Sample records for increased carbon dioxide

  1. Carbon Dioxide-Induced Anesthesia Results in a Rapid Increase in Plasma Levels of Vasopressin

    E-Print Network [OSTI]

    Chait, Brian T.

    Carbon Dioxide-Induced Anesthesia Results in a Rapid Increase in Plasma Levels of Vasopressin Brian of carbon dioxide, prior to decapitation is considered a more humane alternative for the euthanasia with carbon dioxide until recumbent (20­25 sec), immediately killed via decapitation, and trunk blood

  2. Abstract--Historic data shows an increase in carbon dioxide (CO2) emissions at airports caused by an increase

    E-Print Network [OSTI]

    design alternatives provides reduction of CO2 emission levels such that the CO2 emissions for 2050 meet Abstract-- Historic data shows an increase in carbon dioxide (CO2) emissions at airports caused regulations at airports through reduction of CO2 for all components of flight operations. The purpose

  3. Direct effects of increasing carbon dioxide on vegetation

    SciTech Connect (OSTI)

    Strain, B R; Cure, J D [eds.

    1985-12-01T23:59:59.000Z

    CO/sub 2/ is an essential environmental resource. It is required as a raw material of the orderly development of all green plants. As the availability of CO/sub 2/ increases, perhaps reaching two or three times the concentration prevailing in preindustrial times, plants and all other organisms dependent on them for food will be affected. Humans are releasing a gaseous fertilizer into the global atmosphere in quantities sufficient to affect all life. This volume considers the direct effects of global CO/sub 2/ fertilization on plants and thus on all other life. Separate abstracts have been prepared for individual papers. (ACR)

  4. Motivating carbon dioxide | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Motivating carbon dioxide Motivating carbon dioxide Released: April 17, 2013 Scientists show what it takes to get the potential fuel feedstock to a reactive spot on a model...

  5. Carbon dioxide effects research and assessment program. A comprehensive plan. Part I. The global carbon cycle and climatic effects of increasing carbon dioxide

    SciTech Connect (OSTI)

    None

    1980-08-01T23:59:59.000Z

    Initial plans for research of the carbon dioxide (CO/sub 2/) and climate issue were prepared in 1978 and were reviewed extensively at that time by federal agencies and members of the scientific community. Since then the plans have been used to guide early phases of the Department of Energy's and the nation's efforts related to this issue. This document represents a revision of the 1978 plan to (a) reflect recent ideas and strategies for carbon cycle research, and (b) expand the scope of research on climatic responses to increasing atmospheric concentrations of CO/sub 2/. The revised plan takes into account a number of investigations already being supported by various agencies, and it attempts to build on or add to existing research where there is a crucial need for information directly related to the CO/sub 2/ issue. It should be recognized that this document is the first section of a comprehensive plan on the overall consequences of increasing concentrations of CO/sub 2/, and includes guidelines for research on the Global Carbon Cycle and Climatic Effects of Increasing CO/sub 2/.

  6. Carbon dioxide removal process

    DOE Patents [OSTI]

    Baker, Richard W.; Da Costa, Andre R.; Lokhandwala, Kaaeid A.

    2003-11-18T23:59:59.000Z

    A process and apparatus for separating carbon dioxide from gas, especially natural gas, that also contains C.sub.3+ hydrocarbons. The invention uses two or three membrane separation steps, optionally in conjunction with cooling/condensation under pressure, to yield a lighter, sweeter product natural gas stream, and/or a carbon dioxide stream of reinjection quality and/or a natural gas liquids (NGL) stream.

  7. Carbon dioxide sensor

    DOE Patents [OSTI]

    Dutta, Prabir K. (Worthington, OH); Lee, Inhee (Columbus, OH); Akbar, Sheikh A. (Hilliard, OH)

    2011-11-15T23:59:59.000Z

    The present invention generally relates to carbon dioxide (CO.sub.2) sensors. In one embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor that incorporates lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3). In another embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor has a reduced sensitivity to humidity due to a sensing electrode with a layered structure of lithium carbonate and barium carbonate. In still another embodiment, the present invention relates to a method of producing carbon dioxide (CO.sub.2) sensors having lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3).

  8. Project Profile: Direct Supercritical Carbon Dioxide Receiver...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Direct Supercritical Carbon Dioxide Receiver Development Project Profile: Direct Supercritical Carbon Dioxide Receiver Development National Renewable Energy Laboratory logo The...

  9. Electrobiocommodities from Carbon Dioxide: Enhancing Microbial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrobiocommodities from Carbon Dioxide: Enhancing Microbial Electrosynthesis with Synthetic Electromicrobiology and System Design Electrobiocommodities from Carbon Dioxide:...

  10. CARBON DIOXIDE FIXATION.

    SciTech Connect (OSTI)

    FUJITA,E.

    2000-01-12T23:59:59.000Z

    Solar carbon dioxide fixation offers the possibility of a renewable source of chemicals and fuels in the future. Its realization rests on future advances in the efficiency of solar energy collection and development of suitable catalysts for CO{sub 2} conversion. Recent achievements in the efficiency of solar energy conversion and in catalysis suggest that this approach holds a great deal of promise for contributing to future needs for fuels and chemicals.

  11. Carbon Dioxide Reduction Through Urban Forestry

    E-Print Network [OSTI]

    Standiford, Richard B.

    . Retrieval Terms: urban forestry, carbon dioxide, sequestration, avoided energy The Authors E. Gregory McCarbon Dioxide Reduction Through Urban Forestry: Guidelines for Professional and Volunteer Tree; Simpson, James R. 1999. Carbon dioxide reduction through urban forestry

  12. Carbon dioxide and climate

    SciTech Connect (OSTI)

    Not Available

    1990-10-01T23:59:59.000Z

    Scientific and public interest in greenhouse gases, climate warming, and global change virtually exploded in 1988. The Department's focused research on atmospheric CO{sub 2} contributed sound and timely scientific information to the many questions produced by the groundswell of interest and concern. Research projects summarized in this document provided the data base that made timely responses possible, and the contributions from participating scientists are genuinely appreciated. In the past year, the core CO{sub 2} research has continued to improve the scientific knowledge needed to project future atmospheric CO{sub 2} concentrations, to estimate climate sensitivity, and to assess the responses of vegetation to rising concentrations of CO{sub 2} and to climate change. The Carbon Dioxide Research Program's goal is to develop sound scientific information for policy formulation and governmental action in response to changes of atmospheric CO{sub 2}. The Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1990 and gives a brief overview of objectives, organization, and accomplishments.

  13. Modeling Infinite Dilution and Fickian Diffusion Coefficients of Carbon Dioxide in Water

    E-Print Network [OSTI]

    Firoozabadi, Abbas

    Modeling Infinite Dilution and Fickian Diffusion Coefficients of Carbon Dioxide in Water J. Wambui infinite dilution diffusion coefficients for carbon dioxide and water mixtures. The model takes, carbon dioxide, classical thermodynamics Introduction The increase in atmospheric concentrations of CO2

  14. Optimize carbon dioxide sequestration, enhance oil recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate...

  15. Case Study: Transcritical Carbon Dioxide Supermarket Refrigeration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Case Study: Transcritical Carbon Dioxide Supermarket Refrigeration Systems Case Study: Transcritical Carbon Dioxide Supermarket Refrigeration Systems This case study documents one...

  16. CARBON DIOXIDE AND OUR OCEAN LEGACY

    E-Print Network [OSTI]

    is a biologist at the California State Univer- sity San Marcos, with expertise in the effects of carbon dioxideCARBON DIOXIDE AND OUR OCEAN LEGACY G Carbon Dioxide: Our Role The United States is the single. Every day the average American adds about 118 pounds of carbon dioxide to the atmos- phere, due largely

  17. Carbon Dioxide: Threat or Opportunity?

    E-Print Network [OSTI]

    McKinney, A. R.

    1982-01-01T23:59:59.000Z

    catastrophic long term effects on world climate. An alternative to discharging carbon dioxide into the atmosphere is to find new uses. One possible use is in 'Biofactories'. Biofactories may be achieved by exploiting two new developing technologies: Solar...

  18. Reducing carbon dioxide to products

    DOE Patents [OSTI]

    Cole, Emily Barton; Sivasankar, Narayanappa; Parajuli, Rishi; Keets, Kate A

    2014-09-30T23:59:59.000Z

    A method reducing carbon dioxide to one or more products may include steps (A) to (C). Step (A) may bubble said carbon dioxide into a solution of an electrolyte and a catalyst in a divided electrochemical cell. The divided electrochemical cell may include an anode in a first cell compartment and a cathode in a second cell compartment. The cathode may reduce said carbon dioxide into said products. Step (B) may adjust one or more of (a) a cathode material, (b) a surface morphology of said cathode, (c) said electrolyte, (d) a manner in which said carbon dioxide is bubbled, (e), a pH level of said solution, and (f) an electrical potential of said divided electrochemical cell, to vary at least one of (i) which of said products is produced and (ii) a faradaic yield of said products. Step (C) may separate said products from said solution.

  19. Recuperative supercritical carbon dioxide cycle

    DOE Patents [OSTI]

    Sonwane, Chandrashekhar; Sprouse, Kenneth M; Subbaraman, Ganesan; O'Connor, George M; Johnson, Gregory A

    2014-11-18T23:59:59.000Z

    A power plant includes a closed loop, supercritical carbon dioxide system (CLS-CO.sub.2 system). The CLS-CO.sub.2 system includes a turbine-generator and a high temperature recuperator (HTR) that is arranged to receive expanded carbon dioxide from the turbine-generator. The HTR includes a plurality of heat exchangers that define respective heat exchange areas. At least two of the heat exchangers have different heat exchange areas.

  20. Carbon Dioxide Sequestration in Concrete Using Vacuum-Carbonation Alain Azar, Prof. Yixin Shao

    E-Print Network [OSTI]

    Barthelat, Francois

    Carbon Dioxide Sequestration in Concrete Using Vacuum-Carbonation Alain Azar, Prof. Yixin Shao promising carbon uptake results and is a viable option for carbonation curing. Carbon sequestration increase in Carbon dioxide (CO2) emissions over the past five decades, specific ways to reduce

  1. Carbon Dioxide Sequestration Industrial-scale processes are available for separating carbon dioxide from the post-

    E-Print Network [OSTI]

    Carbon Dioxide Sequestration Industrial-scale processes are available for separating carbon dioxide dioxide separation and sequestration because the lower cost of carbon dioxide separation from for injection of carbon dioxide into oil or gas-bearing formations. An advantage of sequestration involving

  2. New Materials for Capturing Carbon Dioxide from Combustion Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to APS Science Highlights rss feed New Materials for Capturing Carbon Dioxide from Combustion Gases April 9, 2014 Bookmark and Share The SIFSIX materials in order of increasing...

  3. argon carbon dioxide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon dioxide levels in the atmosphere. Additional measurements by scientists working 10 Carbon Dioxide Sequestration and Utilization CiteSeer Summary: ? Carbon dioxide (CO2) in...

  4. applied carbon dioxide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon dioxide levels in the atmosphere. Additional measurements by scientists working 8 Carbon Dioxide Sequestration and Utilization CiteSeer Summary: ? Carbon dioxide (CO2) in...

  5. aqueous carbon dioxide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon dioxide levels in the atmosphere. Additional measurements by scientists working 12 Carbon Dioxide Sequestration and Utilization CiteSeer Summary: ? Carbon dioxide (CO2) in...

  6. Methanation of Carbon Dioxide

    E-Print Network [OSTI]

    Goodman, Daniel Jacob

    2013-01-01T23:59:59.000Z

    cycle plants, possibly with carbon capture and storage (CCS)natural gas plant with carbon capture and storage technology

  7. Methanation of Carbon Dioxide

    E-Print Network [OSTI]

    Goodman, Daniel Jacob

    2013-01-01T23:59:59.000Z

    gas plant with carbon capture and storage technology werewith carbon capture and storage (CCS) technology, to replace

  8. VAPOR + LIQUID EQUILIBRIUM OF WATER, CARBON DIOXIDE, AND THE BINARY SYSTEM WATER + CARBON DIOXIDE FROM

    E-Print Network [OSTI]

    ) and their binary mixtures (between 348 and 393 K). The properties of supercritical carbon dioxide were determinedVAPOR + LIQUID EQUILIBRIUM OF WATER, CARBON DIOXIDE, AND THE BINARY SYSTEM WATER + CARBON DIOXIDE the vapor-liquid equilibrium of water (between 323 and 573 K), carbon dioxide (between 230 and 290 K

  9. Process for sequestering carbon dioxide and sulfur dioxide

    DOE Patents [OSTI]

    Maroto-Valer, M. Mercedes (State College, PA); Zhang, Yinzhi (State College, PA); Kuchta, Matthew E. (State College, PA); Andresen, John M. (State College, PA); Fauth, Dan J. (Pittsburgh, PA)

    2009-10-20T23:59:59.000Z

    A process for sequestering carbon dioxide, which includes reacting a silicate based material with an acid to form a suspension, and combining the suspension with carbon dioxide to create active carbonation of the silicate-based material, and thereafter producing a metal salt, silica and regenerating the acid in the liquid phase of the suspension.

  10. Summary Human activities are increasing the concentra-tions of atmospheric carbon dioxide ([CO2]) and tropospheric

    E-Print Network [OSTI]

    to forest soils. Because the quality and quantity of labile and recalcitrant carbon (C) com- pounds, soluble phenolics and condensed tannins. Elevated [CO2] significantly increased lit- ter biomass] and tropospheric [O3] that we observed, combined with changes in litter biomass production, could significantly

  11. SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW

    E-Print Network [OSTI]

    Santos, Juan

    SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW J. E. Santos1, G. B. Savioli2, J. M. Carcione3, D´e, Argentina SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW ­ p. #12;Introduction. I Storage of CO2). SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW ­ p. #12;Introduction. II CO2 is separated from natural

  12. Putting the pressure on carbon dioxide | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on carbon dioxide Released: March 26, 2014 Improving the chances for fuel recovery and carbon sequestration Artwork from this research graces the cover of Environmental Science...

  13. Carbon Dioxide, Global Warming, and Michael Crichton's "State of Fear"

    E-Print Network [OSTI]

    Rust, Bert W.

    Carbon Dioxide, Global Warming, and Michael Crichton's "State of Fear" Bert W. Rust Mathematical- tioned the connection between global warming and increasing atmospheric carbon dioxide by pointing out of these plots to global warming have spilled over to the real world, inviting both praise [4, 17] and scorn [15

  14. Carbon dioxide storage professor Martin Blunt

    E-Print Network [OSTI]

    Carbon dioxide storage professor Martin Blunt executive summary Carbon Capture and Storage (CCS) referS to the Set of technologies developed to capture carbon dioxide (Co2) gas from the exhausts raises new issues of liability and risk. the focus of this briefing paper is on the storage of carbon

  15. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOE Patents [OSTI]

    Aines, Roger D.; Bourcier, William L.

    2014-08-19T23:59:59.000Z

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  16. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOE Patents [OSTI]

    Aines, Roger D. (Livermore, CA); Bourcier, William L. (Livermore, CA)

    2010-11-09T23:59:59.000Z

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  17. Supercritical Carbon Dioxide Turbo-Expander and Heat Exchangers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supercritical Carbon Dioxide Turbo-Expander and Heat Exchangers Supercritical Carbon Dioxide Turbo-Expander and Heat Exchangers This fact sheet describes a supercritical carbon...

  18. Carbon dioxide-assisted fabrication of highly uniform submicron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dioxide-assisted fabrication of highly uniform submicron-sized colloidal carbon spheres via hydrothermal carbonization Carbon dioxide-assisted fabrication of highly uniform...

  19. ARM - Carbon Dioxide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492air Comments? We would love to heargovInstrumentstdma Comments? WeairgovInstrumentswsiCampaignCarbon

  20. Climate Policy Design: Interactions among Carbon Dioxide, Methane, and Urban Air Pollution Constraints

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Climate Policy Design: Interactions among Carbon Dioxide, Methane, and Urban Air Pollution Policy Design: Interactions among Carbon Dioxide, Methane, and Urban Air Pollution Constraints by Marcus. The third case examines the benefits of increased policy coordination between air pollution constraints

  1. Optimize carbon dioxide sequestration, enhance oil recovery

    E-Print Network [OSTI]

    - 1 - Optimize carbon dioxide sequestration, enhance oil recovery January 8, 2014 Los Alamos simulation to optimize carbon dioxide (CO2) sequestration and enhance oil recovery (CO2-EOR) based on known production. Due to carbon capture and storage technology advances, prolonged high oil prices

  2. SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW

    E-Print Network [OSTI]

    santos

    SEISMIC MONITORING OF. CARBON DIOXIDE FLUID FLOW. J. E. Santos. 1. , G. B. Savioli. 2. , J. M. Carcione. 3. , D. Gei. 3. 1. CONICET, IGPUBA, Fac.

  3. SIMULATION OF CARBON DIOXIDE STORAGE APPLYING ...

    E-Print Network [OSTI]

    Capture and storage of Carbon dioxide in aquifers and reservoirs is one of the solutions to mitigate the greenhouse effect. Geophysical methods can be used to

  4. Carbon Dioxide for pH Control

    SciTech Connect (OSTI)

    Wagonner, R.C.

    2001-08-16T23:59:59.000Z

    Cardox, the major supplier of carbon dioxide, has developed a diffuser to introduce carbon dioxide into a water volume as small bubbles to minimize reagent loss to the atmosphere. This unit is integral to several configurations suggested for treatment to control alkalinity in water streams.

  5. Water and Carbon Dioxide Adsorption at Olivine Surfaces. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Carbon Dioxide Adsorption at Olivine Surfaces. Water and Carbon Dioxide Adsorption at Olivine Surfaces. Abstract: Plane-wave density functional theory (DFT) calculations were...

  6. Haverford Researchers Create Carbon Dioxide-Separating Polymer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Haverford College Researchers Create Carbon Dioxide-Separating Polymer Haverford College Researchers Create Carbon Dioxide-Separating Polymer August 1, 2012 | Tags: Basic Energy...

  7. Project Profile: Supercritical Carbon Dioxide Turbo-Expander...

    Energy Savers [EERE]

    Supercritical Carbon Dioxide Turbo-Expander and Heat Exchangers Project Profile: Supercritical Carbon Dioxide Turbo-Expander and Heat Exchangers SWRI Logo The Southwest Research...

  8. SEQUESTERING CARBON DIOXIDE IN COALBEDS

    SciTech Connect (OSTI)

    K.A.M. Gasem; R.L. Robinson, Jr.; L.R. Radovic

    2001-06-15T23:59:59.000Z

    The authors' long term goal is to develop accurate prediction methods for describing the adsorption behavior of gas mixtures on solid adsorbents over complete ranges of temperature, pressure and adsorbent types. The major objectives of the project are to: (1) measure the adsorption behavior of pure CO{sub 2}, methane, nitrogen and their binary and ternary mixtures on several selected coals having different properties at temperatures and pressures applicable to the particular coal being studied, (2) generalize the adsorption results in terms of appropriate properties of the coals, to facilitate estimation of adsorption behavior for coals other than those studied experimentally, (3) delineate the sensitivity of the competitive adsorption of CO{sub 2}, methane and nitrogen to the specific characteristics of the coal on which they are adsorbed; establish the major differences (if any) in the nature of this competitive adsorption on different coals, and (4) test and/or develop theoretically-based mathematical models to represent accurately the adsorption behavior of mixtures of the type for which measurements are made. The specific accomplishments of this project during this reporting period are summarized below in three broad categories outlining experimentation, model development, and coal characterization. (1) Experimental Work: Our adsorption apparatus was reassembled, and all instruments were tested and calibrated. Having confirmed the viability of the experimental apparatus and procedures used, adsorption isotherms for pure methane, carbon dioxide and nitrogen on wet Fruitland coal were measured at 319.3 K (115 F) and pressures to 12.4 MPa (1800 psia). These measurements showed good agreement with our previous data and yielded an expected uncertainty of about 2%. Preparations are underway to measure adsorption isotherms for pure methane, carbon dioxide and nitrogen on two other coals. (2) Model Development: The experimental data were used to evaluate the predictive capabilities of various adsorption models, including the Langmuir/loading ratio correlation, two-dimensional cubic equations of state, and the local density model. In general, all models performed well for Type I adsorption exhibited by methane, nitrogen, and carbon dioxide up to 8.3 MPa (average deviations within 2%). However, for pressures higher than 8.3 MPa (1200 psia), carbon dioxide produced multilayer adsorption behavior similar to Type IV adsorption. Our results to date indicate that the SLD model may be a suitable choice for modeling multilayer coalbed gas adsorption. However, model improvements are required to (a) account for coal heterogeneity and structure complexity, and (b) provide for more accurate density predictions. (3) Coal Characterization: We have identified several well-characterized coals for use in our adsorption studies. The criteria for coal selection has been guided by the need for coals that (a) span the spectrum of properties encountered in coalbed methane production (such as variation in rank), and (b) originate from coalbed methane recovery sites (e.g., San Juan Basin, Black Warrior Basin, etc.). At Pennsylvania State University, we have completed calibrating our instruments using a well-characterized activated carbon. In addition, we have conducted CO{sub 2} and methane uptakes on four samples, including (a) a widely used commercial activated carbon, BPL from Calgon Carbon Corp.; (b) an Illinois No.6 bituminous coal from the Argonne Premium Coal sample bank; (c) a Fruitland Intermediate coal sample; (d) a dry Fruitland sample. The results are as expected, except for a greater sensitivity to the outgassing temperature. ''Standard'' outgassing conditions (e.g., 383.2 K, overnight), which are often used, may not be appropriate for gas storage in coalbeds. Conditions that are more representative of in-situ coal (approximately 313.2 K) may be much more appropriate. In addition, our results highlight the importance of assessing the degree of approach to adsorption equilibrium.

  9. Tethered catalysts for the hydration of carbon dioxide

    DOE Patents [OSTI]

    Valdez, Carlos A; Satcher, Jr., Joe H; Aines, Roger D; Wong, Sergio E; Baker, Sarah E; Lightstone, Felice C; Stolaroff, Joshuah K

    2014-11-04T23:59:59.000Z

    A system is provided that substantially increases the efficiency of CO.sub.2 capture and removal by positioning a catalyst within an optimal distance from the air-liquid interface. The catalyst is positioned within the layer determined to be the highest concentration of carbon dioxide. A hydrophobic tether is attached to the catalyst and the hydrophobic tether modulates the position of the catalyst within the liquid layer containing the highest concentration of carbon dioxide.

  10. Carbon dioxide capture process with regenerable sorbents

    DOE Patents [OSTI]

    Pennline, Henry W. (Bethel Park, PA); Hoffman, James S. (Library, PA)

    2002-05-14T23:59:59.000Z

    A process to remove carbon dioxide from a gas stream using a cross-flow, or a moving-bed reactor. In the reactor the gas contacts an active material that is an alkali-metal compound, such as an alkali-metal carbonate, alkali-metal oxide, or alkali-metal hydroxide; or in the alternative, an alkaline-earth metal compound, such as an alkaline-earth metal carbonate, alkaline-earth metal oxide, or alkaline-earth metal hydroxide. The active material can be used by itself or supported on a substrate of carbon, alumina, silica, titania or aluminosilicate. When the active material is an alkali-metal compound, the carbon-dioxide reacts with the metal compound to generate bicarbonate. When the active material is an alkaline-earth metal, the carbon dioxide reacts with the metal compound to generate carbonate. Spent sorbent containing the bicarbonate or carbonate is moved to a second reactor where it is heated or treated with a reducing agent such as, natural gas, methane, carbon monoxide hydrogen, or a synthesis gas comprising of a combination of carbon monoxide and hydrogen. The heat or reducing agent releases carbon dioxide gas and regenerates the active material for use as the sorbent material in the first reactor. New sorbent may be added to the regenerated sorbent prior to subsequent passes in the carbon dioxide removal reactor.

  11. Displacement of crude oil by carbon dioxide

    E-Print Network [OSTI]

    Omole, Olusegun

    1980-01-01T23:59:59.000Z

    by Carbon Dioxide (December 1980) Olusegun Omole, B. S. , University of Ibadan, Nigeria Chairman of Advisory Committee: Dr. J. S. Osoba It has long been recognized that carbon dioxide could be used as an oil recovery agent. Both laboratory and field...- tion. Crude oil from the Foster Field in West Texas, of 7 cp and 34 API, 0 was used as the oil in place. Oil displacements were conducted at pres- sures between 750 psig and 1800 ps1g, and at a temperature of 110 F. 0 Carbon dioxide was injected...

  12. Formation of rare earth carbonates using supercritical carbon dioxide

    DOE Patents [OSTI]

    Fernando, Quintus (Tucson, AZ); Yanagihara, Naohisa (Zacopan, MX); Dyke, James T. (Santa Fe, NM); Vemulapalli, Krishna (Tuscon, AZ)

    1991-09-03T23:59:59.000Z

    The invention relates to a process for the rapid, high yield conversion of select rare earth oxides or hydroxides, to their corresponding carbonates by contact with supercritical carbon dioxide.

  13. II. Greenhouse gas markets, carbon dioxide credits and biofuels17

    E-Print Network [OSTI]

    15 II. Greenhouse gas markets, carbon dioxide credits and biofuels17 The previous chapter analysed biofuels production. GHG policies18 that create a carbon price either through an emissions trading system or directly by taxing GHG emissions also generate increased demand for biofuels. They do so by raising

  14. Carbon Dioxide Emission Factors for Coal

    Reports and Publications (EIA)

    1994-01-01T23:59:59.000Z

    The Energy Information Administration (EIA) has developed factors for estimating the amount of carbon dioxide emitted, accounting for differences among coals, to reflect the changing "mix" of coal in U.S. coal consumption.

  15. Regulating carbon dioxide capture and storage

    E-Print Network [OSTI]

    De Figueiredo, Mark A.

    2007-01-01T23:59:59.000Z

    This essay examines several legal, regulatory and organizational issues that need to be addressed to create an effective regulatory regime for carbon dioxide capture and storage ("CCS"). Legal, regulatory, and organizational ...

  16. Pressure buildup during supercritical carbon dioxide injection from a partially penetrating borehole into gas reservoirs

    E-Print Network [OSTI]

    Mukhopadhyay, S.

    2013-01-01T23:59:59.000Z

    the physical properties of carbon dioxide, compare thei.e. , Physical Properties of Carbon Dioxide Z ? PV ? 1 ?Thermophysical Properties of Carbon Dioxide, Publishing

  17. Atmospheric Lifetime of Fossil Fuel Carbon Dioxide

    E-Print Network [OSTI]

    Scherer, Norbert F.

    Atmospheric Lifetime of Fossil Fuel Carbon Dioxide David Archer,1 Michael Eby,2 Victor Brovkin,3 released from combustion of fossil fuels equilibrates among the various carbon reservoirs of the atmosphere literature on the atmospheric lifetime of fossil fuel CO2 and its impact on climate, and we present initial

  18. Apparatus for extracting and sequestering carbon dioxide

    DOE Patents [OSTI]

    Rau, Gregory H. (Castro Valley, CA); Caldeira, Kenneth G. (Livermore, CA)

    2010-02-02T23:59:59.000Z

    An apparatus and method associated therewith to extract and sequester carbon dioxide (CO.sub.2) from a stream or volume of gas wherein said apparatus hydrates CO.sub.2 and reacts the resulting carbonic acid with carbonate. Suitable carbonates include, but are not limited to, carbonates of alkali metals and alkaline earth metals, preferably carbonates of calcium and magnesium. Waste products are metal cations and bicarbonate in solution or dehydrated metal salts, which when disposed of in a large body of water provide an effective way of sequestering CO.sub.2 from a gaseous environment.

  19. Method for extracting and sequestering carbon dioxide

    DOE Patents [OSTI]

    Rau, Gregory H. (Castro Valley, CA); Caldeira, Kenneth G. (Livermore, CA)

    2005-05-10T23:59:59.000Z

    A method and apparatus to extract and sequester carbon dioxide (CO.sub.2) from a stream or volume of gas wherein said method and apparatus hydrates CO.sub.2, and reacts the resulting carbonic acid with carbonate. Suitable carbonates include, but are not limited to, carbonates of alkali metals and alkaline earth metals, preferably carbonates of calcium and magnesium. Waste products are metal cations and bicarbonate in solution or dehydrated metal salts, which when disposed of in a large body of water provide an effective way of sequestering CO.sub.2 from a gaseous environment.

  20. Solubility of anthracene and anthraquinone in cyclohexanone + carbon dioxide

    SciTech Connect (OSTI)

    Chang, C.J. (National Chung-Hsing Univ., Taichung (Taiwan, Province of China). Dept. of Chemical Engineering)

    1994-10-01T23:59:59.000Z

    In the processing of an anthracene oil fraction from coal tar, a mixture of anthracene and anthraquinone is required to be separated to obtain products of high purity. The solubilities of anthracene and anthraquinone were measured in cyclohexanone + carbon dioxide as a function of the temperature and pressure of carbon dioxide at 291, 300, and 313 K and from 1.8--12.4 MPa. Average equilibrium solubilities and recoveries of both solids increased with increasing normalized concentration and pressure. The average separation factor of anthracene to anthraquinone, due to the effect of the mixed solvent, was 2.88 [+-] 1.91.

  1. Geothermal carbon dioxide for use in greenhouses

    SciTech Connect (OSTI)

    Dunstall, M.G. [Univ. of Auckland (New Zealand); Graeber, G. [Univ. of Stuttgart (Germany)

    1997-01-01T23:59:59.000Z

    Geothermal fluids often contain carbon dioxide, which is a very effective growth stimulant for plants in greenhouses. Studies have shown that as CO{sub 2} concentration is increased from a normal level of 300 ppm (mmol/kmol) to levels of approximately 1000 ppm crop yields may increase by up to 15% (Ullmann`s Encyclopedia of Industrial Chemistry, 1989). It is suggested that geothermal greenhouse heating offers a further opportunity for utilization of the carbon dioxide present in the fluid. The main difficulty is that plants react adversely to hydrogen sulphide which is invariably mixed, at some concentration, with the CO{sub 2} from geothermal fluids. Even very low H{sub 2}S concentrations of 0.03 mg/kg can have negative effects on the growth of plants (National Research Council, 1979). Therefore, an appropriate purification process for the CO{sub 2} must be used to avoid elevated H{sub 2}S levels in the greenhouses. The use of adsorption and absorption processes is proposed. Two purification processes have been modelled using the ASOEN PLUS software package, using the Geothermal Greenhouses Ltd. Operation Kawerau New Zealand and an example. A greenhouse area of 8,000 m{sup 2}, which would create a demand for approximately 20 kg CO{sub 2} per hour, was chosen based on a proposed expansion at Kawerau. The Kawerau operation currently takes geothermal steam (and gas) from a high temperature 2-phase well to heat an area of 1650 m{sup 2}. Bottled carbon dioxide is utilized at a rate of about 50 kg per day, to provide CO{sub 2} levels of 800 mg/kg when the greenhouse is closed and 300 to 350 mg/kg whilst venting. In England and the Netherlands, CO{sub 2} levels of 1000 mg/kg are often used (Ullmann`s Encyclopedia of Industrial Chemistry, 1989) and similar concentrations are desired at Kawerau, but current costs of 0.60 NZ$/kg for bottled CO{sub 2} are too high (Foster, 1995).

  2. 14 April 2001 tmospheric carbon dioxide

    E-Print Network [OSTI]

    Teskey, Robert O.

    emissions is through increased carbon sequestration into forests. In a large-scale assessment, Birdsey- ing carbon sequestration in southern forests. Carbon sequestration via southern pine forests may policy commitments. Keywords: carbon sequestration; southern pine forests ABSTRACT MEETING GLOBAL POLICY

  3. SEQUESTERING CARBON DIOXIDE IN COALBEDS

    SciTech Connect (OSTI)

    K.A.M. Gasem; R.L. Robinson, Jr.; J.E. Fitzgerald; Z. Pan; M. Sudibandriyo

    2003-04-30T23:59:59.000Z

    The authors' long-term goal is to develop accurate prediction methods for describing the adsorption behavior of gas mixtures on solid adsorbents over complete ranges of temperature, pressure, and adsorbent types. The originally-stated, major objectives of the current project are to: (1) measure the adsorption behavior of pure CO{sub 2}, methane, nitrogen, and their binary and ternary mixtures on several selected coals having different properties at temperatures and pressures applicable to the particular coals being studied, (2) generalize the adsorption results in terms of appropriate properties of the coals to facilitate estimation of adsorption behavior for coals other than those studied experimentally, (3) delineate the sensitivity of the competitive adsorption of CO{sub 2}, methane, and nitrogen to the specific characteristics of the coal on which they are adsorbed; establish the major differences (if any) in the nature of this competitive adsorption on different coals, and (4) test and/or develop theoretically-based mathematical models to represent accurately the adsorption behavior of mixtures of the type for which measurements are made. As this project developed, an important additional objective was added to the above original list. Namely, we were encouraged to interact with industry and/or governmental agencies to utilize our expertise to advance the state of the art in coalbed adsorption science and technology. As a result of this additional objective, we participated with the Department of Energy and industry in the measurement and analysis of adsorption behavior as part of two distinct investigations. These include (a) Advanced Resources International (ARI) DOE Project DE-FC26-00NT40924, ''Adsorption of Pure Methane, Nitrogen, and Carbon Dioxide and Their Mixtures on Wet Tiffany Coal'', and (b) the DOE-NETL Project, ''Round Robin: CO{sub 2} Adsorption on Selected Coals''. These activities, contributing directly to the DOE projects listed above, also provided direct synergism with the original goals of our work. Specific accomplishments of this project are summarized below in three broad categories: experimentation, model development, and coal characterization.

  4. A methodology for forecasting carbon dioxide flooding performance

    E-Print Network [OSTI]

    Marroquin Cabrera, Juan Carlos

    1998-01-01T23:59:59.000Z

    A methodology was developed for forecasting carbon dioxide (CO2) flooding performance quickly and reliably. The feasibility of carbon dioxide flooding in the Dollarhide Clearfork "AB" Unit was evaluated using the methodology. This technique is very...

  5. Carbon Dioxide Capture/Sequestration Tax Deduction (Kansas)

    Broader source: Energy.gov [DOE]

    Carbon Dioxide Capture/Sequestration Tax Deduction allows a taxpayer a deduction to adjusted gross income with respect to the amortization of the amortizable costs of carbon dioxide capture,...

  6. Louisiana Geologic Sequestration of Carbon Dioxide Act (Louisiana)

    Broader source: Energy.gov [DOE]

    This law establishes that carbon dioxide and sequestration is a valuable commodity to the citizens of the state. Geologic storage of carbon dioxide may allow for the orderly withdrawal as...

  7. High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Receivers for Supercritical Carbon Dioxide Cycles - FY12 Q4 High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles - FY12 Q4 This document summarizes the progress of...

  8. Coiled tubing drilling with supercritical carbon dioxide

    DOE Patents [OSTI]

    Kolle , Jack J. (Seattle, WA)

    2002-01-01T23:59:59.000Z

    A method for increasing the efficiency of drilling operations by using a drilling fluid material that exists as supercritical fluid or a dense gas at temperature and pressure conditions existing at a drill site. The material can be used to reduce mechanical drilling forces, to remove cuttings, or to jet erode a substrate. In one embodiment, carbon dioxide (CO.sub.2) is used as the material for drilling within wells in the earth, where the normal temperature and pressure conditions cause CO.sub.2 to exist as a supercritical fluid. Supercritical carbon dioxide (SC--CO.sub.2) is preferably used with coiled tube (CT) drilling equipment. The very low viscosity SC--CO.sub.2 provides efficient cooling of the drill head, and efficient cuttings removal. Further, the diffusivity of SC--CO.sub.2 within the pores of petroleum formations is significantly higher than that of water, making jet erosion using SC--CO.sub.2 much more effective than water jet erosion. SC--CO.sub.2 jets can be used to assist mechanical drilling, for erosion drilling, or for scale removal. A choke manifold at the well head or mud cap drilling equipment can be used to control the pressure within the borehole, to ensure that the temperature and pressure conditions necessary for CO.sub.2 to exist as either a supercritical fluid or a dense gas occur at the drill site. Spent CO.sub.2 can be vented to the atmosphere, collected for reuse, or directed into the formation to aid in the recovery of petroleum.

  9. Carbon dioxide flash-freezing applied to ice cream production

    E-Print Network [OSTI]

    Peters, Teresa Baker, 1981-

    2006-01-01T23:59:59.000Z

    (cont.) Carbon dioxide is recompressed from 1.97 x 106 Pa (285 psi) to 3.96 x 106 Pa (575 psi). The process is scaled by increasing the number of nozzles to accommodate the desired flow rate. Only 165 nozzles are required ...

  10. FIELD DEMONSTRATION OF CARBON DIOXIDE MISCIBLE FLOODING IN THE LANSING-KANSAS CITY FORMATION, CENTRAL KANSAS

    SciTech Connect (OSTI)

    Alan Byrnes; G. Paul Willhite; Don Green; Martin Dubois; Richard Pancake; Timothy Carr; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Dave Murfin; James Daniels; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

    2004-06-30T23:59:59.000Z

    A pilot carbon dioxide miscible flood was initiated in the Lansing Kansas City C formation in the Hall Gurney Field, Russell County, Kansas. Continuous carbon dioxide injection began on December 2, 2003. By the end of June 2004, 6.26 MM lb of carbon dioxide were injected into the pilot area. Carbon dioxide injection rates averaged about 250 MCFD. Carbon dioxide was detected in one production well near the end of May. The amount of carbon dioxide produced was small during this period. Wells in the pilot area produced 100% water at the beginning of the flood. Oil production began in February, increasing to an average of about 2.5 B/D in May and June. Operational problems encountered during the initial stages of the flood were identified and resolved.

  11. Designed amyloid fibers as materials for selective carbon dioxide capture

    E-Print Network [OSTI]

    Designed amyloid fibers as materials for selective carbon dioxide capture Dan Lia,b,c,1 , Hiroyasu demonstrate that amyloids, self-assembling protein fibers, are effective for selective carbon dioxide capture formation rate is fast enough to capture carbon dioxide by dynamic separation, undiminished by the presence

  12. Thermal Properties of Supercritical Carbon Dioxide by Monte Carlo Simulations

    E-Print Network [OSTI]

    Lisal, Martin

    Thermal Properties of Supercritical Carbon Dioxide by Monte Carlo Simulations C.M. COLINAa,b, *, C and speed of sound for carbon dioxide (CO2) in the supercritical region, using the fluctuation method based: Fluctuations; Carbon dioxide; 2CLJQ; Joule­Thomson coefficient; Speed of sound INTRODUCTION Simulation methods

  13. Chukwuemeka I. Okoye Carbon Dioxide Solubility and Absorption Rate in

    E-Print Network [OSTI]

    Rochelle, Gary T.

    Copyright by Chukwuemeka I. Okoye 2005 #12;Carbon Dioxide Solubility and Absorption Rate _______________________ Nicholas A. Peppas #12;Carbon Dioxide Solubility and Absorption Rate in Monoethanolamine/Piperazine/H2O for. #12;iii Carbon Dioxide Solubility and Absorption Rate in Monoethanolamine/Piperazine/H2O

  14. american carbon dioxide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of relative proximity of those Paris-Sud XI, Universit de 11 The Fluid Mechanics of Carbon Dioxide Sequestration Geosciences Websites Summary: The Fluid Mechanics of Carbon...

  15. Carbon Dioxide Capture from Coal-Fired

    E-Print Network [OSTI]

    Carbon Dioxide Capture from Coal-Fired Power Plants: A Real Options Analysis May 2005 MIT LFEE 2005. LFEE 2005-002 Report #12;#12;i ABSTRACT Investments in three coal-fired power generation technologies environment. The technologies evaluated are pulverized coal (PC), integrated coal gasification combined cycle

  16. Carbon Dioxide Corrosion: Modelling and Experimental Work

    E-Print Network [OSTI]

    Carbon Dioxide Corrosion: Modelling and Experimental Work Applied to Natural Gas Pipelines Philip in the corrosion related research institutions at IFE and the Ohio University or any other scientific research;#12;Introduction - v - Summary CO2 corrosion is a general problem in the industry and it is expensive. The focus

  17. Carbon Dioxide Corrosion and Inhibition Studies

    E-Print Network [OSTI]

    Petta, Jason

    · Corrosion inhibition very important in the oil industry · Film forming inhibitors containing nitrogenCarbon Dioxide Corrosion and Inhibition Studies Kristin Gilida #12;Outline · Background = Zreal + Zim Rp 1/Corr Rate #12;Tafel · Measures corrosion rate directly · Measures iCORR from A and C

  18. Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide

    Broader source: Energy.gov [DOE]

    Project Objectives: Elucidate comprehensively the carbonation reaction mechanisms between supercritical carbon dioxide (scCO2) and reservoir rocks consisting of different mineralogical compositions in aqueous and non-aqueous environments at temperatures of up to 250şC, and to develop chemical modeling of CO2-reservior rock interactions.

  19. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect (OSTI)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Alejandro Lopez-Ortiz; Douglas P. Harrison; Ya Liang

    2001-05-01T23:59:59.000Z

    Electrobalance studies of calcination and carbonation of sodium bicarbonate materials were conducted at Louisiana State University. Calcination in an inert atmosphere was rapid and complete at 120 C. Carbonation was temperature dependent, and both the initial rate and the extent of reaction were found to decrease as temperature was increased between 60 and 80 C. A fluidization test apparatus was constructed at RTI and two sodium bicarbonate materials were fluidized in dry nitrogen at 22 C. The bed was completely fluidized at between 9 and 11 in. of water pressure drop. Kinetic rate expression derivations and thermodynamic calculations were conducted at RTI. Based on literature data, a simple reaction rate expression, which is zero order in carbon dioxide and water, was found to provide the best fit against reciprocal temperature. Simulations based on process thermodynamics suggested that approximately 26 percent of the carbon dioxide in flue gas could be recovered using waste heat available at 240 C.

  20. FIELD DEMONSTRATION OF CARBON DIOXIDE MISCIBLE FLOODING IN THE LANSING-KANSAS CITY FORMATION, CENTRAL KANSAS

    SciTech Connect (OSTI)

    Alan Byrnes; G. Paul Willhite; Don Green; Martin Dubois; Richard Pancake; Timothy Carr; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Dave Murfn; James Daniels; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

    2004-12-31T23:59:59.000Z

    A pilot carbon dioxide miscible flood was initiated in the Lansing Kansas City C formation in the Hall Gurney Field, Russell County, Kansas. Continuous carbon dioxide injection began on December 2, 2003. By the end of December 2004, 11.39 MM lb of carbon dioxide were injected into the pilot area. Carbon dioxide injection rates averaged about 242 MCFD. Vent losses were excessive during June as ambient temperatures increased. Installation of smaller plungers in the carbon dioxide injection pump reduced the recycle and vent loss substantially. Carbon dioxide was detected in one production well near the end of May and in the second production well in August. No channeling of carbon dioxide was observed. The GOR has remained within the range of 3000-4000 for most the last six months. Wells in the pilot area produced 100% water at the beginning of the flood. Oil production began in February, increasing to an average of about 2.35 B/D for the six month period between July 1 and December 31. Cumulative oil production was 814 bbls. Neither well has experienced increased oil production rates expected from the arrival of the oil bank generated by carbon dioxide injection.

  1. Carbon Dioxide-Water Emulsions for Enhanced Oil Recovery and Permanent Sequestration of Carbon Dioxide

    SciTech Connect (OSTI)

    Ryan, David; Golomb, Dan; Shi, Guang; Shih, Cherry; Lewczuk, Rob; Miksch, Joshua; Manmode, Rahul; Mulagapati, Srihariraju; Malepati, Chetankurmar

    2011-09-30T23:59:59.000Z

    This project involves the use of an innovative new invention ? Particle Stabilized Emulsions (PSEs) of Carbon Dioxide-in-Water and Water-in-Carbon Dioxide for Enhanced Oil Recovery (EOR) and Permanent Sequestration of Carbon Dioxide. The EOR emulsion would be injected into a semi-depleted oil reservoir such as Dover 33 in Otsego County, Michigan. It is expected that the emulsion would dislocate the stranded heavy crude oil from the rock granule surfaces, reduce its viscosity, and increase its mobility. The advancing emulsion front should provide viscosity control which drives the reduced-viscosity oil toward the production wells. The make-up of the emulsion would be subsequently changed so it interacts with the surrounding rock minerals in order to enhance mineralization, thereby providing permanent sequestration of the injected CO{sub 2}. In Phase 1 of the project, the following tasks were accomplished: 1. Perform laboratory scale (mL/min) refinements on existing procedures for producing liquid carbon dioxide-in-water (C/W) and water-in-liquid carbon dioxide (W/C) emulsion stabilized by hydrophilic and hydrophobic fine particles, respectively, using a Kenics-type static mixer. 2. Design and cost evaluate scaled up (gal/min) C/W and W/C emulsification systems to be deployed in Phase 2 at the Otsego County semi-depleted oil field. 3. Design the modifications necessary to the present CO{sub 2} flooding system at Otsego County for emulsion injection. 4. Design monitoring and verification systems to be deployed in Phase 2 for measuring potential leakage of CO{sub 2} after emulsion injection. 5. Design production protocol to assess enhanced oil recovery with emulsion injection compared to present recovery with neat CO{sub 2} flooding. 6. Obtain Federal and State permits for emulsion injection. Initial research focused on creating particle stabilized emulsions with the smallest possible globule size so that the emulsion can penetrate even low-permeability crude oilcontaining formations or saline aquifers. The term ?globule? refers to the water or liquid carbon dioxide droplets sheathed with ultrafine particles dispersed in the continuous external medium, liquid CO{sub 2} or H{sub 2}O, respectively. The key to obtaining very small globules is the shear force acting on the two intermixing fluids, and the use of ultrafine stabilizing particles or nanoparticles. We found that using Kenics-type static mixers with a shear rate in the range of 2700 to 9800 s{sup -1} and nanoparticles between 100-300 nm produced globule sizes in the 10 to 20 ?m range. Particle stabilized emulsions with that kind of globule size should easily penetrate oil-bearing formations or saline aquifers where the pore and throat size can be on the order of 50 ?m or larger. Subsequent research focused on creating particle stabilized emulsions that are deemed particularly suitable for Permanent Sequestration of Carbon Dioxide. Based on a survey of the literature an emulsion consisting of 70% by volume of water, 30% by volume of liquid or supercritical carbon dioxide, and 2% by weight of finely pulverized limestone (CaCO{sub 3}) was selected as the most promising agent for permanent sequestration of CO{sub 2}. In order to assure penetration of the emulsion into tight formations of sandstone or other silicate rocks and carbonate or dolomite rock, it is necessary to use an emulsion consisting of the smallest possible globule size. In previous reports we described a high shear static mixer that can create such small globules. In addition to the high shear mixer, it is also necessary that the emulsion stabilizing particles be in the submicron size, preferably in the range of 0.1 to 0.2 ?m (100 to 200 nm) size. We found a commercial source of such pulverized limestone particles, in addition we purchased under this DOE Project a particle grinding apparatus that can provide particles in the desired size range. Additional work focused on attempts to generate particle stabilized emulsions with a flow through, static mixer based apparatus under a variety

  2. Development of a Carbon Dioxide Monitoring Rotorcraft Unmanned Aerial Vehicle

    E-Print Network [OSTI]

    Zimmer, Uwe

    stage to prevent potential danger to workforce and material, and carbon capture and sequestration (CCSDevelopment of a Carbon Dioxide Monitoring Rotorcraft Unmanned Aerial Vehicle Florian Poppa and Uwe the development of a carbon dioxide (CO2) sensing rotorcraft unmanned aerial vehicle (RUAV) and the experiences

  3. Carbon Dioxide Capture by Chemical Absorption: A Solvent Comparison Study

    E-Print Network [OSTI]

    1 Carbon Dioxide Capture by Chemical Absorption: A Solvent Comparison Study by Anusha Kothandaraman Students #12;2 #12;3 Carbon Dioxide Capture by Chemical Absorption: A Solvent Comparison Study by Anusha with electricity generation accounting for 40% of the total1 . Carbon capture and sequestration (CCS) is one

  4. Carbon Dioxide Capture DOI: 10.1002/anie.201000431

    E-Print Network [OSTI]

    ] Carbon capture and storage (CCS) schemes embody a group of technologies for the capture of CO2 from powerCarbon Dioxide Capture DOI: 10.1002/anie.201000431 Carbon Dioxide Capture: Prospects for New- and gas-fired power plants.[3­5] Such conven- tional technologies for large-scale capture have been com

  5. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect (OSTI)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Douglas P. Harrison; Ya Liang

    2001-10-01T23:59:59.000Z

    The objective of this project is to develop a simple, inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbent being used in this project is sodium carbonate which is converted to sodium bicarbonate, ''baking soda,'' through reaction with carbon dioxide and water vapor. Sodium bicarbonate is regenerated to sodium carbonate when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. Testing conducted previously confirmed that the reaction rate and achievable CO{sub 2} capacity of sodium carbonate decreased with increasing temperature, and that the global rate of reaction of sodium carbonate to sodium bicarbonate increased with an increase in both CO{sub 2} and H{sub 2}O concentrations. Energy balance calculations indicated that the rate of heat removal from the particle surface may determine the reaction rate for a particular particle system. This quarter, thermogravimetric analyses (TGA) were conducted which indicated that calcination of sodium bicarbonate at temperatures as high as 200 C did not cause a significant decrease in activity in subsequent carbonation testing. When sodium bicarbonate was subjected to a five cycle calcination/carbonation test, activity declined slightly over the first two cycles but was constant thereafter. TGA tests were also conducted with two other potential sorbents. Potassium carbonate was found to be less active than sodium carbonate, at conditions of interest in preliminary TGA tests. Sodium carbonate monohydrate showed negligible activity. Testing was also conducted in a 2-inch internal diameter quartz fluidized-bed reactor system. A five cycle test demonstrated that initial removals of 10 to 15 percent of the carbon dioxide in a simulated flue gas could be achieved. The carbonation reaction proceeded at temperatures as low as 41 C. Future work by TGA and in fixed-bed, fluidized-bed, and transport reactor systems is planned to demonstrate the feasibility of this process in large scale operations to separate carbon dioxide from flue gas.

  6. Ionic Liquid Membranes for Carbon Dioxide Separation

    SciTech Connect (OSTI)

    Myers, C.R.; Ilconich, J.B.; Luebke, D.R.; Pennline, H.W.

    2008-07-12T23:59:59.000Z

    Recent scientific studies are rapidly advancing novel technological improvements and engineering developments that demonstrate the ability to minimize, eliminate, or facilitate the removal of various contaminants and green house gas emissions in power generation. The Integrated Gasification Combined Cycle (IGCC) shows promise for carbon dioxide mitigation not only because of its higher efficiency as compared to conventional coal firing plants, but also due to a higher driving force in the form of high partial pressure. One of the novel technological concepts currently being developed and investigated is membranes for carbon dioxide (CO2) separation, due to simplicity and ease of scaling. A challenge in using membranes for CO2 capture in IGCC is the possibility of failure at elevated temperatures or pressures. Our earlier research studies examined the use of ionic liquids on various supports for CO2 separation over the temperature range, 37°C-300°C. The ionic liquid, 1-hexyl-3methylimidazolium Bis(trifluoromethylsulfonyl)imide, ([hmim][Tf2N]), was chosen for our initial studies with the following supports: polysulfone (PSF), poly(ether sulfone) (PES), and cross-linked nylon. The PSF and PES supports had similar performance at room temperature, but increasing temperature caused the supported membranes to fail. The ionic liquid with the PES support greatly affected the glass transition temperature, while with the PSF, the glass transition temperature was only slightly depressed. The cross-linked nylon support maintained performance without degradation over the temperature range 37-300°C with respect to its permeability and selectivity. However, while the cross-linked nylon support was able to withstand temperatures, the permeability continued to increase and the selectivity decreased with increasing temperature. Our studies indicated that further testing should examine the use of other ionic liquids, including those that form chemical complexes with CO2 based on amine interactions. The hypothesis is that the performance at the elevated temperatures could be improved by allowing a facilitated transport mechanism to become dominant. Several amine-based ionic liquids were tested on the cross-linked nylon support. It was found that using the amine-based ionic liquid did improve selectivity and permeability at higher temperature. The hypothesis was confirmed, and it was determined that the type of amine used also played a role in facilitated transport. Given the appropriate aminated ionic liquid with the cross-linked nylon support, it is possible to have a membrane capable of separating CO2 at IGCC conditions. With this being the case, the research has expanded to include separation of other constituents besides CO2 (CO, H2S, etc.) and if they play a role in membrane poisoning or degradation. This communication will discuss the operation of the recently fabricated ionic liquid membranes and the impact of gaseous components other than CO2 on their performance and stability.

  7. Carbon Dioxide Transport and Storage Costs in NETL Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Office of Program Performance and Benefits 2 Carbon Dioxide Transport and Storage Costs in NETL Studies Quality Guidelines for Energy System Studies May 2014...

  8. Carbon Dioxide Capture and Storage Demonstration in Developing...

    Open Energy Info (EERE)

    Carbon Dioxide Capture and Storage Demonstration in Developing Countries: Analysis of Key Policy Issues and Barriers Jump to: navigation, search Tool Summary LAUNCH TOOL Name:...

  9. anthropogenic carbon dioxide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dissolution in structural and stratigraphic traps MIT - DSpace Summary: The geologic sequestration of carbon dioxide (COsubscript 2) in structural and stratigraphic traps is...

  10. Gel and process for preventing carbon dioxide break through

    SciTech Connect (OSTI)

    Sandiford, B.B.; Zillmer, R.C.

    1987-06-16T23:59:59.000Z

    A process is described for retarding the flow of carbon dioxide in carbon dioxide break-through fingers in a subterranean formation, the process comprising: (a) introducing a gas selected from the group consisting of carbon dioxide and gases containing carbon dioxide into a subterranean deposit containing carbon dioxide break-through fingers; (b) after the carbon dioxide break-through fingers have sorbed a predetermined amount of the gas, stopping the flow of the gas into the subterranean formation, (c) after stopping the flow of the gas into the subterranean formation, introducing an effective amount of a gel-forming composition into the subterranean formation and into the carbon dioxide break-through fingers, the gel-forming composition being operable, when contacting carbon dioxide break-through fingers containing the brine which has absorbed substantial amounts of carbon dioxide to form a gel in the fingers which is operable for retarding the flow of the gas in the finger. The gel-forming composition comprises: i. an aqueous solution comprising a first substance selected from the group consisting of polyvinyl alcohols, polyvinyl alcohol copolymers, and mixtures thereof, and ii. an amount of a second substance selected from the group consisting of aldehydes, aldehyde generating substances, acetals, acetal generating substances, and mixtures thereof.

  11. Carbon Dioxide and Helium Emissions from a Reservoir of Magmatic...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Carbon Dioxide and Helium Emissions from a Reservoir of Magmatic Gas Beneath Mammoth...

  12. Elevated carbon dioxide flux at the Dixie Valley geothermal field...

    Open Energy Info (EERE)

    Elevated carbon dioxide flux at the Dixie Valley geothermal field, Nevada- relations between surface phenomena and the geothermal reservoir Jump to: navigation, search OpenEI...

  13. The global carbon dioxide budget

    SciTech Connect (OSTI)

    Sundquist, E.T. (Geological Survey, Woods Hole, MA (United States))

    1993-02-12T23:59:59.000Z

    The increase in atmospheric CO[sub 2] levels during the last deglaciation was comparable in magnitude to the recent historical increase. However, global CO[sub 2] budgets for these changes reflect fundamental differences in rates and in sources and sinks. The modern oceans are a rapid net CO[sub 2] sink, whereas the oceans were a gradual source during the deglaciation. Unidentified terrestrial CO[sub 2] sinks are important uncertainties in both the deglacial and recent CO[sub 2] budgets. The deglacial CO[sub 2] budget represents a complexity of long-term dynamic behavior that is not adequately addressed by current models used to forecast future atmospheric CO[sub 2] levels.

  14. An Exploration of the Effect of Temperature on Different Alloys in a Supercritical Carbon Dioxide Environment

    E-Print Network [OSTI]

    Dunlevy, Michael William

    2009-01-01T23:59:59.000Z

    In the constant effort to increase efficiency, safety margins, and lower cost, a new breed of nuclear reactors, Generation IV, is being developed in which supercritical carbon dioxide (SCO?) is a prime coolant candidate. ...

  15. Capture of carbon dioxide by hybrid sorption

    SciTech Connect (OSTI)

    Srinivasachar, Srivats

    2014-09-23T23:59:59.000Z

    A composition, process and system for capturing carbon dioxide from a combustion gas stream. The composition has a particulate porous support medium that has a high volume of pores, an alkaline component distributed within the pores and on the surface of the support medium, and water adsorbed on the alkaline component, wherein the proportion of water in the composition is between about 5% and about 35% by weight of the composition. The process and system contemplates contacting the sorbent and the flowing gas stream together at a temperature and for a time such that some water remains adsorbed in the alkaline component when the contact of the sorbent with the flowing gas ceases.

  16. Optimize carbon dioxide sequestration, enhance oil recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTest andOptimize carbon dioxide sequestration, enhance oil

  17. Pilot Plant Study of Carbon Dioxide Capture by Aqueous Monoethanolamine

    E-Print Network [OSTI]

    Rochelle, Gary T.

    i Pilot Plant Study of Carbon Dioxide Capture by Aqueous Monoethanolamine Topical Report Prepared Pilot Plant Study of Carbon Dioxide Capture by Aqueous Monoethanolamine Ross Edward Dugas, M capture using monoethanolamine (MEA). MEA is an appropriate choice for a baseline study since

  18. Carbon Dioxide Capture DOI: 10.1002/anie.200902836

    E-Print Network [OSTI]

    Paik Suh, Myunghyun

    Carbon Dioxide Capture DOI: 10.1002/anie.200902836 Highly Selective CO2 Capture in Flexible 3D Coordination Polymer Networks** Hye-Sun Choi and Myunghyun Paik Suh* Carbon dioxide capture has been warming, and the development of efficient methods for capturing CO2 from industrial flue gas has become

  19. Carbon dioxide sequestration in concrete in different curing environments

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Carbon dioxide sequestration in concrete in different curing environments Y.-m. Chun, T.R. Naik, USA ABSTRACT: This paper summarizes the results of an investigation on carbon dioxide (CO2) sequestration in concrete. Concrete mixtures were not air entrained. Concrete mixtures were made containing

  20. ORNL/CDIAC-34 Carbon Dioxide Information Analysis Center and

    E-Print Network [OSTI]

    Research U.S. Department of Energy Budget Activity Number KP 12 04 01 0 Prepared by the Carbon Dioxide. Burtis Carbon Dioxide Information Analysis Center Environmental Sciences Division Publication No. 4777's (DOE) Environmental Sciences Division, Office of Biological and Environmental Research (OBER

  1. World Energy Consumption and Carbon Dioxide Emissions: 1950 2050

    E-Print Network [OSTI]

    -U" relation with a within- sample peak between carbon dioxide emissions (and energy use) per capita and perWorld Energy Consumption and Carbon Dioxide Emissions: 1950 Ń 2050 Richard Schmalensee, Thomas M capita income. Using the income and population growth assumptions of the Intergovernmental Panel

  2. Carbon dioxide emission during forest fires ignited by lightning

    E-Print Network [OSTI]

    Magdalena Pelc; Radoslaw Osuch

    2009-03-31T23:59:59.000Z

    In this paper we developed the model for the carbon dioxide emission from forest fire. The master equation for the spreading of the carbon dioxide to atmosphere is the hyperbolic diffusion equation. In the paper we study forest fire ignited by lightning. In that case the fores fire has the well defined front which propagates with finite velocity.

  3. The Subsurface Fluid Mechanics of Geologic Carbon Dioxide Storage

    E-Print Network [OSTI]

    The Subsurface Fluid Mechanics of Geologic Carbon Dioxide Storage by Michael Lawrence Szulczewski S Mechanics of Geologic Carbon Dioxide Storage by Michael Lawrence Szulczewski Submitted to the Department capture and storage (CCS), CO2 is captured at power plants and then injected into deep geologic reservoirs

  4. Hyperparameter estimation for uncertainty quantification in mesoscale carbon dioxide inversions

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Hyperparameter estimation for uncertainty quantification in mesoscale carbon dioxide inversions-validation (GCV) and x2 test are compared for the first time under a realistic setting in a mesoscale CO2 estimation, uncertainty quantification, mesoscale carbon dioxide inversions 1. Introduction The atmosphere

  5. ammonia-water-carbon dioxide mixtures: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and n-pentane - n-octane - carbon dioxide... Wirawan, Januar Fitri Santo 2012-06-07 4 Carbon dioxide sequestration in concrete in different curing environments Engineering...

  6. NUMERICAL INVESTIGATION OF TEMPERATURE EFFECTS DURING THE INJECTION OF CARBON DIOXIDE INTO BRINE

    E-Print Network [OSTI]

    Cirpka, Olaf Arie

    reservoir scenario. 1. INTRODUCTION Recent investigations of underground carbon dioxide storage for the simulation of carbon dioxide injection into geological formations is currently an intensive field of research

  7. Carbon dioxide absorbent and method of using the same

    DOE Patents [OSTI]

    Perry, Robert James (Niskayuna, NY); Lewis, Larry Neil (Scotia, NY); O'Brien, Michael Joseph (Clifton Park, NY); Soloveichik, Grigorii Lev (Latham, NY); Kniajanski, Sergei (Clifton Park, NY); Lam, Tunchiao Hubert (Clifton Park, NY); Lee, Julia Lam (Niskayuna, NY); Rubinsztajn, Malgorzata Iwona (Ballston Spa, NY)

    2011-10-04T23:59:59.000Z

    In accordance with one aspect, the present invention provides an amino-siloxane composition comprising at least one of structures I, II, III, IV or V said compositions being useful for the capture of carbon dioxide from gas streams such as power plant flue gases. In addition, the present invention provides methods of preparing the amino-siloxane compositions are provided. Also provided are methods for reducing the amount of carbon dioxide in a process stream employing the amino-siloxane compositions of the invention as species which react with carbon dioxide to form an adduct with carbon dioxide. The reaction of the amino-siloxane compositions provided by the present invention with carbon dioxide is reversible and thus, the method provides for multicycle use of said compositions.

  8. Layered solid sorbents for carbon dioxide capture

    SciTech Connect (OSTI)

    Li, Bingyun; Jiang, Bingbing; Gray, McMahan L; Fauth, Daniel J; Pennline, Henry W; Richards, George A

    2014-11-18T23:59:59.000Z

    A solid sorbent for the capture and the transport of carbon dioxide gas is provided having at least one first layer of a positively charged material that is polyethylenimine or poly(allylamine hydrochloride), that captures at least a portion of the gas, and at least one second layer of a negatively charged material that is polystyrenesulfonate or poly(acryclic acid), that transports the gas, wherein the second layer of material is in juxtaposition to, attached to, or crosslinked with the first layer for forming at least one bilayer, and a solid substrate support having a porous surface, wherein one or more of the bilayers is/are deposited on the surface of and/or within the solid substrate. A method of preparing and using the solid sorbent is provided.

  9. Carbon Dioxide Sequestration in Geologic Coal Formations

    SciTech Connect (OSTI)

    None

    2001-09-30T23:59:59.000Z

    BP Corporation North America, Inc. (BP) currently operates a nitrogen enhanced recovery project for coal bed methane at the Tiffany Field in the San Juan Basin, Colorado. The project is the largest and most significant of its kind wherein gas is injected into a coal seam to recover methane by competitive adsorption and stripping. The Idaho National Engineering and Environmental Laboratory (INEEL) and BP both recognize that this process also holds significant promise for the sequestration of carbon dioxide, a greenhouse gas, while economically enhancing the recovery of methane from coal. BP proposes to conduct a CO2 injection pilot at the tiffany Field to assess CO2 sequestration potential in coal. For its part the INEEL will analyze information from this pilot with the intent to define the Co2 sequestration capacity of coal and its ultimate role in ameliorating the adverse effects of global warming on the nation and the world.

  10. Estimated Carbon Dioxide Emissions in 2008: United States

    SciTech Connect (OSTI)

    Smith, C A; Simon, A J; Belles, R D

    2011-04-01T23:59:59.000Z

    Flow charts depicting carbon dioxide emissions in the United States have been constructed from publicly available data and estimates of state-level energy use patterns. Approximately 5,800 million metric tons of carbon dioxide were emitted throughout the United States for use in power production, residential, commercial, industrial, and transportation applications in 2008. Carbon dioxide is emitted from the use of three major energy resources: natural gas, coal, and petroleum. The flow patterns are represented in a compact 'visual atlas' of 52 state-level (all 50 states, the District of Columbia, and one national) carbon dioxide flow charts representing a comprehensive systems view of national CO{sub 2} emissions. Lawrence Livermore National Lab (LLNL) has published flow charts (also referred to as 'Sankey Diagrams') of important national commodities since the early 1970s. The most widely recognized of these charts is the U.S. energy flow chart (http://flowcharts.llnl.gov). LLNL has also published charts depicting carbon (or carbon dioxide potential) flow and water flow at the national level as well as energy, carbon, and water flows at the international, state, municipal, and organizational (i.e. United States Air Force) level. Flow charts are valuable as single-page references that contain quantitative data about resource, commodity, and byproduct flows in a graphical form that also convey structural information about the system that manages those flows. Data on carbon dioxide emissions from the energy sector are reported on a national level. Because carbon dioxide emissions are not reported for individual states, the carbon dioxide emissions are estimated using published energy use information. Data on energy use is compiled by the U.S. Department of Energy's Energy Information Administration (U.S. EIA) in the State Energy Data System (SEDS). SEDS is updated annually and reports data from 2 years prior to the year of the update. SEDS contains data on primary resource consumption, electricity generation, and energy consumption within each economic sector. Flow charts of state-level energy usage and explanations of the calculations and assumptions utilized can be found at: http://flowcharts.llnl.gov. This information is translated into carbon dioxide emissions using ratios of carbon dioxide emissions to energy use calculated from national carbon dioxide emissions and national energy use quantities for each particular sector. These statistics are reported annually in the U.S. EIA's Annual Energy Review. Data for 2008 (US. EIA, 2010) was updated in August of 2010. This is the first presentation of a comprehensive state-level package of flow charts depicting carbon dioxide emissions for the United States.

  11. Management Opportunities for Enhancing Terrestrial Carbon Dioxide Sinks

    SciTech Connect (OSTI)

    Post, W. M.; Izaurralde, Roberto C.; West, Tristram O.; Liebig, Mark A.; King, Anthony W.

    2012-12-01T23:59:59.000Z

    The potential for mitigating increasing atmospheric carbon dioxide concentrations through the use of terrestrial biological carbon (C) sequestration is substantial. Here, we estimate the amount of C being sequestered by natural processes at global, North American, and national US scales. We present and quantify, where possible, the potential for deliberate human actions – through forestry, agriculture, and use of biomass-based fuels – to augment these natural sinks. Carbon sequestration may potentially be achieved through some of these activities but at the expense of substantial changes in land-use management. Some practices (eg reduced tillage, improved silviculture, woody bioenergy crops) are already being implemented because of their economic benefits and associated ecosystem services. Given their cumulative greenhouse-gas impacts, other strategies (eg the use of biochar and cellulosic bioenergy crops) require further evaluation to determine whether widespread implementation is warranted.

  12. Slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures

    DOE Patents [OSTI]

    Aines, Roger D.; Bourcier, William L.; Viani, Brian

    2013-01-29T23:59:59.000Z

    A slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures includes the steps of dissolving the gas mixture and carbon dioxide in water providing a gas, carbon dioxide, water mixture; adding a porous solid media to the gas, carbon dioxide, water mixture forming a slurry of gas, carbon dioxide, water, and porous solid media; heating the slurry of gas, carbon dioxide, water, and porous solid media producing steam; and cooling the steam to produce purified water and carbon dioxide.

  13. Absorption of Carbon Dioxide in Aqueous Piperazine/Methyldiethanolamine

    E-Print Network [OSTI]

    Rochelle, Gary T.

    Absorption of Carbon Dioxide in Aqueous Piperazine/Methyldiethanolamine Sanjay Bishnoi and Gary T dioxide absorption in 0.6 M piperazine PZ r4 M methyldiethanolamine ( )MDEA was measured in a wetted wall loading. The absorption rate did not follow pseudo first-order beha®ior except at ®ery low loading. All

  14. Carbon dioxide dissolution in structural and stratigraphic traps

    E-Print Network [OSTI]

    Hesse, M. A.

    The geologic sequestration of carbon dioxide (CO[subscript 2]) in structural and stratigraphic traps is a viable option to reduce anthropogenic emissions. While dissolution of the CO[subscript 2] stored in these traps ...

  15. World energy consumption and carbon dioxide emissions : 1950-2050

    E-Print Network [OSTI]

    Schmalensee, Richard

    1995-01-01T23:59:59.000Z

    Emissions of carbon dioxide form combustion of fossil fuels, which may contribute to long-term climate change, are projected through 2050 using reduced form models estimated with national-level panel data for the period ...

  16. Mechanisms for mechanical trapping of geologically sequestered carbon dioxide

    E-Print Network [OSTI]

    Cohen, Yossi

    Carbon dioxide (CO[subscript 2]) sequestration in subsurface reservoirs is important for limiting atmospheric CO[subscript 2] concentrations. However, a complete physical picture able to predict the structure developing ...

  17. World energy consumption and carbon dioxide emissions : 1950-2050

    E-Print Network [OSTI]

    Schmalensee, Richard.; Stoker, Thomas M.; Judson, Ruth A.

    Emissions of carbon dioxide from combustion of fossil fuels, which may contribute to long-term climate change, are projected through 2050 using reduced form models estimated with national-level panel data for the period ...

  18. Control strategies for supercritical carbon dioxide power conversion systems

    E-Print Network [OSTI]

    Carstens, Nathan, 1978-

    2007-01-01T23:59:59.000Z

    The supercritical carbon dioxide (S-C02) recompression cycle is a promising advanced power conversion cycle which couples well to numerous advanced nuclear reactor designs. This thesis investigates the dynamic simulation ...

  19. Electrochemically-mediated amine regeneration for carbon dioxide separations

    E-Print Network [OSTI]

    Stern, Michael C. (Michael Craig)

    2014-01-01T23:59:59.000Z

    This thesis describes a new strategy for carbon dioxide (CO?) separations based on amine sorbents, which are electrochemically-mediated to facilitate the desorption and regeneration steps of the separation cycle. The ...

  20. Figure 3. Energy-Related Carbon Dioxide Emissions

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Energy-Related Carbon Dioxide Emissions" " (million metric tons)" ,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022,2023,2024,2025,2026,2027,2028,...

  1. Separation of carbon dioxide from flue emissions using Endex principles

    E-Print Network [OSTI]

    Ball, R

    2009-01-01T23:59:59.000Z

    In an Endex reactor endothermic and exothermic reactions are directly thermally coupled and kinetically matched to achieve intrinsic thermal stability, efficient conversion, autothermal operation, and minimal heat losses. Applied to the problem of in-line carbon dioxide separation from flue gas, Endex principles hold out the promise of effecting a carbon dioxide capture technology of unprecedented economic viability. In this work we describe an Endex Calcium Looping reactor, in which heat released by chemisorption of carbon dioxide onto calcium oxide is used directly to drive the reverse reaction, yielding a pure stream of carbon dioxide for compression and geosequestration. In this initial study we model the proposed reactor as a continuous-flow dynamical system in the well-stirred limit, compute the steady states and analyse their stability properties over the operating parameter space, flag potential design and operational challenges, and suggest an optimum regime for effective operation.

  2. The Greenness of Cities: Carbon Dioxide Emissions and Urban Development

    E-Print Network [OSTI]

    Glaeser, Edward L.; Kahn, Matthew E.

    2008-01-01T23:59:59.000Z

    Year) MSA Emissions from Driving (Lbs of CO2) Electricity (CO2 per Megawatt Hrs) Carbon Dioxide Emissions Cost MSA Emissions from Driving ElectricityEmissions from Driving (Lbs of CO2) Suburb-City Difference in Electricity (

  3. Ownership of Carbon Dioxide Captured by Clean Coal Project (Texas)

    Broader source: Energy.gov [DOE]

    This legislation stipulates that the Railroad Commission of Texas automatically acquires the title to any carbon dioxide captured by a clean coal project in the state. The Bureau of Economic...

  4. Comment on "An optimized potential for carbon dioxide"

    E-Print Network [OSTI]

    Merker, T; Hasse, H

    2009-01-01T23:59:59.000Z

    A molecular model for carbon dioxide is assessed regarding vapor-liquid equilibrium properties. Large deviations, being above 15 %, are found for vapor pressure and saturated vapor density in the entire temperature range.

  5. Carbon Dioxide Emissions From Vegetation-Kill Zones Around The...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Carbon Dioxide Emissions From Vegetation-Kill Zones Around The Resurgent Dome Of Long Valley...

  6. NMR studies of carbon dioxide sequestration in porous media

    E-Print Network [OSTI]

    Hussain, Rehan

    2015-06-09T23:59:59.000Z

    Carbon dioxide (CO2) sequestration in the sub-surface is a potential mitigation technique for global climate change caused by greenhouse gas emissions. In order to evaluate the feasibility of this technique, understanding the behaviour of CO2 stored...

  7. Membranes for separation of carbon dioxide

    DOE Patents [OSTI]

    Ku, Anthony Yu-Chung (Rexford, NY); Ruud, James Anthony (Delmar, NY); Ramaswamy, Vidya (Niskayuna, NY); Willson, Patrick Daniel (Latham, NY); Gao, Yan (Niskayuna, NY)

    2011-03-01T23:59:59.000Z

    Methods for separating carbon dioxide from a fluid stream at a temperature higher than about 200.degree. C. with selectivity higher than Knudsen diffusion selectivity include contacting a porous membrane with the fluid stream to preferentially transport carbon dioxide. The porous membrane includes a porous support and a continuous porous separation layer disposed on a surface of the porous support and extending between the fluid stream and the porous support layer. The porous support comprises alumina, silica, zirconia, stabilized zirconia, stainless steel, titanium, nickel-based alloys, aluminum-based alloys, zirconium-based alloys or a combination thereof. Median pore size of the porous separation layer is less than about 10 nm, and the porous separation layer comprises titania, MgO, CaO, SrO, BaO, La.sub.2O.sub.3, CeO.sub.2, HfO.sub.2, Y.sub.2O.sub.3, VO.sub.z, NbO.sub.z, TaO.sub.z, ATiO.sub.3, AZrO.sub.3, AAl.sub.2O.sub.4, A.sup.1FeO.sub.3, A.sup.1MnO.sub.3, A.sup.1CoO.sub.3, A.sup.1NiO.sub.3, A.sup.2HfO.sub.3, A.sup.3 CeO.sub.3, Li.sub.2ZrO.sub.3, Li.sub.2SiO.sub.3, Li.sub.2TiO.sub.3, Li.sub.2HfO.sub.3, A.sup.4N.sup.1.sub.yO.sub.z, Y.sub.xN.sup.1.sub.yO.sub.z, La.sub.xN.sup.1.sub.yO.sub.z, HfN.sup.2.sub.yO.sub.z, or a combination thereof; wherein A is La, Mg, Ca, Sr or Ba; A.sup.1 is La, Ca, Sr or Ba; A.sup.2 is Ca, Sr or Ba; A.sup.3 is Sr or Ba; A.sup.4 is Mg, Ca, Sr, Ba, Ti or Zr; N.sup.1 is V, Nb, Ta, Cr, Mo, W, Mn, Si or Ge; N.sup.2 is V, Mo, W or Si; x is 1 or 2; y ranges from 1 to 3; and z ranges from 2 to 7.

  8. Terpolymerization of ethylene, sulfur dioxide and carbon monoxide

    DOE Patents [OSTI]

    Johnson, Richard (Shirley, NY); Steinberg, Meyer (Huntington Station, NY)

    1981-01-01T23:59:59.000Z

    This invention relates to a high molecular weight terpolymer of ethylene, sulfur dioxide and carbon monoxide stable to 280.degree. C. and containing as little as 36 mol % ethylene and about 41-51 mol % sulfur dioxide; and to the method of producing said terpolymer by irradiation of a liquid and gaseous mixture of ethylene, sulfur dioxide and carbon monoxide by means of Co-60 gamma rays or an electron beam, at a temperature of about 10.degree.-50.degree. C., and at a pressure of about 140 to 680 atmospheres, to initiate polymerization.

  9. Scaling up carbon dioxide capture and storage: From megatons to gigatons Howard J. Herzog

    E-Print Network [OSTI]

    Global warming Carbon mitigation Low carbon energy technologies Carbon dioxide capture and storage (CCS) Carbon dioxide (CO2) capture and storage (CCS) is the only technology that can reduce CO2 emissionsScaling up carbon dioxide capture and storage: From megatons to gigatons Howard J. Herzog MIT

  10. Scaling up carbon dioxide capture and storage: From megatons to gigatons Howard J. Herzog

    E-Print Network [OSTI]

    warming Carbon mitigation Low carbon energy technologies Carbon dioxide capture and storage (CCS) CarbonScaling up carbon dioxide capture and storage: From megatons to gigatons Howard J. Herzog MIT dioxide (CO2) capture and storage (CCS) is the only technology that can reduce CO2 emissions substantially

  11. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect (OSTI)

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Thomas Nelson

    2004-07-01T23:59:59.000Z

    This report describes research conducted between April 1, 2004 and June 30, 2004 on the preparation and use of dry regenerable sorbents for removal of carbon dioxide from flue gas. Support materials and supported sorbents were prepared by spray drying. Sorbents consisting of 20 to 50% sodium carbonate on a ceramic support were prepared by spray drying in batches of approximately 300 grams. The supported sorbents exhibited greater carbon dioxide capture rates than unsupported calcined sodium bicarbonate in laboratory tests. Preliminary process design and cost estimation for a retrofit application suggested that costs of a dry regenerable sodium carbonate-based process could be lower than those of a monoethanolamine absorption system. In both cases, the greatest part of the process costs come from power plant output reductions due to parasitic consumption of steam for recovery of carbon dioxide from the capture medium.

  12. Field Demonstration of Carbon Dioxide Miscible Flooding in the Lansing-Kansas City Formation, Central Kansas

    SciTech Connect (OSTI)

    Alan Byrnes; G. Paul Willhite; Don Green; Martin Dubois; Richard Pancake; Timothy Carr; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Dave Murfin; James Daniels; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

    2007-03-07T23:59:59.000Z

    A pilot carbon dioxide miscible flood was initiated in the Lansing Kansas City C formation in the Hall Gurney Field, Russell County, Kansas. The reservoir zone is an oomoldic carbonate located at a depth of about 2900 feet. The pilot consists of one carbon dioxide injection well and three production wells. Continuous carbon dioxide injection began on December 2, 2003. By the end of June 2005, 16.19 MM lb of carbon dioxide were injected into the pilot area. Injection was converted to water on June 21, 2005 to reduce operating costs to a breakeven level with the expectation that sufficient carbon dioxide has been injected to displace the oil bank to the production wells by water injection. By December 31, 2006, 79,072 bbls of water were injected into CO2 I-1 and 3,923 bbl of oil were produced from the pilot. Water injection rates into CO2 I-1, CO2 No.10 and CO2 No.18 were stabilized during this period. Oil production rates increased from 4.7 B/D to 5.5 to 6 B/D confirming the arrival of an oil bank at CO2 No.12. Production from wells to the northwest of the pilot region indicates that oil displaced from carbon dioxide injection was produced from Colliver No.7, Colliver No.3 and possibly Graham A4 located on an adjacent property. There is evidence of a directional permeability trend toward the NW through the pilot region. The majority of the injected carbon dioxide remains in the pilot region, which has been maintained at a pressure at or above the minimum miscibility pressure. Our management plan is to continue water injection maintaining oil displacement by displacing the carbon dioxide remaining in the C zone,. If the decline rate of production from the Colliver Lease remains as estimated and the oil rate from the pilot region remains constant, we estimate that the oil production attributed to carbon dioxide injection will be about 12,000 bbl by December 31, 2007. Oil recovery would be equivalent to 12 MCF/bbl, which is consistent with field experience in established West Texas carbon dioxide floods. The project is not economic.

  13. FIELD DEMONSTRATION OF CARBON DIOXIDE MISCIBLE FLOODING IN THE LANSING-KANSAS CITY FORMATION, CENTRAL KANSAS

    SciTech Connect (OSTI)

    Alan Byrnes; G. Paul Willhite; Don Green; Martin Dubois; Richard Pancake; Timothy Carr; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Dave Murfin; James Daniels; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

    2006-06-30T23:59:59.000Z

    A pilot carbon dioxide miscible flood was initiated in the Lansing Kansas City C formation in the Hall Gurney Field, Russell County, Kansas. The reservoir zone is an oomoldic carbonate located at a depth of about 2900 feet. The pilot consists of one carbon dioxide injection well and two production wells on about 10 acre spacing. Continuous carbon dioxide injection began on December 2, 2003. By the end of June 2005, 16.19 MM lb of carbon dioxide were injected into the pilot area. Injection was converted to water on June 21, 2005 to reduce operating costs to a breakeven level with the expectation that sufficient carbon dioxide has been injected to displace the oil bank to the production wells by water injection. Wells in the pilot area produced 100% water at the beginning of the flood. Oil production began in February 2004, increasing to an average of about 3.78 B/D for the six month period between January 1 and June 30, 2005 before declining. By June 30, 2006, 41,566 bbls of water were injected into CO2I-1 and 2,726 bbl of oil were produced from the pilot. Injection rates into CO2I-1 declined with time, dropping to an unacceptable level for the project. The injection pressure was increased to reach a stable water injection rate of 100 B/D. However, the injection rate continued to decline with time, suggesting that water was being injected into a region with limited leakoff and production. Oil production rates remained in the range of 3-3.5 B/D following conversion to water injection. Oil rates increased from about 3.3 B/D for the period from January through March to about 4.7 B/D for the period from April through June. If the oil rate is sustained, this may be the first indication of the arrival of the oil bank mobilized by carbon dioxide injection. A sustained fluid withdrawal rate of about 200 B/D from CO2 No.12 and CO2 No.13 appears to be necessary to obtain higher oil rates. There is no evidence that the oil bank generated by injection of carbon dioxide has reached either production well. Water injection will continue to displace oil mobilized by carbon dioxide to the production wells and to maintain the pressure in the PPV region at a level that supports continued miscible displacement as the carbon dioxide is displaced by the injected water.

  14. Carbon-dioxide-controlled ventilation study

    SciTech Connect (OSTI)

    McMordie, K.L.; Carroll, D.M.

    1994-05-01T23:59:59.000Z

    The In-House Energy Management (IHEM) Program has been established by the U.S. Department of Energy to provide funds to federal laboratories to conduct research on energy-efficient technology. The Energy Sciences Department of Pacific Northwest Laboratory (PNL) was tasked by IHEM to research the energy savings potential associated with reducing outdoor-air ventilation of buildings. By monitoring carbon dioxide (CO{sub 2}) levels in a building, outdoor air provided by the heating, ventilating, and air-conditioning (HVAC) system can be reduced to the percentage required to maintain satisfactory CO{sub 2} levels rather than ventilating with a higher outdoor-air percentage based on an arbitrary minimum outdoor-air setting. During summer months, warm outdoor air brought into a building for ventilation must be cooled to meet the appropriate cooling supply-air temperature, and during winter months, cold outdoor air must be heated. By minimizing the amount of hot or cold outdoor air brought into the HVAC system, the supply air requires less cooling or heating, saving energy and money. Additionally, the CO{sub 2} levels in a building can be monitored to ensure that adequate outdoor air is supplied to a building to maintain air quality levels. The two main considerations prior to implementing CO{sub 2}-based ventilation control are its impact on energy consumption and the adequacy of indoor air quality (IAQ) and occupant comfort. To address these considerations, six portable CO{sub 2} monitors were placed in several Hanford Site buildings to estimate the adequacy of office/workspace ventilation. The monitors assessed the potential for reducing the flow of outdoor-air to the buildings. A candidate building was also identified to monitor various ventilation control strategies for use in developing a plan for implementing and assessing energy savings.

  15. Cobalt carbonyl catalyzed olefin hydroformylation in supercritical carbon dioxide

    DOE Patents [OSTI]

    Rathke, J.W.; Klingler, R.J.

    1993-03-30T23:59:59.000Z

    A method of olefin hydroformylation is provided wherein an olefin reacts with a carbonyl catalyst and with reaction gases such as hydrogen and carbon monoxide in the presence of a supercritical reaction solvent, such as carbon dioxide. The invention provides higher yields of n-isomer product without the gas-liquid mixing rate limitation seen in conventional Oxo processes using liquid media.

  16. Remote estimation of carbon dioxide uptake by a Mediterranean forest

    E-Print Network [OSTI]

    Garbulsky, MartĂ­n

    to assessing the global carbon budget in a context of climate change (Ciais et al., 2005; Boisvenue & RunningRemote estimation of carbon dioxide uptake by a Mediterranean forest M A R T I´ N F. G A R B U L of the ecology of global change. Current remote sensing methodologies for estimating gross primary productivity

  17. Master index for the carbon dioxide research state-of-the-art report series

    SciTech Connect (OSTI)

    Farrell, M P [ed.

    1987-03-01T23:59:59.000Z

    Four State of the Art (SOA) reports, ''Atmospheric Carbon Dioxide and the Global Carbon Cycle,'' ''Direct Effects of Increasing Carbon Dioxide on Vegetation,'' ''Detecting the Climatic Effects of Increasing Carbon Dioxide,'' and ''Projecting the Climatic Effects of Increasing Carbon Dioxide,'' and two companion reports, ''Characterization of Information Requirements for Studies of CO/sub 2/ Effects: Water Resources, Agriculture, Fisheries, Forests and Human Health'' and ''Glaciers, Ice Sheets, and Sea Level: Effect of a CO/sub 2/-Induced Climatic Change,'' were published by the US Department of Energy's Carbon Dioxide Research Division. Considerable information on atmospheric carbon dioxide and its possible effects on world climate is summarized in these six volumes. Each volume has its own index, but to make the information that is distributed throughout the six volumes more accessible and usable, comprehensive citation and subject indexes have been compiled. The subject indexes of the individual volumes have been edited to provide a uniformity from volume to volume and also to draw distinctions not needed in the separate volumes' indexes. Also, the comprehensive subject index has been formatted in a matrix arrangement to graphically show the distribution of subject treatment from volume to volume. Other aids include cross references between the scientific and common names of the animals and plants referred to, a glossary of special terms used, tables of data and conversion factors related to the data, and explanations of the acronyms and initialisms used in the texts of the six volumes. The executive summaries of the six volumes are collected and reproduced to allow the readers interested in the contents of one volume to rapidly gain information on the contents of the other volumes.

  18. of carbon dioxide containing 12 but the low concentration of 14

    E-Print Network [OSTI]

    Zare, Richard N.

    of carbon dioxide containing 12 C and 13 C, but the low concentration of 14 C has made its measurement in carbon dioxide extremely difficult. Using an ultrasensitive technique called saturated carbon at values well below radiocarbon's natural abundance in carbon dioxide. In their technique

  19. CARBON SEQUESTRATION IN ARABLE SOILS IS LIKELY TO INCREASE NITROUS OXIDE EMISSIONS, OFFSETTING

    E-Print Network [OSTI]

    CARBON SEQUESTRATION IN ARABLE SOILS IS LIKELY TO INCREASE NITROUS OXIDE EMISSIONS, OFFSETTING in strategies for climate protection. 1. Introduction Carbon sequestration has been highlighted recently concentration of carbon dioxide (CO2) in the atmo- sphere include sequestering carbon (C) in soils

  20. Carbon dioxide for the recovery of crude oil. Annual report, November 1978-November 1979

    SciTech Connect (OSTI)

    Doscher, T.M.

    1980-08-01T23:59:59.000Z

    The displacement of residual oil to waterflooding by miscible fluid injection has been studied using scaled physical models of line-drive systems. The effects of flow rate, mobility ratio, and density ratio, were investigated. This work was a first step in an overall program of studying miscible displacement in particular by carbon dioxide, of residual oil as a process for recovering additional crude oil from reservoirs which had been waterflooded. The ratios of gravitational and viscous forces which exist in tertiary recovery operations, using carbon dioxide as a recovery reagent, were approximated in a scaled physical model at ambient pressure and temperature. The viscosity ratio was now very unfavorable and displacement of moveable water was inefficient. Consequently, the displacement of the residual oil by the solvent, which was simulating the role of carbon dioxide, was also poor. The recovery efficiency could not be improved by reasonable increases in the fluid velocity because the unfavorable mobility-caused viscous fingering was so dominant. Insomuch as carbon dioxide flooding, an imperfectly miscible recovery process, cannot be expected to perform as well as a perfectly miscible recovery process, these experiments point to the need for imposing a strong measure of mobility control if the injection of carbon dioxide is to achieve widespread usage for the recovery of residual oil.

  1. Tuning Chirality of Single-Wall Carbon Nanotubes by Selective Etching with Carbon Dioxide

    E-Print Network [OSTI]

    Kim, Bongsoo

    Tuning Chirality of Single-Wall Carbon Nanotubes by Selective Etching with Carbon Dioxide Kwanyong properties that are determined by the chirality1 and diameter of carbon nanotubes. One way to overcome@skku.ac.kr Application of carbon nanotubes (CNTs) to various electronic devices such as field emission displays, gas

  2. Mar., 1955 GASIFICATIONOF CARBONRODSWITH CARBONDIOXIDE 241 GASIFICATION OF CARBON RODS WITH CARBON DIOXIDE1*2

    E-Print Network [OSTI]

    commercial carbons and their gasification rates with carbon dioxide at a series of temperatures between 900 and 1300" has been investigated. The following properties of the carbons have been determined: yantitative. No general correlation between these properties and the carbon gasification rates was found. Introduction

  3. FIELD DEMONSTRATION OF CARBON DIOXIDE MISCIBLE FLOODING IN THE LANSING-KANSAS CITY FORMATION, CENTRAL KANSAS

    SciTech Connect (OSTI)

    Alan Byrnes; G. Paul Willhite; Don Green; Martin Dubois; Richard Pancake; Timothy Carr; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Dave Murfin; James Daniels; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

    2005-12-31T23:59:59.000Z

    A pilot carbon dioxide miscible flood was initiated in the Lansing Kansas City C formation in the Hall Gurney Field, Russell County, Kansas. The reservoir zone is an oomoldic carbonate located at a depth of about 2900 feet. The pilot consists of one carbon dioxide injection well and two production wells on about 10 acre spacing. Continuous carbon dioxide injection began on December 2, 2003. By the end of June 2005, 16.19 MM lb of carbon dioxide were injected into the pilot area. Injection was converted to water on June 21, 2005 to reduce operating costs to a breakeven level with the expectation that sufficient carbon dioxide has been injected to displace the oil bank to the production wells by water injection. Wells in the pilot area produced 100% water at the beginning of the flood. Oil production began in February 2004, increasing to an average of about 3.78 B/D for the six month period between January 1 and June 30, 2005 before declining. By the end of December 2005, 14,115 bbls of water were injected into CO2I-1 and 2,091 bbl of oil were produced from the pilot. Injection rates into CO2I-1 declined with time, dropping to an unacceptable level for the project. The injection pressure was increased to reach a stable water injection rate of 100 B/D. However, the injection rate continued to decline with time, suggesting that water was being injected into a region with limited leakoff and production. Oil production rates remained in the range of 3-3.5 B/D following conversion to water injection. There is no evidence that the oil bank generated by injection of carbon dioxide has reached either production well. Continued injection of water is planned to displace oil mobilized by carbon dioxide to the production wells and to maintain the pressure in the PPV region at a level that supports continued miscible displacement as the carbon dioxide is displaced by the injected water.

  4. Limiting diffusion coefficients of heavy molecular weight organic contaminants in supercritical carbon dioxide 

    E-Print Network [OSTI]

    Orejuela, Mauricio

    1994-01-01T23:59:59.000Z

    Carbon Dioxide. 5. Measured Diffusion Coefficients of Hexachlorobenzene in Supercritical Carbon Dioxide. 6. Measured Diffusion Coefficients of Pentachlorophenol in Supercritical Carbon Dioxide. 7. Carbon Dioxide Parameters as Determined by Empirical..., and for polyatomic solute and solvent molecules, A?was set to 0. 70. Erkey (1989) determined the translational-rotational coupling parameters for binary n-Alkane systems from measured diffusivity data at a wide range of densities. It was shown...

  5. Global Carbon Budget from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Global Carbon Project (GCP) was established in 2001 in recognition of the scientific challenge and critical importance of the carbon cycle for Earth's sustainability. The growing realization that anthropogenic climate change is a reality has focused the attention of the scientific community, policymakers and the general public on the rising concentration of greenhouse gases, especially carbon dioxide (CO2) in the atmosphere, and on the carbon cycle in general. Initial attempts, through the United Nations Framework Convention on Climate Change and its Kyoto Protocol, are underway to slow the rate of increase of greenhouse gases in the atmosphere. These societal actions require a scientific understanding of the carbon cycle, and are placing increasing demands on the international science community to establish a common, mutually agreed knowledge base to support policy debate and action. The Global Carbon Project is responding to this challenge through a shared partnership between the International Geosphere-Biosphere Programme (IGBP), the International Human Dimensions Programme on Global Environmental Change (IHDP), the World Climate Research Programme (WCRP) and Diversitas. This partnership constitutes the Earth Systems Science Partnership (ESSP). This CDIAC collection includes datasets, images, videos, presentations, and archived data from previous years.

  6. Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents

    SciTech Connect (OSTI)

    Thomas Nelson; David Green; Paul Box; Raghubir Gupta; Gennar Henningsen

    2007-06-30T23:59:59.000Z

    Regenerable sorbents based on sodium carbonate (Na{sub 2}CO{sub 3}) can be used to separate carbon dioxide (CO{sub 2}) from coal-fired power plant flue gas. Upon thermal regeneration and condensation of water vapor, CO{sub 2} is released in a concentrated form that is suitable for reuse or sequestration. During the research project described in this report, the technical feasibility and economic viability of a thermal-swing CO{sub 2} separation process based on dry, regenerable, carbonate sorbents was confirmed. This process was designated as RTI's Dry Carbonate Process. RTI tested the Dry Carbonate Process through various research phases including thermogravimetric analysis (TGA); bench-scale fixed-bed, bench-scale fluidized-bed, bench-scale co-current downflow reactor testing; pilot-scale entrained-bed testing; and bench-scale demonstration testing with actual coal-fired flue gas. All phases of testing showed the feasibility of the process to capture greater than 90% of the CO{sub 2} present in coal-fired flue gas. Attrition-resistant sorbents were developed, and these sorbents were found to retain their CO{sub 2} removal activity through multiple cycles of adsorption and regeneration. The sodium carbonate-based sorbents developed by RTI react with CO{sub 2} and water vapor at temperatures below 80 C to form sodium bicarbonate (NaHCO3) and/or Wegscheider's salt. This reaction is reversed at temperatures greater than 120 C to release an equimolar mixture of CO{sub 2} and water vapor. After condensation of the water, a pure CO{sub 2} stream can be obtained. TGA testing showed that the Na{sub 2}CO3 sorbents react irreversibly with sulfur dioxide (SO{sub 2}) and hydrogen chloride (HCl) (at the operating conditions for this process). Trace levels of these contaminants are expected to be present in desulfurized flue gas. The sorbents did not collect detectable quantities of mercury (Hg). A process was designed for the Na{sub 2}CO{sub 3}-based sorbent that includes a co-current downflow reactor system for adsorption of CO{sub 2} and a steam-heated, hollow-screw conveyor system for regeneration of the sorbent and release of a concentrated CO{sub 2} gas stream. An economic analysis of this process (based on the U.S. Department of Energy's National Energy Technology Laboratory's [DOE/NETL's] 'Carbon Capture and Sequestration Systems Analysis Guidelines') was carried out. RTI's economic analyses indicate that installation of the Dry Carbonate Process in a 500 MW{sub e} (nominal) power plant could achieve 90% CO{sub 2} removal with an incremental capital cost of about $69 million and an increase in the cost of electricity (COE) of about 1.95 cents per kWh. This represents an increase of roughly 35.4% in the estimated COE - which compares very favorable versus MEA's COE increase of 58%. Both the incremental capital cost and the incremental COE were projected to be less than the comparable costs for an equally efficient CO{sub 2} removal system based on monoethanolamine (MEA).

  7. Regulating Carbon Dioxide Capture and Storage 07-003 April 2007

    E-Print Network [OSTI]

    Regulating Carbon Dioxide Capture and Storage by 07-003 April 2007 M.A. de Figueiredo, H.J. Herzog, P.L. Joskow, K.A. Oye, and D.M. Reiner #12;#12;Regulating Carbon Dioxide Capture and Storage M.A. de to be addressed to create an effective regulatory regime for carbon dioxide capture and storage ("CCS"). Legal

  8. An idealized assessment of the economics of air capture of carbon dioxide in mitigation policy

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    a c t This paper discusses the technology of direct capture of carbon dioxide from the atmo- sphereAn idealized assessment of the economics of air capture of carbon dioxide in mitigation policy- ture,'' which refers to the direct removal of carbon dioxide from the ambient air. Air capture has

  9. Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy

    E-Print Network [OSTI]

    Yaghi, Omar M.

    Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks, and carbon dioxide isotherm measurements were performed at 1-85 bar and 77-298 K on the evacuated forms for COF-5, 65 mg g-1 for COF-6, 87 mg g-1 for COF-8, and 80 mg g-1 for COF-10; carbon dioxide at 298 K

  10. The Implied Cost of Carbon Dioxide under the Cash for Clunkers Christopher R. Knittel

    E-Print Network [OSTI]

    Rothman, Daniel

    The Implied Cost of Carbon Dioxide under the Cash for Clunkers Program Christopher R. Knittel of the implied cost of carbon dioxide reductions under the Cash for Clunker program. The estimates suggest pollutants. Conservative estimates of the implied carbon dioxide cost exceed $365 per ton; best case scenario

  11. Surface runoff features on Mars: Testing the carbon dioxide formation hypothesis

    E-Print Network [OSTI]

    Nimmo, Francis

    materials and properties; KEYWORDS: Mars, gullies, seepage, runoff, carbon dioxide, water Citation: StewartSurface runoff features on Mars: Testing the carbon dioxide formation hypothesis Sarah T. Stewart1, S. T., and F. Nimmo, Surface runoff features on Mars: Testing the carbon dioxide formation

  12. Carbon Dioxide Footprint of the Northwest Power System Comments submitted by Grant County Public Utility District

    E-Print Network [OSTI]

    Carbon Dioxide Footprint of the Northwest Power System Comments submitted by Grant County Public paper: Carbon Dioxide Footprint of the Northwest Power System, dated September 13, 2007. The Grant done a very thorough job of assessing the current and future carbon dioxide footprints of the Northwest

  13. A correlation of optimal heat rejection pressures in transcritical carbon dioxide cycles

    E-Print Network [OSTI]

    Zhao, Tianshou

    ®cance for the design and control of the transcritical carbon dioxide air- conditioning and heat pump systems 7 2000A correlation of optimal heat rejection pressures in transcritical carbon dioxide cycles S.M. Liaoa) of transcritical carbon dioxide air-conditioning cycles. The analysis shows that the COP of the transcritical

  14. Carbon Dioxide Capture from Flue Gas Using Dry, Regenerable Sorbents

    SciTech Connect (OSTI)

    David A. Green; Thomas O. Nelson; Brian S. Turk; Paul D. Box; Raghubir P. Gupta

    2006-03-31T23:59:59.000Z

    This report describes research conducted between January 1, 2006, and March 31, 2006, on the use of dry regenerable sorbents for removal of carbon dioxide (CO{sub 2}) from coal combustion flue gas. An integrated system composed of a downflow co-current contact absorber and two hollow screw conveyors (regenerator and cooler) was assembled, instrumented, debugged, and calibrated. A new batch of supported sorbent containing 15% sodium carbonate was prepared and subjected to surface area and compact bulk density determination.

  15. Corrosion of various engineering alloys in supercritical carbon dioxide

    E-Print Network [OSTI]

    Gibbs, Jonathan Paul

    2010-01-01T23:59:59.000Z

    The corrosion resistance of ten engineering alloys were tested in a supercritical carbon dioxide (S-CO 2) environment for up to 3000 hours at 610°C and 20MPa. The purpose of this work was to evaluate each alloy as a potential ...

  16. www.sciam.com SCIENTIFIC AMERICAN 49 Pumping carbon dioxide

    E-Print Network [OSTI]

    O'Donnell, Tom

    for capture and storage already exists and that the obstacles hindering implementa- tion seem to the gallon and go 10,000 miles next year, you will need to buy 330 gallons-- about a ton--of gasoline. Burning that much gasoline sends around three tons of carbon dioxide out the tailpipe. Al- though CO2

  17. Phase relation between global temperature and atmospheric carbon dioxide

    E-Print Network [OSTI]

    Stallinga, Peter

    2013-01-01T23:59:59.000Z

    The primary ingredient of Anthropogenic Global Warming hypothesis is the assumption that atmospheric carbon dioxide variations are the cause for temperature variations. In this paper we discuss this assumption and analyze it on basis of bi-centenary measurements and using a relaxation model which causes phase shifts and delays.

  18. Degassing of metamorphic carbon dioxide from the Nepal Himalaya

    E-Print Network [OSTI]

    Derry, Louis A.

    Degassing of metamorphic carbon dioxide from the Nepal Himalaya Matthew J. Evans Chemistry at the foot of the Higher Himalaya near the Main Central Thrust (MCT), Nepal Himalaya. We have sampled hot the Nepal Himalaya, Geochem. Geophys. Geosyst., 9, Q04021, doi:10.1029/2007GC001796. 1. Introduction [2

  19. High Temperature Electrolysis of Steam and Carbon Dioxide

    E-Print Network [OSTI]

    High Temperature Electrolysis of Steam and Carbon Dioxide Søren Højgaard Jensen+,#, Jens V. T. Høgh + O2 #12;Electrolysis of steam at high temperature Interesting because · Improved thermodynamic of electrolysis of steam Picture taken from E. Erdle, J. Gross, V. Meyringer, "Solar thermal central receiver

  20. The Net Environmental Effects of Carbon Dioxide Reduction Policies

    E-Print Network [OSTI]

    of policy measures have been proposed to reduce the emissions of carbon dioxide (CO2). However, policies which reduce CO2 emissions will also decrease the emissions of greenhouse-relevant gases methane are overlooked the net effect of CO2 reduction policies on global warming is understated. Thus, emissions of all

  1. Thermodynamics of carbon dioxide in aqueous piperazine/potassium carbonate systems at stripper conditions

    E-Print Network [OSTI]

    Rochelle, Gary T.

    GHGT-8 1 Thermodynamics of carbon dioxide in aqueous piperazine/potassium carbonate systems thermodynamic models. The range in CO2 solubility measured from 100 ­ 120 o C for K+ /PZ mixtures was from (0 and Technology to expand the thermodynamic data of for potassium carbonate/piperazine/CO2 with measurements of CO

  2. Supercritical carbon dioxide cycle control analysis.

    SciTech Connect (OSTI)

    Moisseytsev, A.; Sienicki, J. J. (Nuclear Engineering Division)

    2011-04-11T23:59:59.000Z

    This report documents work carried out during FY 2008 on further investigation of control strategies for supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle energy converters. The main focus of the present work has been on investigation of the S-CO{sub 2} cycle control and behavior under conditions not covered by previous work. An important scenario which has not been previously calculated involves cycle operation for a Sodium-Cooled Fast Reactor (SFR) following a reactor scram event and the transition to the primary coolant natural circulation and decay heat removal. The Argonne National Laboratory (ANL) Plant Dynamics Code has been applied to investigate the dynamic behavior of the 96 MWe (250 MWt) Advanced Burner Test Reactor (ABTR) S-CO{sub 2} Brayton cycle following scram. The timescale for the primary sodium flowrate to coast down and the transition to natural circulation to occur was calculated with the SAS4A/SASSYS-1 computer code and found to be about 400 seconds. It is assumed that after this time, decay heat is removed by the normal ABTR shutdown heat removal system incorporating a dedicated shutdown heat removal S-CO{sub 2} pump and cooler. The ANL Plant Dynamics Code configured for the Small Secure Transportable Autonomous Reactor (SSTAR) Lead-Cooled Fast Reactor (LFR) was utilized to model the S-CO{sub 2} Brayton cycle with a decaying liquid metal coolant flow to the Pb-to-CO{sub 2} heat exchangers and temperatures reflecting the decaying core power and heat removal by the cycle. The results obtained in this manner are approximate but indicative of the cycle transient performance. The ANL Plant Dynamics Code calculations show that the S-CO{sub 2} cycle can operate for about 400 seconds following the reactor scram driven by the thermal energy stored in the reactor structures and coolant such that heat removal from the reactor exceeds the decay heat generation. Based on the results, requirements for the shutdown heat removal system may be defined. In particular, the peak heat removal capacity of the shutdown heat removal loop may be specified to be 1.1 % of the nominal reactor power. An investigation of the oscillating cycle behavior calculated by the ANL Plant Dynamics Code under specific conditions has been carried out. It has been found that the calculation of unstable operation of the cycle during power reduction to 0 % may be attributed to the modeling of main compressor operation. The most probable reason for such instabilities is the limit of applicability of the currently used one-dimensional compressor performance subroutines which are based on empirical loss coefficients. A development of more detailed compressor design and performance models is required and is recommended for future work in order to better investigate and possibly eliminate the calculated instabilities. Also, as part of such model development, more reliable surge criteria should be developed for compressor operation close to the critical point. It is expected that more detailed compressor models will be developed as a part of validation of the Plant Dynamics Code through model comparison with the experiment data generated in the small S-CO{sub 2} loops being constructed at Barber-Nichols Inc. and Sandia National Laboratories (SNL). Although such a comparison activity had been planned to be initiated in FY 2008, data from the SNL compression loop currently in operation at Barber Nichols Inc. has not yet become available by the due date of this report. To enable the transient S-CO{sub 2} cycle investigations to be carried out, the ANL Plant Dynamics Code for the S-CO{sub 2} Brayton cycle was further developed and improved. The improvements include further optimization and tuning of the control mechanisms as well as an adaptation of the code for reactor systems other than the Lead-Cooled Fast Reactor (LFR). Since the focus of the ANL work on S-CO{sub 2} cycle development for the majority of the current year has been on the applicability of the cycle to SFRs, work has started on modification of the ANL Plant Dynamics Code to allow

  3. Geochemistry of silicate-rich rocks can curtail spreading of carbon dioxide in subsurface aquifers

    E-Print Network [OSTI]

    Cardoso, S. S. S.; Andres, J. T. H.

    2014-12-11T23:59:59.000Z

    of carbon sequestration and dissolution rates in the subsurface, suggesting that pooled carbon dioxide may remain in the shallower regions of the formation for hundreds to thousands of years. The deeper regions of the reservoir can remain virtually carbon... interests. References 1. Marini, L. Geochemical Sequestration of Carbon Dioxide. (Elsevier 2007). 2. IPCC Special Report on Carbon Dioxide Capture and Storage, edited by Metz B. et al. (Cambridge University Press, UK and New York, USA, 2005). 3. Falkowski...

  4. Influence of Shrinkage and Swelling Properties of Coal on Geologic Sequestration of Carbon Dioxide

    SciTech Connect (OSTI)

    Siriwardane, H.J.; Gondle, R.; Smith, D.H.

    2007-05-01T23:59:59.000Z

    The potential for enhanced methane production and geologic sequestration of carbon dioxide in coalbeds needs to be evaluated before large-scale sequestration projects are undertaken. Geologic sequestration of carbon dioxide in deep unmineable coal seams with the potential for enhanced coalbed methane production has become a viable option to reduce greenhouse gas emissions. The coal matrix is believed to shrink during methane production and swell during the injection of carbon dioxide, causing changes in tlie cleat porosity and permeability of the coal seam. However, the influence of swelling and shrinkage, and the geomechanical response during the process of carbon dioxide injection and methane recovery, are not well understood. A three-dimensional swelling and shrinkage model based on constitutive equations that account for the coupled fluid pressure-deformation behavior of a porous medium was developed and implemented in an existing reservoir model. Several reservoir simulations were performed at a field site located in the San Juan basin to investigate the influence of swelling and shrinkage, as well as other geomechanical parameters, using a modified compositional coalbed methane reservoir simulator (modified PSU-COALCOMP). The paper presents numerical results for interpretation of reservoir performance during injection of carbon dioxide at this site. Available measured data at the field site were compared with computed values. Results show that coal swelling and shrinkage during the process of enhanced coalbed methane recovery can have a significant influence on the reservoir performance. Results also show an increase in the gas production rate with an increase in the elastic modulus of the reservoir material and increase in cleat porosity. Further laboratory and field tests of the model are needed to furnish better estimates of petrophysical parameters, test the applicability of thee model, and determine the need for further refinements to the mathematical model.

  5. Mineralization of Carbon Dioxide: Literature Review

    SciTech Connect (OSTI)

    Romanov, V; Soong, Y; Carney, C; Rush, G; Nielsen, B; O'Connor, W

    2015-01-01T23:59:59.000Z

    CCS research has been focused on CO2 storage in geologic formations, with many potential risks. An alternative to conventional geologic storage is carbon mineralization, where CO2 is reacted with metal cations to form carbonate minerals. Mineralization methods can be broadly divided into two categories: in situ and ex situ. In situ mineralization, or mineral trapping, is a component of underground geologic sequestration, in which a portion of the injected CO2 reacts with alkaline rock present in the target formation to form solid carbonate species. In ex situ mineralization, the carbonation reaction occurs above ground, within a separate reactor or industrial process. This literature review is meant to provide an update on the current status of research on CO2 mineralization. 2

  6. Research projects for 2014 Carbon Dioxide Chemistry Prof. Chris Rayner Prof. Chris Rayner

    E-Print Network [OSTI]

    Rzepa, Henry S.

    commercialising our recently patented technology for carbon dioxide capture.3 Carbon dioxide in Synthesis. Our underway, summarised below. Carbon capture and storage (CCS) is a key strategy for reducing atmospheric CO2 chemistry similar to that which occurs in carbon capture processes for CCS, in the purification of high

  7. Investigation of the carbon dioxide sorption capacity and structural deformation of coal

    SciTech Connect (OSTI)

    Hur, Tae-Bong; Fazio, James; Romanov, Vyacheslav; Harbert, William

    2010-01-01T23:59:59.000Z

    Due to increasing atmospheric CO2 concentrations causing the global energy and environmental crises, geological sequestration of carbon dioxide is now being actively considered as an attractive option to mitigate greenhouse gas emissions. One of the important strategies is to use deep unminable coal seams, for those generally contain significant quantities of coal bed methane that can be recovered by CO2 injection through enhanced coal bed natural gas production, as a method to safely store CO2. It has been well known that the adsorbing CO2 molecules introduce structural deformation, such as distortion, shrinkage, or swelling, of the adsorbent of coal organic matrix. The accurate investigations of CO2 sorption capacity as well as of adsorption behavior need to be performed under the conditions that coals deform. The U.S. Department of Energy-National Energy Technology Laboratory and Regional University Alliance are conducting carbon dioxide sorption isotherm experiments by using manometric analysis method for estimation of CO2 sorption capacity of various coal samples and are constructing a gravimetric apparatus which has a visual window cell. The gravimetric apparatus improves the accuracy of carbon dioxide sorption capacity and provides feasibility for the observation of structural deformation of coal sample while carbon dioxide molecules interact with coal organic matrix. The CO2 sorption isotherm measurements have been conducted for moist and dried samples of the Central Appalachian Basin (Russell County, VA) coal seam, received from the SECARB partnership, at the temperature of 55 C.

  8. Solar Power To Help Convert Carbon Dioxide Into Fuel : Renewable Energy News

    E-Print Network [OSTI]

    Lovley, Derek

    Solar Power To Help Convert Carbon Dioxide Into Fuel : Renewable Energy News TUESDAY 25 MAY, 2010 | | Solar Power To Help Convert Carbon Dioxide Into Fuel by Energy Matters Microbiologist Derek Lovley dioxide into transportation fuels, with the help of special micro-organisms and solar power. The team

  9. Regenerable immobilized aminosilane sorbents for carbon dioxide capture applications

    DOE Patents [OSTI]

    Gay, McMahan; Choi, Sunho; Jones, Christopher W

    2014-09-16T23:59:59.000Z

    A method for the separation of carbon dioxide from ambient air and flue gases is provided wherein a phase separating moiety with a second moiety are simultaneously coupled and bonded onto an inert substrate to create a mixture which is subsequently contacted with flue gases or ambient air. The phase-separating moiety is an amine whereas the second moiety is an aminosilane, or a Group 4 propoxide such as titanium (IV) propoxide (tetrapropyl orthotitanate, C.sub.12H.sub.28O.sub.4Ti). The second moiety makes the phase-separating moiety insoluble in the pores of the inert substrate. The new sorbents have a high carbon dioxide loading capacity and considerable stability over hundreds of cycles. The synthesis method is readily scalable for commercial and industrial production.

  10. Carbon Dioxide Separation with Supported Ionic Liquid Membranes

    SciTech Connect (OSTI)

    Luebke, D.R.; Ilconich, J.B.; Myers, C.R.; Pennline, H.W.

    2007-04-01T23:59:59.000Z

    Supported liquid membranes are a class of materials that allow the researcher to utilize the wealth of knowledge available on liquid properties as a direct guide in the development of a capture technology. These membranes also have the advantage of liquid phase diffusivities higher than those observed in polymeric membranes which grant proportionally greater permeabilities. The primary shortcoming of the supported liquid membranes demonstrated in past research has been the lack of stability caused by volatilization of the transport liquid. Ionic liquids, which possess high carbon dioxide solubility relative to light gases such as hydrogen, are an excellent candidate for this type of membrane since they have negligible vapor pressure and are not susceptible to evaporation. A study has been conducted evaluating the use of several ionic liquids, including 1-hexyl-3-methyl-imidazolium bis(trifuoromethylsulfonyl)imide, 1-butyl-3-methyl-imidazolium nitrate, and 1-ethyl-3-methyl-imidazolium sulfate in supported ionic liquid membranes for the capture of carbon dioxide from streams containing hydrogen. In a joint project, researchers at the University of Notre Dame lent expertise in ionic liquid synthesis and characterization, and researchers at the National Energy Technology Laboratory incorporated candidate ionic liquids into supports and evaluated the resulting materials for membrane performance. Initial results have been very promising with carbon dioxide permeabilities as high as 950 barrers and significant improvements in carbon dioxide/hydrogen selectivity over conventional polymers at 37C and at elevated temperatures. Results include a comparison of the performance of several ionic liquids and a number of supports as well as a discussion of innovative fabrication techniques currently under development.

  11. The production of activated silica with carbon dioxide gas

    E-Print Network [OSTI]

    Hayes, William Bell

    1956-01-01T23:59:59.000Z

    Ional to the per cent of carbon dioxi. de 1n the flue gas for a constant total gas flow rate. REFE REN CES l. Andrews, R. V, , Hanford Works Eocument (1952), 2. Andrews, R. V. & J. A. W. W. A, , ~46 82 (1954). 3. Andrews, R. V, , Personal Communication 4... of the reciuire . ents for the dedree of iliASTER OF SCIENCE Janus', 1956 Major Subject: Chemi. cal Engineering TH PRODUCTION OP ACTIVATED SILICA 7iIITH CARBON DIOXIDE GAS A Thesis William Bell Hayes III Approved as to style and content by: Chairmen...

  12. Accounting for Carbon Dioxide Emissions from Biomass Energy Combustion (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01T23:59:59.000Z

    Carbon Dioxide (CO2) emissions from the combustion of biomass to produce energy are excluded from the energy-related CO2 emissions reported in Annual Energy Outlook 2010. According to current international convention, carbon released through biomass combustion is excluded from reported energy-related emissions. The release of carbon from biomass combustion is assumed to be balanced by the uptake of carbon when the feedstock is grown, resulting in zero net emissions over some period of time]. However, analysts have debated whether increased use of biomass energy may result in a decline in terrestrial carbon stocks, leading to a net positive release of carbon rather than the zero net release assumed by its exclusion from reported energy-related emissions.

  13. Increasing carbon nanotube forest density

    E-Print Network [OSTI]

    McCarthy, Alexander P

    2014-01-01T23:59:59.000Z

    The outstanding mechanical, electrical, thermal, and morphological properties of individual carbon nanotubes (CNTs) open up exciting potential applications in a wide range of fields. One such application is replacing the ...

  14. Apparatus and method for removing solvent from carbon dioxide in resin recycling system

    DOE Patents [OSTI]

    Bohnert, George W. (Harrisonville, MO); Hand, Thomas E. (Lee's Summit, MO); DeLaurentiis, Gary M. (Jamestown, CA)

    2009-01-06T23:59:59.000Z

    A two-step resin recycling system and method solvent that produces essentially contaminant-free synthetic resin material. The system and method includes one or more solvent wash vessels to expose resin particles to a solvent, the solvent contacting the resin particles in the one or more solvent wash vessels to substantially remove contaminants on the resin particles. A separator is provided to separate the solvent from the resin particles after removal from the one or more solvent wash vessels. The resin particles are next exposed to carbon dioxide in a closed loop carbon dioxide system. The closed loop system includes a carbon dioxide vessel where the carbon dioxide is exposed to the resin, substantially removing any residual solvent remaining on the resin particles after separation. A separation vessel is also provided to separate the solvent from the solvent laden carbon dioxide. Both the carbon dioxide and the solvent are reused after separation in the separation vessel.

  15. January 2, 2008 Numerical modeling of the effect of carbon dioxide

    E-Print Network [OSTI]

    Boyer, Edmond

    January 2, 2008 Numerical modeling of the effect of carbon dioxide sequestration on the rate souterrain de dioxyde de carbone sur la déformation des calcaires par dissolution sous contrainte: résultats;Abstract When carbon dioxide (CO2) is injected into an aquifer or a depleted geological reservoir, its

  16. Highly efficient carbon dioxide capture with a porous organic polymer impregnated with

    E-Print Network [OSTI]

    Paik Suh, Myunghyun

    Highly efficient carbon dioxide capture with a porous organic polymer impregnated environmental crises such as global warming and ocean acidication, efficient carbon dioxide (CO2) capture As CO2 capture mate- rials, numerous solid adsorbents such as silica5 and carbon materials,6 metal

  17. Prolonged suppression of ecosystem carbon dioxide uptake after an anomalously warm year

    E-Print Network [OSTI]

    Cai, Long

    LETTERS Prolonged suppression of ecosystem carbon dioxide uptake after an anomalously warm year , Yiqi Luo5 & David S. Schimel6 Terrestrial ecosystems control carbon dioxide fluxes to and from and heterotrophic respira- tion, that determines whether an ecosystem is sequestering carbon or releasing

  18. Economic Evaluation of Leading Technology Options for Sequestration of Carbon Dioxide

    E-Print Network [OSTI]

    1 Economic Evaluation of Leading Technology Options for Sequestration of Carbon Dioxide by Jérémy, which releases nearly six billion tons of carbon per year into the atmosphere. These fuels will continue development. Since power plants are the largest point sources of CO2 emissions, capturing the carbon dioxide

  19. Carbon dioxide sequestration: how much and when? Klaus Keller & David McInerney & David F. Bradford

    E-Print Network [OSTI]

    Keller, Klaus

    Carbon dioxide sequestration: how much and when? Klaus Keller & David McInerney & David F. Bradford + Business Media B.V. 2008 Abstract Carbon dioxide (CO2) sequestration has been proposed as a key component fossil fuel requirement of CO2 sequestration, and the growth rate of carbon taxes. In this analytical

  20. Carbon Dioxide Capture from Flue Gas Using Dry, Regenerable Sorbents

    SciTech Connect (OSTI)

    David A. Green; Thomas O. Nelson; Brian S. Turk; Paul D. Box; Andreas Weber; Raghubir P. Gupta

    2006-01-01T23:59:59.000Z

    This report describes research conducted between October 1, 2005, and December 31, 2005, on the use of dry regenerable sorbents for removal of carbon dioxide (CO{sub 2}) from flue gas from coal combustion. A field test was conducted to examine the extent to which RTI's supported sorbent can be regenerated in a heated, hollow screw conveyor. This field test was conducted at the facilities of a screw conveyor manufacturer. The sorbent was essentially completely regenerated during this test, as confirmed by thermal desorption and mass spectroscopy analysis of the regenerated sorbent. Little or no sorbent attrition was observed during 24 passes through the heated screw conveyor system. Three downflow contactor absorption tests were conducted using calcined sodium bicarbonate as the absorbent. Maximum carbon dioxide removals of 57 and 91% from simulated flue gas were observed at near ambient temperatures with water-saturated gas. These tests demonstrated that calcined sodium carbonate is not as effective at removing CO{sub 2} as are supported sorbents containing 10 to 15% sodium carbonate. Delivery of the hollow screw conveyor for the laboratory-scale sorbent regeneration system was delayed; however, construction of other components of this system continued during the quarter.

  1. Development of a differential equation of state to describe subcritical isotherms of carbon dioxide 

    E-Print Network [OSTI]

    Fontenot, Charles Edward

    1980-01-01T23:59:59.000Z

    Processors Association, the National Science Eoundation, the Texas Engineering Experiment Station and Texas A&&i University for providing the funds for this work The author wishes to express his sincere appreciation to Dr. K, R. Hall for his guidance... Pressures of Carbon Dioxide 28 Comparison of Predicted and Experimental Saturated Vapor Densities of Carbon Dioxide. . . . 30 Comparison of Predicted and Experimental Saturated Liquid Densities of Carbon Dioxide. . . 31 Plot of the Slope of fR...

  2. Electrochemical Membrane for Carbon Dioxide Separation and Power Generation

    SciTech Connect (OSTI)

    Jolly, Stephen; Ghezel-Ayagh, Hossein; Hunt, Jennifer; Patel, Dilip; Steen, William A.; Richardson, Carl F.; Marina, Olga A.

    2012-12-28T23:59:59.000Z

    uelCell Energy, Inc. (FCE) has developed a novel system concept for separation of carbon dioxide (CO2) from greenhouse gas (GHG) emission sources using an electrochemical membrane (ECM). The salient feature of the ECM is its capability to produce electric power while capturing CO2 from flue gas, such as from an existing pulverized coal (PC) plant. Laboratory scale testing of the ECM has verified the feasibility of the technology for CO2 separation from simulated flue gases of PC plants as well as combined cycle power plants and other industrial facilities. Recently, FCE was awarded a contract (DE-FE0007634) from the U.S. Department of Energy to evaluate the use of ECM to efficiently and cost effectively separate CO2 from the emissions of existing coal fired power plants. The overarching objective of the project is to verify that the ECM can achieve at least 90% CO2 capture from flue gas of an existing PC plant with no more than 35% increase in the cost of electricity (COE) produced by the plant. The specific objectives and related activities planned for the project include: 1) conduct bench scale tests of a planar membrane assembly consisting of ten or more cells of about 0.8 m2 area each, 2) develop the detailed design for an ECM-based CO2 capture system applied to an existing PC plant, and 3) evaluate the effects of impurities (pollutants such as SO2, NOx, Hg) present in the coal plant flue gas by conducting laboratory scale performance tests of the membrane. The results of this project are anticipated to demonstrate that the ECM is an advanced technology, fabricated from inexpensive materials, based on proven operational track records, modular, scalable to large sizes, and a viable candidate for >90% carbon capture from existing PC plants. In this paper, the fundamentals of ECM technology including: material of construction, principal mechanisms of operation, carbon capture test results and the benefits of applications to PC plants will be presented.

  3. The Smart Grid: An Estimation of the Energy and Carbon Dioxide...

    Open Energy Info (EERE)

    Benefits Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Smart Grid: An Estimation of the Energy and Carbon Dioxide (CO2) Benefits Focus Area: Crosscutting Topics:...

  4. An Evaluation of the Feasibility of Combining Carbon Dioxide Flooding Technologies with Microbial Enhanced Oil Recovery Technologies in Order To Sequester Carbon Dioxide

    SciTech Connect (OSTI)

    Todd French; Lew Brown; Rafael Hernandez; Magan Green; Lynn Prewitt; Terry Coggins

    2009-08-19T23:59:59.000Z

    The need for more energy as our population grows results in an increase in the amount of CO2 introduced into the atmosphere. The effect of this introduction is currently debated intensely as to the severity of the effect of this. The bjective of this investigation was to determine if the production of more energy (i.e. petroleum) and the sequestration of CO2 could be coupled into one process. Carbon dioxide flooding is a well-established technique that introduces Compressed CO2 into a subsurface oil-bearing formation to aide in liquefying harder to extract petroleum and enhancing its mobility towards the production wells.

  5. In Situ Infrared Spectroscopic Study of Brucite Carbonation in Dry to Water-Saturated Supercritical Carbon Dioxide

    SciTech Connect (OSTI)

    Loring, John S.; Thompson, Christopher J.; Zhang, Changyong; Wang, Zheming; Schaef, Herbert T.; Rosso, Kevin M.

    2012-04-25T23:59:59.000Z

    In geologic carbon sequestration, while part of the injected carbon dioxide will dissolve into host brine, some will remain as neat to water saturated super critical CO2 (scCO2) near the well bore and at the caprock, especially in the short-term life cycle of the sequestration site. Little is known about the reactivity of minerals with scCO2 containing variable concentrations of water. In this study, we used high-pressure infrared spectroscopy to examine the carbonation of brucite (Mg(OH)2) in situ over a 24 hr reaction period with scCO2 containing water concentrations between 0% and 100% saturation, at temperatures of 35, 50, and 70 °C, and at a pressure of 100 bar. Little or no detectable carbonation was observed when brucite was reacted with neat scCO2. Higher water concentrations and higher temperatures led to greater brucite carbonation rates and larger extents of conversion to magnesium carbonate products. The only observed carbonation product at 35 °C was nesquehonite (MgCO3 • 3H2O). Mixtures of nesquehonite and magnesite (MgCO3) were detected at 50 °C, but magnesite was more prevalent with increasing water concentration. Both an amorphous hydrated magnesium carbonate solid and magnesite were detected at 70 °C, but magnesite predominated with increasing water concentration. The identity of the magnesium carbonate products appears strongly linked to magnesium water exchange kinetics through temperature and water availability effects.

  6. Carbon dioxide hydrate particles for ocean carbon sequestration

    E-Print Network [OSTI]

    Chow, A.C.

    This paper presents strategies for producing negatively buoyant CO[subscript 2] hydrate composite particles for ocean carbon sequestration. Our study is based on recent field observations showing that a continuous-jet ...

  7. Atmospheric carbon dioxide and the global carbon cycle

    SciTech Connect (OSTI)

    Trabalka, J R [ed.

    1985-12-01T23:59:59.000Z

    This state-of-the-art volume presents discussions on the global cycle of carbon, the dynamic balance among global atmospheric CO2 sources and sinks. Separate abstracts have been prepared for the individual papers. (ACR)

  8. Environmental control technology for atmospheric carbon dioxide

    SciTech Connect (OSTI)

    Steinberg, M; Albanese, A S

    1980-01-01T23:59:59.000Z

    The impact of fossil fuel use in the United States on worldwide CO/sub 2/ emissions and the impact of increased coal utilization on CO/sub 2/ emission rates are assessed. The aspects of CO/sub 2/ control are discussed as well as the available CO/sub 2/ control points (CO/sub 2/ removal sites). Two control scenarios are evaluated, one based on the absorption of CO/sub 2/ contained in power plant flue gas by seawater; the other, based on absorption of CO/sub 2/ by MEA (Mono Ethanol Amine). Captured CO/sub 2/ is injected into the deep ocean in both cases. The analyses indicate that capture and disposal by seawater is energetically not feasible, whereas capture and disposal using MEA is a possibility. However, the economic penalities of CO/sub 2/ control are significant. The use of non-fossil energy sources, such as hydroelectric, nuclear or solar energy is considered as an alternative for limiting and controlling CO/sub 2/ emissions resulting from fossil energy usage.

  9. A Review of Carbon Dioxide Selective Membranes: A Topical Report

    SciTech Connect (OSTI)

    Dushyant Shekhawat; David R. Luebke; Henry W. Pennline

    2003-12-01T23:59:59.000Z

    Carbon dioxide selective membranes provide a viable energy-saving alternative for CO2 separation, since membranes do not require any phase transformation. This review examines various CO2 selective membranes for the separation of CO2 and N2, CO2 and CH4, and CO2 and H2 from flue or fuel gas. This review attempts to summarize recent significant advances reported in the literature about various CO2 selective membranes, their stability, the effect of different parameters on the performance of the membrane, the structure and permeation properties relationships, and the transport mechanism applied in different CO2 selective membranes.

  10. Improvement of Carbon Dioxide Sweep Efficiency by Utilization of Microbial Permeability Profile Modification to Reduce the Amount of Oil Bypassed During Carbon Dioxide Flood

    SciTech Connect (OSTI)

    Darrel Schmitz; Lewis Brown F. Leo Lynch; Brenda Kirkland; Krystal Collins; William Funderburk

    2010-12-31T23:59:59.000Z

    The objective of this project was to couple microbial permeability profile modification (MPPM), with carbon dioxide flooding to improve oil recovery from the Upper Cretaceous Little Creek Oil Field situated in Lincoln and Pike counties, MS. This study determined that MPPM technology, which improves production by utilizing environmentally friendly nutrient solutions to simulate the growth of the indigenous microflora in the most permeable zones of the reservoir thus diverting production to less permeable, previously unswept zones, increased oil production without interfering with the carbon dioxide flooding operation. Laboratory tests determined that no microorganisms were produced in formation waters, but were present in cores. Perhaps the single most significant contribution of this study is the demonstration that microorganisms are active at a formation temperature of 115?C (239?F) by using a specially designed culturing device. Laboratory tests were employed to simulate the MPPM process by demonstrating that microorganisms could be activated with the resulting production of oil in coreflood tests performed in the presence of carbon dioxide at 66?C (the highest temperature that could be employed in the coreflood facility). Geological assessment determined significant heterogeneity in the Eutaw Formation, and documented relatively thin, variably-lithified, well-laminated sandstone interbedded with heavily-bioturbated, clay-rich sandstone and shale. Live core samples of the Upper Cretaceous Eutaw Formation from the Heidelberg Field, MS were quantitatively assessed using SEM, and showed that during MPPM permeability modification occurs ubiquitously within pore and throat spaces of 10-20 ?m diameter. Testing of the MPPM procedure in the Little Creek Field showed a significant increase in production occurred in two of the five production test wells; furthermore, the decline curve in each of the production wells became noticeably less steep. This project greatly extends the number of oil fields in which MPPM can be implemented.

  11. Carbon Dioxide Hydrate Particles for Ocean Carbon Sequestration

    SciTech Connect (OSTI)

    Chow, Aaron C. [Massachusetts Institute of Technology (MIT); Adams, E. Eric [Massachusetts Institute of Technology (MIT); Israelsson, P. H. [Quantitative Environmental Analysis; Tsouris, Costas [ORNL

    2009-01-01T23:59:59.000Z

    This paper presents strategies for producing negatively buoyant CO{sub 2} hydrate composite particles for ocean carbon sequestration. Our study is based on recent field observations showing that a continuous-jet hydrate reactor located at an ocean depth of 1500 m produced curved negatively buoyant cylindrical particles with diameters {approx} 2.5 cm and lengths up to {approx} 1 m. Accordingly we performed new laboratory experiments to determine the drag coefficient of such particles and, based on the measured drag coefficient and the initial settling velocity observed in the field, have concluded that the reactor efficiency (percentage of liquid CO{sub 2} converted to hydrate) in the field was {approx} 16%. Using the dissolution rates observed in the field, we conclude that such particles would ultimately sink to depth below discharge of {approx} 115 m. We have also predicted the sinking depth of particles potentially produced from various scaled-up reactors and have shown that, for example, a 10 cm diameter particle produced with a hydrate conversion of 50% could reach the ocean bottom before completely dissolving. In a real sequestration scenario, we are interested in following large groups of hydrate particles released continuously. We have previously shown that increasing particle size and hydrate conversion efficiency enhances the sinking of hydrate particle plumes produced by the continuous release of CO{sub 2} in a quiescent ambient, but that a sufficiently strong current will cause the entrained particles to separate from the plume and settle discretely. In the latter case, particles of different sizes and hydrate conversions (hence different settling velocities) will follow different settling trajectories as they dissolve. This particle fractionation, if employed deliberately, spreads the discharged CO{sub 2} in the down current and vertical directions, enhancing mixing, while turbulent diffusion helps spread the CO{sub 2} in the third direction. A numerical model that incorporates these processes is used to predict the downstream concentrations and changes in pH from such particle plumes in a 'strong' current. An extension of this model simulates hydrate particles that are released continuously from a moving ship. Because of the ship speed, such particles would never form a coherent plume, but the combination of particle fractionation and advection due to the ship motion produces excellent dilution of the discharged CO{sub 2}.

  12. Carbon Dioxide Sealing Capacity: Textural or Compositional Controls?

    SciTech Connect (OSTI)

    Cranganu, Constantin; Soleymani, Hamidreza; Sadiqua, Soleymani; Watson, Kieva

    2013-11-30T23:59:59.000Z

    This research project is aiming to assess the carbon dioxide sealing capacity of most common seal-rocks, such as shales and non-fractured limestones, by analyzing the role of textural and compositional parameters of those rocks. We hypothesize that sealing capacity is controlled by textural and/or compositional pa-rameters of caprocks. In this research, we seek to evaluate the importance of textural and compositional parameters affecting the sealing capacity of caprocks. The conceptu-al framework involves two testable end-member hypotheses concerning the sealing ca-pacity of carbon dioxide reservoir caprocks. Better understanding of the elements controlling sealing quality will advance our knowledge regarding the sealing capacity of shales and carbonates. Due to relatively low permeability, shale and non-fractured carbonate units are considered relatively imper-meable formations which can retard reservoir fluid flow by forming high capillary pres-sure. Similarly, these unites can constitute reliable seals for carbon dioxide capture and sequestration purposes. This project is a part of the comprehensive project with the final aim of studying the caprock sealing properties and the relationship between microscopic and macroscopic characteristics of seal rocks in depleted gas fields of Oklahoma Pan-handle. Through this study we examined various seal rock characteristics to infer about their respective effects on sealing capacity in special case of replacing reservoir fluid with super critical carbon dioxide (scCO{sub 2}). To assess the effect of textural and compositional properties on scCO{sub 2} maximum reten-tion column height we collected 30 representative core samples in caprock formations in three counties (Cimarron, Texas, Beaver) in Oklahoma Panhandle. Core samples were collected from various seal formations (e.g., Cherokee, Keys, Morrowan) at different depths. We studied the compositional and textural properties of the core samples using several techniques. Mercury Injection Porosimetry (MIP), Scanning Electron Microsco-py SEM, and Sedigraph measurements are used to assess the pore-throat-size distribu-tion, sorting, texture, and grain size of the samples. Also, displacement pressure at 10% mercury saturation (Pd) and graphically derived threshold pressure (Pc) were deter-mined by MIP technique. SEM images were used for qualitative study of the minerals and pores texture of the core samples. Moreover, EDS (Energy Dispersive X-Ray Spec-trometer), BET specific surface area, and Total Organic Carbon (TOC) measurements were performed to study various parameters and their possible effects on sealing capaci-ty of the samples. We found that shales have the relatively higher average sealing threshold pressure (Pc) than carbonate and sandstone samples. Based on these observations, shale formations could be considered as a promising caprock in terms of retarding scCO{sub 2} flow and leak-age into above formations. We hypothesized that certain characteristics of shales (e.g., 3 fine pore size, pore size distribution, high specific surface area, and strong physical chemical interaction between wetting phase and mineral surface) make them an effi-cient caprock for sealing super critical CO{sub 2}. We found that the displacement pressure at 10% mercury saturation could not be the ultimate representative of the sealing capacity of the rock sample. On the other hand, we believe that graphical method, introduced by Cranganu (2004) is a better indicator of the true sealing capacity. Based on statistical analysis of our samples from Oklahoma Panhandle we assessed the effects of each group of properties (textural and compositional) on maximum supercriti-cal CO{sub 2} height that can be hold by the caprock. We conclude that there is a relatively strong positive relationship (+.40 to +.69) between supercritical CO{sub 2} column height based on Pc and hard/ soft mineral content index (ratio of minerals with Mohs hardness more than 5 over minerals with Mohs hardness less than 5) in both shales and limestone samples. Average median pore rad

  13. Combustion systems and power plants incorporating parallel carbon dioxide capture and sweep-based membrane separation units to remove carbon dioxide from combustion gases

    DOE Patents [OSTI]

    Wijmans, Johannes G. (Menlo Park, CA); Merkel, Timothy C (Menlo Park, CA); Baker, Richard W. (Palo Alto, CA)

    2011-10-11T23:59:59.000Z

    Disclosed herein are combustion systems and power plants that incorporate sweep-based membrane separation units to remove carbon dioxide from combustion gases. In its most basic embodiment, the invention is a combustion system that includes three discrete units: a combustion unit, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In a preferred embodiment, the invention is a power plant including a combustion unit, a power generation system, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In both of these embodiments, the carbon dioxide capture unit and the sweep-based membrane separation unit are configured to be operated in parallel, by which we mean that each unit is adapted to receive exhaust gases from the combustion unit without such gases first passing through the other unit.

  14. Carbon Dioxide Information Analysis Center: FY 1991 activities

    SciTech Connect (OSTI)

    Cushman, R.M.; Stoss, F.W.

    1992-06-01T23:59:59.000Z

    During the course of a fiscal year, Oak Ridge National Laboratory's Carbon Dioxide Information Analysis Center (CDIAC) distributes thousands of specially publications-numeric data packages (NDPs), computer model packages (CMPs), technical reports, public communication publications, newsletters, article reprints, and reference books-in response to requests for information related to global environmental issues, primarily those pertaining to climate change. CDIAC's staff also provides technical responses to specific inquiries related to carbon dioxide (CO{sub 2}), other trace gases, and climate. Hundreds of referrals to other researchers, policy analysts, information specialists, or organizations are also facilitated by CDIAC's staff. This report provides an account of the activities accomplished by CDIAC during the period October 1, 1990 to September 30, 1991. An organizational overview of CDIAC and its staff is supplemented by a detailed description of inquiries received and CDIAC's response to those inquiries. An analysis and description of the preparation and distribution of numeric data packages, computer model packages, technical reports, newsletters, factsheets, specially publications, and reprints is provided. Comments and descriptions of CDIAC's information management systems, professional networking, and special bilateral agreements are also described.

  15. Carbon Dioxide Information Analysis Center: FY 1992 activities

    SciTech Connect (OSTI)

    Cushman, R.M. [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center; Stoss, F.W. [Tennessee Univ., Knoxville, TN (United States). Energy, Environment and Resources Center

    1993-03-01T23:59:59.000Z

    During the course of a fiscal year, Oak Ridge National Laboratory`s Carbon Dioxide Information Analysis Center (CDIAC) distributes thousands of specialty publications-numeric data packages (NDPs), computer model packages (CMPs), technical reports, public communication publications, newsletters, article reprints, and reference books-in response to requests for information related to global environmental issues, primarily those pertaining to climate change. CDIACs staff also provides technical responses to specific inquiries related to carbon dioxide (CO{sub 2}), other trace gases, and climate. Hundreds of referrals to other researchers, policy analysts, information specialists, or organizations are also facilitated by CDIAC`s staff. This report provides an account of the activities accomplished by CDIAC during the period October 1, 1991 to September 30, 1992. An organizational overview of CDIAC and its staff is supplemented by a detailed description of inquiries received and CDIAC`s response to those inquiries. As analysis and description of the preparation and distribution of numeric data packages, computer model packages, technical reports, newsletters, fact sheets, specialty publications, and reprints is provided. Comments and descriptions of CDIAC`s information management systems, professional networking, and special bilateral agreements are also described.

  16. Carbon Dioxide Information Analysis Center: FY 1991 activities

    SciTech Connect (OSTI)

    Cushman, R.M.; Stoss, F.W.

    1992-06-01T23:59:59.000Z

    During the course of a fiscal year, Oak Ridge National Laboratory`s Carbon Dioxide Information Analysis Center (CDIAC) distributes thousands of specially publications-numeric data packages (NDPs), computer model packages (CMPs), technical reports, public communication publications, newsletters, article reprints, and reference books-in response to requests for information related to global environmental issues, primarily those pertaining to climate change. CDIAC`s staff also provides technical responses to specific inquiries related to carbon dioxide (CO{sub 2}), other trace gases, and climate. Hundreds of referrals to other researchers, policy analysts, information specialists, or organizations are also facilitated by CDIAC`s staff. This report provides an account of the activities accomplished by CDIAC during the period October 1, 1990 to September 30, 1991. An organizational overview of CDIAC and its staff is supplemented by a detailed description of inquiries received and CDIAC`s response to those inquiries. An analysis and description of the preparation and distribution of numeric data packages, computer model packages, technical reports, newsletters, factsheets, specially publications, and reprints is provided. Comments and descriptions of CDIAC`s information management systems, professional networking, and special bilateral agreements are also described.

  17. Exergy analysis of transcritical carbon dioxide refrigeration cycle with an expander

    E-Print Network [OSTI]

    Bahrami, Majid

    Exergy analysis of transcritical carbon dioxide refrigeration cycle with an expander Jun Lan Yang Tianjin, People's Republic of China Received 1 June 2003 Abstract In this paper, a comparative study is performed for the transcritical carbon dioxide refrigeration cycles with a throttling valve

  18. GLOBAL EMISSIONS Greenhouse gas (GHG) emissions, largely carbon dioxide (CO2)

    E-Print Network [OSTI]

    Green, Donna

    GLOBAL EMISSIONS Greenhouse gas (GHG) emissions, largely carbon dioxide (CO2) from the combustion),2 China, Russia, Japan, India and Canada--accounted for more than 70 percent of energy-related CO2. Figure 1 Global Carbon Dioxide Emissions: 1850­2030 1850 1860 1870 1880 1890 1900 1910 1920 1930 1940

  19. 1 Spreading and convective dissolution of carbon dioxide in vertically 2 confined, horizontal aquifers

    E-Print Network [OSTI]

    Neufeld, Jerome A.

    1 Spreading and convective dissolution of carbon dioxide in vertically 2 confined, horizontal] Injection of carbon dioxide (CO2) into saline aquifers is a promising tool for reducing 6 anthropogenic CO2 emissions. At reservoir conditions, the injected CO2 is buoyant relative 7 to the ambient groundwater

  20. Spreading and convective dissolution of carbon dioxide in vertically confined, horizontal aquifers

    E-Print Network [OSTI]

    Huppert, Herbert

    Spreading and convective dissolution of carbon dioxide in vertically confined, horizontal aquifers of carbon dioxide (CO2) into saline aquifers is a promising tool for reducing anthropogenic CO2 emissions. At reservoir conditions, the injected CO2 is buoyant relative to the ambient groundwater. The buoyant plume

  1. DOUBLE SHELL TANK (DST) HYDROXIDE DEPLETION MODEL FOR CARBON DIOXIDE ABSORPTION

    SciTech Connect (OSTI)

    OGDEN DM; KIRCH NW

    2007-10-31T23:59:59.000Z

    This document generates a supernatant hydroxide ion depletion model based on mechanistic principles. The carbon dioxide absorption mechanistic model is developed in this report. The report also benchmarks the model against historical tank supernatant hydroxide data and vapor space carbon dioxide data. A comparison of the newly generated mechanistic model with previously applied empirical hydroxide depletion equations is also performed.

  2. Mathematical Modeling of Carbon Dioxide Injection in the Subsurface for Improved Hydrocarbon Recovery and Sequestration

    E-Print Network [OSTI]

    Firoozabadi, Abbas

    Mathematical Modeling of Carbon Dioxide Injection in the Subsurface for Improved Hydrocarbon Recovery and Sequestration Philip C. Myint, Laurence Rongy, Kjetil B. Haugen, Abbas Firoozabadi Department. Combustion of fossil fuels contributes to rising atmospheric carbon dioxide (CO2) levels that have been

  3. Using tracer experiments to determine deep saline aquifers caprocks transport characteristics for carbon dioxide storage

    E-Print Network [OSTI]

    Boyer, Edmond

    for carbon dioxide storage P. Bachaud1,2 , Ph. Berne1 , P. Boulin1,3,4 , F. Renard5,6 , M. Sardin2 , J caprocks from a deep saline aquifer in the Paris basin. Introduction Storage of carbon dioxide in deep bubble. Determination of the diffusion properties is also required since they will govern how dissolved

  4. Dissolution of carbon dioxide bubbles and microfluidic multiphase flows Ruopeng Sun and Thomas Cubaud*

    E-Print Network [OSTI]

    Cubaud, Thomas

    Dissolution of carbon dioxide bubbles and microfluidic multiphase flows Ruopeng Sun and Thomas the dissolution of carbon dioxide bubbles into common liquids (water, ethanol, and methanol) using microfluidic devices. Elongated bubbles are individually produced using a hydrodynamic focusing section into a compact

  5. ORNL/CDIAC-128 CARBON DIOXIDE, HYDROGRAPHIC, AND CHEMICAL DATA OBTAINED

    E-Print Network [OSTI]

    .S.A. Prepared by Alexander Kozyr1 Carbon Dioxide Information Analysis Center 1 Energy, Environment of Biological and Environmental Research U.S. Department of Energy Budget Activity Numbers KP 12 04 01 0 and KP#12;ORNL/CDIAC-128 NDP-075 CARBON DIOXIDE, HYDROGRAPHIC, AND CHEMICAL DATA OBTAINED DURING THE R

  6. Carbon Dioxide Information Analysis Center (CDIAC) PRINCIPAL INVESTIGATOR: Thomas A Boden (CDIAC Di-

    E-Print Network [OSTI]

    Carbon Dioxide Information Analysis Center (CDIAC) PRINCIPAL INVESTIGATOR: Thomas A Boden (CDIAC Di of Biological and Environmental Research (BER) PARTNERS: National Aeronautic and Space Administra- tion's (NASA://cdiac.ornl.gov/ PROJECT DESCRIPTION The Carbon Dioxide Information Analysis Center (CDIAC) is the primary climate -change

  7. Carbon Dioxide Capture from Coal-Fired Power Plants: A Real Options Analysis Ram Chandra Sekar

    E-Print Network [OSTI]

    Carbon Dioxide Capture from Coal-Fired Power Plants: A Real Options Analysis by Ram Chandra Sekar;2 #12;3 Carbon Dioxide Capture in Coal-Fired Power Plants: A Real Options Analysis by Ram Chandra Sekar less expensive (pre-investment IGCC). All coal-fired power plants can be retrofitted to capture CO2

  8. Evaluation of Polymer-Supported Rhodium Catalysts in 1-Octene Hydroformylation in Supercritical Carbon Dioxide

    E-Print Network [OSTI]

    Abdou, Hanan E.

    Carbon Dioxide Zulema K. Lopez-Castillo, Roberto Flores, Ibrahim Kani,,§ John P. Fackler Jr., and Aydin employed in homogeneous cataly- sis. The most common benign solvent is supercritical carbon dioxide (scCO2). It is nonflammable, inert, and inexpensive, is readily available at high purity, and has low critical properties

  9. The carbon dioxide solubility in alkali basalts: an experimental PRISCILLE LESNE 1,*

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 The carbon dioxide solubility in alkali basalts: an experimental study PRISCILLE LESNE 1 in both fluid and melt is required since, because of its low solubility, carbon dioxide is usually a major in silicate melts dramatically influence the physical properties of magmas, such as density, viscosity

  10. GHZ ELECTRICAL PROPERTIES OF CARBON NANOTUBES ON SILICON DIOXIDE MICRO BRIDGES

    E-Print Network [OSTI]

    Tang, William C

    1 GHZ ELECTRICAL PROPERTIES OF CARBON NANOTUBES ON SILICON DIOXIDE MICRO BRIDGES SHENG F. YEN1 of an approach to reduce the high-frequency capacitive feedthrough and dielectric leakages of carbon nanotubes grown on silicon dioxide micro bridges suspended over silicon substrates. The microwave reflection

  11. MASTER THESIS IN AQUATIC PHOTOCHEMISTRY Sunlight-induced carbon dioxide emissions from lakes

    E-Print Network [OSTI]

    Uppsala Universitet

    MASTER THESIS IN AQUATIC PHOTOCHEMISTRY Sunlight-induced carbon dioxide emissions from lakes The emissions of carbon dioxide (CO2) from inland waters are substantial on a global scale. Yet, the fundamental question remains open which proportion of these CO2 emissions is induced by sunlight via photochemical

  12. Microfluidic Reactor for the Electrochemical Reduction of Carbon Dioxide: The Effect of pH

    E-Print Network [OSTI]

    Kenis, Paul J. A.

    Microfluidic Reactor for the Electrochemical Reduction of Carbon Dioxide: The Effect of pH Devin T and characterization of a microfluidic reactor for the electrochemical reduction of carbon dioxide. The use of gas. Furthermore, the versatility of the microfluidic reactor enables rapid evaluation of catalysts under different

  13. Analysis and optimization of the Graz cycle : a coal fired power generation scheme with near-zero carbon dioxide emissions

    E-Print Network [OSTI]

    Alexander, Brentan R

    2007-01-01T23:59:59.000Z

    Humans are releasing record amounts of carbon dioxide into the atmosphere through the combustion of fossil fuels in power generation plants. With mounting evidence that this carbon dioxide is a leading cause of global ...

  14. Fluid Dynamics of Carbon Dioxide Disposal into Saline Aquifers

    SciTech Connect (OSTI)

    Garcia, Julio Enrique

    2003-12-18T23:59:59.000Z

    Injection of carbon dioxide (CO{sub 2}) into saline aquifers has been proposed as a means to reduce greenhouse gas emissions (geological carbon sequestration). Large-scale injection of CO{sub 2} will induce a variety of coupled physical and chemical processes, including multiphase fluid flow, fluid pressurization and changes in effective stress, solute transport, and chemical reactions between fluids and formation minerals. This work addresses some of these issues with special emphasis given to the physics of fluid flow in brine formations. An investigation of the thermophysical properties of pure carbon dioxide, water and aqueous solutions of CO{sub 2} and NaCl has been conducted. As a result, accurate representations and models for predicting the overall thermophysical behavior of the system CO{sub 2}-H{sub 2}O-NaCl are proposed and incorporated into the numerical simulator TOUGH2/ECO{sub 2}. The basic problem of CO{sub 2} injection into a radially symmetric brine aquifer is used to validate the results of TOUGH2/ECO2. The numerical simulator has been applied to more complex flow problem including the CO{sub 2} injection project at the Sleipner Vest Field in the Norwegian sector of the North Sea and the evaluation of fluid flow dynamics effects of CO{sub 2} injection into aquifers. Numerical simulation results show that the transport at Sleipner is dominated by buoyancy effects and that shale layers control vertical migration of CO{sub 2}. These results are in good qualitative agreement with time lapse surveys performed at the site. High-resolution numerical simulation experiments have been conducted to study the onset of instabilities (viscous fingering) during injection of CO{sub 2} into saline aquifers. The injection process can be classified as immiscible displacement of an aqueous phase by a less dense and less viscous gas phase. Under disposal conditions (supercritical CO{sub 2}) the viscosity of carbon dioxide can be less than the viscosity of the aqueous phase by a factor of 15. Because of the lower viscosity, the CO{sub 2} displacement front will have a tendency towards instability. Preliminary simulation results show good agreement between classical instability solutions and numerical predictions of finger growth and spacing obtained using different gas/liquid viscosity ratios, relative permeability and capillary pressure models. Further studies are recommended to validate these results over a broader range of conditions.

  15. Effects of Various Membrane Electrode Assemblies on the Electrochemical Reduction of Carbon Dioxide in the Gas Phase

    E-Print Network [OSTI]

    Petta, Jason

    for global warming. Human activities have contributed to the rise in sea level, change in wind patterns to decrease net carbon dioxide emissions and mitigate the effects of global warming, it is necessary to find, and increase in temperatures. If this trend in CO2 levels continues to rise it can lead to the loss of portions

  16. A Combined Experimental-Computational Investigation of Carbon Dioxide Capture in a Series of Isoreticular Zeolitic Imidazolate Frameworks

    E-Print Network [OSTI]

    Yaghi, Omar M.

    for their carbon dioxide capture and gas separation properties.2 However, little is known about the factors. Here, we report the synthesis, structure and carbon dioxide uptake properties of a series of ZIFsA Combined Experimental-Computational Investigation of Carbon Dioxide Capture in a Series

  17. Performance improvement options for the supercritical carbon dioxide brayton cycle.

    SciTech Connect (OSTI)

    Moisseytsev, A.; Sienicki, J. J.; Nuclear Engineering Division

    2008-07-17T23:59:59.000Z

    The supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle is under development at Argonne National Laboratory as an advanced power conversion technology for Sodium-Cooled Fast Reactors (SFRs) as well as other Generation IV advanced reactors as an alternative to the traditional Rankine steam cycle. For SFRs, the S-CO{sub 2} Brayton cycle eliminates the need to consider sodium-water reactions in the licensing and safety evaluation, reduces the capital cost of the SFR plant, and increases the SFR plant efficiency. Even though the S-CO{sub 2} cycle has been under development for some time and optimal sets of operating parameters have been determined, those earlier development and optimization studies have largely been directed at applications to other systems such as gas-cooled reactors which have higher operating temperatures than SFRs. In addition, little analysis has been carried out to investigate cycle configurations deviating from the selected 'recompression' S-CO{sub 2} cycle configuration. In this work, several possible ways to improve S-CO{sub 2} cycle performance for SFR applications have been identified and analyzed. One set of options incorporates optimization approaches investigated previously, such as variations in the maximum and minimum cycle pressure and minimum cycle temperature, as well as a tradeoff between the component sizes and the cycle performance. In addition, the present investigation also covers options which have received little or no attention in the previous studies. Specific options include a 'multiple-recompression' cycle configuration, intercooling and reheating, as well as liquid-phase CO{sub 2} compression (pumping) either by CO{sub 2} condensation or by a direct transition from the supercritical to the liquid phase. Some of the options considered did not improve the cycle efficiency as could be anticipated beforehand. Those options include: a double recompression cycle, intercooling between the compressor stages, and reheating between the turbine stages. Analyses carried out as part of the current investigation confirm the possibilities of improving the cycle efficiency that have been identified in previous investigations. The options in this group include: increasing the heat exchanger and turbomachinery sizes, raising of the cycle high end pressure (although the improvement potential of this option is very limited), and optimization of the low end temperature and/or pressure to operate as close to the (pseudo) critical point as possible. Analyses carried out for the present investigation show that significant cycle performance improvement can sometimes be realized if the cycle operates below the critical temperature at its low end. Such operation, however, requires the availability of a heat sink with a temperature lower than 30 C for which applicability of this configuration is dependent upon the climate conditions where the plant is constructed (i.e., potential performance improvements are site specific). Overall, it is shown that the S-CO{sub 2} Brayton cycle efficiency can potentially be increased to 45 %, if a low temperature heat sink is available and incorporation of larger components (e.g.., heat exchangers or turbomachinery) having greater component efficiencies does not significantly increase the overall plant cost.

  18. New kinetic model for the rapid step of calcium oxide carbonation by carbon dioxide Authors: Lydie Rouchon, Loc Favergeon, Michle Pijolat

    E-Print Network [OSTI]

    Boyer, Edmond

    New kinetic model for the rapid step of calcium oxide carbonation by carbon dioxide Authors: Lydie 94. Keywords: Carbonation, Calcium oxide, Kinetic modeling, TG Abstract Carbonation of solid calcium oxide by gaseous carbon dioxide was monitored by thermogravimetry (TG). A kinetic model of Ca

  19. Transthoracic Adrenal Biopsy Procedure Using Artificial Carbon Dioxide Pneumothorax as Outpatient Procedure

    SciTech Connect (OSTI)

    Favelier, Sylvain [CHU (University Hospital), Department of Radiology (France); Guiu, Severine [Georges-Francois Leclerc Cancer Center, Department of Oncology (France); Cherblanc, Violaine; Cercueil, Jean-Pierre; Krause, Denis; Guiu, Boris, E-mail: boris.guiu@chu-dijon.fr [CHU (University Hospital), Department of Radiology (France)

    2013-08-01T23:59:59.000Z

    Many routes have been described for percutaneous adrenal gland biopsy. They require either a complex non-axial path or a long hydrodissection or even pass through an organ thereby increasing complications. We describe here an approach using an artificially-induced carbon dioxide (CO{sub 2}) pneumothorax, performed as an outpatient procedure in a 57-year-old woman. Under local anaesthesia, 200 ml of CO{sub 2} was injected in the pleural space through a Veress needle under computed tomography fluoroscopy, to clear the lung parenchyma from the biopsy route. Using this technique, transthoracic adrenal biopsy can be performed under simple local anaesthesia as an safely outpatient procedure.

  20. 9780199573288 13-Helm-c13 Helm Hepburn (Typeset by SPi, Chennai) 263 of 283 June 21, 2009 12:8 Carbon Dioxide Capture and Storage

    E-Print Network [OSTI]

    :8 13 Carbon Dioxide Capture and Storage Howard Herzog I. INTRODUCTION Carbon dioxide capture and storage (CCS) is the capture and secure storage of carbon dioxide (CO2) that would otherwise be emitted 12:8 264 Carbon Dioxide Capture and Storage discusses the future of CCS in the context of climate

  1. Carbonation Behavior of Pure Cement Hydrates under Supercritical Carbon Dioxide Conditions - 12199

    SciTech Connect (OSTI)

    Hirabayashi, Daisuke; Enokida, Youichi [Graduate School of Engineering, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya-shi, Aichi-ken, 464-8603 (Japan); Sawada, Kayo [EcoTopia Science Institute, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya-shi, Aichi-ken, 464-8603 (Japan); Hertz, Audrey; Charton, Frederic [CEA, DEN, Marcoule, DTCD/SPDE/L2ED, BP 17171, F-30207 Bagnols-sur-Ceze (France); Frizon, Fabien [CEA, DEN, Marcoule, DTCD/SPDE/LFSM, BP 17171, F-30207 Bagnols-sur-Ceze (France); Brouno, Fournel [CEA, DEN, Marcoule, DTCD, BP 17171, F-30207 Bagnols-sur-Ceze (France)

    2012-07-01T23:59:59.000Z

    Carbonation of cement-based waste forms using a supercritical carbon dioxide (SCCO{sub 2}) is a developing technology for the waste immobilization of radioactive and non-radioactive wastes. However, the detail carbonation behaviors of cement matrices under the SCCO{sub 2} condition are unknown, since cement matrices forms very complex phases. In this study, in order to clarify the crystal phases, we synthesized pure cement hydrate phases as each single phases; portlandite (Ca(OH){sub 2}), ettringite (Ca{sub 6}Al{sub 2}(SO{sub 4}){sub 3}(OH){sub 12}.26H{sub 2}O), and calcium silicate hydrate (n CaO---m SiO{sub 2} ---x H{sub 2}O), using suspensions containing a stoichiometric mixture of chemical regents, and performed carbonation experiments using an autoclave under supercritical condition for carbon dioxide. The XRD results revealed both the carbonate phases and co-product phases depending on the initial hydrate phases; gypsum for Ettringite, amorphous or crystalline silica for calcium silicate hydroxide. Thermogravimetric analysis was also performed to understand carbonation behaviors quantitatively. According to the experimental results, it was found that the major reaction was formation of calcium carbonate (CaCO{sub 3}) in all cases. However, the behaviors of H{sub 2}O and CO{sub 2} content were quietly different: Portlandite was most reactive for carbonation under SCCO{sub 2} conditions, and the CO{sub 2} content per one molar CaO was ranged from 0.96 ? 0.98. In the case of Ettringite, the experiment indicates partial decomposition of ettringite phase during carbonation. Ettringite was comparatively stable even under the SCCO{sub 2} conditions. Therefore, a part of ettringite remained and formed similar phases after the ettringite carbonation. The CO{sub 2} content for ettringite showed almost constant values around 0.86 ? 0.87. In the case of calcium silicate hydrate, the carbonation behavior was significantly influenced by the condition of SCCO{sub 2}. The CO{sub 2} content for the calcium silicate hydrate had values that ranged from 0.51 ? 1.01. The co-products of the carbonation were gypsum (CaSO{sub 4}) for ettringite, silica gel (SiO{sub x}) and silica (SiO{sub 2}) for calcium silicate hydrate, which also contributed to the densification of the particles. The production of co-products enhanced the change to their morphology after the carbonation. (authors)

  2. Solubility of Small-Chain Carboxylic Acids in Supercritical Carbon Dioxide

    SciTech Connect (OSTI)

    Sparks, Darrell L.; Estevez, L. Antonio; Hernandez, Rafael; McEwen, Jason; French, Todd

    2010-07-08T23:59:59.000Z

    The solubility of heptanoic acid and octanoic acid in supercritical carbon dioxide has been determined at temperatures of (313.15, 323.15, and 333.15) K over a pressure range of (8.5 to 30.0) MPa, depending upon the solute. The solubility of heptanoic acid ranged from a solute concentration of (0.08 ± 0.03) kg�m -3 (T = 323.15 K, p = 8.5 MPa) to (147 ± 0.2) kg�m -3 (T = 323.15 K, p = 20.0 MPa). The lowest octanoic acid solubility obtained was a solute concentration of (0.40 ± 0.1) kg�m -3 (T = 333.15 K, p = 10.0 MPa), while the highest solute concentration was (151 ± 2) kg�m -3 (T = 333.15 K, p = 26.7 MPa). Additionally, solubility experiments were performed for nonanoic acid in supercritical carbon dioxide at 323.15 K and pressures of (10.0 to 30.0) MPa to add to the solubility data previously published by the authors. In general, carboxylic acid solubility increased with increasing solvent density. The results also showed that the solubility of the solutes decreased with increasing molar mass at constant supercritical-fluid density. Additionally, the efficacy of Chrastil's equation and other density-based models was evaluated for each fatty acid.

  3. Solubility of Small-Chain Carboxylic Acids in Supercritical Carbon Dioxide

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sparks, Darrell L.; Estevez, L. Antonio; Hernandez, Rafael; McEwen, Jason; French, Todd

    2010-11-11T23:59:59.000Z

    The solubility of heptanoic acid and octanoic acid in supercritical carbon dioxide has been determined at temperatures of (313.15, 323.15, and 333.15) K over a pressure range of (8.5 to 30.0) MPa, depending upon the solute. The solubility of heptanoic acid ranged from a solute concentration of (0.08 ± 0.03) kg • m -3 (T = 323.15 K, p = 8.5 MPa) to (147 ± 0.2) kg • m -3 (T = 323.15 K, p = 20.0 MPa). The lowest octanoic acid solubility obtained was a solute concentration of (0.40 ± 0.1) kg • m -3 (T = 333.15 K,more »p = 10.0 MPa), while the highest solute concentration was (151 ± 2) kg • m -3 (T = 333.15 K, p = 26.7 MPa). Additionally, solubility experiments were performed for nonanoic acid in supercritical carbon dioxide at 323.15 K and pressures of (10.0 to 30.0) MPa to add to the solubility data previously published by the authors. In general, carboxylic acid solubility increased with increasing solvent density. The results also showed that the solubility of the solutes decreased with increasing molar mass at constant supercritical-fluid density. Additionally, the efficacy of Chrastil's equation and other density-based models was evaluated for each fatty acid.« less

  4. Solubility of Small-Chain Carboxylic Acids in Supercritical Carbon Dioxide

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sparks, Darrell L.; Estevez, L. Antonio; Hernandez, Rafael; McEwen, Jason; French, Todd

    2010-11-11T23:59:59.000Z

    The solubility of heptanoic acid and octanoic acid in supercritical carbon dioxide has been determined at temperatures of (313.15, 323.15, and 333.15) K over a pressure range of (8.5 to 30.0) MPa, depending upon the solute. The solubility of heptanoic acid ranged from a solute concentration of (0.08 ± 0.03) kg • m -3 (T = 323.15 K, p = 8.5 MPa) to (147 ± 0.2) kg • m -3 (T = 323.15 K, p = 20.0 MPa). The lowest octanoic acid solubility obtained was a solute concentration of (0.40 ± 0.1) kg • m -3 (T = 333.15 K, p = 10.0 MPa), while the highest solute concentration was (151 ± 2) kg • m -3 (T = 333.15 K, p = 26.7 MPa). Additionally, solubility experiments were performed for nonanoic acid in supercritical carbon dioxide at 323.15 K and pressures of (10.0 to 30.0) MPa to add to the solubility data previously published by the authors. In general, carboxylic acid solubility increased with increasing solvent density. The results also showed that the solubility of the solutes decreased with increasing molar mass at constant supercritical-fluid density. Additionally, the efficacy of Chrastil's equation and other density-based models was evaluated for each fatty acid.

  5. An experimental investigation of convection heat transfer to supercritical carbon dioxide in miniature tubes

    E-Print Network [OSTI]

    Zhao, Tianshou

    dioxide in heated horizontal and vertical miniature tubes are reported in this paper. Stainless steel horizontal and upward flow was enhanced. The experimental results further indicate that in all the flow transfer to supercritical carbon dioxide in both horizontal and vertical miniature heated tubes. Ó 2002

  6. Nanoparticle Silver Catalysts That Show Enhanced Activity for Carbon Dioxide Electrolysis

    E-Print Network [OSTI]

    Kenis, Paul J. A.

    Nanoparticle Silver Catalysts That Show Enhanced Activity for Carbon Dioxide Electrolysis Amin,§ and Richard I. Masel*, Dioxide Materials, 60 Hazelwood Drive, Champaign, Illinois 61820, United States properties for CO2 conversion. INTRODUCTION The discovery and development of efficient catalysts for CO2

  7. Doctoral Defense "Carbon Dioxide Capture on Elastic Layered Metal-Organic

    E-Print Network [OSTI]

    Kamat, Vineet R.

    Doctoral Defense "Carbon Dioxide Capture on Elastic Layered Metal-Organic Framework Adsorbents requires drastic modifications to the current energy infrastructure. Thus, carbon capture and sequestration for use as carbon capture adsorbents. Ideal adsorbed solution theory (IAST) estimates of CO2 selectivity

  8. Ecosystem carbon dioxide fluxes after disturbance in forests of North America

    E-Print Network [OSTI]

    Cohen, Ronald C.

    Ecosystem carbon dioxide fluxes after disturbance in forests of North America B. D. Amiro,1 A. G, and New Brunswick). Net ecosystem production (NEP) showed a carbon loss from all ecosystems following a standreplacing disturbance, becoming a carbon sink by 20 years for all ecosystems and by 10 years for most

  9. September 25, 2006 Numerical modeling of the effect of carbon dioxide

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    September 25, 2006 Numerical modeling of the effect of carbon dioxide sequestration on the rate souterrain de dioxyde de carbone sur la déformation des calcaires par dissolution sous contrainte: résultats@obs.ujf- grenoble.fr, marielle.collombet@ujf-grenoble.fr, yleguen@lgit.obs.ujf-grenoble.fr. #12;Abstract When carbon

  10. Retrievals of Carbon Dioxide from GOSAT: Validation, model comparison and approach development

    E-Print Network [OSTI]

    Retrievals of Carbon Dioxide from GOSAT: Validation, model comparison and approach development properties of aerosol and cirrus particles. 3. Model Comparison Retrievals of XCO2 were performed on cloud and compared to the CarbonTracker model. The retrieval averaging kernels were applied to Carbon

  11. Selective Extraction of Uranium from Liquid or Supercritical Carbon Dioxide

    SciTech Connect (OSTI)

    Farawila, Anne F.; O'Hara, Matthew J.; Wai, Chien M.; Taylor, Harry Z.; Liao, Yu-Jung

    2012-07-31T23:59:59.000Z

    Current liquid-liquid extraction processes used in recycling irradiated nuclear fuel rely on (1) strong nitric acid to dissolve uranium oxide fuel, and (2) the use of aliphatic hydrocarbons as a diluent in formulating the solvent used to extract uranium. The nitric acid dissolution process is not selective. It dissolves virtually the entire fuel meat which complicates the uranium extraction process. In addition, a solvent washing process is used to remove TBP degradation products, which adds complexity to the recycling plant and increases the overall plant footprint and cost. A liquid or supercritical carbon dioxide (l/sc -CO2) system was designed to mitigate these problems. Indeed, TBP nitric acid complexes are highly soluble in l/sc -CO2 and are capable of extracting uranium directly from UO2, UO3 and U3O8 powders. This eliminates the need for total acid dissolution of the irradiated fuel. Furthermore, since CO2 is easily recycled by evaporation at room temperature and pressure, it eliminates the complex solvent washing process. In this report, we demonstrate: (1) A reprocessing scheme starting with the selective extraction of uranium from solid uranium oxides into a TBP-HNO3 loaded Sc-CO2 phase, (2) Back extraction of uranium into an aqueous phase, and (3) Conversion of recovered purified uranium into uranium oxide. The purified uranium product from step 3 can be disposed of as low level waste, or mixed with enriched uranium for use in a reactor for another fuel cycle. After an introduction on the concept and properties of supercritical fluids, we first report the characterization of the different oxides used for this project. Our extraction system and our online monitoring capability using UV-Vis absorbance spectroscopy directly in sc-CO2 is then presented. Next, the uranium extraction efficiencies and kinetics is demonstrated for different oxides and under different physical and chemical conditions: l/sc -CO2 pressure and temperature, TBP/HNO3 complex used, reductant or complexant used for selectivity, and ionic liquids used as supportive media. To complete the extraction and recovery cycle, we then demonstrate uranium back extraction from the TBP loaded sc-CO2 phase into an aqueous phase and the characterization of the uranium complex formed at the end of this process. Another aspect of this project was to limit proliferation risks by either co-extracting uranium and plutonium, or by leaving plutonium behind by selectively extracting uranium. We report that the former is easily achieved, since plutonium is in the tetravalent or hexavalent oxidation state in the oxidizing environment created by the TBP-nitric acid complex, and is therefore co-extracted. The latter is more challenging, as a reductant or complexant to plutonium has to be used to selectively extract uranium. After undertaking experiments on different reducing or complexing systems (e.g., AcetoHydroxamic Acid (AHA), Fe(II), ascorbic acid), oxalic acid was chosen as it can complex tetravalent actinides (Pu, Np, Th) in the aqueous phase while allowing the extraction of hexavalent uranium in the sc-CO2 phase. Finally, we show results using an alternative media to commonly used aqueous phases: ionic liquids. We show the dissolution of uranium in ionic liquids and its extraction using sc-CO2 with and without the presence of AHA. The possible separation of trivalent actinides from uranium is also demonstrated in ionic liquids using neodymium as a surrogate and diglycolamides as the extractant.

  12. Pre-Combustion Carbon Dioxide Capture by a New Dual Phase Ceramic-Carbonate Membrane Reactor

    SciTech Connect (OSTI)

    Lin, Jerry

    2014-09-30T23:59:59.000Z

    This report documents synthesis, characterization and carbon dioxide permeation and separation properties of a new group of ceramic-carbonate dual-phase membranes and results of a laboratory study on their application for water gas shift reaction with carbon dioxide separation. A series of ceramic-carbonate dual phase membranes with various oxygen ionic or mixed ionic and electronic conducting metal oxide materials in disk, tube, symmetric, and asymmetric geometric configurations was developed. These membranes, with the thickness of 10 ?m to 1.5 mm, show CO2 permeance in the range of 0.5-5×10-7 mol·m-2·s-1·Pa-1 in 500-900oC and measured CO2/N2 selectivity of up to 3000. CO2 permeation mechanism and factors that affect CO2 permeation through the dual-phase membranes have been identified. A reliable CO2 permeation model was developed. A robust method was established for the optimization of the microstructures of ceramic-carbonate membranes. The ceramic-carbonate membranes exhibit high stability for high temperature CO2 separations and water gas shift reaction. Water gas shift reaction in the dual-phase membrane reactors was studied by both modeling and experiments. It is found that high temperature syngas water gas shift reaction in tubular ceramic-carbonate dual phase membrane reactor is feasible even without catalyst. The membrane reactor exhibits good CO2 permeation flux, high thermal and chemical stability and high thermal shock resistance. Reaction and separation conditions in the membrane reactor to produce hydrogen of 93% purity and CO2 stream of >95% purity, with 90% CO2 capture have been identified. Integration of the ceramic-carbonate dual-phase membrane reactor with IGCC process for carbon dioxide capture was analyzed. A methodology was developed to identify optimum operation conditions for a membrane tube of given dimensions that would treat coal syngas with targeted performance. The calculation results show that the dual-phase membrane reactor could improve IGCC process efficiency but the cost of the membrane reactor with membranes having current CO2 permeance is high. Further research should be directed towards improving the performance of the membranes and developing cost-effective, scalable methods for fabrication of dual-phase membranes and membrane reactors.

  13. Membrane loop process for separating carbon dioxide for use in gaseous form from flue gas

    DOE Patents [OSTI]

    Wijmans, Johannes G; Baker, Richard W; Merkel, Timothy C

    2014-10-07T23:59:59.000Z

    The invention is a process involving membrane-based gas separation for separating and recovering carbon dioxide emissions from combustion processes in partially concentrated form, and then transporting the carbon dioxide and using or storing it in a confined manner without concentrating it to high purity. The process of the invention involves building up the concentration of carbon dioxide in a gas flow loop between the combustion step and a membrane separation step. A portion of the carbon dioxide-enriched gas can then be withdrawn from this loop and transported, without the need to liquefy the gas or otherwise create a high-purity stream, to a destination where it is used or confined, preferably in an environmentally benign manner.

  14. Experimental assessment of the internal flow behavior of supercritical carbon dioxide

    E-Print Network [OSTI]

    Yang, David, S.M. Massachusetts Institute of Technology

    2014-01-01T23:59:59.000Z

    This thesis presents an experimental assessment of the internal flow behavior of supercritical carbon dioxide. The investigation focused mainly on assessing condensation onset during rapid expansion of CO? into the two-phase ...

  15. Ecosystem carbon dioxide fluxes after disturbance in forests of North America

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    10.1029/2010JG001390, 2010 Ecosystem carbon dioxide fluxesdioxide fluxes of black spruce ecosystems in eastern Northof a stand?replacing fire on ecosystem CO 2 exchange of a

  16. Tools for supercritical carbon dioxide cycle analysis and the cycle's applicability to sodium fast reactors

    E-Print Network [OSTI]

    Ludington, Alexander R. (Alexander Rockwell)

    2009-01-01T23:59:59.000Z

    The Sodium-Cooled Fast Reactor (SFR) and the Supercritical Carbon Dioxide (S-C0?) Recompression cycle are two technologies that have the potential to impact the power generation landscape of the future. In order for their ...

  17. Method for sizing and desizing yarns with liquid and supercritical carbon dioxide solvent

    DOE Patents [OSTI]

    Fulton, John L. (Richland, WA); Yonker, Clement R. (Richland, WA); Hallen, Richard R. (Richland, WA); Baker, Eddie G. (Richland, WA); Bowman, Lawrence E. (Richland, WA); Silva, Laura J. (Richland, WA)

    1999-01-01T23:59:59.000Z

    Disclosed is a method of sizing and desizing yarn, or more specifically to a method of coating yarn with size and removing size from yarn with liquid carbon dioxide solvent.

  18. Power conversion system design for supercritical carbon dioxide cooled indirect cycle nuclear reactors

    E-Print Network [OSTI]

    Gibbs, Jonathan Paul

    2008-01-01T23:59:59.000Z

    The supercritical carbon dioxide (S-CO?) cycle is a promising advanced power conversion cycle which couples nicely to many Generation IV nuclear reactors. This work investigates the power conversion system design and ...

  19. Environmental Kuznets Curve for carbon dioxide emissions: lack of robustness to heterogeneity?

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Environmental Kuznets Curve for carbon dioxide emissions: lack of robustness to heterogeneity applying the iterative Bayesian shrinkage procedure. The environmental Kuznets curve (EKC) hypothesis. Keywords: Environmental Kuznets curve; Bayesian shrinkage estimator; Heterogeneity JEL classification: O13

  20. Carbon dioxide capture from coal-fired power plants : a real potions analysis

    E-Print Network [OSTI]

    Sekar, Ram Chandra

    2005-01-01T23:59:59.000Z

    Investments in three coal-fired power generation technologies are valued using the "real options" valuation methodology in an uncertain carbon dioxide (CO2) price environment. The technologies evaluated are pulverized coal ...

  1. Geologic carbon dioxide sequestration from the Mexican oil industry : an action plan

    E-Print Network [OSTI]

    Lacy, Rodolfo

    2005-01-01T23:59:59.000Z

    Climate change has become an important focus of international environmental negotiations. In response, global energy corporations have been looking for practical ways of reducing their industrial carbon dioxide (CO?) ...

  2. Underground storage of natural gas, liquid hydrocarbons, and carbon dioxide (Louisiana)

    Broader source: Energy.gov [DOE]

    The Louisiana Department of Environmental Quality regulates the underground storage of natural gas or liquid hydrocarbons and carbon dioxide. Prior to the use of any underground reservoir for the...

  3. Towards constraints on fossil fuel emissions from total column carbon dioxide

    E-Print Network [OSTI]

    Keppel-Aleks, G.; Wennberg, P. O; O'Dell, C. W; Wunch, D.

    2013-01-01T23:59:59.000Z

    G. Keppel-Aleks et al. : Fossil fuel constraints from X CO 2P. P. : Assess- ment of fossil fuel carbon dioxide and otherstrong localized sources: fossil fuel power plant emissions

  4. Enhancing the Effectiveness of Carbon Dioxide Flooding by Managing Asphaltene Precipitation

    SciTech Connect (OSTI)

    Deo, Milind D.

    2002-02-21T23:59:59.000Z

    Objectives of this project was to understand asphaltene precipitation in General and carbon dioxide induced precipitation in particular. To this effect, thermodynamic and kinetic experiments with the Rangely crude oil were conducted and thermodynamic and reservoir models were developed.

  5. DOE Seeks Applications for Tracking Carbon Dioxide Storage in Geologic Formations

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy today issued a Funding Opportunity Announcement (FOA) to enhance the capability to simulate, track, and evaluate the potential risks of carbon dioxide storage in geologic formations.

  6. Comment on "An optimized potential for carbon dioxide" [J. Chem. Phys. 122, 214507 (2005)

    E-Print Network [OSTI]

    Merker, T; Hasse, H

    2009-01-01T23:59:59.000Z

    A molecular model for carbon dioxide is assessed regarding vapor-liquid quilibrium properties.Large deviations, being above 15 %, are found for vapor pressure and saturated vapor density in the entire temperature range.

  7. Water Use Efficiency in Plant Growth and Ambient Carbon Dioxide Level

    E-Print Network [OSTI]

    van Bavel, C. H. M.

    TR-42 1972 Water Use Efficiency in Plant Growth and Ambient Carbon Dioxide Level C.H. M. van Bavel Texas Water Resources Institute Texas A&M University ...

  8. Method for sizing and desizing yarns with liquid and supercritical carbon dioxide solvent

    DOE Patents [OSTI]

    Fulton, J.L.; Yonker, C.R.; Hallen, R.R.; Baker, E.G.; Bowman, L.E.; Silva, L.J.

    1999-01-26T23:59:59.000Z

    Disclosed is a method of sizing and desizing yarn, or more specifically to a method of coating yarn with size and removing size from yarn with liquid carbon dioxide solvent. 3 figs.

  9. Methods and compositions for removing carbon dioxide from a gaseous mixture

    DOE Patents [OSTI]

    Li, Jing; Wu, Haohan

    2014-06-24T23:59:59.000Z

    Provided is a method for adsorbing or separating carbon dioxide from a mixture of gases by passing the gas mixture through a porous three-dimensional polymeric coordination compound having a plurality of layers of two-dimensional arrays of repeating structural units, which results in a lower carbon dioxide content in the gas mixture. Thus, this invention provides useful compositions and methods for removal of greenhouse gases, in particular CO.sub.2, from industrial flue gases or from the atmosphere.

  10. Oil recovery by carbon dioxide injection into consolidated and unconsolidated sandstone 

    E-Print Network [OSTI]

    Lin, Fwu-Jin Frank

    1975-01-01T23:59:59.000Z

    a displacement effic1ency approaching 100 percent. (3) Carbon Dioxide neither achieves direct miscible displacement at practical reservoir pressures, like LPG, nor depend upon the presence of light hydrocarbons in the reservoir oil. A f1eld... strong function of pore size dis- tribution, probably contributed a great effect on the oil displacement effic1enc1es between the consolidated sandstone core and the unconsolidated sand pack. 4. No significant over-riding effect of carbon dioxide...

  11. Short run effects of a price on carbon dioxide emissions from U.S. electric generators

    SciTech Connect (OSTI)

    Adam Newcomer; Seth A. Blumsack; Jay Apt; Lester B. Lave; M. Granger Morgan [Carnegie Mellon University, Pittsburgh, PA (United States). Carnegie Mellon Electricity Industry Center

    2008-05-01T23:59:59.000Z

    The price of delivered electricity will rise if generators have to pay for carbon dioxide emissions through an implicit or explicit mechanism. There are two main effects that a substantial price on CO{sub 2} emissions would have in the short run (before the generation fleet changes significantly). First, consumers would react to increased price by buying less, described by their price elasticity of demand. Second, a price on CO{sub 2} emissions would change the order in which existing generators are economically dispatched, depending on their carbon dioxide emissions and marginal fuel prices. Both the price increase and dispatch changes depend on the mix of generation technologies and fuels in the region available for dispatch, although the consumer response to higher prices is the dominant effect. We estimate that the instantaneous imposition of a price of $35 per metric ton on CO{sub 2} emissions would lead to a 10% reduction in CO{sub 2} emissions in PJM and MISO at a price elasticity of -0.1. Reductions in ERCOT would be about one-third as large. Thus, a price on CO{sub 2} emissions that has been shown in earlier work to stimulate investment in new generation technology also provides significant CO{sub 2} reductions before new technology is deployed at large scale. 39 refs., 4 figs., 2 tabs.

  12. Carbon dioxide source development, northeast Jackson Dome, Mississippi

    SciTech Connect (OSTI)

    Studlick, J.R.J.; Shew, R.D.; Basye, G.L.; Ray, J.R.

    1987-05-01T23:59:59.000Z

    A pilot conducted at Little Creek field Mississippi, in the 1970s indicated that the injection of carbon dioxide (CO/sub 2/) could lead to the successful recovery of additional oil reserves even after waterflood operations. It was realized early that a large volume of CO/sub 2/ would be required for enhanced oil recovery operations Little Creek and other prospective fields. Shell's search for CO/sub 2/ in the area began in the early 1970s. Exploratory drilling for hydrocarbons as early as 1950 had indicated high concentrations of CO/sub 2/ present in central Mississippi. These occur in salt-generated structures north and east of the intrusive Jackson igneous dome; the area is therefore termed the N.E. Jackson Dome Source Area. CO/sub 2/ generation is believed to have occurred by the thermal metamorphism associated with the intrusion of Jurassic-age carbonates. The CO/sub 2/ migrated updip and is concentrated in the Buckner, Smackover, and Norphlet Formations at depths of 14,000 to 17,000 ft. The objectives are sandstones and dolomites that are interpreted as dune and sabkha deposits. Reservoir quality is variable (abundant illite locally in the Norphlet and highly compacted sandstones in the Buckner) but generally good. Rates of 20 MMCFGD have been tested from these wells. Many salt-related structures have been defined in the source area by seismic data. Leasing began in 1973 and drilling in 1977. Eight structures have been tested, with all but one encountering commercial CO/sub 2/ accumulations. Shell has drilled 15 wells (13 successful, 1 junked and abandoned, and 1 dry hole) on 640- and 1280-ac spacing. Gas compositions vary: Smackover CO/sub 2/ is sour and will require treatment, whereas the Buckner and Norphlet sands contain sweet and semisweet CO/sub 2/, respectively. Industry reserves in N.E. Jackson Dome exceed 6 tcf of gas.

  13. Lessons Learned From Gen I Carbon Dioxide Cooled Reactors

    SciTech Connect (OSTI)

    David E. Shropshire

    2004-04-01T23:59:59.000Z

    This paper provides a review of early gas cooled reactors including the Magnox reactors originating in the United Kingdom and the subsequent development of the Advanced Gas-cooled Reactors (AGR). These early gas cooled reactors shared a common coolant medium, namely carbon dioxide (CO2). A framework of information is provided about these early reactors and identifies unique problems/opportunities associated with use of CO2 as a coolant. Reactor designers successfully rose to these challenges. After years of successful use of the CO2 gas cooled reactors in Europe, the succeeding generation of reactors, called the High Temperature Gas Reactors (HTGR), were designed with Helium gas as the coolant. Again, in the 21st century, with the latest reactor designs under investigation in Generation IV, there is a revived interest in developing Gas Cooled Fast Reactors that use CO2 as the reactor coolant. This paper provides a historical perspective on the 52 CO2 reactors and the reactor programs that developed them. The Magnox and AGR design features and safety characteristics were reviewed, as well as the technologies associated with fuel storage, reprocessing, and disposal. Lessons-learned from these programs are noted to benefit the designs of future generations of gas cooled nuclear reactors.

  14. A Finite Element Model for Simulation of Carbon Dioxide Sequestration

    SciTech Connect (OSTI)

    Bao, Jie; Xu, Zhijie; Fang, Yilin

    2013-11-02T23:59:59.000Z

    We present a hydro-mechanical model, followed by stress, deformation, and shear-slip failure analysis for geological sequestration of carbon dioxide (CO2). The model considers the poroelastic effects by taking into account of the two-way coupling between the geomechanical response and the fluid flow process. Analytical solutions for pressure and deformation fields were derived for a typical geological sequestration scenario in our previous work. A finite element approach is introduced here for numerically solving the hydro-mechanical model with arbitrary boundary conditions. The numerical approach was built on an open-source finite element code Elmer, and results were compared to the analytical solutions. The shear-slip failure analysis was presented based on the numerical results, where the potential failure zone is identified. Information is relevant to the prediction of the maximum sustainable injection rate or pressure. The effects of caprock permeability on the fluid pressure, deformation, stress, and the shear-slip failure zone were also quantitatively studied. It was shown that a larger permeability in caprock and base rock leads to a larger uplift but a smaller shear-slip failure zone.

  15. The Greenness of Cities: Carbon Dioxide Emissions and Urban Development

    E-Print Network [OSTI]

    Glaeser, Edward L.; Kahn, Matthew E.

    2008-01-01T23:59:59.000Z

    dioxide impact of electricity consumption in different majorand residential electricity consumption. Car usage and homefor fuel oil and electricity consumption. We then use

  16. Field Demonstration of Carbon Dioxide Miscible Flooding in the Lansing-Kansas City Formation, Central Kansas

    SciTech Connect (OSTI)

    Alan Byrnes; G. Paul Willhite; Don Green; Richard Pancake; JyunSyung Tsau; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Dave Murfin; James Daniels; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

    2010-03-07T23:59:59.000Z

    A pilot carbon dioxide miscible flood was initiated in the Lansing Kansas City C formation in the Hall Gurney Field, Russell County, Kansas. The reservoir zone is an oomoldic carbonate located at a depth of about 2900 feet. The pilot consists of one carbon dioxide injection well and three production wells. Continuous carbon dioxide injection began on December 2, 2003. By the end of June 2005, 16.19 MM lb of carbon dioxide was injected into the pilot area. Injection was converted to water on June 21, 2005 to reduce operating costs to a breakeven level with the expectation that sufficient carbon dioxide was injected to displace the oil bank to the production wells by water injection. By March 7,2010, 8,736 bbl of oil were produced from the pilot. Production from wells to the northwest of the pilot region indicates that oil displaced from carbon dioxide injection was produced from Colliver A7, Colliver A3, Colliver A14 and Graham A4 located on adjacent leases. About 19,166 bbl of incremental oil were estimated to have been produced from these wells as of March 7, 2010. There is evidence of a directional permeability trend toward the NW through the pilot region. The majority of the injected carbon dioxide remains in the pilot region, which has been maintained at a pressure at or above the minimum miscibility pressure. Estimated oil recovery attributed to the CO2 flood is 27,902 bbl which is equivalent to a gross CO2 utilization of 4.8 MCF/bbl. The pilot project is not economic.

  17. Metal-Organic Frameworks with Precisely Designed Interior for Carbon Dioxide Capture in the Presence of Water

    E-Print Network [OSTI]

    Yaghi, Omar M.

    Metal-Organic Frameworks with Precisely Designed Interior for Carbon Dioxide Capture preservation of the IRMOF structure. Carbon dioxide capture from combustion sources such as flue gas in power this carbon capture challenge. The preferred method for measuring the efficiency of a given material

  18. House Committee on Natural Resources The Future of Fossil Fuels: Geological and Terrestrial Sequestration of Carbon Dioxide

    E-Print Network [OSTI]

    and Terrestrial Sequestration of Carbon Dioxide Howard Herzog Principal Research Engineer Massachusetts Institute to the Technical Group of the Carbon Sequestration Leadership Forum (see www.cslforum.org). Just two weeks ago, thank you for the opportunity to appear before you today to discuss Carbon Dioxide (CO2) geological

  19. Long-Term, Autonomous Measurement of Atmospheric Carbon Dioxide Using an Ormosil Nanocomposite-Based Optical Sensor

    SciTech Connect (OSTI)

    Kisholoy Goswami

    2005-10-11T23:59:59.000Z

    The goal of this project is to construct a prototype carbon dioxide sensor that can be commercialized to offer a low-cost, autonomous instrument for long-term, unattended measurements. Currently, a cost-effective CO2 sensor system is not available that can perform cross-platform measurements (ground-based or airborne platforms such as balloon and unmanned aerial vehicle (UAV)) for understanding the carbon sequestration phenomenon. The CO2 sensor would support the research objectives of DOE-sponsored programs such as AmeriFlux and the North American Carbon Program (NACP). Global energy consumption is projected to rise 60% over the next 20 years and use of oil is projected to increase by approximately 40%. The combustion of coal, oil, and natural gas has increased carbon emissions globally from 1.6 billion tons in 1950 to 6.3 billion tons in 2000. This figure is expected to reach 10 billon tons by 2020. It is important to understand the fate of this excess CO2 in the global carbon cycle. The overall goal of the project is to develop an accurate and reliable optical sensor for monitoring carbon dioxide autonomously at least for one year at a point remote from the actual CO2 release site. In Phase I of this project, InnoSense LLC (ISL) demonstrated the feasibility of an ormosil-monolith based Autonomous Sensor for Atmospheric CO2 (ASAC) device. All of the Phase I objectives were successfully met.

  20. LOW-PRESSURE MEMBRANE CONTACTORS FOR CARBON DIOXIDE CAPTURE

    SciTech Connect (OSTI)

    Baker, Richard; Kniep, Jay; Hao, Pingjiao; Chan, Chi Cheng; Nguyen, Vincent; Huang, Ivy; Amo, Karl; Freeman, Brice; Fulton, Don; Ly, Jennifer; Lipscomb, Glenn; Lou, Yuecun; Gogar, Ravikumar

    2014-09-30T23:59:59.000Z

    This final technical progress report describes work conducted by Membrane Technology and Research, Inc. (MTR) for the Department of Energy (DOE NETL) on development of low-pressure membrane contactors for carbon dioxide (CO2) capture from power plant flue gas (award number DE-FE0007553). The work was conducted from October 1, 2011 through September 30, 2014. The overall goal of this three-year project was to build and operate a prototype 500 m2 low-pressure sweep membrane module specifically designed to separate CO2 from coal-fired power plant flue gas. MTR was assisted in this project by a research group at the University of Toledo, which contributed to the computational fluid dynamics (CFD) analysis of module design and process simulation. This report details the work conducted to develop a new type of membrane contactor specifically designed for the high-gas-flow, low-pressure, countercurrent sweep operation required for affordable membrane-based CO2 capture at coal power plants. Work for this project included module development and testing, design and assembly of a large membrane module test unit at MTR, CFD comparative analysis of cross-flow, countercurrent, and novel partial-countercurrent sweep membrane module designs, CFD analysis of membrane spacers, design and fabrication of a 500 m2 membrane module skid for field tests, a detailed performance and cost analysis of the MTR CO2 capture process with low-pressure sweep modules, and a process design analysis of a membrane-hybrid separation process for CO2 removal from coal-fired flue gas. Key results for each major task are discussed in the report.

  1. Metal Catalyzed Formation of Aliphatic Polycarbonates Involving Oxetanes and Carbon Dioxide as Monomers 

    E-Print Network [OSTI]

    Moncada, Adriana I.

    2011-08-08T23:59:59.000Z

    Catalysts for Ring-Opening Polymerization of Six-Membered Cyclic Carbonates .......................................................................... 8 Aliphatic Polycarbonates from Oxetanes and Carbon Dioxide...... 15 Metal Salen Complexes... in TCE. Slope = -8910.7 with R2 = 0.9997 ......................................................................................... 56 II-15 1H NMR spectrum in CDCl3 of poly(TMC) obtained by way of oxetane/CO2 in the presence of (salen...

  2. Determination of the Effect of Geological Reservoir Variability on Carbon Dioxide Storage

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Determination of the Effect of Geological Reservoir Variability on Carbon Dioxide Storage Using'expériences -- Dans le contexte de l'étude du stockage géologique du dioxyde de carbone dans les réservoirs al. (2007) Energy Convers. Manage. 48, 1782-1797; Gunter et al. (1999) Appl. Geochem. 4, 1

  3. DOE Report Assesses Potential for Carbon Dioxide Storage Beneath Federal Lands

    Broader source: Energy.gov [DOE]

    As a complementary document to the U.S. Department of Energy's Carbon Sequestration Atlas of the United States and Canada issued in November 2008, the Office of Fossil Energy's National Energy Technology Laboratory has now released a report that provides an initial estimate of the potential to store carbon dioxide underneath millions of acres of Federal lands.

  4. Office of the Vice President for Research UGA IACUC Policy on Rodent Euthanasia using Carbon Dioxide

    E-Print Network [OSTI]

    Arnold, Jonathan

    Office of the Vice President for Research UGA IACUC Policy on Rodent Euthanasia using Carbon with this guidance and to ensure effective euthanasia of rodents used in research. Rodents must be euthanized source of carbon dioxide for euthanasia. The use of compressed gas and handling gas cylinders can

  5. Comparison of Two U.S. Power-Plant Carbon Dioxide

    E-Print Network [OSTI]

    Comparison of Two U.S. Power-Plant Carbon Dioxide Emissions Data Sets K A T H E R I N E V . A C K E to more localized carbon budgets, uncertainties in emissions from local sources such as power plants-change mitigation concerns over a broad range of spatial and temporal scales. We compared two data sets that report

  6. Oil recovery by carbon dioxide injection into consolidated and unconsolidated sandstone

    E-Print Network [OSTI]

    Lin, Fwu-Jin Frank

    1975-01-01T23:59:59.000Z

    and field in the past decade. The analysis of these tests indicated that additional oil beyond that obtained by normal water flooding could be recovered with carbon d1oxide. The c1tations on the following pages follow the style of the Journal.... Yon Gonten The use of carbon dioxide as an oil recovery agent in petro- leum reservoirs has been investigated for many years. Both la- boratory and field studies have established that carbon dioxide can be an efficient oil displacing agent...

  7. Response of a tundra ecosystem to elevated atmospheric carbon dioxide and CO{sub 2}-induced climate change

    SciTech Connect (OSTI)

    Oechel, W.

    1990-05-23T23:59:59.000Z

    A proposal for continuation of research on net ecosystem carbon dioxide and methane flux and sampling and analysis of soil samples from arctic tundra regions is presented.

  8. Evaluation and Enhancement of Carbon Dioxide Flooding Through Sweep Improvement

    SciTech Connect (OSTI)

    Hughes, Richard

    2009-09-30T23:59:59.000Z

    Carbon dioxide displacement is a common improved recovery method applied to light oil reservoirs (30-45{degrees}API). The economic and technical success of CO{sub 2} floods is often limited by poor sweep efficiency or large CO{sub 2} utilization rates. Projected incremental recoveries for CO{sub 2} floods range from 7% to 20% of the original oil in place; however, actual incremental recoveries range from 9% to 15% of the original oil in place, indicating the potential for significant additional recoveries with improved sweep efficiency. This research program was designed to study the effectiveness of carbon dioxide flooding in a mature reservoir to identify and develop methods and strategies to improve oil recovery in carbon dioxide floods. Specifically, the project has focused on relating laboratory, theoretical and simulation studies to actual field performance in a CO{sub 2} flood in an attempt to understand and mitigate problems of areal and vertical sweep efficiency. In this work the focus has been on evaluating the status of existing swept regions of a mature CO{sub 2} flood and developing procedures to improve the design of proposed floods. The Little Creek Field, Mississippi has been studied through laboratory, theoretical, numerical and simulation studies in an attempt to relate performance predictions to historical reservoir performance to determine sweep efficiency, improve the understanding of the reservoir response to CO{sub 2} injection, and develop scaling methodologies to relate laboratory data and simulation results to predicted reservoir behavior. Existing laboratory information from Little Creek was analyzed and an extensive amount of field data was collected. This was merged with an understanding of previous work at Little Creek to generate a detailed simulation study of two portions of the field – the original pilot area and a currently active part of the field. This work was done to try to relate all of this information to an understanding of where the CO{sub 2} went or is going and how recovery might be improved. New data was also generated in this process. Production logs were run to understand where the CO{sub 2} was entering the reservoir related to core and log information and also to corroborate the simulation model. A methodology was developed and successfully tested for evaluating saturations in a cased-hole environment. Finally an experimental and theoretical program was initiated to relate laboratory work to field scale design and analysis of operations. This work found that an understanding of vertical and areal heterogeneity is crucial for understanding sweep processes as well as understanding appropriate mitigation techniques to improve the sweep. Production and injection logs can provide some understanding of that heterogeneity when core data is not available. The cased-hole saturation logs developed in the project will also be an important part of the evaluation of vertical heterogeneity. Evaluation of injection well/production well connectivities through statistical or numerical techniques were found to be as successful in evaluating CO{sub 2} floods as they are for waterfloods. These are likely to be the lowest cost techniques to evaluate areal sweep. Full field simulation and 4D seismic techniques are other possibilities but were beyond the scope of the project. Detailed simulation studies of pattern areas proved insightful both for doing a “post-mortem” analysis of the pilot area as well as a late-term, active portion of the Little Creek Field. This work also evaluated options for improving sweep in the current flood as well as evaluating options that could have been successful at recovering more oil. That simulation study was successful due to the integration of a large amount of data supplied by the operator as well as collected through the course of the project. While most projects would not have the abundance of data that Little Creek had, integration of the available data continues to be critical for both the design and evaluation stages of CO{sub 2} floods. For cases w

  9. Adsorption of carbon dioxide and methane and their mixtures on an activated carbon: Simulation and experiment

    SciTech Connect (OSTI)

    Heuchel, M.; Davies, G.M.; Buss, E.; Seaton, N.A.

    1999-12-07T23:59:59.000Z

    The aim of this work is to predict the adsorption of pure-component and binary mixtures of methane and carbon dioxide in a specific activated carbon, A35/4, using grand canonical Monte Carlo (GCMC) simulation. Methane is modeled as one-center Lennard-Jones (LJ) fluid and carbon dioxide as a two-center LJ plus point quadrupole fluids. Experimental adsorption data for the system have been obtained with a new flow desorption apparatus. The pore size distribution (PSD) for the carbon was determined from both of the experimental CH{sub 4} and CO{sub 2} isotherms at 293 K. To extract numerically the PSD, GCMC-simulated isotherms for both pure components in slit-shaped pores ranging from 5.7 to 72.2 {angstrom} were used. Using only pure experimental CO{sub 2} isotherm data, it was not possible to determine a PSD that allowed a reasonable prediction of the pure methane adsorption. However, with both experimental data sets for the pure components, it was possible to derive a PSD that allowed both experimental pure-component isotherms to be fitted. With this PSD and the simulated adsorption densities in single pores, it was possible to predict in good agreement with experiment (1) the adsorption of binary mixtures of CO{sub 2} and CH{sub 4} and (2) the adsorption of both pure components at higher temperatures. However, the model was unable to reproduce precisely the experimental pressure dependence of the CO{sub 2} selectivity.

  10. Carbon Dioxide Separation with Supported Ionic Liquid Membranes

    SciTech Connect (OSTI)

    Luebke, D.R.; Ilconich, J.B.; Pennline, H.W.; Myers, C.R.

    2007-05-01T23:59:59.000Z

    A practical form of CO2 capture at water-gas shift conditions in the IGCC process could serve the dual function of producing a pure CO2 stream for sequestration and forcing the equilibrium-limited shift reaction to completion enriching the stream in H2. The shift temperatures, ranging from the low temperature shift condition of 260°C to the gasification condition of 900°C, limit capture options by diminishing associative interactions which favor removal of CO2 from the gas stream. Certain sorption interactions, such as carbonate formation, remain available but generally involve exceptionally high sorbent regeneration energies that contribute heavily to parasitic power losses. Carbon dioxide selective membranes need only establish an equilibrium between the gas phase and sorption states in order to transport CO2, giving them a potential energetic advantage over other technologies. Supported liquid membranes take advantage of high, liquid phase diffusivities and a solution diffusion mechanism similar to that observed in polymeric membranes to achieve superior permeabilities and selectivites. The primary shortcoming of the supported liquid membranes demonstrated in past research has been the lack of stability caused by volatilization of the transport liquid. Ionic liquids, which possess high CO2 solubility relative to light gases such as H2, are excellent candidates for this type of membrane since they have negligible vapor pressure and are not susceptible to evaporation. A study has been conducted evaluating the use of ionic liquids including 1-hexyl-3-methyl-imidazolium bis(trifuoromethylsulfonyl)imide in supported ionic liquid membranes for the capture of CO2 from streams containing H2. In a joint project, researchers at the University of Notre Dame synthesized and characterized ionic liquids, and researchers at the National Energy Technology Laboratory incorporated candidate ionic liquids into supports and evaluated the resulting materials for membrane performance. Improvements to the ionic liquid and support have allowed testing of these supported ionic liquid membranes at temperatures up to 300°C without loss of support mechanical stability or degradation of the ionic liquid. Substantial improvements in selectivity have also been observed at elevated temperature with the best membrane currently achieving optimum performance at 75°C.

  11. Effective Permeability Change in Wellbore Cement with Carbon Dioxide Reaction

    SciTech Connect (OSTI)

    Um, Wooyong; Jung, Hun Bok; Martin, Paul F.; McGrail, B. Peter

    2011-11-01T23:59:59.000Z

    Portland cement, a common sealing material for wellbores for geological carbon sequestration was reacted with CO{sub 2} in supercritical, gaseous, and aqueous phases at various pressure and temperature conditions to simulate cement-CO{sub 2} reaction along the wellbore from carbon injection depth to the near-surface. Hydrated Portland cement columns (14 mm diameter x 90 mm length; water-to-cement ratio = 0.33) including additives such as steel coupons and Wallula basalt fragments were reacted with CO{sub 2} in the wet supercritical (the top half) and dissolved (the bottom half) phases under carbon sequestration condition with high pressure (10 MPa) and temperature (50 C) for 5 months, while small-sized hydrated Portland cement columns (7 mm diameter x 20 mm length; water-to-cement ratio = 0.38) were reacted with CO{sub 2} in dissolved phase at high pressure (10 MPa) and temperature (50 C) for 1 month or with wet CO{sub 2} in gaseous phase at low pressure (0.2 MPa) and temperature (20 C) for 3 months. XMT images reveal that the cement reacted with CO{sub 2} saturated groundwater had degradation depth of {approx}1 mm for 1 month and {approx}3.5 mm for 5 month, whereas the degradation was minor with cement exposure to supercritical CO{sub 2}. SEM-EDS analysis showed that the carbonated cement was comprised of three distinct zones; the innermost less degraded zone with Ca atom % > C atom %, the inner degraded zone with Ca atom % {approx} C atom % due to precipitation of calcite, the outer degraded zone with C atom % > Ca atom % due to dissolution of calcite and C-S-H, as well as adsorption of carbon to cement matrix. The outer degraded zone of carbonated cement was porous and fractured because of dissolution-dominated reaction by carbonic acid exposure, which resulted in the increase in BJH pore volume and BET surface area. In contrast, cement-wet CO{sub 2}(g) reaction at low P (0.2 MPa)-T (20 C) conditions for 1 to 3 months was dominated by precipitation of micron-sized calcite on the outside surface of cement, which resulted in the decrease in BJH pore volume and BET surface area. Cement carbonation and pore structure change are significantly dependent on pressure and temperature conditions as well as the phase of CO{sub 2}, which controls the balance between precipitation and dissolution in cement matrix. Geochemical modeling result suggests that ratio of solid (cement)-to-solution (carbonated water) has a significant effect on cement carbonation, thus the cement-CO{sub 2} reaction experiment needs to be conducted under realistic conditions representing the in-situ wellbore environment of carbon sequestration field site. Total porosity and air permeability for a duplicate cement column with water-to-cement ratio of 0.38 measured after oven-drying by Core Laboratories using Boyle's Law technique and steady-state method were 31% and 0.576 mD. A novel method to measure the effective liquid permeability of a cement column using X-ray micro-tomography images after injection of pressurized KI (potassium iodide) is under development by PNNL. Preliminary results indicate the permeability of a cement column with water-to-cement ratio of 0.38 is 4-8 mD. PNNL will apply the method to understand the effective permeability change of Portland cement by CO{sub 2}(g) reaction under a variety of pressure and temperature conditions to develop a more reliable well-bore leakage risk model.

  12. Molten metal reactor and method of forming hydrogen, carbon monoxide and carbon dioxide using the molten alkaline metal reactor

    DOE Patents [OSTI]

    Bingham, Dennis N.; Klingler, Kerry M.; Turner, Terry D.; Wilding, Bruce M.

    2012-11-13T23:59:59.000Z

    A molten metal reactor for converting a carbon material and steam into a gas comprising hydrogen, carbon monoxide, and carbon dioxide is disclosed. The reactor includes an interior crucible having a portion contained within an exterior crucible. The interior crucible includes an inlet and an outlet; the outlet leads to the exterior crucible and may comprise a diffuser. The exterior crucible may contain a molten alkaline metal compound. Contained between the exterior crucible and the interior crucible is at least one baffle.

  13. Thermochemical cyclic system for splitting water and/or carbon dioxide by means of cerium compounds and reactions useful therein

    DOE Patents [OSTI]

    Bamberger, Carlos E. (Oak Ridge, TN); Robinson, Paul R. (Knoxville, TN)

    1980-01-01T23:59:59.000Z

    A thermochemical cyclic process for producing hydrogen from water comprises reacting ceric oxide with monobasic or dibasic alkali metal phosphate to yield a solid reaction product, oxygen and water. The solid reaction product, alkali metal carbonate or bicarbonate, and water, are reacted to yield hydrogen, ceric oxide, carbon dioxide and trialkali metal phosphate. Ceric oxide is recycled. Trialkali metal phosphate, carbon dioxide and water are reacted to yield monobasic or dibasic alkali metal phosphate and alkali metal bicarbonate, which are recycled. The cylic process can be modified for producing carbon monoxide from carbon dioxide by reacting the alkali metal cerous phosphate and alkali metal carbonate or bicarbonate in the absence of water to produce carbon monoxide, ceric oxide, carbon dioxide and trialkali metal phosphate. Carbon monoxide can be converted to hydrogen by the water gas shift reaction.

  14. Photocatalytic and chemical oxidation of organic compounds in supercritical carbon dioxide. Progress report for FY97

    SciTech Connect (OSTI)

    Blake, D.M.; Bryant, D.L.; Reinsch, V.

    1997-09-30T23:59:59.000Z

    'The background for the project is briefly reviewed and the work done during the nine months since funding was received is documented. Work began in January, 1997. A post doctoral fellow joined the team in April. The major activities completed this fiscal year were: staffing the project, design of the experimental system, procurement of components, assembly of the system. preparation of the Safe Operating Procedure and ES and H compliance, pressure testing, establishing data collection and storage methodology, and catalyst preparation. Objective The objective of the project is to develop new chemistry for the removal of organic contaminants from supercritical carbon dioxide. This has application in processes used for continuous cleaning and extraction of parts and waste materials. A secondary objective is to increase the fundamental understanding of photocatalytic chemistry. Cleaning and extraction using supercritical carbon dioxide (scCO{sub 2}) can be applied to the solution of a wide range of environmental and pollution prevention problems in the DOE complex. Work is being done that explores scCO{sub 2} in applications ranging from cleaning contaminated soil to cleaning components constructed from plutonium. The rationale for use of scCO{sub 2} are based on the benign nature, availability and low cost, attractive solvent properties, and energy efficient separation of the extracted solute from the solvent by moderate temperature or pressure changes. To date, R and D has focussed on the methods and applications of the extraction steps of the process. Little has been done that addresses methods to polish the scCO{sub 2} for recycle in the cleaning or extraction operations. In many applications it will be desirable to reduce the level of contamination from that which would occur at steady state operation of a process. This proposal addresses chemistry to achieve that. This would be an alternative to removing a fraction of the contaminated scCO{sub 2} for disposal and using makeup scCO{sub 2}. A chemical polishing operation can reduce the release of CO{sub 2} from the process. It can also reduce the consumption of reagents that may be used in the process to enhance extraction and cleaning. A polishing operation will also reduce or avoid formation of an additional waste stream. Photocatalytic and other photochemical oxidation chemistry have not been investigated in scCO{sub 2}. The large base of information for these reactions in water, organic solvents, or air suggest that the chemistry will work in carbon dioxide. There are compelling reasons to believe that the properties of scCO{sub 2} should increase the performance of photocatalytic chemistry over that found in more conventional fluid phases.'

  15. atmospheric carbon dioxide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the 21st century (IPCC 2001a). Management of vegetation and soils for terrestrial carbon sequestration or penalties associated with CO2 management. For terrestrial carbon...

  16. Development of a local carbon dioxide emissions inventory based on energy demand and waste production

    SciTech Connect (OSTI)

    Joao Gomes; Joana Nascimento; Helena Rodrigues [Instituto Superior de Engenharia de Lisboa, Lisboa (Portugal)

    2007-09-15T23:59:59.000Z

    The paper describes the study that led to the development of a carbon dioxide emissions matrix for the Oeiras municipality, one of the largest Portuguese municipalities, located in the metropolitan area of Lisbon. This matrix takes into account the greenhouse gas (GHG) emissions due to an increase of electricity demand in buildings as well as solid and liquid wastes treatment from the domestic and services sectors. Using emission factors that were calculated from the relationship between the electricity produced and amount of treated wastes, the GHC emissions in the Oeiras municipality were estimated for a time series of 6 yr (1998 - 2003). The obtained results showed that the electricity sector accounts for approximately 75% of the municipal emissions in 2003. This study was developed to obtain tools to base options and actions to be undertaken by local authorities such as energy planning and also public information. 11 refs., 12 tabs.

  17. Metal corrosion in a supercritical carbon dioxide - liquid sodium power cycle.

    SciTech Connect (OSTI)

    Moore, Robert Charles; Conboy, Thomas M.

    2012-02-01T23:59:59.000Z

    A liquid sodium cooled fast reactor coupled to a supercritical carbon dioxide Brayton power cycle is a promising combination for the next generation nuclear power production process. For optimum efficiency, a microchannel heat exchanger, constructed by diffusion bonding, can be used for heat transfer from the liquid sodium reactor coolant to the supercritical carbon dioxide. In this work, we have reviewed the literature on corrosion of metals in liquid sodium and carbon dioxide. The main conclusions are (1) pure, dry CO{sub 2} is virtually inert but can be highly corrosive in the presence of even ppm concentrations of water, (2) carburization and decarburization are very significant mechanism for corrosion in liquid sodium especially at high temperature and the mechanism is not well understood, and (3) very little information could be located on corrosion of diffusion bonded metals. Significantly more research is needed in all of these areas.

  18. Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction Technologies for the Iron and Steel Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2014-01-01T23:59:59.000Z

    clean CO 2 for storage and a hydrogen stream to be recycledand storage ? Flexibility to make CO 2 -free hydrogen forand storage computational fluid dynamics carbon monoxide carbon dioxide direct reduced iron electric arc furnace gram gigajoules hour diatomic hydrogen

  19. Uncertainty analysis of capacity estimates and leakage potential for geologic storage of carbon dioxide in saline aquifers

    E-Print Network [OSTI]

    Raza, Yamama

    2009-01-01T23:59:59.000Z

    The need to address climate change has gained political momentum, and Carbon Capture and Storage (CCS) is a technology that is seen as being feasible for the mitigation of carbon dioxide emissions. However, there is ...

  20. Experimental study of potential wellbore cement carbonation by various phases of carbon dioxide during geologic carbon sequestration

    SciTech Connect (OSTI)

    Jung, Hun Bok; Um, Wooyong

    2013-08-16T23:59:59.000Z

    Hydrated Portland cement was reacted with carbon dioxide (CO2) in supercritical, gaseous, and aqueous phases to understand the potential cement alteration processes along the length of a wellbore, extending from deep CO2 storage reservoir to the shallow subsurface during geologic carbon sequestration. The 3-D X-ray microtomography (XMT) images displayed that the cement alteration was significantly more extensive by CO2-saturated synthetic groundwater than dry or wet supercritical CO2 at high P (10 MPa)-T (50°C) conditions. Scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS) analysis also exhibited a systematic Ca depletion and C enrichment in cement matrix exposed to CO2-saturated groundwater. Integrated XMT, XRD, and SEM-EDS analyses identified the formation of extensive carbonated zone filled with CaCO3(s), as well as the porous degradation front and the outermost silica-rich zone in cement after exposure to CO2-saturated groundwater. The cement alteration by CO2-saturated groundwater for 2-8 months overall decreased the porosity from 31% to 22% and the permeability by an order of magnitude. Cement alteration by dry or wet supercritical CO2 was slow and minor compared to CO2-saturated groundwater. A thin single carbonation zone was formed in cement after exposure to wet supercritical CO2 for 8 months or dry supercritical CO2 for 15 months. Extensive calcite coating was formed on the outside surface of a cement sample after exposure to wet gaseous CO2 for 1-3 months. The chemical-physical characterization of hydrated Portland cement after exposure to various phases of carbon dioxide indicates that the extent of cement carbonation can be significantly heterogeneous depending on CO2 phase present in the wellbore environment. Both experimental and geochemical modeling results suggest that wellbore cement exposure to supercritical, gaseous, and aqueous phases of CO2 during geologic carbon sequestration is unlikely to damage the wellbore integrity because cement alteration by all phases of CO2 is dominated by carbonation reaction. This is consistent with previous field studies of wellbore cement with extensive carbonation after exposure to CO2 for 3 decades. However, XMT imaging indicates that preferential cement alteration by supercritical CO2 or CO2-saturated groundwater can occur along the cement-steel or cement-rock interfaces. This highlights the importance of further investigation of cement degradation along the interfaces of wellbore materials to ensure permanent geologic carbon storage.

  1. Detecting the climatic effects of increasing carbon dioxide

    SciTech Connect (OSTI)

    MacCracken, M C; Luther, F M [eds.

    1985-12-01T23:59:59.000Z

    This report documents what is known about detecting the CO2-induced changes in climate, and describes the uncertainties and unknowns associated with this monitoring and analysis effort. The various approaches for detecting CO2-induced climate changes are discussed first, followed by a review of applications of these strategies to the various climatic variables that are expected to be changing. Recommendations are presented for research and analysis activities. Separate abstracts have been prepared for the individual papers. (ACR)

  2. Oceanic Trace Gases Numeric Data Packages from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    CDIAC products include numeric data packages, publications, trend data, atlases, models, etc. and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Most data sets or packages, many with numerous data files, are free to download from CDIAC's ftp area. CDIAC lists the following numeric data packages under the broad heading of Oceanic Trace Gases: Carbon Dioxide, Hydrographic, and Chemical Data Obtained during the R/V Ronald H. Brown Repeat Hydrography Cruise in the Atlantic Ocean: CLIVAR CO2 Section A16S_2005 ( 01/11/05 - 022405) • Determination of Carbon Dioxide, Hydrographic, and Chemical Parameters during the R/V Nathaniel B. Palmer Cruise in the Southern Indian Ocean (WOCE Section S04I, 050396 - 070496) • Inorganic Carbon, Nutrient, and Oxygen Data from the R/V Ronald H. Brown Repeat Hydrography Cruise in the Atlantic Ocean: CLIVAR CO2 Section A16N_2003a (060403 – 081103) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Maurice Ewing Cruise in the Atlantic Ocean (WOCE Section A17, 010494 - 032194) • Global Ocean Data Analysis Project GLODAP: Results and Data • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Knorr Cruises in the North Atlantic Ocean on WOCE Sections AR24 (1102 – 120596) and A24, A20, and A22 (053097 – 090397) • Carbon Dioxide, Hydrographic and Chemical Data Obtained During the Nine R/V Knorr Cruises Comprising the Indian Ocean CO2 Survey (WOCE Sections I8SI9S, I9N, I8NI5E, I3, I5WI4, I7N, I1, I10, and I2; 120 194 – 012296) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Meteor Cruise 28/1 in the South Atlantic Ocean (WOCE Section A8, 032994 - 051294) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Knorr Cruise 138-3, -4, and -5 in the South Pacific Ocean (WOCE Sections P6E, P6C, and P6W, 050292 - 073092) • Global Distribution of Total Inorganic Carbon and Total Alkalinity below the deepest winter mixed layer depths • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V John V. Vickers Cruise in the Pacific Ocean (WOCE Section P13, NOAA CGC92 Cruise, 080492 – 102192) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Hesperides Cruise in the Atlantic Ocean (WOCE Section A5, 071492 - 081592) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Thomas G. Thompson Cruise in the Pacific Ocean (WOCE Section P10, 100593 – 111093) • The International Intercomparison Exercise of Underway fCO2 Systems during the R/V Meteor Cruise 36/1 in the North Atlantic Ocean • Carbon Dioxide, Hydrographic, and Chemical Data Obtained during the R/V Meteor Cruise 22/5 in the South Atlantic Ocean (WOCE Section A10, Dec. 1992-Jan, 1993) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained in the South Pacific Ocean (WOCE Sections P16A/P17A, P17E/P19S, and P19C, R/V Knorr , Oct. 1992-April 1993) • Surface Water and Atmospheric Underway Carbon Data Obtained During the World Ocean Circulation Experiment Indian Ocean Survey Cruises (R/V Knorr, Dec. 1994 – Jan, 1996) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Akademik Ioffe Cruise in the South Pacific Ocean (WOCE Section S4P, Feb.-April 1992) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Thomas Washington Cruise TUNES-1 in the Equatorial Pacific Ocean (WOCE section P17C) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Thomas Washington Cruise TUNES-3 in the Equatorial Pacific Ocean (WOCE section P16C) • Carbon-14 Measurements in Surface Water CO2 from the Atlantic, Indian and Pacific Oceans, 1965-1994 • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During R/V Meteor Cruise 18/1 in the North Atlantic Ocean (WOCE Section A1E) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained in the Central South Pacific Ocean (WOCE Sections P17S and P16S) during the TUNES-2 Expedition of the R/V Th

  3. Real-World Carbon Dioxide Impacts of Traffic Congestion

    E-Print Network [OSTI]

    Barth, Matthew; Boriboonsomsin, Kanok

    2010-01-01T23:59:59.000Z

    biodiesel) and synthetic fuels (coupled with carbon capture and storage). Center for Environmental Research and Technology,

  4. Multimodel Predictive System for Carbon Dioxide Solubility in Saline Formation Waters

    SciTech Connect (OSTI)

    Wang, Zan; Small, Mitchell J.; Karamalidis, Athanasios K.

    2013-02-05T23:59:59.000Z

    The prediction of carbon dioxide solubility in brine at conditions relevant to carbon sequestration (i.e., high temperature, pressure, and salt concentration (T-P-X)) is crucial when this technology is applied. Eleven mathematical models for predicting CO{sub 2} solubility in brine are compared and considered for inclusion in a multimodel predictive system. Model goodness of fit is evaluated over the temperature range 304–433 K, pressure range 74–500 bar, and salt concentration range 0–7 m (NaCl equivalent), using 173 published CO{sub 2} solubility measurements, particularly selected for those conditions. The performance of each model is assessed using various statistical methods, including the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). Different models emerge as best fits for different subranges of the input conditions. A classification tree is generated using machine learning methods to predict the best-performing model under different T-P-X subranges, allowing development of a multimodel predictive system (MMoPS) that selects and applies the model expected to yield the most accurate CO{sub 2} solubility prediction. Statistical analysis of the MMoPS predictions, including a stratified 5-fold cross validation, shows that MMoPS outperforms each individual model and increases the overall accuracy of CO{sub 2} solubility prediction across the range of T-P-X conditions likely to be encountered in carbon sequestration applications.

  5. The effect of carbon dioxide-oxygen mixtures on oil recovery by in-situ combustion

    E-Print Network [OSTI]

    Broussard, Neal Joseph

    1970-01-01T23:59:59.000Z

    THE EFFECT OF CARBON DIOXIDE-OXYGEN MIXTURES ON OIL RECOVERY BY IN-SITU COMBUSTION A Thesis by NEAL J. BROUSSARD7 JR. Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE May 1970 Major Subject: PETROLEUM ENGINEERING THE EFFECT OF CARBON DIOXIDE-OXYGEN MIXTURES ON OIL RECOVERY BY IN-SITU COMBUSTION A Thesis by NEAL J. BROUSSARD) JR. Approved as to style and content by Chp r an o ommrttee m er...

  6. Techno-Economic Models for Carbon Dioxide Compression, Transport, and Storage & Correlations for Estimating Carbon Dioxide Density and Viscosity

    E-Print Network [OSTI]

    McCollum, David L; Ogden, Joan M

    2006-01-01T23:59:59.000Z

    research in the field of carbon capture and storage (CCS)heightened interest in carbon capture and storage (CCS) as areservoirs. To be sure, carbon capture and sequestration is

  7. 157Recent Events: A Perspective on Carbon Dioxide On March 21, 2010 the Eyjafjalla Volcano in Iceland erupted, and the

    E-Print Network [OSTI]

    the combustion process. Problem 1 ­ The Gulf Oil Spill is predicted to generate 200,000 gallons of crude oil if the combustion of 1 gallon of oil generates 10 kg of carbon dioxide? Problem 2 ­ Scientists have estimated are generated if the combustion of 1 gallon of oil generates 10 kg of carbon dioxide? Answer: 200,000 gallons

  8. Carbon Dioxide Capture Technology for the Coal-Powered Electricity Industry: A Systematic Prioritization of Research Needs

    E-Print Network [OSTI]

    Carbon Dioxide Capture Technology for the Coal-Powered Electricity Industry: A Systematic and Policy Program #12;- 2 - #12;Carbon Dioxide Capture Technology for the Coal-Powered Electricity Industry must be developed for capturing CO2 from power plants. Current CO2 capture technology is expensive

  9. in press, Global Biogeochemical Cycles, April 18, 2007 Carbon dioxide and oxygen fluxes in the Southern Ocean

    E-Print Network [OSTI]

    Marshall, John

    found to affect oxygen fluxes. We find that ENSO also plays an important role in generating interannualin press, Global Biogeochemical Cycles, April 18, 2007 Carbon dioxide and oxygen fluxes College, London, UK Abstract. We analyze the variability of air-sea fluxes of carbon dioxide and oxygen

  10. THE ABUNDANCE OF CARBON DIOXIDE ICE IN THE QUIESCENT INTRACLOUD MEDIUM D. C. B. Whittet,1,2

    E-Print Network [OSTI]

    Gerakines, Perry

    THE ABUNDANCE OF CARBON DIOXIDE ICE IN THE QUIESCENT INTRACLOUD MEDIUM D. C. B. Whittet,1,2 S. S: ISM: lines and bands -- ISM: molecules 1. INTRODUCTION Carbon dioxide (CO2) has proven to be a common embedded sources. Key properties include abundance relative to other ice constituents and dust extinction

  11. Summary Elevated concentrations of atmospheric carbon dioxide ([CO2]) and tropospheric ozone ([O3]) have the poten-

    E-Print Network [OSTI]

    Summary Elevated concentrations of atmospheric carbon dioxide ([CO2]) and tropospheric ozone ([O3 gases (greenhouse gases) altered by human activities (IPCC 2007), only carbon dioxide (CO2 vegeta- tion properties affect local and regional climate, as well as how atmospheric forcing

  12. 2 Accessibility of pores in coal to methane and carbon dioxide 3 Yuri B. Melnichenko a,b,

    E-Print Network [OSTI]

    1 2 Accessibility of pores in coal to methane and carbon dioxide 3 Yuri B. Melnichenko a,b, , Lilin inorganic and organic solutes (including 56 hydrocarbons) and gaseous species (e.g. carbon dioxide, CO2, the chemical and physical properties of the solid and fluid phases collectively dictate how fluid 35molecules

  13. Carbon-nitrogen bond-forming reactions in supercritical and expanded-liquid carbon dioxide media : green synthetic chemistry with multiscale reaction and phase behavior modeling

    E-Print Network [OSTI]

    Ciccolini, Rocco P

    2008-01-01T23:59:59.000Z

    The goal of this work was to develop a detailed understanding of carbon-nitrogen (C-N) bond-forming reactions of amines carried out in supercritical and expanded-liquid carbon dioxide (CO2) media. Key motivations behind ...

  14. Carbon dioxide and climate. [Appendix includes names and addresses of the Principal Investigators for the research projects funded in FY1991

    SciTech Connect (OSTI)

    Not Available

    1991-10-01T23:59:59.000Z

    Global climate change is a serious environmental concern, and the US has developed An Action Agenda'' to deal with it. At the heart of the US effort is the US Global Change Research Program (USGCRP), which has been developed by the Committee on Earth and Environmental Sciences (CEES) of the Federal Coordinating Council for Sciences, Engineering, and Technology (FCCSET). The USGCRP will provide the scientific basis for sound policy making on the climate-change issue. The DOE contribution to the USGCRP is the Carbon Dioxide Research Program, which now places particular emphasis on the rapid improvement of the capability to predict global and regional climate change. DOE's Carbon Dioxide Research Program has been addressing the carbon dioxide-climate change connection for more than twelve years and has provided a solid scientific foundation for the USGCRP. The expansion of the DOE effort reflects the increased attention that the Department has placed on the issue and is reflected in the National Energy Strategy (NES) that was released in 1991. This Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1991 and gives a brief overview of objectives, organization, and accomplishments. The Environmental Sciences Division of the Office of Health and Environmental Research, Office of Energy Research supports a Carbon Dioxide Research Program to determine the scientific linkage between the rise of greenhouse gases in the atmosphere, especially carbon dioxide, and climate and vegetation change. One facet is the Core CO{sub 2} Program, a pioneering program that DOE established more than 10 years ago to understand and predict the ways that fossil-fuel burning could affect atmospheric CO{sub 2} concentration, global climate, and the Earth's biosphere. Major research areas are: global carbon cycle; climate detection and models of climate change; vegetation research; resource analysis; and, information and integration.

  15. Carbon Dioxide Capture and Transportation Options in the Illinois Basin

    SciTech Connect (OSTI)

    M. Rostam-Abadi; S. S. Chen; Y. Lu

    2004-09-30T23:59:59.000Z

    This report describes carbon dioxide (CO{sub 2}) capture options from large stationary emission sources in the Illinois Basin, primarily focusing on coal-fired utility power plants. The CO{sub 2} emissions data were collected for utility power plants and industrial facilities over most of Illinois, southwestern Indiana, and western Kentucky. Coal-fired power plants are by far the largest CO{sub 2} emission sources in the Illinois Basin. The data revealed that sources within the Illinois Basin emit about 276 million tonnes of CO2 annually from 122 utility power plants and industrial facilities. Industrial facilities include 48 emission sources and contribute about 10% of total emissions. A process analysis study was conducted to review the suitability of various CO{sub 2} capture technologies for large stationary sources. The advantages and disadvantages of each class of technology were investigated. Based on these analyses, a suitable CO{sub 2} capture technology was assigned to each type of emission source in the Illinois Basin. Techno-economic studies were then conducted to evaluate the energy and economic performances of three coal-based power generation plants with CO{sub 2} capture facilities. The three plants considered were (1) pulverized coal (PC) + post combustion chemical absorption (monoethanolamine, or MEA), (2) integrated gasification combined cycle (IGCC) + pre-combustion physical absorption (Selexol), and (3) oxygen-enriched coal combustion plants. A conventional PC power plant without CO2 capture was also investigated as a baseline plant for comparison. Gross capacities of 266, 533, and 1,054 MW were investigated at each power plant. The economic study considered the burning of both Illinois No. 6 coal and Powder River Basin (PRB) coal. The cost estimation included the cost for compressing the CO{sub 2} stream to pipeline pressure. A process simulation software, CHEMCAD, was employed to perform steady-state simulations of power generation systems and CO{sub 2} capture processes. Financial models were developed to estimate the capital cost, operations and maintenance cost, cost of electricity, and CO{sub 2} avoidance cost. Results showed that, depending on the plant size and the type of coal burned, CO{sub 2} avoidance cost is between $47/t to $67/t for a PC +MEA plant, between $22.03/t to $32.05/t for an oxygen combustion plant, and between $13.58/t to $26.78/t for an IGCC + Selexol plant. A sensitivity analysis was conducted to evaluate the impact on the CO2 avoidance cost of the heat of absorption of solvent in an MEA plant and energy consumption of the ASU in an oxy-coal combustion plant. An economic analysis of CO{sub 2} capture from an ethanol plant was also conducted. The cost of CO{sub 2} capture from an ethanol plant with a production capacity of 100 million gallons/year was estimated to be about $13.92/t.

  16. Phase Behaviour of Carbon Dioxide + Benzene + Water Ternary Mixtures at High Pressures and Temperatures up to 300 MPa and 600 K

    E-Print Network [OSTI]

    1 Phase Behaviour of Carbon Dioxide + Benzene + Water Ternary Mixtures at High Pressures for the phase coexistence of carbon dioxide + benzene + water ternary mixtures. Phase coexistence was observed exceptions are the systematic studies6-9 of ternary mixtures containing carbon dioxide with large alkanes

  17. Electrochemical formation of hydroxide for enhancing carbon dioxide and acid gas uptake by a solution

    DOE Patents [OSTI]

    Rau, Gregory Hudson (Castro Valley, CA)

    2012-05-15T23:59:59.000Z

    A system is described for forming metal hydroxide from a metal carbonate utilizing a water electrolysis cell having an acid-producing anode and a hydroxyl-producing cathode immersed in a water solution of sufficient ionic content to allow an electric current to pass between the hydroxyl-producing cathode and the acid-producing anode. A metal carbonate, in particular water-insoluble calcium carbonate or magnesium carbonate, is placed in close proximity to the acid-producing anode. A direct current electrical voltage is provided across the acid-producing anode and the hydroxyl-producing cathode sufficient to generate acid at the acid-producing anode and hydroxyl ions at the hydroxyl-producing cathode. The acid dissolves at least part of the metal carbonate into metal and carbonate ions allowing the metal ions to travel toward the hydroxyl-producing cathode and to combine with the hydroxyl ions to form the metal hydroxide. The carbonate ions travel toward the acid-producing anode and form carbonic acid and/or water and carbon dioxide. Among other uses, the metal hydroxide formed can be employed to absorb acid gases such as carbon dioxide from a gas mixture. The invention can also generate hydrogen and oxidative gases such as oxygen or chlorine.

  18. Inventory of Carbon Dioxide (CO2) Emissions at Pacific Northwest National Laboratory

    SciTech Connect (OSTI)

    Judd, Kathleen S.; Kora, Angela R.; Shankle, Steve A.; Fowler, Kimberly M.

    2009-06-29T23:59:59.000Z

    The Carbon Management Strategic Initiative (CMSI) is a lab-wide initiative to position the Pacific Northwest National Laboratory (PNNL) as a leader in science, technology and policy analysis required to understand, mitigate and adapt to global climate change as a nation. As part of an effort to walk the talk in the field of carbon management, PNNL conducted its first carbon dioxide (CO2) emissions inventory for the 2007 calendar year. The goal of this preliminary inventory is to provide PNNL staff and management with a sense for the relative impact different activities at PNNL have on the lab’s total carbon footprint.

  19. Measurement of carbon capture efficiency and stored carbon leakage

    DOE Patents [OSTI]

    Keeling, Ralph F.; Dubey, Manvendra K.

    2013-01-29T23:59:59.000Z

    Data representative of a measured carbon dioxide (CO.sub.2) concentration and of a measured oxygen (O.sub.2) concentration at a measurement location can be used to determine whether the measured carbon dioxide concentration at the measurement location is elevated relative to a baseline carbon dioxide concentration due to escape of carbon dioxide from a source associated with a carbon capture and storage process. Optionally, the data can be used to quantify a carbon dioxide concentration increase at the first location that is attributable to escape of carbon dioxide from the source and to calculate a rate of escape of carbon dioxide from the source by executing a model of gas-phase transport using at least the first carbon dioxide concentration increase. Related systems, methods, and articles of manufacture are also described.

  20. Producing Fuel and Electricity from Coal with Low Carbon Dioxide Emissions

    E-Print Network [OSTI]

    effects of global warming. In this article we describe a process which producesa lowProducing Fuel and Electricity from Coal with Low Carbon Dioxide Emissions K. Blok, C.A. Hendriks the electricity production cost by one third. The secondprovides hydrogenor a hydrogen-rich fuel gas

  1. Recovery Act Production of Algal BioCrude Oil from Cement Plant Carbon Dioxide

    SciTech Connect (OSTI)

    Robert Weber; Norman Whitton

    2010-09-30T23:59:59.000Z

    The consortium, led by Sunrise Ridge Algae Inc, completed financial, legal, siting, engineering and environmental permitting preparations for a proposed demonstration project that would capture stack gas from an operating cement plant and convert the carbon dioxide to beneficial use as a liquid crude petroleum substitute and a coal substitute, using algae grown in a closed system, then harvested and converted using catalyzed pyrolysis.

  2. PHYSICAL AND CHEMICAL CHANGES OF PINK SHRIMP, PANDALUS BOREALIS, HELD IN CARBON DIOXIDE MODIFIED REFRIGERATED

    E-Print Network [OSTI]

    REFRIGERATED SEAWATER COMPARED WITH PINK SHRIMP HELD IN ICE FERN A. BULLARD AND JEFF COLLINSl ABSTRACT Pink ahrimp,PandaluB borealis, were held in carbon dioxide modified refrigerated seawater for 12.5 days refrigerated seawater were acceptable up to 9.5 days and those held in ice up to 6.5 days. Data on weight

  3. A Systems Perspective for Assessing Carbon Dioxide Capture and Storage Opportunities

    E-Print Network [OSTI]

    A Systems Perspective for Assessing Carbon Dioxide Capture and Storage Opportunities by Nisheeth by _________________________________________________________________ Howard Herzog Principal Research Engineer, Lab for Energy & Environment, MIT Thesis Supervisor Accepted. I appreciate the financial support of the U.S. Department of Energy's National Energy Technology

  4. PIERS ONLINE, VOL. 5, NO. 7, 2009 637 Ventilation Efficiency and Carbon Dioxide (CO2) Concentration

    E-Print Network [OSTI]

    Halgamuge, Malka N.

    inadequate ventilation. The American Society of Heating,Refrigerating and Air Conditioning Engineers (ASHRAEPIERS ONLINE, VOL. 5, NO. 7, 2009 637 Ventilation Efficiency and Carbon Dioxide (CO2) Concentration is approximately 400 parts per million. In this study, we investigate the relationship between ventilation

  5. A Novel Process for Demulsification of Water-in-Crude Oil Emulsions by Dense Carbon Dioxide

    E-Print Network [OSTI]

    Kilpatrick, Peter K.

    A Novel Process for Demulsification of Water-in-Crude Oil Emulsions by Dense Carbon Dioxide Nael N State University, Raleigh, North Carolina 27695-7905 CO2 was used to break several water-in-crude oil density and mole fraction. The proposed mechanism by which CO2 destabilizes water-in-crude oil emulsions

  6. Enhancing the Effectiveness of Carbon Dioxide Flooding by Managing Asphaltene Precipitation

    SciTech Connect (OSTI)

    Deo, Milind D.

    2002-02-21T23:59:59.000Z

    This project was undertaken to understand fundamental aspects of carbon dioxide (CO2) induced asphaltene precipitation. Oil and asphaltene samples from the Rangely field in Colorado were used for most of the project. The project consisted of pure component and high-pressure, thermodynamic experiments, thermodynamic modeling, kinetic experiments and modeling, targeted corefloods and compositional modeling.

  7. Further Sensitivity Analysis of Hypothetical Policies to Limit Energy-Related Carbon Dioxide Emissions

    Reports and Publications (EIA)

    2013-01-01T23:59:59.000Z

    This analysis supplements the Annual Energy Outlook 2013 alternative cases which imposed hypothetical carbon dioxide emission fees on fossil fuel consumers. It offers further cases that examine the impacts of fees placed only on the emissions from electric power facilities, impacts of returning potential revenues to consumers, and two cap-and-trade policies.

  8. Potential for storage of carbon dioxide in the rocks beneath the East Irish Sea

    E-Print Network [OSTI]

    Watson, Andrew

    strategy towards renewable and new energy technologies. The East Irish Sea Basin, which lies between Research and British Geological Survey Keyworth Nottingham NG12 5GG Email: klsh@bgs.ac.uk Tyndall Centre carbon dioxide (CO2) storage in the East Irish Sea Basin, UK was assessed as part of the Tyndall Centre

  9. Preparation of Inclusion Complex of Piroxicam with Cyclodextrin by Using Supercritical Carbon Dioxide

    E-Print Network [OSTI]

    Boyer, Edmond

    or the temperature. Moreover, additional advantages lie in the use of carbon dioxide (CO2) which properties of non with CO2 at 150°C and 15 MPa. Keywords: piroxicam; cyclodextrin; complex; ternary agent; supercritical-toxicity and mild critical conditions make it an ideal substitute to organic solvents. CO2 is gaseous at ambient

  10. Comprehensive study of carbon dioxide adsorption in the metalorganic frameworks M2(dobdc)

    E-Print Network [OSTI]

    Comprehensive study of carbon dioxide adsorption in the metal­organic frameworks M2(dobdc) (M Ľ Mg and Craig M. Brown*bl Analysis of the CO2 adsorption properties of a well-known series of metal and single crystal X-ray di raction experiments are used to unveil the site-speci c binding properties of CO2

  11. Author's personal copy Radiation transfer in photobiological carbon dioxide fixation and fuel

    E-Print Network [OSTI]

    Pilon, Laurent

    and fuel production by microalgae Laurent Pilon a,Ă, Halil Berberoglu b,1 , Razmig Kandilian a a Mechanical a c t Solar radiation is the energy source driving the metabolic activity of microorganisms able to photobiologically fixate carbon dioxide and convert solar energy into biofuels. Thus, careful radiation transfer

  12. MathematicalModelingofCarbonDioxide(CO2)Injection intheSubsurfaceforImprovedHydrocarbonRecoveryand

    E-Print Network [OSTI]

    Firoozabadi, Abbas

    MathematicalModelingofCarbonDioxide(CO2)Injection intheSubsurfaceforImprovedHydrocarbonRecoveryand Sequestration Philip C. Myint, Laurence Rongy, Kjetil B. Haugen, Abbas Firoozabadi Department of Chemical injection for two applications: 1) improved recovery from hydrocarbon reservoirs and 2) sequestration

  13. Effet of Combined Nitrogen Dioxide and Carbon Nanoparticle Exposure on Lung Function During

    E-Print Network [OSTI]

    Boyer, Edmond

    Effet of Combined Nitrogen Dioxide and Carbon Nanoparticle Exposure on Lung Function During and Respiratory Medicine, Paediatric Lung Function Laboratory, Amiens University Hospital, Amiens, France, 3 and challenges in Borwn-Norway (BN) rat, in order to assess their interactions on lung function and airway

  14. Nitrogen cycling, plant biomass, and carbon dioxide evolution in a subsurface flow wetland

    E-Print Network [OSTI]

    Lane, Jeffrey J

    2000-01-01T23:59:59.000Z

    to ascertain the fate of nitrogen in a constructed wetland and the rate of bioremediation as indicated by carbon dioxide evolution. Research included a study of nitrogen uptake by plants and nitrification. A tracer isotope of nitrogen,ą?N, was used to follow...

  15. Clathrate hydrate equilibrium data for the gas mixture of carbon dioxide and nitrogen in the

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Clathrate hydrate equilibrium data for the gas mixture of carbon dioxide and nitrogen and nitrogen gas separation is achieved through clathrate hydrate formation in the presence of cyclopentane the corresponding mole fraction in the gas mixture amounts to 0.507. When compared to the three phase hydrate

  16. air carbon dioxide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Multidisciplinary Databases and Resources Websites Summary: assuming some amount of carbon capture from power plants and the subsequent sequestration of the captured), the...

  17. arteriovenous carbon dioxide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CO2 generated in energy production processes. ? Global and national assessments of carbon sequestration potential show vast storage capacity. unknown authors 8 Optimize...

  18. autotrophic carbon dioxide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CO2 generated in energy production processes. ? Global and national assessments of carbon sequestration potential show vast storage capacity. unknown authors 8 Optimize...

  19. arterial carbon dioxide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CO2 generated in energy production processes. ? Global and national assessments of carbon sequestration potential show vast storage capacity. unknown authors 8 Optimize...

  20. Innovative Geothermal Startup Will Put Carbon Dioxide To Good...

    Broader source: Energy.gov (indexed) [DOE]

    energy to make electricity. What is more, the technology has the potential to add carbon sequestration - not to mention reduced water consumption - to the benefits already...

  1. The subsurface fluid mechanics of geologic carbon dioxide storage

    E-Print Network [OSTI]

    Szulczewski, Michael Lawrence

    2013-01-01T23:59:59.000Z

    In carbon capture and storage (CCS), CO? is captured at power plants and then injected into deep geologic reservoirs for long-term storage. While CCS may be critical for the continued use of fossil fuels in a carbon-constrained ...

  2. Novel Sorption/Desorption Process for Carbon Dioxide Capture (Feasibility Study)

    SciTech Connect (OSTI)

    William Tuminello; Maciej Radosz; Youqing Shen

    2008-11-01T23:59:59.000Z

    Western Research Institute and the University of Wyoming Enhanced Oil Recovery Institute have tested a novel approach to carbon dioxide capture in power plants and industrial operations. This approach is expected to provide considerable cost savings, in terms of regeneration of the sorbent. It is proposed that low molecular weight, low volatility liquid fluorocarbons be utilized to absorb CO{sub 2} due to their unusual affinity for the gas. The energy savings would be realized by cooling the fluorocarbon liquids below their melting point where the CO{sub 2} would be released even at elevated pressure. Thus, the expense of heating currently used sorbents, saturated with CO{sub 2}, under low pressure conditions and then having to compress the released gas would not be realized. However, these fluorinated materials have been shown to be poor carbon dioxide absorbers under conditions currently required for carbon capture. The project was terminated.

  3. Hydrogenation of Carbon Dioxide by Water: Alkali-Promoted Synthesis of Formate

    SciTech Connect (OSTI)

    Hrbek, J.; Hoffmann, F.M.; Yang, Y.; Paul, J.; White, M.G.

    2010-07-15T23:59:59.000Z

    Conversion of carbon dioxide utilizing protons from water decomposition is likely to provide a sustainable source of fuels and chemicals in the future. We present here a time-evolved infrared reflection absorption spectroscopy (IRAS) and temperature-programmed desorption (TPD) study of the reaction of CO{sub 2} + H{sub 2}O in thin potassium layers. Reaction at temperatures below 200 K results in the hydrogenation of carbon dioxide to potassium formate. Thermal stability of the formate, together with its sequential transformation to oxalate and to carbonate, is monitored and discussed. The data of this model study suggest a dual promoter mechanism of the potassium: the activation of CO{sub 2} and the dissociation of water. Reaction at temperatures above 200 K, in contrast, is characterized by the absence of formate and the direct reaction of CO{sub 2} to oxalate, due to a drastic reduction of the sticking coefficient of water at higher temperatures.

  4. Incorporation of catalytic dehydrogenation into Fischer-Tropsch synthesis to lower carbon dioxide emissions

    DOE Patents [OSTI]

    Huffman, Gerald P

    2012-09-18T23:59:59.000Z

    A method for producing liquid fuels includes the steps of gasifying a starting material selected from a group consisting of coal, biomass, carbon nanotubes and mixtures thereof to produce a syngas, subjecting that syngas to Fischer-Tropsch synthesis (FTS) to produce a hyrdrocarbon product stream, separating that hydrocarbon product stream into C1-C4 hydrocarbons and C5+ hydrocarbons to be used as liquid fuels and subjecting the C1-C4 hydrocarbons to catalytic dehydrogenation (CDH) to produce hydrogen and carbon nanotubes. The hydrogen produced by CDH is recycled to be mixed with the syngas incident to the FTS reactor in order to raise the hydrogen to carbon monoxide ratio of the syngas to values of 2 or higher, which is required to produce liquid hydrocarbon fuels. This is accomplished with little or no production of carbon dioxide, a greenhouse gas. The carbon is captured in the form of a potentially valuable by-product, multi-walled carbon nanotubes (MWNT), while huge emissions of carbon dioxide are avoided and very large quantities of water employed for the water-gas shift in traditional FTS systems are saved.

  5. Thermal dissociation behavior and dissociation enthalpies of methane-carbon dioxide mixed hydrates

    SciTech Connect (OSTI)

    Kwon, T.H.; Kneafsey, T.J.; Rees, E.V.L.

    2011-02-15T23:59:59.000Z

    Replacement of methane with carbon dioxide in hydrate has been proposed as a strategy for geologic sequestration of carbon dioxide (CO{sub 2}) and/or production of methane (CH{sub 4}) from natural hydrate deposits. This replacement strategy requires a better understanding of the thermodynamic characteristics of binary mixtures of CH{sub 4} and CO{sub 2} hydrate (CH{sub 4}-CO{sub 2} mixed hydrates), as well as thermophysical property changes during gas exchange. This study explores the thermal dissociation behavior and dissociation enthalpies of CH{sub 4}-CO{sub 2} mixed hydrates. We prepared CH{sub 4}-CO{sub 2} mixed hydrate samples from two different, well-defined gas mixtures. During thermal dissociation of a CH{sub 4}-CO{sub 2} mixed hydrate sample, gas samples from the head space were periodically collected and analyzed using gas chromatography. The changes in CH{sub 4}-CO{sub 2} compositions in both the vapor phase and hydrate phase during dissociation were estimated based on the gas chromatography measurements. It was found that the CO{sub 2} concentration in the vapor phase became richer during dissociation because the initial hydrate composition contained relatively more CO{sub 2} than the vapor phase. The composition change in the vapor phase during hydrate dissociation affected the dissociation pressure and temperature; the richer CO{sub 2} in the vapor phase led to a lower dissociation pressure. Furthermore, the increase in CO{sub 2} concentration in the vapor phase enriched the hydrate in CO{sub 2}. The dissociation enthalpy of the CH{sub 4}-CO{sub 2} mixed hydrate was computed by fitting the Clausius-Clapeyron equation to the pressure-temperature (PT) trace of a dissociation test. It was observed that the dissociation enthalpy of the CH{sub 4}-CO{sub 2} mixed hydrate lays between the limiting values of pure CH{sub 4} hydrate and CO{sub 2} hydrate, increasing with the CO{sub 2} fraction in the hydrate phase.

  6. Method and system for capturing carbon dioxide and/or sulfur dioxide from gas stream

    DOE Patents [OSTI]

    Chang, Shih-Ger; Li, Yang; Zhao, Xinglei

    2014-07-08T23:59:59.000Z

    The present invention provides a system for capturing CO.sub.2 and/or SO.sub.2, comprising: (a) a CO.sub.2 and/or SO.sub.2 absorber comprising an amine and/or amino acid salt capable of absorbing the CO.sub.2 and/or SO.sub.2 to produce a CO.sub.2- and/or SO.sub.2-containing solution; (b) an amine regenerator to regenerate the amine and/or amino acid salt; and, when the system captures CO.sub.2, (c) an alkali metal carbonate regenerator comprising an ammonium catalyst capable catalyzing the aqueous alkali metal bicarbonate into the alkali metal carbonate and CO.sub.2 gas. The present invention also provides for a system for capturing SO.sub.2, comprising: (a) a SO.sub.2 absorber comprising aqueous alkali metal carbonate, wherein the alkali metal carbonate is capable of absorbing the SO.sub.2 to produce an alkali metal sulfite/sulfate precipitate and CO.sub.2.

  7. Solubility of carbon dioxide in tar sand bitumen; Experimental determination and modeling

    SciTech Connect (OSTI)

    Deo, M.D.; Wang, C.J.; Hanson, F.V. (Dept. of Fuels Engineering, Univ. of Utah, Salt Lake City, UT (US))

    1991-03-01T23:59:59.000Z

    This paper reports on an understanding of the solubility of carbon dioxide (CO{sub 2}) in tar sand bitumen that is essential for the development of in situ processes in the recovery of bitumen from tar and deposits. The solubility of CO{sub 2} in the Tar Sand Triangle (Utah), the PR Spring Rainbow I (Utah), and the Athabasca (Canada) tar sand bitumens was determined with the use of a high-pressure microbalance at temperatures of 358.2 and 393.2 K and pressures up to 6.2 MPa. As expected, the solubilities increased with pressure at a given temperature and decreased with increases in temperature. The Peng--Robinson and the Schmidt--Wenzel equations of state were used to match the experimentally observed solubilities. Correlations for the interaction parameters between CO{sub 2} and the bitumen were developed for both equations of state, wherein the interaction parameter could be obtained by using specific gravity and the UOP {ital K} factor for the bitumen. The correlations were developed with the optimum interaction parameters obtained for each of the samples at each temperature.

  8. Carbon Dioxide Capture and Separation Techniques for Power Generation Point Sources

    SciTech Connect (OSTI)

    Pennline, H.W.

    2007-09-01T23:59:59.000Z

    The capture/separation step for carbon dioxide (CO2) from large-point sources is a critical one with respect to the technical feasibility and cost of the overall carbon sequestration scenario. For large-point sources, such as those found in power generation, the carbon dioxide capture techniques being investigated by the in-house research area of the National Energy Technology Laboratory (NETL) possess the potential for improved efficiency and costs as compared to more conventional technologies. The investigated techniques can have wide applications, but the research has focused on capture/separation of carbon dioxide from flue gas (postcombustion from fossil fuel-fired combustors) and from fuel gas (precombustion, such as integrated gasification combined cycle or IGCC). Novel concepts are being developed in wet scrubbing with either chemical or physical absorption; chemical absorption or adsorption with solid sorbents; and separation by membranes, including an electrochemical cell device. In one concept, a wet scrubbing technique is being investigated that uses an ammonia-based solvent to absorb carbon dioxide from the flue gas of a pulverized coal-fired power plant. In contrast, a physical solvent process to remove CO2 from fuel gas of an IGCC system at elevated temperature and pressure is being developed. Solid, regenerable sorbents that can be employed in either flue gas or fuel gas applications are being investigated. These sorbents can be regenerated via a temperature and/or pressure swing, and certain sorbent properties need consideration with respect to the final design system for each respective sorbent. Fabrication techniques and mechanistic studies for membranes separating CO2 from the fuel gas produced by coal gasification are also being performed. In an application for CO2 separation in flue gas, an electrochemical membrane is being developed that can produce a CO2/O2 stream that can be fed to an oxy-fired combustion unit. An overview of the various novel techniques is presented along with a research progress status of each technology.

  9. Using Vehicle Taxes to Reduce Carbon Dioxide Emissions Rates of New Passenger Vehicles: Evidence from France, Germany, and Sweden

    E-Print Network [OSTI]

    Klier, Thomas

    France, Germany, and Sweden link vehicle taxes to the carbon dioxide (CO2) emissions rates of passenger vehicles. Based on new vehicle registration data from 2005–2010, a vehicle’s tax is negatively correlated with its ...

  10. Estimation of methane and carbon dioxide surface fluxes using a 3-D global atmospheric chemical transport model

    E-Print Network [OSTI]

    Chen, Yu-Han, 1973-

    2004-01-01T23:59:59.000Z

    Methane (CH?) and carbon dioxide (CO?) are the two most radiatively important greenhouse gases attributable to human activity. Large uncertainties in their source and sink magnitudes currently exist. We estimate global ...

  11. A Computational Study on the Thermal-Hydraulic Behavior of Supercritical Carbon Dioxide in Various Printed Circuit Heat Exchanger Designs

    E-Print Network [OSTI]

    Matsuo, Bryce

    2013-02-04T23:59:59.000Z

    are discussed in the Introduction section earlier. As summarized by Dostal [2], that Petr et al. [17, 18], in 1997 at the Czech Technical University in Prague, Czech Re- public, investigated supercritical carbon dioxide for new power plants. They recom...

  12. Global patterns of landatmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance,

    E-Print Network [OSTI]

    Chen, Jiquan

    (NEE), latent energy (LE), and sensible heat (H) based on remote sensing indices, climateGlobal patterns of landatmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived

  13. Statistical mechanics problem sheet 7 1. The main component of Venus's atmosphere, carbon dioxide, is a linear molecule

    E-Print Network [OSTI]

    Dettmann, Carl

    Statistical mechanics problem sheet 7 1. The main component of Venus's atmosphere, carbon dioxide and energy. Show that the system is non-extensive, and find the chemical potential at which system properties

  14. 6 JUNE 2014 VOL 344 ISSUE 6188 1089SCIENCE sciencemag.org he more carbon dioxide and other

    E-Print Network [OSTI]

    Napp, Nils

    6 JUNE 2014 · VOL 344 ISSUE 6188 1089SCIENCE sciencemag.org T he more carbon dioxide and other concentrations and cloud properties. However, the processes are complex, spanning many orders of mag- nitudes

  15. Storing carbon dioxide in saline formations : analyzing extracted water treatment and use for power plant cooling.

    SciTech Connect (OSTI)

    Dwyer, Brian P.; Heath, Jason E.; Borns, David James; Dewers, Thomas A.; Kobos, Peter Holmes; Roach, Jesse D.; McNemar, Andrea; Krumhansl, James Lee; Klise, Geoffrey T.

    2010-10-01T23:59:59.000Z

    In an effort to address the potential to scale up of carbon dioxide (CO{sub 2}) capture and sequestration in the United States saline formations, an assessment model is being developed using a national database and modeling tool. This tool builds upon the existing NatCarb database as well as supplemental geological information to address scale up potential for carbon dioxide storage within these formations. The focus of the assessment model is to specifically address the question, 'Where are opportunities to couple CO{sub 2} storage and extracted water use for existing and expanding power plants, and what are the economic impacts of these systems relative to traditional power systems?' Initial findings indicate that approximately less than 20% of all the existing complete saline formation well data points meet the working criteria for combined CO{sub 2} storage and extracted water treatment systems. The initial results of the analysis indicate that less than 20% of all the existing complete saline formation well data may meet the working depth, salinity and formation intersecting criteria. These results were taken from examining updated NatCarb data. This finding, while just an initial result, suggests that the combined use of saline formations for CO{sub 2} storage and extracted water use may be limited by the selection criteria chosen. A second preliminary finding of the analysis suggests that some of the necessary data required for this analysis is not present in all of the NatCarb records. This type of analysis represents the beginning of the larger, in depth study for all existing coal and natural gas power plants and saline formations in the U.S. for the purpose of potential CO{sub 2} storage and water reuse for supplemental cooling. Additionally, this allows for potential policy insight when understanding the difficult nature of combined potential institutional (regulatory) and physical (engineered geological sequestration and extracted water system) constraints across the United States. Finally, a representative scenario for a 1,800 MW subcritical coal fired power plant (amongst other types including supercritical coal, integrated gasification combined cycle, natural gas turbine and natural gas combined cycle) can look to existing and new carbon capture, transportation, compression and sequestration technologies along with a suite of extracting and treating technologies for water to assess the system's overall physical and economic viability. Thus, this particular plant, with 90% capture, will reduce the net emissions of CO{sub 2} (original less the amount of energy and hence CO{sub 2} emissions required to power the carbon capture water treatment systems) less than 90%, and its water demands will increase by approximately 50%. These systems may increase the plant's LCOE by approximately 50% or more. This representative example suggests that scaling up these CO{sub 2} capture and sequestration technologies to many plants throughout the country could increase the water demands substantially at the regional, and possibly national level. These scenarios for all power plants and saline formations throughout U.S. can incorporate new information as it becomes available for potential new plant build out planning.

  16. Heat transfer and pressure drop of supercritical carbon dioxide flowing in several printed circuit heat exchanger channel patterns

    SciTech Connect (OSTI)

    Carlson, M. [Univ. of Wisconsin - Madison, 839 Engineering Research Building, 1500 Engineering Drive, Madison, WI 53706 (United States); Kruizenga, A. [Sandia National Laboratory (United States); Anderson, M.; Corradini, M. [Univ. of Wisconsin - Madison, 839 Engineering Research Building, 1500 Engineering Drive, Madison, WI 53706 (United States)

    2012-07-01T23:59:59.000Z

    Closed-loop Brayton cycles using supercritical carbon dioxide (SCO{sub 2}) show potential for use in high-temperature power generation applications including High Temperature Gas Reactors (HTGR) and Sodium-Cooled Fast Reactors (SFR). Compared to Rankine cycles SCO{sub 2} Brayton cycles offer similar or improved efficiency and the potential for decreased capital costs due to a reduction in equipment size and complexity. Compact printed-circuit heat exchangers (PCHE) are being considered as part of several SCO{sub 2} Brayton designs to further reduce equipment size with increased energy density. Several designs plan to use a gas cooler operating near the pseudo-critical point of carbon dioxide to benefit from large variations in thermophysical properties, but further work is needed to validate correlations for heat transfer and pressure-drop characteristics of SCO{sub 2} flows in candidate PCHE channel designs for a variety of operating conditions. This paper presents work on experimental measurements of the heat transfer and pressure drop behavior of miniature channels using carbon dioxide at supercritical pressure. Results from several plate geometries tested in horizontal cooling-mode flow are presented, including a straight semi-circular channel, zigzag channel with a bend angle of 80 degrees, and a channel with a staggered array of extruded airfoil pillars modeled after a NACA 0020 airfoil with an 8.1 mm chord length facing into the flow. Heat transfer coefficients and bulk temperatures are calculated from measured local wall temperatures and local heat fluxes. The experimental results are compared to several methods for estimating the friction factor and Nusselt number of cooling-mode flows at supercritical pressures in millimeter-scale channels. (authors)

  17. An option making for nuclear fuel reprocessing by using supercritical carbon dioxide

    SciTech Connect (OSTI)

    Enokida, Youichi; Sawada, Kayo; Shimada, Takashi; Yamamoto, Ichiro [EcoTopia Science Institute, Nagoya University, 1 furo-cho, Chikusa-ku, Nagoya, Aichi (Japan)

    2007-07-01T23:59:59.000Z

    A four-year-research has been completed as a collaborative work by Nagoya University Mitsubishi Heavy Industries Corporation and Japan Atomic Energy Agency (JAEA) in order to develop a super critical carbon dioxide (SF-CO{sub 2}) based technology, 'SUPER-DIREX process', for nuclear fuel reprocessing. As a result obtained in Phase II of the Japan's feasibility Studies on Commercialized Fast Reactor Cycle Systems, this technology was evaluated as one of the alternatives for the advanced Purex process for he future FBR fuel cycle. Although further investigation is required for a scaled-up demonstration of processing spent fuels by SUPER-DIREX process, we could conclude that an option has been made for nuclear fuel reprocessing by using supercritical carbon dioxide. (authors)

  18. Experimental measurement of gas diffusivity in bitumen: Results for carbon dioxide

    SciTech Connect (OSTI)

    Upreti, S.R.; Mehrotra, A.K.

    2000-04-01T23:59:59.000Z

    A new technique is developed to measure the diffusivity of gas in bitumen as a function of composition. Results are presented for a carbon dioxide-bitumen system, which is of considerable industrial relevance. The technique employs transient pressure data obtained from a nonintrusive pressure decay experiment at constant temperature and volume. The underlying theory is presented along with a computational algorithm to calculate diffusivity. Using experimental pressure decay data in the range 25--90 C at 4 MPa, the diffusivity of carbon dioxide in bitumen is calculated. The results are compared with the limited data available in the literature. The approach is straightforward and can be easily applied to other nonvolatile liquid systems.

  19. The relationship between blood carbon dioxide, acid-base balance and calcium metabolism in the hyperthermic laying hen

    E-Print Network [OSTI]

    Ono, Yoshitaka

    1988-01-01T23:59:59.000Z

    THE RELATIONSHIP BETWEEN BLOOD CARBON DIOXIDE, ACID-BASE BALANCE AND CALCIUM METABOLISM IN THE HYPERTHERMIC LAYING HEN A Thesis by YOSHITAKA ONO Subrnittcd to thc Office of Graduate Studies of Texas AA, M University in partial I...'ulfillmcnt of thc requirements for thc dcgrcc of MASTER OF SCIENCE Dcccmbcr 1988 Major Sulajccu Poultry Scicncc THE RELATIONSHIP BETWEEN BLOOD CARBON DIOXIDE, ACID-BASE BALANCE AND CALCIUM METABOLISM IN THE HYPERTHERMIC LAYING HEN A Thesis by YOSHITAKA ONO...

  20. A parametric study of factors affecting oil recovery efficiency from carbon dioxide injection using a compositional reservoir model

    E-Print Network [OSTI]

    Barnes, Gregory Allen.

    1991-01-01T23:59:59.000Z

    Factors Affecting Oil Recovery Estimating Oil Recovery From Carbon Dioxide Flooding 15 33 CHAPTER III ? FIELD CASE ANALYSIS 38 3. 1 3. 2 3. 3 3. 4 Background Laboratory Analysis Reservoir Analysis Estimates of Injection Recovery and Project... to estimate the recovery of oil from continuous injection of carbon dioxide. Finally, the results of the sensitivity analysis were compared to published laboratory and theoretical models and documented field results to test the correlation model. CHAPTER...

  1. New Energy Efficient Method for Cleaning Oilfield Brines with Carbon Dioxide

    E-Print Network [OSTI]

    Little, C. T.; Seibert, A. F.; Bravo, J. L.; Fair, J. R.

    pressure. The important discoveries of this study and an economic comparison of the carbon dioxide treatment process with other potential processes are presented in this paper. INTRODUCTION During the operation of producing petroleum from subsurface... studies (1,2,3). The most comprehensive work regarding the environmental effects of these aqueous effluents was studied by Middleditch and coworkers (4,5). The current U.S. Environmental Protection Agency limits for organics in aqueous discharges...

  2. Effect of pore geometry in porous media on the miscibility of crude oil and carbon dioxide

    E-Print Network [OSTI]

    Sarkhosh, Hamed

    1977-01-01T23:59:59.000Z

    or low pressure gas, capillary forces and interfacial tensions will result in the leaving behind of a fixed residual oil saturation. Therefore complete or total recovery of oil from an oil bearing for- mation is impossible, even though many pore...EFFECT OF PORE GEOMETRY IN POROUS MEDIA ON THE MISCIBILITY OF CRUDE OIL AND CARBON DIOXIDE A Thesis by HAMED SARKHOSH Submitted to the Graduate College of Texas AIM University in partial fulfillment of the requirement for the degree...

  3. Limiting diffusion coefficients of heavy molecular weight organic contaminants in supercritical carbon dioxide

    E-Print Network [OSTI]

    Orejuela, Mauricio

    1994-01-01T23:59:59.000Z

    for removing organic contaminants from soil and from water. Most studies on SCF's concentrated on phase behavior in supercritical mixtures. Investigations of the adsorption phenomena and studies on hydrodynamics and transport rate parameters are relatively...LIMITING DIFFUSION COEFFICIENTS OF HEAVY MOLECULAR WEIGHT ORGANIC CONTAMINANTS IN SUPERCRITICAL CARBON DIOXIDE A Thesis by MAURICIO OREJUELA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment...

  4. Enhancing the Effectiveness of Carbon Dioxide Flooding by Managing Asphaltene Precipitation

    SciTech Connect (OSTI)

    Deo, M.D.

    2001-01-12T23:59:59.000Z

    The objective of this project was to identify conditions at which carbon dioxide induced precipitation occurred in crude oils. Establishing compositions of the relevant liquid and solid phases was planned. Other goals of the project were to determine if precipitation occurred in cores and to implement thermodynamic and compositional models to examine the phenomenon. Exploring kinetics of precipitation was also one of the project goals. Crude oil from the Rangely Field (eastern Colorado) was used as a prototype.

  5. The solubility of elemental sulfur in methane, carbon dioxide and hydrogen sulfide gas

    E-Print Network [OSTI]

    Wieland, Denton R.

    1958-01-01T23:59:59.000Z

    ABSTRACT The object of the work reported In this dissertation was to determine the solubility of sulfur in gaseous methane carbon dioxide, and hydrogen sulfide and in mixtures of these gases, at various pressures and temperatures* Sulfur solubility... of methane and propane (which has a critical pressure of approximately the same value of hydrogen sulfide) is 1500 psia. To have liquid in this system at 1500 psia, however, would require a maximum temperature of 20?F which is well below the minimum...

  6. Carbon dioxide emission index as a mean for assessing fuel quality

    SciTech Connect (OSTI)

    Furimsky, E. [IMAF Group, Ottawa, ON (Canada)

    2008-07-01T23:59:59.000Z

    Carbon dioxide emission index, defined as the amount of CO{sub 2} released per unit of energy value, was used to rate gaseous, liquid and solid fuels. The direct utilization of natural gas is the most efficient option. The conversion of natural gas to synthesis gas for production of liquid fuels represents a significant decrease in fuel value of the former. The fuel value of liquids, such as gasoline, diesel oil, etc. is lower than that of natural gas. Blending gasoline with ethanol obtained either from bio-mass or via synthesis may decrease fuel value of the blend when CO{sub 2} emissions produced during the production of ethanol are included in total emissions. The introduction of liquid fuels produced by pyrolysis and liquefaction of biomass would result in the increase in the CO{sub 2} emissions. The CO{sub 2} emissions from the utilization of coal and petroleum coke are much higher than those from gaseous and liquid fuels. However, for petroleum coke, this is offset by the high value gaseous and liquid fuels that are simultaneously produced during coking. Conversion of low value fuels such as coal and petroleum coke to a high value chemicals via synthesis gas should be assessed as means for replacing natural gas and making it available for fuel applications.

  7. Atmospheric Trace Gases from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, models, etc. and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication, Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. The collections under the CDIAC heading of Atmospheric Trace Gases include: Atmospheric Carbon Dioxide, Atmospheric Methane, Atmospheric Carbon Monoxide, Atmospheric Hydrogen, Isotopes in Greenhouse Gases, Radionuclides, Aerosols, and Other Trace Gases.

  8. Carbon Dioxide Capture at a Reduced Cost - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l a r8.05CarBen VersionCarbon

  9. Carbon Dioxide Enhanced Oil Recovery Untapped Domestic Energy Supply

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l a r8.05CarBen VersionCarbon Oily surfaces

  10. Carbon Dioxide Enhanced Oil Recovery Untapped Domestic Energy Supply

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l a r8.05CarBen VersionCarbon Oily

  11. Carbon Dioxide Transport and Storage Costs in NETL Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l a r8.05CarBen VersionCarbon Oily2014/1653

  12. Carbon Dioxide Capture and Storage Demonstration in Developing Countries:

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformation 8thCalwind IICaney RiverSiemens)Carbon

  13. Dissolved carbonic anhydrase for enhancing post-combustion carbon dioxide hydration in aqueous ammonia

    SciTech Connect (OSTI)

    Collett, James R.; Heck, Robert W.; Zwoster, Andy

    2011-04-01T23:59:59.000Z

    Aqueous ammonia solvents that capture CO2 as ionic complexes of carbonates with ammonium have recently been advanced as alternatives to amine-based solvents due to their lower energy requirements for thermal regeneration. In ammonia based solvents, the hydration of CO2 to form bicarbonate may become a rate-limiting step as the CO2 loading increases and the resulting pH level of the solvent decreases. Variants of the enzyme carbonic anhydrase can accelerate the reversible hydration of CO2 to yield bicarbonate by more than 10(6)-fold. The possible benefit of bovine carbonic anhydrase (BCA) addition to solutions of aqueous ammonia to enhance CO2 hydration was investigated in semi-batch reactions within continuously stirred tank reactors or in a bubble column gas-liquid contactor. Adding 154 mg/liter of BCA to 2 M aqueous ammonia provided a 34.1% overall increase in the rate of CO2 hydration (as indicated by the production of [H+]) as the pH declined from 9.6 to 8.6 during sparging with a 15% CO2, 85% N-2 gas at a flow rate of 3 lpm. The benefits of adding BCA to enhance CO2 hydration were only discernable below similar to pH 9. The implications of the apparent pH limitations on the utility of BCA are discussed in the context of absorber unit operation design. Possible embodiments of carbonic anhydrase as either an immobilized catalyst or as a dissolved, recirculating catalyst in potential plant scale aqueous ammonia systems are considered as well. (C) 2010 Published by Elsevier Ltd.

  14. CARINA (Carbon dioxide in the Atlantic Ocean) Data from CDIAC

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The idea for CARINA developed at a workshop (CO2 in the northern North Atlantic) that was held at the HANSE-Wissenschaftskolleg (HANSE Institute for Advanced Study) in Delmenhorst, Germany from June 9 to 11, 1999. While the main scientific focus is the North Atlantic, some data from the South Atlantic have been included in the project, along with data from the Arctic Ocean. Data sets go back to 1972, and more than 100 are currently available. The data are also being used in conjunction with other projects and research groups, such as the Atlantic Ocean Carbon Synthesis Group. See the inventory of data at http://store.pangaea.de/Projects/CARBOOCEAN/carina/data_inventory.htm See a detailed table of information on the cruises at http://cdiac.ornl.gov/oceans/CARINA/Carina_table.html and also provides access to data files. The CARBOOCEAN data portal provides a specialized interface for CARINA data, a reference list for historic carbon data, and password protected access to the "Data Underway Warehouse.".

  15. Identification and Selection of Major Carbon Dioxide Stream Compositions

    SciTech Connect (OSTI)

    Last, George V.; Schmick, Mary T.

    2011-06-30T23:59:59.000Z

    A critical component in the assessment of long-term risk from geologic sequestration of CO2 is the ability to predict mineralogical and geochemical changes within storage reservoirs due to rock-brine-CO2 reactions. Impurities and/or other constituents selected for co-sequestration can affect both the chemical and physical (e.g. density, viscosity, interfacial tension) behavior of CO2 in the deep subsurface. These impurities and concentrations are a function of both the industrial source(s) of the CO2, as well as the carbon capture technology used to extract the CO2 and produce a concentrated stream for geologic sequestration. This report summarizes the relative concentrations of CO2 and other constituents in exhaust gases from major non-energy related industrial sources of CO2. Assuming that carbon-capture technology would remove most of the incondensable gases N2, O2, and Ar, leaving SO2 and NOx as the main impurities, we selected four test fluid compositions for use in geochemical experiments. These included: 1) a pure CO2 stream representative of food grade CO2 used in most enhanced oil recovery projects: 2) a test fluid composition containing low concentrations (0.5 mole %) SO2 and NOx (representative of that generated from cement production), 3) a test fluid composition with higher concentrations (2.5 mole %) of SO2, and 4) and test fluid composition containing 3 mole % H2S.

  16. Short-range atmospheric dispersion of carbon dioxide

    SciTech Connect (OSTI)

    Cortis, A.; Oldenburg, C.M.

    2009-11-01T23:59:59.000Z

    We present a numerical study aimed at quantifying the effects of concentration-dependent density on the spread of a seeping plume of CO{sub 2} into the atmosphere such as could arise from a leaking geologic carbon sequestration site. Results of numerical models can be used to supplement field monitoring estimates of CO{sub 2} seepage flux by modelling transport and dispersion between the source emission and concentration-measurement points. We focus on modelling CO{sub 2} seepage dispersion over relatively short distances where density effects are likely to be important. We model dense gas dispersion using the steady-state Reynolds-averaged Navier-Stokes equations with density dependence in the gravity term. Results for a two-dimensional system show that a density dependence emerges at higher fluxes than prior estimates. A universal scaling relation is derived that allows estimation of the flux from concentrations measured downwind and vice versa.

  17. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect (OSTI)

    David A. Green; Brian S. Turk; Raghubir Gupta; Alejandro Lopez-Ortiz

    2001-01-01T23:59:59.000Z

    Four grades of sodium bicarbonate and two grades of trona were characterized in terms of particle size distribution, surface area, pore size distribution, and attrition. Surface area and pore size distribution determinations were conducted after calcination of the materials. The sorbent materials were subjected to thermogravimetric testing to determine comparative rates and extent of calcination (in inert gas) and sorption (in a simulated coal combustion flue gas mixture). Selected materials were exposed to five calcination/sorption cycles and showed no decrease in either sorption capacity or sorption rate. Process simulations were conducted involving different heat recovery schemes. The process is thermodynamically feasible. The sodium-based materials appear to have suitable physical properties for use as regenerable sorbents and, based on thermogravimetric testing, are likely to have sorption and calcination rates that are rapid enough to be of interest in full-scale carbon sequestration processes.

  18. Guidelines for carbon dioxide capture, transport and storage

    SciTech Connect (OSTI)

    Hanson, S.

    2008-07-01T23:59:59.000Z

    The goal of this effort was to develop a set of preliminary guidelines and recommendations for the deployment of carbon capture and storage (CCS) technologies in the United States. The CCS Guidelines are written for those who may be involved in decisions on a proposed project: the developers, regulators, financiers, insurers, project operators, and policymakers. Contents are: Part 1: introduction; Part 2: capture; Part 3: transport; Part 4; storage; Part. 5 supplementary information. Within these parts, eight recommended guidelines are given for: CO{sub 2} capture; ancillary environmental impacts from CO{sub 2}; pipeline design and operation; pipeline safety and integrity; siting CO{sub 2} pipelines; pipeline access and tariff regulation; guidelines for (MMV); risk assessment; financial responsibility; property rights and ownership; site selection and characterisation; injection operations; site closure; and post-closure. 18 figs., 9 tabs., 4 apps.

  19. Laboratory Investigations in Support of Carbon Dioxide-in-Water Emulsions Stabilized by Fine Particles for Ocean and Geologic Sequestration of Carbon Dioxide

    SciTech Connect (OSTI)

    Dan Golomb; David Ryan; Eugene Barry

    2007-01-08T23:59:59.000Z

    Since the submission of our last Semi-annual Report, dated September 2006, the research objectives of this Co-operative Agreement shifted toward geologic sequestration of carbon dioxide. In the period September 2006-February 2007, experiments were conducted in a High-Pressure Batch Reactor (HPBR) for creating emulsions of liquid carbon dioxide (/CO{sub 2})-in-water stabilized by fine particles for geologic sequestration of CO{sub 2}. Also, emulsions were created in water of a binary mixture of liquid carbon dioxide and liquid hydrogen sulfide (/H{sub 2}S), called Acid Gas (AG). This leads to the possibility of safe disposal of AG in deep geologic formations, such as saline aquifers. The stabilizing particles included pulverized limestone (CaCO{sub 3}), unprocessed flyash, collected by an electrostatic precipitator at a local coal-fired power plant, and pulverized siderite (FeCO{sub 3}). Particle size ranged from submicron to a few micrometers. The first important finding is that /CO{sub 2} and /H{sub 2}S freely mix as a binary liquid without phase separation. The next finding is that the mixture of /CO{sub 2} and /H{sub 2}S can be emulsified in water using fine particles as emulsifying agents. Such emulsions are stable over prolonged periods, so it should not be a problem to inject an emulsion into subterranean formations. The advantage of injecting an emulsion into subterranean formations is that it is denser than the pure liquid, therefore it is likely to disperse in the bottom of the geologic formation, rather than buoying upward (called fingering). In such a fashion, the risk of the liquids escaping from the formation, and possibly re-emerging into the atmosphere, is minimized. This is especially important for H{sub 2}S, because it is a highly toxic gas. Furthermore, the emulsion may interact with the surrounding minerals, causing mineral trapping. This may lead to longer sequestration periods than injecting the pure liquids alone.

  20. Carbon dioxide capture by chemical absorption : a solvent comparison study

    E-Print Network [OSTI]

    Kothandaraman, Anusha

    2010-01-01T23:59:59.000Z

    In the light of increasing fears about climate change, greenhouse gas mitigation technologies have assumed growing importance. In the United States, energy related CO? emissions accounted for 98% of the total emissions in ...

  1. Carbon dioxide capture and separation techniques for advanced power generation point sources

    SciTech Connect (OSTI)

    Pennline, H.W.; Luebke, D.R.; Morsi, B.I.; Heintz, Y.J.; Jones, K.L.; Ilconich, J.B.

    2006-09-01T23:59:59.000Z

    The capture/separation step for carbon dioxide (CO2) from large-point sources is a critical one with respect to the technical feasibility and cost of the overall carbon sequestration scenario. For large-point sources, such as those found in power generation, the carbon dioxide capture techniques being investigated by the in-house research area of the National Energy Technology Laboratory possess the potential for improved efficiency and costs as compared to more conventional technologies. The investigated techniques can have wide applications, but the research has focused on capture/separation of carbon dioxide from flue gas (postcombustion from fossil fuel-fired combustors) and from fuel gas (precombustion, such as integrated gasification combined cycle – IGCC). With respect to fuel gas applications, novel concepts are being developed in wet scrubbing with physical absorption; chemical absorption with solid sorbents; and separation by membranes. In one concept, a wet scrubbing technique is being investigated that uses a physical solvent process to remove CO2 from fuel gas of an IGCC system at elevated temperature and pressure. The need to define an ideal solvent has led to the study of the solubility and mass transfer properties of various solvents. Fabrication techniques and mechanistic studies for hybrid membranes separating CO2 from the fuel gas produced by coal gasification are also being performed. Membranes that consist of CO2-philic silanes incorporated into an alumina support or ionic liquids encapsulated into a polymeric substrate have been investigated for permeability and selectivity. An overview of two novel techniques is presented along with a research progress status of each technology.

  2. Progress in carbon dioxide capture and separation research for gasification-based power generation point sources

    SciTech Connect (OSTI)

    Pennline, H.; Luebke, D.; Jones, K.; Myers, C.; Morsi, B.; Heintz, Y.; Ilconich, J.

    2008-01-01T23:59:59.000Z

    The purpose of the present work is to investigate novel approaches, materials, and molecules for the abatement of carbon dioxide (CO2) at the pre-combustion stage of gasification-based power generation point sources. The capture/separation step for CO2 from large point sources is a critical one with respect to the technical feasibility and cost of the overall carbon sequestration scenario. For large point sources, such as those found in power generation, the carbon dioxide capture techniques being investigated by the Office of Research and Development of the National Energy Technology Laboratory possess the potential for improved efficiency and reduced costs as compared to more conventional technologies. The investigated techniques can have wide applications, but the present research is focused on the capture/separation of carbon dioxide from fuel gas (precombustion gas) from processes such as the Integrated Gasification Combined Cycle (IGCC) process. For such applications, novel concepts are being developed in wet scrubbing with physical sorption, chemical sorption with solid sorbents, and separation by membranes. In one concept, a wet scrubbing technique is being investigated that uses a physical solvent process to remove CO2 from fuel gas of an IGCC system at elevated temperature and pressure. The need to define an “ideal” solvent has led to the study of the solubility and mass transfer properties of various solvents. Pertaining to another separation technology, fabrication techniques and mechanistic studies for membranes separating CO2 from the fuel gas produced by coal gasification are also being performed. Membranes that consist of CO2-philic ionic liquids encapsulated into a polymeric substrate have been investigated for permeability and selectivity. Finally, processes based on dry, regenerable sorbents are additional techniques for CO2 capture from fuel gas. An overview of these novel techniques is presented along with a research progress status of technologies related to membranes and physical solvents.

  3. Carbon Dioxide Capture and Separation Techniques for Gasification-based Power Generation Point Sources

    SciTech Connect (OSTI)

    Pennline, H.W.; Luebke, D.R.; Jones, K.L.; Morsi, B.I. (Univ. of Pittsburgh, PA); Heintz, Y.J. (Univ. of Pittsburgh, PA); Ilconich, J.B. (Parsons)

    2007-06-01T23:59:59.000Z

    The capture/separation step for carbon dioxide (CO2) from large-point sources is a critical one with respect to the technical feasibility and cost of the overall carbon sequestration scenario. For large-point sources, such as those found in power generation, the carbon dioxide capture techniques being investigated by the in-house research area of the National Energy Technology Laboratory possess the potential for improved efficiency and reduced costs as compared to more conventional technologies. The investigated techniques can have wide applications, but the research has focused on capture/separation of carbon dioxide from flue gas (post-combustion from fossil fuel-fired combustors) and from fuel gas (precombustion, such as integrated gasification combined cycle or IGCC). With respect to fuel gas applications, novel concepts are being developed in wet scrubbing with physical absorption; chemical absorption with solid sorbents; and separation by membranes. In one concept, a wet scrubbing technique is being investigated that uses a physical solvent process to remove CO2 from fuel gas of an IGCC system at elevated temperature and pressure. The need to define an ideal solvent has led to the study of the solubility and mass transfer properties of various solvents. Pertaining to another separation technology, fabrication techniques and mechanistic studies for membranes separating CO2 from the fuel gas produced by coal gasification are also being performed. Membranes that consist of CO2-philic ionic liquids encapsulated into a polymeric substrate have been investigated for permeability and selectivity. Finally, dry, regenerable processes based on sorbents are additional techniques for CO2 capture from fuel gas. An overview of these novel techniques is presented along with a research progress status of technologies related to membranes and physical solvents.

  4. Response of vegetation to carbon dioxide. Growth, yield and plant water relationships in sweet potatoes in response to carbon dioxide enrichment 1986

    SciTech Connect (OSTI)

    NONE

    1998-08-01T23:59:59.000Z

    In the summer of 1985, under the joint program of US Department of Energy, Carbon Dioxide Division, and Tuskegee University, experiments were conducted to study growth, yield, photosynthesis and plant water relationships in sweet potato plants growth in an enriched CO{sub 2} environment. The main experiment utilized open top chambers to study the effects of CO{sub 2} and soil moisture on growth, yield and photosynthesis of field-grown plants. In addition, potted plants in open top chambers were utilized in a study of the effects of different CO{sub 2} concentrations on growth pattern, relative growth rate, net assimilation rate and biomass increment at different stages of development. The interaction effects of enriched CO{sub 2} and water stress on biomass production, yield, xylem potential, and stomatal conductance were also investigated. The overall results of the various studies are described.

  5. Electrochemical formation of hydroxide for enhancing carbon dioxide and acid gas uptake by a solution

    DOE Patents [OSTI]

    Rau, Gregory Hudson

    2014-07-01T23:59:59.000Z

    A system for forming metal hydroxide from a metal carbonate utilizes a water electrolysis cell having an acid-producing anode and a hydroxyl-producing cathode immersed in a water solution of sufficient ionic content to allow an electric current to pass between the hydroxyl-producing cathode and the acid-producing anode. A metal carbonate is placed in close proximity to the acid-producing anode. A direct current electrical voltage is provided across the acid-producing anode and the hydroxyl-producing cathode sufficient to generate acid at the acid-producing anode and hydroxyl ions at the hydroxyl-producing cathode. The acid dissolves at least part of the metal carbonate into metal and carbonate ions allowing the metal ions to travel toward the hydroxyl-producing cathode and to combine with the hydroxyl ions to form the metal hydroxide. The carbonate ions travel toward the acid-producing anode and form carbonic acid and/or water and carbon dioxide.

  6. Carbon stored in human settlements: the conterminous United States

    E-Print Network [OSTI]

    Brown, Daniel G.

    value for mitigation of carbon dioxide emissions, the organic carbon storage in human settlements has of energy (Newman & Kenworthy, 1999) and to an increase in the anthropogenic release of carbon dioxide release of carbon dioxide and 76% of wood used for industrial purposes. By 2050 the proportion

  7. DOE Seeks Proposals to Increase Investment in Industrial Carbon Capture and Sequestration Projects

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy has issued a Funding Opportunity Announcement soliciting projects to capture and sequester carbon dioxide from industrial sources and to put CO2 to beneficial use.

  8. Carbon dioxide adsorbents containing magnesium oxide suitable for use at high temperatures

    DOE Patents [OSTI]

    Mayorga, Steven Gerard (Allentown, PA); Weigel, Scott Jeffrey (Allentown, PA); Gaffney, Thomas Richard (Allentown, PA); Brzozowski, Jeffrey Richard (Macungie, PA)

    2001-01-01T23:59:59.000Z

    Adsorption of carbon dioxide from gas streams at temperatures in the range of 300 to 500.degree. C. is carried out with a solid adsorbent containing magnesium oxide, preferably promoted with an alkali metal carbonate or bicarbonate so that the atomic ratio of alkali metal to magnesium is in the range of 0.006 to 2.60. Preferred adsorbents are made from the precipitate formed on addition of alkali metal and carbonate ions to an aqueous solution of a magnesium salt. Atomic ratios of alkali metal to magnesium can be adjusted by washing the precipitate with water. Low surface area adsorbents can be made by dehydration and CO.sub.2 removal of magnesium hydroxycarbonate, with or without alkali metal promotion. The process is especially valuable in pressure swing adsorption operations.

  9. Incorporation of catalytic dehydrogenation into fischer-tropsch synthesis to significantly reduce carbon dioxide emissions

    DOE Patents [OSTI]

    Huffman, Gerald P.

    2012-11-13T23:59:59.000Z

    A new method of producing liquid transportation fuels from coal and other hydrocarbons that significantly reduces carbon dioxide emissions by combining Fischer-Tropsch synthesis with catalytic dehydrogenation is claimed. Catalytic dehydrogenation (CDH) of the gaseous products (C1-C4) of Fischer-Tropsch synthesis (FTS) can produce large quantities of hydrogen while converting the carbon to multi-walled carbon nanotubes (MWCNT). Incorporation of CDH into a FTS-CDH plant converting coal to liquid fuels can eliminate all or most of the CO.sub.2 emissions from the water-gas shift (WGS) reaction that is currently used to elevate the H.sub.2 level of coal-derived syngas for FTS. Additionally, the FTS-CDH process saves large amounts of water used by the WGS reaction and produces a valuable by-product, MWCNT.

  10. Solar Reforming of Carbon Dioxide to Produce Diesel Fuel

    SciTech Connect (OSTI)

    Dennis Schuetzle; Robert Schuetzle

    2010-12-31T23:59:59.000Z

    This project focused on the demonstration of an innovative technology, referred to as the Sunexus CO2 Solar Reformer, which utilizes waste CO2 as a feedstock for the efficient and economical production of synthetic diesel fuel using solar thermal energy as the primary energy input. The Sunexus technology employs a two stage process for the conversion of CO2 to diesel fuel. A solar reforming system, including a specially designed reactor and proprietary CO2 reforming catalyst, was developed and used to convert captured CO2 rich gas streams into syngas (primarily hydrogen and carbon monoxide) using concentrated solar energy at high conversion efficiencies. The second stage of the system (which has been demonstrated under other funding) involves the direct conversion of the syngas into synthetic diesel fuel using a proprietary catalyst (Terra) previously developed and validated by Pacific Renewable Fuels and Chemicals (PRFC). The overall system energy efficiency for conversion of CO2 to diesel fuel is 74%, due to the use of solar energy. The results herein describe modeling, design, construction, and testing of the Sunexus CO2 Solar Reformer. Extensive parametric testing of the solar reformer and candidate catalysts was conducted and chemical kinetic models were developed. Laboratory testing of the Solar Reformer was successfully completed using various gas mixtures, temperatures, and gas flow rates/space velocities to establish performance metrics which can be employed for the design of commercial plants. A variety of laboratory tests were conducted including dry reforming (CO2 and CH{sub 4}), combination dry/steam reforming (CO2, CH{sub 4} & H{sub 2}O), and tri-reforming (CO2, CH{sub 4}, H{sub 2}O & O{sub 2}). CH{sub 4} and CO2 conversions averaged 95-100% and 50-90% per reformer cycle, respectively, depending upon the temperatures and gas space velocities. No formation of carbon deposits (coking) on the catalyst was observed in any of these tests. A 16 ft. diameter, concentrating solar dish was modified to accommodate the Sunexus CO2 Solar Reformer and the integrated system was installed at the Pacific Renewable Fuels and Chemicals test site at McClellan, CA. Several test runs were conducted without catalyst during which the ceramic heat exchanger in the Sunexus Solar Reformer reached temperatures between 1,050 F (566 C) and 2,200 F (1,204 C) during the test period. A dry reforming mixture of CO2/CH{sub 4} (2.0/1.0 molar ratio) was chosen for all of the tests on the integrated solar dish/catalytic reformer during December 2010. Initial tests were carried out to determine heat transfer from the collimated solar beam to the catalytic reactor. The catalyst was operated successfully at a steady-state temperature of 1,125 F (607 C), which was sufficient to convert 35% of the 2/1 CO2/CH{sub 4} mixture to syngas. This conversion efficiency confirmed the results from laboratory testing of this catalyst which provided comparable syngas production efficiencies (40% at 1,200 F [650 C]) with a resulting syngas composition of 20% CO, 16% H{sub 2}, 39% CO2 and 25% CH{sub 4}. As based upon the laboratory results, it is predicted that 90% of the CO2 will be converted to syngas in the solar reformer at 1,440 F (782 C) resulting in a syngas composition of 50% CO: 43% H{sub 2}: 7% CO2: 0% CH{sub 4}. Laboratory tests show that the higher catalyst operating temperature of 1,440 F (782 C) for efficient conversion of CO2 can certainly be achieved by optimizing solar reactor heat transfer, which would result in the projected 90% CO2-to-syngas conversion efficiencies. Further testing will be carried out during 2011, through other funding support, to further optimize the solar dish CO2 reformer. Additional studies carried out in support of this project and described in this report include: (1) An Assessment of Potential Contaminants in Captured CO2 from Various Industrial Processes and Their Possible Effect on Sunexus CO2 Reforming Catalysts; (2) Recommended Measurement Methods for Assessing Contaminant Levels in Captured CO2 Streams; (3) An Asse

  11. PERFORMANCE IMPROVEMENTS IN COMMERCIAL HEAT PUMP WATER HEATERS USING CARBON DIOXIDE

    SciTech Connect (OSTI)

    BOWERS C.D.; ELBEL S.; PETERSEN M.; HRNJAK P.S.

    2011-07-01T23:59:59.000Z

    Although heat pump water heaters are today widely accepted in Japan, where energy costs are high and government incentives for their use exist, acceptance of such a product in the U.S. has been slow. This trend is slowly changing with the introduction of heat pump water heaters into the residential market, but remains in the commercial sector. Barriers to heat pump water heater acceptance in the commercial market have historically been performance, reliability and first/operating costs. The use of carbon dioxide (R744) as the refrigerant in such a system can improve performance for relatively small increase in initial cost and make this technology more appealing. What makes R744 an excellent candidate for use in heat pump water heaters is not only the wide range of ambient temperatures within which it can operate, but also the excellent ability to match water to refrigerant temperatures on the high side, resulting in very high exit water temperatures of up to 82Ă?ÂşC (180Ă?ÂşF), as required by sanitary codes in the U.S.(Food Code, 2005), in a single pass, temperatures that are much more difficult to reach with other refrigerants. This can be especially attractive in applications where this water is used for the purpose of sanitation. While reliability has also been of concern historically, dramatic improvements have been made over the last several years through research done in the automotive industry and commercialization of R744 technology in residential water heating mainly in Japan. This paper presents the performance results from the development of an R744 commercial heat pump water heater of approximately 35kW and a comparison to a baseline R134a unit of the same capacity and footprint. In addition, recommendations are made for further improvements of the R744 system which could result in possible energy savings of up to 20%.

  12. NEXT GENERATION COMMERCIAL HEAT PUMPWATER HEATER USING CARBON DIOXIDE USING DIFFERENT IMPROVEMENT APPROACHES

    SciTech Connect (OSTI)

    Chad Bowers; Michael Petersen; Stefan Elbel; Pega Hrnjak

    2012-04-01T23:59:59.000Z

    Although heat pump water heaters are today widely accepted in Japan, where energy costs are high and government incentives for their use exist, acceptance of such a product in the U.S. has been slow. This trend is slowly changing with the introduction of heat pump water heaters into the residential market, but remains in the commercial sector. Barriers to heat pump water heater acceptance in the commercial market have historically been performance, reliability and first/operating costs. The use of carbon dioxide (R744) as the refrigerant in such a system can improve performance for relatively small increase in initial cost and make this technology more appealing. What makes R744 an excellent candidate for use in heat pump water heaters is not only the wide range of ambient temperatures within which it can operate, but also the excellent ability to match water to refrigerant temperatures on the high side, resulting in very high exit water temperatures of up to 82Ă?ÂşC, as required by sanitary codes in the U.S. (Food Code, 2005), in a single pass, temperatures that are much more difficult to reach with other refrigerants. This can be especially attractive in applications where this water is used for the purpose of sanitation. While reliability has also been of concern historically, dramatic improvements have been made over the last several years through research done in the automotive industry and commercialization of R744 technology in residential water heating mainly in Japan. This paper presents the performance results from the development of an R744 commercial heat pump water heater of approximately 35 kW and a comparison to a baseline R134a unit of the same capacity and footprint. In addition, recommendations are made for further improvements of the R744 system which could result in possible energy savings of up to 20 %.

  13. A Hydro-mechanical Model and Analytical Solutions for Geomechanical Modeling of Carbon Dioxide Geological Sequestration

    SciTech Connect (OSTI)

    Xu, Zhijie; Fang, Yilin; Scheibe, Timothy D.; Bonneville, Alain

    2012-05-15T23:59:59.000Z

    We present a hydro-mechanical model for geological sequestration of carbon dioxide. The model considers the poroelastic effects by taking into account the coupling between the geomechanical response and the fluid flow in greater detail. The simplified hydro-mechanical model includes the geomechanical part that relies on the linear elasticity, while the fluid flow is based on the Darcy’s law. Two parts were coupled using the standard linear poroelasticity. Analytical solutions for pressure field were obtained for a typical geological sequestration scenario. The model predicts the temporal and spatial variation of pressure field and effects of permeability and elastic modulus of formation on the fluid pressure distribution.

  14. EVALUATION OF CARBON DIOXIDE CAPTURE FROM EXISTING COAL FIRED PLANTS BY HYBRID SORPTION USING SOLID SORBENTS

    SciTech Connect (OSTI)

    Benson, Steven; Browers, Bruce; Srinivasachar, Srivats; Laudal, Daniel

    2014-12-31T23:59:59.000Z

    Under contract DE-FE0007603, the University of North Dakota conducted the project Evaluation of Carbon Dioxide Capture from Existing Coal Fired Plants by Hybrid Sorption Using Solid Sorbents. As an important element of this effort, a Technical and Economic Feasibility Study was conducted by Barr Engineering Co. (Barr) in association with the University of North Dakota. The assessment developed a process flow diagram, major equipment list, heat balances for the SCPC power plant, capital cost estimate, operating cost estimate, levelized cost of electricity, cost of CO2 capture ($/ton) and three sensitivity cases for the CACHYS™ process.

  15. A Novel System for Carbon Dioxide Capture Utilizing Electrochemical Membrane Technology

    SciTech Connect (OSTI)

    Ghezel-Ayagh, Hossein; Jolly, Stephen; Patel, Dilip; Hunt, Jennifer; Steen, William A.; Richardson, Carl F.; Marina, Olga A.

    2013-06-03T23:59:59.000Z

    FuelCell Energy, Inc. (FCE), in collaboration with Pacific Northwest National Laboratory (PNNL) and URS Corporation, is developing a novel Combined Electric Power and Carbon-Dioxide Separation (CEPACS) system, under a contract from the U.S. Department of Energy (DE-FE0007634), to efficiently and cost effectively separate carbon dioxide from the emissions of existing coal fired power plants. The CEPACS system is based on FCE’s electrochemical membrane (ECM) technology utilizing the Company’s internal reforming carbonate fuel cell products carrying the trade name of Direct FuelCell® (DFC®). The unique chemistry of carbonate fuel cells offers an innovative approach for separation of CO2 from existing fossil-fuel power plant exhaust streams (flue gases). The ECM-based CEPACS system has the potential to become a transformational CO2-separation technology by working as two devices in one: it separates the CO2 from the exhaust of other plants such as an existing coal-fired plant and simultaneously produces clean and environmentally benign (green) electric power at high efficiency using a supplementary fuel. The overall objective of this project is to successfully demonstrate the ability of FCE’s electrochemical membrane-based CEPACS system technology to separate ? 90% of the CO2 from a simulated Pulverized Coal (PC) power plant flue-gas stream and to compress the captured CO2 to a state that can be easily transported for sequestration or beneficial use. Also, a key project objective is to show, through a Technical and Economic Feasibility Study and bench scale testing (11.7 m2 area ECM), that the electrochemical membrane-based CEPACS system is an economical alternative for CO2 capture in PC power plants, and that it meets DOE objectives for the incremental cost of electricity (COE) for post-combustion CO2 capture.

  16. Performance of immobilized tertiary amine solid sorbents for the capture of carbon dioxide

    SciTech Connect (OSTI)

    Gray, M.L.; Champagne, K.J.; Fauth, D.J.; Baltrus, J.P.; Pennline, H.W.

    2008-01-01T23:59:59.000Z

    The capture of carbon dioxide (CO2) from a simulated flue gas stream was achieved by utilizing immobilized tertiary amine solid sorbents. The tertiary amine immobilized in these solid substrates was 1, 8 Diazabicyclo-[5.4.0]-undec-7-ene (DBU) and it has the stoichiometric capability of capturing carbon dioxide at a 1:1 R-NH2:CO2 molar ratio. This is a unique feature compared to other primary and secondary amines which capture CO2 at a 2:1 molar ratio, thus making the immobilized DBU solid sorbents competitive with existing commercially available sorbents and liquid amine-based capture systems. The immobilized DBU solid sorbents prepared in this study exhibit acceptable CO2 capture capacities of 3.0 mol CO2/kg sorbent at 298 K; however, at the critical operational temperature of 338 K, the capacity was reduced to 2.3 mol/kg sorbent. The DBU sorbents did exhibit acceptable stability over the adsorption/desorption temperature range of 298–360 K based on XPS and TGA analyses.

  17. Technology transfer support services to the Carbon Dioxide Research Division, US Department of Energy

    SciTech Connect (OSTI)

    Not Available

    1990-01-13T23:59:59.000Z

    The US Department of Energy (DOE) serves as the lead Federal agency with respect to atmospheric carbon dioxide (CO{sub 2}) and the greenhouse effect.'' Within DOE, the Carbon Dioxide Research Division (CDRD) has been responsible for leading the research effort investigating atmospheric CO{sub 2}, global warming, and other aspects of the greenhouse effect. Critical to CDRD's endeavors is accurate, effective communication of research findings -- not only to scientists, but to policymakers and the general public as well. The past three-and-a-half years, Walcoff Associates, Inc., (Walcoff) has supported CDRD in meeting this technology transfer challenge. Walcoff has drawn upon a wide range of technical and professional skills to support the CDRD in its technology transfer services. Underlying all tasks has been the need to communicate highly complex, information across scientific, political and economic disciplines. During the three and a half year contract period, Walcoff has successfully provided support to the CDRD to enhance its technology transfer resources and accomplishments. 5 figs., 1 tab.

  18. Terrestrial Carbon Management Data from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, and models and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. Collections under the broad heading of Terrestrial Carbon Management are organized as Carbon Accumulation with Cropland Management, Carbon Accumulation with Grassland Management, Carbon Loss Following Cultivation, Carbon Accumulation Following Afforestation, and Carbon Sources and Sinks Associated with U.S. Cropland Production.

  19. A study of the effect of added carbon dioxide and water on the recovery of oil by in situ combustion

    E-Print Network [OSTI]

    Zahiruddin, Mohammed

    1968-01-01T23:59:59.000Z

    A STUDY OF THE EFFECT OF ADDED CARBON DIOXIDE AND WATER ON THE RECOVERY OF OIL BY IN SITU COMBUSTION A Thesis by MOHAMMED ZAHIRUDDIN Submitted to the Graduate College of the Texas A&M University in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE August 1968 Major Subject: Petroleum Engineering A STUDY. OF THE EFFECT OF ADDED CARBON DIOXIDE AND WATER ON THE RECOVERY OF OIL BY IN SITU COMBUSTION A Tkesis MOHAMMED ZAHIRUDDIN Approved as to style and content by...

  20. The interaction second virial coefficient for the helium-carbon dioxide system between 230 and 300 K

    E-Print Network [OSTI]

    Watson, Michael Quealy

    1978-01-01T23:59:59.000Z

    closed during the entire experiment. After purging the system with the test gas (either helium or carbon dioxide), it was filled to some pressure below the limit of the dead-weight gauge (720 psi). The feed valve was closed and the system was allowed...THE INTERACTION SECOND VIRIAL COEFFICIENT FOR THE HELIUM-CARBON DIOXIDE SYSTEM BETWEEN 230 AND 300 K A Thesis by MICHAEL MEALY WATSON Submitted to the Graduate College of Texas AAM University in partial fulfillment of the requirement...

  1. An investigation of the evolution and present distribution of residual oil zones (ROZ) in the Permian Basin, West Texas and its implications for carbon dioxide

    E-Print Network [OSTI]

    Texas at Austin, University of

    , and widespread development of CO2-EOR in the Permian Basin have made production from ROZ economically attractive) in the Permian Basin, West Texas and its implications for carbon dioxide (CO2) storage West, L. 1 logan significant new resources for tertiary oil production through carbon dioxide (CO2) enhanced oil recovery (CO2

  2. TREATMENT OF HYDROCARBON, ORGANIC RESIDUE AND PRODUCTION CHEMICAL DAMAGE MECHANISMS THROUGH THE APPLICATION OF CARBON DIOXIDE IN NATURAL GAS STORAGE WELLS

    SciTech Connect (OSTI)

    Lawrence J. Pekot; Ron Himes

    2004-05-31T23:59:59.000Z

    Core specimens and several material samples were collected from two natural gas storage reservoirs. Laboratory studies were performed to characterize the samples that were believed to be representative of a reservoir damage mechanism previously identified as arising from the presence of hydrocarbons, organic residues or production chemicals. A series of laboratory experiments were performed to identify the sample materials, use these materials to damage the flow capacity of the core specimens and then attempt to remove or reduce the induced damage using either carbon dioxide or a mixture of carbon dioxide and other chemicals. Results of the experiments showed that pure carbon dioxide was effective in restoring flow capacity to the core specimens in several different settings. However, in settings involving asphaltines as the damage mechanism, both pure carbon dioxide and mixtures of carbon dioxide and other chemicals provided little effectiveness in damage removal.

  3. The following are typical equations and conversions for calculating flux densities of sensible, latent and carbon dioxide from eddy covariances presented by Kevin Tu, St. Louis (10/97). The

    E-Print Network [OSTI]

    Tu, Kevin

    , latent and carbon dioxide from eddy covariances presented by Kevin Tu, St. Louis (10/97). The properties

  4. Inorganic origin of carbon dioxide during low temperature thermal recovery of bitumen: Chemical and isotopic evidence

    SciTech Connect (OSTI)

    Hutcheon, I.; Abercrombia, H.J.; Krouse, H.R. (Univ. of Calgary, Alberta (Canada))

    1990-01-01T23:59:59.000Z

    Carbon dioxide, produced at low temperatures, is the dominant gaseous species evolved during steam-assisted thermal recovery of bitumen at the Tucker Lake pilot, Cold Lake, Alberta. Two possible sources for the produced CO{sub 2} are considered: pyrolysis of bitumen and dissolution of carbonate minerals. Data from natural systems and experiments by other authors suggest that clay-carbonate reactions are the dominant source of CO{sub 2}. Bitumen pyrolysis may contribute small amounts of CO{sub 2}, probably by decarboxylation, early in the production cycle but cannot contribute significant volumes. The recognition of production of CO{sub 2} by reactive calcite destruction at temperatures between 70 and 220{degree}C suggests that this process may be responsible for the production of large quantities of CO{sub 2} in natural systems, particularly in lithofeldspathic sands and shales with high carbonate content and abundant clays. Organic acids have been suggested to be the source of CO{sub 2} in diagenetic fluids, but the results presented here suggest that this hypothesis requires more complete investigation.

  5. Future Sulfur Dioxide Emissions

    SciTech Connect (OSTI)

    Smith, Steven J.; Pitcher, Hugh M.; Wigley, Tom M.

    2005-12-01T23:59:59.000Z

    The importance of sulfur dioxide emissions for climate change is now established, although substantial uncertainties remain. This paper presents projections for future sulfur dioxide emissions using the MiniCAM integrated assessment model. A new income-based parameterization for future sulfur dioxide emissions controls is developed based on purchasing power parity (PPP) income estimates and historical trends related to the implementation of sulfur emissions limitations. This parameterization is then used to produce sulfur dioxide emissions trajectories for the set of scenarios developed for the Special Report on Emission Scenarios (SRES). We use the SRES methodology to produce harmonized SRES scenarios using the latest version of the MiniCAM model. The implications, and requirements, for IA modeling of sulfur dioxide emissions are discussed. We find that sulfur emissions eventually decline over the next century under a wide set of assumptions. These emission reductions result from a combination of emission controls, the adoption of advanced electric technologies, and a shift away from the direct end use of coal with increasing income levels. Only under a scenario where incomes in developing regions increase slowly do global emission levels remain at close to present levels over the next century. Under a climate policy that limits emissions of carbon dioxide, sulfur dioxide emissions fall in a relatively narrow range. In all cases, the relative climatic effect of sulfur dioxide emissions decreases dramatically to a point where sulfur dioxide is only a minor component of climate forcing by the end of the century. Ecological effects of sulfur dioxide, however, could be significant in some developing regions for many decades to come.

  6. PRELIMINARY CARBON DIOXIDE CAPTURE TECHNICAL AND ECONOMIC FEASIBILITY STUDY EVALUATION OF CARBON DIOXIDE CAPTURE FROM EXISTING COAL FIRED PLANTS BY HYBRID SORPTION USING SOLID SORBENTS

    SciTech Connect (OSTI)

    Benson, Steven; Envergex, Srivats; Browers, Bruce; Thumbi, Charles

    2013-01-01T23:59:59.000Z

    Barr Engineering Co. was retained by the Institute for Energy Studies (IES) at University of North Dakota (UND) to conduct a technical and economic feasibility analysis of an innovative hybrid sorbent technology (CACHYS™) for carbon dioxide (CO2) capture and separation from coal combustion–derived flue gas. The project team for this effort consists of the University of North Dakota, Envergex LLC, Barr Engineering Co., and Solex Thermal Science, along with industrial support from Allete, BNI Coal, SaskPower, and the North Dakota Lignite Energy Council. An initial economic and feasibility study of the CACHYS™ concept, including definition of the process, development of process flow diagrams (PFDs), material and energy balances, equipment selection, sizing and costing, and estimation of overall capital and operating costs, is performed by Barr with information provided by UND and Envergex. The technology—Capture from Existing Coal-Fired Plants by Hybrid Sorption Using Solid Sorbents Capture (CACHYS™)—is a novel solid sorbent technology based on the following ideas: reduction of energy for sorbent regeneration, utilization of novel process chemistry, contactor conditions that minimize sorbent-CO2 heat of reaction and promote fast CO2 capture, and a low-cost method of heat management. The technology’s other key component is the use of a low-cost sorbent.

  7. Electrocatalytic reduction of carbon dioxide to carbon monoxide by rhenium and manganese polypyridyl catalysts

    E-Print Network [OSTI]

    Smieja, Jonathan Mark

    2012-01-01T23:59:59.000Z

    carbon electrode in acetonitrile. The two reductions arepseudo-reference electrode, acetonitrile with 0.1 M TBAH asyield of 94%. 1 H NMR (acetonitrile-d 3 ): ? 2.33 (s, 6H, CH

  8. Up-Scaling Geochemical Reaction Rates for Carbon Dioxide (CO2) in Deep Saline Aquifers

    SciTech Connect (OSTI)

    Peters, Catherine A

    2013-02-28T23:59:59.000Z

    Geochemical reactions in deep subsurface environments are complicated by the consolidated nature and mineralogical complexity of sedimentary rocks. Understanding the kinetics of these reactions is critical to our ability to make long-term predictions about subsurface processes such as pH buffering, alteration in rock structure, permeability changes, and formation of secondary precipitates. In this project, we used a combination of experiments and numerical simulation to bridge the gap between our knowledge of these reactions at the lab scale and rates that are meaningful for modeling reactive transport at core scales. The focus is on acid-driven mineral dissolution, which is specifically relevant in the context of CO2-water-rock interactions in geological sequestration of carbon dioxide. The project led to major findings in three areas. First, we modeled reactive transport in pore-network systems to investigate scaling effects in geochemical reaction rates. We found significant scaling effects when CO2 concentrations are high and reaction rates are fast. These findings indicate that the increased acidity associated with geological sequestration can generate conditions for which proper scaling tools are yet to be developed. Second, we used mathematical modeling to investigate the extent to which SO2, if co-injected with CO2, would acidify formation brines. We found that there exist realistic conditions in which the impact on brine acidity will be limited due to diffusion rate-limited SO2 dissolution from the CO2 phase, and the subsequent pH shift may also be limited by the lack of availability of oxidants to produce sulfuric acid. Third, for three Viking sandstones (Alberta sedimentary basin, Canada), we employed backscattered electron microscopy and energy dispersive X-ray spectroscopy to statistically characterize mineral contact with pore space. We determined that for reactive minerals in sedimentary consolidated rocks, abundance alone is not a good predictor of mineral accessible surface area, and should not be used in reactive transport modeling. Our work showed that reaction rates would be overestimated by three to five times.

  9. CO2 enrichment increases carbon and nitrogen input from

    E-Print Network [OSTI]

    CO2 enrichment increases carbon and nitrogen input from fine roots in a deciduous forest Colleen2 Ecological Society of America, 2008 #12;#12;#12;#12;#12;+ [CO2] #12;+ Net primary production + [CO2] #12;+ Net primary production + [CO2] + C and N storage in biomass #12;+ Net primary production

  10. Engineering Bacteria for Efficient Fuel Production: Novel Biological Conversion of Hydrogen and Carbon Dioxide Directly into Free Fatty Acids

    SciTech Connect (OSTI)

    None

    2010-07-12T23:59:59.000Z

    Electrofuels Project: OPX Biotechnologies is engineering a microorganism currently used in industrial biotechnology to directly produce a liquid fuel from hydrogen and carbon dioxide (CO2). The microorganism has the natural ability to use hydrogen and CO2 for growth. OPX Biotechnologies is modifying the microorganism to divert energy and carbon away from growth and towards the production of liquid fuels in larger, commercially viable quantities. The microbial system will produce a fuel precursor that can be chemically upgraded to various hydrocarbon fuels.

  11. CARBON DIOXIDE HYDRATES CRYSTALLISATION IN EMULSION Aurlie Galfr, Amara Fezoua, Yamina Ouabbas, Ana Cameirao, Jean Michel Herri

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    identified as major sources responsible for global warming. To reduce carbon dioxide emissions, capture (several cubic meters per second of CO2), the capture technology needs to run at severe conditions and to minimize the cost of the process Innovative technology capture by gas hydrates crystallization can

  12. The Urgent Need for Carbon Dioxide Sequestration Klaus S. Lackner, Darryl P. Butt, Reed Jensen and Hans Ziock

    E-Print Network [OSTI]

    1 The Urgent Need for Carbon Dioxide Sequestration Klaus S. Lackner, Darryl P. Butt, Reed Jensen in this field. This memo explains why the development of a viable sequestration technology is a long term stra- tegic goal of utmost importance and why sequestration provides a goal worthy of the attention

  13. Carbon dioxide Information Analysis Center and World Data Center: A for Atmospheric trace gases. Annual progress report, FY 1994

    SciTech Connect (OSTI)

    Burtis, M.D. [comp.] [Tennessee Univ., Knoxville, TN (United States). Energy, Environment and Resources Center; Cushman, R.M.; Boden, T.A.; Jones, S.B.; Nelson, T.R.; Stoss, F.W. [Oak Ridge National Lab., TN (United States)

    1995-03-01T23:59:59.000Z

    This report summarizes the activities and accomplishments made by the Carbon Dioxide Information Analysis Center and World Data Center-A for Atmospheric Trace Gases during the fiscal year 1994. Topics discussed in this report include; organization and staff, user services, systems, communications, Collaborative efforts with China, networking, ocean data and activities of the World Data Center-A.

  14. Feather release force and rigor mortis development in soft-scaled broilers stunned with carbon dioxide or electricity

    E-Print Network [OSTI]

    Krupala, Jason Kyle

    1998-01-01T23:59:59.000Z

    Broilers were stunned with carbon dioxide or Micrographics. electricity prior to slaughter to evaluate feather release force (FRF), and shear value, pH, and R-value of Pectoralis. Broilers (n = 72) were stunned using an electrical saline stunner (35...

  15. A Brief Technical Critique of Economides and Ehlig-Economides 2010 "Sequestering Carbon Dioxide in a Closed Underground Volume"

    SciTech Connect (OSTI)

    Dooley, James J.; Davidson, Casie L.

    2010-04-07T23:59:59.000Z

    In their 2010 paper, “Sequestering Carbon Dioxide in a Close Underground Volume,” authors Ehlig-Economides and Economides assert that “underground carbon dioxide sequestration via bulk CO2 injection is not feasible at any cost.” The authors base this conclusion on a number of assumptions that the peer reviewed technical literature and decades of carbon dioxide (CO2) injection experience have proven invalid. In particular, the paper is built upon two flawed premises: first, that effective CO2 storage requires the presence of complete structural closure bounded on all sides by impermeable media, and second, that any other storage system is guaranteed to leak. These two assumptions inform every aspect of the authors’ analyses, and without them, the paper fails to prove its conclusions. The assertion put forward by Ehlig-Economides and Economides that anthropogenic CO2 cannot be stored in deep geologic formations is refuted by even the most cursory examination of the more than 25 years of accumulated commercial carbon dioxide capture and storage experience.

  16. Functional and Structural Characterization of Nanoparticulate Transition Metal Complexes Prepared Using Precipitation with Compressed Carbon Dioxide as an Antisolvent

    E-Print Network [OSTI]

    Johnson, Chad Aaron

    2008-04-29T23:59:59.000Z

    catalysts. The PCA technique has been identified as a novel method to produce nanoparticles in a green manner [24] as it utilizes non-sequestered carbon dioxide, a green solvent, as the precipitant to create more active materials. The organic solution...

  17. Is the basinwide warming in the North Atlantic Ocean related to atmospheric carbon dioxide and global warming?

    E-Print Network [OSTI]

    Wang, Chunzai

    to atmospheric carbon dioxide and global warming? Chunzai Wang1 and Shenfu Dong1,2 Received 31 January 2010 is controversial. Some studies argued that the warming is due to global warming in association with the secular sea surface temperature. Here we show that both global warming and AMO variability make a contribution

  18. Parametric study of solid amine sorbents for the capture of carbon dioxide

    SciTech Connect (OSTI)

    M.L. Gray; J.S. Hoffman; D.C. Hreha; D.J. Fauth; S.W. Hedges; K.J. Champagne; H.W. Pennline [United States Department of Energy, Pittsburgh, PA (United States). National Energy Technology Laboratory

    2009-09-15T23:59:59.000Z

    Solid amine sorbents were prepared using mixtures of linear and branched primary, secondary, and tertiary amines. These amines were immobilized within polystyrene (PS)-, silicon dioxide (SiO{sub 2})-, or polymethylmethacrylate (PMMA)-based substrates at various weight ratios. Testing was conducted in various reactor systems, where the reactive water required for the capture of carbon dioxide (CO{sub 2}) was tracked during the adsorption/desorption cycles by mass spectrometer gas analysis. The water management for these sorbents was quantified and used to assess the technical feasibility of the operating conditions for the capture of CO{sub 2} from simulated flue gas streams. In addition, the heats of reaction and performance capture loading capacities of these sorbents were also determined by differential scanning calorimetry (DSC) and thermogravimetric analyses (TGAs), respectively, in both dry and humidified CO{sub 2} gas streams. The regenerable solid amine sorbents investigated in this study exhibit acceptable CO{sub 2}-capture loading capacities of 2.5-3.5 mol of CO{sub 2}/kg of sorbent by TGA and a laboratory-scale fixed-bed reactor. These sorbents were stable over the adsorption/desorption temperature range of 25-105{sup o}C for 10 cyclic tests. According to the DSC analysis, the heat of reaction generated by these sorbents was in the range of 400-600 Btu/lb. CO{sub 2}, which will require a reactor with heat management capabilities. 6 refs., 4 figs., 3 tabs.

  19. Integrated Energy System with Beneficial Carbon Dioxide (CO{sub 2}) Use

    SciTech Connect (OSTI)

    Sun, Xiaolei; Rink, Nancy

    2011-04-30T23:59:59.000Z

    To address the public concerns regarding the consequences of climate change from anthropogenic carbon dioxide (CO{sub 2}) emissions, the U.S. Department of Energy National Energy Technology Laboratory (DOE-NETL) is actively funding a CO{sub 2} management program to develop technologies capable of reducing the CO{sub 2} emissions from fossil fuel power plants and other industrial facilities. Over the past decade, this program has focused on reducing the costs of carbon capture and storage technologies. Recently, DOE-NETL launched an alternative CO{sub 2} mitigation program focusing on beneficial CO{sub 2} reuse and supporting the development of technologies that mitigate emissions by converting CO{sub 2} to solid mineral form that can be utilized for enhanced oil recovery, in the manufacturing of concrete or as a benign landfill, in the production of valuable chemicals and/or fuels. This project was selected as a CO{sub 2} reuse activity which would conduct research and development (R&D) at the pilot scale via a cost-shared Cooperative Agreement number DE-FE0001099 with DOE-NETL and would utilize funds setaside by the American Recovery and Reinvestment Act (ARRA) of 2009 for Industrial Carbon Capture and Sequestration R&D,

  20. Comparison of methods for geologic storage of carbon dioxide in saline formations

    SciTech Connect (OSTI)

    Goodman, Angela L. [U.S. DOE; Bromhal, Grant S. [U.S. DOE; Strazisar, Brian [U.S. DOE; Rodosta, Traci D. [U.S. DOE; Guthrie, William J. [U.S. DOE; Allen, Douglas E. [ORISE; Guthrie, George D. [U.S. DOE

    2013-01-01T23:59:59.000Z

    Preliminary estimates of CO{sub 2} storage potential in geologic formations provide critical information related to Carbon Capture, Utilization, and Storage (CCUS) technologies to mitigate CO{sub 2} emissions. Currently multiple methods to estimate CO{sub 2} storage and multiple storage estimates for saline formations have been published, leading to potential uncertainty when comparing estimates from different studies. In this work, carbon dioxide storage estimates are compared by applying several commonly used methods to general saline formation data sets to assess the impact that the choice of method has on the results. Specifically, six CO{sub 2} storage methods were applied to thirteen saline formation data sets which were based on formations across the United States with adaptations to provide the geologic inputs required by each method. Methods applied include those by (1) international efforts – the Carbon Sequestration Leadership Forum (Bachu et al., 2007); (2) United States government agencies – U.S. Department of Energy – National Energy Technology Laboratory (US-DOE-NETL, 2012) and United States Geological Survey (Brennan et al., 2010); and (3) the peer-reviewed scientific community – Szulczewski et al. (2012) and Zhou et al. (2008). A statistical analysis of the estimates generated by multiple methods revealed that assessments of CO{sub 2} storage potential made at the prospective level were often statistically indistinguishable from each other, implying that the differences in methodologies are small with respect to the uncertainties in the geologic properties of storage rock in the absence of detailed site-specific characterization.

  1. Better Enzymes for Carbon Capture: Low-Cost Biological Catalyst to Enable Efficient Carbon Dioxide Capture

    SciTech Connect (OSTI)

    None

    2010-07-01T23:59:59.000Z

    IMPACCT Project: Codexis is developing new and efficient forms of enzymes known as carbonic anhydrases to absorb CO2 more rapidly and under challenging conditions found in the gas exhaust of coal-fired power plants. Carbonic anhydrases are common and are among the fastest enzymes, but they are not robust enough to withstand the harsh environment found in the power plant exhaust steams. In this project, Codexis will be using proprietary technology to improve the enzymes’ ability to withstand high temperatures and large swings in chemical composition. The project aims to develop a carbon-capture process that uses less energy and less equipment than existing approaches. This would reduce the cost of retrofitting today’s coal-fired power plants.

  2. Global Coastal Carbon Program Data from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    CDIAC provides data management support for the Global Coastal Carbon Data Project. The coastal regions data are very important for the understanding of carbon cycle on the continental margins. The Coastal Project data include the bottle (discrete) and surface (underway) carbon-related measurements from coastal research cruises, the data from time series cruises, and coastal moorings. The data from US East Coast, US West Coast, and European Coastal areas are available. CDIAC provides a map interface with vessel or platform names. Clicking on the name brings up information about the vessel or the scientific platform, the kinds of measurements collected and the timeframe, links to project pages, when available, and the links to the data files themselves.

  3. Solubilities of p-quinone and 9,10-anthraquinone in supercritical carbon dioxide

    SciTech Connect (OSTI)

    Coutsikos, P.; Magoulas, K.; Tassios, D. [National Technical Univ. of Athens (Greece)] [National Technical Univ. of Athens (Greece)

    1997-05-01T23:59:59.000Z

    Equilibrium solubilities of p-quinone (1,4-benzoquinone) and 9,10-anthraquinone at 35 C and 45 C in supercritical carbon dioxide over a pressure range of about (85--300) bar have been measured using a supercritical fluid extractor coupled with a high-pressure liquid chromatography apparatus. The solubility results, along with those reported in the literature for 1,4-naphthoquinone, are correlated with a modified Peng-Robinson equation of state. The ability of a supercritical fluid to separate a multicomponent mixture is unique, since it utilizes the salient features of both distillation and liquid extraction. The solubility of a solute in a supercritical fluid is the most important thermophysical property that has to be determined and modeled for an efficient design of any extraction based on supercritical solvents.

  4. Fuel from Bacteria: Bioconversion of Carbon Dioxide to Biofuels by Facultatively Autotrophic Hydrogen Bacteria

    SciTech Connect (OSTI)

    None

    2010-07-01T23:59:59.000Z

    Electrofuels Project: Ohio State is genetically modifying bacteria to efficiently convert carbon dioxide directly into butanol, an alcohol that can be used directly as a fuel blend or converted to a hydrocarbon, which closely resembles a gasoline. Bacteria are typically capable of producing a certain amount of butanol before it becomes too toxic for the bacteria to survive. Ohio State is engineering a new strain of the bacteria that could produce up to 50% more butanol before it becomes too toxic for the bacteria to survive. Finding a way to produce more butanol more efficiently would significantly cut down on biofuel production costs and help make butanol cost competitive with gasoline. Ohio State is also engineering large tanks, or bioreactors, to grow the biofuel-producing bacteria in, and they are developing ways to efficiently recover biofuel from the tanks.

  5. Corrosion of austenitic and ferritic-martensitic steels exposed to supercritical carbon dioxide

    SciTech Connect (OSTI)

    Tan, Lizhen [ORNL; Anderson, Mark [University of Wisconsin, Madison; Taylor, D [Bechtel Marine Propulsion Corporation; Allen, Todd R. [University of Wisconsin, Madison

    2011-01-01T23:59:59.000Z

    Supercritical carbon dioxide (S-CO{sub 2}) is a potential coolant for advanced nuclear reactors. The corrosion behavior of austenitic steels (alloys 800H and AL-6XN) and ferritic-martensitic (FM) steels (F91 and HCM12A) exposed to S-CO{sub 2} at 650 C and 20.7 MPa is presented in this work. Oxidation was identified as the primary corrosion phenomenon. Alloy 800H had oxidation resistance superior to AL-6XN. The FM steels were less corrosion resistant than the austenitic steels, which developed thick oxide scales that tended to exfoliate. Detailed microstructure characterization suggests the effect of alloying elements such as Al, Mo, Cr, and Ni on the oxidation of the steels.

  6. A fluid pressure and deformation analysis for geological sequestration of carbon dioxide

    SciTech Connect (OSTI)

    Xu, Zhijie; Fang, Yilin; Scheibe, Timothy D.; Bonneville, Alain

    2012-06-07T23:59:59.000Z

    We present a hydro-mechanical model and deformation analysis for geological sequestration of carbon dioxide. The model considers the poroelastic effects by taking into account the two-way coupling between the geomechanical response and the fluid flow process in greater detail. In order for analytical solutions, the simplified hydro-mechanical model includes the geomechanical part that relies on the theory of linear elasticity, while the fluid flow is based on the Darcy’s law. The model was derived through coupling the two parts using the standard linear poroelasticity theory. Analytical solutions for fluid pressure field were obtained for a typical geological sequestration scenario and the solutions for ground deformation were obtained using the method of Green’s function. Solutions predict the temporal and spatial variation of fluid pressure, the effect of permeability and elastic modulus on the fluid pressure, the ground surface uplift, and the radial deformation during the entire injection period.

  7. Electrocatalytic reduction of carbon dioxide with iron, cobalt, and nickel complexes of terdentate ligands

    SciTech Connect (OSTI)

    Arana, C.; Yan, S.; Abruna, H.D. (Cornell Univ., Ithaca, NY (United States)); Keshavarz-K, M.; Potts, K.T. (Rensselaer Polytechnic Inst., Troy, NY (United States))

    1992-08-19T23:59:59.000Z

    There has been, in the recent past, much interest in the design of electrocatalysts for the reduction carbon dioxide to useful fuel products. These reactions are particularly difficult to catalyze since they not only involve multiple electron transfers but also are often coupled with chemical steps such as protonation. Furthermore, there can be multiple and competing reaction pathways giving rise to a variety and distribution of reaction products. The authors have prepared a wide variety of first-row transition-metal complexes that incorporate bis(terdentate) coordination around the metal center. The authors find that all of these materials exhibit some degree of electrocatalytic activity in the reduction of CO{sub 2}. The author describes preliminary observations and point to some future directions.

  8. EVALUATION OF CARBON DIOXIDE CAPTURE FROM EXISTING COAL FIRED PLANTS BY HYBRID SORPTION USING SOLID SORBENTS

    SciTech Connect (OSTI)

    Benson, Steven; Palo, Daniel; Srinivasachar, Srivats; Laudal, Daniel

    2014-12-01T23:59:59.000Z

    Under contract DE-FE0007603, the University of North Dakota conducted the project Evaluation of Carbon Dioxide Capture from Existing Coal Fired Plants by Hybrid Sorption Using Solid Sorbents. As an important element of this effort, an Environmental Health and Safety (EH&S) Assessment was conducted by Barr Engineering Co. (Barr) in association with the University of North Dakota. The assessment addressed air and particulate emissions as well as solid and liquid waste streams. The magnitude of the emissions and waste streams was estimated for evaluation purposes. EH&S characteristics of materials used in the system are also described. This document contains data based on the mass balances from both the 40 kJ/mol CO2 and 80 kJ/mol CO2 desorption energy cases evaluated in the Final Technical and Economic Feasibility study also conducted by Barr Engineering.

  9. A Comparison of Supercritical Carbon Dioxide Power Cycle Configurations with an Emphasis on CSP Applications (Presentation)

    SciTech Connect (OSTI)

    Neises, T.; Turchi, C.

    2013-09-01T23:59:59.000Z

    Recent research suggests that an emerging power cycle technology using supercritical carbon dioxide (s-CO2) operated in a closed-loop Brayton cycle offers the potential of equivalent or higher cycle efficiency versus supercritical or superheated steam cycles at temperatures relevant for CSP applications. Preliminary design-point modeling suggests that s-CO2 cycle configurations can be devised that have similar overall efficiency but different temperature and/or pressure characteristics. This paper employs a more detailed heat exchanger model than previous work to compare the recompression and partial cooling cycles, two cycles with high design-point efficiencies, and illustrates the potential advantages of the latter. Integration of the cycles into CSP systems is studied, with a focus on sensible heat thermal storage and direct s-CO2 receivers. Results show the partial cooling cycle may offer a larger temperature difference across the primary heat exchanger, thereby potentially reducing heat exchanger cost and improving CSP receiver efficiency.

  10. Electrochemical energy storage device based on carbon dioxide as electroactive species

    DOE Patents [OSTI]

    Nemeth, Karoly; van Veenendaal, Michel Antonius; Srajer, George

    2013-03-05T23:59:59.000Z

    An electrochemical energy storage device comprising a primary positive electrode, a negative electrode, and one or more ionic conductors. The ionic conductors ionically connect the primary positive electrode with the negative electrode. The primary positive electrode comprises carbon dioxide (CO.sub.2) and a means for electrochemically reducing the CO.sub.2. This means for electrochemically reducing the CO.sub.2 comprises a conductive primary current collector, contacting the CO.sub.2, whereby the CO.sub.2 is reduced upon the primary current collector during discharge. The primary current collector comprises a material to which CO.sub.2 and the ionic conductors are essentially non-corrosive. The electrochemical energy storage device uses CO.sub.2 as an electroactive species in that the CO.sub.2 is electrochemically reduced during discharge to enable the release of electrical energy from the device.

  11. Study of carbon dioxide adsorption on a Cu-nitroprusside polymorph

    SciTech Connect (OSTI)

    Roque-Malherbe, R., E-mail: RRoque@suagm.ed [Institute for Physical Chemical Applied Research, School of Science, University of Turabo, P.O. Box 3030, Gurabo, PR 00778-3030 (United States); Lozano, C.; Polanco, R.; Marquez, F.; Lugo, F. [Institute for Physical Chemical Applied Research, School of Science, University of Turabo, P.O. Box 3030, Gurabo, PR 00778-3030 (United States); Hernandez-Maldonado, A.; Primera-Pedrozo, J.N. [Department of Chemical Engineering, University of Puerto Rico-Mayagueez Campus, Mayagueez, PR 00681-9000 (United States)

    2011-05-15T23:59:59.000Z

    A careful structural characterization was carried out to unequivocally determine the structure of the synthesized material. The TGA, DRIFTS and a Pawley fitting of the XRD powder profiles indicate that the hydrated and in situ dehydrated polymorph crystallizes in the orthorhombic space group Pnma. Meanwhile, the CO{sub 2} isosteric heat of adsorption appears to be independent of loading with an average value of 30 kJ/mol. This translates to a physisorption type interaction, where the adsorption energy corresponding to wall and lateral interactions are mutually compensated to produce, an apparently, homogeneous adsorption energy. The somewhat high adsorption energy is probably due to the confinement of the CO{sub 2} molecules in the nitroprusside pores. Statistical Physics and the Dubinin theory for pore volume filling allowed model the CO{sub 2} equilibrium adsorption process in Cu-nitroprusside. A DRIFTS test for the adsorbed CO{sub 2} displayed a peak at about 2338 cm{sup -1} that was assigned to a contribution due to physical adsorption of the molecule. Another peak found at 2362 cm{sup -1} evidenced that this molecule interacts with the Cu{sup 2+}, which appears to act as an electron accepting Lewis acid site. The aim of the present paper is to report a Pnma stable Cu-nitroprusside polymorph obtained by the precipitation method that can adsorb carbon dioxide. -- Graphical abstract: The adsorption space of a very well characterized Cu-nitroprusside polymorph, applying carbon dioxide as probe molecule, was studied. Display Omitted Highlights: {yields} Accurate information about the geometry of the adsorption space was provided. {yields} Truthful data about the interactions within the adsorption space was presented. {yields} The structure of the tested Cu-NP polymorph was established. {yields} Was evidenced adsorbed CO{sub 2} molecules in the form of weakly bonded adducts. {yields} Is proposed that adsorbed molecules could change the Cu-NP magnetic properties.

  12. Multistage fluidized bed reactor performance characterization for adsorption of carbon dioxide

    SciTech Connect (OSTI)

    Roy, S.; Mohanty, C.R.; Meikap, B.C. [Indian Institute of Technology, Kharagpur (India). Dept. of Chemical Engineering

    2009-12-15T23:59:59.000Z

    Carbon dioxide and its different compounds are generated as primary greenhouse gases from the flue gases of coal-fired thermal power plants, boilers, and other stationary combustion processes. This greenhouse gas causes global warming after being emitted to the environment. To deal with this problem, a new dry scrubbing process was tested in this study. A three-stage countercurrent fluidized bed adsorber was developed, designed, and fabricated. It was used as a removal apparatus and operated in a continuous regime for the two-phase system. The height of each stage was 0.30 m, and the inner diameter was 0.10 m. The paper presents the removal of CO{sub 2} from gas mixtures by chemical sorption on porous granular calcium oxide particles in the reactor at ambient temperature. The advantages of a multistage fluidized bed reactor for high mass transfer and high gas-solid contact can enhance the removal of the gas when using a dry method. The effects of the operating parameters such as sorbent, superficial gas velocity, and the Weir height on CO{sub 2} removal efficiency in the multistage fluidized bed were investigated. The results indicate that the removal efficiency of the carbon dioxide was around 71% at a high solid flow rate corresponding to lower gas velocity at room temperature. In comparison with wet scrubbers, this dry process appears to have lower cost, less complicated configuration, and simpler disposal of used sorbent. The results in this study assume importance from the perspective of use of a multistage fluidized bed adsorber for control of gaseous pollutants at high temperature.

  13. Summary report : direct approaches for recycling carbon dioxide into synthetic fuel.

    SciTech Connect (OSTI)

    Allendorf, Mark D. (Sandia National Laboratories, Livermore, CA); Ambrosini, Andrea; Diver, Richard B., Jr.; Siegel, Nathan Phillip; Miller, James Edward; Gelbard, Fred; Evans, Lindsey R.

    2009-01-01T23:59:59.000Z

    The consumption of petroleum by the transportation sector in the United States is roughly equivalent to petroleum imports into the country, which have totaled over 12 million barrels a day every year since 2004. This reliance on foreign oil is a strategic vulnerability for the economy and national security. Further, the effect of unmitigated CO{sub 2} releases on the global climate is a growing concern both here and abroad. Independence from problematic oil producers can be achieved to a great degree through the utilization of non-conventional hydrocarbon resources such as coal, oil-shale and tarsands. However, tapping into and converting these resources into liquid fuels exacerbates green house gas (GHG) emissions as they are carbon rich, but hydrogen deficient. Revolutionary thinking about energy and fuels must be adopted. We must recognize that hydrocarbon fuels are ideal energy carriers, but not primary energy sources. The energy stored in a chemical fuel is released for utilization by oxidation. In the case of hydrogen fuel the chemical product is water; in the case of a hydrocarbon fuel, water and carbon dioxide are produced. The hydrogen economy envisions a cycle in which H{sub 2}O is re-energized by splitting water into H{sub 2} and O{sub 2}, by electrolysis for example. We envision a hydrocarbon analogy in which both carbon dioxide and water are re-energized through the application of a persistent energy source (e.g. solar or nuclear). This is of course essentially what the process of photosynthesis accomplishes, albeit with a relatively low sunlight-to-hydrocarbon efficiency. The goal of this project then was the creation of a direct and efficient process for the solar or nuclear driven thermochemical conversion of CO{sub 2} to CO (and O{sub 2}), one of the basic building blocks of synthetic fuels. This process would potentially provide the basis for an alternate hydrocarbon economy that is carbon neutral, provides a pathway to energy independence, and is compatible with much of the existing fuel infrastructure.

  14. aircraft traffic increase: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    about the net global warming effects of nitrogen oxides (NOx) and carbon dioxide (CO2) emissions technology levels, the net result will still be an absolute increase in...

  15. Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water. Version 2

    SciTech Connect (OSTI)

    Dickson, A.G.; Goyet, C. [eds.] [eds.

    1994-09-01T23:59:59.000Z

    The collection of extensive, reliable, oceanic carbon data is a key component of the Joint Global Ocean Flux Study (JGOFS). A portion of the US JGOFS oceanic carbon dioxide measurements will be made during the World Ocean Circulation Experiment Hydrographic Program. A science team has been formed to plan and coordinate the various activities needed to produce high quality oceanic carbon dioxide measurements under this program. This handbook was prepared at the request of, and with the active participation of, that science team. The procedures have been agreed on by the members of the science team and describe well tested methods. They are intended to provide standard operating procedures, together with an appropriate quality control plan, for measurements made as part of this survey. These are not the only measurement techniques in use for the parameters of the oceanic carbon system; however, they do represent the current state-of-the-art for ship-board measurements. In the end, the editors hope that this handbook can serve widely as a clear and unambiguous guide to other investigators who are setting up to analyze the various parameters of the carbon dioxide system in sea water.

  16. Ordered nanoporous carbon for increasing CO{sub 2} capture

    SciTech Connect (OSTI)

    Yoo, Hye-Min; Lee, Seul-Yi [Korea CCS R and D Center, Korea Institute of Energy Research, 152 Gajeongro, Yuseoung-gu, Daejeon 305-343 (Korea, Republic of); Department of Chemistry, Inha University, 100 Inharo, Nam-gu, Incheon 402-751 (Korea, Republic of); Park, Soo-Jin, E-mail: sjpark@inha.ac.kr [Korea CCS R and D Center, Korea Institute of Energy Research, 152 Gajeongro, Yuseoung-gu, Daejeon 305-343 (Korea, Republic of); Department of Chemistry, Inha University, 100 Inharo, Nam-gu, Incheon 402-751 (Korea, Republic of)

    2013-01-15T23:59:59.000Z

    Ordered nanoporous carbons (ONCs) were prepared using a soft-templating method. The prepared ONCs materials were subjected to a controlled carbonization temperature over the temperature range, 700-1000 Degree-Sign C, to increase the specific surface area and total pore volume of ordered nanoporous carbon followed by carbonization of the phenolic resin. ONCs materials synthesized at various carbonization temperatures were used as adsorbents to improve the CO{sub 2} adsorption efficiency. The surface properties of the ONCs materials were examined by X-ray photoelectron spectroscopy. The structural properties of the ONCs materials were analyzed by X-ray diffraction. The textural properties of the ONCs materials were examined using the N{sub 2}/77 K adsorption isotherms according to the Brunauer-Emmett-Teller equation. The CO{sub 2} adsorption capacity was measured by CO{sub 2} isothermal adsorption at 298 K/30 bar and 298 K/1 bar. The carbonization temperature was found to have a major effect on the CO{sub 2} adsorption capacity, resulting from the specific surface area and total pore volumes of the ONCs materials. - Graphical abstract: This schematic diagram described synthesis of ONCs. Highlights: Black-Right-Pointing-Pointer ONCs materials can be prepared readily using the direct-triblock-copolymer-templating method. Black-Right-Pointing-Pointer The distributions show that prominent development can be observed around the micro-pore region. Black-Right-Pointing-Pointer The soft-templating method provides opportunities for controlling the pore structure of ONCs. Black-Right-Pointing-Pointer From thermal power plants for CO2 capture by adsorption technology, is a new direction.

  17. Root production and demography in a california annual grassland under elevated atmospheric carbon dioxide

    E-Print Network [OSTI]

    Jackson, Robert B.

    to the stimulation of aboveground production during the study year. However, the 30±70% increase in photo- synthesis was unaffected by treatment. Elevated CO2 increased monthly production of new root length (59%) only at the endRoot production and demography in a california annual grassland under elevated atmospheric carbon

  18. Method for converting hydrocarbon fuel into hydrogen gas and carbon dioxide

    DOE Patents [OSTI]

    Clawson, Lawrence G. (Dover, MA); Mitchell, William L. (Belmont, MA); Bentley, Jeffrey M. (Westford, MA); Thijssen, Johannes H. J. (Cambridge, MA)

    2000-01-01T23:59:59.000Z

    A method for converting hydrocarbon fuel into hydrogen gas and carbon dioxide within a reformer 10 is disclosed. According to the method, a stream including an oxygen-containing gas is directed adjacent to a first vessel 18 and the oxygen-containing gas is heated. A stream including unburned fuel is introduced into the oxygen-containing gas stream to form a mixture including oxygen-containing gas and fuel. The mixture of oxygen-containing gas and unburned fuel is directed tangentially into a partial oxidation reaction zone 24 within the first vessel 18. The mixture of oxygen-containing gas and fuel is further directed through the partial oxidation reaction zone 24 to produce a heated reformate stream including hydrogen gas and carbon monoxide. Steam may also be mixed with the oxygen-containing gas and fuel, and the reformate stream from the partial oxidation reaction zone 24 directed into a steam reforming zone 26. High- and low-temperature shift reaction zones 64,76 may be employed for further fuel processing.

  19. Super critical fluid extraction of a crude oil bitumen-derived liquid and bitumen by carbon dioxide and propane

    SciTech Connect (OSTI)

    Deo, M.D.; Hwang, J.; Hanson, F.V.

    1991-01-01T23:59:59.000Z

    Supercritical fluid extraction of complex hydrocarbon mixtures is important in separation processes, petroleum upgrading and enhanced oil recovery. In this study, a paraffinic crude oil, a bitumen- derived liquid and bitumen were extracted at several temperatures and pressures with carbon dioxide and propane to assess the effect of the size and type of compounds that makeup the feedstock on the extraction process. It was observed that the pure solvent density at the extraction conditions was not the sole variable governing extraction, and that the proximity of the extraction conditions to the pure solvent critical point affected the extraction yields and the compositions of the extracts. Heavier compounds reported to the extract phase as the extraction time increased at constant temperature and pressure and as the extraction pressure increased at constant temperature and extraction time for both the paraffin crude-propane and the bitumen-propane systems. This preferential extraction was not observed for the bitumen-derived liquid. The non-discriminatory extraction behavior of the bitumen-derived liquid was attributed to its thermal history and to the presence of the olefins and aromatics in the liquid. Phase behavior calculations using the Peng-Robinson equation of state and component lumping procedures provided reasonable agreement between calculated and experimental results for the crude oil and bitumen extractions, but failed in the prediction of the phase compositions for the bitumen-derived liquid extractions.

  20. Super critical fluid extraction of a crude oil bitumen-derived liquid and bitumen by carbon dioxide and propane

    SciTech Connect (OSTI)

    Deo, M.D.; Hwang, J.; Hanson, F.V.

    1991-12-31T23:59:59.000Z

    Supercritical fluid extraction of complex hydrocarbon mixtures is important in separation processes, petroleum upgrading and enhanced oil recovery. In this study, a paraffinic crude oil, a bitumen- derived liquid and bitumen were extracted at several temperatures and pressures with carbon dioxide and propane to assess the effect of the size and type of compounds that makeup the feedstock on the extraction process. It was observed that the pure solvent density at the extraction conditions was not the sole variable governing extraction, and that the proximity of the extraction conditions to the pure solvent critical point affected the extraction yields and the compositions of the extracts. Heavier compounds reported to the extract phase as the extraction time increased at constant temperature and pressure and as the extraction pressure increased at constant temperature and extraction time for both the paraffin crude-propane and the bitumen-propane systems. This preferential extraction was not observed for the bitumen-derived liquid. The non-discriminatory extraction behavior of the bitumen-derived liquid was attributed to its thermal history and to the presence of the olefins and aromatics in the liquid. Phase behavior calculations using the Peng-Robinson equation of state and component lumping procedures provided reasonable agreement between calculated and experimental results for the crude oil and bitumen extractions, but failed in the prediction of the phase compositions for the bitumen-derived liquid extractions.

  1. Development of a Sorption Enhanced Steam Hydrogasification Process for In-situ Carbon Dioxide (CO2) Removal and Enhanced Synthetic Fuel Production

    E-Print Network [OSTI]

    Liu, Zhongzhe

    2013-01-01T23:59:59.000Z

    with carbon capture and storage (BECCS) technology [6,7] .carbon dioxide emissions by major fuel, 2009…………….2 Fig.1.4 Schematic of CO 2 capture systems and technologies……………………………..carbon footprint. One unique technique is using in-situ CO 2 capture technology,

  2. Regional Opportunities for Carbon Dioxide Capture and Storage in China: A Comprehensive CO2 Storage Cost Curve and Analysis of the Potential for Large Scale Carbon Dioxide Capture and Storage in the People’s Republic of China

    SciTech Connect (OSTI)

    Dahowski, Robert T.; Li, Xiaochun; Davidson, Casie L.; Wei, Ning; Dooley, James J.

    2009-12-01T23:59:59.000Z

    This study presents data and analysis on the potential for carbon dioxide capture and storage (CCS) technologies to deploy within China, including a survey of the CO2 source fleet and potential geologic storage capacity. The results presented here indicate that there is significant potential for CCS technologies to deploy in China at a level sufficient to deliver deep, sustained and cost-effective emissions reductions for China over the course of this century.

  3. Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    independent budgeting of fossil fuel CO 2 over Europe by (CO2008), Where do fossil fuel carbon dioxide emissions from2004), Estimates of annual fossil-fuel CO 2 emitted for each

  4. Atmospheric Carbon Dioxide Variability in the Community Earth System Model: Evaluation and Transient Dynamics during the Twentieth and Twenty-First Centuries

    E-Print Network [OSTI]

    Hoffman, Forrest M.

    Atmospheric Carbon Dioxide Variability in the Community Earth System Model: Evaluation pathways (RCPs 4.5 and 8.5) using the Community Earth System Model­Biogeochemistry (CESM1- BGC). CO2

  5. Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    independent budgeting of fossil fuel CO 2 over Europe by (CO2008 Where do fossil fuel carbon dioxide emissions frompatterns and mixing of fossil fuel-derived CO 2 is important

  6. Process for separating carbon dioxide from flue gas using sweep-based membrane separation and absorption steps

    DOE Patents [OSTI]

    Wijmans, Johannes G.; Baker, Richard W.; Merkel, Timothy C.

    2012-08-21T23:59:59.000Z

    A gas separation process for treating flue gases from combustion processes, and combustion processes including such gas separation. The invention involves routing a first portion of the flue gas stream to be treated to an absorption-based carbon dioxide capture step, while simultaneously flowing a second portion of the flue gas across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas to the combustor.

  7. Low Cost Open-Path Instrument for Monitoring Surface Carbon Dioxide at Sequestration Sites Phase I SBIR Final Report

    SciTech Connect (OSTI)

    Sheng Wu

    2012-10-02T23:59:59.000Z

    Public confidence in safety is a prerequisite to the success of carbon dioxide (CO2) capture and storage for any program that intends to mitigate greenhouse gas emissions. In that regard, this project addresses the security of CO2 containment by undertaking development of what is called �¢����an open path device�¢��� to measure CO2 concentrations near the ground above a CO2 storage area.

  8. Efficiency of incentives to jointly increase carbon sequestration and species conservation

    E-Print Network [OSTI]

    Weiblen, George D

    Efficiency of incentives to jointly increase carbon sequestration and species conservation the provision of carbon sequestration and species conservation across heterogeneous landscapes. Using data from the Willamette Basin, Oregon, we compare the provision of carbon sequestration and species conservation under

  9. Linearity of Climate Response to Increases in Black Carbon Aerosols

    SciTech Connect (OSTI)

    Mahajan, Salil [ORNL; Evans, Katherine J [ORNL; Hack, James J [ORNL; Truesdale, John [National Center for Atmospheric Research (NCAR)

    2013-01-01T23:59:59.000Z

    The impact of absorbing aerosols on global climate are not completely understood. Here, we present results of idealized experiments conducted with the Community Atmosphere Model (CAM4) coupled to a slab ocean model (CAM4-SOM) to simulate the climate response to increases in tropospheric black carbon aerosols (BC) by direct and semi-direct effects. CAM4-SOM was forced with 0, 1x, 2x, 5x and 10x an estimate of the present day concentration of BC while maintaining their estimated present day global spatial and vertical distribution. The top of the atmosphere (TOA) radiative forcing of BC in these experiments is positive (warming) and increases linearly as the BC burden increases. The total semi-direct effect for the 1x experiment is positive but becomes increasingly negative for higher BC concentrations. The global average surface temperature response is found to be a linear function of the TOA radiative forcing. The climate sensitivity to BC from these experiments is estimated to be 0.42 K $\\textnormal W^{-1} m^{2}$ when the semi-direct effects are accounted for and 0.22 K $\\textnormal W^{-1} m^{2}$ with only the direct effects considered. Global average precipitation decreases linearly as BC increases, with a precipitation sensitivity to atmospheric absorption of 0.4 $\\%$ $\\textnormal W^{-1} \\textnormal m^{2}$ . The hemispheric asymmetry of BC also causes an increase in southward cross-equatorial heat transport and a resulting northward shift of the inter-tropical convergence zone in the simulations at a rate of 4$^{\\circ}$N $\\textnormal PW^{-1}$. Global average mid- and high-level clouds decrease, whereas the low-level clouds increase linearly with BC. The increase in marine stratocumulus cloud fraction over the south tropical Atlantic is caused by increased BC-induced diabatic heating of the free troposphere.

  10. Method and apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide

    DOE Patents [OSTI]

    Clawson, Lawrence G. (Dover, MA); Mitchell, William L. (Belmont, MA); Bentley, Jeffrey M. (Westford, MA); Thijssen, Johannes H.J. (Cambridge, MA)

    2000-01-01T23:59:59.000Z

    An apparatus and a method are disclosed for converting hydrocarbon fuel or an alcohol into hydrogen gas and carbon dioxide. The apparatus includes a first vessel having a partial oxidation reaction zone and a separate steam reforming reaction zone that is distinct from the partial oxidation reaction zone. The first vessel has a first vessel inlet at the partial oxidation reaction zone and a first vessel outlet at the steam reforming zone. The reformer also includes a helical tube extending about the first vessel. The helical tube has a first end connected to an oxygen-containing source and a second end connected to the first vessel at the partial oxidation reaction zone. Oxygen gas from an oxygen-containing source can be directed through the helical tube to the first vessel. A second vessel having a second vessel inlet and second vessel outlet is annularly disposed about the first vessel. The helical tube is disposed between the first vessel and the second vessel and gases from the first vessel can be directed through second vessel.

  11. Carbon Dioxide Conversion to Valuable Chemical Products over Composite Catalytic Systems

    SciTech Connect (OSTI)

    Dagle, Robert A.; Hu, Jianli; Jones, Susanne B.; Wilcox, Wayne A.; Frye, John G.; White, J. F.; Jiang, Juyuan; Wang, Yong

    2013-05-01T23:59:59.000Z

    Presented is an experimental study on catalytic conversion of carbon dioxide into methanol, ethanol and acetic acid. Catalysts having different catalytic functions were synthesized and combined in different ways to enhance selectivity to desired products. The combined catalyst system possessed the following functions: methanol synthesis, Fischer-Tropsch synthesis, water-gas-shift and hydrogenation. Results showed that the methods of integrating these catalytic functions played important role in achieving desired product selectivity. It was speculated that if methanol synthesis sites were located adjacent to the C-C chain growth sites, the formation rate of C2 oxygenates would be enhanced. The advantage of using high temperature methanol catalyst PdZnAl in the combined catalyst system was demonstrated. In the presence of PdZnAl catalyst, the combined catalyst system was stable at temperature of 380oC. It was observed that, at high temperature, kinetics favored oxygenate formation. Results implied that the process can be intensified by operating at high temperature using Pd-based methanol synthesis catalyst. Steam reforming of the byproduct organics was demonstrated as a means to provide supplemental hydrogen. Preliminary process design, simulation, and economic analysis of the proposed CO2 conversion process were carried out. Economic analysis indicates how ethanol production cost was affected by the price of CO2 and hydrogen.

  12. DISSOLUTION OF METAL OXIDES AND SEPARATION OF URANIUM FROM LANTHANIDES AND ACTINIDES IN SUPERCRITICAL CARBON DIOXIDE

    SciTech Connect (OSTI)

    Donna L. Quach; Bruce J. Mincher; Chien M. Wai

    2013-10-01T23:59:59.000Z

    This paper investigates the feasibility of extracting and separating uranium from lanthanides and other actinides by using supercritical fluid carbon dioxide (sc-CO2) as a solvent modified with tri-n-butylphosphate (TBP) for the development of a counter current stripping technique, which would be a more efficient and environmentally benign technology for spent nuclear fuel reprocessing compared to traditional solvent extraction. Several actinides (U, Pu, and Np) and europium were extracted in sc-CO2 modified with TBP over a range of nitric acid concentrations and then the actinides were exposed to reducing and complexing agents to suppress their extractability. According to this study, uranium/europium and uranium/plutonium extraction and separation in sc-CO2 modified with TBP is successful at nitric acid concentrations of less than 6 M and at nitric acid concentrations of less than 3 M with acetohydroxamic acid or oxalic acid, respectively. A scheme for recycling uranium from spent nuclear fuel by using sc-CO2 and counter current stripping columns is presented.

  13. Designer organisms for photosynthetic production of ethanol from carbon dioxide and water

    DOE Patents [OSTI]

    Lee, James Weifu (Knoxville, TN)

    2011-07-05T23:59:59.000Z

    The present invention provides a revolutionary photosynthetic ethanol production technology based on designer transgenic plants, algae, or plant cells. The designer plants, designer algae, and designer plant cells are created such that the endogenous photosynthesis regulation mechanism is tamed, and the reducing power (NADPH) and energy (ATP) acquired from the photosynthetic water splitting and proton gradient-coupled electron transport process are used for immediate synthesis of ethanol (CH.sub.3CH.sub.2OH) directly from carbon dioxide (CO.sub.2) and water (H.sub.2O). The ethanol production methods of the present invention completely eliminate the problem of recalcitrant lignocellulosics by bypassing the bottleneck problem of the biomass technology. The photosynthetic ethanol-production technology of the present invention is expected to have a much higher solar-to-ethanol energy-conversion efficiency than the current technology and could also help protect the Earth's environment from the dangerous accumulation of CO.sub.2 in the atmosphere.

  14. Relevance of underground natural gas storage to geologic sequestration of carbon dioxide

    SciTech Connect (OSTI)

    Lippmann, Marcelo J.; Benson, Sally M.

    2002-07-01T23:59:59.000Z

    The practice of underground natural gas storage (UNGS), which started in the USA in 1916, provides useful insight into the geologic sequestration of carbon dioxide--the dominant anthropogenic greenhouse gas released into the atmosphere. In many ways, UNGS is directly relevant to geologic CO{sub 2} storage because, like CO{sub 2}, natural gas (essentially methane) is less dense than water. Consequently, it will tend to rise to the top of any subsurface storage structure located below the groundwater table. By the end of 2001 in the USA, about 142 million metric tons of natural gas were stored underground in depleted oil and gas reservoirs and brine aquifers. Based on their performance, UNGS projects have shown that there is a safe and effective way of storing large volumes of gases in the subsurface. In the small number of cases where failures did occur (i.e., leakage of the stored gas into neighboring permeable layers), they were mainly related to improper well design, construction, maintenance, and/or incorrect project operation. In spite of differences in the chemical and physical properties of the gases, the risk-assessment, risk-management, and risk-mitigation issues relevant to UNGS projects are also pertinent to geologic CO{sub 2} sequestration.

  15. A Finite-Element Model for Simulation of Carbon Dioxide Sequestration

    SciTech Connect (OSTI)

    Bao, Jie; Xu, Zhijie; Fang, Yilin

    2014-09-01T23:59:59.000Z

    Herein, we present a coupled thermal-hydro-mechanical model for geological sequestration of carbon dioxide followed by the stress, deformation, and shear-slip failure analysis. This fully coupled model considers the geomechanical response, fluid flow, and thermal transport relevant to geological sequestration. Both analytical solutions and numerical approach via finite element model are introduced for solving the thermal-hydro-mechanical model. Analytical solutions for pressure, temperature, deformation, and stress field were obtained for a simplified typical geological sequestration scenario. The finite element model is more general and can be used for arbitrary geometry. It was built on an open-source finite element code, Elmer, and was designed to simulate the entire period of CO2 injection (up to decades) both stably and accurately—even for large time steps. The shear-slip failure analysis was implemented based on the numerical results from the finite element model. The analysis reveals the potential failure zone caused by the fluid injection and thermal effect. From the simulation results, the thermal effect is shown to enhance well injectivity, especially at the early time of the injection. However, it also causes some side effects, such as the appearance of a small failure zone in the caprock. The coupled thermal-hydro-mechanical model improves prediction of displacement, stress distribution, and potential failure zone compared to the model that neglects non-isothermal effects, especially in an area with high geothermal gradient.

  16. Equilibrium and kinetics analysis of carbon dioxide capture using immobilized amine on a mesoporous silica

    SciTech Connect (OSTI)

    Monazam, E., Shadle, L., Pennline, H., Miller, D., Fauth, D., Hoffman, J., Gray, M.

    2012-01-01T23:59:59.000Z

    The equilibrium and conversion-time data on the absorption of carbon dioxide (CO{sub 2}) with amine-based solid sorbent were analyzed over the range of 303–373 K. Data on CO{sub 2} loading on amine based solid sorbent at these temperatures and CO{sub 2} partial pressure between 10 and 760 mm Hg obtained from volumetric adsorption apparatus were fitted to a simple equilibrium model to generate the different parameters (including equilibrium constant) in the model. Using these constants, a correlation was obtained to define equilibrium constant and maximum CO{sub 2} loading as a function of temperature. In this study, a shrinking core model (SCM) was applied to elucidate the relative importance of pore diffusion and surface chemical reaction in controlling the rate of reaction. Application of SCM to the data suggested a surface reaction-controlled mechanism for the temperature of up to 40°C and pore-diffusion mechanism at higher temperature.

  17. Using Carbon Dioxide to Enhance Recovery of Methane from Gas Hydrate Reservoirs: Final Summary Report

    SciTech Connect (OSTI)

    McGrail, B. Peter; Schaef, Herbert T.; White, Mark D.; Zhu, Tao; Kulkarni, Abhijeet S.; Hunter, Robert B.; Patil, Shirish L.; Owen, Antionette T.; Martin, P F.

    2007-09-01T23:59:59.000Z

    Carbon dioxide sequestration coupled with hydrocarbon resource recovery is often economically attractive. Use of CO2 for enhanced recovery of oil, conventional natural gas, and coal-bed methane are in various stages of common practice. In this report, we discuss a new technique utilizing CO2 for enhanced recovery of an unconventional but potentially very important source of natural gas, gas hydrate. We have focused our attention on the Alaska North Slope where approximately 640 Tcf of natural gas reserves in the form of gas hydrate have been identified. Alaska is also unique in that potential future CO2 sources are nearby, and petroleum infrastructure exists or is being planned that could bring the produced gas to market or for use locally. The EGHR (Enhanced Gas Hydrate Recovery) concept takes advantage of the physical and thermodynamic properties of mixtures in the H2O-CO2 system combined with controlled multiphase flow, heat, and mass transport processes in hydrate-bearing porous media. A chemical-free method is used to deliver a LCO2-Lw microemulsion into the gas hydrate bearing porous medium. The microemulsion is injected at a temperature higher than the stability point of methane hydrate, which upon contacting the methane hydrate decomposes its crystalline lattice and releases the enclathrated gas. Small scale column experiments show injection of the emulsion into a CH4 hydrate rich sand results in the release of CH4 gas and the formation of CO2 hydrate

  18. Hanford/Rocky Flats collaboration on development of supercritical carbon dioxide extraction to treat mixed waste

    SciTech Connect (OSTI)

    Hendrickson, D.W.; Biyani, R.K. [Westinghouse Hanford Co., Richland, WA (United States); Brown, C.M.; Teter, W.L. [Kaiser-Hill Co., Golden, CO (United States)

    1995-11-01T23:59:59.000Z

    Proposals for demonstration work under the Department of Energy`s Mixed Waste Focus Area, during the 1996 through 1997 fiscal years included two applications of supercritical carbon dioxide to mixed waste pretreatment. These proposals included task RF15MW58 of Rocky Flats and task RL46MW59 of Hanford. Analysis of compatibilities in wastes and work scopes yielded an expectation of substantial collaboration between sites whereby Hanford waste streams may undergo demonstration testing at Rocky Flats, thereby eliminating the need for test facilities at Hanford. This form of collaboration is premised the continued deployment at Rocky Flats and the capability for Hanford samples to be treated at Rocky Flats. The recent creation of a thermal treatment contract for a facility near Hanford may alleviate the need to conduct organic extraction upon Rocky Flats wastes by providing a cost effective thermal treatment alternative, however, some waste streams at Hanford will continue to require organic extraction. Final site waste stream treatment locations are not within the scope of this document.

  19. Dissolution of metal oxides and separation of uranium from lanthanides and actinides in supercritical carbon dioxide

    SciTech Connect (OSTI)

    Quach, D.L.; Wai, C.M. [Department of Chemistry, University of Idaho, Moscow, Idaho 83844 (United States); Mincher, B.J. [Idaho National Lab, Idaho Falls, Idaho (United States)

    2013-07-01T23:59:59.000Z

    This paper investigates the feasibility of extracting and separating uranium from lanthanides and other actinides by using supercritical fluid carbon dioxide (sc-CO{sub 2}) as a solvent modified with tri-n-butylphosphate (TBP) for the development of a counter current stripping technique, which would be a more efficient and environmentally benign technology for spent nuclear fuel reprocessing compared to traditional solvent extraction. Several actinides (U, Pu, and Np) and europium were extracted in sc-CO{sub 2} modified with TBP over a range of nitric acid concentrations and then the actinides were exposed to reducing and complexing agents to suppress their extractability. According to this study, uranium/europium and uranium/plutonium extraction and separation in sc-CO{sub 2} modified with TBP is successful at nitric acid concentrations of less than 6 M and at nitric acid concentrations of less than 3 M with acetohydroxamic acid or oxalic acid, respectively. A scheme for recycling uranium from spent nuclear fuel by using sc-CO{sub 2} and counter current stripping columns is presented. (authors)

  20. Sub-Seafloor Carbon Dioxide Storage Potential on the Juan de Fuca Plate, Western North America

    SciTech Connect (OSTI)

    Jerry Fairley; Robert Podgorney

    2012-11-01T23:59:59.000Z

    The Juan de Fuca plate, off the western coast of North America, has been suggested as a site for geological sequestration of waste carbon dioxide because of its many attractive characteristics (high permeability, large storage capacity, reactive rock types). Here we model CO2 injection into fractured basalts comprising the upper several hundred meters of the sub-seafloor basalt reservoir, overlain with low-permeability sediments and a large saline water column, to examine the feasibility of this reservoir for CO2 storage. Our simulations indicate that the sub-seafloor basalts of the Juan de Fuca plate may be an excellent CO2 storage candidate, as multiple trapping mechanisms (hydrodynamic, density inversions, and mineralization) act to keep the CO2 isolated from terrestrial environments. Questions remain about the lateral extent and connectivity of the high permeability basalts; however, the lack of wells or boreholes and thick sediment cover maximize storage potential while minimizing potential leakage pathways. Although promising, more study is needed to determine the economic viability of this option.

  1. The Current Status of the Use of Carbon Dioxide in Diagnostic and Interventional Angiographic Procedures

    SciTech Connect (OSTI)

    Shaw, David Richard; Kessel, David Oliver [St. James's University Hospital (United Kingdom)], E-mail: david.kessel@leedsth.nhs.uk

    2006-06-15T23:59:59.000Z

    Since the first description of carbon dioxide (CO{sub 2}) angiography the indications for using CO{sub 2} have been changing and the applications of CO{sub 2} angiography evolving. This review covers the contemporary role of CO{sub 2} angiography. CO{sub 2} angiography can be considered according to whether it is likely to be better, equivalent to or worse than conventional iodinated contrast medium (ICM). Areas where CO{sub 2} angiography offers distinct advantages over ICM will be emphasized. The limitations to using CO{sub 2} and specific caveats will be discussed. The basic physical properties of CO{sub 2} and avoidance of the complications of gas angiography will be considered. CO{sub 2} gas is cheap, non-allergenic, and is not nephrotoxic. Unfortunately it is not a panacea, angiographic quality is reduced, it is not tolerated by every patient, and it cannot be used in every location. It is important to be pragmatic and to use conventional contrast or alternative imaging rather than struggling with suboptimal CO{sub 2} angiography.

  2. Anionic group 6B metal carbonyls as homogeneous catalysts for carbon dioxide/hydrogen activation: the production of alkyl formates

    SciTech Connect (OSTI)

    Darensbourg, D.J.; Ovalles, C.

    1984-06-27T23:59:59.000Z

    The production of alkyl formates from the hydrocondensation of carbon dioxide in alcohols utilizing anionic group 6B carbonyl hydrides as catalysts is herein reported. HM(CO)/sub 5//sup -/ (M = Cr, W; derived from ..mu..-H(M/sub 2/(CO)/sub 10/)/sup -/) and their products of carbon dioxide insertion, HCO/sub 2/M(CO)/sub 5//sup -/, have been found to be effective catalysts for the hydrogenation of CO/sub 2/ in alcohols under rather mild conditions (loading pressures of CO/sub 2/ and H/sub 2/, 250 psi each, and 125/sup 0/C) to provide alkyl formates. The only metal carbonyl species detected in solution via spectroscopy, both at the end of a catalytic period and during catalysis, were M(CO)/sub 6/ and HCO/sub 2/M(CO)/sub 5//sup -/. The metal hexacarbonyls were independently shown to be catalytically inactive. A catalytic cycle is proposed which initially involves release of formic acid from the metal center, either by reductive elimination of the hydrido formato ligands or ligand-assisted heterolytic splitting of dihydrogen with loss of formic acid. In a rapid subsequent process HCOOH reacts with alcohols to yield HCOOR. The addition of carbon monoxide retards alkyl formate production, strongly implying CO/sub 2/ to be the primary source of the carboxylic carbon atom in HCOOR. This was verified by carrying out reactions in the presence of HCO/sub 2/W(/sup 13/CO)/sub 5//sup -/ which provided only H/sup 12/COOR after short reaction periods. However, in the absence of hydrogen and carbon dioxide ..mu..-H(M/sub 2/(CO)/sub 10/)/sup -/ species were observed to be effective catalyst precursors for converting CO and methanol into methyl formate. 36 references, 2 figures, 2 tables.

  3. Methanol Decomposition over Palladium Particles Supported on Silica: Role of Particle Size and Co-Feeding Carbon Dioxide on the Catalytic Properties

    SciTech Connect (OSTI)

    Hokenek, Selma; Kuhn, John N. (USF)

    2012-10-23T23:59:59.000Z

    Monodisperse palladium particles of six distinct and controlled sizes between 4-16 nm were synthesized in a one-pot polyol process by varying the molar ratios of the two palladium precursors used, which contained palladium in different oxidation states. This difference permitted size control by regulation of the nucleation rate because low oxidation state metals ions nucleate quickly relative to high oxidation state ions. After immobilization of the Pd particles on silica by mild sonication, the catalysts were characterized by X-ray absorption spectroscopy and applied toward catalytic methanol decomposition. This reaction was determined as structure sensitive with the intrinsic activity (turnover frequency) increasing with increasing particle size. Moreover, observed catalytic deactivation was linked to product (carbon monoxide) poisoning. Co-feeding carbon dioxide caused the activity and the amount of deactivation to decrease substantially. A reaction mechanism based on the formation of the {pi}-bond between carbon and oxygen as the rate-limiting step is in agreement with antipathetic structure sensitivity and product poisoning by carbon monoxide.

  4. EXPERIMENTAL EVALUATION OF CHEMICAL SEQUESTRATION OF CARBON DIOXIDE IN DEEP AQUIFER MEDIA - PHASE II

    SciTech Connect (OSTI)

    Neeraj Gupta; Bruce Sass; Jennifer Ickes

    2000-11-28T23:59:59.000Z

    In 1998 Battelle was selected by the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) under a Novel Concepts project grant to continue Phase II research on the feasibility of carbon dioxide (CO{sub 2}) sequestration in deep saline formations. The focus of this investigation is to conduct detailed laboratory experiments to examine factors that may affect chemical sequestration of CO{sub 2} in deep saline formations. Reactions between sandstone and other geologic media from potential host reservoirs, brine solutions, and CO{sub 2} are being investigated under high-pressure conditions. Some experiments also include sulfur dioxide (SO{sub 2}) gases to evaluate the potential for co-injection of CO{sub 2} and SO{sub 2} related gases in the deep formations. In addition, an assessment of engineering and economic aspects is being conducted. This current Technical Progress Report describes the status of the project as of September 2000. The major activities undertaken during the quarter included several experiments conducted to investigate the effects of pressure, temperature, time, and brine composition on rock samples from potential host reservoirs. Samples (both powder and slab) were taken from the Mt. Simon Sandstone, a potential CO{sub 2} host formation in the Ohio, the Eau Claire Shale, and Rome Dolomite samples that form the caprock for Mt. Simon Sandstone. Also, a sample with high calcium plagioclase content from Frio Formation in Texas was used. In addition, mineral samples for relatively pure Anorthite and glauconite were experimented on with and without the presence of additional clay minerals such as kaolinite and montmorillonite. The experiments were run for one to two months at pressures similar to deep reservoirs and temperatures set at 50 C or 150 C. Several enhancements were made to the experimental equipment to allow for mixing of reactants and to improve sample collection methods. The resulting fluids (gases and liquids) as well as the rock samples were characterized to evaluate the geochemical changes over the experimental period. Preliminary results from the analysis are presented in the report. More detailed interpretation of the results will be presented in the technical report at the end of Phase II.

  5. GEO-SEQ Best Practices Manual. Geologic Carbon Dioxide Sequestration: Site Evaluation to Implementation

    E-Print Network [OSTI]

    2004-01-01T23:59:59.000Z

    geochemical studies relevant to carbon sequestration.National Conference on Carbon Sequestration, Washington, DC,Conference on Carbon Sequestration, May 14-17, Washington

  6. FIELD DEMONSTRATION OF CARBON DIOXIDE MISCIBLE FLOODING IN THE LANSING-KANSAS CITY FORMATION, CENTRAL KANSAS

    SciTech Connect (OSTI)

    Alan Byrnes; G. Paul Willhite; Don Green; Martin Dubois; Richard Pancake; Timothy Carr; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Rajesh Kunjithaya; Dave Murfin; James Daniels; Niall Avison; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

    2002-06-30T23:59:59.000Z

    Progress is reported for the period from July 1, 2002 to September 30, 2002. Assessment of the demonstration site has defined many aspects of the reservoir. Technical design and budget for a larger (60-acre, 24.3 ha) CO2 demonstration project are being reviewed by the US DOE for approval. Further analysis of the pilot site by the partners has indicated that a staged demonstration is considered optimal. A phased approach to implementation of the demonstration is proposed to reduce the risk of uncertainties as to whether the reservoir has basic properties (connectivity and ability to pressure-up) conducive to a meaningful CO2 flood demonstration. The proposed plan is to flood a 10+-acre pattern. The results of this small flood will be used to evaluate the viability of performing a larger-scale ({approx}60-acre) demonstration and will be used by the partners to decide their role in a larger-scale demonstration. The 10+-acre pattern requires the least up-front expense to all parties to obtain the data required to accurately assess the viability and economics of CO2 flooding in the L-KC and of a larger-scale demonstration. In general, the following significant modifications to the original Statement of Work are proposed: (1) The proposed plan would extend the period of Budget Period 1 to May 7, 2003. (2) Redefine the period of Budget Period 2 from 3/7/01-3/7/05 to 5/7/03-3/7/08. (3) Redefine the period of Budget Period 3 from 3/7/05-3/7/06 to 3/7/08-3/7/09. (4) To allow initial verification of the viability of the process before proceeding into the flood demonstration, move activities involved with preparing wells in the flood pattern (Task 5.1), repressurizing the pattern (Task 5.2), and constructing surface facilities (Task 5.3) from Budget Period 2 to Budget Period 1. (5) Allow US Energy Partners (USEP) to be a supplier of carbon dioxide from the ethanol plant in Russell, Kansas. (6) Change the pilot flood pattern, including the number and location of wells involved in the pilot. (7) Expenses are shifted from Budget Period 2 to Budget Period 1 to cover costs of additional reservoir characterization. All modified activities and tasks would maintain the existing required industry match of 55% in Budget Period 1, 65% in Budget Period 2, and 90% in Budget Period 3. Carbon dioxide supplied by the USEP ethanol facility would be valued such that the total cost of CO2 delivered to the demonstration site injection wellhead would not exceed the $3.00/MCF cost of supplying CO2 from Guymon, OK. Total cost of the modified project is $4,415,300 compared with $5,388,064 in the original project. The modified project would require no additional funding from US DOE.

  7. FIELD DEMONSTRATION OF CARBON DIOXIDE MISCIBLE FLOODING IN THE LANSING-KANSAS CITY FORMATION, CENTRAL KANSAS

    SciTech Connect (OSTI)

    Alan Byrnes; G. Paul Willhite; Don Green; Martin Dubois; Richard Pancake; Timothy Carr; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Rajesh Kunjithaya; Dave Murfin; James Daniels; Niall Avison; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

    2002-03-31T23:59:59.000Z

    Progress is reported for the period from January 1, 2002 to March 31, 2002. Technical design and budget for a larger (60-acre, 24.3 ha) CO2 demonstration project are being reviewed by the US DOE for approval. While this review process is being conducted, work is proceeding on well testing to obtain reservoir properties and on the VIP reservoir simulation model to improve model prediction and better understand the controls that certain parameters exert on predicted performance. In addition, evaluation of the economics of commercial application in the surrounding area was performed. In a meeting on January 14, 2002 the possibility of staging the demonstration, starting with a 10-acre sub-pattern flood was raised and the decision made to investigate this plan in detail. The influence of carbon dioxide on oil properties and the influence of binary interaction parameters (BIP) used in the VIP simulator were investigated. VIP calculated swelling factors are in good agreement with published values up to 65% mole-fraction CO2. Swelling factor and saturated liquid density are relatively independent of the BIP over the range of BIPs used (0.08-0.15) up to 65% mole-fraction CO2. Assuming a CO2 EOR recovery rate projected as being most likely by current modeling, commercial scale CO2 flooding at $20/BO is possible in the leases in Hall-Gurney field. Relatively small floods (240-320 acres, 4-6 patterns) are economically viable at $20/BO in areas of very high primary and secondary productivity (>14 MBO/net acre recovery). Leases with moderately high primary and secondary productivity (> 10 MBO/net acre recovery) can be economic when combined with high productivity leases to form larger floods (>640 acres, 9 or more patterns).

  8. Evaluation and Optimization of a Supercritical Carbon Dioxide Power Conversion Cycle for Nuclear Applications

    SciTech Connect (OSTI)

    Edwin A. Harvego; Michael G. McKellar

    2011-05-01T23:59:59.000Z

    There have been a number of studies involving the use of gases operating in the supercritical mode for power production and process heat applications. Supercritical carbon dioxide (CO2) is particularly attractive because it is capable of achieving relatively high power conversion cycle efficiencies in the temperature range between 550°C and 750°C. Therefore, it has the potential for use with any type of high-temperature nuclear reactor concept, assuming reactor core outlet temperatures of at least 550°C. The particular power cycle investigated in this paper is a supercritical CO2 Recompression Brayton Cycle. The CO2 Recompression Brayton Cycle can be used as either a direct or indirect power conversion cycle, depending on the reactor type and reactor outlet temperature. The advantage of this cycle when compared to the helium Brayton Cycle is the lower required operating temperature; 550°C versus 850°C. However, the supercritical CO2 Recompression Brayton Cycle requires an operating pressure in the range of 20 MPa, which is considerably higher than the required helium Brayton cycle operating pressure of 8 MPa. This paper presents results of analyses performed using the UniSim process analyses software to evaluate the performance of the supercritical CO2 Brayton Recompression Cycle for different reactor outlet temperatures. The UniSim model assumed a 600 MWt reactor power source, which provides heat to the power cycle at a maximum temperature of between 550°C and 750°C. The UniSim model used realistic component parameters and operating conditions to model the complete power conversion system. CO2 properties were evaluated, and the operating range for the cycle was adjusted to take advantage of the rapidly changing conditions near the critical point. The UniSim model was then optimized to maximize the power cycle thermal efficiency at the different maximum power cycle operating temperatures. The results of the analyses showed that power cycle thermal efficiencies in the range of 40 to 50% can be achieved.

  9. OPTIMAL GEOLOGICAL ENVIRONMENTS FOR CARBON DIOXIDE DISPOSAL IN SALINE AQUIFERS IN THE UNITED STATES

    SciTech Connect (OSTI)

    Susan D. Hovorka

    1999-02-01T23:59:59.000Z

    Recent research and applications have demonstrated technologically feasible methods, defined costs, and modeled processes needed to sequester carbon dioxide (CO{sub 2}) in saline-water-bearing formations (aquifers). One of the simplifying assumptions used in previous modeling efforts is the effect of real stratigraphic complexity on transport and trapping in saline aquifers. In this study we have developed and applied criteria for characterizing saline aquifers for very long-term sequestration of CO{sub 2}. The purpose of this pilot study is to demonstrate a methodology for optimizing matches between CO{sub 2} sources and nearby saline formations that can be used for sequestration. This project identified 14 geologic properties used to prospect for optimal locations for CO{sub 2} sequestration in saline-water-bearing formations. For this demonstration, we digitized maps showing properties of saline formations and used analytical tools in a geographic information system (GIS) to extract areas that meet variably specified prototype criteria for CO{sub 2} sequestration sites. Through geologic models, realistic aquifer properties such as discontinuous sand-body geometry are determined and can be used to add realistic hydrologic properties to future simulations. This approach facilitates refining the search for a best-fit saline host formation as our understanding of the most effective ways to implement sequestration proceeds. Formations where there has been significant drilling for oil and gas resources as well as extensive characterization of formations for deep-well injection and waste disposal sites can be described in detail. Information to describe formation properties can be inferred from poorly known saline formations using geologic models in a play approach. Resulting data sets are less detailed than in well-described examples but serve as an effective screening tool to identify prospects for more detailed work.

  10. Conceptual Design of Optimized Fossil Energy Systems with Capture and Sequestration of Carbon Dioxide

    SciTech Connect (OSTI)

    Nils Johnson; Joan Ogden

    2010-12-31T23:59:59.000Z

    In this final report, we describe research results from Phase 2 of a technical/economic study of fossil hydrogen energy systems with carbon dioxide (CO{sub 2}) capture and storage (CCS). CO{sub 2} capture and storage, or alternatively, CO{sub 2} capture and sequestration, involves capturing CO{sub 2} from large point sources and then injecting it into deep underground reservoirs for long-term storage. By preventing CO{sub 2} emissions into the atmosphere, this technology has significant potential to reduce greenhouse gas (GHG) emissions from fossil-based facilities in the power and industrial sectors. Furthermore, the application of CCS to power plants and hydrogen production facilities can reduce CO{sub 2} emissions associated with electric vehicles (EVs) and hydrogen fuel cell vehicles (HFCVs) and, thus, can also improve GHG emissions in the transportation sector. This research specifically examines strategies for transitioning to large-scale coal-derived energy systems with CCS for both hydrogen fuel production and electricity generation. A particular emphasis is on the development of spatially-explicit modeling tools for examining how these energy systems might develop in real geographic regions. We employ an integrated modeling approach that addresses all infrastructure components involved in the transition to these energy systems. The overall objective is to better understand the system design issues and economics associated with the widespread deployment of hydrogen and CCS infrastructure in real regions. Specific objectives of this research are to: Develop improved techno-economic models for all components required for the deployment of both hydrogen and CCS infrastructure, Develop novel modeling methods that combine detailed spatial data with optimization tools to explore spatially-explicit transition strategies, Conduct regional case studies to explore how these energy systems might develop in different regions of the United States, and Examine how the design and cost of coal-based H{sub 2} and CCS infrastructure depend on geography and location.

  11. Carbon dioxide separation through supported ionic liquids membranes in polymeric matrixes

    SciTech Connect (OSTI)

    Ilconich, J.B.; Luebke, D.R.; Myers, C.R.; Pennline, H.W

    2006-09-01T23:59:59.000Z

    As compared to other gas separation techniques, membranes have several advantages which can include low capital cost, relatively low energy usage and scalability. While it could be possible to synthesize the ideal polymer for membrane separation of carbon dioxide from fuel gas, it would be very intensive in terms of money and time. Supported liquid membranes allow the researcher to utilize the wealth of knowledge available on liquid properties. Ionic liquids, which can be useful in capturing CO2 from fuel gas because they posses high CO2 solubility in the ionic liquid relative to H2, are an excellent candidate for this type of membrane. Ionic liquids are not susceptible to evaporation due to their negligible vapor pressure and thus eliminate the main problem typically seen with supported liquid membranes. A study has been conducted evaluating the use of the ionic liquid 1-hexyl-3-methyl-imidazolium bis(trifuoromethylsulfonyl)imide in supported ionic liquid membranes for the capture of CO2 from streams containing H2. In a joint project, the ionic liquid was synthesized and characterized at the University of Notre Dame, incorporated into a polymeric matrix, and tested at the National Energy Technology Laboratory. Initial results have been very promising with calculated CO2 permeabilities as high as 950 barrers and significant improvements in CO2/H2 selectivity over the unmodified polymer at 37 oC along with promising results at elevated temperatures. In addition to performance, the study included examining the choice of polymeric supports on performance and membrane stability in more realistic operating conditions. Also included in this study was an evaluation of novel approaches to incorporate the ionic liquid into polymer matrices to optimize the performance and stability of the membranes.

  12. Pilot-Scale Silicone Process for Low-Cost Carbon Dioxide Capture

    SciTech Connect (OSTI)

    Farnum, Rachel; Perry, Robert; Wood, Benjamin

    2014-12-31T23:59:59.000Z

    GE Global Research is developing technology to remove carbon dioxide (CO 2) from the flue gas of coal-fired powerplants. A mixture of 3-aminopropyl end-capped polydimethylsiloxane (GAP-1m) and triethylene glycol (TEG) is the preferred CO2-capture solvent. GE Global Research was contracted by the Department of Energy to test a pilot-scale continuous CO2 absorption/desorption system using a GAP-1m/TEG mixture as the solvent. As part of that effort, an Environmental, Health, and Safety (EH&S) assessment for a CO2-capture system for a 550 MW coal-fired powerplant was conducted. Five components of the solvent, CAS#2469-55-8 (GAP-0), CAS#106214-84-0 (GAP-1-4), TEG, and methanol and xylene (minor contaminants from the aminosilicone) are included in this assessment. One by-product, GAP- 1m/SOX salt, and dodecylbenzenesulfonicacid (DDBSA) were also identified foranalysis. An EH&S assessment was also completed for the manufacturing process for the GAP-1m solvent. The chemicals associated with the manufacturing process include methanol, xylene, allyl chloride, potassium cyanate, sodium hydroxide (NaOH), tetramethyldisiloxane (TMDSO), tetramethyl ammonium hydroxide, Karstedt catalyst, octamethylcyclotetrasiloxane (D4), Aliquat 336, methyl carbamate, potassium chloride, trimethylamine, and (3-aminopropyl) dimethyl silanol. The toxicological effects of each component of both the CO2 capture system and the manufacturing process were defined, and control mechanisms necessary to comply with U.S. EH&S regulations are summarized. Engineering and control systems, including environmental abatement, are described for minimizing exposure and release of the chemical components. Proper handling and storage recommendations are made for each chemical to minimize risk to workers and the surrounding community.

  13. Factors in reactor design for carbon dioxide capture with solid, regenerable sorbents

    SciTech Connect (OSTI)

    Hoffman, J.S.; Richards, G.A.; Pennline, H.W.; Fischer, Daniel (Mid-Atlantic Technology Research & Innovation Center, South Charleston, WV); Keller, George (Mid-Atlantic Technology Research & Innovation Center, South Charleston, WV)

    2008-06-01T23:59:59.000Z

    Fossil-fuel burning power plants, which produce a substantial amount of electric power within the United States, are point sources that can emit significant quantities of carbon dioxide (CO2). In a carbon sequestration scenario, the CO2 must first be captured from the point source, or flue gas, and then be permanently stored. Since the capture/separation step dominates the cost of sequestration, various capture/separation technologies are being investigated, and regenerable, solid sorbents are the basis for one promising technique for capturing CO2 from flue gas. The solid sorbent must be able to absorb the CO2 in the first step and then be regenerated by releasing the CO2 in the second step. Due to the low operating pressure of a conventional pulverized coal-fired combustor and its subsequent low partial pressure of CO2, it is envisioned that temperature swing absorption is applicable to the sorbent capture technology. Various CO2 capture sorbents are being examined in this research area, for example physical adsorbents as well as chemical absorbents. However, with respect to process development, various reactor configurations are presently being considered. The reactor designs range from stationary beds of sorbent to those systems where the sorbent is transported between the absorber and regenerator. Emphasis is placed on design implications of employing a regenerable solid sorbent system. Key sorbent parameters required for the sorbents have been identified, including the heat of adsorption, heat capacity of the solid, delta CO2 loading between the absorption and regeneration steps, and any role co-sorption of competitive gases, such as moisture, may play. Other sorbent properties, such as the effect of acid gases within the flue gas or the attrition of the sorbent, must be considered in the reactor design. These factors all impact the reactor design for a particular type of sorbent. For a generic sorbent, reactor designs have been formulated, including a stationary, isothermal reactor, a fluidized bed, and a moving bed. Through calculations, benefits and disadvantages of the designs have been outlined. The implication of the sorbent properties (and thus desired experimental information) on sorbent reactor design are described, and recommendations for operation of these types of capture systems are discussed.

  14. Carbon dioxide fixation by Metallosphaera yellowstonensis and acidothermophilic iron-oxidizing microbial communities from Yellowstone National Park

    SciTech Connect (OSTI)

    Jennings, Ryan; Whitmore, Laura M.; Moran, James J.; Kreuzer, Helen W.; Inskeep, William P.

    2014-05-01T23:59:59.000Z

    The fixation of inorganic carbon (as carbon dioxide) has been documented in all three domains of life and results in the biosynthesis of a diverse suite of organic compounds that support the growth of heterotrophic organisms. The primary aim of this study was to assess the importance of carbon dioxide fixation in high-temperature Fe(III)-oxide mat communities and in pure cultures of one of the dominant Fe(II)-oxidizing organisms (Metallosphaera yellowstonensis strain MK1) present in situ. Protein-encoding genes of the complete 3-hydroxypropionate/4-hydroxybutyrate (3-HP/4-HB) carbon fixation pathway were identified in pure-cultures of M. yellowstonensis strain MK1. Metagenome sequencing from the same environments also revealed genes for the 3-HP/4-HB pathway belonging to M. yellowstonensis populations, as well as genes for a complete reductive TCA cycle from Hydrogenobaculum spp. (Aquificales). Stable isotope (13CO2) labeling was used to measure the fixation of CO2 by M. yellowstonensis strain MK1, and in ex situ assays containing live Fe(III)-oxide microbial mats. Results showed that M. yellowstonensis strain MK1 fixes CO2 via the 3-HP/4-HB pathway with a fractionation factor of ~ 2.5 ‰. Direct analysis of the 13C composition of dissolved inorganic C (DIC), dissolved organic C (DOC), landscape C and microbial mat C showed that mat C is comprised of both DIC and non-DIC sources. The estimated contribution of DIC carbon to biomass C (> ~ 35%) is reasonably consistent with the relative abundance of known chemolithoautotrophs and corresponding CO2 fixation pathways detected in metagenome sequence. The significance of DIC as a major source of carbon for Fe-oxide mat communities provides a foundation for examining microbial interactions in these systems that are dependent on the activity of autotrophic organisms such as Hydrogenobaculum and Metallosphaera spp.

  15. Carbon activation process for increased surface accessibility in electrochemical capacitors

    DOE Patents [OSTI]

    Doughty, Daniel H. (Albuquerque, NM); Eisenmann, Erhard T. (Belpre, OH)

    2001-01-01T23:59:59.000Z

    A process for making carbon film or powder suitable for double capacitor electrodes having a capacitance of up to about 300 F/cm.sup.3 is disclosed. This is accomplished by treating in aqueous nitric acid for a period of about 5 to 15 minutes thin carbon films obtained by carbonizing carbon-containing polymeric material having a high degree of molecular directionality, such as polyimide film, then heating the treated carbon film in a non-oxidizing atmosphere at a non-graphitizing temperature of at least 350.degree. C. for about 20 minutes, and repeating alternately the nitric acid step and the heating step from 7 to 10 times. Capacitors made with this carbon may find uses ranging from electronic devices to electric vehicle applications.

  16. TREATMENT OF HYDROCARBON, ORGANIC RESIDUE AND PRODUCTION CHEMICAL DAMAGE MECHANISMS THROUGH THE APPLICATION OF CARBON DIOXIDE IN NATURAL GAS STORAGE WELLS

    SciTech Connect (OSTI)

    Lawrence J. Pekot

    2004-06-30T23:59:59.000Z

    Two gas storage fields were studied for this project. Overisel field, operated by Consumer's Energy, is located near the town of Holland, Michigan. Huntsman Storage Unit, operated by Kinder Morgan, is located in Cheyenne County, Nebraska near the town of Sidney. Wells in both fields experienced declining performance over several years of their annual injection/production cycle. In both fields, the presence of hydrocarbons, organic materials or production chemicals was suspected as the cause of progressive formation damage leading to the performance decline. Core specimens and several material samples were collected from these two natural gas storage reservoirs. Laboratory studies were performed to characterize the samples that were believed to be representative of a reservoir damage mechanism previously identified as arising from the presence of hydrocarbons, organic residues or production chemicals. A series of laboratory experiments were performed to identify the sample materials, use these materials to damage the flow capacity of the core specimens and then attempt to remove or reduce the induced damage using either carbon dioxide or a mixture of carbon dioxide and other chemicals. Results of the experiments showed that pure carbon dioxide was effective in restoring flow capacity to the core specimens in several different settings. However, in settings involving asphaltines as the damage mechanism, both pure carbon dioxide and mixtures of carbon dioxide and other chemicals provided little effectiveness in damage removal.

  17. New demands, new supplies : a national look at the water balance of carbon dioxide capture and sequestration.

    SciTech Connect (OSTI)

    Krumhansl, James Lee; McNemar, Andrea (National Energy Technology Laboratory (NETL), Morgantown, WV); Kobos, Peter Holmes; Roach, Jesse Dillon; Klise, Geoffrey Taylor

    2010-12-01T23:59:59.000Z

    Concerns over rising concentrations of greenhouse gases in the atmosphere have resulted in serious consideration of policies aimed at reduction of anthropogenic carbon dioxide (CO2) emissions. If large scale abatement efforts are undertaken, one critical tool will be geologic sequestration of CO2 captured from large point sources, specifically coal and natural gas fired power plants. Current CO2 capture technologies exact a substantial energy penalty on the source power plant, which must be offset with make-up power. Water demands increase at the source plant due to added cooling loads. In addition, new water demand is created by water requirements associated with generation of the make-up power. At the sequestration site however, saline water may be extracted to manage CO2 plum migration and pressure build up in the geologic formation. Thus, while CO2 capture creates new water demands, CO2 sequestration has the potential to create new supplies. Some or all of the added demand may be offset by treatment and use of the saline waters extracted from geologic formations during CO2 sequestration. Sandia National Laboratories, with guidance and support from the National Energy Technology Laboratory, is creating a model to evaluate the potential for a combined approach to saline formations, as a sink for CO2 and a source for saline waters that can be treated and beneficially reused to serve power plant water demands. This presentation will focus on the magnitude of added U.S. power plant water demand under different CO2 emissions reduction scenarios, and the portion of added demand that might be offset by saline waters extracted during the CO2 sequestration process.

  18. A synthesis of carbon dioxide emissions from fossil-fuel combustion

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    dioxide emissions from fossil-fuel combustion R. J. Andresdioxide emis- sions from fossil-fuel use in North America,S. : High resolution fossil fuel combustion CO 2 emission

  19. absorbing sulfur dioxide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    simulation to optimize carbon dioxide (CO2) sequestration and enhance oil recovery (CO2-EOR) based on known 158 Interglacials, Milankovitch Cycles, and Carbon Dioxide CERN...

  20. amorphous titanium dioxide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    simulation to optimize carbon dioxide (CO2) sequestration and enhance oil recovery (CO2-EOR) based on known 177 Interglacials, Milankovitch Cycles, and Carbon Dioxide CERN...

  1. acute sulphur dioxide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    simulation to optimize carbon dioxide (CO2) sequestration and enhance oil recovery (CO2-EOR) based on known 82 Interglacials, Milankovitch Cycles, and Carbon Dioxide CERN...

  2. addressing chlorine dioxide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    simulation to optimize carbon dioxide (CO2) sequestration and enhance oil recovery (CO2-EOR) based on known 103 Interglacials, Milankovitch Cycles, and Carbon Dioxide CERN...

  3. atmospheric sulphur dioxide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon dioxide CERN Preprints Summary: The primary ingredient of Anthropogenic Global Warming hypothesis is the assumption that atmospheric carbon dioxide variations are the cause...

  4. atmospheric sulfur dioxide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon dioxide CERN Preprints Summary: The primary ingredient of Anthropogenic Global Warming hypothesis is the assumption that atmospheric carbon dioxide variations are the cause...

  5. Carbon monoxide inhalation increases microparticles causing vascular and CNS dysfunction

    SciTech Connect (OSTI)

    Xu, Jiajun; Yang, Ming [Department of Emergency Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States); Kosterin, Paul [Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States); Salzberg, Brian M. [Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States); Milovanova, Tatyana N.; Bhopale, Veena M. [Department of Emergency Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States); Thom, Stephen R., E-mail: sthom@smail.umaryland.edu [Department of Emergency Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States)

    2013-12-01T23:59:59.000Z

    We hypothesized that circulating microparticles (MPs) play a role in pro-inflammatory effects associated with carbon monoxide (CO) inhalation. Mice exposed for 1 h to 100 ppm CO or more exhibit increases in circulating MPs derived from a variety of vascular cells as well as neutrophil activation. Tissue injury was quantified as 2000 kDa dextran leakage from vessels and as neutrophil sequestration in the brain and skeletal muscle; and central nervous system nerve dysfunction was documented as broadening of the neurohypophysial action potential (AP). Indices of injury occurred following exposures to 1000 ppm for 1 h or to 1000 ppm for 40 min followed by 3000 ppm for 20 min. MPs were implicated in causing injuries because infusing the surfactant MP lytic agent, polyethylene glycol telomere B (PEGtB) abrogated elevations in MPs, vascular leak, neutrophil sequestration and AP prolongation. These manifestations of tissue injury also did not occur in mice lacking myeloperoxidase. Vascular leakage and AP prolongation were produced in naďve mice infused with MPs that had been obtained from CO poisoned mice, but this did not occur with MPs obtained from control mice. We conclude that CO poisoning triggers elevations of MPs that activate neutrophils which subsequently cause tissue injuries. - Highlights: • Circulating microparticles (MPs) increase in mice exposed to 100 ppm CO or more. • MPs are lysed by infusing the surfactant polyethylene glycol telomere B. • CO-induced MPs cause neutrophil activation, vascular leak and CNS dysfunction. • Similar tissue injuries do not arise with MPs obtained from air-exposed, control mice.

  6. Conceptual Design of Optimized Fossil Energy Systems with Capture and Sequestration of Carbon Dioxide

    E-Print Network [OSTI]

    Ogden, Joan

    2004-01-01T23:59:59.000Z

    of Fossil Hydrogen Energy Systems with Carbon Capture andThe Implications Of New Carbon Capture And SequestrationW H SAMMIS WILLOW ISLAND TOTAL Carbon capture In the plant

  7. Carbon dioxide reuse and sequestration: The state of the art today

    E-Print Network [OSTI]

    Benson, Sally M.; Dorchak, Thomas; Jacobs, Gary; Ekmann, James; Bishop, Jim; Grahame, Thomas

    2000-01-01T23:59:59.000Z

    projects related to carbon sequestration, Presented at theDOE workshop on carbon sequestration, Washington D.C. ,29. U.S. DOE, Carbon Sequestration: State of the Science,

  8. Novel Biological Conversion of Hydrogen and Carbon Dioxide Directly into Biodiesel: Cooperative Research and Development Final Report, CRADA Number: CRD-10-408

    SciTech Connect (OSTI)

    Maness, P. C.

    2014-06-01T23:59:59.000Z

    OPX Biotechnologies, Inc. (OPX), the National Renewable Energy Laboratory (NREL), and Johnson Matthey will develop and optimize a novel, engineered microorganism that directly produces biodiesel from renewable hydrogen (H2) and carbon dioxide (CO2). The proposed process will fix CO2 utilizing H2 to generate an infrastructure-compatible, energy-dense fuel at costs of less than $2.50 per gallon, with water being produced as the primary byproduct. NREL will perform metabolic engineering on the bacterium Cupriavidus necator (formerly Ralstonia eutropha) and a techno-economic analysis to guide future scale-up work. H2 and CO2 uptakes rates will be genetically increased, production of free fatty acids will be enhanced and their degradation pathway blocked in order to meet the ultimate program goals.

  9. Optimization and Comparison of Direct and Indirect Supercritical Carbon Dioxide Power Plant Cycles for Nuclear Applications

    SciTech Connect (OSTI)

    Edwin A. Harvego; Michael G. McKellar

    2011-11-01T23:59:59.000Z

    There have been a number of studies involving the use of gases operating in the supercritical mode for power production and process heat applications. Supercritical carbon dioxide (CO2) is particularly attractive because it is capable of achieving relatively high power conversion cycle efficiencies in the temperature range between 550 C and 750 C. Therefore, it has the potential for use with any type of high-temperature nuclear reactor concept, assuming reactor core outlet temperatures of at least 550 C. The particular power cycle investigated in this paper is a supercritical CO2 Recompression Brayton Cycle. The CO2 Recompression Brayton Cycle can be used as either a direct or indirect power conversion cycle, depending on the reactor type and reactor outlet temperature. The advantage of this cycle when compared to the helium Brayton cycle is the lower required operating temperature; 550 C versus 850 C. However, the supercritical CO2 Recompression Brayton Cycle requires an operating pressure in the range of 20 MPa, which is considerably higher than the required helium Brayton cycle operating pressure of 8 MPa. This paper presents results of analyses performed using the UniSim process analyses software to evaluate the performance of both a direct and indirect supercritical CO2 Brayton Recompression cycle for different reactor outlet temperatures. The direct supercritical CO2 cycle transferred heat directly from a 600 MWt reactor to the supercritical CO2 working fluid supplied to the turbine generator at approximately 20 MPa. The indirect supercritical CO2 cycle assumed a helium-cooled Very High Temperature Reactor (VHTR), operating at a primary system pressure of approximately 7.0 MPa, delivered heat through an intermediate heat exchanger to the secondary indirect supercritical CO2 Brayton Recompression cycle, again operating at a pressure of about 20 MPa. For both the direct and indirect cycles, sensitivity calculations were performed for reactor outlet temperature between 550 C and 850 C. The UniSim models used realistic component parameters and operating conditions to model the complete reactor and power conversion systems. CO2 properties were evaluated, and the operating ranges of the cycles were adjusted to take advantage of the rapidly changing properties of CO2 near the critical point. The results of the analyses showed that, for the direct supercritical CO2 power cycle, thermal efficiencies in the range of 40 to 50% can be achieved. For the indirect supercritical CO2 power cycle, thermal efficiencies were approximately 10% lower than those obtained for the direct cycle over the same reactor outlet temperature range.

  10. Integrated Energy System with Beneficial Carbon Dioxide (CO2) Use - Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Sun, Xiaolei; Rink, Nancy T

    2011-04-29T23:59:59.000Z

    This report presents an integrated energy system that combines the production of substitute natural gas through coal hydrogasification with an algae process for beneficial carbon dioxide (CO2) use and biofuel production (funded under Department of Energy (DOE) contract DE-FE0001099). The project planned to develop, test, operate and evaluate a 2 ton-per-day coal hydrogasification plant and 25-acre algae farm at the Arizona Public Service (APS) 1000 Megawatt (MW) Cholla coal-fired power plant in Joseph City, Arizona. Conceptual design of the integrated system was undertaken with APS partners Air Liquide (AL) and Parsons. The process engineering was separated into five major areas: flue gas preparation and CO2 delivery, algae farming, water management, hydrogasification, and biofuel production. The process flow diagrams, energy and material balances, and preliminary major equipment needs for each major area were prepared to reflect integrated process considerations and site infrastructure design basis. The total project also included research and development on a bench-scale hydrogasifier, one-dimensional (1-D) kinetic-model simulation, extensive algae stressing, oil extraction, lipid analysis and a half-acre algae farm demonstration at APS?s Redhawk testing facility. During the project, a two-acre algae testing facility with a half-acre algae cultivation area was built at the APS Redhawk 1000 MW natural gas combined cycle power plant located 55 miles west of Phoenix. The test site integrated flue gas delivery, CO2 capture and distribution, algae cultivation, algae nursery, algae harvesting, dewatering and onsite storage as well as water treatment. The site environmental, engineering, and biological parameters for the cultivators were monitored remotely. Direct biodiesel production from biomass through an acid-catalyzed transesterification reaction and a supercritical methanol transesterification reaction were evaluated. The highest oil-to-biodiesel conversion of 79.9% was achieved with a stressed algae sample containing 40% algae oil. The effort concluded that producing biodiesel directly from the algae biomass could be an efficient, cost-effective and readily scalable way to produce biodiesel by eliminating the oil extraction process.

  11. Visual representation of carbon dioxide adsorption in a low-volatile bituminous coal molecular model

    SciTech Connect (OSTI)

    Marielle R. Narkiewicz; Jonathan P. Mathews [Pennsylvania State University, University Park, PA (United States). Department of Energy and Minerals Engineering

    2009-09-15T23:59:59.000Z

    Carbon dioxide can be sequestered in unmineable coal seams to aid in mitigating global climate change, while concurrently CH{sub 4} can be desorbed from the coal seam and used as a domestic energy source. In this work, a previously constructed molecular representation was used to simulate several processes that occur during sequestration, such as sorption capacities of CO{sub 2} and CH{sub 4}, CO{sub 2}-induced swelling, contraction because of CH{sub 4} and water loss, and the pore-blocking role of moisture. This is carried out by calculating the energy minima of the molecular model with different amounts of CO{sub 2}, CH{sub 4}, and H{sub 2}O. The model used is large (>2000 atoms) and contains a molecular-weight distribution, so that it has the flexibility to be used by other researchers and for other purposes in the future. In the low-level molecular modeling presented here, it was anticipated that CO{sub 2} would be adsorbed more readily than CH{sub 4}, that swelling would be anisotropic, greater perpendicular to the bedding plane because of the rank of this coal, and finally, that, with the addition of moisture, CO{sub 2} capacity in the coal would be reduced. As expected with this high-rank coal, there was swelling when CO{sub 2} perturbed the structure of approximately 5%. It was found that, on the basis of the interconnected pore structure and molecular sizes, CO{sub 2} was able to access 12.4% more of the pore volume (as defined by helium) than CH{sub 4}, in the rigid molecular representation. With water as stationary molecules, mostly hydrogen bound to the coal oxygen functionality, pore access decreased by 5.1% of the pore volume for CO{sub 2} accessibility and 4.7% of the pore volume for CH{sub 4} accessibility. 36 refs., 12 figs., 1 tab.

  12. FY-05 First Quarter Report on Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving PBR Efficiency and Testing Material Compatibility

    SciTech Connect (OSTI)

    Chang Oh

    2005-01-01T23:59:59.000Z

    The objective of this research is to improve a helium Brayton cycle and to develop a supercritical carbon dioxide Brayton cycle for the Pebble Bed Reactor (PBR) that can also be applied to the Fast Gas-Cooled Reactor (FGR) and the Very-High-Temperature Gas- Cooled Reactor (VHTR). The proposed supercritical carbon dioxide Brayton cycle will be used to improve the PBR, FGR, and VHTR net plant efficiency. Another objective of this research is to test materials to be used in the power conversion side at supercritical carbon dioxide conditions. Generally, the optimized Brayton cycle and balance of plant (BOP) to be developed from this study can be applied to Generation-IV reactor concepts. Particularly, we are interested in VHTR because it has a good chance of being built in the near future.

  13. NERI Quarterly Progress Report -- April 1 - June 30, 2005 -- Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving PBR Efficiency and Testing Material Compatibility

    SciTech Connect (OSTI)

    Chang Oh

    2005-07-01T23:59:59.000Z

    The objective of this research is to improve a helium Brayton cycle and to develop a supercritical carbon dioxide Brayton cycle for the Pebble Bed Reactor (PBR) that can also be applied to the Fast Gas-Cooled Reactor (FGR) and the Very-High-Temperature Gas-Cooled Reactor (VHTR). The proposed supercritical carbon dioxide Brayton cycle will be used to improve the PBR, FGR, and VHTR net plant efficiency. Another objective of this research is to test materials to be used in the power conversion side at supercritical carbon dioxide conditions. Generally, the optimized Brayton cycle and balance of plant (BOP) to be developed from this study can be applied to Generation-IV reactor concepts. Particularly, we are interested in VHTR because it has a good chance of being built in the near future.

  14. Numerical modeling of carbon dioxide sequestration on the rate of pressure solution creep in limestone: Preliminary results

    E-Print Network [OSTI]

    Renard, Francois; Hellmann, Roland; Collombet, Marielle; Guen, Yvi Le

    2008-01-01T23:59:59.000Z

    When carbon dioxide (CO2) is injected into an aquifer or a depleted geological reservoir, its dissolution into solution results in acidification of the pore waters. As a consequence, the pore waters become more reactive, which leads to enhanced dissolution-precipitation processes and a modification of the mechanical and hydrological properties of the rock. This effect is especially important for limestones given that the solubility and reactivity of carbonates is strongly dependent on pH and the partial pressure of CO2. The main mechanism that couples dissolution, precipitation and rock matrix deformation is commonly referred to as intergranular pressure solution creep (IPS) or pervasive pressure solution creep (PSC). This process involves dissolution at intergranular grain contacts subject to elevated stress, diffusion of dissolved material in an intergranular fluid, and precipitation in pore spaces subject to lower stress. This leads to an overall and pervasive reduction in porosity due to both grain indent...

  15. Carbon Dioxide Information Analysis Center and World Data Center-A for atmospheric trace gases: FY 1993 activities

    SciTech Connect (OSTI)

    Cushman, R.M. [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center; Stoss, F.W. [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center]|[Univ. of Tennessee, Knoxville, TN (United States). Energy, Environment, and Resources Center

    1994-01-01T23:59:59.000Z

    During the course of a fiscal year, Oak Ridge National Laboratory`s Carbon Dioxide Information Analysis Center (CDIAC) distributes thousands of specialty publications-numeric data packages (NDPs), computer model packages (CMPs), technical reports, public communication publications, newsletters, article reprints, and reference books-in response to requests for information related to global environmental issues, primarily those pertaining to climate change. CDIAC`s staff also provide technical responses to specific inquiries related to carbon dioxide (CO{sub 2}), other trace gases, and climate. Hundreds of referrals to other researchers, policy analysts, information specialists, or organizations are also facilitated by CDIAC`s staff. This report provides an account of the activities accomplished by CDIAC (including World Data Center-A for Atmospheric Trace Gases) during the period October 1, 1992, to September 30, 1993. An organizational overview of CDIAC and its staff is supplemented by a detailed description of inquiries received and CDIAC`s response to those inquiries. An analysis and description of the preparation and distribution of NDPS, CMPS, technical reports, newsletters, fact sheets, specialty publications, and reprints are provided. Comments and descriptions of CDIAC`s information management systems, professional networking, and special bilateral agreements are also presented.

  16. ASSESSING CARBON DIOXIDE EMISSIONS FROM U.S. LARGE CITIES Risa Patarasuk1, Darragh O'Keeffe1, Yang Song1, Igor Razlivano1, Kevin R. Gurney1, and Preeti Rao2

    E-Print Network [OSTI]

    Hall, Sharon J.

    ASSESSING CARBON DIOXIDE EMISSIONS FROM U.S. LARGE CITIES Risa Patarasuk1, Darragh O'Keeffe1, Yang University, 2Jet Propulsion Laboratory Introduction Carbon dioxide (CO2) emissions, a primary greenhouse gas emissions from natural gas, coal, and petroleum sources. We use a `bottom-up' approach in which CO2

  17. Causes and Implications of Persistent Atmospheric Carbon Dioxide Biases in Earth System Models

    SciTech Connect (OSTI)

    Hoffman, Forrest M [ORNL] [ORNL; Randerson, James T. [University of California, Irvine] [University of California, Irvine; Arora, Vivek K. [Canadian Centre for Climate Modelling and Analysis, Meteorological Service of Canada] [Canadian Centre for Climate Modelling and Analysis, Meteorological Service of Canada; Bao, Qing [State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics] [State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics; Cadule, Patricia [Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l'Environment] [Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l'Environment; Ji, Duoying [State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing] [State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing; Jones, Chris D. [Hadley Centre, U.K. Met Office] [Hadley Centre, U.K. Met Office; Kawamiya, Michio [Japan Agency for Marine-Earth Science and Technology (JAMSTEC)] [Japan Agency for Marine-Earth Science and Technology (JAMSTEC); Khatiwala, Samar [Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY] [Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY; Lindsay, Keith [National Center for Atmospheric Research (NCAR)] [National Center for Atmospheric Research (NCAR); Obata, Atsushi [Meteorological Research Institute, Japan] [Meteorological Research Institute, Japan; Shevliakova, Elena [Princeton University] [Princeton University; Six, Katharina D. [Max Planck Institute for Meteorology, Hamburg, Germany] [Max Planck Institute for Meteorology, Hamburg, Germany; Tjiputra, Jerry F. [Uni Climate, Uni Research] [Uni Climate, Uni Research; Volodin, Evgeny M. [Institute of Numerical Mathematics, Russian Academy of Science, Moscow] [Institute of Numerical Mathematics, Russian Academy of Science, Moscow; Wu, Tongwen [China Meteorological Administration (CMA), Beijing] [China Meteorological Administration (CMA), Beijing

    2014-01-01T23:59:59.000Z

    The strength of feedbacks between a changing climate and future CO2 concentrations are uncertain and difficult to predict using Earth System Models (ESMs). We analyzed emission-driven simulations--in which atmospheric CO2 levels were computed prognostically--for historical (1850-2005) and future periods (RCP 8.5 for 2006-2100) produced by 15 ESMs for the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5). Comparison of ESM prognostic atmospheric CO2 over the historical period with observations indicated that ESMs, on average, had a small positive bias in predictions of contemporary atmospheric CO2. Weak ocean carbon uptake in many ESMs contributed to this bias, based on comparisons with observations of ocean and atmospheric anthropogenic carbon inventories. We found a significant linear relationship between contemporary atmospheric CO2 biases and future CO2 levels for the multi-model ensemble. We used this relationship to create a contemporary CO2 tuned model (CCTM) estimate of the atmospheric CO2 trajectory for the 21st century. The CCTM yielded CO2 estimates of 600 {plus minus} 14 ppm at 2060 and 947 {plus minus} 35 ppm at 2100, which were 21 ppm and 32 ppm below the multi-model mean during these two time periods. Using this emergent constraint approach, the likely ranges of future atmospheric CO2, CO2-induced radiative forcing, and CO2-induced temperature increases for the RCP 8.5 scenario were considerably narrowed compared to estimates from the full ESM ensemble. Our analysis provided evidence that much of the model-to-model variation in projected CO2 during the 21st century was tied to biases that existed during the observational era, and that model differences in the representation of concentration-carbon feedbacks and other slowly changing carbon cycle processes appear to be the primary driver of this variability. By improving models to more closely match the long-term time series of CO2 from Mauna Loa, our analysis suggests uncertainties in future climate projections can be reduced.

  18. Fiscal Year 1998 Annual Report, Carbon Dioxide Information Analysis Center, World Data Center -- A for Atmospheric Trace Gases

    SciTech Connect (OSTI)

    Cushman, R.M.; Boden, T.A.; Hook, L.A.; Jones, S.B.; Kaiser, D.P.; Nelson, T.R.

    1999-03-01T23:59:59.000Z

    Once again, the most recent fiscal year was a productive one for the Carbon Dioxide Information Analysis Center (CDIAC) at Oak Ridge National Laboratory (ORNL), as well as a year for change. The FY 1998 in Review section in this report summarizes quite a few new and updated data and information products, and the ''What's Coming in FY 1999'' section describes our plans for this new fiscal year. During FY 1998, CDIAC began a data-management system for AmeriFlux, a long-term study of carbon fluxes between the terrestrial biosphere of the Western Hemisphere and the atmosphere. The specific objectives of AmeriFlux are to establish an infrastructure for guiding, collecting, synthesizing, and disseminating long-term measurements of CO{sub 2}, water, and energy exchange from a variety of ecosystems; collect critical new information to help define the current global CO{sub 2} budget; enable improved predictions of future concentrations of atmospheric CO{sub 2}; and enhance understanding of carbon fluxes. Net Ecosystem Production (NEP), and carbon sequestration in the terrestrial biosphere. The data-management system, available from CDIAC'S AmeriFlux home page (http://cdiac.esd.ornl.gov/programs/ameriflux/ ) is intended to provide consistent, quality-assured, and documented data across all AmeriFlux sites in the US, Canada, Costa Rica, and Brazil. It is being developed by Antoinette Brenkert and Tom Boden, with assistance from Susan Holladay (who joined CDIAC specifically to support the AmeriFlux data-management effort).

  19. Increase of Carbon Cycle Feedback with Climate Sensitivity: Results from a coupled Climate and Carbon Cycle Model

    SciTech Connect (OSTI)

    Govindasamy, B; Thompson, S; Mirin, A; Wickett, M; Caldeira, K; Delire, C

    2004-04-01T23:59:59.000Z

    Coupled climate and carbon cycle modeling studies have shown that the feedback between global warming and the carbon cycle, in particular the terrestrial carbon cycle, could accelerate climate change and result in larger warming. In this paper, we investigate the sensitivity of this feedback for year-2100 global warming in the range of 0 K to 8 K. Differing climate sensitivities to increased CO{sub 2} content are imposed on the carbon cycle models for the same emissions. Emissions from the SRES A2 scenario are used. We use a fully-coupled climate and carbon cycle model, the INtegrated Climate and CArbon model (INCCA) the NCAR/DOE Parallel Coupled Model coupled to the IBIS terrestrial biosphere model and a modified-OCMIP ocean biogeochemistry model. In our model, for scenarios with year-2100 global warming increasing from 0 to 8 K, land uptake decreases from 47% to 29% of total CO{sub 2} emissions. Due to competing effects, ocean uptake (16%) shows almost no change at all. Atmospheric CO{sub 2} concentration increases were 48% higher in the run with 8 K global climate warming than in the case with no warming. Our results indicate that carbon cycle amplification of climate warming will be greater if there is higher climate sensitivity to increased atmospheric CO{sub 2} content; the carbon cycle feedback factor increases from 1.13 to 1.48 when global warming increases from 3.2 to 8 K.

  20. Novel Supercritical Carbon Dioxide Power Cycle Utilizing Pressured Oxy-combustion in Conjunction with Cryogenic Compression

    SciTech Connect (OSTI)

    Brun, Klaus; McClung, Aaron; Davis, John

    2014-03-31T23:59:59.000Z

    The team of Southwest Research Institute® (SwRI) and Thar Energy LLC (Thar) applied technology engineering and economic analysis to evaluate two advanced oxy-combustion power cycles, the Cryogenic Pressurized Oxy-combustion Cycle (CPOC), and the Supercritical Oxy-combustion Cycle. This assessment evaluated the performance and economic cost of the two proposed cycles with carbon capture, and included a technology gap analysis of the proposed technologies to determine the technology readiness level of the cycle and the cycle components. The results of the engineering and economic analysis and the technology gap analysis were used to identify the next steps along the technology development roadmap for the selected cycle. The project objectives, as outlined in the FOA, were 90% CO{sub 2} removal at no more than a 35% increase in cost of electricity (COE) as compared to a Supercritical Pulverized Coal Plant without CO{sub 2} capture. The supercritical oxy-combustion power cycle with 99% carbon capture achieves a COE of $121/MWe. This revised COE represents a 21% reduction in cost as compared to supercritical steam with 90% carbon capture ($137/MWe). However, this represents a 49% increase in the COE over supercritical steam without carbon capture ($80.95/MWe), exceeding the 35% target. The supercritical oxy-combustion cycle with 99% carbon capture achieved a 37.9% HHV plant efficiency (39.3% LHV plant efficiency), when coupling a supercritical oxy-combustion thermal loop to an indirect supercritical CO{sub 2} (sCO{sub 2}) power block. In this configuration, the power block achieved 48% thermal efficiency for turbine inlet conditions of 650°C and 290 atm. Power block efficiencies near 60% are feasible with higher turbine inlet temperatures, however a design tradeoff to limit firing temperature to 650°C was made in order to use austenitic stainless steels for the high temperature pressure vessels and piping and to minimize the need for advanced turbomachinery features such as blade cooling. The overall technical readiness of the supercritical oxy-combustion cycle is TRL 2, Technology Concept, due to the maturity level of the supercritical oxy-combustor for solid fuels, and several critical supporting components, as identified in the Technical Gap Analysis. The supercritical oxycombustor for solid fuels operating at pressures near 100 atm is a unique component of the supercritical oxy-combustion cycle. In addition to the low TRL supercritical oxy-combustor, secondary systems were identified that would require adaptation for use with the supercritical oxycombustion cycle. These secondary systems include the high pressure pulverized coal feed, high temperature cyclone, removal of post-combustion particulates from the high pressure cyclone underflow stream, and micro-channel heat exchangers tolerant of particulate loading. Bench scale testing was utilized to measure coal combustion properties at elevated pressures in a CO{sub 2} environment. This testing included coal slurry preparation, visualization of coal injection into a high pressure fluid, and modification of existing test equipment to facilitate the combustion properties testing. Additional bench scale testing evaluated the effectiveness of a rotary atomizer for injecting a coal-water slurry into a fluid with similar densities, as opposed to the typical application where the high density fluid is injected into a low density fluid. The swirl type supercritical oxy-combustor was developed from initial concept to an advanced design stage through numerical simulation using FLUENT and Chemkin to model the flow through the combustor and provide initial assessment of the coal combustion reactions in the flow path. This effort enabled the initial combustor mechanical layout, initial pressure vessel design, and the conceptual layout of a pilot scale test loop. A pilot scale demonstration of the supercritical oxy-combustion cycle is proposed as the next step in the technology development. This demonstration would advance the supercritical oxy-combustion cycle and the supercritical

  1. Increasing Security and Reducing Carbon Emissions of the U.S...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Technology Laboratory Increasing Security and Reducing Carbon Emissions of the U.S. Transportation Sector: A Transformational Role for Coal with Biomass This work was...

  2. Estimating carbon dioxide emission factors for the California electric power sector

    SciTech Connect (OSTI)

    Marnay, Chris; Fisher, Diane; Murtishaw, Scott; Phadke, Amol; Price, Lynn; Sathaye, Jayant

    2002-08-01T23:59:59.000Z

    The California Climate Action Registry (''Registry'') was initially established in 2000 under Senate Bill 1771, and clarifying legislation (Senate Bill 527) was passed in September 2001. The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) has been asked to provide technical assistance to the California Energy Commission (CEC) in establishing methods for calculating average and marginal electricity emissions factors, both historic and current, as well as statewide and for sub-regions. This study is exploratory in nature. It illustrates the use of three possible approaches and is not a rigorous estimation of actual emissions factors. While the Registry will ultimately cover emissions of all greenhouse gases (GHGs), presently it is focusing on carbon dioxide (CO2). Thus, this study only considers CO2, which is by far the largest GHG emitted in the power sector. Associating CO2 emissions with electricity consumption encounters three major complications. First, electricity can be generated from a number of different primary energy sources, many of which are large sources of CO2 emissions (e.g., coal combustion) while others result in virtually no CO{sub 2} emissions (e.g., hydro). Second, the mix of generation resources used to meet loads may vary at different times of day or in different seasons. Third, electrical energy is transported over long distances by complex transmission and distribution systems, so the generation sources related to electricity usage can be difficult to trace and may occur far from the jurisdiction in which that energy is consumed. In other words, the emissions resulting from electricity consumption vary considerably depending on when and where it is used since this affects the generation sources providing the power. There is no practical way to identify where or how all the electricity used by a certain customer was generated, but by reviewing public sources of data the total emission burden of a customer's electricity supplier can b e found and an average emissions factor (AEF) calculated. These are useful for assigning a net emission burden to a facility. In addition, marginal emissions factors (MEFs) for estimating the effect of changing levels of usage can be calculated. MEFs are needed because emission rates at the margin are likely to diverge from the average. The overall objective of this task is to develop methods for estimating AEFs and MEFs that can provide an estimate of the combined net CO2 emissions from all generating facilities that provide electricity to California electricity customers. The method covers the historic period from 1990 to the present, with 1990 and 1999 used as test years. The factors derived take into account the location and time of consumption, direct contracts for power which may have certain atypical characteristics (e.g., ''green'' electricity from renewable resources), resource mixes of electricity providers, import and export of electricity from utility owned and other sources, and electricity from cogeneration. It is assumed that the factors developed in this way will diverge considerably from simple statewide AEF estimates based on standardized inventory estimates that use conventions inconsistent with the goals of this work. A notable example concerns the treatment of imports, which despite providing a significant share of California's electricity supply picture, are excluded from inventory estimates of emissions, which are based on geographical boundaries of the state.

  3. October 2004 / Vol. 54 No. 10 BioScience 895 Rising atmospheric carbon dioxide (CO2

    E-Print Network [OSTI]

    Post, Wilfred M.

    of the 21st century (IPCC 2001a). Management of vegetation and soils for terrestrial carbon sequestration or penalties associated with CO2 management. For terrestrial carbon sequestration to be useful, it must for evalu- ating all aspects of a carbon sequestration practice. Here we outline a complete and integrated

  4. The Effects of Moisture and Organic Matter Lability on Carbon Dioxide and Methane Production in an

    E-Print Network [OSTI]

    Vallino, Joseph J.

    amounts of carbon in the form of peat and other undecomposed plant matter. Global climate change al. 2003). The carbon stored in wetlands is in the form of undecayed plant matter, or peat. Peat carbon are very useful for agricultural purposes. Their peat and preserved timber has been mined

  5. Anthropogenic increase in carbon dioxide compromises plant defense against invasive insects

    E-Print Network [OSTI]

    DeLucia, Evan H.

    the interactions between crop plants and insect pests and may pro- mote yet another form of global change- propane-1-carboxylate synthase (acc-s)]. The down-regulation of these genes, in turn, reduced

  6. Increased Atmospheric Carbon Dioxide Limits Soil Storage | U.S. DOE Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other News Community Connections:HAZARD ANALYSES OF GLINTof

  7. Carbon Dioxide Selective Supported Ionic Liquid Membranes: The Effect of Contaminants

    SciTech Connect (OSTI)

    Luebke, D.R.; Ilconich, J.B.; Myers, C.R.; Pennline, H.W.

    2008-04-01T23:59:59.000Z

    The integrated gasification combined cycle (IGCC) is widely viewed as a promising technology for the large scale production of energy in a carbon constrained world. These cycles, which include gasification, contaminant removal, water-gas shift, CO2 capture and compression, and combustion of the reduced-carbon fuel gas in a turbine, often have significant efficiency advantages over conventional combustion technologies. A CO2 selective membrane capable of maintaining performance at conditions approaching those of low temperature water-gas shift (260oC) could facilitate the production of carbon-neutral energy by simultaneously driving the shift reaction to completion and concentrating CO2 for sequestration. Supported ionic liquid membranes (SILMs) have been previously evaluated for this application and determined to be physically and chemically stable to temperatures in excess of 300oC. These membranes were based on ionic liquids which interacted physically with CO2 and diminished considerably in selectivity at higher temperatures. To alleviate this problem, the original ionic liquids were replaced with ionic liquids able to form chemical complexes with CO2. These complexing ionic liquid membranes have a local maximum in selectivity which is observed at increasing temperatures for more stable complexes. Efforts are currently underway to develop ionic liquids with selectivity maxima at temperatures greater than 75oC, the best result to date, but other practical concerns must also be addressed if the membrane is to be realistically expected to function under water-gas shift conditions. A CO2 selective membrane must function not only at high temperature, but also in the presence of all the reactants and contaminants likely to be present in coal-derived fuel gas, including water, CO, and H2S. A study has been undertaken which examines the effects of each of these gases on both complexing and physically interacting supported liquid membranes. In a joint project, researchers at the University of Notre Dame synthesized and characterized ionic liquids, and researchers at the National Energy Technology Laboratory incorporated candidate ionic liquids into supports and evaluated the resulting materials for membrane performance.

  8. Hydrogen storage and carbon dioxide capture in an iron-based sodalite-type metalorganic framework (Fe-BTT) discovered via high-throughput methods

    E-Print Network [OSTI]

    Hydrogen storage and carbon dioxide capture in an iron-based sodalite-type metal­organic framework/or volumetric capacities that approach the U.S. Department of Energy targets2 for mobile hydrogen storage storage capacity of 1.1 wt% and 8.4 g LŔ1 at 100 bar and 298 K. Powder neutron diffraction experiments

  9. Atmospheric Circulation Response to an Instantaneous Doubling of Carbon Dioxide. Part I: Model Experiments and Transient Thermal Response in the Troposphere*

    E-Print Network [OSTI]

    Atmospheric Circulation Response to an Instantaneous Doubling of Carbon Dioxide. Part I: Model Experiments and Transient Thermal Response in the Troposphere* YUTIAN WU Department of Applied Physics (CO2) by looking into the transient step-by-step adjustment of the circulation. The transient

  10. Imaging Wellbore Cement Degradation by Carbon Dioxide under Geologic Sequestration Conditions Using X?ray Computed Microtomography

    SciTech Connect (OSTI)

    Jung, Hun Bok; Jansik, Danielle P.; Um, Wooyong

    2013-01-01T23:59:59.000Z

    ABSTRACT: X-ray microtomography (XMT), a nondestructive three-dimensional imaging technique, was applied to demonstrate its capability to visualize the mineralogical alteration and microstructure changes in hydrated Portland cement exposed to carbon dioxide under geologic sequestration conditions. Steel coupons and basalt fragments were added to the cement paste in order to simulate cement-steel and cement-rock interfaces. XMT image analysis showed the changes of material density and porosity in the degradation front (density: 1.98 g/cm3, porosity: 40%) and the carbonated zone (density: 2.27 g/cm3, porosity: 23%) after reaction with CO2- saturated water for 5 months compared to unaltered cement (density: 2.15 g/cm3, porosity: 30%). Three-dimensional XMT imaging was capable of displaying spatially heterogeneous alteration in cement pores, calcium carbonate precipitation in cement cracks, and preferential cement alteration along the cement-steel and cement-rock interfaces. This result also indicates that the interface between cement and host rock or steel casing is likely more vulnerable to a CO2 attack than the cement matrix in a wellbore environment. It is shown here that XMT imaging can potentially provide a new insight into the physical and chemical degradation of wellbore cement by CO2 leakage.

  11. Simulation of the nonequilibrium chemical decomposition of carbon dioxide in the presence of sulfur in a plasma

    SciTech Connect (OSTI)

    Zhivotov, V.K.; Levitskii, A.A.; Macheret, S.O.; Polak, L.S.

    1986-05-01T23:59:59.000Z

    The authors carry out a model calculation of the kinetics of the decomposition of carbon dioxide in the presence of sulfur in a moderate-pressure nonequilibrium discharge. The process is stimulated by the vibrational excitation of CO/sub 2/. Kinetic curves and the time variation of the vibrational and translational temperatures are calculated. The dependence of the energy efficiency on the specific energy input has been obtained. The optimal energy input is 4 J/cm/sup 3/. The minimal energy comsumption per CO molecule is 2.7-3.5 eV. The results of the calculations are consistent with the experimental results in the case of a nonequilibrium UHF discharge. The mechanism of the process, which accounts for the results, particularly the higher efficiency of the process in comparison to the dissociation of pure CO/sub 2/, has been ascertained.

  12. A mixed formulation for a modification to Darcy equation with applications to enhanced oil recovery and carbon-dioxide sequestration

    E-Print Network [OSTI]

    Nakshatrala, K B

    2011-01-01T23:59:59.000Z

    In this paper we consider a modification to Darcy equation by taking into account the dependence of viscosity on the pressure. We present a stabilized mixed formulation for the resulting governing equations. Equal-order interpolation for the velocity and pressure is considered, and shown to be stable (which is not the case under the classical mixed formulation). The proposed mixed formulation is tested using a wide variety of numerical examples. The proposed formulation is also implemented in a parallel setting, and the performance of the formulation for large-scale problems is illustrated using a representative problem. Two practical and technologically important problems, one each on enhanced oil recovery and carbon-dioxide sequestration, are solved using the proposed formulation. The numerical results clearly indicate the importance of considering the role of dependence of viscosity on the pressure.

  13. Supercritical Carbon Dioxide Brayton Cycle Energy Conversion for Sodium-Cooled Fast Reactors/Advanced Burner Reactors

    SciTech Connect (OSTI)

    Sienicki, James J.; Moisseytsev, Anton; Cho, Dae H.; Momozaki, Yoichi; Kilsdonk, Dennis J.; Haglund, Robert C.; Reed, Claude B.; Farmer, Mitchell T. [Argonne National Laboratory 9700 South Cass Avenue, Argonne, Illinois 60439 (United States)

    2007-07-01T23:59:59.000Z

    An optimized supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle power converter has been developed for the 100 MWe (250 MWt) Advanced Burner Test Reactor (ABTR) eliminating the potential for sodium-water reactions and achieving a small power converter and turbine generator building. Cycle and plant efficiencies of 39.1 and 38.3 %, respectively, are calculated for the ABTR core outlet temperature of 510 deg. C. The ABTR S-CO{sub 2} Brayton cycle will incorporate Printed Circuit Heat Exchanger{sup TM} units in the Na-to-CO{sub 2} heat exchangers, high and low temperature recuperators, and cooler. A new sodium test facility is being completed to investigate the potential for transient plugging of narrow sodium channels typical of a Na-to-CO{sub 2} heat exchanger under postulated off-normal or accident conditions. (authors)

  14. Elevated CO2 stimulates grassland soil respiration by increasing carbon inputs rather than by enhancing soil

    E-Print Network [OSTI]

    Minnesota, University of

    Elevated CO2 stimulates grassland soil respiration by increasing carbon inputs rather than It is not clear whether the consistent positive effect of elevated CO2 on soil respiration (soil carbon flux, SCF) results from increased plant and microbial activity due to (i) greater C availability through CO2-induced

  15. Chemically modified carbonic anhydrases useful in carbon capture systems

    DOE Patents [OSTI]

    Novick, Scott J; Alvizo, Oscar

    2013-10-29T23:59:59.000Z

    The present disclosure relates to chemically modified carbonic anhydrase polypeptides and soluble compositions, homogenous liquid formulations comprising them. The chemically modified carbonic anhydrase polypeptides have improved properties relative to the same carbonic anhydrase polypeptide that is not chemically modified including the improved properties of increased activity and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides methods of preparing the chemically modified polypeptides and methods of using the chemically modified polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering.

  16. Chemically modified carbonic anhydrases useful in carbon capture systems

    DOE Patents [OSTI]

    Novick, Scott; Alvizo, Oscar

    2013-01-15T23:59:59.000Z

    The present disclosure relates to chemically modified carbonic anhydrase polypeptides and soluble compositions, homogenous liquid formulations comprising them. The chemically modified carbonic anhydrase polypeptides have improved properties relative to the same carbonic anhydrase polypeptide that is not chemically modified including the improved properties of increased activity and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides methods of preparing the chemically modified polypeptides and methods of using the chemically modified polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering.

  17. An investigation of parameters affecting oil recovery efficiency of carbon dioxide flooding in cross-sectional reservoirs

    SciTech Connect (OSTI)

    Almalik, M.S.

    1988-01-01T23:59:59.000Z

    Low oil recovery efficiency is attributed to low vertical and areal sweep efficiency. The major causes of the low recovery efficiencies may be classified into three categories: (1) gravity segregation, (2) reservoir heterogeneity, and (3) unstable viscous fingering. Water alternate with gas (WAG) injection processes have been employed in field operations to improve the recovery efficiency and cut the cost of gas injection. The purpose of this study is to investigate the effects of reservoir and process parameters on the oil recovery efficiency of carbon dioxide WAG processes in cross-sectional reservoirs. To accomplish this, a two-dimensional compositional numerical simulator was developed. The simulator was functional and verified in this study. The simulator was then used to generate simulation data for studying the effects of seven dimensionless parameters on the oil recovery efficiency: (1) reservoir length to height ratio, (2) sine of the reservoir dip angle, (3) vertical to horizontal permeability ratio, (4) gravity to viscosity ratio (GVR), (5) injection rate, (6) water to gas (WAG) injection ration, and (7) pore volumes injected. Results of the investigation showed that oil recovery efficiency as a percentage of the oil place (OIP) is affected to different degrees by the seven parameters. Two correlations of the oil recovery efficiency versus the seven dimensionless parameters were established. The first was established for pore volumes injection ranging from 0 to 1.0 and the second from 0 to 0.7. The second correlation showed better agreement with the simulation results. The correlations will provide useful information in the design of the carbon dioxide WAG processes in cross-sectional reservoirs.

  18. An Assessment of the Commercial Availability of Carbon Dioxide Capture and Storage Technologies as of June 2009

    SciTech Connect (OSTI)

    Dooley, James J.; Davidson, Casie L.; Dahowski, Robert T.

    2009-06-26T23:59:59.000Z

    Currently, there is considerable confusion within parts of the carbon dioxide capture and storage (CCS) technical and regulatory communities regarding the maturity and commercial readiness of the technologies needed to capture, transport, inject, monitor and verify the efficacy of carbon dioxide (CO2) storage in deep, geologic formations. The purpose of this technical report is to address this confusion by discussing the state of CCS technological readiness in terms of existing commercial deployments of CO2 capture systems, CO2 transportation pipelines, CO2 injection systems and measurement, monitoring and verification (MMV) systems for CO2 injected into deep geologic structures. To date, CO2 has been captured from both natural gas and coal fired commercial power generating facilities, gasification facilities and other industrial processes. Transportation via pipelines and injection of CO2 into the deep subsurface are well established commercial practices with more than 35 years of industrial experience. There are also a wide variety of MMV technologies that have been employed to understand the fate of CO2 injected into the deep subsurface. The four existing end-to-end commercial CCS projects – Sleipner, Snřhvit, In Salah and Weyburn – are using a broad range of these technologies, and prove that, at a high level, geologic CO2 storage technologies are mature and capable of deploying at commercial scales. Whether wide scale deployment of CCS is currently or will soon be a cost-effective means of reducing greenhouse gas emissions is largely a function of climate policies which have yet to be enacted and the public’s willingness to incur costs to avoid dangerous anthropogenic interference with the Earth’s climate. There are significant benefits to be had by continuing to improve through research, development, and demonstration suite of existing CCS technologies. Nonetheless, it is clear that most of the core technologies required to address capture, transport, injection, monitoring, management and verification for most large CO2 source types and in most CO2 storage formation types, exist.

  19. Maximizing Storage Rate and Capacity and Insuring the Environmental Integrity of Carbon Dioxide Sequestration in Geological Reservoirs

    SciTech Connect (OSTI)

    L.A. Davis; A.L. Graham; H.W. Parker; J.R. Abbott; M.S. Ingber; A.A. Mammoli; L.A. Mondy; Quanxin Guo; Ahmed Abou-Sayed

    2005-12-07T23:59:59.000Z

    Maximizing Storage Rate and Capacity and Insuring the Environmental Integrity of Carbon Dioxide Sequestration in Geological Formations The U.S. and other countries may enter into an agreement that will require a significant reduction in CO2 emissions in the medium to long term. In order to achieve such goals without drastic reductions in fossil fuel usage, CO2 must be removed from the atmosphere and be stored in acceptable reservoirs. The research outlined in this proposal deals with developing a methodology to determine the suitability of a particular geologic formation for the long-term storage of CO2 and technologies for the economical transfer and storage of CO2 in these formations. A novel well-logging technique using nuclear-magnetic resonance (NMR) will be developed to characterize the geologic formation including the integrity and quality of the reservoir seal (cap rock). Well-logging using NMR does not require coring, and hence, can be performed much more quickly and efficiently. The key element in the economical transfer and storage of the CO2 is hydraulic fracturing the formation to achieve greater lateral spreads and higher throughputs of CO2. Transport, compression, and drilling represent the main costs in CO2 sequestration. The combination of well-logging and hydraulic fracturing has the potential of minimizing these costs. It is possible through hydraulic fracturing to reduce the number of injection wells by an order of magnitude. Many issues will be addressed as part of the proposed research to maximize the storage rate and capacity and insure the environmental integrity of CO2 sequestration in geological formations. First, correlations between formation properties and NMR relaxation times will be firmly established. A detailed experimental program will be conducted to determine these correlations. Second, improved hydraulic fracturing models will be developed which are suitable for CO2 sequestration as opposed to enhanced oil recovery (EOR). Although models that simulate the fracturing process exist, they can be significantly improved by extending the models to account for nonsymmetric, nonplanar fractures, coupling the models to more realistic reservoir simulators, and implementing advanced multiphase flow models for the transport of proppant. Third, it may be possible to deviate from current hydraulic fracturing technology by using different proppants (possibly waste materials that need to be disposed of, e.g., asbestos) combined with different hydraulic fracturing carrier fluids (possibly supercritical CO2 itself). Because current technology is mainly aimed at enhanced oil recovery, it may not be ideally suited for the injection and storage of CO2. Finally, advanced concepts such as increasing the injectivity of the fractured geologic formations through acidization with carbonated water will be investigated. Saline formations are located through most of the continental United States. Generally, where saline formations are scarce, oil and gas reservoirs and coal beds abound. By developing the technology outlined here, it will be possible to remove CO2 at the source (power plants, industry) and inject it directly into nearby geological formations, without releasing it into the atmosphere. The goal of the proposed research is to develop a technology capable of sequestering CO2 in geologic formations at a cost of US $10 per ton.

  20. Carbon dioxide effects research and assessment program: flux of organic carbon by rivers to the oceans. [Lead abstract

    SciTech Connect (OSTI)

    None

    1981-04-01T23:59:59.000Z

    Separate abstracts were prepared for the 15 papers presented in this workshop report. The state of knowledge about the role of rivers in the transport, storage and oxidation of carbon is the subject of this report. (KRM)