthis Washington - Secretary Steven Chu today announced the completion of a new cool roof installation on the Department of Energy's Headquarters West Building. There was no incremental cost to adding the cool roof as part of the roof replacement project and it will save taxpayers $2,000 every year in building energy costs. Cool roofs use lighter-colored roofing surfaces or special coatings to reflect more of the sun's heat, helping improve building efficiency, reduce cooling costs and offset carbon emissions. The cool roof and increased insulation at the facility were

370

Feedback Cooling of a Single Neutral Atom  

E-Print Network (OSTI)

We demonstrate feedback cooling of the motion of a single rubidium atom trapped in a high-finesse optical resonator to a temperature of about 160 \\mu K. Time-dependent transmission and intensity-correlation measurements prove the reduction of the atomic position uncertainty. The feedback increases the 1/e storage time into the one second regime, 30 times longer than without feedback. Feedback cooling therefore rivals state-of-the-art laser cooling, but with the advantages that it requires less optical access and exhibits less optical pumping.

Markus Koch; Christian Sames; Alexander Kubanek; Matthias Apel; Maximilian Balbach; Alexei Ourjoumtsev; Pepijn W. H. Pinkse; Gerhard Rempe

2010-07-12T23:59:59.000Z

371

Feedback Cooling of a Single Neutral Atom  

E-Print Network (OSTI)

We demonstrate feedback cooling of the motion of a single rubidium atom trapped in a high-finesse optical resonator to a temperature of about 160 \\mu K. Time-dependent transmission and intensity-correlation measurements prove the reduction of the atomic position uncertainty. The feedback increases the 1/e storage time into the one second regime, 30 times longer than without feedback. Feedback cooling therefore rivals state-of-the-art laser cooling, but with the advantages that it requires less optical access and exhibits less optical pumping.

Koch, Markus; Kubanek, Alexander; Apel, Matthias; Balbach, Maximilian; Ourjoumtsev, Alexei; Pinkse, Pepijn W H; Rempe, Gerhard

2010-01-01T23:59:59.000Z

372

Using Cool Roofs to Reduce Energy Use, Greenhouse Gas Emissions...  

NLE Websites -- All DOE Office Websites (Extended Search)

roofs on commercial buildings in the Metropolitan Hyderabad region, corresponding to cooling energy savings of 10 19%. With the assumption of an annual increase...

373

Behavioral Aspects in Simulating the Future US Building Energy Demand  

E-Print Network (OSTI)

performance (heating & cooling) Thermal equip. selectionperformance (heating & cooling) Thermal equip. selectionuse Thermal equip. cost & performance (heating & cooling)

Stadler, Michael

2011-01-01T23:59:59.000Z

374

A Multi-agent Paradigm for the Inter-domain Demand Allocation Process  

Science Conference Proceedings (OSTI)

Market liberalisation and increasing demands for the allocation of services which span several networks are pushing every network operator to evolve the way of interacting with peer operators. The Inter-domain Demand Allocation (IDA) process is a very ...

Monique Calisti; Boi Faltings

1999-10-01T23:59:59.000Z

375

Chilled Water Thermal Storage System and Demand Response at the University of California at Merced  

Science Conference Proceedings (OSTI)

The University of California at Merced is a unique campus that has benefited from intensive efforts to maximize energy efficiency, and has participated in a demand response program for the past two years. Campus demand response evaluations are often difficult because of the complexities introduced by central heating and cooling, non-coincident and diverse building loads, and existence of a single electrical meter for the entire campus. At the University of California at Merced, a two million gallon chilled water storage system is charged daily during off-peak price periods and used to flatten the load profile during peak demand periods. This makes demand response more subtle and challenges typical evaluation protocols. The goal of this research is to study demand response savings in the presence of storage systems in a campus setting. First, University of California at Merced summer electric loads are characterized; second, its participation in two demand response events is detailed. In each event a set of strategies were pre-programmed into the campus control system to enable semi-automated response. Finally, demand savings results are applied to the utility's DR incentives structure to calculate the financial savings under various DR programs and tariffs. A key conclusion to this research is that there is significant demand reduction using a zone temperature set point change event with the full off peak storage cooling in use.

Granderson, Jessica; Dudley, Junqiao Han; Kiliccote, Sila; Piette, Mary Ann

2009-10-08T23:59:59.000Z

376

Evaporative Cooling | Open Energy Information  

Open Energy Info (EERE)

Evaporative Cooling Evaporative Cooling (Redirected from Hybrid Cooling) Jump to: navigation, search Dictionary.png Evaporative Cooling: An evaporative cooler is a device that cools air through the evaporation of water. Evaporative cooling works by employing water's large enthalpy of vaporization. The temperature of dry air can be dropped significantly through the phase transition of liquid water to water vapor (evaporation), which can cool air using much less energy than refrigeration. Evaporative cooling requires a water source, and must continually consume water to operate. Other definitions:Wikipedia Reegle Evaporative Cooling Evaporative Cooling Tower Diagram of Evaporative Cooling Tower Evaporative cooling technologies take advantage of both air and water to extract heat from a power plant. By utilizing both water and air one can

377

Electric Utility Demand-Side Management 1997  

U.S. Energy Information Administration (EIA)

Electric Utility Demand-Side Management 1997 Executive Summary Background Demand-side management (DSM) programs consist of the planning, implementing, and monitoring ...

378

Retail Demand Response in Southwest Power Pool  

E-Print Network (OSTI)

Regulatory Commission (FERC) 2006. “Assessment of DemandRegulatory Commission (FERC) 2007. “Assessment of DemandRegulatory Commission (FERC) 2008a. “Wholesale Competition

Bharvirkar, Ranjit

2009-01-01T23:59:59.000Z

379

EIA - Annual Energy Outlook 2009 - Electricity Demand  

Gasoline and Diesel Fuel Update (EIA)

data Rate of Electricity Demand Growth Slows, Following the Historical Trend Electricity demand fluctuates in the short term in response to business cycles, weather conditions,...

380

Demand Response as a System Reliability Resource  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response as a System Reliability Resource Title Demand Response as a System Reliability Resource Publication Type Report Year of Publication 2012 Authors Eto, Joseph H.,...

Note: This page contains sample records for the topic "increased cooling demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Home Network Technologies and Automating Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

electricity generation capacity to meet unrestrained future demand. To address peak electricity use Demand Response (DR) systems are being proposed to motivate reductions in...

382

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

California Long-term Energy Efficiency Strategic Plan. B-2 Coordination of Energy Efficiency and Demand Response> B-4 Coordination of Energy Efficiency and Demand Response

Goldman, Charles

2010-01-01T23:59:59.000Z

383

Installation and Commissioning Automated Demand Response Systems  

E-Print Network (OSTI)

al: Installation and Commissioning Automated Demand ResponseConference on Building Commissioning: April 22 – 24, 2008al: Installation and Commissioning Automated Demand Response

Kiliccote, Sila; Global Energy Partners; Pacific Gas and Electric Company

2008-01-01T23:59:59.000Z

384

Equity Capital Flows and Demand for REITs  

Science Conference Proceedings (OSTI)

This paper examines the shape of the market demand curve for ... Our results do not support a downward demand curve for ... Charleston, IL 61920, USA e-mail: ...

385

Option Value of Electricity Demand Response  

E-Print Network (OSTI)

Oakland CA, December. PJM Demand Side Response WorkingPrice Response Program a PJM Economic Load Response ProgramLoad Response Statistics PJM Demand Response Working Group

Sezgen, Osman; Goldman, Charles; Krishnarao, P.

2005-01-01T23:59:59.000Z

386

California Energy Demand Scenario Projections to 2050  

E-Print Network (OSTI)

29 5.6. Peak and hourly demand43 6.6. Peak and seasonal demandthe average percent of peak demand) significantly impact the

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

387

Water demand management in Kuwait  

E-Print Network (OSTI)

Kuwait is an arid country located in the Middle East, with limited access to water resources. Yet water demand per capita is much higher than in other countries in the world, estimated to be around 450 L/capita/day. There ...

Milutinovic, Milan, M. Eng. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

388

Demand-Side Management Glossary  

Science Conference Proceedings (OSTI)

In recent years, demand-side management (DSM) programs have grown in significance within the U.S. electric power industry. Such rapid growth has resulted in new terms, standards, and vocabulary used by DSM professionals. This report is a first attempt to provide a consistent set of definitions for the expanding DSM terminology.

1992-11-01T23:59:59.000Z

389

Energy Demands and Efficiency Strategies in Data Center Buildings  

E-Print Network (OSTI)

side economizer, employs cooling towers that use ambient airair cold water warm water cooling tower AHU condensing wateris piped from the cooling towers, which cools the water

Shehabi, Arman

2010-01-01T23:59:59.000Z

390

Measured Effects of Retrofits - A Refrigerant Oil Additive and a Condenser Spray Device - On the Cooling Performance of a Heat Pump  

E-Print Network (OSTI)

A 15-year old, 3-ton single package air-to-air heat pump was tested in laboratory environmental chambers simulating indoor and outdoor conditions. After documenting initial performance, the unit was retrofitted with a prototype condenser water-spray device and retested. Results at standard AM cooling rating conditions (95°F outdoor dry bulb and 80167 OF indoor dry bulb/wet bulb temperatures) showed the capacity increased by about 7%, and the electric power demand dropped by about 8%, resulting in a steady-state EER increase of 17%. Suction and discharge pressures were reduced by 7 and 37 psi, respectively. A refrigerant oil additive formulated to enhance refrigerant-side heat transfer was added at a dose of one ounce per ton of rated capacity. and the unit was tested for several days at the same 95°F outdoor conditions and showed essentially no increase in capacity, and a slight 3% increase in steady-state EER. Adding more additive lowered the EER slightly. Suction and discharge pressures were essentially unchanged. Our short-term testing showed that the condenser-spray device was effective in increasing the cooling capacity and lowering the electrical demand on an old and relatively inefficient heat pump, but the refrigerant additive had little effect on the cooling performance of our unit Sprayer issues to be resolved include the effect of a sprayer on a new, high-efficiency air conditioner/heat pump, reliable long-term operation, and economics.

Levins, W. P.; Sand, J. R.; Baxter, V. D.; Linkous, R. S.

1996-01-01T23:59:59.000Z

391

Use of Reclaimed Water for Power Plant Cooling  

NLE Websites -- All DOE Office Websites (Extended Search)

CONTENTS Chapter 1 - Introduction .......................................................................................................... 1 Power Plants Need Water .................................................................................................. 1 Meeting Water Demands in a Water-Constrained Environment ....................................... 3 Purpose and Structure of the Report .................................................................................. 3 Chapter 2 - Database of Reclaimed Water Use for Cooling ................................................... 5 Data Collection .................................................................................................................. 5 The Database...................................................................................................................... 7

392

Dew Point Evaporative Comfort Cooling: Report and Summary Report  

Science Conference Proceedings (OSTI)

The project objective was to demonstrate the capabilities of the high-performance multi-staged IEC technology and its ability to enhance energy efficiency and interior comfort in dry climates, while substantially reducing electric-peak demand. The project was designed to test 24 cooling units in five commercial building types at Fort Carson Army Base in Colorado Springs, Colorado.

Dean, J.; Herrmann, L.; Kozubal, E.; Geiger, J.; Eastment, M.; Slayzak, S.

2012-11-01T23:59:59.000Z

393

Preliminary Analysis of Energy Consumption For Cool Roofing Measures  

E-Print Network (OSTI)

Preliminary Analysis of Energy Consumption For Cool Roofing Measures By Joe Mellott, Joshua New to reduce energy demand by reflecting sunlight away from structures and back into the atmosphere. By use of commonly available calculators, one can analyze the potential energy savings based on environmental

Tennessee, University of

394

Overview: Home Cooling Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

than earlier models. Dehumidifying heat pipes can help an air conditioner remove humidity and more efficiently cool the air. Radiant Cooling Radiant cooling cools a floor or...

395

Demand, Supply, and Price Outlook for Reformulated Motor Gasoline 1995  

Gasoline and Diesel Fuel Update (EIA)

Demand, Supply, and Price Outlook for Reformulated Demand, Supply, and Price Outlook for Reformulated Motor Gasoline 1995 by Tancred Lidderdale* Provisions of the Clean Air Act Amendments of 1990 designed to reduce ground-level ozone will increase the demand for reformulated motor gaso- line in a number of U.S. metropolitan areas. Refor- mulated motor gasoline is expected to constitute about one-third of total motor gasoline demand in 1995, and refiners will have to change plant opera- tions and modify equipment in order to meet the higher demand. The costs incurred are expected to create a wholesale price premium for reformu- lated motor gasoline of up to 4.0 cents per gallon over the price of conventional motor gasoline. This article discusses the effects of the new regulations on the motor gasoline market and the refining

396

Elasticities of Electricity Demand in Urban Indian Households  

E-Print Network (OSTI)

Energy demand, and in particular electricity demand in India has been growing at a very rapid rate over the last decade. Given, current trends in population growth, industrialisation, urbanisation, modernisation and income growth, electricity consumption is expected to increase substantially in the coming decades as well. Tariff reforms could play a potentially important role as a demand side management tool in India. However, the effects of any price revisions on consumption will depend on the price elasticity of demand for electricity. In the past, electricity demand studies for India published in international journals have been based on aggregate macro data at the country or sub-national / state level. In this paper, price and income elasticities of electricity demand in the residential sector of all urban areas of India are estimated for the first time using disaggregate level survey data for over thirty thousand households. Three electricity demand functions have been estimated using monthly data for the following seasons: winter, monsoon and summer. The results show electricity demand is income and price inelastic in all three seasons, and that household, demographic and geographical variables are important in determining electricity demand, something that is not possible to determine using aggregate macro models alone. Key Words Residential electricity demand, price elasticity, income elasticity Short Title Electricity demand in Indian households Acknowledgements: The authors would like to gratefully acknowledge the National Sample Survey Organisation, Department of Statistics of the Government of India, for making available to us the unit level, household survey data. We would also like to thank Prof. Daniel Spreng for his support of our research. 2 1.

Shonali Pachauri

2002-01-01T23:59:59.000Z

397

Demand Dispatch — Intelligent Demand for a More Efficient Grid  

E-Print Network (OSTI)

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed therein do not necessarily state or reflect those of the United States Government or any agency thereof. Demand Dispatch: Intelligent Demand for a More Efficient Grid

Keith Dodrill

2011-01-01T23:59:59.000Z

398

LBNL's Novel Approach to Cooling  

NLE Websites -- All DOE Office Websites (Extended Search)

systems department, chilled water, cooling water tower, double exchanger cooling, dual heat exchanger, high tech and industrial systems group, inrow, lawrence berkeley national...

399

Cool Roofs and Heat Islands  

NLE Websites -- All DOE Office Websites (Extended Search)

(510) 486-7494 Links Heat Island Group The Cool Colors Project Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and...

400

Floating power optimization studies for the cooling system of a geothermal power plant  

DOE Green Energy (OSTI)

The floating power concept was studied for a geothermal power plant as a method of increasing the plant efficiency and decreasing the cost of geothermal power. The stored cooling concept was studied as a method of reducing the power fluctuations of the floating power concept. The studies include parametric and optimization studies for a variety of different types of cooling systems including wet and dry cooling towers, direct and indirect cooling systems, forced and natural draft cooling towers, and cooling ponds. The studies use an indirect forced draft wet cooling tower cooling system as a base case design for comparison purposes.

Shaffer, C.J.

1977-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "increased cooling demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier  

E-Print Network (OSTI)

US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier Approach Massimo www.cepe.ethz.ch #12;US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier Approach Page 1 of 25 US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier

402

The alchemy of demand response: turning demand into supply  

Science Conference Proceedings (OSTI)

Paying customers to refrain from purchasing products they want seems to run counter to the normal operation of markets. Demand response should be interpreted not as a supply-side resource but as a secondary market that attempts to correct the misallocation of electricity among electric users caused by regulated average rate tariffs. In a world with costless metering, the DR solution results in inefficiency as measured by deadweight losses. (author)

Rochlin, Cliff

2009-11-15T23:59:59.000Z

403

Optimization of Cooling Water  

E-Print Network (OSTI)

A cooling water system can be optimized by operation at the highest possible cycles of concentration without risking sealing and fouling on heat exchanger surfaces. The way to optimize will be shown, with a number of examples of new systems.

Matson, J.

1985-05-01T23:59:59.000Z

404

RADIATIVE AND PASSIVE COOLING  

E-Print Network (OSTI)

and Passive Cooling Marlo Martin and Paul Berdahl SeptemberNTIS. 3. P. Berdahl and M. Martin, "The Resource for Radia-1978) p. 684. 4. M. Martin and P. Berdahl, "Description of a

Martin, M.

2011-01-01T23:59:59.000Z

405

Cool Magnetic Molecules  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Magnetic Molecules Print Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

406

Cool Magnetic Molecules  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Magnetic Molecules Print Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

407

Cool Magnetic Molecules  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Magnetic Molecules Print Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

408

Cool Magnetic Molecules  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Magnetic Molecules Print Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

409

Stimulated radiative laser cooling  

E-Print Network (OSTI)

Building a refrigerator based on the conversion of heat into optical energy is an ongoing engineering challenge. Under well-defined conditions, spontaneous anti-Stokes fluorescence of a dopant material in a host matrix is capable of lowering the host temperature. The fluorescence is conveying away a part of the thermal energy stored in the vibrational oscillations of the host lattice. In particular, applying this principle to the cooling of (solid-state) lasers opens up many potential device applications, especially in the domain of high-power lasers. In this paper, an alternative optical cooling scheme is outlined, leading to radiative cooling of solid-state lasers. It is based on converting the thermal energy stored in the host, into optical energy by means of a stimulated nonlinear process, rather than a spontaneous process. This should lead to better cooling efficiencies and a higher potential of applying the principle for device applications.

Muys, Peter

2007-01-01T23:59:59.000Z

410

Sisyphus Cooling of Lithium  

E-Print Network (OSTI)

Laser cooling to sub-Doppler temperatures by optical molasses is thought to be inhibited in atoms with unresolved, near-degenerate hyperfine structure in the excited state. We demonstrate that such cooling is possible in one to three dimensions, not only near the standard D2 line for laser cooling, but over a range extending to the D1 line. Via a combination of Sisyphus cooling followed by adiabatic expansion, we reach temperatures as low as 40 \\mu K, which corresponds to atomic velocities a factor of 2.6 above the limit imposed by a single photon recoil. Our method requires modest laser power at a frequency within reach of standard frequency locking methods. It is largely insensitive to laser power, polarization and detuning, magnetic fields, and initial hyperfine populations. Our results suggest that optical molasses should be possible with all alkali species.

Paul Hamilton; Geena Kim; Trinity Joshi; Biswaroop Mukherjee; Daniel Tiarks; Holger Müller

2013-08-08T23:59:59.000Z

411

Cool Magnetic Molecules  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Magnetic Molecules Print Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

412

Home Network Technologies and Automating Demand Response  

Science Conference Proceedings (OSTI)

Over the past several years, interest in large-scale control of peak energy demand and total consumption has increased. While motivated by a number of factors, this interest has primarily been spurred on the demand side by the increasing cost of energy and, on the supply side by the limited ability of utilities to build sufficient electricity generation capacity to meet unrestrained future demand. To address peak electricity use Demand Response (DR) systems are being proposed to motivate reductions in electricity use through the use of price incentives. DR systems are also be design to shift or curtail energy demand at critical times when the generation, transmission, and distribution systems (i.e. the 'grid') are threatened with instabilities. To be effectively deployed on a large-scale, these proposed DR systems need to be automated. Automation will require robust and efficient data communications infrastructures across geographically dispersed markets. The present availability of widespread Internet connectivity and inexpensive, reliable computing hardware combined with the growing confidence in the capabilities of distributed, application-level communications protocols suggests that now is the time for designing and deploying practical systems. Centralized computer systems that are capable of providing continuous signals to automate customers reduction of power demand, are known as Demand Response Automation Servers (DRAS). The deployment of prototype DRAS systems has already begun - with most initial deployments targeting large commercial and industrial (C & I) customers. An examination of the current overall energy consumption by economic sector shows that the C & I market is responsible for roughly half of all energy consumption in the US. On a per customer basis, large C & I customers clearly have the most to offer - and to gain - by participating in DR programs to reduce peak demand. And, by concentrating on a small number of relatively sophisticated energy consumers, it has been possible to improve the DR 'state of the art' with a manageable commitment of technical resources on both the utility and consumer side. Although numerous C & I DR applications of a DRAS infrastructure are still in either prototype or early production phases, these early attempts at automating DR have been notably successful for both utilities and C & I customers. Several factors have strongly contributed to this success and will be discussed below. These successes have motivated utilities and regulators to look closely at how DR programs can be expanded to encompass the remaining (roughly) half of the state's energy load - the light commercial and, in numerical terms, the more important residential customer market. This survey examines technical issues facing the implementation of automated DR in the residential environment. In particular, we will look at the potential role of home automation networks in implementing wide-scale DR systems that communicate directly to individual residences.

McParland, Charles

2009-12-01T23:59:59.000Z

413

Refrigerant directly cooled capacitors  

DOE Patents (OSTI)

The invention is a direct contact refrigerant cooling system using a refrigerant floating loop having a refrigerant and refrigeration devices. The cooling system has at least one hermetic container disposed in the refrigerant floating loop. The hermetic container has at least one electronic component selected from the group consisting of capacitors, power electronic switches and gating signal module. The refrigerant is in direct contact with the electronic component.

Hsu, John S. (Oak Ridge, TN); Seiber, Larry E. (Oak Ridge, TN); Marlino, Laura D. (Oak Ridge, TN); Ayers, Curtis W. (Kingston, TN)

2007-09-11T23:59:59.000Z

414

Laser cooling of solids  

SciTech Connect

We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocooler. We chart the evolution of this science in rare-earth doped solids and semiconductors.

Epstein, Richard I [Los Alamos National Laboratory; Sheik-bahae, Mansoor [UNM

2008-01-01T23:59:59.000Z

415

WATER COOLED RETORT COVER  

DOE Patents (OSTI)

A retort cover is designed for use in the production of magnesium metal by the condensation of vaporized metal on a collecting surface. The cover includes a condensing surface, insulating means adjacent to the condensing surface, ind a water-cooled means for the insulating means. The irrangement of insulation and the cooling means permits the magnesium to be condensed at a high temperature and in massive nonpyrophoric form. (AEC)

Ash, W.J.; Pozzi, J.F.

1962-05-01T23:59:59.000Z

416

Recent Innovations in Muon Beam Cooling  

DOE Green Energy (OSTI)

Eight new ideas are being developed under SBIR/STTR grants to cool muon beams for colliders, neutrino factories, and muon experiments. Analytical and simulation studies have confirmed that a six-dimensional (6D) cooling channel based on helical magnets surrounding RF cavities filled with dense hydrogen gas can provide effective beam cooling. This helical cooling channel (HCC) has solenoidal, helical dipole, helical quadrupole, and helical sextupole magnetic fields to generate emittance exchange and achieve 6D emittance reduction of over 3 orders of magnitude in a 100 m segment. Four such sequential HCC segments, where the RF frequencies are increased and transverse physical dimensions reduced as the beams become cooler, implies a 6D emittance reduction of almost five orders of magnitude. Two new cooling ideas, Parametric-resonance Ionization Cooling and Reverse Emittance Exchange, then can be employed to reduce transverse emittances to a few mm-mr, which allows high luminosity with fewer muons than previously imagined. We describe these new ideas as well as a new precooling idea based on a HCC with z dependent fields that can be used as MANX, an exceptional 6D cooling demonstration experiment.

Rolland P. Johnson; Mohammad Alsharo'a; Charles Ankenbrandt; Emanuela Barzi; Kevin Beard; S. Alex Bogacz; Yaroslav Derbenev; Licia Del Frate; Ivan Gonin; Pierrick M. Hanlet; Robert Hartline; Daniel M. Kaplan; Moyses Kuchnir; Alfred Moretti; David Neuffer; Kevin Paul; Milorad Popovic; Thomas J. Roberts; Gennady Romanov; Daniele Turrioni; Victor Yarba; and Katsuya Yonehara

2006-03-01T23:59:59.000Z

417

Q:\asufinal_0107_demand.vp  

Gasoline and Diesel Fuel Update (EIA)

00 00 (AEO2000) Assumptions to the January 2000 With Projections to 2020 DOE/EIA-0554(2000) Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Macroeconomic Activity Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 International Energy Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Household Expenditures Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Residential Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Commercial Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Industrial Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Transportation Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Electricity Market Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Oil and Gas Supply Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Natural Gas Transmission and Distribution

418

Demand-Side Management (DSM) Opportunities as Real-Options  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand-Side Management (DSM) Opportunities as Real-Options Demand-Side Management (DSM) Opportunities as Real-Options Speaker(s): Osman Sezgen Date: August 1, 2002 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Kristina LaCommare As some end-users of energy and aggregators are choosing to be exposed to real-time prices and energy price volatility, they are coming across new DSM opportunities that would not be feasible under typical utility rate structures. Effective evaluation of such opportunities requires a good understanding of the wholesale energy markets and the use of models based on recent financial techniques for option pricing. The speaker will give examples of such modeling approaches based on his experience in the retail-energy industry. Specific examples will include evaluation of distributed generation, load curtailment, dual-fuel cooling, and energy

419

National micro-data based model of residential electricity demand: new evidence on seasonal variation  

SciTech Connect

Building on earlier estimates of electricity demand, the author estimates elasticities by month to determine differences between heating and cooling seasons. He develops a three equation model of residential electricity demand that includes all the main components of economic theory. The model generates seasonal elasticity estimates that generally support economic theory. Based on the model using a national current household data set (monthly division), the evidence indicates there is a seasonal pattern for price elasticity of demand. While less pronounced, there also appears to be seasonal patterns for cross-price elasticity of alternative fuels, for the elasticity of appliance stock index, and for an intensity of use variable.

Garbacz, C.

1984-07-01T23:59:59.000Z

420

Building Technologies Office: Integrated Predictive Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Predictive Integrated Predictive Demand Response Controller Research Project to someone by E-mail Share Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Facebook Tweet about Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Twitter Bookmark Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Google Bookmark Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Delicious Rank Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Digg Find More places to share Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on AddThis.com...

Note: This page contains sample records for the topic "increased cooling demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Growing demand for gas spawns pipeline projects  

Science Conference Proceedings (OSTI)

This paper reports that burgeoning demand for gas is fueling pipeline construction in Eastern and Western hemispheres. In the East, the North Sea is the focal point for activity. And in the West, the U.S. gas market is the power behind construction. As predictions of U.S. gas demand increase, Canadian pipeliners adjust expansion plans to be ready to capture greater shares of markets. Canada's TransCanada Pipelines Ltd. is racing to step up its share of the U.S. market. TransCanada's Western Gas Marketing Ltd. sold 242.3 bcf of gas in the 3 months ended last June 30, a 9.8% increase from last year. TransCanada reported lower volumes sold into Canadian markets, while exports into the U.S. continued to rise. Gas Research Institute (GRI) projects Canadian gas exports to the U.S. by 2000 will reach 2 tcf/year and LNG exports 800 bcf/year. U.S. gas supplies could increase to 23.9 tcf/year by 2010, mostly from Lower 48 production. GRI says supplies from Canada will make up the balance. In the past 2 years, TransCanada has spent about $1 billion expanding its interprovincial main line system.

Not Available

1991-09-09T23:59:59.000Z

422

Cooling Evolution of Hybrid Stars  

E-Print Network (OSTI)

The cooling of compact isolated objects for different values of the gravitational mass has been simulated for two alternative assumptions. One is that the interior of the star is purely hadronic and second that the star can have a rather large quark core. It has been shown that within a nonlocal chiral quark model the critical density for a phase transition to color superconducting quark matter under neutron star conditions can be low enough for these phases to occur in compact star configurations with masses below 1.3 M_sun. For a realistic choice of parameters the equation of state (EoS) allows for 2SC quark matter with a large quark gap ~ 100 MeV for u and d quarks of two colors that coexists with normal quark matter within a mixed phase in the hybrid star interior. We argue that, if in the hadronic phase the neutron pairing gap in 3P_2 channel is larger than few keV and the phases with unpaired quarks are allowed, the corresponding hybrid stars would cool too fast. Even in the case of the essentially suppressed 3P_2 neutron gap if free quarks occur for M cooling data existing by today. It is suggested to discuss a "2SC+X" phase, as a possibility to have all quarks paired in two-flavor quark matter under neutron star constraints, where the X-gap is of the order of 10 keV - 1 MeV. Density independent gaps do not allow to fit the cooling data. Only the presence of an X-gap that decreases with increase of the density could allow to appropriately fit the data in a similar compact star mass interval to that following from a purely hadronic model.

H. Grigorian

2005-02-28T23:59:59.000Z

423

Management of Power Demand through Operations of Building Systems  

E-Print Network (OSTI)

In hot summers, the demand for electrical power is dominated by the requirements of the air-conditioning and lighting systems. Such systems account for more than 80% of the peak electrical demand in Kuwait. A study was conducted to explore the potential for managing the peak electrical demand through improved operation strategies for building systems. Two buildings with partial occupancy patterns and typical peak loads of 1 and 2.2 MW were investigated. Changes to the operation of building systems included utilizing the thermal mass to reduce cooling production and distribution during the last hour of occupancy, time-of-day control of chillers and auxiliaries, and de-lamping. The implemented operational changes led to significant reductions in building loads during the hours of national peak demand. The achieved savings reached 31% during the critical hour, and up to 47% afterwards. Daily energy savings of 13% represented an added benefit. Additional operational changes could lead to further savings in peak power when implemented.

ElSherbini, A. I.; Maheshwari, G.; Al-Naqib, D.; Al-Mulla, A.

2009-11-01T23:59:59.000Z

424

Demand Trading: Measurement, Verification, and Settlement (MVS)  

Science Conference Proceedings (OSTI)

With this report, EPRI's trilogy of publications on demand trading is complete. The first report (1006015), the "Demand Trading Toolkit," documented how to conduct demand trading based on price. The second report (1001635), "Demand Trading: Building Liquidity," focused on the problem of liquidity in the energy industry and developed the Demand Response Resource Bank concept for governing electricity markets based on reliability. The present report focuses on the emerging price/risk partnerships in electr...

2004-03-18T23:59:59.000Z

425

Grid Reliability Considerations for High Levels of Demand Response  

Science Conference Proceedings (OSTI)

The objectives of this white paper are to: (1) consider the unique characteristics of demand response relative to bulk electric system reliability needs and present contributions to system reliability, (2) identify potential bulk electric system reliability impacts of high levels of demand response without appropriate characterization of the resource over time and at increasing penetration levels, and (3) identify research needs to address these impacts so that the potential benefits of DR as system ...

2013-11-07T23:59:59.000Z

426

Impacts of Temperature Variation on Energy Demand in Buildings (released in AEO2005)  

Reports and Publications (EIA)

In the residential and commercial sectors, heating and cooling account for more than 40 percent of end-use energy demand. As a result, energy consumption in those sectors can vary significantly from year to year, depending on yearly average temperatures.

Information Center

2005-04-01T23:59:59.000Z

427

Auxiliary Cooling Loads in Passively Cooled Buildings: An Experimental Research Study  

E-Print Network (OSTI)

Currently accepted methods of passive cooling offset only sensible building loads. In the warm, humid southeastern gulf coast climates the latent building load can comprise 35% of the building load in the typical residence. As the sensible load on residences in these climates is reduced or offset by passive cooling techniques, this latent cooling load percentage increases rapidly. In such residences the auxiliary cooling load cannot be effectively met by conventional cooling equipment . The Florida Solar Energy Center (FSEC) is examining the auxiliary cooling requirements of residences in warm, humid climates. The study addresses both the thermal and moisture response of buildings. A total of eight wall systems, three frame wall types and five concrete block wall types are under test at the FSEC Passive Cooling Laboratory (PCL) in Cape Canaveral. Moisture studies involve examination of the absorption and desorption rates of building materials and furnishings and the development of improved moisture migration modeling techniques for inclusion in building energy analysis programs. TARP (Thermal Analysis Research program), developed at NBS by George Walton, and FLOAD, by FCHART Software, have been chosen as the analysis programs with which cooling examined.

Fairey, P.; Vieira, R.; Chandra, S.; Kerestecioglu, A.; Kalaghchy, S.

1984-01-01T23:59:59.000Z

428

Cooling Towers, The Debottleneckers  

E-Print Network (OSTI)

Power generating plants and petro-chemical works are always expanding. An on-going problem is to identify and de-bottle neck restricting conditions of growth. The cooling tower is a highly visible piece of equipment. Most industrial crossflow units are large structures, Illustration 1. Big budget money and engineering time goes into gleaming stainless steel equipment and exotic process apparatus, the poor cooling tower is the ignored orphan of the system. Knowledgeable Engineers, however, are now looking into the function of the cooling tower, which is to produce colder water- and question the quality of water discharged from that simple appearing box. These cross-flow structures are quite large, ranging up to 60 feet tall with as many as 6 or more cells in a row. With cells up to 42 feet long so immense in aspect, with fans rotating, operators assume, just by appearances, that all is well, and usually pay no attention to the quality of cold water returning from the cooling tower. The boxes look sturdy, but the function of the cooling tower is repeated ignored production of water as cold as possible.

Burger, R.

1998-04-01T23:59:59.000Z

429

Air Cooling | Open Energy Information  

Open Energy Info (EERE)

Cooling Cooling Jump to: navigation, search Dictionary.png Air Cooling: Air cooling is commonly defined as rejecting heat from an object by flowing air over the surface of the object, through means of convection. Air cooling requires that the air must be cooler than the object or surface from which it is expected to remove heat. This is due to the second law of thermodynamics, which states that heat will only move spontaneously from a hot reservoir (the heat sink) to a cold reservoir (the air). Other definitions:Wikipedia Reegle Air Cooling Air Cooling Diagram of Air Cooled Condenser designed by GEA Heat Exchangers Ltd. (http://www.gea-btt.com.cn/opencms/opencms/bttc/en/Products/Air_Cooled_Condenser.html) Air cooling is limited on ambient temperatures and typically require a

430

Water Cooling | Open Energy Information  

Open Energy Info (EERE)

Cooling: Cooling: Water cooling is commonly defined as a method of using water as a heat conduction to remove heat from an object, machine, or other substance by passing cold water over or through it. In energy generation, water cooling is typically used to cool steam back into water so it can be used again in the generation process. Other definitions:Wikipedia Reegle Water Cooling Typical water cooled condenser used for condensing steam Water or liquid cooling is the most efficient cooling method and requires the smallest footprint when cold water is readily available. When used in power generation the steam/vapor that exits the turbine is condensed back into water and reused by means of a heat exchanger. Water cooling requires a water resource that is cold enough to bring steam, typically

431

Evaporative Cooling | Open Energy Information  

Open Energy Info (EERE)

Evaporative Cooling: Evaporative Cooling: An evaporative cooler is a device that cools air through the evaporation of water. Evaporative cooling works by employing water's large enthalpy of vaporization. The temperature of dry air can be dropped significantly through the phase transition of liquid water to water vapor (evaporation), which can cool air using much less energy than refrigeration. Evaporative cooling requires a water source, and must continually consume water to operate. Other definitions:Wikipedia Reegle Evaporative Cooling Evaporative Cooling Tower Diagram of Evaporative Cooling Tower Evaporative cooling technologies take advantage of both air and water to extract heat from a power plant. By utilizing both water and air one can reduce the amount of water required for a power plant as well as reduce the

432

Effects of the drought on California electricity supply and demand  

E-Print Network (OSTI)

DEMAND . . . .Demand for Electricity and Power PeakDemand . . • . . ELECTRICITY REQUIREMENTS FOR AGRICULTUREResults . . Coriclusions ELECTRICITY SUPPLY Hydroelectric

Benenson, P.

2010-01-01T23:59:59.000Z

433

Automated Demand Response Opportunities in Wastewater Treatment Facilities  

E-Print Network (OSTI)

Interoperable Automated Demand Response Infrastructure,study of automated demand response in wastewater treatmentopportunities for demand response control strategies in

Thompson, Lisa

2008-01-01T23:59:59.000Z

434

Opportunities, Barriers and Actions for Industrial Demand Response in California  

E-Print Network (OSTI)

and Techniques for Demand Response, report for theand Reliability Demand Response Programs: Final Report.Demand Response

McKane, Aimee T.

2009-01-01T23:59:59.000Z

435

Northwest Open Automated Demand Response Technology Demonstration Project  

E-Print Network (OSTI)

Report 2009. Open Automated Demand Response Communicationsand Techniques for Demand Response. California Energyand S. Kiliccote. Estimating Demand Response Load Impacts:

Kiliccote, Sila

2010-01-01T23:59:59.000Z

436

Northwest Open Automated Demand Response Technology Demonstration Project  

E-Print Network (OSTI)

14 Peak Demand Baselinewinter morning electric peak demand in commercial buildings.California to reduce peak demand during summer afternoons,

Kiliccote, Sila

2010-01-01T23:59:59.000Z

437

Building Energy Software Tools Directory : Demand Response Quick...  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Quick Assessment Tool Back to Tool Demand response quick assessment tool screenshot Demand response quick assessment tool screenshot Demand response quick...

438

Price-elastic demand in deregulated electricity markets  

E-Print Network (OSTI)

by the amount of electricity demand that is settled forward.unresponsive demand side, electricity demand has to be metxed percentage of overall electricity demand. The ISO, thus,

Siddiqui, Afzal S.

2003-01-01T23:59:59.000Z

439

Automated Demand Response Strategies and Commissioning Commercial Building Controls  

E-Print Network (OSTI)

Braun (Purdue). 2004. Peak demand reduction from pre-coolingthe average and maximum peak demand savings. The electricityuse charges, demand ratchets, peak demand charges, and other

Piette, Mary Ann; Watson, David; Motegi, Naoya; Kiliccote, Sila; Linkugel, Eric

2006-01-01T23:59:59.000Z

440

Passive containment cooling system  

DOE Patents (OSTI)

A passive containment cooling system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and a gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel and is vented to the drywell. An isolation pool is disposed above the GDCS pool and includes an isolation condenser therein. The condenser has an inlet line disposed in flow communication with the drywell for receiving the non-condensable gas along with any steam released therein following a loss-of-coolant accident (LOCA). The condenser also has an outlet line disposed in flow communication with the drywell for returning to the drywell both liquid condensate produced upon cooling of the steam and the non-condensable gas for reducing pressure within the containment vessel following the LOCA.

Billig, Paul F. (San Jose, CA); Cooke, Franklin E. (San Jose, CA); Fitch, James R. (San Jose, CA)

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "increased cooling demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Passive containment cooling system  

DOE Patents (OSTI)

A passive containment cooling system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and a gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel and is vented to the drywell. An isolation pool is disposed above the GDCS pool and includes an isolation condenser therein. The condenser has an inlet line disposed in flow communication with the drywell for receiving the non-condensable gas along with any steam released therein following a loss-of-coolant accident (LOCA). The condenser also has an outlet line disposed in flow communication with the drywell for returning to the drywell both liquid condensate produced upon cooling of the steam and the non-condensable gas for reducing pressure within the containment vessel following the LOCA. 1 figure.

Billig, P.F.; Cooke, F.E.; Fitch, J.R.

1994-01-25T23:59:59.000Z

442

DOE Cool Roof Calculator for Low-Slope or Flat Roofs  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Roof Calculator Cool Roof Calculator Estimates Cooling and Heating Savings for Flat Roofs with Non-Black Surfaces - Developed by the U.S. Department of Energy's Oak Ridge National Laboratory (Version 1.2) - This version of the calculator is for small and medium-sized facilities that purchase electricity without a demand charge based on peak monthly load. If you have a large facility that purchases electricity with a demand charge, run the CoolCalcPeak version in order to include the savings in peak demand charges from using solar radiation control. - What you get out of this calculator is only as good as what you put in. If you CLICK HERE , you'll find help in figuring out the best input values. Some things, such as the weathering of the solar radiation control properties and the effects of a plenum, are especially important. You'll

443

Demand-Side and Supply-Side Load Management: Optimizing with Thermal Energy Storage (TES) for the Restructuring Energy Marketplace  

E-Print Network (OSTI)

The current and future restructuring energy marketplace represents a number of challenges and opportunities to maximize value through the management of peak power. This is true both on the demand-side regarding peak power use and on the supply-side regarding power generation. Thermal Energy Storage (TES) can provide the flexibility essential to the economical management of power. In large industrial applications, the added value of TES has been demonstrated, not only in managing operating costs, but also in delivering a net saving in capital cost versus conventional, non-storage approaches. This capital cost saving is often realized in situations where investments in chiller plant capacity, or in on-site power generating capacity, are required. On the demand-side, TES has long been used to shift air-conditioning loads and process cooling loads from on-peak to off-peak periods. In today's and tomorrow's restructuring energy markets, price spikes are increasingly likely during periods of peak power demand. TES is performing an important role, especially when coupled with a proper understanding of modern TES technology options. The inherent advantages and limitations of the available TES technology options are briefly reviewed and discussed. Examples of existing large TES installations are presented, identifying the TES technology types they utilize. The applications include industrial facilities, as well as universities, hospitals, government, and District Cooling utility systems. The power management impact and the economic benefits of TES are illustrated through a review of several TES case studies. Combustion Turbines (CTs) are a common choice for modern on-site and utility power generation facilities. Inlet air cooling of CTs enhances their hot weather performance and has been successfully accomplished for many years, using a variety of technologies. In many instances, TES can and does provide a uniquely advantageous method of optimizing the economics of CT Inlet Cooling (CTIC) systems. TES systems can achieve low inlet air temperatures, with resulting high levels of power augmentation. The TES approach also minimizes the installed capacity (and capital cost) of cooling systems, as well as limiting the parasitic loads occurring during periods of peak power demand and peak power value. Chilled water, ice, and low temperature fluid TES systems are all applicable to CTIC. The inherent pros and cons of each TES type are discussed. Sensitivity analyses are presented to explore the impact of cooling hours per day on capital cost per kW of power enhancement. Case histories illustrate the beneficial impact of TES-based CTIC on both capital cost and operating cost of CT power plants. TES-based CTIC is advantageous as an economical, peaking power enhancement for either peaking or base-load plants. It is applied to both new and existing CTs. TES is projected to have even greater value in future restructuring energy markets.

Andrepont, J. S.

2002-04-01T23:59:59.000Z

444

Closed loop air cooling system for combustion turbines  

DOE Patents (OSTI)

Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts. 1 fig.

Huber, D.J.; Briesch, M.S.

1998-07-21T23:59:59.000Z

445

Closed loop air cooling system for combustion turbines  

DOE Patents (OSTI)

Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts.

Huber, David John (North Canton, OH); Briesch, Michael Scot (Orlando, FL)

1998-01-01T23:59:59.000Z

446

Demand Side Management in Rangan Banerjee  

E-Print Network (OSTI)

Compressed Air ­ reduce pressure, air leakages FRP fans ­ Cooling towers, energy efficient fans Waste heat Cooling Tower Additional Chiller pump Under ground Chilled water Storage tank Space to be conditioned, cooling, motive power...) #12;Utility Load Shape Objectives Peak Clipping Valley Filling Load Shifting

Banerjee, Rangan

447

Analysis of Residential Demand Response and Double-Auction Markets  

Science Conference Proceedings (OSTI)

Demand response and dynamic pricing programs are expected to play increasing roles in the modern Smart Grid environment. While direct load control of end-use loads has existed for decades, price driven response programs are only beginning to be explored at the distribution level. These programs utilize a price signal as a means to control demand. Active markets allow customers to respond to fluctuations in wholesale electrical costs, but may not allow the utility to control demand. Transactive markets, utilizing distributed controllers and a centralized auction can be used to create an interactive system which can limit demand at key times on a distribution system, decreasing congestion. With the current proliferation of computing and communication resources, the ability now exists to create transactive demand response programs at the residential level. With the combination of automated bidding and response strategies coupled with education programs and customer response, emerging demand response programs have the ability to reduce utility demand and congestion in a more controlled manner. This paper will explore the effects of a residential double-auction market, utilizing transactive controllers, on the operation of an electric power distribution system.

Fuller, Jason C.; Schneider, Kevin P.; Chassin, David P.

2011-10-10T23:59:59.000Z

448

Assessment of Industrial Load for Demand Response across Western Interconnect  

SciTech Connect

Demand response (DR) has the ability to both increase power grid reliability and potentially reduce operating system costs. Understanding the role of demand response in grid modeling has been difficult due to complex nature of the load characteristics compared to the modeled generation and the variation in load types. This is particularly true of industrial loads, where hundreds of different industries exist with varying availability for demand response. We present a framework considering industrial loads for the development of availability profiles that can provide more regional understanding and can be inserted into analysis software for further study. The developed framework utilizes a number of different informational resources, algorithms, and real-world measurements to perform a bottom-up approach in the development of a new database with representation of the potential demand response resource in the industrial sector across the U.S. This tool houses statistical values of energy and demand response (DR) potential by industrial plant and geospatially locates the information for aggregation for different territories without proprietary information. This report will discuss this framework and the analyzed quantities of demand response for Western Interconnect (WI) in support of evaluation of the cost production modeling with power grid modeling efforts of demand response.

Alkadi, Nasr E [ORNL] [ORNL; Starke, Michael R [ORNL] [ORNL; Ma, Ookie [United States Department of Energy (DOE), Office of Efficiency and Renewable Energy (EERE)] [United States Department of Energy (DOE), Office of Efficiency and Renewable Energy (EERE)

2013-11-01T23:59:59.000Z

449

Chilled Water Thermal Storage System and Demand Response at the University of California at Merced  

E-Print Network (OSTI)

University of California at Merced is a unique campus that has benefited from intensive efforts to maximize energy efficiency, and has participated in a demand response program for the past two years. Campus demand response evaluations are often difficult because of the complexities introduced by central heating and cooling, non-coincident and diverse building loads, and existence of a single electrical meter for the entire campus. At the University of California at Merced, a two million gallon chilled water storage system is charged daily during off-peak price periods and used to flatten the load profile during peak demand periods, further complicating demand response scenarios. The goal of this research is to study demand response savings in the presence of storage systems in a campus setting. First, University of California at Merced is described and its participation in a demand response event during 2008 is detailed. Second, a set of demand response strategies were pre-programmed into the campus control system to enable semi-automated demand response during a 2009 event, which is also evaluated. Finally, demand savings results are applied to the utility’s DR incentives structure to calculate the financial savings under various DR programs and tariffs.

Granderson, J.; Dudley, J. H.; Kiliccote, S.; Piette, M. A.

2009-11-01T23:59:59.000Z

450

Evaluation of cooling performance of thermally activated building system with evaporative cooling source for typical United States climates  

E-Print Network (OSTI)

cooling (TABS) with a cooling tower providing chilled waterevaporative cooling (cooling tower) for radiant ceiling slabradiant cooling with a cooling tower providing chilled water

Feng, Jingjuan; Bauman, Fred

2013-01-01T23:59:59.000Z

451

Recovery Act: Federspiel Controls (now Vigilent) and State of California Department of General Services Data Center Energy Efficient Cooling Control Demonstration  

SciTech Connect

Eight State of California data centers were equipped with an intelligent energy management system to evaluate the effectiveness, energy savings, dollar savings and benefits that arise when powerful artificial intelligence-based technology measures, monitors and actively controls cooling operations. Control software, wireless sensors and mesh networks were used at all sites. Most sites used variable frequency drives as well. The system dynamically adjusts temperature and airflow on the fly by analyzing real-time demands, thermal behavior and historical data collected on site. Taking into account the chaotic interrelationships of hundreds to thousands of variables in a data center, the system optimizes the temperature distribution across a facility while also intelligently balancing loads, outputs, and airflow. The overall project will provide a reduction in energy consumption of more than 2.3 million kWh each year, which translates to $240,000 saved and a reduction of 1.58 million pounds of carbon emissions. Across all sites, the cooling energy consumption was reduced by 41%. The average reduction in energy savings across all the sites that use VFDs is higher at 58%. Before this case study, all eight data centers ran the cooling fans at 100% capacity all of the time. Because of the new technology, cooling fans run at the optimum fan speed maintaining stable air equilibrium while also expending the least amount of electricity. With lower fan speeds, the life of the capital investment made on cooling equipment improves, and the cooling capacity of the data center increases. This case study depicts a rare technological feat: The same process and technology worked cost effectively in eight very different environments. The results show that savings were achieved in centers with diverse specifications for the sizes, ages and types of cooling equipment. The percentage of cooling energy reduction ranged from 19% to 78% while keeping temperatures substantially within the limits recommended by the American Society of Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE) for data center facilities.

Federspiel, Clifford; Evers, Myah

2011-09-30T23:59:59.000Z

452

Auto-DR and Pre-cooling of Buildings at Tri-City Corporate Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Auto-DR and Pre-cooling of Buildings at Tri-City Corporate Center Auto-DR and Pre-cooling of Buildings at Tri-City Corporate Center Title Auto-DR and Pre-cooling of Buildings at Tri-City Corporate Center Publication Type Report LBNL Report Number LBNL-3348e Year of Publication 2008 Authors Yin, Rongxin, Peng Xu, and Sila Kiliccote Keywords auto-dr, building energy simulation tool, demand response, demand shifting (pre-cooling), DRQAT, market sectors, pre-cooling, technologies, testbed tools and guides, thermal mass Abstract Over the several past years, Lawrence Berkeley National Laboratory (LBNL) has conducted field tests for different pre-cooling strategies in different commercial buildings within California. The test results indicated that pre-cooling strategies were effective in reducing electric demand in these buildings during peak periods. This project studied how to optimize pre-cooling strategies for eleven buildings in the Tri-City Corporate Center, San Bernardino, California with the assistance of a building energy simulation tool - the Demand Response Quick Assessment Tool (DRQAT) developed by LBNL's Demand Response Research Center funded by the California Energy Commission's Public Interest Energy Research (PIER) Program. From the simulation results of these eleven buildings, optimal pre-cooling and temperature reset strategies were developed. The study shows that after refining and calibrating initial models with measured data, the accuracy of the models can be greatly improved and the models can be used to predict load reductions for automated demand response (Auto-DR) events. This study summarizes the optimization experience of the procedure to develop and calibrate building models in DRQAT. In order to confirm the actual effect of demand response strategies, the simulation results were compared to the field test data. The results indicated that the optimal demand response strategies worked well for all buildings in the Tri-City Corporate Center. This study also compares DRQAT with other building energy simulation tools (eQUEST and BEST). The comparison indicate that eQUEST and BEST underestimate the actual demand shed of the pre-cooling strategies due to a flaw in DOE2's simulation engine for treating wall thermal mass. DRQAT is a more accurate tool in predicting thermal mass effects of DR events.

453

Demand Response Valuation Frameworks Paper  

Science Conference Proceedings (OSTI)

While there is general agreement that demand response (DR) is a valued component in a utility resource plan, there is a lack of consensus regarding how to value DR. Establishing the value of DR is a prerequisite to determining how much and what types of DR should be implemented, to which customers DR should be targeted, and a key determinant that drives the development of economically viable DR consumer technology. Most approaches for quantifying the value of DR focus on changes in utility system revenue requirements based on resource plans with and without DR. This ''utility centric'' approach does not assign any value to DR impacts that lower energy and capacity prices, improve reliability, lower system and network operating costs, produce better air quality, and provide improved customer choice and control. Proper valuation of these benefits requires a different basis for monetization. The review concludes that no single methodology today adequately captures the wide range of benefits and value potentially attributed to DR. To provide a more comprehensive valuation approach, current methods such as the Standard Practice Method (SPM) will most likely have to be supplemented with one or more alternative benefit-valuation approaches. This report provides an updated perspective on the DR valuation framework. It includes an introduction and four chapters that address the key elements of demand response valuation, a comprehensive literature review, and specific research recommendations.

Heffner, Grayson

2009-02-01T23:59:59.000Z

454

Turbomachine rotor with improved cooling  

DOE Patents (OSTI)

A gas turbine rotor has an essentially closed loop cooling air scheme in which cooling air drawn from the compressor discharge air that is supplied to the combustion chamber is further compressed, cooled, and then directed to the aft end of the turbine rotor. Downstream seal rings attached to the downstream face of each rotor disc direct the cooling air over the downstream disc face, thereby cooling it, and then to cooling air passages formed in the rotating blades. Upstream seal rings attached to the upstream face of each disc direct the heated cooling air away from the blade root while keeping the disc thermally isolated from the heated cooling air. From each upstream seal ring, the heated cooling air flows through passages in the upstream discs and is then combined and returned to the combustion chamber from which it was drawn. 5 figs.

Hultgren, K.G.; McLaurin, L.D.; Bertsch, O.L.; Lowe, P.E.

1998-05-26T23:59:59.000Z

455

Turbomachine rotor with improved cooling  

SciTech Connect

A gas turbine rotor has an essentially closed loop cooling air scheme in which cooling air drawn from the compressor discharge air that is supplied to the combustion chamber is further compressed, cooled, and then directed to the aft end of the turbine rotor. Downstream seal rings attached to the downstream face of each rotor disc direct the cooling air over the downstream disc face, thereby cooling it, and then to cooling air passages formed in the rotating blades. Upstream seal rings attached to the upstream face of each disc direct the heated cooling air away from the blade root while keeping the disc thermally isolated from the heated cooling air. From each upstream seal ring, the heated cooling air flows through passages in the upstream discs and is then combined and returned to the combustion chamber from which it was drawn.

Hultgren, Kent Goran (Winter Park, FL); McLaurin, Leroy Dixon (Winter Springs, FL); Bertsch, Oran Leroy (Titusville, FL); Lowe, Perry Eugene (Oviedo, FL)

1998-01-01T23:59:59.000Z

456

Equity Effects of Increasing-Block Electricity Pricing  

E-Print Network (OSTI)

Increasing-Block Residential Electricity Rates in CaliforniaResidential Demand for Electricity under Inverted Block Rates:

Borenstein, Severin

2008-01-01T23:59:59.000Z

457

Increased power production through enhancements to the Organic ...  

beyond conventional fossil fuels will become inevitably necessary in order to meet increasing global energy demands. Ef?cient and

458

LNG demand, shipping will expand through 2010  

Science Conference Proceedings (OSTI)

The 1990s, especially the middle years, have witnessed a dramatic turnaround in the growth of liquefied-natural-gas demand which has tracked equally strong natural-gas demand growth. This trend was underscored late last year by several annual studies of world LNG demand and shipping. As 1998 began, however, economic turmoil in Asian financial markets has clouded near-term prospects for LNG in particular and all energy in general. But the extent of damage to energy markets is so far unclear. A study by US-based Institute of Gas Technology, Des Plaines, IL, reveals that LNG imports worldwide have climbed nearly 8%/year since 1980 and account for 25% of all natural gas traded internationally. In the mid-1970s, the share was only 5%. In 1996, the most recent year for which complete data are available, world LNG trade rose 7.7% to a record 92 billion cu m, outpacing the overall consumption for natural gas which increased 4.7% in 1996. By 2015, says the IGT study, natural-gas use would surpass coal as the world`s second most widely used fuel, after petroleum. Much of this growth will occur in the developing countries of Asia where gas use, before the current economic crisis began, was projected to grow 8%/year through 2015. Similar trends are reflected in another study of LNG trade released at year end 1997, this from Ocean Shipping Consultants Ltd., Surrey, U.K. The study was done too early, however, to consider the effects of the financial problems roiling Asia.

True, W.R.

1998-02-09T23:59:59.000Z

459

China-Transportation Demand Management in Beijing: Mitigation of Emissions  

Open Energy Info (EERE)

China-Transportation Demand Management in Beijing: Mitigation of Emissions China-Transportation Demand Management in Beijing: Mitigation of Emissions in Urban Transport Jump to: navigation, search Name Transportation Demand Management in Beijing - Mitigation of emissions in urban transport Agency/Company /Organization Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Sector Climate Focus Area Transportation Topics Low emission development planning, -LEDS, -NAMA Website http://www.tdm-beijing.org/ Program Start 2011 Program End 2014 Country China Eastern Asia References Transport Management in Beijing[1] Program Overview The project aims to improve transport demand management (TDM) in Beijing in order to manage the steadily increasing traffic density. The project provides capacity building for decision-makers and transport planners in

460

Five solar cooling projects  

Science Conference Proceedings (OSTI)

The jointly funded $100 million five-year international agreement (SOLERAS) between Saudi Arabia and the United States was undertaken to promote the development of solar energy technologies of interest to both nations. Five engineering field tests of active solar cooling systems funded under the SOLERAS agreement for installation and operation in the U.S. southwest are described.

Davis, R.E.; Williamson, J.S.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "increased cooling demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Optimizing the Low Temperature Cooling Energy Supply: Experimental Performance of an Absorption Chiller, a Compression Refrigeration Machine and Direct Cooling - a Comparison  

E-Print Network (OSTI)

A strategy to optimize the low temperature cooling energy supply of a newly build office building is discussed against the background of a changing energy system. It is focused on, what production way - Direct Cooling, the Compression Refrigeration Machine or the Absorption Chiller provided with heat from Combined Heat and Power Plants - has the lowest primary energy consumption at what load level. For low levels this is direct cooling. If demand exceeds the capacity of direct cooling, the absorption chiller is the option to choose. However, in future the compression refrigeration machine is more efficient at providing high load levels than the Absorption Chiller. The operation analysis shows that flow rates are often held constant and the re-cooling temperatures are often above the ambient temperature. By the integration of automatic flow rate control and lowering the re-cooling temperature of the chillers, electricity consumption of pumps can be reduced and energy efficiency enhanced.

Uhrhan, S.; Gerber, A.

2012-01-01T23:59:59.000Z

462

Performance Evaluation of a 4.5 kW (1.3 Refrigeration Tons) Air-Cooled Lithium Bromide/Water Solar Powered (Hot-Water-Fired) Absorption Unit  

Science Conference Proceedings (OSTI)

During the summer months, air-conditioning (cooling) is the single largest use of electricity in both residential and commercial buildings with the major impact on peak electric demand. Improved air-conditioning technology has by far the greatest potential impact on the electric industry compared to any other technology that uses electricity. Thermally activated absorption air-conditioning (absorption chillers) can provide overall peak load reduction and electric grid relief for summer peak demand. This innovative absorption technology is based on integrated rotating heat exchangers to enhance heat and mass transfer resulting in a potential reduction of size, cost, and weight of the "next generation" absorption units. Rotartica Absorption Chiller (RAC) is a 4.5 kW (1.3 refrigeration tons or RT) air-cooled lithium bromide (LiBr)/water unit powered by hot water generated using the solar energy and/or waste heat. Typically LiBr/water absorption chillers are water-cooled units which use a cooling tower to reject heat. Cooling towers require a large amount of space, increase start-up and maintenance costs. However, RAC is an air-cooled absorption chiller (no cooling tower). The purpose of this evaluation is to verify RAC performance by comparing the Coefficient of Performance (COP or ratio of cooling capacity to energy input) and the cooling capacity results with those of the manufacturer. The performance of the RAC was tested at Oak Ridge National Laboratory (ORNL) in a controlled environment at various hot and chilled water flow rates, air handler flow rates, and ambient temperatures. Temperature probes, mass flow meters, rotational speed measuring device, pressure transducers, and a web camera mounted inside the unit were used to monitor the RAC via a web control-based data acquisition system using Automated Logic Controller (ALC). Results showed a COP and cooling capacity of approximately 0.58 and 3.7 kW respectively at 35 C (95 F) design condition for ambient temperature with 40 C (104 F) cooling water temperature. This is in close agreement with the manufacturer data of 0.60 for COP and 3.9 kW for cooling capacity. This study resulted in a complete performance map of RAC which will be used to evaluate the potential benefits of rotating heat exchangers in making the "next-generation" absorption chillers more compact and cost effective without any significant degradation in the performance. In addition, the feasibility of using rotating heat exchangers in other applications will be evaluated.

Zaltash, Abdolreza [ORNL; Petrov, Andrei Y [ORNL; Linkous, Randall Lee [ORNL; Vineyard, Edward Allan [ORNL

2007-01-01T23:59:59.000Z

463

Comparative Study Between Air-Cooled and Water-Cooled Condensers of the Air-Conditioning Systems  

E-Print Network (OSTI)

The weather in Kuwait is very dry where the dry-bulb temperature exceeds the wet-bulb temperature more than 20oC in most of the summer months. Thus, the air-conditioning (A/C) system with the water-cooled (WC) condensers is expected to perform more efficiently than with the air-cooled (AC) condensers. This fact was behind the idea of a field study conducted in one of the major hospital in Kuwait during a summer season to investigate the performance of WC and AC systems in terms of peak power and energy consumptions. The cooling capacities for WC and AC systems were 373 and 278 tons-of- refrigeration, respectively. It was found that for the same cooling production, the peak power demand and the daily energy consumption of the WC system were 45 and 32% less than that of the AC system, respectively. The maximum reduction in the power demand coincided with the peak power demand period of the utilities i.e. between 14:00 and 17:00 hr, thereby offering a maximum advantage of peak power saving.

Maheshwari, G. P.; Mulla Ali, A. A.

2004-01-01T23:59:59.000Z

464

Cactus pear cauterizer increases shelf life without cooling processes  

Science Conference Proceedings (OSTI)

Mexico is the world's largest cactus pear producer and aspires to be the world's largest exporter. Export pear quality depends significantly on good cuts during harvest, so a cauterizer was developed to cut and seal 600 fruits per hour. Shelf life of ... Keywords: Cauterization, Energy optimization, RGB maturity analysis, Weight loss

Federico Hahn

2009-01-01T23:59:59.000Z

465

Air-Cooled Condenser Design, Specification, and Operation Guidelines  

Science Conference Proceedings (OSTI)

In contrast to once-through and evaporative cooling systems, use of the air-cooled condenser (ACC) for heat rejection in steam electric power plants has historically been very limited, especially in the United States. However, greater industry focus on water conservation - combined with continued concern over the environmental effects of once-through and evaporative cooling - will almost certainly increase interest in ACC applications. While operating experience and performance data are, to some extent, ...

2005-12-05T23:59:59.000Z

466

Outlook for US lube oil supply and demand  

Science Conference Proceedings (OSTI)

This paper examines the domestic demand for automotive and industrial lubricants to the year 2000 and evaluates the ability of U.S. refiners to meet the associated demand for base stocks. Changes in the supply/demand picture over the past several years are also reviewed. In the late 1970's, lube base stocks had been in short supply as healthy increases in demand pushed U.S. refiners to near maximum operating levels. Imports were increased to what were then record high levels and exports were reduced. This situation began to reverse itself in mid-1980 as marketers began to feel the impact of recession here and abroad. U.S. base stock consumption has since declined dramatically, to a level in 1982 estimated to be 17.5% below that of 1979's peak. In the meantime, refiners had added another 7.0 MB/CD to manufacturing capacity. 1982 lube plant operations are estimated to have dropped as low as 62% of nameplate capacity. The outlook for recovery is conservative. Due to continued depressed demand in certain market segments, 1983's increase in base oil demand is projected to be held to only 2%. Gains in 1984 and 1985 will be more robust, in the area of 6% per year. Thereafter, the overall rate of growth will drop to under 1% per year. The outlooks for automotive and industrial lubricants demand are summarized. Due to a forecast of greater relative growth in synthetic and water-based lubricants, base stock consumption is forecast to increase at a slower pace than that of the total finished lubricants volume.

Brecht, F.

1983-03-01T23:59:59.000Z

467

Global Cooling: Policies to Cool the World and Offset Global Warming from CO2 Using Reflective Roofs and Pavements  

Science Conference Proceedings (OSTI)

Increasing the solar reflectance of the urban surface reduce its solar heat gain, lowers its temperatures, and decreases its outflow of thermal infrared radiation into the atmosphere. This process of 'negative radiative forcing' can help counter the effects of global warming. In addition, cool roofs reduce cooling-energy use in air conditioned buildings and increase comfort in unconditioned buildings; and cool roofs and cool pavements mitigate summer urban heat islands, improving outdoor air quality and comfort. Installing cool roofs and cool pavements in cities worldwide is a compelling win-win-win activity that can be undertaken immediately, outside of international negotiations to cap CO{sub 2} emissions. We propose an international campaign to use solar reflective materials when roofs and pavements are built or resurfaced in temperate and tropical regions.

Akbari, Hashem; Levinson, Ronnen; Rosenfeld, Arthur; Elliot, Matthew

2009-08-28T23:59:59.000Z

468

Definition: Peak Demand | Open Energy Information  

Open Energy Info (EERE)

Peak Demand Peak Demand Jump to: navigation, search Dictionary.png Peak Demand The highest hourly integrated Net Energy For Load within a Balancing Authority Area occurring within a given period (e.g., day, month, season, or year)., The highest instantaneous demand within the Balancing Authority Area.[1] View on Wikipedia Wikipedia Definition Peak demand is used to refer to a historically high point in the sales record of a particular product. In terms of energy use, peak demand describes a period of strong consumer demand. Related Terms Balancing Authority Area, energy, demand, balancing authority, smart grid References ↑ Glossary of Terms Used in Reliability Standards An inli LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ne Glossary Definition Retrieved from

469

Distillate Demand Strong in December 1999  

Gasoline and Diesel Fuel Update (EIA)

5% higher than in the prior year, due mainly to diesel demand growth, since warm weather kept heating oil demand from growing much. Last December, when stocks dropped below...

470

Solar in Demand | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

in Demand Solar in Demand June 15, 2012 - 10:23am Addthis Kyle Travis, left and Jon Jackson, with Lighthouse Solar, install microcrystalline PV modules on top of Kevin Donovan's...

471

Energy Basics: Tankless Demand Water Heaters  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

only as needed and without the use of a storage tank. They don't produce the standby energy losses associated with storage water heaters. How Demand Water Heaters Work Demand...

472

Propane Demand by Sector - Energy Information Administration  

U.S. Energy Information Administration (EIA)

In order to understand markets you also have to look at supply and demand. First, demand or who uses propane. For the most part, the major components of propane ...

473

Cooling Towers- Energy Conservation Strategies Understanding Cooling Towers  

E-Print Network (OSTI)

Cooling towers are energy conservation devices that Management, more often than not, historically overlooks in the survey of strategies for plant operating efficiencies. The utilization of the colder water off the cooling tower is the money maker!

Smith, M.

1991-06-01T23:59:59.000Z

474

Energy Demand and Fuel Supply in Developing Countries Brazil, Korea and the Philippines  

E-Print Network (OSTI)

increased o f coke hydroelectricity. S u b s t a n t i a l roccurred of in industry, hydroelectricity, in the demand for

Sathaye, Jayant A.

1984-01-01T23:59:59.000Z

475

Travel Behavior and Demand Analysis and Prediction  

E-Print Network (OSTI)

and Demand Analysis and Prediction Konstadinos G. Goulias University of California Santa Barbara, Santa Barbara, CA, USA

Goulias, Konstadinos G

2007-01-01T23:59:59.000Z

476

Forecasting the demand for commercial telecommunications satellites  

Science Conference Proceedings (OSTI)

This paper summarizes the key elements of a forecast methodology for predicting demand for commercial satellite services and the resulting demand for satellite hardware and launches. The paper discusses the characterization of satellite services into more than a dozen applications (including emerging satellite Internet applications) used by Futron Corporation in its forecasts. The paper discusses the relationship between demand for satellite services and demand for satellite hardware

Carissa Bryce Christensen; Carie A. Mullins; Linda A. Williams

2001-01-01T23:59:59.000Z

477

Study on Auto-DR and Pre-Cooling of Commercial Buildings with Thermal Mass in California  

E-Print Network (OSTI)

in a hot California climate zone with the Demand Responsetested in this hot climate zone. Keywords: Pre-cooling;buildings in a hot climate zone in California, the use of

Yin, Rongxin

2010-01-01T23:59:59.000Z

478

Techno-Economic Assessment of Solar PV/Thermal System for Power and Cooling Generation in Antalya, Turkey.  

E-Print Network (OSTI)

?? In this study a roof-top PVT/absorption chiller system is modeled for a hotel building in Antalya, Turkey to cover the cooling demand of the… (more)

Kumbasar, Serdar

2013-01-01T23:59:59.000Z

479

Forecasting demand of commodities after natural disasters  

Science Conference Proceedings (OSTI)

Demand forecasting after natural disasters is especially important in emergency management. However, since the time series of commodities demand after natural disasters usually has a great deal of nonlinearity and irregularity, it has poor prediction ... Keywords: ARIMA, Demand forecasting, EMD, Emergency management, Natural disaster

Xiaoyan Xu; Yuqing Qi; Zhongsheng Hua

2010-06-01T23:59:59.000Z

480

CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY DEMAND 2014­2024 FINAL FORECAST Volume 1: Statewide Electricity Demand in this report. #12;i ACKNOWLEDGEMENTS The demand forecast is the combined product of the hard work to the contributing authors listed previously, Mohsen Abrishami prepared the commercial sector forecast. Mehrzad

Note: This page contains sample records for the topic "increased cooling demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY DEMAND 2014­2024 REVISED FORECAST Volume 1: Statewide Electricity Demand in this report. #12;i ACKNOWLEDGEMENTS The demand forecast is the combined product of the hard work listed previously, Mohsen Abrishami prepared the commercial sector forecast. Mehrzad Soltani Nia helped

482

REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022  

E-Print Network (OSTI)

REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 2: Electricity Demand by Utility ACKNOWLEDGEMENTS The staff demand forecast is the combined product of the hard work and expertise of numerous, Mohsen Abrishami prepared the commercial sector forecast. Mehrzad Soltani Nia helped prepare

483

REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022  

E-Print Network (OSTI)

REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 1: Statewide Electricity Demand in this report. #12;i ACKNOWLEDGEMENTS The staff demand forecast is the combined product of the hard work listed previously, Mohsen Abrishami prepared the commercial sector forecast. Mehrzad Soltani Nia helped

484

FINAL STAFF FORECAST OF 2008 PEAK DEMAND  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION FINAL STAFF FORECAST OF 2008 PEAK DEMAND STAFFREPORT June 2007 CEC-200 of the information in this paper. #12;Abstract This document describes staff's final forecast of 2008 peak demand demand forecasts for the respective territories of the state's three investor-owned utilities (IOUs

485

Leveraging gamification in demand dispatch systems  

Science Conference Proceedings (OSTI)

Modern demand-side management techniques are an integral part of the envisioned smart grid paradigm. They require an active involvement of the consumer for an optimization of the grid's efficiency and a better utilization of renewable energy sources. ... Keywords: demand response, demand side management, direct load control, gamification, smart grid, sustainability

Benjamin Gnauk; Lars Dannecker; Martin Hahmann

2012-03-01T23:59:59.000Z

486

Ups and downs of demand limiting  

SciTech Connect

Electric power load management by limiting power demand can be used for energy conservation. Methods for affecting demand limiting, reducing peak usage in buildings, particularly usage for heating and ventilating systems, and power pricing to encourage demand limiting are discussed. (LCL)

Pannkoke, T.

1976-12-01T23:59:59.000Z

487

Cooling commercial buildings with off-peak power  

Science Conference Proceedings (OSTI)

Large commercial buildings use more electricity for cooling than for heating, and can account for 40% of summer peak demand. A cool storage technique in which compressors chill or freeze water during off-peak periods and the water is circulated during peak hours is in use in 100 commercial buildings. Reports indicate that these systems are economical, although little information is available, but engineers are hesitant to incorporate them because of possible damage from leaks or rust and other uncertainties. The Electric Power Research Institute is evaluating the performance of several systems to answer some of the operating and maintenance questions raised by engineers. 3 references, 3 figures. (DCK)

Lihach, N.; Rabl, V.

1983-10-01T23:59:59.000Z

488

The spatial distributions of cooling gas and intrinsic X-ray absorbing material in cooling flows  

E-Print Network (OSTI)

We present the results from a study of the spatial distributions of cooling gas and intrinsic X-ray absorbing material in a sample of nearby, X-ray bright cooling flow clusters observed with the Position Sensitive Proportional Counter (PSPC) on ROSAT. Our method of analysis employs X-ray colour profiles, formed from ratios of the surface brightness profiles of the clusters in selected energy bands, and an adapted version of the deprojection code of Fabian et al. (1981). We show that all of the cooling flow clusters in our sample exhibit significant central concentrations of cooling gas. At larger radii the clusters appear approximately isothermal. In detail, the spatial distributions and emissivity of the cooling material are shown to be in excellent agreement with the predictions from the deprojection code, and can be used to constrain the ages of the cooling flows. The X-ray colour profiles also indicate substantial levels of intrinsic X-ray absorption in the