Powered by Deep Web Technologies
Note: This page contains sample records for the topic "increase recovery rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Assessment of opportunities to increase the recovery and recycling rates of waste oils  

SciTech Connect

Waste oil represents an important energy resource that, if properly managed and reused, would reduce US dependence on imported fuels. Literature and current practice regarding waste oil generation, regulations, collection, and reuse were reviewed to identify research needs and approaches to increase the recovery and recycling of this resource. The review revealed the need for research to address the following three waste oil challenges: (1) recover and recycle waste oil that is currently disposed of or misused; (2) identify and implement lubricating oil source and loss reduction opportunities; and (3) develop and foster an effective waste oil recycling infrastructure that is based on energy savings, reduced environment at impacts, and competitive economics. The United States could save an estimated 140 {times} 1012 Btu/yr in energy by meeting these challenges.

Graziano, D.J.; Daniels, E.J.

1995-08-01T23:59:59.000Z

2

Increasing CO2 Storage in Oil Recovery  

NLE Websites -- All DOE Office Websites (Extended Search)

Increasing CO Increasing CO 2 Storage in Oil Recovery Kristian Jessen (krisj@pangea.stanford.edu, 650-723-6348) Linda C. Sam-Olibale (chizoba@pangea.stanford.edu, 650-725-0831) Anthony R. Kovscek (kovscek@pangea.stanford.edu, 650-723-1218) Franklin M. Orr, Jr. (fmorr@pangea.stanford.edu, 650-723-2750) Department of Petroleum Engineering, Stanford University 65 Green Earth Sciences Building 367 Panama Street Stanford, CA 94305-2220 Introduction Carbon dioxide (CO 2 ) injection has been used as a commercial process for enhanced oil recovery (EOR) since the 1970's. Because the cost of oil recovered is closely linked to the purchase cost of the CO 2 injected, considerable reservoir engineering design effort has gone into reducing the total amount of CO 2 required to recover each barrel of oil. If,

3

Alternative Fuels Data Center: Natural Gas Rate and Cost Recovery  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Rate and Natural Gas Rate and Cost Recovery Authorization to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Rate and Cost Recovery Authorization on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Rate and Cost Recovery Authorization on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Rate and Cost Recovery Authorization on Google Bookmark Alternative Fuels Data Center: Natural Gas Rate and Cost Recovery Authorization on Delicious Rank Alternative Fuels Data Center: Natural Gas Rate and Cost Recovery Authorization on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Rate and Cost Recovery Authorization on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

4

Recovery rates, enhanced oil recovery and technological limits  

Science Journals Connector (OSTI)

...Oman-initial results and future plans. In Proc. SP EOR Conf...Moradi-Araghi, A . 2000 A review of thermally stable gels...through EOR: policy and regulatory considerations for greenhouse...TE Burchfield. 1989 Review of microbial technology...enhanced-oil-recovery technologies: a review of the past present and...

2014-01-01T23:59:59.000Z

5

Recovery rates, enhanced oil recovery and technological limits  

Science Journals Connector (OSTI)

...significantly extend global oil reserves once oil prices are high enough to make these techniques...last plan on the assumption that the oil price is likely to remain relatively high...1970s at a time of relatively high oil prices. Improved oil recovery (IOR) is...

2014-01-01T23:59:59.000Z

6

Increase of unit efficiency by improved waste heat recovery  

SciTech Connect

For coal-fired power plants with flue gas desulfurization by wet scrubbing and desulfurized exhaust gas discharge via cooling tower, a further improvement of new power plant efficiency is possible by exhaust gas heat recovery. The waste heat of exhaust gas is extracted in a flue gas cooler before the wet scrubber and recovered for combustion air and/or feedwater heating by either direct or indirect coupling of heat transfer. Different process configurations for heat recovery system are described and evaluated with regard to net unit improvement. For unite firing bituminous coal an increase of net unit efficiency of 0.25 to 0.7 percentage points and for lignite 0.7 to 1.6 percentage points can be realized depending on the process configurations of the heat recovery systems.

Bauer, G.; Lankes, F.

1998-07-01T23:59:59.000Z

7

BPA proposes rate increase to bolster  

NLE Websites -- All DOE Office Websites (Extended Search)

RELEASE Thursday, Nov. 8, 2012 CONTACT: Mike Hansen, 503-230-4328 or 503-230-5131 BPA proposes rate increase to bolster federal power and transmission systems Portland, Ore....

8

DOE Award Results in Several Patents, Potential Increased Coal Recovery |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Award Results in Several Patents, Potential Increased Coal Award Results in Several Patents, Potential Increased Coal Recovery DOE Award Results in Several Patents, Potential Increased Coal Recovery February 9, 2009 - 12:00pm Addthis Washington, D.C. -- A $13 million cooperative effort with the Office of Fossil Energy's National Energy Technology Laboratory (NETL) over the past seven years has resulted in the successful demonstration of a novel technology that addresses a problem plaguing coal operators and environmentalists alike: separating fine coal particles from water and their ultimate use as a significant energy resource. Researchers at the Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, Va., have developed and patented an advanced technology called a hyperbaric centrifuge that can successfully remove

9

DOE Award Results in Several Patents, Potential Increased Coal Recovery |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Award Results in Several Patents, Potential Increased Coal DOE Award Results in Several Patents, Potential Increased Coal Recovery DOE Award Results in Several Patents, Potential Increased Coal Recovery February 9, 2009 - 12:00pm Addthis Washington, D.C. -- A $13 million cooperative effort with the Office of Fossil Energy's National Energy Technology Laboratory (NETL) over the past seven years has resulted in the successful demonstration of a novel technology that addresses a problem plaguing coal operators and environmentalists alike: separating fine coal particles from water and their ultimate use as a significant energy resource. Researchers at the Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, Va., have developed and patented an advanced technology called a hyperbaric centrifuge that can successfully remove

10

Property:Heat Recovery Rating | Open Energy Information  

Open Energy Info (EERE)

Rating Rating Jump to: navigation, search This is a property of type Number. Pages using the property "Heat Recovery Rating" Showing 22 pages using this property. D Distributed Generation Study/10 West 66th Street Corp + 300,000 + Distributed Generation Study/615 kW Waukesha Packaged System + 2,500,000 + Distributed Generation Study/Aisin Seiki G60 at Hooligans Bar and Grille + 46,105 + Distributed Generation Study/Arrow Linen + 3,000,000 + Distributed Generation Study/Dakota Station (Minnegasco) + 290,000 + Distributed Generation Study/Elgin Community College + 11,200,000 + Distributed Generation Study/Emerling Farm + 2,000,000 + Distributed Generation Study/Floyd Bennett + 230,000 + Distributed Generation Study/Harbec Plastics + 3,750,000 + Distributed Generation Study/Hudson Valley Community College + 32,500,000 +

11

Optimizing bit hydraulics increases penetration rate  

SciTech Connect

At some point, rate of penetration depends as much or more on hydraulics as on bit weight and rotary speed. An easy-to-follow graphical technique shows how to maximize ROP at the rig by finding the optimum pressure drop through the bit and the highest possible crossflow velocity.

Robinson, L.

1982-07-01T23:59:59.000Z

12

Increased olefins production via recovery of refinery gas hydrocarbons  

SciTech Connect

In the process of catalytically cracking heavy petroleum fractions to make gasoline and light fuel oil, by-product waste gases are also generated. The waste gases, normally used as fuel, are themselves rich sources of ethylene, propylene and other light hydrocarbons which can be recovered inexpensively via a cryogenic dephlegmator process. This gas separation technique is exploited in a system, in operation since spring of 1987, which reclaims C/sub 2/+ hydrocarbons from a refinery gas. The reclamation process bolsters production in a nearby ethylene plant. Causing no disruption of ethylene plant operations, the cryogenic hydrocarbon recovery system functions smoothly with existing systems. The dephlegmation unit operation melds distillation and heat transfer processes in a single easily-controlled step which boosts the hydrocarbon purity and recovery above the levels profitably achievable with conventional cryogenic separation techniques. Very attractive operating economics follow from high purity, high recovery, and high energy efficiency. This paper discusses process concepts, economic benefits, plant operation, and early performance results.

Bernhard, D.P.; Rowles, H.C.; Moss, J.A.; Pickering, J.L. Jr.

1988-01-01T23:59:59.000Z

13

A review of different heat exchangers designs for increasing the diesel exhaust waste heat recovery  

Science Journals Connector (OSTI)

Abstract In this paper, after a short review of waste heat recovery technologies from diesel engines, the heat exchangers (HEXs) used in exhaust of engines is introduced as the most common way. So, a short review of the technologies that increase the heat transfer in \\{HEXs\\} is introduced and the availability of using them in the exhaust of engines is evaluated and finally a complete review of different \\{HEXs\\} which previously were designed for increasing the exhaust waste heat recovery is presented. Also, future view points for next \\{HEXs\\} designs are proposed to increase heat recovery from the exhaust of diesel engines.

M. Hatami; D.D. Ganji; M. Gorji-Bandpy

2014-01-01T23:59:59.000Z

14

BPA proposes rate increase to bolster federal power and transmission...  

NLE Websites -- All DOE Office Websites (Extended Search)

BPA-proposes-rate-increase-to-bolster-federal-power-and-transmission-systems Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects...

15

Effects of nutritional status on metabolic rate, exercise and recovery in a freshwater fish  

SciTech Connect

The influence of feeding on swimming performance and exercise recovery in fish is poorly understood. Examining swimming behavior and physiological status following periods of feeding and fasting is important because wild fish often face periods of starvation. In the current study, researchers force fed and fasted groups of largemouth bass (Micropterus salmoides) of similar sizes for a period of 16 days. Following this feeding and fasting period, fish were exercised for 60 s and monitored for swimming performance and physiological recovery. Resting metabolic rates were also determined. Fasted fish lost an average of 16 g (nearly 12%) of body mass, while force fed fish maintained body mass. Force fed fish swam 28% further and required nearly 14 s longer to tire during exercise. However, only some physiological conditions differed between feeding groups. Resting muscle glycogen concentrations was twofold greater in force fed fish, at rest and throughout recovery, although it decreased in both feeding treatments following exercise. Liver mass was nearly three times greater in force fed fish, and fasted fish had an average of 65% more cortisol throughout recovery. Similar recovery rates of most physiological responses were observed despite force fed fish having a metabolic rate 75% greater than fasted fish. Results are discussed as they relate to largemouth bass starvation in wild systems and how these physiological differences might be important in an evolutionary context.

Gingerich, Andrew J.; Philipp, D. P.; Suski, C. D.

2010-11-20T23:59:59.000Z

16

The effects of production rates and some reservoir parameters on recovery in a strong water drive gas reservoir  

E-Print Network (OSTI)

of the effect of gas production rate and rock and fluid properties on the recovery of gas from strong water drive gas reservoirs will permit gas production optimization and should result in conservation of natural and financial resources. Hence... saturations, gas production rate is not a dominant factor affecting the ultimate gas recovery. Almost all the gas is recovered whether producing the field at 0. 1 or 10 times GRR. In predicting the gas recovery in a strong water drive reser- voir...

Soemarso, Christophorus

2012-06-07T23:59:59.000Z

17

Zymomonas mobilis Mutants with an Increased Rate of Alcohol Production  

Science Journals Connector (OSTI)

...University of Florida, Gainesville, Florida 32611 Received...retention of higher rates of ethanol production...beverages and fuel, variations...maintenance of higher rates of glycolysis...Department of Energy, Office of...Agriculture, Alcohol Fuels Program. We...

Y. A. Osman; L. O. Ingram

1987-07-01T23:59:59.000Z

18

Increasing Oil Productivity Through Electromagnetic Induction Heat Generation of Salt Water as a Stimulant for Heavy Oil Recovery  

Science Journals Connector (OSTI)

Brine is usually exist in the oil reservoir. Varying salinity brine are used as stimulants for heavy oil recovery processes using electromagnetic induction heating. The heated heavy oil is floating on top of the brine since it becomes less viscous and lighter. As the temperature increased more heavy oil is “produced/recovered”. An increasing salinity of brine will result in more recovery of heavy oil.

2010-01-01T23:59:59.000Z

19

Must DSM programs increase rates? (Not all...just some)  

SciTech Connect

Demand side management in the electric power industry is discussed. The effect on price increases to the consumer is evaluated.

Hirst, E.; Hadley, S. [Oak Ridge National Lab., TN (United States)

1995-06-15T23:59:59.000Z

20

Increasing the recycling rate in Clark County, Nevada.  

E-Print Network (OSTI)

??The purpose of this study was to identify and evaluate policies that could increase the amount of municipal solid waste recycled in Clark County, Nevada.… (more)

Laija, Emerald

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "increase recovery rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

EIS-0031: Bonneville Power Administration 1979 Wholesale Rate Increase  

Energy.gov (U.S. Department of Energy (DOE))

The Bonneville Power Administration (BPA) developed this statement to explain the reasons for BPA's proposed power rate schedule, to conduct an analysis of the impacts which the proposal or alternatives thereto could have on both physical and socioeconomic characteristics of the human environment and to identify methods for mitigating the effects of the proposal.

22

Synthetic aperture design for increased SAR image rate  

DOE Patents (OSTI)

High resolution SAR images of a target scene at near video rates can be produced by using overlapped, but nevertheless, full-size synthetic apertures. The SAR images, which respectively correspond to the apertures, can be analyzed in sequence to permit detection of movement in the target scene.

Bielek, Timothy P. (Albuquerque, NM); Thompson, Douglas G. (Albuqerque, NM); Walker, Bruce C. (Albuquerque, NM)

2009-03-03T23:59:59.000Z

23

Ocean acidification may increase calcification rates, but at a cost  

Science Journals Connector (OSTI)

...are compromised in acidified seawater. By contrast, here we show...to compensate for increased seawater acidity). However, this...Hall-Spencer2007Effects of anthropogenic seawater acidification on acid-base...arm regeneration on energy storage and gonad production in Ophiocoma...

2008-01-01T23:59:59.000Z

24

Modification of chemical and physical factors in steamflood to increase heavy oil recovery  

SciTech Connect

This report covers the work performed in the various physicochemical factors for the improvement of oil recovery efficiency. In this context the following general areas were studied: (1) The understanding of vapor-liquid flows in porous media, including processes in steam injection; (2) The effect of reservoir heterogeneity in a variety of foams, from pore scale to macroscopic scale; (3) The flow properties of additives for improvement of recovery efficiency, particularly foams and other non-Newtonian fluids; and (4) The development of optimization methods to maximize various measures of oil recovery.

Yortsos, Yanis C.

2000-01-19T23:59:59.000Z

25

DOE-Sponsored Project Tests Novel Method to Increase Oil Recovery  

Energy.gov (U.S. Department of Energy (DOE))

Successful laboratory tests at the Energy Department’s National Energy Technology Laboratory (NETL) have verified that the use of a brine-soluble ionic surfactant could improve the efficiency of carbon dioxide enhanced oil recovery (CO2-EOR).

26

Modification of reservoir chemical and physical factors in steamfloods to increase heavy oil recovery  

SciTech Connect

Thermal methods, and particularly steam injection, are currently recognized as the most promising for the efficient recovery of heavy oil. Despite significant progress, however, important technical issues remain open. Specifically, still inadequate is our knowledge of the complex interaction between porous media and the various fluids of thermal recovery (steam, water, heavy oil, gases, and chemicals). While, the interplay of heat transfer and fluid flow with pore- and macro-scale heterogeneity is largely unexplored. The objectives of this contract are to continue previous work and to carry out new fundamental studies in the following areas of interest to thermal recovery: displacement and flow properties of fluids involving phase change (condensation-evaporation) in porous media; flow properties of mobility control fluids (such as foam); and the effect of reservoir heterogeneity on thermal recovery. The specific projects are motivated by and address the need to improve heavy oil recovery from typical reservoirs as well as less conventional fractured reservoirs producing from vertical or horizontal wells. During this past quarter, work continued on: the development of relative permeabilities during steam displacement; the optimization of recovery processes in heterogeneous reservoirs by using optical control methods; and in the area of chemical additives, work continued on the behavior of non-Newtonian fluid flow and on foam displacements in porous media.

Yortsos, Y.C.

1996-12-31T23:59:59.000Z

27

Modification of reservoir chemical and physical factors in steamfloods to increase heavy oil recovery  

SciTech Connect

Thermal methods, and particularly steam injection, are currently recognized as the most promising for the efficient recovery of heavy oil. Despite significant progress, however, important technical issues remain open. Specifically, still inadequate is our knowledge of the complex interaction between porous media and the various fluids of thermal recovery (steam, water, heavy oil, gases, and chemicals). While, the interplay of heat transfer and fluid flow with pore- and macro-scale heterogeneity is largely unexplored. The objectives of this contract are to continue previous work and to carry out new fundamental studies in the following areas of interest to thermal recovery: displacement and flow properties of fluids involving phase change (condensation-evaporation) in porous media; flow properties of mobility control fluids (such as foam); and the effect of reservoir heterogeneity on thermal recovery. The specific projects are motivated by and address the need to improve heavy oil recovery from typical reservoirs as well as less conventional fractured reservoirs producing from vertical or horizontal wells. During this quarter work continued on: development of relative permeabilities during steam injection; optimization of recovery processes in heterogeneous reservoirs by using optimal control methods; and behavior of non-Newtonian fluid flow and on foam displacements in porous media.

NONE

1996-12-31T23:59:59.000Z

28

Response of a Coupled Ocean–Atmosphere Model to Increasing Atmospheric Carbon Dioxide: Sensitivity to the Rate of Increase  

Science Journals Connector (OSTI)

The influence of differing rates of increase of the atmospheric CO2 concentration on the climatic response is investigated using a coupled ocean–atmosphere model. Five transient integrations are performed each using a different constant ...

Ronald J. Stouffer; Syukuro Manabe

1999-08-01T23:59:59.000Z

29

INCREASED OIL RECOVERY FROM MATURE OIL FIELDS USING GELLED POLYMER TREATMENTS  

SciTech Connect

Gelled polymer treatments are applied to oil reservoirs to increase oil production and to reduce water production by altering the fluid movement within the reservoir. This report describes the results of a three-year research program aimed at reducing barriers to the widespread use of gelled polymer treatments by (1) developing methods to predict gel behavior during placement in matrix rock and fractures, (2) determining the persistence of permeability reduction after gel placement, and (3) developing methods to design production well treatments to control water production. The work focused on the gel system composed of polyacrylamide and chromium acetate. The molar mass of the polymer was about six million. Chromium(III) acetate reacted and formed crosslinks between polymer molecules. The crosslinked polymer molecules, or pre-gel aggregates, combine and grow to eventually form a 3-dimensional gel. A fundamental study to characterize the formation and growth of pre-gel aggregates was conducted. Two methods, flow field-flow fractionation (FFFF) and multi-angle laser light scattering (MALLS) were used. Studies using FFFF were inconclusive. Data taken using MALLS showed that at the gel time the average molar mass of gel aggregates increased by a factor of about three while the average size increase was approximately 50%. Increased acetate concentration in the gelant increases the gel time. The in situ performance of an added-acetate system was investigated to determine the applicability for in-depth treatments. Increased acetate concentrations delayed the development of increased flow resistance during gelant injection in short sandpacks. The development of increased flow resistance (in situ gelation) was extended from 2 to 34 days by increasing the acetate-to-chromium ratio from 38 to 153. In situ gelation occurred at a time that was approximately 22% of the bulk gelation time. When carbonate rocks are treated with gel, chromium retention in the rock may limit in-depth treatment. Chromium retention due to precipitation was investigated by flowing chromium acetate solutions through carbonate rock. Chromium precipitated faster in the rocks than in beaker experiments at similar conditions. A mathematical model previously developed fit the precipitation data reasonably well. The stability of gels when subjected to stress was investigated by experiments with gels placed in tubes and in laboratory-scale fractures. Rupture pressures for gels placed in small diameter tubes were correlated with the ratio of tube length to tube ID. In fractures, fluid leakoff from the fracture to adjacent matrix rock affected gel formation and gel stability in a positive way. Disproportionate permeability reduction (DPR) was studied in unconsolidated sandpacks and in Berea sandstone cores. A conceptual model was developed to explain the presence of DPR. The effect of a pressure gradient, imposed by injection of oil or brine, on the permeability of gel-treated cores was investigated. DPR increased significantly as the pressure gradient was decreased. The magnitude of the pressure gradient had a much larger effect on water permeability than on oil permeability.

G.P. Willhite; D.W. Green; C.S. McCool

2003-05-01T23:59:59.000Z

30

Increased oil recovery from mature oil fields using gelled polymer treatments  

SciTech Connect

Gelled polymer treatments are applied to oil reservoirs to increase oil production to reduce water production by altering the fluid movement within the reservoir. This research program is aimed at reducing barriers to the widespread use of these treatments by developing methods to predict gel behavior during placement in matrix rock and fractures, determining the persistence of permeability reduction after gel placement, and by developing methods to design production well treatments to control water production. This report describes the progress of the research during the first six months of work. A Dawn EOS multi-angle laser light scattering detector was purchased, installed and calibrated. Experiments were conducted to determine the permeabilities of a bulk gel and of a filter cake which forms when a gel is dehydrated. The pressure at which a gel in a tube is ruptured was measured and was correlated to the length and diameter of the gel.

Willhite, G. Paul; Green, Down W.; McCool, Stan

2000-02-23T23:59:59.000Z

31

Toxicity testing results on increased supernate treatment rate of 3700 gallons/batch  

SciTech Connect

In July, 1991, Reactor Materials increased the supernate treatment concentration in the M-Area Dilute Effluent Treatment Facility from 2700 gallons of supernate per 36000 gallon dilute wastewater batch to 3700 gallons/batch. This report summarizes the toxicity testing on the effluents of the increased treatment rate.(JL)

Pickett, J.B.; Martin, H.L.; Diener, G.A.

1992-07-06T23:59:59.000Z

32

Toxicity testing results on increased supernate treatment rate of 3700 gallons/batch. Revision 1  

SciTech Connect

In July, 1991, Reactor Materials increased the supernate treatment concentration in the M-Area Dilute Effluent Treatment Facility from 2700 gallons of supernate per 36000 gallon dilute wastewater batch to 3700 gallons/batch. This report summarizes the toxicity testing on the effluents of the increased treatment rate.(JL)

Pickett, J.B.; Martin, H.L.; Diener, G.A.

1992-07-06T23:59:59.000Z

33

Dietary mercury exposure causes decreased escape takeoff flight performance and increased molt rate in European starlings  

E-Print Network (OSTI)

Dietary mercury exposure causes decreased escape takeoff flight performance and increased molt rate 2014 Ã? Springer Science+Business Media New York 2014 Abstract Mercury is a widespread and persistent that forage from primarily terrestrial sources have shown evidence of bioaccumula- tion of mercury, but little

Swaddle, John

34

Original article Increase of plasma eCG binding rate after  

E-Print Network (OSTI)

Original article Increase of plasma eCG binding rate after administration of repeated high dose of eCG to cows Pierre V. DRIONa*, Rudy DE ROOVERb, Jean-Yves HOUTAINc, Edmond M. MCNAMARAd, Benoît chorionic gonadotrophin (eCG) is still used to promote follicular growth in cat- tle and, more recently

Paris-Sud XI, Université de

35

INCREASE  

ScienceCinema (OSTI)

The Interdisciplinary Consortium for Research and Educational Access in Science and Engineering (INCREASE), assists minority-serving institutions in gaining access to world-class research facilities.

None

2013-07-22T23:59:59.000Z

36

Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity  

SciTech Connect

The objectives of this project are to augment the National Reservoir Database (TORIS database) and to increase our understanding of geologic heterogeneities that affect the recoveries of oil and gas from carbonate reservoirs in the State of Alabama and to identify those resources that are producible at moderate cost. These objectives will be achieved through detailed geological, engineering, and geostatistical characterization of typical Jurassic Smackover Formation hydrocarbon reservoirs in selected productive fields in the State of Alabama. The results of these studies will be used to develop and test mathematical models for prediction of the effects of reservoir heterogeneities in hydrocarbon production. Work to date has focused on the completion of Subtasks 1, 2, and 3. Subtask 1 included the survey and tabulation of available reservoir engineering and geological data relevant to the Smackover reservoir in southwestern Alabama. Subtask 2 comprises the geological and engineering characterization of Smackover reservoir lithofacies. This has been accomplished through detailed examination and analysis of geophysical well logs, core material, well cuttings, and well-test data from wells penetrating Smackover reservoirs in southwestern Alabama. From these data, reservoir heterogeneities, such as lateral and vertical changes in lithology, porosity, permeability, and diagenetic overprint, have been recognized and used to produce maps, cross sections, graphs, and other graphic representations to aid in interpretation of the geologic parameters that affect these reservoirs. Subtask 3 includes the geologic modeling of reservoir heterogeneities for Smackover reservoirs. This research has been based primarily on the evaluation of key geologic and engineering data from selected Smackover fields. 1 fig.

Mancini, E.A.

1990-01-01T23:59:59.000Z

37

Record of Decision for the Safety-Net Cost Recovery Adjustment Clause (SN CRAC) Adjustment to 2002 Wholesale Power Rates (DOE/EIS-0183) (6/30/03)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BONNEVILLE POWER ADMINISTRATION BONNEVILLE POWER ADMINISTRATION NATIONAL ENVIRONMENTAL POLICY ACT RECORD OF DECISION for the Safety-Net Cost Recovery Adjustment Clause (SN CRAC) Adjustment to 2002 Wholesale Power Rates INTRODUCTION The Bonneville Power Administration (BPA) has decided to implement its proposed Safety-Net Cost Recovery Adjustment Clause (SN CRAC) Adjustment to 2002 Wholesale Power Rates. This rate adjustment allows BPA to address potential revenue shortfalls and recover its costs through rates. This rate adjustment involves implementation of one of BPA's existing risk mitigation tools that has been previously subject to review under the National Environmental Policy Act (NEPA), as described more fully below. I have reviewed this previous NEPA documentation and determined that the SN CRAC rate adjustment is adequately covered within

38

Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low-Dip Slope and Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California, Class III  

SciTech Connect

The objective of this project is not just to produce oil from the Pru Fee property, but rather to test which operational strategies best optimize total oil recovery at economically acceptable rates of production and production costs.

Schamel, S.

2001-01-09T23:59:59.000Z

39

Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low-Dip Slope and Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California, Class III  

SciTech Connect

The objective of the project is not just to commercially produce oil from the Pru Fee property, but rather to test which operational strategies best optimize total oil recovery at economically acceptable rates of production volumes and costs.

Schamel, Steven; Deo, Milind; Deets, Mike

2002-02-21T23:59:59.000Z

40

Energy Department Invests $6 Million to Increase Building Energy Code Compliance Rates  

Energy.gov (U.S. Department of Energy (DOE))

The Building Technologies Office (BTO) has awarded $6 million to fund projects that will investigate whether investing in education, training, and outreach programs can produce a significant change in residential building code compliance rates.

Note: This page contains sample records for the topic "increase recovery rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Increased network efficiency for variable rate video streams in an Integrated Services Packet Network environment  

E-Print Network (OSTI)

utilization as high as 108. 8% over current techniques used for sending variable bit-rate over resource reservations are shown. To my family: Elizabeth, Dad, Mom, and Kristen ACKNOWLEDGMENTS First, I would like to thank my advisor, Dr. Pierce E. Cantrell... Lovr Movement CafeMocha Scene . High Movement CafeMocha Scene 74 75 25 Reservation Efficiency as a Function of s 77 26 27 Fraction of Packets Over Reservation Rate as a Function of c Reservation Efficiency/Over as a Function of e . 78 78 28...

Schroeder, Charles Grant

2012-06-07T23:59:59.000Z

42

Apply: Increase Residential Energy Code Compliance Rates (DE-FOA-0000953)  

Energy.gov (U.S. Department of Energy (DOE))

Closed Deadline: May 21, 2014 The Building Technologies Office (BTO) has announced the availability of up to $6 million under the Building Energy Codes Program to to investigate whether investing in education, training, and outreach programs can produce a measurable significant change in single-family residential building code compliance rates.

43

Understanding the Rate of Clean Up for Oil Zones after a Gel Treatment R.S. Seright, SPE, New Mexico Petroleum Recovery Research Center, W. Brent Lindquist, SPE, and Rong Cai,  

E-Print Network (OSTI)

SPE 112976 Understanding the Rate of Clean Up for Oil Zones after a Gel Treatment R.S. Seright, SPE, New Mexico Petroleum Recovery Research Center, W. Brent Lindquist, SPE, and Rong Cai, Stony Brook at the 2008 SPE Improved Oil Recovery Symposium held in Tulsa, Oklahoma, U.S.A., 19­23 April 2008. This paper

New York at Stoney Brook, State University of

44

Nearby supernova rates from the Lick Observatory Supernova Search – IV. A recovery method for the delay-time distribution  

Science Journals Connector (OSTI)

......distribution (DTD) - the SN rate versus time that would...SN progenitors and physics, as well as on the...curve, normalized to pass through the psi3 rate, which is the most...again normalized to pass through our best-fitting psi3 rate. The DD-Close-3......

Dan Maoz; Filippo Mannucci; Weidong Li; Alexei V. Filippenko; Massimo Della Valle; Nino Panagia

2011-04-11T23:59:59.000Z

45

Synthetic DNA bending sequences increase the rate of in vitro transcription initiation at the Escherichia coli lac promoter  

Science Journals Connector (OSTI)

Appropriately phased DNA bending sequences replacing the CAP binding site upstream from the lac promoter increase by roughly tenfold the rate of specific transcription initiation from a superhelical promoter template in vitro; promoter occlusion results from polymerase binding to the upstream (dA)n · (dT)n tracts, but this phenomenon is not responsible for the observed phase-dependent transcriptional activity. The rates of open complex formation at both P1 and P2 promoters respond in a similar phase-dependent way to the synthetic curved DNA sequences.

Marc R. Gartenberg; Donald M. Crothers

1991-01-01T23:59:59.000Z

46

Experimental Design for a Macrofoam-Swab Study Relating the Recovery Efficiency and False Negative Rate to Low Concentrations of Two Bacillus anthracis Surrogates on Four Surface Materials  

SciTech Connect

This report describes the experimental design for a laboratory study to quantify the recovery efficiencies and false negative rates of a validated, macrofoam-swab sampling method for low concentrations of Bacillus anthracis Sterne (BAS) and Bacillus atrophaeus (BG) spores on four surface materials (stainless steel, glass, vinyl tile, plastic light cover panel). Two analytical methods (culture and polymerase chain reaction) will be used. Only one previous study has investigated how the false negative rate depends on test factors. The surrogates BAS and BG have not been tested together in the same study previously. Hence, this study will provide for completing gaps in the available information on the performance of macrofoam-swab sampling at low concentrations.

Piepel, Gregory F.; Hutchison, Janine R.

2014-12-05T23:59:59.000Z

47

USING CABLE SUSPENDED SUBMERSIBLE PUMPS TO REDUCE PRODUCTION COSTS TO INCREASE ULTIMATE RECOVERY IN THE RED MOUNTAIN FIELD OF THE SAN JUAN BASIN REGION  

SciTech Connect

This report discusses: (1) being able to resume marginal oil production operations in the Red Mountain Oil Field, located in McKinley County, New Mexico by installing a cable suspended electric submersible pumping system (HDESP); (2) determining if this system can reduce life costs making it a more cost effective production system for similar oil fields within the region, and if warranted, drill additional wells to improve the economics. In April 2003, a cooperative 50% cost share agreement between Enerdyne and the DOE was executed to investigate the feasibility of using cable suspended electric submersible pumps to reduce the life costs and increase the ultimate oil recovery of the Red Mountain Oil Field, located on the Chaco Slope of the San Juan Basin, New Mexico. The field was discovered in 1934 and has produced approximately 55,650 cubic meters (m{sup 3}), (350,000 barrels, 42 gallons) of oil. Prior to April 2003, the field was producing only a few cubic meters of oil each month; however, the reservoir characteristics suggest that the field retains ample oil to be economic. This field is unique, in that, the oil accumulations, above fresh water, occur at depths from 88-305 meters, (290 feet to 1000 feet), and serves as a relatively good test area for this experiment.

Don L. Hanosh

2004-11-01T23:59:59.000Z

48

RATES  

NLE Websites -- All DOE Office Websites (Extended Search)

Planning & Projects Planning & Projects Power Marketing Rates You are here: SN Home page > Power Marketing > RATES Rates and Repayment Services Rates Current Rates Power Revenue Requirement Worksheet (FY 2014) (Oct 2013 - Sep 2014) (PDF - 30K) PRR Notification Letter (Sep 27, 2013) (PDF - 959K) FY 2012 FP% True-Up Calculations(PDF - 387K) Variable Resource Scheduling Charge FY12-FY16 (October 1, 2012) PRR Forecast FY14-FY17 (May 23, 2013) (PDF - 100K) Forecasted Transmission Rates (May 2013) (PDF - 164K) Past Rates 2013 2012 2011 2010 2009 Historical CVP Transmission Rates (April 2013) (PDF - 287K) Rate Schedules Power - CV-F13 - CPP-2 Transmission - CV-T3 - CV-NWT5 - PACI-T3 - COTP-T3 - CV-TPT7 - CV-UUP1 Ancillary - CV-RFS4 - CV-SPR4 - CV-SUR4 - CV-EID4 - CV-GID1 Federal Register Notices - CVP, COTP and PACI

49

RATES  

NLE Websites -- All DOE Office Websites (Extended Search)

Marketing > RATES Marketing > RATES RATES Current Rates Past Rates 2006 2007 2008 2009 2010 2011 2012 Rates Schedules Power CV-F13 CPP-2 Transmissions CV-T3 CV-NWT5 PACI-T3 COTP-T3 CV-TPT7 CV-UUP1 Ancillary CV-RFS4 CV-SPR4 CV-SUR4 CV-EID4 CV-GID1 Future and Other Rates SNR Variable Resource Scheduling Charge FY12-FY16 (October 1, 2012) SNR Rates Process Calendar (PDF - 171K) Procedures Informal Process Transmission Action Items List (PDF - 144K) Power Action Item List updated on 4-27-10 (PDF - 155K) Power Action Item List (Quick links to relevant documents) Formal Process Rates Brochure (01/11/2011) (PDF - 900K) Appendix A - Federal Register Notice (01/03/2011) (PDF - 8000K) Appendix B - Central Valley Project Power Repayment Study (PDF - 22,322K) Appendix C - Development of the CVP Cost of Service Study (PDF - 2038K)

50

RATES  

NLE Websites -- All DOE Office Websites (Extended Search)

RATES RATES Rates Document Library SNR Rates Process Calendar (PDF - 171K) Procedures Informal Process Transmission Action Items List (PDF - 144K) Power Action Item List updated on 4-27-10 (PDF - 155K) Power Action Item List (Quick links to relevant documents) Formal Process Rates Brochure (01/11/2011) (PDF - 900K) Appendix A - Federal Register Notice (01/03/2011) (PDF - 8000K) Appendix B - Central Valley Project Power Repayment Study (PDF - 22,322K) Appendix C - Development of the CVP Cost of Service Study (PDF - 2038K) Appendix D - Western Transmission System Facilities Map (PDF - 274K) Appendix E - Estimated FY12 FP and BR Customer (PDF - 1144K) Appendix F - Forecasted Replacements and Additions FY11 - FY16 (PDF - 491K) Appendix G - Definitions (PDF - 1758K) Appendix H - Acronyms (PDF - 720K)

51

Experimental Design for a Macrofoam Swab Study Relating the Recovery Efficiency and False Negative Rate to Low Concentrations of Two Bacillus anthracis Surrogates on Four Surface Materials  

SciTech Connect

This report describes the experimental design for a laboratory study to quantify the recovery efficiencies and false negative rates of a validated, macrofoam swab sampling method for low concentrations of Bacillus anthracis Sterne (BAS) and Bacillus atrophaeus (BG) spores on four surface materials (stainless steel, glass, vinyl tile, plastic light cover panel). Two analytical methods (plating/counting and polymerase chain reaction) will be used. Only one previous study has investigated false negative as a function of affecting test factors. The surrogates BAS and BG have not been tested together in the same study previously. Hence, this study will provide for completing gaps in the available information on the performance of macrofoam swab sampling at low concentrations.

Piepel, Gregory F.; Hutchison, Janine R.

2014-04-16T23:59:59.000Z

52

Modification of reservoir chemical and physical factors in steamfloods to increase heavy oil recovery. [Quarterly report], January 1--March 31, 1997  

SciTech Connect

Thermal methods, and particularly steam injection, are currently recognized as the most promising for the efficient recovery of heavy oil. Despite significant progress, however, important technical issues remain open. Specifically, still inadequate is our knowledge of the complex interaction between porous media and the various fluids of thermal recovery (steam, water, heavy oil, gases, and chemicals). While, the interplay of heat transfer and fluid flow with pore- and macro-scale heterogeneity is largely unexplored. The objectives of this contract are to continue previous work and to carry out new fundamental studies in the following areas of interest to thermal recovery: displacement and flow properties of fluids involving phase change (condensation-evaporation) in porous media; flow properties of mobility control fluids (such as foam); and the effect of reservoir heterogeneity on thermal recovery. The specific projects are motivated by and address the need to improve heavy oil recovery from typical reservoirs as well as less conventional fractured reservoirs producing from vertical or horizontal wells. During this quarter, work continued on the development of relative permeabilities during steam displacement. Most of the work concentrated on the representation of the three-phase flow in terms of a double-drainage process. Work continued on the optimization of recovery processes in heterogeneous reservoirs by using optimal control methods. The effort at present is concentrating in fine-tuning the optimization algorithm as well as in developing control methodologies with different constraints. In parallel, we continued experiments in a Hele-Shaw cell with two controlled injection wells and one production well. In the area of chemical additives work continued on the behavior of non-Newtonian fluid flow and on foam displacements in porous media.

Yortsos, Y.C. [University of Southern California, Los Angeles, CA (United States)

1997-08-01T23:59:59.000Z

53

Modification of chemical and physical factors in steamflood to increase heavy oil recovery. Annual report, October 1, 1992--September 30, 1993  

SciTech Connect

Thermal methods, and particularly steam injection, are currently recognized as the most promising for the efficient recovery of heavy oil. Despite significant progress, however, important technical issues remain open. Specifically, still inadequate is our knowledge of the complex interaction between porous media and the various fluids of thermal recovery (steam, water, heavy oil, gases, and chemicals). While, the interplay of heat transfer and fluid flow with pore- and macro-scale heterogeneity is largely unexplored. Objectives of this work contract are to carry out new studies in the following areas: displacement and flow properties of fluids involving phase change in porous media; flow properties of mobility control fluids (such as foam); and the effect of reservoir heterogeneity on thermal recovery. Specific projects address the need to improve heavy oil recovery from typical reservoirs as well as less conventional fractured reservoirs producing from vertical or horizontal wells. In the area of vapor-liquid flow, we present the continuation of work on the pore network modeling of bubble growth in porous media driven by the application of a prescribed heat flux or superheat. The scaling of bubble growth in porous media is also discussed. In another study we study the problem of steam injection in fractured systems using visualization in micromodels. The interplay of drainage, imbibition and bubble growth problems is discussed.

Yortsos, Y.C.

1994-10-01T23:59:59.000Z

54

Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low Dip Slope & Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect

In January 1997 the project entered its second and main phase with the purpose of demonstrating whether steamflood can be a more effective mode of production of the heavy, viscous oils from the Monarch Sand reservoir than the more conventional cyclic steaming. The objective is not just to produce the pilot site within the Pru Fee property south of Taft (Figure 1), but to test which production parameters optimize total oil recovery at economically acceptable rates of production and production costs.

Schamel, Steven

1999-11-09T23:59:59.000Z

55

Modification of reservoir chemical and physical factors in steamfloods to increase heavy oil recovery. [Quarterly report], January 1--March 31, 1996  

SciTech Connect

Thermal methods, and particularly steam injection, are currently recognized as the most promising for the efficient recovery of heavy oil. Despite significant progress, however, important technical issues remain open. Specifically, still inadequate is our knowledge of the complex interaction between porous media and the various fluids of thermal recovery (steam, water, heavy oil, gases, and chemicals). While, the interplay of heat transfer and fluid flow with pore- and macro-scale heterogeneity is largely unexplored. The objectives of this contract are to continue previous work and to carry out new fundamental studies in the following areas of interest to thermal recovery: displacement and flow properties of fluids involving phase change in porous media; flow properties of mobility control fluids (such as foam); and the effect of reservoir heterogeneity on thermal recovery. During this quarter, we focused on the development of relative permeabilities during steam displacement. Two particular directions were pursued: One involves the derivation of relative permeabilities based on a recently completed work on the pore-level mechanics of steam displacement. Progress has been made to relate the relative permeabilities to effects such as heat transfer and condensation, which are specific to steam injection problems. The second direction involves the development of three-phase relative permeabilities using invasion percolation concepts. We have developed models that predict the specific dependence of the permeabilities of three immiscible phases (e.g. awe, water and gas) on saturations and the saturation history. Both works are still in progress. In addition, work continues in the analysis of the stability of phase change fronts in porous media using a macroscopic approach.

Yortsos, Y.C.

1996-07-01T23:59:59.000Z

56

Recovery Act  

Energy.gov (U.S. Department of Energy (DOE))

The American Recovery and Reinvestment Act of 2009 (Recovery Act) presents opportunities with potential for hydrogen and fuel cell technologies. Signed into law by President Obama on February 17,...

57

Modification of chemical and physical factors in steamflood in increase heavy oil recovery. Annual report, October 1, 1994--September 30, 1995  

SciTech Connect

The objectives of this contract is to carry our fundamental research in heavy oil recovery in the following areas: displacement and flow properties of fluids involving phase change (condensation-evaporation) in porous media; flow properties of mobility control fluids (such as foam); and the effect of reservoir heterogeneity on oil recovery. The specific projects are motivated by and address the need to improve heavy oil recovery from typical reservoirs as well as less conventional fractured reservoirs. This report covers the work performed in these three areas in the past year. In the area of vapor-liquid flow we present a theoretical and numerical study of steam injection in a pore network. We characterize the displacement in terms of an effective mobility ratio and heat transfer parameters. Displacement patterns axe identified in the parameter space. In another study we discuss the problem of steam injection in fractured systems using visualization with micromodels. The interplay of drainage, imbibition and bubble growth is visualized. Conclusions are reached regarding the potential for steamflooding fractured systems. A third study focuses on the development of a pore-network model for foam formation and propagation in porous media. This model, for the first time, accounts for the fundamental mechanisms of foam propagation at the microscale and leads to the determination of various parameters that are currently treated empirically. The effect of viscous forces in displacements in heterogeneous media is described in two separate studies, one involving an extension of percolation theory to account for viscous effects, and another discussing the effect of geometry in general displacement processes.

Yortsos, Y.C

1996-10-01T23:59:59.000Z

58

Exhaust Energy Recovery  

Energy.gov (U.S. Department of Energy (DOE))

Exhaust energy recovery proposed to achieve 10% fuel efficiency improvement and reduce or eliminate the need for increased heat rejectioncapacity for future heavy duty engines in Class 8 Tractors

59

The utilization of the microflora indigenous to and present in oil-bearing formations to selectively plug the more porous zones thereby increasing oil recovery during waterflooding, Class 1  

SciTech Connect

The objectives of this project were (1) to demonstrate the in situ microbial population in a fluvial dominated deltaic reservoir could be induced to proliferate to such an extent that they will selectively restrict flow in the more porous zones in the reservoir thereby forcing injection water to flow through previously unswept areas thus improving the sweep efficiency of the waterflood and (2) to obtain scientific validation that microorganisms are indeed responsible for the increased oil recovery. One expected outcome of this new technology was the prolongation of economical life of the reservoir, i.e. economical oil recovery should continue for much longer periods in areas of the reservoir subjected to the MPPM technology than it would if it followed its historic trend.

Stephens, James O.; Brown, Lewis R.; Vadie, A. Alex

2000-02-02T23:59:59.000Z

60

Development of equations to determine the increase in pavement condition due to treatment and the rate of decrease in condition after treatment for a local agency pavement network.  

E-Print Network (OSTI)

DEVELOPMENT OF EQUATIONS TO DETERMINE THE INCREASE IN PAVEMENT CONDITION DUE TO TREATMENT AND THE RATE OF DECREASE IN CONDITION AFTER TREATMENT FOR A LOCAL AGENCY PAVEMENT NETWORK A Thesis by MAITHILEE MUKUND DESHMUKH Submitted... to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 2009 Major Subject: Civil Engineering DEVELOPMENT OF EQUATIONS TO DETERMINE THE INCREASE IN PAVEMENT...

Deshmukh, Maithilee Mukund.

2010-07-14T23:59:59.000Z

Note: This page contains sample records for the topic "increase recovery rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Speeding up protein folding: mutations that increase the rate at which Rop folds and unfolds by over four orders of magnitude  

E-Print Network (OSTI)

Speeding up protein folding: mutations that increase the rate at which Rop folds and unfolds. Introduction When a protein folds, the backbone and sidechain atoms organize from the extensive number protein folding usually occurs on the order of milliseconds to seconds, it is gener- ally accepted

Mochrie, Simon

62

HEAVY AND THERMAL OIL RECOVERY PRODUCTION MECHANISMS  

SciTech Connect

This technical progress report describes work performed from April 1 through June 30, 2002, for the project ''Heavy and Thermal Oil Recovery Production Mechanisms.'' We investigate a broad spectrum of topics related to thermal and heavy-oil recovery. Significant results were obtained in the areas of multiphase flow and rock properties, hot-fluid injection, improved primary heavy oil recovery, and reservoir definition. The research tools and techniques used are varied and span from pore-level imaging of multiphase fluid flow to definition of reservoir-scale features through streamline-based history-matching techniques. Briefly, experiments were conducted to image at the pore level matrix-to-fracture production of oil from a fractured porous medium. This project is ongoing. A simulation studied was completed in the area of recovery processes during steam injection into fractured porous media. We continued to study experimentally heavy-oil production mechanisms from relatively low permeability rocks under conditions of high pressure and high temperature. High temperature significantly increased oil recovery rate and decreased residual oil saturation. Also in the area of imaging production processes in laboratory-scale cores, we use CT to study the process of gas-phase formation during solution gas drive in viscous oils. Results from recent experiments are reported here. Finally, a project was completed that uses the producing water-oil ratio to define reservoir heterogeneity and integrate production history into a reservoir model using streamline properties.

Anthony R. Kovscek

2002-07-01T23:59:59.000Z

63

Develop Thermoelectric Technology for Automotive Waste Heat Recovery  

Energy.gov (U.S. Department of Energy (DOE))

Develop thermoelectric technology for waste heat recovery with a 10% fuel economy improvement without increasing emissions.

64

Treasury, Energy Announce More Than $2 Billion in Recovery Act...  

Energy Savers (EERE)

Recovery Act to increase US manufacturing output, improve energy efficiency, and develop alternative sources of energy." The Recovery Act created a new tax credit program by...

65

Evaluation of two-stage system for neutron measurement aiming at increase in count rate at Japan Atomic Energy Agency-Fusion Neutronics Source  

SciTech Connect

In order to increase the count rate capability of a neutron detection system as a whole, we propose a multi-stage neutron detection system. Experiments to test the effectiveness of this concept were carried out on Fusion Neutronics Source. Comparing four configurations of alignment, it was found that the influence of an anterior stage on a posterior stage was negligible for the pulse height distribution. The two-stage system using 25 mm thickness scintillator was about 1.65 times the count rate capability of a single detector system for d-D neutrons and was about 1.8 times the count rate capability for d-T neutrons. The results suggested that the concept of a multi-stage detection system will work in practice.

Shinohara, K., E-mail: shinohara.koji@jaea.go.jp; Ochiai, K.; Sukegawa, A. [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan); Ishii, K.; Kitajima, S. [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai, Miyagi 980-8579 (Japan); Baba, M. [Cyclotron and Radioisotope Center, Tohoku University, Sendai, Miyagi 980-8578 (Japan); Sasao, M. [Organization for Research Initiatives and Development, Doshisha University, Kyoto 602-8580 (Japan)

2014-11-15T23:59:59.000Z

66

Significant Increase in Hydrogen Photoproduction Rates and Yields by Wild-Type Algae is Detected at High Photobioreactor Gas Phase Volume (Fact Sheet)  

SciTech Connect

This NREL Hydrogen and Fuel Cell Technical Highlight describes how hydrogen photoproduction activity in algal cultures can be improved dramatically by increasing the gas-phase to liquid-phase volume ratio of the photobioreactor. NREL, in partnership with subcontractors from the Institute of Basic Biological Problems in Pushchino, Russia, demonstrated that the hydrogen photoproduction rate in algal cultures always decreases exponentially with increasing hydrogen partial pressure above the culture. The inhibitory effect of high hydrogen concentrations in the photobioreactor gas phase on hydrogen photoproduction by algae is significant and comparable to the effect observed with some anaerobic bacteria.

Not Available

2012-07-01T23:59:59.000Z

67

Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect

A previously idle portion of the Midway-Sunset field, the ARCO Western Energy Pru Fee property, is being brought back into commercial production through tight integration of geologic characterization, geostatistical modeling, reservoir simulation, and petroleum engineering. This property, shut-in over a decade ago as economically marginal using conventional cyclic steaming methods, has a 200-300 foot thick oil column in the Monarch Sand. However, the sand lacks effective steam barriers and has a thick water-saturation zone above the oil-water contact. These factors require an innovative approach to steam flood production design that will balance optimal total oil production against economically viable steam-oil ratios and production rates. The methods used in the Class III demonstration are accessible to most operators in the Midway-Sunset field and could be used to revitalize properties with declining production of heavy oils throughout the region. In January 1997 the project entered its second and main phase with the purpose of demonstrating whether steamflood can be a more effective mode of production of the heavy, viscous oils from the Monarch Sand reservoir than the more conventional cyclic steaming. The objective is not just to produce the pilot site within the Pru Fee property south of Taft, but to test which production parameters optimize total oil recovery at economically acceptable rates of production and production costs.

Steven Schamel

1998-02-27T23:59:59.000Z

68

Recovery Act  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 3 Recovery Act Buy American Requirements for Information Needed from Financial Assistance Applicants/Recipients for Waiver Requests Based on Unreasonable Cost or Nonavailability Applicants for and recipients of financial assistance funded by the Recovery Act must comply with the requirement that all of the iron, steel, and manufactured goods used for a project for the construction, alteration, maintenance, or repair of a public building or public work be produced in the United States, unless the head of the agency makes a waiver, or determination of inapplicability of the Buy American Recovery Act provisions, based on one of the authorized exceptions. The authorized exceptions are unreasonable cost, nonavailability, and in furtherance of the public interest. This

69

Water alternating enriched gas injection to enhance oil production and recovery from San Francisco Field, Colombia  

E-Print Network (OSTI)

The main objectives of this study are to determine the most suitable type of gas for a water-alternating-gas (WAG) injection scheme, the WAG cycle time, and gas injection rate to increase oil production rate and recovery from the San Francisco field...

Rueda Silva, Carlos Fernando

2012-06-07T23:59:59.000Z

70

Rates & Repayment  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Review-NEPA Financial Data Operations Planning & Projects Power Marketing Rates Rate Adjustments Transmission Ancillary Services Rates WAPA-137 Rate Order Environmental Review-NEPA Financial Data Operations Planning & Projects Power Marketing Rates Rate Adjustments Transmission Ancillary Services Rates WAPA-137 Rate Order Rates and Repayment Services Rates Current and Historical Rate Information Collbran Power Rates CRSP Power Rates CRSP Transmission System Rates CRSP Management Center interest rates Falcon-Amistad Power Rates Provo River Power Rates Rio Grande Power Rates Seedskadee Power Rates SLCA/IP Power Rates Rate Schedules & Supplemental Rate Information Current Rates for Firm Power, Firm & Non-firm Transmission Service, & Ancillary Services Current Transmission & Ancillary Services Rates Tariffs Components of the SLCA/IP Existing Firm Power Rate Cost Recovery Charge (CRC) Page MOA Concerning the Upper Colorado River Basin

71

Recovery Newsletters  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

newsletters Office of Environmental newsletters Office of Environmental Management 1000 Independence Ave., SW Washington, DC 20585 202-586-7709 en 2011 ARRA Newsletters http://energy.gov/em/downloads/2011-arra-newsletters 2011 ARRA Newsletters

72

Power Recovery  

E-Print Network (OSTI)

) - 2,870,000 x 0.8 6 W - 3414 = 70 kw (or 900 hp). When recovering power from an expanding gas, consideration should be given to the final gas temperature. This tem;:>f'rature can be estimated by the formula: T 2 Final temperature, oR. Other... with the requirements make generation fqr more useful. Presently a recovery level of around 500 kw (or 657 hp) appears to be the minimum level which will support an in stallation. In order to achieve reasonable effi ciency, quality equipment with good control...

Murray, F.

73

Increased combustion rate of chlorobenzene on Pt/?-Al2O3 in binary mixtures with hydrocarbons and with carbon monoxide  

Science Journals Connector (OSTI)

The catalytic combustion of chlorobenzene on a 2 wt.% Pt/?-Al2O3 catalyst in binary mixtures with various hydrocarbons (toluene, benzene, cyclohexane, cyclohexene, 1,4-cyclohexadiene, 2-butene, and ethene) and with carbon monoxide has been explored. For all binary mixtures used the (excess of) added hydrocarbon increased the rate of conversion of chlorobenzene. With 2-butene, T50% and T100% for chlorobenzene were reduced by 100 and 200°C, respectively. Toluene and ethene were almost equally efficient as 2-butene. Co-feeding benzene or carbon monoxide resulted in a much smaller decrease of the T50%. The additional heat and water production in hydrocarbon combustion may contribute to some extent to the observed rate acceleration, but removal of Cl from the surface due to the hydrocarbon appears to be the major factor. The co-feeding of hydrocarbons invariably reduced the output of polychlorinated benzenes, which are formed as byproducts in the combustion of chlorobenzene on Pt/?-Al2O3. Again, especially toluene, ethene, and 2-butene were very efficient. Benzene — as well as cyclohexane, cyclohexene, and 1,4-cyclohexadiene, which were converted in situ into benzene — was much less effective, due to chlorination of the aromatic nucleus. In chlorobenzene–CO mixtures the levels of polychlorinated benzenes were almost as high as with chlorobenzene per se. Removal of Cl from the surface (mainly in the form of HCl) by (non-aromatic) hydrocarbons is responsible for reducing the formation of byproducts.

R.W. van den Brink; R. Louw; P. Mulder

2000-01-01T23:59:59.000Z

74

Numerical simulation of preformed particle gel flooding for enhancing oil recovery  

Science Journals Connector (OSTI)

Abstract As a new type of oil recovery enhancing technology, preformed particle gel (PPG) flooding has been gradually used for high water-cut reservoir development. However, the current commercial software cannot simulate the processes of PPG flooding. In this paper, a novel mathematical model considering the behaviors of pore-throat plugging and particles restarting, the matching relations of particle size, throat size and pressure gradient is established based on the mass conservation equation and solved by IMPES and typical four-order Runge–Kutta methods. Also, the codes are written by Visual Basic, and the verification is proved by experimental data. Then, the influences of injection rate, suspension concentration, mean particle diameter, critical threshold pressure gradient and permeability ratio in ultimate oil recovery factor and water-cut are studied. The results show that, with the injection rate, mean particle diameter and critical restarting pressure gradient coefficient increasing, the ultimate oil recovery factor will increase first, and then decrease. As the concentration of injection suspension increases, the ultimate oil recovery factor will increase first, but at the later stage it tends to be smooth. As the permeability ratio increases, the enhanced recovery factor will also increase first, and then tend to be smooth.

Jing Wang; Huiqing Liu; Zenglin Wang; Jie Xu; Dengyu Yuan

2013-01-01T23:59:59.000Z

75

American Recovery and Reinvestment Act of 2009  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4, 2009 financial assistance 4, 2009 financial assistance Special provisions relating to work funded under American Recovery and Reinvestment Act of 2009 (Mar 2009) [Prescription: This clause must be included in all grants, cooperative agreements and TIAs (new or amended) when funds appropriated under the Recovery Act are obligated to the agreement.] Preamble The American Recovery and Reinvestment Act of 2009, Pub. L. 111-5, (Recovery Act) was enacted to preserve and create jobs and promote economic recovery, assist those most impacted by the recession, provide investments needed to increase economic efficiency by spurring technological advances in science and health, invest in transportation, environmental protection, and other infrastructure that will provide long-

76

Recativation of an Idle Lease to Increase Heavy Oil Recovery Through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect

This project reactivates ARCO`s idle Pru Fee lease in the Midway- Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modem reservoir characterization and simulation methods. Cyclic steaming is being used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase scheduled to begin in January 1997, a continuous steamflood enhanced oil recovery will be initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.

Schamel, Steven

1997-03-24T23:59:59.000Z

77

Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low Dip Slope and Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect

This project reactivates ARCO's idle Pru Fee lease in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steam was used to reestablish baseline production within the reservoir characterization phase of the project completed in December 1996. During the demonstration phase begun in January 1997, a continuous steamflood enhanced oil recovery is testing the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objective of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.

Schamel, Steven

1999-07-08T23:59:59.000Z

78

Reactivation of an Idle Lease to Increase Heavy Oil Recovery Through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect

This project reactivates ARCO?s idle Pru Fee property in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming was used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase begun in January 1997, a continuous steamflood enhanced oil recovery was initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and the recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.

Steven Schamel

1997-07-29T23:59:59.000Z

79

Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect

This project reactivates ARCO's idle Pru Fee lease in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming was used to reestablish baseline production within the reservoir characterization phase of the project completed in December 1996. During the demonstration phase begun in January 1997, a continuous steamflood enhanced oil recovery is testing the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having simular producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially t o other producers in California, through an aggressive technology transfer program.

Deo, M.; Forster, C.; Jenkins, C.; Schamel, S.; Sprinkel, D.; and Swain, R.

1999-02-01T23:59:59.000Z

80

Reactivation of an Idle Lease to Increase Heavy Oil Recovery Through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Resrvoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect

This project reactivates ARCO?s idle Pru Fee lease in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming is being used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase scheduled to begin in January 1997, a continuous steamflood enhanced oil recovery will be initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.

Creties Jenkins; Doug Sprinkel; Milind Deo; Ray Wydrinski; Robert Swain

1997-10-21T23:59:59.000Z

Note: This page contains sample records for the topic "increase recovery rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

ARM - Recovery Act Instruments  

NLE Websites -- All DOE Office Websites (Extended Search)

ActRecovery Act Instruments ActRecovery Act Instruments Recovery Act Logo Subscribe FAQs Recovery Act Instruments Recovery Act Fact Sheet March 2010 Poster (PDF, 10MB) External Resources Recovery Act - Federal Recovery Act - DOE Recovery Act - ANL Recovery Act - BNL Recovery Act - LANL Recovery Act - PNNL Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Recovery Act Instruments These pages provide a breakdown of the new instruments planned for installation among the permanent and mobile ARM sites. In addition, several instruments will be purchased for use throughout the facility and deployed as needed. These are considered "facility spares" and are included in the table below. View All | Hide All ARM Aerial Facility Instrument Title Instrument Mentor Measurement Group Measurements

82

Thermal acidization and recovery process for recovering viscous petroleum  

DOE Patents (OSTI)

A thermal acidization and recovery process for increasing production of heavy viscous petroleum crude oil and synthetic fuels from subterranean hydrocarbon formations containing clay particles creating adverse permeability effects is described. The method comprises injecting a thermal vapor stream through a well bore penetrating such formations to clean the formation face of hydrocarbonaceous materials which restrict the flow of fluids into the petroleum-bearing formation. Vaporized hydrogen chloride is then injected simultaneously to react with calcium and magnesium salts in the formation surrounding the bore hole to form water soluble chloride salts. Vaporized hydrogen fluoride is then injected simultaneously with its thermal vapor to dissolve water-sensitive clay particles thus increasing permeability. Thereafter, the thermal vapors are injected until the formation is sufficiently heated to permit increased recovery rates of the petroleum.

Poston, Robert S. (Winter Park, FL)

1984-01-01T23:59:59.000Z

83

Efficient screening of enhanced oil recovery methods and predictive economic analysis  

Science Journals Connector (OSTI)

Oil demand for economic development around the world is rapidly increasing. Moreover, oil production rates are getting a peak in mature reservoirs and tending to decline in the near future, which has led to considerable researches on enhanced oil recovery ... Keywords: Artificial neural network, EOR data, Economical study, Fluid characteristics, Rock, Screening

Arash Kamari, Mohammad Nikookar, Leili Sahranavard, Amir H. Mohammadi

2014-09-01T23:59:59.000Z

84

DOE Policy Re Recovery Act Recipient Use of Recovery Act Logos on Signage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INTERIM GUIDANCE INTERIM GUIDANCE May 12, 2010 TO: Program Office Leadership FROM: [Matt Rogers] SUBJECT: DOE Policy Re Recovery Act Recipient Use of Recovery Act Logos on Signage This memorandum clarifies the U.S. Department of Energy ("DOE") policy regarding use of the Recovery Act logo by Recovery Act recipients and subgrantees. The appropriate use of the logo will serve to highlight the Recovery Act's positive impact while preventing potential misrepresentations. Signs and websites are a useful part of efforts to increase accountability and transparency into how American taxpayer dollars are being spent through Recovery Act efforts. Signage: * DOE permits the use of Recovery Act logos and/or the text, "U.S. Department of Energy" or "Department of Energy," on any Recovery Act recipient physical or structural

85

USPS mailing and shipping prices increase effective January 26, 2014 The Postal Regulatory Commission (PRC) approved the Consumer Price Index (CPI) Rate Case for  

E-Print Network (OSTI)

USPS mailing and shipping prices increase effective January 26, 2014 The Postal Regulatory, the PRC approved the Exigency case by an additional 4.3% for a total increase of 5.9% and will take effect

Hemmers, Oliver

86

Rate schedule  

NLE Websites -- All DOE Office Websites (Extended Search)

Firm Power Service Provided by Rate/Charges Firm Power Service Provided by Rate/Charges Rate/Charges Effective Through (or until superceded) Firm Sales (SLIP-F9) Composite Rate SLIP 29.62 mills/kWh 9/30/2015 Demand Charge SLIP $5.18/kW-month 9/30/2015 Energy Charge SLIP 12.19 mills/kWh 9/30/2015 Cost Recovery Charge (CRC) SLIP 0 mills/kWh 9/30/2015 Transmission Service Provided by Current Rates effective10/12 - 9/15 (or until superceded) Rate Schedule Effective Through Firm Point-to-Point Transmission (SP-PTP7) CRSP $1.14 per kW-month $13.69/kW-year $0.00156/kW-hour $0.04/kW-day $0.26/kW-week 10/1/2008-9/30/2015 Network Integration Transmission (SP-NW3) CRSP see rate schedule 10/1/2008-9/30/2015 Non-Firm Point-to-Point Transmission (SP-NFT6) CRSP see rate schedule 10/1/2008-9/30/2015 Ancillary Services Provided by Rate Rate Schedule

87

Energy Recovery Ventilator Membrane Efficiency Testing  

E-Print Network (OSTI)

A test setup was designed and built to test energy recovery ventilator membranes. The purpose of this test setup was to measure the heat transfer and water vapor transfer rates through energy recover ventilator membranes and find their effectiveness...

Rees, Jennifer Anne

2013-05-07T23:59:59.000Z

88

Reactivation of an idle lease to increase heavy oil recovery through application of conventional steam drive technology in a low dip slope and basin reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect

This project reactivates ARCO`s idle Pru Fee lease in the Midway- Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming is being used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase scheduled to begin in January 1997, a continuous steamflood enhanced oil recovery will be initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program. One of the main objectives of Budget Period I was to return the Pru Fee property to economic production and establish a baseline productivity with cyclic steaming. By the end of the second quarter 1996, all Pru producers except well 101 had been cyclic steamed two times. Each steam cycle was around 10,000 barrels of steam (BS) per well. No mechanical problems were found in the existing old wellbores. Conclusion is after several years of being shut-in, the existing producers on the Pru lease are in reasonable mechanical condition, and can therefore be utilized as viable producers in whatever development plan we determine is optimum. Production response to cyclic steam is very encouraging in the new producer, however productivity in the old producers appears to be limited in comparison.

Schamel, S.

1996-11-01T23:59:59.000Z

89

Water recovery from dew  

Science Journals Connector (OSTI)

The recovery of clean water from dew has remained a longstanding challenge in many places all around the world. It is currently believed that the ancient Greeks succeeded in recovering atmospheric water vapour on a scale large enough to supply water to the city of Theodosia (presently Feodosia, Crimea, Ukraine). Several attempts were made in the early 20th century to build artificial dew-catching constructions which were subsequently abandoned because of their low yield. The idea of dew collection is revised in the fight of recent investigations of the basic physical phenomena involved in the formation of dew. A model for calculating condensation rates on real dew condensers is proposed. Some suggestions for the ‘ideal’ condenser are formulated.

V.S. Nikolayev; D. Beysens; A. Gioda; I. Milimouka; E. Katiushin; J.-P. Morel

1996-01-01T23:59:59.000Z

90

Recovery Act Milestones  

ScienceCinema (OSTI)

Every 100 days, the Department of Energy is held accountable for a progress report on the American Recovery and Reinvestment Act. Update at 200 days, hosted by Matt Rogers, Senior Advisor to Secretary Steven Chu for Recovery Act Implementation.

Rogers, Matt

2013-05-29T23:59:59.000Z

91

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9, 2010 9, 2010 AcuTemp received a $900,000 48C manufacturing tax credit under the American Recovery and Reinvestment Act to increase production of the company's ThermoCor vacuum insulation panels for more efficient ENERGY STAR appliances. | Photo courtesy of AcuTemp | AcuTemp Expands as Appliances Become More Energy Efficient AcuTemp, a small U.S. company that manufactures vacuum insulation panels that are needed to maintain precise temperatures for cold-storage products, is expanding and creating jobs in Dayton, OH thanks in part to the Recovery Act. August 6, 2010 A $20 million Recovery Act award will help Solazyme take production from tens of thousands of gallons a year of its algae "drop-in" oil to an annual production capacity of over half a million gallons. | Photo courtesy of Solazyme, Inc. |

92

American Recovery and Reinvestment Act Information Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovery and Reinvestment Act Recovery and Reinvestment Act Information Services American Recovery and Reinvestment Act American Recovery and Reinvestment Act Information Services American Recovery and Reinvestment Act American Recovery and Reinvestment Act Information Services American Recovery and Reinvestment Act American Recovery and Reinvestment Act American Recovery and Reinvestment Act American Recovery and Reinvestment Act American Recovery and Reinvestment Act American Recovery and Reinvestment Act American Recovery and Reinvestment Act American Recovery and Reinvestment Act American Recovery and Reinvestment Act American Recovery and Reinvestment Act American Recovery and Reinvestment Act American Recovery and Reinvestment Act American Recovery and Reinvestment Act American Recovery and Reinvestment Act

93

DOE Recovery Act Awardees | OpenEI  

Open Energy Info (EERE)

Recovery Act Awardees Recovery Act Awardees Dataset Summary Description The data contained within the .xls is the latest list of DOE recovery act awardees. The list is to be updated weekly by the DOE. Source DOE Date Released December 10th, 2010 (3 years ago) Date Updated Unknown Keywords Awardees DOE Recovery Act Data application/vnd.ms-excel icon DOE Recovery Act Awardees - Dec 10 2010 (xls, 949.2 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Weekly Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment http://www.energy.gov/webpolicies.htm Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote

94

Install Waste Heat Recovery Systems for Fuel-Fired Furnaces  

Energy.gov (U.S. Department of Energy (DOE))

This tip sheet recommends installing waste heat recovery systems for fuel-fired furnaces to increase the energy efficiency of process heating systems.

95

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 11, 2013 July 11, 2013 Analysis of Customer Enrollment Patterns in TIme-Based Rate Programs: Initial Results from the SGIG Consumer Behavior Studies (July 2013) The Smart Grid Investment Grant program's consumer behavior study effort presents an opportunity to advance the electric power industry's understanding of consumer behaviors in terms of customer acceptance and retention, and energy and peak demand impacts. July 10, 2013 Cumulative Federal Payments to OE Recovery Act Recipients, through June 30, 2013 Graph of cumulative Federal Payments to OE Recovery Act Recipients, through June 30, 2013. July 7, 2013 Voices of Experience: Insights on Smart Grid Customer Engagement (July 2013) The success of the Smart Grid will depend in part on consumers taking a more proactive role in managing their energy use. This document is the

96

Waste Heat Recovery  

Office of Environmental Management (EM)

DRAFT - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. Introduction to the TechnologySystem ......

97

Recovery Act Project Stories  

Energy.gov (U.S. Department of Energy (DOE))

Funded by the American Recovery and Reinvestment Act, these Federal Energy Management Program (FEMP) projects exemplify the range of technical assistance provided to federal agencies.

98

Recovery Act State Summaries | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act State Summaries Recovery Act State Summaries Recovery Act State Summaries Alabama Recovery Act State Memo Alaska Recovery Act State Memo American Samoa Recovery Act State Memo Arizona Recovery Act State Memo Arkansas Recovery Act State Memo California Recovery Act State Memo Colorado Recovery Act State Memo Connecticut Recovery Act State Memo Delaware Recovery Act State Memo District of Columbia Recovery Act State Memo Florida Recovery Act State Memo Georgia Recovery Act State Memo Guam Recovery Act State Memo Hawaii Recovery Act State Memo Idaho Recovery Act State Memo Illinois Recovery Act State Memo Indiana Recovery Act State Memo Iowa Recovery Act State Memo Kansas Recovery Act State Memo Kentucky Recovery Act State Memo Louisiana Recovery Act State Memo Maine Recovery Act State Memo

99

Recovery of electric resistance degraded by electromigration  

Science Journals Connector (OSTI)

Electric resistance degraded by electromigration at low temperatures is investigated by sweeping temperatures up to 400 K at a constant rate. Recovery (decrease) of the resistance is found and a first?order reaction model is applied to evaluate the activation energyspectra for this recovery. The energy spectra are found to broaden up to 1.1 eV. A comparison of the spectra with both the activation energy for the motion of vacancies and the spectra for as?deposited films prepared by electron?beam evaporation and dc sputtering indicates that the recovery comprises multienergy processes. The relaxation of mechanical stress gradients built up during the dc stress tests the relief of microstructural changes by bulk diffusion involving the cooperative motion of large groups of atoms and the formation of vacancy–hydrogen complexes as intermediates are discussed as possible factors contributing to the broad activation energyspectra of the recovery.

Shin?ichi Ohfuji; Mitsuo Tsukada

1995-01-01T23:59:59.000Z

100

Recovery Act Funds at Work | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Information Center » Recovery Act » Recovery Act Funds at Work Information Center » Recovery Act » Recovery Act Funds at Work Recovery Act Funds at Work Funds from the American Recovery and Reinvestment Act of 2009 (Recovery Act) are being put to work to improve safety, reliability, and service in systems across the country. Idaho Power Company is accelerating development of renewable energy integration, improving access to clean power resources, and overhauling their customer information and communications systems. Oklahoma Gas and Electric has completed the 2-year pilot of a time-based rate program to reduce peak demand, which resulted in an average bill reduction of $150/customer over the summer periods. Powder River Energy Corporation is meeting the challenges of terrain and weather by building a microwave communications network to ensure higher

Note: This page contains sample records for the topic "increase recovery rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Recovery Boiler Corrosion Chemistry  

E-Print Network (OSTI)

11/13/2014 1 Recovery Boiler Corrosion Chemistry Sandy Sharp and Honghi Tran Symposium on Corrosion of a recovery boiler each cause their own forms of corrosion and cracking Understanding the origin of the corrosive conditions enables us to operate a boiler so as to minimize corrosion and cracking select

Das, Suman

102

Jobs Creation Economic Recovery  

E-Print Network (OSTI)

Commission (Energy Commission) collects the American Recovery and Reinvestment Act of 2009 (ARRA) jobs creation and retention data (jobs data) from its subrecipients through the Energy Commission's ARRAJobs Creation and Economic Recovery Prompt, Fair, and Reasonable Use of ARRA Funds Subrecipient

103

American Reinvestment Recovery Act | Department of Energy  

Energy Savers (EERE)

American Reinvestment Recovery Act American Reinvestment Recovery Act Federal Energy Regulatory Commission Loan Program American Reinvestment Recovery Act More Documents &...

104

Summary - Caustic Recovery Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Caustic Recovery Technology Caustic Recovery Technology ETR Report Date: July 2007 ETR-7 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Caustic Recovery Technology Why DOE-EM Did This Review The Department of Energy (DOE) Environmental Management Office (EM-21) has been developing caustic recovery technology for application to the Hanford Waste Treatment Plant (WTP) to reduce the amount of Low Activity Waste (LAW) vitrified. Recycle of sodium hydroxide with an efficient caustic recovery process could reduce the amount of waste glass produced by greater than 30%. The Ceramatec Sodium (Na), Super fast Ionic CONductors (NaSICON) membrane has shown promise for directly producing 50% caustic with high sodium selectivity. The external review

105

Recovery Act Recipient Reporting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Smart Grid Investment Grant Recipients Smart Grid Investment Grant Recipients November 19, 2009 1 Outline of Presentation * OMB Reporting Requirements * Jobs Guidance * FR.gov 2 Section 1512 of American Reinvestment and Recovery Act Outlines Recipient Reporting Requirements "Recipient reports required by Section 1512 of the Recovery Act will answer important questions, such as: ▪ Who is receiving Recovery Act dollars and in what amounts? ▪ What projects or activities are being funded with Recovery Act dollars? ▪ What is the completion status of such projects or activities and what impact have they had on job creation and retention?" "When published on www.Recovery.gov, these reports will provide the public with an unprecedented level of transparency into how Federal dollars are being spent and will help drive accountability for the timely,

106

Reactivation of an Idle Lease to Increase Heavy Oil Recovery Through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect

A previously idle portion of the Midway-Sunset field, the ARCO Western Energy Pru Fee property, is being brought back into commercial production through tight integration of geologic characterization, geostatistical modeling, reservoir simulation, and petroleum engineering. This property, shut-in over a decade ago as economically marginal using conventional cyclic steaming methods, has a 200-300 foot thick oil column in the Monarch Sand. However, the sand lacks effective steam barriers and has a thick water-saturation zone above the oil-water contact. These factors require an innovative approach to steam flood production design that will balance optimal total oil production against economically viable steam-oil ratios and production rates. The methods used in the Class III demonstration are accessible to most operators in the Midway-Sunset field and could be used to revitalize properties with declining production of heavy oils throughout the region.

Steven Schamel

1998-03-20T23:59:59.000Z

107

Reactivation of an Idle Lease to Increase Heavy Oil Recovery Through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect

A previously idle portion of the Midway-Sunset field, the ARCO Western Energy Pru Fee property, is being brought back into commercial production through tight integration of geologic characterization, geostatistical modeling, reservoir simulation, and petroleum engineering. This property, shut-in over a decade ago as economically marginal using conventional cyclic steaming methods, has a 200-300 foot thick oil column in the Monarch Sand. However, the sand lacks effective steam barriers and has a thick water-saturation zone above the oil-water contact. These factors require an innovative approach to steam flood production design that will balance optimal total oil production against economically viable steam-oil ratios and production rates. The methods used in the Class III demonstration are accessible to most operators in the Midway-Sunset field and could be used to revitalize properties with declining production of heavy oils throughout the region.

Steven Schamel

1998-08-31T23:59:59.000Z

108

Caustic Recovery Technology | Department of Energy  

Office of Environmental Management (EM)

Caustic Recovery Technology Caustic Recovery Technology Full Document and Summary Versions are available for download Caustic Recovery Technology Summary - Caustic Recovery...

109

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 7, 2011 February 7, 2011 Mechanics train with plasma arc cutting equipment at the Paducah Site | Courtesy of Paducah Gaseous Diffusion Plant 240 Jobs Later: The Recovery Act's Impact at the Paducah Site Workers at the Department of Energy's Paducah Site are doing great things with the training they've received as part of the Recovery Act. January 25, 2011 Watercolor print of the Aldo Leopold Nature Center (ALNC) with new facilities. How a Wisconsin Nature Center is Leading by Example With funding from the U.S. Department of Energy, this Wisconsin nature center will be at the forefront in demonstrating the latest energy efficiency and renewable energy technologies to thousands of visitors every year. January 24, 2011 Vids 4 Grids: Surge Arresters and Switchgears A new video series is increasing general public knowledge of the cutting

110

Geomechanical Study of Bakken Formation for Improved Oil Recovery  

SciTech Connect

On October 1, 2008 US DOE-sponsored research project entitled “Geomechanical Study of Bakken Formation for Improved Oil Recovery” under agreement DE-FC26-08NT0005643 officially started at The University of North Dakota (UND). This is the final report of the project; it covers the work performed during the project period of October 1, 2008 to December 31, 2013. The objectives of this project are to outline the methodology proposed to determine the in-situ stress field and geomechanical properties of the Bakken Formation in Williston Basin, North Dakota, USA to increase the success rate of horizontal drilling and hydraulic fracturing so as to improve the recovery factor of this unconventional crude oil resource from the current 3% to a higher level. The success of horizontal drilling and hydraulic fracturing depends on knowing local in-situ stress and geomechanical properties of the rocks. We propose a proactive approach to determine the in-situ stress and related geomechanical properties of the Bakken Formation in representative areas through integrated analysis of field and well data, core sample and lab experiments. Geomechanical properties are measured by AutoLab 1500 geomechanics testing system. By integrating lab testing, core observation, numerical simulation, well log and seismic image, drilling, completion, stimulation, and production data, in-situ stresses of Bakken formation are generated. These in-situ stress maps can be used as a guideline for future horizontal drilling and multi-stage fracturing design to improve the recovery of Bakken unconventional oil.

Ling, Kegang; Zeng, Zhengwen; He, Jun; Pei, Peng; Zhou, Xuejun; Liu, Hong; Huang, Luke; Ostadhassan, Mehdi; Jabbari, Hadi; Blanksma, Derrick; Feilen, Harry; Ahmed, Salowah; Benson, Steve; Mann, Michael; LeFever, Richard; Gosnold, Will

2013-12-31T23:59:59.000Z

111

Solvent recycle/recovery  

SciTech Connect

This report describes Phase I of the Solvent Recycle/Recovery Task of the DOE Chlorinated Solvent Substitution Program for the US Air Force by the Idaho National Engineering Laboratory, EG G Idaho, Inc., through the US Department of Energy, Idaho Operations Office. The purpose of the task is to identify and test recovery and recycling technologies for proposed substitution solvents identified by the Biodegradable Solvent Substitution Program and the Alternative Solvents/Technologies for Paint Stripping Program with the overall objective of minimizing hazardous wastes. A literature search to identify recycle/recovery technologies and initial distillation studies has been conducted. 4 refs.

Paffhausen, M.W.; Smith, D.L.; Ugaki, S.N.

1990-09-01T23:59:59.000Z

112

OE Recovery Act Blog | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovery Recovery Act Blog OE Recovery Act Blog RSS September 20, 2013 Electrical transmission lines cross a snow-covered field in Dallas Dam, Oregon. | Energy Department photo. Top 9 Things You Didn't Know About America's Power Grid Ever wonder how electricity gets to your home? Test your knowledge with these top power grid facts. July 11, 2013 Demand Response: Lessons Learned with an Eye to the Future Under the Recovery Act, the Energy Department awarded $3.5 billion in funds to the electricity industry, including OG&E, to help catalyze the adoption of smart grid tools, technologies and techniques such as demand response that are designed to increase the electric grid's flexibility, reliability, efficiency, affordability, and resiliency. Understanding lessons learned from these projects is vital.

113

Increasing Knowledge Increasing Knowledge 29  

E-Print Network (OSTI)

28 Increasing Knowledge Increasing Knowledge 29 Expanding Leadership 36 Building Partnerships 43 the world. The challenges ahead are large, but WSP is preparing to meet them by increasing knowledge, expanding leadership, building partnerships, and seeking solutions. #12;29 Increasing Knowledge Increasing

Fay, Noah

114

Waste Steam Recovery  

E-Print Network (OSTI)

An examination has been made of the recovery of waste steam by three techniques: direct heat exchange to process, mechanical compression, and thermocompression. Near atmospheric steam sources were considered, but the techniques developed are equally...

Kleinfeld, J. M.

1979-01-01T23:59:59.000Z

115

Imbibition assisted oil recovery  

E-Print Network (OSTI)

analyzed in detail to investigate oil recovery during spontaneous imbibition with different types of boundary conditions. The results of these studies have been upscaled to the field dimensions. The validity of the new definition of characteristic length...

Pashayev, Orkhan H.

2004-11-15T23:59:59.000Z

116

On Partially Sparse Recovery  

E-Print Network (OSTI)

Apr 14, 2011 ... I ? P projects (orthogonally) onto the column space of A2 there must .... In Proceedings of the 13th International Conference on Approximation Theory, 2011. ... Foundations and Numerical Methods for Sparse Recovery, Radon ...

2011-04-14T23:59:59.000Z

117

Recovery News Flashes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

news-flashes Office of Environmental news-flashes Office of Environmental Management 1000 Independence Ave., SW Washington, DC 20585 202-586-7709 en "TRU" Success: SRS Recovery Act Prepares to Complete Shipment of More Than 5,000 Cubic Meters of Nuclear Waste to WIPP http://energy.gov/em/downloads/tru-success-srs-recovery-act-prepares-complete-shipment-more-5000-cubic-meters-nuclear recovery-act-prepares-complete-shipment-more-5000-cubic-meters-nuclear" class="title-link">"TRU" Success: SRS Recovery Act Prepares to Complete Shipment of More Than 5,000 Cubic Meters of Nuclear Waste to WIPP

118

Oil recovery enhancement from fractured, low permeability reservoirs. Annual report 1990--1991, Part 1  

SciTech Connect

Joint funding by the Department of Energy and the State of Texas has Permitted a three year, multi-disciplinary investigation to enhance oil recovery from a dual porosity, fractured, low matrix permeability oil reservoir to be initiated. The Austin Chalk producing horizon trending thru the median of Texas has been identified as the candidate for analysis. Ultimate primary recovery of oil from the Austin Chalk is very low because of two major technological problems. The commercial oil producing rate is based on the wellbore encountering a significant number of natural fractures. The prediction of the location and frequency of natural fractures at any particular region in the subsurface is problematical at this time, unless extensive and expensive seismic work is conducted. A major portion of the oil remains in the low permeability matrix blocks after depletion because there are no methods currently available to the industry to mobilize this bypassed oil. The following multi-faceted study is aimed to develop new methods to increase oil and gas recovery from the Austin Chalk producing trend. These methods may involve new geological and geophysical interpretation methods, improved ways to study production decline curves or the application of a new enhanced oil recovery technique. The efforts for the second year may be summarized as one of coalescing the initial concepts developed during the initial phase to more in depth analyses. Accomplishments are predicting natural fractures; relating recovery to well-log signatures; development of the EOR imbibition process; mathematical modeling; and field test.

Poston, S.W.

1991-12-31T23:59:59.000Z

119

Big secondary-recovery waterflood plans are taking shape in Mexico  

SciTech Connect

The history of Petroleos Mexicanos (PEMEX) can be identified with 3 important years: 1938, 1951, and 1976. The year 1938 marked the beginning of the company, following expropriation of the petroleum industry. In 1951, the first secondary recovery project in Mexico was started, i.e., water injection into the limestone of the Poza Rica field. The third date marks the effort and importance of petroleum projects such as waterflooding that have come into their own since 1976. From a program of 300,000 bpd of water injection in that year, increases by PEMEX have pushed the rate to more than 1,120,000 bpd as of Jun 1980. Waterflooding has recovered approximately 318,000,000 bbl total for a large profit estimated at more than $2.4 billion. By the end of 1982, secondary recovery programs will bring the injection rate to approximately 4.7 million bpd.

Matheny, S.L. Jr.

1980-09-29T23:59:59.000Z

120

Cooling energy efficiency and classroom air environment of a school building operated by the heat recovery air conditioning unit  

Science Journals Connector (OSTI)

Abstract The recently-built school buildings have adopted novel heat recovery ventilator and air conditioning system. Heat recovery efficiency of the heat recovery facility and energy conservation ratio of the air conditioning unit were analytically modeled, taking the ventilation networks into account. Following that, school classroom displacement ventilation and its thermal stratification and indoor air quality indicated by the CO2 concentration have been numerically modeled concerning the effects of delivering ventilation flow rate and supplying air temperature. Numerical results indicate that the promotion of mechanical ventilation rate can simultaneously boost the dilution of indoor air pollutants and the non-uniformity of indoor thermal and pollutant distributions. Subsequent energy performance analysis demonstrates that classroom energy demands for ventilation and cooling could be reduced with the promotion of heat recovery efficiency of the ventilation facility, and the energy conservation ratio of the air conditioning unit decreases with the increasing temperatures of supplying air. Fitting correlations of heat recovery ventilation and cooling energy conservation have been presented.

Yang Wang; Fu-Yun Zhao; Jens Kuckelkorn; Di Liu; Li-Qun Liu; Xiao-Chuan Pan

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "increase recovery rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Alternate Materials for Recovery Boiler Superheater Tubes  

SciTech Connect

The ever escalating demands for increased efficiency of all types of boilers would most sensibly be realized by an increase in the steam parameters of temperature and pressure. However, materials and corrosion limitations in the steam generating components, particularly the superheater tubes, present major obstacles to boiler designers in achieving systems that can operate under the more severe conditions. This paper will address the issues associated with superheater tube selection for many types of boilers; particularly chemical recovery boilers, but also addressing the similarities in issues for biomass and coal fired boilers. It will also review our recent study of materials for recovery boiler superheaters. Additional, more extensive studies, both laboratory and field, are needed to gain a better understanding of the variables that affect superheater tube corrosion and to better determine the best means to control this corrosion to ultimately permit operation of recovery boilers at higher temperatures and pressures.

Keiser, James R [ORNL; Kish, Joseph [McMaster University; Singbeil, Douglas [FPInnovations

2009-01-01T23:59:59.000Z

122

A Decade of Increased Oil Recovery in Virtual Reality  

Science Journals Connector (OSTI)

In the early '90s, VR was still in its infancy, but the Norwegian oil company Norsk Hydro saw the technology's potential. Still, there was no framework for developing VR for exploration and production. Working with the Norwegian research institute Christian ... Keywords: virtual reality, petroleum industry, oil exploration and production

Endre M. Lidal; Tor Langeland; Christopher Giertsen; Jens Grimsgaard; Rolf Helland

2007-11-01T23:59:59.000Z

123

Recovery Efficiency Test Project: Phase 1, Activity report  

SciTech Connect

The recovery Efficiency Test well project addressed a number of technical issues. The primary objective was to determine the increased efficiency gas recovery of a long horizontal wellbore over that of a vertical wellbore and, more specifically, what improvements can be expected from inducing multiple hydraulic fractures from such a wellbore. BDM corporation located, planned, and drilled a long radius turn horizontal well in the Devonian shale Lower Huron section in Wayne County, West Virginia, demonstrating that state-of-the-art technology is capable of drilling such wells. BDM successfully tested drilling, coring, and logging in a horizontal well using air as the circulating medium; conducted reservoir modeling studies to protect flow rates and reserves in advance of drilling operations; observed two phase flow conditions in the wellbore not observed previously; cored a fracture zone which produced gas; observed that fractures in the core and the wellbore were not systematically spaced (varied from 5 to 68 feet in different parts of the wellbore); observed that highest gas show rates reported by the mud logger corresponded to zone with lowest fracture spacing (five feet) or high fracture frequency. Four and one-half inch casting was successfully installed in the borehole and was equipped to isolate the horizontal section into eight (8) zones for future testing and stimulation operations. 6 refs., 48 figs., 10 tabs.

Overbey, W.K. Jr.; Carden, R.S.; Kirr, J.N.

1987-04-01T23:59:59.000Z

124

Frequent Recovery and Broad Genotype 2 Diversity Characterize Hepatitis C Virus Infection in Ghana, West Africa  

Science Journals Connector (OSTI)

...Hepatitis Prevention Board, Antwerp, Belgium...epidemiological review. J. Viral Hepat...two decades after recovery from a single-source...223-235. Frequent recovery and broad genotype...by a high rate of recovery and the predominance...genotype 2 strains. | National Blood Service...

Daniel Candotti; Jillian Temple; Francis Sarkodie; Jean-Pierre Allain

2003-07-01T23:59:59.000Z

125

Thermal Recovery Methods  

SciTech Connect

Thermal Recovery Methods describes the basic concepts of thermal recovery and explains the injection patterns used to exploit reservoir conditions. Basic reservoir engineering is reviewed with an emphasis on changes in flow characteristics caused by temperature. The authors discuss an energy balance for steam and combustion drive, and they explain in situ reactions. Heat loss, combustion drive, and steam displacement also are examined in detail, as well as cyclic steam injection, downhole ignition, well heating, and low-temperature oxidation. Contents: Thermal processes; Formation and reservoir evaluations; Well patterns and spacing; Flow and process equations; Laboratory simulation of thermal recovery; Heat loss and transmission; Displacement and production; Equipment; Basic data for field selection; Laboratory evaluation of combustion characteristics; Thermal properties of reservoirs and fluids.

White, P.D.; Moss, J.T.

1983-01-01T23:59:59.000Z

126

Enhanced coalbed methane recovery  

SciTech Connect

The recovery of coalbed methane can be enhanced by injecting CO{sub 2} in the coal seam at supercritical conditions. Through an in situ adsorption/desorption process the displaced methane is produced and the adsorbed CO{sub 2} is permanently stored. This is called enhanced coalbed methane recovery (ECBM) and it is a technique under investigation as a possible approach to the geological storage of CO{sub 2} in a carbon dioxide capture and storage system. This work reviews the state of the art on fundamental and practical aspects of the technology and summarizes the results of ECBM field tests. These prove the feasibility of ECBM recovery and highlight substantial opportunities for interdisciplinary research at the interface between earth sciences and chemical engineering.

Mazzotti, M.; Pini, R.; Storti, G. [ETH, Zurich (Switzerland). Inst. of Process Engineering

2009-01-15T23:59:59.000Z

127

A Significant Increase in Hydrogen Photoproduction Rates and Yields by Wild-Type Algae is Detected at High Photobioreactor Gas Phase Volume (Fact Sheet), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

503 * July 2012 503 * July 2012 Hydrogen photoproduction by 500 mL of sulfur/phosphorus- deprived (-S -P) algal cultures placed in PhBRs with different headspace volumes (165-925 mL). The final percentages of H 2 gas in the gas phase of the PhBRs are indicated in the figure inset; the Y-axis reports actual amounts of H 2 produced. The yield of H 2 gas in the PhBR with a historically small gas phase volume is shown as a dotted line. A Significant Increase in Hydrogen Photoproduction Rates and Yields by Wild-Type Algae is Detected at High Photobioreactor Gas Phase Volume Project: Biological Systems for Hydrogen Photoproduction Team: Maria L. Ghirardi and Michael Seibert, NREL; Sergey N. Kosourov, Khorcheska A. Batyrova, Ekaterina P. Petushkova, and Anatoly A. Tsygankov, IBBP, Russian Academy of Sciences, Russia

128

Recovery of Carbon and Nitrogen Cycling and Microbial Community Functionality in a Post-Lignite Mining Rehabilitation Chronosequence in East Texas  

E-Print Network (OSTI)

al., 2005). Organic carbon is important for 4 many soil processes, like water and nutrient holding capacity. On a larger scale, soil carbon sequestration is important for mitigating increasing atmospheric CO2 concentrations. Nitrogen... in determining the microbially-driven portion of ecosystem recovery and its influence on soil carbon sequestration. For the nitrogen side of the organic matter equation, mineralization rates were evaluated to determine nitrogen turnover rates. Mineralization...

Ng, Justin

2012-10-19T23:59:59.000Z

129

Improved oil recovery in fluvial dominated deltaic reservoirs of Kansas -- Near term. Quarterly report, June 30--September 30, 1995  

SciTech Connect

The objective of this project is to address waterflood problems of the type found in Cherokee Group reservoirs in southeastern Kansas and in Morrow sandstone reservoirs in southwestern Kansas. Two demonstration sites operated by different independent oil operators are involved in the project. General topics to be addressed will be (1) reservoir management and performance evaluation; (2) waterflood optimization, and (3) the demonstration of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. The reservoir management portion of the project will involve performance evaluation and will include such work as (1) reservoir characterization and the development of a reservoir database, (2) identification of operational problems, (3) identification of near wellbore problems, (4) identification of unrecovered mobile oil and estimation of recovery factors, and (5) identification of the most efficient and economical recovery process. The waterflood optimization portion of the project involves only the Nelson Lease. It will be based on the performance evaluation and will involve (1) design and implementation of a water cleanup system for the waterflood, (2) application of well remedial work such as polymer gel treatments to improve vertical sweep efficiency, and (3) changes in waterflood patterns to increase sweep efficiency. Finally, it is planned to implement an improved recovery process on both field demonstration sites.

Green, D.W.; Willhite, G.P.; Walton, A.; Schoeling, L.; Reynolds, R.; Michnick, M.; Watney, L.

1995-10-15T23:59:59.000Z

130

Successes of the Recovery Act - January 2012 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Successes of the Recovery Act - January 2012 Successes of the Recovery Act - January 2012 Successes of the Recovery Act - January 2012 Through the Recovery Act, the Obama Administration is investing more than $90 billion in government investments and tax incentives to lay the foundation for the clean energy economy of the future. These Recovery Act investments are putting Americans back to work making our homes and businesses more energy efficient, increasing the use of clean and renewable electricity, cutting our dependence on oil, and modernizing the electric grid. This document provides an overview of the Department's successes as of January 2012. RecoveryActSuccess_Jan2012final.pdf More Documents & Publications Before the Senate Energy and Natural Resources Committee Before the House Ways and Means Committee

131

UNDERSTANDING THE EFFECT OF DYNAMIC FEED CONDITIONS ON WATER RECOVERY FROM IC ENGINE EXHAUST BY CAPILLARY CONDENSATION WITH INORGANIC MEMBRANES  

SciTech Connect

An inorganic membrane water recovery concept is evaluated as a method to recovering water from the exhaust of an internal combustion engine. Integrating the system on-board a vehicle would create a self-sustaining water supply that would make engine water injection technologies consumer transparent . In laboratory experiments, water recovery from humidified air was measured to evaluate how different operating parameters affect the membrane system s efficiency. The observed impact of transmembrane pressure and gas flow rate suggest that gas residence time is more important than water flux through the membrane. Heat transfer modeling suggests that increasing membrane length can be used to improve efficiency and allow greater flow per membrane, an important parameter for practical applications where space is limited. The membrane water recovery concept was also experimentally validated by extracting water from diesel exhaust coming from a stationary generator. The insight afforded by these studies provides a basis for developing improved membrane designs that balance both efficiency and cost.

DeBusk, Melanie Moses [ORNL] [ORNL; Bischoff, Brian L [ORNL] [ORNL; Hunter, James A [ORNL] [ORNL; Klett, James William [ORNL] [ORNL; Nafziger, Eric J [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL

2014-01-01T23:59:59.000Z

132

Recovery Act Smart Grid Projects | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Recovery Act Smart Grid Projects Recovery Act Smart Grid Projects Recovery Act Smart Grid Projects...

133

Landfill gas recovery  

Science Journals Connector (OSTI)

Landfill gas recovery ... However, by referring to landfills as dumps, the article creates a misimpression. ... The answers revolve around the relative emissions from composting facilities and landfills and the degree to which either finished compost or landfill gas is used beneficially. ...

Morton A. Barlaz

2009-04-29T23:59:59.000Z

134

Fossil Energy Research Benefits Enhanced Oil Recovery  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Research Benefits Energy Research Benefits Enhanced Oil Recovery EOR helps increase domestic oil supplies while also providing a way to safely and permanently store CO 2 underground. Enhanced Oil Recovery (EOR) is a way to squeeze out additional, hard- to-recover barrels of oil remaining in older fields following conventional production operations. It can also be used to permanently store carbon dioxide (CO 2 ) underground. Thanks in part to innovations supported by the Office of Fossil Energy's National Energy Technology Laboratory (NETL) over the past 30 years, the United States is a world leader in the number of EOR projects (200) and volume of oil production (over

135

LANL exceeds Early Recovery Act recycling goals  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL exceeds Early Recovery Act recycling goals LANL exceeds Early Recovery Act recycling goals Lab demolition projects under the American Recovery and Reinvestment Act have...

136

Recovery Act Recipient Data | Department of Energy  

Office of Environmental Management (EM)

Recovery Act Recipient Data Recovery Act Recipient Data A listing of all Recovery Act recipients and their allocations. Updated weekly. recoveryactfunding.xls More Documents &...

137

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act Recovery Act Recovery Act Center Map PERFORMANCE The Department estimates the $6 billion Recovery Act investment will allow us to complete work now that would cost approximately $13 billion in future years, saving $7 billion. As Recovery Act work is completed through the cleanup of contaminated sites, facilities, and material disposition, these areas will becoming available for potential reuse by other entities. Recovery Act funding is helping the Department reach our cleanup goals faster. Through the end of December 2012, EM achieved a total footprint reduction of 74%, or 690 of 931 square miles. EM achieved its goal of 40% footprint reduction in April 2011, five months ahead of schedule. Recovery Act payments exceeded $5.9 billion in December 2012. Recovery Act

138

Recovery Act | OpenEI  

Open Energy Info (EERE)

Recovery Act Recovery Act Dataset Summary Description This dataset, updated quarterly by Recovery.org, contains a breakdown of state-by-state recovery act funds awarded and received, as well as the number of jobs created and saved. The shows two periods, February 17, 2009 to December 31, 2010, and January 1, 2011 to March 31, 2011. The jobs created and saved are displayed just for January 1, 2011 to March 31, 2011. The document was downloaded from Recovery.org. It is a simple document displaying 50 states, as well as American territories. Source Recovery.org Date Released June 08th, 2011 (3 years ago) Date Updated Unknown Keywords award funding jobs Recovery Act Recovery.org Data text/csv icon recipientfundingawardedbystate.csv (csv, 5.1 KiB) Quality Metrics Level of Review Some Review

139

Can You Afford Heat Recovery?  

E-Print Network (OSTI)

many companies to venture into heat recovery projects without due consideration of the many factors involved. Many of these efforts have rendered less desirable results than expected. Heat recovery in the form of recuperation should be considered...

Foust, L. T.

1983-01-01T23:59:59.000Z

140

[Waste water heat recovery system  

SciTech Connect

The production capabilities for and field testing of the heat recovery system are described briefly. Drawings are included.

Not Available

1993-04-28T23:59:59.000Z

Note: This page contains sample records for the topic "increase recovery rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

detonation rate  

Science Journals Connector (OSTI)

detonation rate, detonation velocity, velocity of detonation, V.O.D., detonating velocity, rate of detonation, detonating rate ? Detonationsgeschwindigkeit f

2014-08-01T23:59:59.000Z

142

Successful Sequestration and Enhanced Oil Recovery Project Could Mean More  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Successful Sequestration and Enhanced Oil Recovery Project Could Successful Sequestration and Enhanced Oil Recovery Project Could Mean More Oil and Less CO2 Emissions Successful Sequestration and Enhanced Oil Recovery Project Could Mean More Oil and Less CO2 Emissions November 15, 2005 - 2:45pm Addthis "Weyburn Project" Breaks New Ground in Enhanced Oil Recovery Efforts WASHINGTON, DC - Secretary Samuel W. Bodman today announced that the Department of Energy (DOE)-funded "Weyburn Project" successfully sequestered five million tons of carbon dioxide (CO2) into the Weyburn Oilfield in Saskatchewan, Canada, while doubling the field's oil recovery rate. If the methodology used in the Weyburn Project was successfully applied on a worldwide scale, one-third to one-half of CO2 emissions could be eliminated in the next 100 years and billions of barrels of oil could be

143

Uranium at Y-12: Recovery | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovery Recovery Uranium at Y-12: Recovery Posted: July 22, 2013 - 3:44pm | Y-12 Report | Volume 10, Issue 1 | 2013 Recovery involves reclaiming uranium from numerous sources and configurations and handling uranium in almost any form, including oxides and liquids (see A Rich Resource Requires Recovery). Y-12 has the equipment and expertise to recover uranium that is present in filters, wipes, mop water and elsewhere. For many salvage materials, the uranium is extracted and then manipulated into a uranyl nitrate solution, purified and chemically converted through several stages. Then it is reduced to a mass of uranium metal. This mass, called a button, is used in casting operations. The chemical operators who recover and purify uranium understand and monitor complex chemical reactions, flow rates, temperatures

144

Fermilab | Recovery Act | Videos  

NLE Websites -- All DOE Office Websites (Extended Search)

Videos Videos Watch videos documenting progress on Fermilab projects funded by the American Recovery and Reinvestment Act. NOvA - Community Voices - September 2009 Residents of northern Minnesota and construction workers building the NOvA detector facility discuss the benefits the high-energy physics research project has brought their communities. Congressman Bill Foster at Fermilab Congressman Bill Foster speaks to Fermilab Technical Division employees and members of the media at a press conference on Wednesday, August 5 to announce an additional $60.2 million in Recovery Act funds for the lab. NOvA first blast On July 20, construction crews began blasting into the rock at the future site of the NOvA detector facility in northern Minnesota. NOvA groundbreaking ceremony

145

Fermilab | Recovery Act | Features  

NLE Websites -- All DOE Office Websites (Extended Search)

Features - Archive Features - Archive photo Industrial Building 3 addition Fermilab Today-November 5, 2010 IB3 addition nears completion The future site of Fermilab’s new materials laboratory space has evolved from a steel outline to a fully enclosed building over the past five months. Read full column photo Fermilab Today-October 22, 2010 Recovery Act gives LBNE team chance to grow Thanks to funding from the American Recovery and Reinvestment Act, the collaboration for the Long-Baseline Neutrino Experiment, LBNE, has expanded its project team. Read full column photo cooling units Fermilab Today-October 15, 2010 Local company completes FCC roof construction A local construction company recently completed work on the roof of the Feynman Computing Center, an important step in an ongoing project funded by

146

Caustic Recovery Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

366, REVISON 0 366, REVISON 0 Key Words: Waste Treatment Plant Sodium Recovery Electrochemical Retention: Permanent Review of Ceramatec's Caustic Recovery Technology W. R. Wilmarth D. T. Hobbs W. A. Averill E. B. Fox R. A. Peterson UNCLASSIFIED DOES NOT CONTAIN UNCLASSIFIED CONTROLLED NUCLEAR INFORMATION ADC & Reviewing Official:_______________________________________ (E. Stevens, Manager, Solid Waste and Special Programs) Date:______________________________________ JULY 20, 2007 Washington Savannah River Company Savannah River Site Aiken, SC 29808 Prepared for the U. S. Department of Energy Under Contract Number DE-AC09-96SR18500 Page 1 of 28 WSRC-STI-2007-00366, REVISON 0 DISCLAIMER This report was prepared for the United States Department of Energy under

147

Elemental sulfur recovery process  

DOE Patents (OSTI)

An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO[sub 2] in the regenerator off gas stream to elemental sulfur in the presence of a catalyst. 4 figures.

Flytzani-Stephanopoulos, M.; Zhicheng Hu.

1993-09-07T23:59:59.000Z

148

Driving Functional Behavioral Recovery Using Activity-Dependent Stimulation  

E-Print Network (OSTI)

The purpose of this project was to determine if artificially linking spared motor and sensory areas following a cortical lesion would lead to increased behavioral recovery on a skilled reaching task. Sensory-motor integration ...

Guggenmos, David

2012-12-31T23:59:59.000Z

149

Recovery Boiler Modeling  

E-Print Network (OSTI)

, east, e, west, w, bot tom, b, and top, t, neighbors. The neighboring cou pling coefficients (an, a., .. , etc) express the magnitudes of the convection and diffusion which occur across the control volume boundaries. The variable b p represents... represents a model of one half of the recovery boiler. The boiler has three air levels. The North, South and East boundaries of the computational domain represent the water walls of the boiler. The West boundary represents a symmetry plane. It should...

Abdullah, Z.; Salcudean, M.; Nowak, P.

150

Selective olefin recovery  

SciTech Connect

This interim report has been prepared as a followup to the January 1996 JDAG meeting. The report presents the results of various studies which evaluate the impact of process design changes on the overall SOR economics for cracked gas olefin recovery. The changes were made to either complete portions of the design that were missing or overlooked, or to improve and/or optimize the SOR process. A grass-roots propane-feed 350,000 MTA plant with a conventional recovery system was adopted as the study basis, and was compared with SOR systems of various sizes up to 350,000 MTA. This approach was taken to determine if SOR plants could be competitive with larger plants utilizing conventional recovery systems. Second phase KG expansion by 50,000-150,000 MTA ethylene was reexamined in view of the SOR process optimization. As was done in Stone & Webster`s December 1995 study, an SOR system was compared with an ARS expansion.

NONE

1996-04-01T23:59:59.000Z

151

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 1, 2010 November 1, 2010 Weatherizing Wilkes-Barre October 28, 2010 Baltimore resident Paul Bennett installed 14 solar panels such as these on his historic row home with the help of a state solar grant and federal tax credit through the Recovery Act. | Energy Department Photo | Baltimore Vet Cuts Energy Bills With Solar Baltimore resident and disabled veteran Paul Bennett shares his experience utilizing state and federal grants and tax credits to install solar panels on his historic row home and cut energy costs. October 27, 2010 Mississippi's Cowboy Maloney stores saw increases of up to 90 percent on front-loading washing machines in April. | Photo courtesy of Flickr user Andrew Kelsall via the Creative Commons license Mississippi Residents Save Through Appliance Rebate Program

152

Waste Heat Recovery Opportunities for Thermoelectric Generators...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Waste Heat Recovery Opportunities for Thermoelectric Generators Waste Heat Recovery Opportunities for Thermoelectric Generators Thermoelectrics have unique advantages for...

153

Incentive Cost Recovery Rule for Nuclear Power Generation (Louisiana) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Incentive Cost Recovery Rule for Nuclear Power Generation (Louisiana) Incentive Cost Recovery Rule for Nuclear Power Generation (Louisiana) < Back Eligibility Commercial Construction Industrial Utility Program Info State Louisiana Program Type Fees Generating Facility Rate-Making Provider Louisiana Public Service Commission The Incentive Cost Recovery Rule for Nuclear Power Generation establishes guidelines for any utility seeking to develop a nuclear power plant in Louisiana. The rule clarifies, as well as supplements the Louisiana Public Service Commission's 1983 General Order for the acquisition of nuclear generation resources. The goal of the rule is to provide a transparent process that identifies the responsibilities parties in the regulatory

154

Selective olefin recovery  

SciTech Connect

This report presents the results of the outstanding studies on olefin product purities, pyridine recovery, and absorber offgas utilization. Other reports issued since the May 2 technical review meeting in Grangemouth evaluated the impact of the new VLE data on the solution stripping operation and the olefin loadings in the lean and rich solutions. This report completes the bulk of Stone & Webster`s engineering development of the absorber/stripper process for Phase I. The final feasibility study report (to be issued in August) will present an updated design and economics.

NONE

1996-07-01T23:59:59.000Z

155

Pyrochemical recovery of actinides  

SciTech Connect

This report discusses an important advantage of the Integral Fast Reactor (IFR) which is its ability to recycle fuel in the process of power generation, extending fuel resources by a considerable amount and assuring the continued viability of nuclear power stations by reducing dependence on external fuel supplies. Pyroprocessing is the means whereby the recycle process is accomplished. It can also be applied to the recovery of fuel constituents from spent fuel generated in the process of operation of conventional light water reactor power plants, offering the means to recover the valuable fuel resources remaining in that material.

Laidler, J.J.

1993-03-01T23:59:59.000Z

156

Pyrochemical recovery of actinides  

SciTech Connect

This report discusses an important advantage of the Integral Fast Reactor (IFR) which is its ability to recycle fuel in the process of power generation, extending fuel resources by a considerable amount and assuring the continued viability of nuclear power stations by reducing dependence on external fuel supplies. Pyroprocessing is the means whereby the recycle process is accomplished. It can also be applied to the recovery of fuel constituents from spent fuel generated in the process of operation of conventional light water reactor power plants, offering the means to recover the valuable fuel resources remaining in that material.

Laidler, J.J.

1993-01-01T23:59:59.000Z

157

Numerical Simulation of Low Salinity Water Flooding Assisted with Chemical Flooding for Enhanced Oil Recovery.  

E-Print Network (OSTI)

?? World proved oil reserve gradually decreases due to the increase production but decrease new field discovery. The focus on enhance oil recovery from the… (more)

Atthawutthisin, Natthaporn

2012-01-01T23:59:59.000Z

158

Recovery Boiler Superheater Ash Corrosion Field Study  

SciTech Connect

With the trend towards increasing the energy efficiency of black liquor recovery boilers operated in North America, there is a need to utilize superheater tubes with increased corrosion resistance that will permit operation at higher temperatures and pressures. In an effort to identify alloys with improved corrosion resistance under more harsh operating conditions, a field exposure was conducted that involved the insertion of an air-cooled probe, containing six candidate alloys, into the superheater section of an operating recovery boiler. A metallographic examination, complete with corrosion scale characterization using EMPA, was conducted after a 1,000 hour exposure period. Based on the results, a ranking of alloys based on corrosion performance was obtained.

Keiser, James R [ORNL] [ORNL; Kish, Joseph [McMaster University] [McMaster University; Singbeil, Douglas [FPInnovations] [FPInnovations

2010-01-01T23:59:59.000Z

159

Recovery of Water from Boiler Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

RecoveRy of WateR fRom BoileR flue Gas RecoveRy of WateR fRom BoileR flue Gas Background Coal-fired power plants require large volumes of water for efficient operation, primarily for cooling purposes. Public concern over water use is increasing, particularly in water stressed areas of the country. Analyses conducted by the U.S. Department of Energy's National Energy Technology Laboratory predict significant increases in power plant freshwater consumption over the coming years, encouraging the development of technologies to reduce this water loss. Power plant freshwater consumption refers to the quantity of water withdrawn from a water body that is not returned to the source but is lost to evaporation, while water withdrawal refers to the total quantity of water removed from a water source.

160

Resource Conservation and Recovery Act  

NLE Websites -- All DOE Office Websites (Extended Search)

Resource Conservation and Recovery Act (RCRA) Resource Conservation and Recovery Act (RCRA) In 1965 the Solid Waste Disposal Act [Public Law (Pub. L.) 89-72] was enacted to improve solid waste disposal methods. It was amended in 1970 by the Resource Recovery Act (Pub. L. 91-512), which provided the Environmental Protection Agency (EPA) with funding for resource recovery programs. However, that Act had little impact on the management and ultimate disposal of hazardous waste. In 1976 Congress enacted the Resource Conservation and Recovery Act (RCRA, Pub. L. 94-580). RCRA established a system for managing non-hazardous and hazardous solid wastes in an environmentally sound manner. Specifically, it provides for the management of hazardous wastes from the point of origin to the point of final disposal (i.e., "cradle to grave"). RCRA also promotes resource recovery and waste minimization.

Note: This page contains sample records for the topic "increase recovery rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Recovery Act State Memos Ohio  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

20 20 For total Recovery Act jobs numbers in Ohio go to www.recovery.gov DOE Recovery Act projects in Ohio: 83 U.S. DEPARTMENT OF ENERGY * OHIO RECOVERY ACT SNAPSHOT The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Ohio are supporting a broad range of clean energy projects from the smart grid and energy efficiency to advanced battery manufacturing, biofuels, carbon capture and storage, and cleanup of the state's Cold War legacy nuclear sites Through these investments, Ohio's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Ohio to play an important role in the new energy economy of the future. EXAMPLES OF OHIO FORMULA GRANTS Program

162

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Economy » Recovery Act Energy Economy » Recovery Act Recovery Act December 18, 2013 BPA Wins Platts Global Energy Award for Grid Optimization Platts awarded the Bonneville Power Administration (BPA) a Global Energy Award for grid optimization on December 12 in New York City for its development of a synchrophasor network. BPA is part of the Recovery Act-funded Western Interconnection Synchrophasor Program. December 13, 2013 Cumulative Federal Payments to OE Recovery Act Recipients, through November 30, 2013 Graph of cumulative Federal Payments to OE Recovery Act Recipients, through November 30, 2013. December 12, 2013 Energy Department Announces $150 Million in Tax Credits to Invest in U.S. Clean Energy Manufacturing Domestic Manufacturing Projects to Support Renewable Energy Generation as

163

Recovery Act State Memos Georgia  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia Georgia For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 5

164

Recovery Act State Memos Minnesota  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Minnesota Minnesota For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 5

165

Recovery Act State Memos Idaho  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Idaho For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 4

166

Recovery Act State Memos Illinois  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Illinois Illinois For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 7

167

Recovery Act State Memos Pennsylvania  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pennsylvania Pennsylvania For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................ 3 RENEWABLE ENERGY ......................................................................................... 7

168

Recovery Act State Memos Wisconsin  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wisconsin Wisconsin For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 6

169

Recovery Act State Memos Montana  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Montana Montana For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 4

170

Recovery Act State Memos Arizona  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Arizona Arizona For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 5

171

Recovery Act State Memos Kansas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kansas Kansas For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 5

172

Recovery Act State Memos California  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

California California For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY .............................................................................................. 3 RENEWABLE ENERGY ............................................................................................ 12

173

Recovery Act State Memos Washington  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Washington Washington For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 6

174

Recovery Act State Memos Nevada  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nevada Nevada For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ................................................................................................ 1 RENEWABLE ENERGY ............................................................................................. 5

175

Recovery Act State Memos Virginia  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Virginia Virginia For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 5

176

Recovery Act State Memos Maine  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine Maine For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 4

177

Recovery Act State Memos Missouri  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Missouri Missouri For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 5

178

Recovery Act State Memos Maryland  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maryland Maryland For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ....................................................................................................... 3 RENEWABLE ENERGY ..................................................................................................... 4

179

Recovery Act State Memos Colorado  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Colorado Colorado For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 6

180

Recovery Act State Memos Louisiana  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Louisiana Louisiana For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 5

Note: This page contains sample records for the topic "increase recovery rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Recovery Act State Memos Alabama  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alabama Alabama For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 5

182

Recovery Act State Memos Oklahoma  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oklahoma Oklahoma For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 5

183

Recovery Act State Memos Massachusetts  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Massachusetts Massachusetts For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 5

184

Recovery Act State Memos Mississippi  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mississippi Mississippi For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 4

185

Recovery Act State Memos Wyoming  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wyoming Wyoming For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 ELECTRIC GRID ........................................................................................................ 4

186

Recovery Act State Memos Connecticut  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Connecticut Connecticut For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 4

187

Recovery Act State Memos Oregon  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oregon Oregon For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 4 RENEWABLE ENERGY ............................................................................................. 5

188

Recovery Act State Memos Utah  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utah Utah For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 5

189

Recovery Act State Memos Nebraska  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nebraska Nebraska For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 4

190

Recovery Act State Memos Alaska  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alaska Alaska For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 5

191

Recovery Act State Memos Arkansas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Arkansas Arkansas For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 4

192

Recovery Act State Memos Indiana  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Indiana Indiana For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 5

193

Recovery Act State Memos Guam  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guam Guam For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 ELECTRIC GRID ........................................................................................................ 4

194

Recovery Act State Memos Iowa  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Iowa Iowa For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 4

195

Recovery Act State Memos Texas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Texas Texas For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 7

196

Recovery Act State Memos Vermont  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vermont Vermont For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................ 4

197

Recovery Act State Memos Michigan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Michigan Michigan For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 4

198

Recovery Act State Memos Tennessee  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tennessee Tennessee For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 5

199

Recovery Act State Memos Hawaii  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hawaii Hawaii For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 4

200

Effects of Microwave Radiation on Oil Recovery  

Science Journals Connector (OSTI)

A variety of oil recovery methods have been developed and applied to mature and depleted reservoirs in order to improve the efficiency. Microwave radiation oil recovery method is a relatively new method and has been of great interest in the recent years. Crude oil is typically co?mingled with suspended solids and water. To increase oil recovery it is necessary to remove these components. The separation of oil from water and solids using gravitational settling methods is typically incomplete. Oil?in?water and oil?water?solid emulsions can be demulsified and separated into their individual layers by microwave radiation. The data also show that microwave separation is faster than gravity separation and can be faster than conventional heating at many conditions. After separation of emulsion into water and oil layers water can be discharged and oil is collected. High?frequency microwave recycling process can recover oil and gases from oil shale residual oil drill cuttings tar sands oil contaminated dredge/sediments tires and plastics with significantly greater yields and lower costs than are available utilizing existing known technologies. This process is environmentally friendly fuel?generating recycler to reduce waste cut emissions and save energy. This paper presents a critical review of Microwave radiation method for oil recovery.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "increase recovery rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Cogeneration from glass furnace waste heat recovery  

SciTech Connect

In glass manufacturing 70% of the total energy utilized is consumed in the melting process. Three basic furnaces are in use: regenerative, recuperative, and direct fired design. The present paper focuses on secondary heat recovery from regenerative furnaces. A diagram of a typical regenerative furnace is given. Three recovery bottoming cycles were evaluated as part of a comparative systems analysis: steam Rankine Cycle (SRC), Organic Rankine Cycle (ORC), and pressurized Brayton cycle. Each cycle is defined and schematicized. The net power capabilities of the three different systems are summarized. Cost comparisons and payback period comparisons are made. Organic Rankine cycle provides the best opportunity for cogeneration for all the flue gas mass flow rates considered. With high temperatures, the Brayton cycle has the shortest payback period potential, but site-specific economics need to be considered.

Hnat, J.G.; Cutting, J.C.; Patten, J.S.

1982-06-01T23:59:59.000Z

202

Improved Oil Recovery in Fluvial Dominated Deltaic Reservoirs of Kansas - Near-Term  

SciTech Connect

The objective of this project is to address waterflood problems of the type found in Morrow sandstone reservoirs in southwestern Kansas and in Cherokee Group reservoirs in southeastern Kansas. Two demonstration sites operated by different independent oil operators are involved in this project. The Stewart Field is located in Finney County, Kansas and is operated by PetroSantander, Inc. Te Nelson Lease is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. General topics to be addressed are (1) reservoir management and performance evaluation, (2) waterflood optimization, and (3) the demonstration of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. In the Stewart Project, the reservoir management portion of the project conducted during Budget Period 1 involved performance evaluation. This included (1) reservoir characterization and the development of a reservoir database, (2) volumetric analysis to evaluate production performance, (3) reservoir modeling, (4) laboratory work, (5) identification of operational problems, (6) identification of unrecovered mobile oil and estimation of recovery factors, and (7) identification of the most efficient and economical recovery process. To accomplish these objectives the initial budget period was subdivided into three major tasks. The tasks were (1) geological and engineering analysis, (2) laboratory testing, and (3) unitization. Due to the presence of different operators within the field, it was necessary to unitize the field in order to demonstrate a field-wide improved recovery process. This work was completed and the project moved into Budget Period 2.

Green, D.W.; McCune, D.; Michnick, M.; Reynolds, R.; Walton, A.; Watney, L.; Willhite G.P.

1999-10-29T23:59:59.000Z

203

Improved Oil Recovery in Fluvial Dominated Deltaic Reservoirs of Kansas - Near-Term  

SciTech Connect

The objective of this project is to address waterflood problems of the type found in Morrow sandstone reservoirs in southwestern Kansas and in Cherokee Group reservoirs in southeastern Kansas. Two demonstration sites operated by different independent oil operators are involved in this project. The Stewart Field is located in Finney County, Kansas and is operated by PetroSantander, Inc. Te Nelson Lease is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. General topics to be addressed are (1) reservoir management and performance evaluation, (2) waterflood optimization, and (3) the demonstration of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. In the Stewart Project, the reservoir management portion of the project conducted during Budget Period 1 involved performance evaluation. This included (1) reservoir characterization and the development of a reservoir database, (2) volumetric analysis to evaluate production performance, (3) reservoir modeling, (4) laboratory work, (5) identification of operational problems, (6) identification of unrecovered mobile oil and estimation of recovery factors, and (7) Identification of the most efficient and economical recovery process. To accomplish these objectives the initial budget period was subdivided into three major tasks. The tasks were (1) geological and engineering analysis, (2) laboratory testing, and (3) unitization. Due to the presence of different operators within the field, it was necessary to unitize the field in order to demonstrate a field-wide improved recovery process. This work was completed and the project moved into Budget Period 2.

Green, Don W.; McCune, A.D.; Michnick, M.; Reynolds, R.; Walton, A.; Watney, L.; Willhite, G. Paul

1999-11-03T23:59:59.000Z

204

Economic Recovery Loan Program (Maine)  

Energy.gov (U.S. Department of Energy (DOE))

The Economic Recovery Loan Program provides subordinate financing to help businesses remain viable and improve productivity. Eligibility criteria are based on ability to repay, and the loan is...

205

Recovery Act State Memos Delaware  

Energy Savers (EERE)

go to energyempowers.govDelaware Recovery Act Success Stories ENERGYEMPOWERS.GOV less heat and cooling loss so our facility is more efficient." Buying domestically For the...

206

Reactivation of an idle lease to increase heavy oil recovery through application of conventional steam drive technology in a low dip slope and basin reservoir in the Midway-Sunset field, San Jaoquin Basin, California. Annual report, June 13, 1995--June 13, 1996  

SciTech Connect

This project reactivates ARCO`s idle Pru Fee lease in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming is being used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase scheduled to begin in January 1997, a continuous steamflood enhanced oil recovery will be initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.

Deo, M.; Jenkins, C.; Sprinkel, D.; Swain, R.; Wydrinski, R.; Schamel, S.

1998-09-01T23:59:59.000Z

207

Recovery Act: State Assistance for Recovery Act Related Electricity  

NLE Websites -- All DOE Office Websites (Extended Search)

State State Assistance for Recovery Act Related Electricity Policies Recovery Act: State Assistance for Recovery Act Related Electricity Policies $44 Million for State Public Utility Commissions State public utility commissions (PUCs), which regulate and oversee electricity projects in their states, will be receiving more than $44.2 million in Recovery Act funding to hire new staff and retrain existing employees to ensure they have the capacity to quickly and effectively review proposed electricity projects. The funds will help the individual state PUCs accelerate reviews of the large number of electric utility requests that are expected under the Recovery Act. State PUCs will be reviewing electric utility investments in projects such as energy efficiency, renewable energy, carbon capture and storage, transmission

208

Fermilab | Recovery Act  

NLE Websites -- All DOE Office Websites (Extended Search)

NOvA NOvA In April 2010, workers set up two cranes at the construction site for the NOvA detector facility in Ash River, Minnesota. In 2009, the U.S. Department of Energy's Office of Science, under the American Recovery and Reinvestment Act, provided DOE's Fermi National Accelerator Laboratory with $114.2 million. Fermilab invested the funds in critical scientific infrastructure to strengthen the nation's global scientific leadership as well as to provide immediate economic relief to local communities. This Web site provided citizens with clear and accurate information about how Fermilab used the new funding and its immediate benefits for our neighbors and our nation. Features photo Industrial Building 3 addition Fermilab Today-November 5, 2010 IB3 addition nears completion

209

Energy recovery system  

DOE Patents (OSTI)

The present invention is directed to an improved wet air oxidation system and method for reducing the chemical oxygen demand (COD) of waste water used from scrubbers of coal gasification plants, with this COD reduction being sufficient to effectively eliminate waste water as an environmental pollutant. The improvement of the present invention is provided by heating the air used in the oxidation process to a temperature substantially equal to the temperature in the oxidation reactor before compressing or pressurizing the air. The compression of the already hot air further heats the air which is then passed in heat exchange with gaseous products of the oxidation reaction for "superheating" the gaseous products prior to the use thereof in turbines as the driving fluid. The superheating of the gaseous products significantly minimizes condensation of gaseous products in the turbine so as to provide a substantially greater recovery of mechanical energy from the process than heretofore achieved.

Moore, Albert S. (Morgantown, WV); Verhoff, Francis H. (Morgantown, WV)

1980-01-01T23:59:59.000Z

210

Chapter 11 - Sulfur Recovery  

Science Journals Connector (OSTI)

Abstract Sulfur is present in many raw industrial gases and in natural gas in the form of hydrogen sulfide. Sulfur removal facilities are located at the majority of oil and gas processing facilities throughout the world. The sulfur recovery unit does not make a profit for the operator but it is an essential processing step to allow the overall facility to operate, as the discharge of sulfur compounds to the atmosphere is severely restricted by environmental regulations. Concentration levels of H2S vary significantly depending upon their source. H2S produced from absorption processes, such as amine treating of natural gas or refinery gas, can contain 50–75% H2S by volume or higher. This chapter provides information about fundamentals of sulfur removal facilities in the natural gas industry.

Alireza Bahadori

2014-01-01T23:59:59.000Z

211

ARM - ARM Recovery Act Project FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

ActARM Recovery Act Project FAQs ActARM Recovery Act Project FAQs Recovery Act Logo Subscribe FAQs Recovery Act Instruments Recovery Act Fact Sheet March 2010 Poster (PDF, 10MB) External Resources Recovery Act - Federal Recovery Act - DOE Recovery Act - ANL Recovery Act - BNL Recovery Act - LANL Recovery Act - PNNL Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send ARM Recovery Act Project FAQs Why is ARM buying new instruments and equipment? The ARM Climate Research Facility (ARM) is receiving $60 million dollars in Recovery Act funding from the U.S. Department of Energy Office of Science to build the next generation facility for climate change research. Using input from past ARM user workshops and ARM working group discussion, ARM has planned for the purchase and deployment of an expansive array of new

212

Metal recovery from porous materials  

DOE Patents (OSTI)

The present invention relates to recovery of metals. More specifically, the present invention relates to the recovery of plutonium and other metals from porous materials using microwaves. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

Sturcken, E.F.

1991-01-01T23:59:59.000Z

213

DOE Recovery Act Field Projects | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE Recovery Act Field Projects DOE Recovery Act Field Projects DOE Recovery Act Field Projects View All Maps Addthis...

214

Recovery Act | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Act Act Recovery Act Total Federal Payments to OE Recovery Act Recipients by Month, through November 30, 2013 Total Federal Payments to OE Recovery Act Recipients by Month, through November 30, 2013 American Recovery and Reinvestment Act Overview PROJECTS TOTAL OBLIGATIONS AWARD RECIPIENTS Smart Grid Investment Grant $3,482,831,000 99 Smart Grid Regional and Energy Storage Demonstration Projects $684,829,000 42 Workforce Development Program $100,000,000 52 Interconnection Transmission Planning $80,000,000 6 State Assistance for Recovery Act Related Electricity Policies $48,619,000 49 Enhancing State Energy Assurance $43,500,000 50 Enhancing Local Government Energy Assurance $8,024,000 43 Interoperability Standards and Framework $12,000,000 1 Program Direction1 $27,812,000 --

215

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act Recovery Act Recovery Act The American Recovery and Reinvestment Act of 2009 -- commonly called the "stimulus" -- was designed to spur economic growth while creating new jobs and saving existing ones. Through the Recovery Act, the Energy Department invested more than $31 billion to support a wide range of clean energy projects across the nation -- from investing in the smart grid and developing alternative fuel vehicles to helping homeowners and businesses reduce their energy costs with energy efficiency upgrades and deploying carbon capture and storage technologies. The Department's programs helped create new power sources, conserve resources and aligned the nation to lead the global energy economy. Featured Leaders of the Fuel Cell Pack Fuel cell forklifts like the one shown here are used by leading companies across the U.S. as part of their daily business operations. | Energy Department file photo.

216

Recovery | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovery | National Nuclear Security Administration Recovery | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Recovery Home > About Us > Our Programs > Emergency Response > Planning for Emergencies > Recovery Recovery NNSA ensures that capabilities are in place to respond to any NNSA and Department of Energy facility emergency. It is also the nation's premier

217

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

26, 2010 26, 2010 200,000 Homes Weatherized Under the Recovery Act -- Video from Cathy Zoi Vice President Biden announced that 200,000 homes have been Weatherized under the Recovery Act. Hear what Cathy Zoi, Assistant Secretary for Energy Efficiency and Renewable Energy, has to say on Weatherization. August 26, 2010 200,000 homes weatherized under the Recovery Act August 25, 2010 The Recovery Act: Cutting Costs and Upping Capacity Secretary Chu joined Vice President Joe Biden at the White House to help unveil a new report on how investments made through the Recovery Act have been impacting innovation. While the report analyzed several major sectors, its most striking findings centered on energy. August 25, 2010 Eco Technologies, Inc., hired eleven workers to install these solar panels at the Hillsborough County judicial center. | Photo courtesy of Hillsborough County

218

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

31, 2009 31, 2009 Energy Secretary Chu Announces $755 Million in Recovery Act Funding for Environmental Cleanup in Tennessee New Funding Will Create Jobs and Accelerate Cleanup Efforts March 31, 2009 Energy Secretary Chu Announces $1.615 Billion in Recovery Act Funding for Environmental Cleanup in South Carolina New Funding Will Create Jobs and Accelerate Cleanup Efforts March 31, 2009 Energy Secretary Chu Announces $138 Million in Recovery Act Funding for Environmental Cleanup in Ohio New Funding Will Create Jobs and Accelerate Cleanup Efforts March 31, 2009 Energy Secretary Chu Announces $148 million in Recovery Act Funding for Environmental Cleanup in New York New Funding Will Create Jobs and Accelerate Cleanup Efforts March 31, 2009 Energy Secretary Chu Announces $384 Million in Recovery Act Funding for

219

EM Recovery Act Performance | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act program. Milestones The EM Recovery Act Program set a goal of achieving accelerated completion of 46 regulatory milestones by the end of FY 2011 using Recovery Act...

220

Rate Schedules  

Energy.gov (U.S. Department of Energy (DOE))

One of the major responsibilities of Southeastern is to design, formulate, and justify rate schedules. Repayment studies prepared by the agency determine revenue requirements and appropriate rate...

Note: This page contains sample records for the topic "increase recovery rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Uncertainty quantification for CO2 sequestration and enhanced oil recovery  

E-Print Network (OSTI)

This study develops a statistical method to perform uncertainty quantification for understanding CO2 storage potential within an enhanced oil recovery (EOR) environment at the Farnsworth Unit of the Anadarko Basin in northern Texas. A set of geostatistical-based Monte Carlo simulations of CO2-oil-water flow and reactive transport in the Morrow formation are conducted for global sensitivity and statistical analysis of the major uncertainty metrics: net CO2 injection, cumulative oil production, cumulative gas (CH4) production, and net water injection. A global sensitivity and response surface analysis indicates that reservoir permeability, porosity, and thickness are the major intrinsic reservoir parameters that control net CO2 injection/storage and oil/gas recovery rates. The well spacing and the initial water saturation also have large impact on the oil/gas recovery rates. Further, this study has revealed key insights into the potential behavior and the operational parameters of CO2 sequestration at CO2-EOR s...

Dai, Zhenxue; Fessenden-Rahn, Julianna; Middleton, Richard; Pan, Feng; Jia, Wei; Lee, Si-Yong; McPherson, Brian; Ampomah, William; Grigg, Reid

2014-01-01T23:59:59.000Z

222

Wastewater heat recovery apparatus  

DOE Patents (OSTI)

A heat recovery system is described with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature. 6 figs.

Kronberg, J.W.

1992-09-01T23:59:59.000Z

223

Wastewater heat recovery apparatus  

DOE Patents (OSTI)

A heat recovery system with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature.

Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

1992-01-01T23:59:59.000Z

224

EM Occupational Injury and Illness Rates Continued to Decline in Fiscal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Occupational Injury and Illness Rates Continued to Decline in Occupational Injury and Illness Rates Continued to Decline in Fiscal Year 2011 EM Occupational Injury and Illness Rates Continued to Decline in Fiscal Year 2011 February 1, 2012 - 12:00pm Addthis This figure shows the downward trends of EM TRC and DART case rates for the last three fiscal years. These three years correspond to the time of substantial increase in work activities in support of the American Recovery and Reinvestment Act. This figure shows the downward trends of EM TRC and DART case rates for the last three fiscal years. These three years correspond to the time of substantial increase in work activities in support of the American Recovery and Reinvestment Act. EM’s TRC and DART case cumulative rate trend lines over the past 15 quarters remain well below comparable industries’ TRC and DART Case rates. For benchmark comparison, the Construction Industry and the Waste Management & Remediation Service Industry numbers are selected to best approximate the complex-wide decontamination and decommissioning (D&D), remediation, waste management and facility construction activities contracted by EM

225

Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas  

SciTech Connect

The new waste heat and water recovery technology based on a nanoporous ceramic membrane vapor separation mechanism has been developed for power plant flue gas application. The recovered water vapor and its latent heat from the flue gas can increase the power plant boiler efficiency and reduce water consumption. This report describes the development of the Transport Membrane Condenser (TMC) technology in details for power plant flue gas application. The two-stage TMC design can achieve maximum heat and water recovery based on practical power plant flue gas and cooling water stream conditions. And the report includes: Two-stage TMC water and heat recovery system design based on potential host power plant coal fired flue gas conditions; Membrane performance optimization process based on the flue gas conditions, heat sink conditions, and water and heat transport rate requirement; Pilot-Scale Unit design, fabrication and performance validation test results. Laboratory test results showed the TMC system can exact significant amount of vapor and heat from the flue gases. The recovered water has been tested and proved of good quality, and the impact of SO{sub 2} in the flue gas on the membrane has been evaluated. The TMC pilot-scale system has been field tested with a slip stream of flue gas in a power plant to prove its long term real world operation performance. A TMC scale-up design approach has been investigated and an economic analysis of applying the technology has been performed.

Dexin Wang

2012-03-31T23:59:59.000Z

226

Western Area Power Administration Borrowing Authority, Recovery...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Western Area Power Administration Borrowing Authority, Recovery Act Western Area Power Administration Borrowing Authority, Recovery Act Microsoft Word - PSRP May 15 2009 WAPA...

227

Recovery Act?Transportation Electrification Education Partnership...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Recovery ActTransportation Electrification Education Partnership for Green Jobs and Sustainable Mobility Recovery ActTransportation Electrification Education Partnership for...

228

Enhanced Oil Recovery | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enhanced Oil Recovery Enhanced Oil Recovery Cross-section illustrating how carbon dioxide and water can be used to flush residual oil from a subsurface rock formation between...

229

Enhanced Oil Recovery | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enhanced Oil Recovery Enhanced Oil Recovery Thanks in part to innovations supported by the Office of Fossil Energy's National Energy Technology Laboratory over the past 30 years,...

230

Recovery Act: State Assistance for Recovery Act Related Electricity Policies  

Energy.gov (U.S. Department of Energy (DOE))

State public utility commissions (PUCs), which regulate and oversee electricity projects in their states, will be receiving more than $44.2 million in Recovery Act funding to hire new staff and retrain existing employees to ensure they have the capacity to quickly and effectively review proposed electricity projects. The funds will help the individual state PUCs accelerate reviews of the large number of electric utility requests that are expected under the Recovery Act.

231

Bypass valve and coolant flow controls for optimum temperatures in waste heat recovery systems  

DOE Patents (OSTI)

Implementing an optimized waste heat recovery system includes calculating a temperature and a rate of change in temperature of a heat exchanger of a waste heat recovery system, and predicting a temperature and a rate of change in temperature of a material flowing through a channel of the waste heat recovery system. Upon determining the rate of change in the temperature of the material is predicted to be higher than the rate of change in the temperature of the heat exchanger, the optimized waste heat recovery system calculates a valve position and timing for the channel that is configurable for achieving a rate of material flow that is determined to produce and maintain a defined threshold temperature of the heat exchanger, and actuates the valve according to the calculated valve position and calculated timing.

Meisner, Gregory P

2013-10-08T23:59:59.000Z

232

Recovery Act Funded Projects at the Lawrence Berkeley National Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lawrence Berkeley National Lawrence Berkeley National Laboratory OAS-RA-L-12-02 January 2012 Department of Energy Washington, DC 20585 January 12, 2012 MEMORANDUM FOR THE MANAGER, BERKELEY SITE OFFICE FROM: David Sedillo Director, Western Audits Division Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Recovery Act Funded Projects at the Lawrence Berkeley National Laboratory" Audit Report Number: OAS-RA-L-12-02 BACKGROUND In February 2009, the President signed the American Recovery and Reinvestment Act of 2009 (Recovery Act) into law. The goals of the Recovery Act were to retain and create jobs, increase economic efficiency, and invest in infrastructure that would provide long-term economic benefits. The Department of Energy's (Department) Office of Science received $1.6 billion

233

Reactivation of an idle lease to increase heavy oil recovery through application of conventional steam drive technology in a low dip slope and basin reservoir in the Midway-Sunset field, San Joaquin basin, California. Quarterly report, January 1--March 31, 1996  

SciTech Connect

This project will reactivate ARCO`s idle Pru Fee lease in the Midway-Sunset field, California and conduct a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. The objectives of the project are: (1) to return the shut-in portion of the reservoir to commercial production; (2) to accurately describe the reservoir and recovery process; and (3) convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program. The producibility problems initially thought to be responsible for the low recovery in the Pru Fee property are: (a) the shallow dip of the bedding; (b) complex reservoir structure, (c) thinning pay zone; and (d) the presence of bottom water. The project is using tight integration of reservoir characterization and simulation modeling to evaluate the magnitude of and alternative solutions to these problems. Two main activities were brought to completion during the first quarter of 1996: (1) lithologic and petrophysical description of the core taken form the new well Pru 101 near the center of the demonstration site and (2) development of a stratigraphic model for the Pru Fee project area. In addition, the first phase of baseline cyclic steaming of the Pru Fee demonstration site was continued with production tests and formation temperature monitoring.

Schamel, S.

1996-06-28T23:59:59.000Z

234

Rates - WAPA-137 Rate Order  

NLE Websites -- All DOE Office Websites (Extended Search)

WAPA-137 Rate Order WAPA-137 Rate Order 2009 CRSP Management Center Customer Rates Second Step Presentation from the June 25, 2009, Customer Meeting Handout Materials from the June 25, 2009, Customer Meeting Customer Comment Letters ATEA CREDA Farmington ITCA AMPUA Rate Adjustment Information The second step of WAPA-137 SLCA/IP Firm Power, CRSP Transmission and Ancillary Services rate adjustment. FERC Approval of Rate Order No. WAPA-137 Notice Of Filing for Rate Order No. WAPA-137 Published Final FRN for Rate Order No. WAPA-137 Letter to Customers regarding the published Notice of Extension of Public Process for Rate Order No. WAPA-137 Published Extension of Public Process for Rate Order No. WAPA-137 FRN Follow-up Public Information and Comment Forum Flier WAPA-137 Customer Meetings and Rate Adjustment Schedule

235

Guided wave acoustic monitoring of corrosion in recovery boiler tubing  

SciTech Connect

Corrosion of tubing used in black-liquor recovery boilers is a major concern in all pulp and paper mills. Extensive corrosion in recovery boiler tubes can result in a significant safety and environmental hazard. Considerable plant resources are expended to inspect recovery boiler tubing. Currently, visual and ultrasonic inspections are primarily used during the annual maintenance shutdown to monitor corrosion rates and cracking of tubing. This Department of Energy, Office of Industrial Technologies project is developing guided acoustic waves for use on recovery boiler tubing. The feature of this acoustic technique is its cost-effectiveness in inspecting long lengths of tubes from a single inspection point. A piezoelectric or electromagnetic transducer induces guided waves into the tubes. The transducer detects fireside defects from the coldside or fireside of the tube. Cracking and thinning on recovery boiler tubes have been detected with this technique in both laboratory and field applications. This technique appears very promising for recovery boiler tube application, potentially expediting annual inspection of tube integrity.

Quarry, M J; Chinn, D J

2004-02-19T23:59:59.000Z

236

Federal Energy Management Program: Recovery Act  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovery Act to Recovery Act to someone by E-mail Share Federal Energy Management Program: Recovery Act on Facebook Tweet about Federal Energy Management Program: Recovery Act on Twitter Bookmark Federal Energy Management Program: Recovery Act on Google Bookmark Federal Energy Management Program: Recovery Act on Delicious Rank Federal Energy Management Program: Recovery Act on Digg Find More places to share Federal Energy Management Program: Recovery Act on AddThis.com... Energy Savings Performance Contracts ENABLE Utility Energy Service Contracts On-Site Renewable Power Purchase Agreements Energy Incentive Programs Recovery Act Technical Assistance Projects Project Stories Recovery Act The American Recovery and Reinvestment Act of 2009 included funding for the Federal Energy Management Program (FEMP) to facilitate the Federal

237

EMSL: Capabilities: American Recovery and Reinvestment Act  

NLE Websites -- All DOE Office Websites (Extended Search)

EMSL Procurements under Recovery Act EMSL Procurements under Recovery Act Additional Information Investing in Innovation: EMSL and the American Recovery and Reinvestment Act Recovery Act and Systems Biology at EMSL Recovery Act Instruments coming to EMSL In the News EMSL ARRA Capability Features News: Recovery Act and PNNL Recovery Act in the Tri-City Herald Related Links Recovery.gov DOE and the Recovery Act Message from Energy Secretary Chu Recovery Act at PNNL EMSL evolves with the needs of its scientific users, and the American Recovery and Reinvestment Act has helped to accelerate this evolution. Thirty-one instruments were acquired and installed at EMSL. These instruments are listed below, and each listing is accompanied by a brief overview. Each of these new and leading-edge instruments was chosen by design to

238

Recovery Act State Memos Florida  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 1, 2010 June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 5 ELECTRIC GRID ........................................................................................................ 8 TRANSPORTATION ............................................................................................... 10 CARBON CAPTURE AND STORAGE ...................................................................... 10

239

RMOTC - Testing - Enhanced Oil Recovery  

NLE Websites -- All DOE Office Websites (Extended Search)

Enhanced Oil Recovery Enhanced Oil Recovery Notice: As of July 15th 2013, the Department of Energy announced the intent to sell Naval Petroleum Reserve Number 3 (NPR3). The sale of NPR-3 will also include the sale of all equipment and materials onsite. A decision has been made by the Department of Energy to complete testing at RMOTC by July 1st, 2014. RMOTC will complete testing in the coming year with the currently scheduled testing partners. For more information on the sale of NPR-3 and sale of RMOTC equipment and materials please join our mailing list here. RMOTC will play a significant role in continued enhanced oil recovery (EOR) technology development and field demonstration. A scoping engineering study on Naval Petroleum Reserve No. 3's (NPR-3) enhanced oil recovery

240

Recovery Act State Memos Florida  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 1, 2010 October 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 5 ELECTRIC GRID ........................................................................................................ 6 TRANSPORTATION ................................................................................................. 8 CARBON CAPTURE AND STORAGE ........................................................................ 9

Note: This page contains sample records for the topic "increase recovery rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Recovery Act | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

such as a private company or a state or local employing agency, who reports waste, fraud or abuse connected to the use of Recovery Act funds may not be discharged, demoted or...

242

Outlook for enhanced oil recovery  

SciTech Connect

This paper reviews the potential for enhanced oil recovery, the evolutionary nature of the recovery processes being applied in oilfields today, key parameters that describe the technology state-of-the-art for each of the major oil recovery processes, and the nature and key outputs from the current Department of Energy research program on enhanced oil recovery. From this overview, it will be seen that the DOE program is focused on the analysis of ongoing tests and on long-range, basic research to support a more thorough understanding of process performance. Data from the program will be made available through reports, symposia, and on-line computer access; the outputs are designed to allow an independent producer to evaluate his own project as an effort to transfer rapidly the technology now being developed.

Johnson, H.R.

1982-01-01T23:59:59.000Z

243

Waste Heat Recovery from Refrigeration  

E-Print Network (OSTI)

heat recovery from refrigeration machines is a concept which has great potential for implementation in many businesses. If a parallel requirement for refrigeration and hot water exists, the installation of a system to provide hot water as a by...

Jackson, H. Z.

1982-01-01T23:59:59.000Z

244

Heat Recovery Steam Generator Simulation  

E-Print Network (OSTI)

The paper discusses the applications of Heat Recovery Steam Generator Simulation. Consultants, plant engineers and plant developers can evaluate the steam side performance of HRSGs and arrive at the optimum system which matches the needs...

Ganapathy, V.

245

LANL exceeds Early Recovery Act  

NLE Websites -- All DOE Office Websites (Extended Search)

exceeds Early Recovery Act recycling goals March 8, 2010 More than 136 tons of metal saved from demolished buildings LOS ALAMOS, New Mexico, March 9, 2009-Los Alamos National...

246

Olefin recovery via chemical absorption  

SciTech Connect

The recovery of fight olefins in petrochemical plants has generally been accomplished through cryogenic distillation, a process which is very capital and energy intensive. In an effort to simplify the recovery process and reduce its cost, BP Chemicals has developed a chemical absorption technology based on an aqueous silver nitrate solution. Stone & Webster is now marketing, licensing, and engineering the technology. The process is commercially ready for recovering olefins from olefin derivative plant vent gases, such as vents from polyethylene, polypropylene, ethylene oxide, and synthetic ethanol units. The process can also be used to debottleneck C{sub 2} or C{sub 3} splinters, or to improve olefin product purity. This paper presents the olefin recovery imp technology, discusses its applications, and presents economics for the recovery of ethylene and propylene.

Barchas, R. [Stone & Webster Engineering Corporation, Houston, TX (United States)

1998-06-01T23:59:59.000Z

247

Recovery Act Funding Opportunities Webcast  

Energy.gov (U.S. Department of Energy (DOE))

As a result of the 2009 American Reinvestment and Recovery Act, the Geothermal Technologies Office (GTO) has four open Funding Opportunity Announcements (FOAs) totaling $484 million for cost-shared...

248

Low Level Heat Recovery Technology  

E-Print Network (OSTI)

level heat recovery technology. This paper discusses heat distribution systems, latest developments in absorption refrigeration and organic Rankine cycles, and pressure, minimization possibilities. The relative merits and economics of the various...

O'Brien, W. J.

1982-01-01T23:59:59.000Z

249

HEAVY AND THERMAL OIL RECOVERY PRODUCTION MECHANISMS  

SciTech Connect

This technical progress report describes work performed from July 1 through September, 2003 for the project ''Heavy and Thermal Oil Recovery Production Mechanisms,'' DE-FC26-00BC15311. In this project, a broad spectrum of research is undertaken related to thermal and heavy-oil recovery. The research tools and techniques span from pore-level imaging of multiphase fluid flow to definition of reservoir-scale features through streamline-based history-matching techniques. During this period, work focused on completing project tasks in the area of multiphase flow and rock properties. The area of interest is the production mechanisms of oil from porous media at high temperature. Temperature has a beneficial effect on oil recovery and reduces residual oil saturation. Work continued to delineate how the wettability of reservoir rock shifts from mixed and intermediate wet conditions to more water-wet conditions as temperature increases. One mechanism for the shift toward water-wet conditions is the release of fines coated with oil-wet material from pore walls. New experiments and theory illustrate the role of temperature on fines release.

Anthony R. Kovscek; Louis M. Castanier

2004-03-01T23:59:59.000Z

250

Improved oil recovery in fluvial dominated deltaic reservoirs of Kansas - near-term. Quarterly report, April 1 - June 30, 1996  

SciTech Connect

The objective of this project is to address waterflood problems of the type found in Morrow sandstone reservoirs in southwestern Kansas and Cherokee Group reservoirs in southeastern Kansas. Two demonstration sites, Stewart Field, and Savonburg Field, operated by different independent oil operators are involved in this project. General topics to be addressed are: (1) reservoir management and performance evaluation; (2) waterflood optimization; and (3) the demonstration of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. For the Stewart Field project, work is summarized for the last quarter on waterflood operations and reservoir management. For the Savonburg Field project, work on water plant development, and pattern changes and wellbore cleanup are briefly described.

Green, D.W.; Willhite, G.P.; Walton, A.; Schoeling, L.; Reynolds, R.; Michnick, M.; Watney, L.

1996-07-01T23:59:59.000Z

251

Waste Heat Recovery Opportunities for Thermoelectric Generators  

Energy.gov (U.S. Department of Energy (DOE))

Thermoelectrics have unique advantages for integration into selected waste heat recovery applications.

252

Steep increase in oil prices as gulf crisis lingers on  

Science Journals Connector (OSTI)

Following a brief interruption, the recovery in world commodity prices witnessed during the first months of the year has continued. Crude oil prices reached their highest level for 16 months. The increase in prices

Klaus Matthies

253

Weatherization and Intergovernmental Program: Recovery Act  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovery Act to someone by E-mail Share Weatherization and Intergovernmental Program: Recovery Act on Facebook Tweet about Weatherization and Intergovernmental Program: Recovery Act on Twitter Bookmark Weatherization and Intergovernmental Program: Recovery Act on Google Bookmark Weatherization and Intergovernmental Program: Recovery Act on Delicious Rank Weatherization and Intergovernmental Program: Recovery Act on Digg Find More places to share Weatherization and Intergovernmental Program: Recovery Act on AddThis.com... Plans, Implementation, & Results Weatherization Assistance Program WAP - Sustainable Energy Resources for Consumers Grants WAP - Weatherization Innovation Pilot Program State Energy Program Energy Efficiency & Conservation Block Grant Program

254

Vehicle Technologies Office: Recovery Act Funding Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovery Act Funding Recovery Act Funding Opportunities to someone by E-mail Share Vehicle Technologies Office: Recovery Act Funding Opportunities on Facebook Tweet about Vehicle Technologies Office: Recovery Act Funding Opportunities on Twitter Bookmark Vehicle Technologies Office: Recovery Act Funding Opportunities on Google Bookmark Vehicle Technologies Office: Recovery Act Funding Opportunities on Delicious Rank Vehicle Technologies Office: Recovery Act Funding Opportunities on Digg Find More places to share Vehicle Technologies Office: Recovery Act Funding Opportunities on AddThis.com... Recovery Act Funding Opportunities President Barack Obama announced on March 19 that the DOE is offering up to $2.4 billion in American Recovery and Reinvestment Act funds to support next-generation plug-in hybrid electric vehicles (PHEV) and their advanced

255

EMSL: Capabilities: American Recovery and Reinvestment Act  

NLE Websites -- All DOE Office Websites (Extended Search)

American Recovery and Reinvestment Act American Recovery and Reinvestment Act Recovery Act Logo EMSL researchers are benefitting from a recent $60 million investment in innovation through the American Recovery and Reinvestment Act. These Recovery Act funds were employed to further develop and deploy transformational capabilities that deliver scientific discoveries in support of DOE's mission. Today, they are helping EMSL accomplish the following: Establish leadership in in situ chemical imaging and procure ultrahigh-resolution microscopy tools Additional Information Investing in Innovation: EMSL and the American Recovery and Reinvestment Act Recovery Act and Systems Biology at EMSL Recovery Act Instruments coming to EMSL In the News EMSL ARRA Capability Features News: Recovery Act and PNNL Recovery Act in the Tri-City Herald

256

Evaluation of Delisting Criteria and Rebuilding Schedules for Snake River Spring/Summer Chinook, Fall Chinook and Sockeye Salmon : Recovery Issues for Threatened and Endangered Snake River Salmon : Technical Report 10 of 11.  

SciTech Connect

We develop a framework for distinguishing healthy and threatened populations, and we analyze specific criteria by which these terms can be measured for threatened populations of salmon in the Snake River. We review reports and analyze existing data on listed populations of salmon in the Snake River to establish a framework for two stages of the recovery process: (1) defining de-listing criteria, and (2) estimating the percentage increase in survival that will be necessary for recovery of the population within specified time frames, given the de-listing criteria that must be achieved. We develop and apply a simplified population model to estimate the percentage improvement in survival that will be necessary to achieve different rates of recovery. We considered five main concepts identifying de-listing criteria: (1) minimum population size, (2) rates of population change, (3) number of population subunits, (4) survival rates, and (5) driving variables. In considering minimum population size, we conclude that high variation in survival rates poses a substantially greater probability of causing extinction than does loss of genetic variation. Distinct population subunits exist and affect both the genetic variability of the population and the dynamics of population decline and growth. We distinguish between two types of population subunits, (1) genetic and (2) geographic, and we give examples of their effects on population recovery.

Cramer, Steven P.; Neeley, Doug

1993-06-01T23:59:59.000Z

257

Laboratory Heat Recovery System  

E-Print Network (OSTI)

In 1976 Continental Oil Company (now Conoco, Inc.) made a far reaching decision. Looking at the future needs of the country in the energy field, it decided to increase and improve its research and development facilities in order to be able to meet...

Burrows, D. B.; Mendez, F. J.

1981-01-01T23:59:59.000Z

258

Heat Integration and Heat Recovery at a Large Chemical Manufacturing Plant  

E-Print Network (OSTI)

in the hydrogenation process. The hydrogenation process uses a catalyst to react the purified phenol with hydrogen, forming a mixture of cyclohexanone and cyclohexanol. The reaction is exothermic and is cooled with water to control the rate of reaction... Process Heat Recovery The process heat recovery opportunity was identified in the hydrogenation process. The hydrogenation process contains an exothermic reaction which is cooled with water to control the rate of reaction. The heated water...

Togna, K .A.

2012-01-01T23:59:59.000Z

259

Reactivation of an idle lease to increase heavy oil recovery through application of conventional steam drive technology in a low dip slope and basin reservoir in the Midway-Sunset field, San Joaquin Basin, California. Quarterly report, June 14--September 30, 1995  

SciTech Connect

This project will reactivate ARCO`s idle Pru Fee lease in the Midway-Sunset field, California and conduct a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming will be used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase, a continuous steamflood enhanced oil recover will be initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class 3 reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program. A summary of technical progress discusses the literature compilation, assembly of digitized log suites, development of a stratigraphic framework, installation of lease production facilities, return wells to production, drill producer and observation wells, and reservoir characterization.

Schamel, S.

1995-12-19T23:59:59.000Z

260

Reactivation of an idle lease to increase heavy oil recovery through application of conventional steam drive technology in a low dip slope and basin reservoir in the Midway-Sunset field, San Joaquin Basin, California. [Quarterly report], June 14, 1995--September 30, 1995  

SciTech Connect

This project will reactivate ARCO`s idle Pru Fee lease in the Midway-Sunset field, California and conduct a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming will be used to re-establish baseline production within the reservoir characterization phase of the project. During the demonstration phase, a continuous steamflood enhanced oil recover will be initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program. A summary of technical progress covers: geological and reservoir characterization, and reservoir simulation.

Schamel, S.

1996-01-19T23:59:59.000Z

Note: This page contains sample records for the topic "increase recovery rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Comparative evaluation of three alternative power cycles for waste heat recovery from the exhaust of adiabatic diesel engines  

SciTech Connect

Three alternative power cycles were compared in application as an exhaust-gas heat-recovery system for use with advanced ''adiabatic'' diesel engines. The power cycle alternatives considered were steam Rankine, organic Rankine with RC-1 as the working fluid, and variations of an air Brayton cycle. The comparison was made in terms of fuel economy and economic payback potential for heavy-duty trucks operating in line-haul service. The results indicate that, in terms of engine rated specific fuel consumption, a diesel/alternative-power-cycle engine offers a significant improvement over the turbocompound diesel used as the baseline for comparison. The maximum improvement resulted from the use of a Rankine cycle heat-recovery system in series with turbocompounding. The air Brayton cycle alternatives studied, which included both simple-cycle and compression-intercooled configurations, were less effective and provided about half the fuel consumption improvement of the Rankine cycle alternatives under the same conditions. Capital and maintenance cost estimates were also developed for each of the heat-recovery power cycle systems. These costs were integrated with the fuel savings to identify the time required for net annual savings to pay back the initial capital investment. The sensitivity of capital payback time to arbitrary increases in fuel price, not accompanied by corresponding hardware cost inflation, was also examined. The results indicate that a fuel price increase is required for the alternative power cycles to pay back capital within an acceptable time period.

Bailey, M.M.

1985-07-01T23:59:59.000Z

262

Improved Oil Recovery in Fluvial Dominated Deltaic Reservoirs of Kansas Near Term  

SciTech Connect

The objective of this project is to address waterflood problems of the type found in Morrow sandstone reservoirs in southwestern Kansas and Cherokee Group reservoirs in southeastern Kansas. Two demonstration sites operated by different independent oil operators are involved in this project. The Stewart Field is located in Finney County, Kansas and is operated by North American Resources Company. The Nelson Lease is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. General topics to be addressed are (1) reservoir management and performance evaluation, (2) waterflood optimization, and (3) the demonstration of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. In the Stewart Project, the reservoir management portion of the project conducted during Budget Period I involved performance evaluation. This included (1) reservoir characterization and the development of a reservoir database, (2) volumetric analysis to evaluate production performance, (3) reservoir modeling, (4) laboratory work, (5) identification of operational problems, (6) identification of unrecovered mobile oil and estimation of recovery factors, and (7) identification of the most efficient and economical recovery process. To accomplish these objectives the initial budget period was subdivided into three major tasks. The tasks were (1) geological and engineering analysis, (2) laboratory testing, and (3) unitization. Due to the presence of different operators within the field, it was necessary to unitize the field in order to demonstrate a field-wide improved recovery process. This work was completed and the project moved into Budget Period 2. Budget Period 2 objectives consisted of the design, construction, and operation of a field-wide waterflood utilizing state-of-the-art, off-the-shelf technologies in an attempt to optimize secondary oil recovery. To accomplish these objectives the second budget period was subdivided into five major tasks. The tasks were (1) design and construction of a waterflood plant, (2) design and construction of a water injection system, (3) design and construction of tank battery consolidation and gathering system, (4) initiation of waterflood operations and reservoir management, and (5) technology transfer. In the Savonburg Project, the reservoir management portion involves performance evaluation. This work included (1) reservoir characterization and the development of a reservoir database, (2) identification of operational problems, (3) identification of near wellbore problems such as plugging caused from poor water quality, (4) identification of unrecovered mobile oil and estimation of recovery factors, and (5) preliminary identification of the most efficient and economical recovery process i.e., polymer augmented waterflooding or infill drilling (vertical or horizontal wells). To accomplish this work the initial budget period was subdivided into four major tasks. The tasks included (1) geological and engineering analysis, (2) waterplant optimization, (3) wellbore cleanup and pattern changes, and (4) field operations. This work was completed and the project has moved into Budget Period 2. The Budget Period 2 objectives consisted of continual optimization of this mature waterflood in an attempt to optimize secondary and tertiary oil recovery. To accomplish these objectives the second budget period was subdivided into six major tasks. The tasks were (1) waterplant development, (2) profile modification treatments, (3) pattern changes, new wells and wellbore cleanups, (4) reservoir development (polymer flooding), (5) field operations, and (6) technology transfer.

Green, D.W.; Willhlte, C.P.; Walton, A.; Schoeling, L.; Reynolds, R.; Michnick, M.; Watney, L.

1997-04-15T23:59:59.000Z

263

Improved Oil Recovery in Fluvial Dominated Deltaic Reservoirs of Kansas - Near-Term  

SciTech Connect

The objective of this project is to address waterflood problems of the type found in Morrow sandstone reservoirs in southwestern Kansas and in Cherokee Group reservoirs in southeastern Kansas. Two demonstration sites operated by different independent oil operators are involved in this project. The Stewart Field is located in Finney County, Kansas and is operated by North American Resources Company. The Nelson Lease is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. General topics to be addressed are 1) reservoir management and performance evaluation, 2) waterflood optimization, and 3) the demonstration of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. In the Stewart Project, the reservoir management portion of the project conducted during Budget Period 1 involved performance evaluation. This included 1) reservoir characterization and the development of a reservoir database, 2) volumetric analysis to evaluate production performance, 3) reservoir modeling, 4) laboratory work, 5) identification of operational problems, 6) identification of unrecovered mobile oil and estimation of recovery factors, and 7) identification of the most efficient and economical recovery process. To accomplish these objectives the initial budget period was subdivided into three major tasks. The tasks were 1) geological and engineering analysis, 2) laboratory testing, and 3) unitization. Due to the presence of different operators within the field, it was necessary to unitize the field in order to demonstrate a field-wide improved recovery process. This work was completed and the project moved into Budget Period 2. Budget Period 2 objectives consisted of the design, construction, and operation of a field-wide waterflood utilizing state-of-the-art, off-the-shelf technologies in an attempt to optimize secondary oil recovery. To accomplish these objectives the second budget period was subdivided into five major tasks. The tasks were 1) design and construction of a waterflood plant, 2) design and construction of a water injection system, 3) design and construction of tank battery consolidation and gathering system, 4) initiation of waterflood operations and reservoir management, and 5) technology transfer. Tasks 1-3 have been completed and water injection began in October 1995. In the Savonburg Project, the reservoir management portion involves performance evaluation. This work included 1) reservoir characterization and the development of a reservoir database, 2) identification of operational problems, 3) identification of near wellbore problems such as plugging caused from poor water quality, 4) identification of unrecovered mobile oil and estimation of recovery factors, and 5) preliminary identification of the most efficient and economical recovery process i.e., polymer augmented waterflooding or infill drilling (vertical or horizontal wells). To accomplish this work the initial budget period was subdivided into four major tasks. The tasks included 1) geological and engineering analysis, 2) waterplant optimization, 3) wellbore cleanup and pattern changes, and 4) field operations. This work was completed and the project has moved into Budget Period 2. The Budget Period 2 objectives consisted of continual optimization of this mature waterflood in an attempt to optimize secondary and tertiary oil recovery. To accomplish these objectives the second budget period is subdivided into six major tasks. The tasks were 1) waterplant development, 2) profile modification treatments, 3) pattern changes, new wells and wellbore cleanups, 4) reservoir development (polymer flooding), 5) field operations, and 6) technology transfer.

A. Walton; Don W. Green; G. Paul Whillhite; L. Schoeling; L. Watney; M. Michnick; R. Reynolds

1997-07-15T23:59:59.000Z

264

New EOR system being tested. [Enhanced oil recovery  

SciTech Connect

Oil and gas operators - and drilling contractors, if they own production - are watching with a great deal of interest an innovative enhanced oil recovery system now being tested in Missouri and Canada which, if present results prove to be the rule, will help gain recovery rates of double current oil production using conventional means. The new system, vapor therm, is being offered to oil and gas operators who either are now engaged in steam injection projects or plan to in the near future. The vapor therm system is designed for use in specific heavy oil reservoirs. What's more, existing steam generating equipment in field use need not be eliminated, since the system has been designed to be retrofitted to such steam generating facilities with little or no downtime involved. The system combines inert gases with injected steam to produced greatly enhanced recovery of oil for the same amount of steam injected in conventional steamflood operations.

Not Available

1982-04-01T23:59:59.000Z

265

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 18, 2010 June 18, 2010 Energetx Composites was able to purchase equipment such as this mold for utility-scale wind turbine blades thanks to a Recovery Act grant that matched the company's $3.5 million investment. | Photo Courtesy of Energetx | VP 100: Retooling Michigan -- Yachts and Watts Tiara Yachts makes fiber composite structures for boats. Now the Holland, Mich.-based company is transforming part of its factory and using its 30 years of expertise in composites to establish a new company - Energetx Composites - that will produce commercial-sized wind turbine blades. June 18, 2010 Five More States Reach Major Recovery Act Weatherization Milestone Minnesota, Montana, New Hampshire, New Mexico, and Utah Have Weatherized Over 9,000 Homes with Recovery Act Funding

266

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

12, 2009 12, 2009 Obama-Biden Administration Announces More Than $89.8 Million in Weatherization Funding and Energy Efficiency Grants for Mississippi Part of nearly $8 billion in Recovery Act funding for energy efficiency efforts nationwide that will create 100,000 jobs and cut energy bills for families March 12, 2009 Obama-Biden Administration Announces More Than $122.3 Million in Weatherization Funding and Energy Efficiency Grants for Louisiana Part of nearly $8 billion in Recovery Act funding for energy efficiency efforts nationwide that will create 100,000 jobs and cut energy bills for families March 12, 2009 Obama-Biden Administration Announces More Than $123.4 Million in Weatherization Funding and Energy Efficiency Grants for Kentucky Part of nearly $8 billion in Recovery Act funding for energy efficiency

267

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nearly $80.7 Million in Weatherization Nearly $80.7 Million in Weatherization Funding and Energy Efficiency Grants for Oregon Part of nearly $8 billion in Recovery Act funding for energy efficiency efforts nationwide that will create 100,000 jobs and cut energy bills for families March 12, 2009 Obama-Biden Administration Announces More Than $107.6 Million in Weatherization Funding and Energy Efficiency Grants for Oklahoma Part of nearly $8 billion in Recovery Act funding for energy efficiency efforts nationwide that will create 100,000 jobs and cut energy bills for families March 12, 2009 Obama-Biden Administration Announces More Than $362.8 Million in Weatherization Funding and Energy Efficiency Grants for Ohio Part of nearly $8 billion in Recovery Act funding for energy efficiency efforts nationwide that will create 100,000 jobs and cut energy bills for

268

Microsoft Word - Recovery Act Cover  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inspector General Inspector General Office of Audit Services Audit Report Decommissioning and Demolition Activities at Office of Science Sites OAS-RA-L-10-05 August 2010 DOE F 1325.8 (08-93) United States Government Department of Energy Memorandum DATE: August 12, 2010 Audit Report Number: OAS-RA-L-10-05 REPLY TO ATTN OF: IG-32 (A10RA005) SUBJECT: Audit Report on "Decommissioning and Demolition Activities at Office of Science Sites" TO: Deputy Director for Field Operations, SC-3 Manager, Brookhaven Site Office Manager, Argonne Site Office INTRODUCTION AND OBJECTIVE In February 2009, the President signed the American Recovery and Reinvestment Act of 2009 (Recovery Act) into law. The Department of Energy's (Department) Office of Environmental Management (EM) allocated $140 million of Recovery Act funds to

269

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

69.2 Million in 69.2 Million in Weatherization Funding and Energy Efficiency Grants for Maine Part of nearly $8 billion in Recovery Act funding for energy efficiency efforts nationwide that will create 100,000 jobs and cut energy bills for families March 12, 2009 Obama-Biden Administration Announces More Than $94.7 Million in Weatherization Funding and Energy Efficiency Grants for Kansas Part of nearly $8 billion in Recovery Act funding for energy efficiency efforts nationwide that will create 100,000 jobs and cut energy bills for families March 12, 2009 Obama-Biden Administration Announces More Than $121.3 Million in Weatherization Funding and Energy Efficiency Grants for Iowa Part of nearly $8 billion in Recovery Act funding for energy efficiency efforts nationwide that will create 100,000 jobs and cut energy bills for

270

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 12, 2010 August 12, 2010 Department of Energy Paves Way for Additional Clean Energy Projects and Jobs Through Manufacturing Solicitation Recovery Act Funds to Support New Renewable Energy Manufacturing Projects August 2, 2010 Department of Energy Announces $188 Million for Small Business Technology Commercialization Includes $73 million in Recovery Act Investments to Help Small Businesses Bring Clean Energy Ideas to the Marketplace July 22, 2010 Secretary Chu Announces Six Projects to Convert Captured CO2 Emissions from Industrial Sources into Useful Products $106 Million Recovery Act Investment will Reduce CO2 Emissions and Mitigate Climate Change July 21, 2010 DOE Hosts Workshop on Transition to Electric Vehicles Washington, DC - On Thursday, July 22, 2010, the Department of Energy will

271

ORIGINAL PAPER Effects of nutritional status on metabolic rate, exercise  

E-Print Network (OSTI)

-Verlag 2009 Abstract The influence of feeding on swimming perfor- mance and exercise recovery in fish is poorly understood. Examining swimming behavior and physiological status following periods of feeding for swimming performance and physiological recovery. Rest- ing metabolic rates were also determined. Fasted

Suski, Cory David

272

Coal recovery process  

DOE Patents (OSTI)

A method for the beneficiation of coal by selective agglomeration and the beneficiated coal product thereof is disclosed wherein coal, comprising impurities, is comminuted to a particle size sufficient to allow impurities contained therein to disperse in water, an aqueous slurry is formed with the comminuted coal particles, treated with a compound, such as a polysaccharide and/or disaccharide, to increase the relative hydrophilicity of hydrophilic components, and thereafter the slurry is treated with sufficient liquid agglomerant to form a coagulum comprising reduced impurity coal.

Good, Robert J. (Grand Island, NY); Badgujar, Mohan (Williamsville, NY)

1992-01-01T23:59:59.000Z

273

RECENT PROCESS AND EQUIPMENT IMPROVEMENTS TO INCREASE HIGH LEVEL WASTE THROUGHPUT AT THE DEFENSE WASTE PROCESSING FACILITY  

SciTech Connect

The Savannah River Site's (SRS) Defense Waste Processing Facility (DWPF) began stabilizing high level waste (HLW) in a glass matrix in 1996. Over the past few years, there have been several process and equipment improvements at the DWPF to increase the rate at which the high level waste can be stabilized. These improvements have either directly increased waste processing rates or have desensitized the process to upsets, thereby minimizing downtime and increasing production. Improvements due to optimization of waste throughput with increased HLW loading of the glass resulted in a 6% waste throughput increase based upon operational efficiencies. Improvements in canister production include the pour spout heated bellows liner (5%), glass surge (siphon) protection software (2%), melter feed pump software logic change to prevent spurious interlocks of the feed pump with subsequent dilution of feed stock (2%) and optimization of the steam atomized scrubber (SAS) operation to minimize downtime (3%) for a total increase in canister production of 12%. A number of process recovery efforts have allowed continued operation. These include the off gas system pluggage and restoration, slurry mix evaporator (SME) tank repair and replacement, remote cleaning of melter top head center nozzle, remote melter internal inspection, SAS pump J-Tube recovery, inadvertent pour scenario resolutions, dome heater transformer bus bar cooling water leak repair and new Infra-red camera for determination of glass height in the canister are discussed.

Odriscoll, R; Allan Barnes, A; Jim Coleman, J; Timothy Glover, T; Robert Hopkins, R; Dan Iverson, D; Jeff Leita, J

2008-01-15T23:59:59.000Z

274

Analysis of Heavy Oil Recovery by Thermal EOR in a Meander Belt: From Geological  

E-Print Network (OSTI)

Analysis of Heavy Oil Recovery by Thermal EOR in a Meander Belt: From Geological to Reservoir Energies nouvelles2 INTRODUCTION SAGD will become increasingly important for heavy oil recovery because assessment, well placement and production performance prediction. One of the most famous heavy oil provinces

Paris-Sud XI, Université de

275

CO2 Enhanced Oil Recovery Feasibility Evaluation for East Texas Oil Field  

E-Print Network (OSTI)

Carbon dioxide enhanced oil recovery (CO2-EOR) has been undergoing for four decades and is now a proven technology. CO2-EOR increases oil recovery, and in the meantime reduces the greenhouse gas emissions by capture CO2 underground. The objectives...

Lu, Ping

2012-08-31T23:59:59.000Z

276

200,000 homes weatherized under the Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

200,000 homes weatherized under the Recovery Act 200,000 homes weatherized under the Recovery Act 200,000 homes weatherized under the Recovery Act Addthis Description Today Vice President Biden announced that the Weatherization Assistance Program has weatherized 200,000 homes under the Recovery Act. Speakers Cathy Zoi Duration 1:21 Topic Home Weatherization Energy Economy Recovery Act Credit Energy Department Video CATHY ZOI: Hi, there. I'm Cathy Zoi, assistant secretary of energy at DOE. Hey, today Vice President Biden made a big announcement. One of the cornerstone programs in the Recovery Act is the Weatherization Assistance Program. And during August, we will have weatherized 200,000 homes across America. That's 200,000 low-income families that will be benefitting from lower energy bills and from increased comfort in the

277

Ecosystem recovery after climatic extremes enhanced by genotypic diversity  

E-Print Network (OSTI)

Ecosystem recovery after climatic extremes enhanced by genotypic diversity Thorsten B. H. Reusch with such climatic extremes is a question central to contem- porary ecology and biodiversity conservation. Previous, and it may buffer against extreme climatic events. In a manipulative field experiment, increasing

Myers, Ransom A.

278

GEORGIA RECOVERY ACT SNAPSHOT | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GEORGIA RECOVERY ACT SNAPSHOT GEORGIA RECOVERY ACT SNAPSHOT GEORGIA RECOVERY ACT SNAPSHOT Georgia has substantial natural resources, including biomass and hydroelectric power .The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Georgia are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to environmental cleanup and alternative fuels and vehicles. Through these investments, Georgia's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Georgia to play an important role in the new energy economy of the future. GEORGIA RECOVERY ACT SNAPSHOT More Documents & Publications

279

ARIZONA RECOVERY ACT SNAPSHOT | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ARIZONA RECOVERY ACT SNAPSHOT ARIZONA RECOVERY ACT SNAPSHOT ARIZONA RECOVERY ACT SNAPSHOT Arizona has substantial natural resources, including coal, solar, and hydroelectric resources. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Arizona reflect a broad range of clean energy projects, from energy efficiency and the smart grid to transportation, carbon capture and storage, and geothermal energy. Through these investments, Arizona's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Arizona to play an important role in the new energy economy of the future. ARIZONA RECOVERY ACT SNAPSHOT More Documents & Publications

280

ARKANSAS RECOVERY ACT SNAPSHOT | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ARKANSAS RECOVERY ACT SNAPSHOT ARKANSAS RECOVERY ACT SNAPSHOT ARKANSAS RECOVERY ACT SNAPSHOT Arkansas has substantial natural resources, including gas, oil, wind, biomass, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Arkansas are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to advanced battery manufacturing and renewable energy. Through these investments, Arkansas's businesses, non-profits, and local governments are creating quality jobs today and positioning Arkansas to play an important role in the new energy economy of the future. ARKANSAS RECOVERY ACT SNAPSHOT More Documents & Publications

Note: This page contains sample records for the topic "increase recovery rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

GEORGIA RECOVERY ACT SNAPSHOT | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GEORGIA RECOVERY ACT SNAPSHOT GEORGIA RECOVERY ACT SNAPSHOT GEORGIA RECOVERY ACT SNAPSHOT Georgia has substantial natural resources, including biomass and hydroelectric power .The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Georgia are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to environmental cleanup and alternative fuels and vehicles. Through these investments, Georgia's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Georgia to play an important role in the new energy economy of the future. GEORGIA RECOVERY ACT SNAPSHOT More Documents & Publications

282

ARKANSAS RECOVERY ACT SNAPSHOT | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ARKANSAS RECOVERY ACT SNAPSHOT ARKANSAS RECOVERY ACT SNAPSHOT ARKANSAS RECOVERY ACT SNAPSHOT Arkansas has substantial natural resources, including gas, oil, wind, biomass, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Arkansas are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to advanced battery manufacturing and renewable energy. Through these investments, Arkansas's businesses, non-profits, and local governments are creating quality jobs today and positioning Arkansas to play an important role in the new energy economy of the future. ARKANSAS RECOVERY ACT SNAPSHOT More Documents & Publications

283

ALASKA RECOVERY ACT SNAPSHOT | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ALASKA RECOVERY ACT SNAPSHOT ALASKA RECOVERY ACT SNAPSHOT ALASKA RECOVERY ACT SNAPSHOT Alaska has substantial natural resources, including oil, gas, coal, solar, wind, geothermal, and hydroelectric power .The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Alaska are supporting a broad range of clean energy projects, from energy efficiency and electric grid improvements to geothermal power. Through these investments, Alaska's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Alaska to play an important role in the new energy economy of the future. ALASKA RECOVERY ACT SNAPSHOT More Documents & Publications

284

Supporting technology for enhanced oil recovery: Chemical flood predictive model  

SciTech Connect

The Chemical Flood Predictive Model (CFPM) was developed by Scientific Software-Intercomp for the US Department of Energy and was used in the National Petroleum Council's (NPC) 1984 survey of US enhanced oil recovery potential (NPC, 1984). The CFPM models micellar (surfactant)-polymer (MP) floods in reservoirs which have been previously waterflooded to residual oil saturation. Thus, only true tertiary floods are considered. An option is available in the model which allows a rough estimate of oil recovery by caustic (alkaline) or caustic-polymer processes. This ''caustic'' option, added for the NPC survey, is not modeled as a separate process. Rather, the caustic and caustic-polymer oil recoveries are computed simply as 15% and 40%, respectively, of the MP oil recovery. In the CFPM, an oil rate versus time function for a single pattern is computed and the results are passed to the economic routines. To estimate multi-pattern project behavior, a pattern development schedule must be specified. After-tax cash flow is computed by combining revenues with capital costs for drilling, conversion and upgrading of wells, chemical handling costs, fixed and variable operating costs, injectant costs, depreciation, royalties, severance, state, federal, and windfall profit taxes, cost and price inflation rates, and the discount rate. A lumped parameter uncertainty routine is used to estimate risk, and allows for variation in computed project performance within an 80% confidence interval. The CFPM uses theory and the results of numerical simulation to predict MP oil recovery in five-spot patterns. Oil-bank and surfactant breakthrough and project life are determined from fractional flow theory. A Koval-type factor, based on the Dykstra-Parsons (1950) coefficient, is used to account for the effects of reservoir heterogeneity on surfactant and oil bank velocities. 18 refs., 17 figs., 27 tabs.

Ray, R.M.; Munoz, J.D.

1986-12-01T23:59:59.000Z

285

Evaluation of enhanced recovery operations in Smackover fields of southwest Alabama. Draft topical report on Subtasks 5 and 6  

SciTech Connect

This report contains detailed geologic and engineering information on enhanced-recovery techniques used in unitized Smackover fields in Alabama. The report also makes recommendations on the applicability of these enhanced-recovery techniques to fields that are not now undergoing enhanced recovery. Eleven Smackover fields in Alabama have been unitized. Three fields were unitized specifically to allow the drilling of a strategically placed well to recover uncontacted oil. Two fields in Alabama are undergoing waterflood projects. Five fields are undergoing gas-injection programs to increase the ultimate recovery of hydrocarbons. Silas and Choctaw Ridge fields were unitized but no enhanced-recovery operations have been implemented.

Hall, D.R.

1992-06-01T23:59:59.000Z

286

Recovery Act – Transportation Electrification  

SciTech Connect

ChargePoint America demonstrated the viability, economic and environmental benefits of an electric vehicle-charging infrastructure. Electric vehicles (EVs) and plug-in electric vehicles (PHEVs) arrived in late 2010, there was a substantial lack of infrastructure to support these vehicles. ChargePoint America deployed charging infrastructure in ten (10) metropolitan regions in coordination with vehicle deliveries targeting those same regions by our OEM partners: General Motors, Nissan, Fisker Automotive, Ford, smart USA, and BMW. The metropolitan regions include Central Texas (Austin/San Antonio), Bellevue/Redmond (WA), Southern Michigan, Los Angeles area (CA), New York Metro (NY), Central Florida (Orlando/Tampa), Sacramento (CA), San Francisco/San Jose (CA), Washington DC and Boston (MA). ChargePoint America installed more than 4,600 Level 2 (220v) SAE J1772™ UL listed networked charging ports in home, public and commercial locations to support approximately 2000 program vehicles. ChargePoint collected data to analyze how individuals, businesses and local governments used their vehicles. Understanding driver charging behavior patterns will provide the DoE with critical information as EV adoption increases in the United States.

Gogineni, Kumar

2013-12-31T23:59:59.000Z

287

Biogas production and feasibility of energy recovery systems for anaerobic treatment of wool-scouring effluent  

Science Journals Connector (OSTI)

The technical and economic feasibility of anaerobic digestion to produce biogas at a small wool-scouring facility in the United States was examined. The facility will process 90,800 kg (200,000 pounds) of greasy wool per year at maximum capacity. Biochemical methane potential experiments showed that anaerobic biodegradation of organic constituents in wool-scouring effluent (WSE) ranged from 17 to 75% on a chemical oxygen demand (COD) basis and produced 0.10–0.39 L methane per gram of WSE COD added. Microbial inhibition was observed when initial WSE concentrations exceeded 1000 mg COD/L. A laboratory-scale continuous reactor operated at organic loading rates of 100–200 mg COD/L/day produced biogas with an average methane content of 75% and provided 72–78% removal of total WSECOD. Life cycle costing predicted that the best alternative for energy recovery at a small wool-scouring facility was to offset natural gas used to heat water for wool-scouring with biogas. Economic feasibility should increase with increasing COD removal, increasing natural gas price, and increasing cost to discharge to the municipal wastewater treatment works. The key anaerobic treatment design challenge will be to maximize WSE organic loading rates while minimizing microbial inhibition.

Erika J. Schoen; David M. Bagley

2012-01-01T23:59:59.000Z

288

Department of Energy Completes Five Recovery Act Projects - Moves...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Five Recovery Act Projects - Moves Closer to Completing Recovery Act Funded Work at Oak Ridge Site Department of Energy Completes Five Recovery Act Projects - Moves Closer to...

289

Department of Energy Recovery Act Investment in Biomass Technologies...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Recovery Act Investment in Biomass Technologies Department of Energy Recovery Act Investment in Biomass Technologies The American Recovery and Reinvestment Act...

290

Recovery Act: Clean Coal Power Initiative | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act: Clean Coal Power Initiative Recovery Act: Clean Coal Power Initiative A report detailling the Clean Coal Power initiative funded under the American Recovery and...

291

EM Recovery Act Funding Payment Summary by Site | Department...  

Office of Environmental Management (EM)

Recovery and Reinvestment Act Payments Surge Past 4 Billion American Recovery and Reinvestment Act Payments Surge Past 5 Billion EM Recovery Act Lessons Learned (Johnson)...

292

American Recovery and Reinvestment Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

one compliance agreement for EM's American Recovery and Reinvestment Act Program on accelerated milestones for the Recovery Act program. American Recovery and Reinvestment Act...

293

Recovery Act Reports | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovery Act » Recovery Act Reports Recovery Act » Recovery Act Reports Recovery Act Reports The following is a list of the oversight results by the Office of Inspector General regarding The Department's programs, grants, and projects funded under the Recovery Act. November 25, 2013 Audit Report: OAS-RA-14-02 The Department of Energy's American Recovery and Reinvestment Act Energy Efficiency and Conservation Block Grant Program - District of Columbia September 27, 2013 Audit Report: OAS-RA-13-31 The Department of Energy's Hydrogen and Fuel Cells Program September 19, 2013 Examination Report: OAS-RA-13-30 Alamo Area Council of Governments - Weatherization Assistance Program Funds Provided by the American Recovery and Reinvestment Act of 2009 September 9, 2013 Audit Report: IG-0893 Follow-up Audit of the Department of Energy's Financial Assistance for

294

Automated intrusion recovery for web applications  

E-Print Network (OSTI)

In this dissertation, we develop recovery techniques for web applications and demonstrate that automated recovery from intrusions and user mistakes is practical as well as effective. Web applications play a critical role ...

Chandra, Ramesh, Ph. D. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

295

Fuel Recovery: Valorization of RDF and PDF  

Science Journals Connector (OSTI)

Energy recovery of used materials can be performed as mixed municipal solid waste (MSW) incineration or as fuel recovery for co-combustion with conventional fuels. Recovered fuels are refuse derived fuel (RDF) wh...

Martin Frankenhaeuser; Helena Manninen

1996-01-01T23:59:59.000Z

296

Multiwavelength all-optical clock recovery  

E-Print Network (OSTI)

Multiwavelength clock recovery is especially desirable in systems that use wavelength-division-multipleged technology. A multiwavelength clock-recovery device can greatly simplify costs by eliminating the need to have a ...

Johnson, C.; Demarest, Kenneth; Allen, Christopher Thomas; Hui, Rongqing; Peddanarappagari, K. V.; Zhu, B.

1999-07-01T23:59:59.000Z

297

Bioelectrochemical Integration of Waste Heat Recovery, Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

electrolytic cell, designed to integrate waste heat recovery (i.e a microbial heat recovery cell or MHRC), can operate as a fuel cell and convert effluent streams into...

298

HVAC Energy Recovery Design and Economic Evaluation  

E-Print Network (OSTI)

ENRECO has prepared this paper on HVAC energy recovery to provide the engineer with an overview of the design engineering as well as the economic analysis considerations necessary to evaluate the potential benefits of energy recovery....

Kinnier, R. J.

1979-01-01T23:59:59.000Z

299

American Recovery & Reinvestment Act Newsletter - Issue 17  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

About one year of American Recovery About one year of American Recovery and Reinvestment Act work remains, but the $1.6 billion Re- covery Act investment provided to the Richland Operations Office at the Hanford Site has already accelerated dozens of cleanup projects, created work for thousands of people, and helped hundreds of small businesses. As of late September 2010, the Richland Operations Office had spent more than $727 million of its Recovery Act allo- cation since launching work in April 2009, and progress in cleanup projects has been swift. Workers have demolished 30 facilities, remediated 23 waste sites, and installed more than 250 wells for monitoring and treating groundwater. They have excavated 3.3 million cubic yards of soil for two new disposal cells that will increase ca-

300

Hanford's Recovery Act Payments Jump Past $1 Billion  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WASH. - The Richland Operations Office's WASH. - The Richland Operations Office's (RL) American Recovery and Reinvestment Act payments at Hanford recently surpassed $1 billion. RL was allocated $1.63 billion from the Recovery Act in 2009 in order to create jobs and reduce the footprint of active cleanup at Hanford. In key Recovery Act accomplishments, RL: * Reduced Hanford's cleanup footprint by a total of 143 square miles by re- moving more than 20 facilities and hundreds of debris sites on the Hanford Reach National Monument, a 300-square mile area around Hanford formerly used for military activity and research. * Demolished 56 facilities, which reduces surveillance and maintenance costs. * Completed expansion of Hanford's Environmental Restoration Disposal Facil- ity (ERDF) ahead of schedule and under budget, increasing its capacity to

Note: This page contains sample records for the topic "increase recovery rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Enhancement of automotive exhaust heat recovery by thermoelectric devices  

SciTech Connect

In an effort to improve automobile fuel economy, an experimental study is undertaken to explore practical aspects of implementing thermoelectric devices for exhaust gas energy recovery. A highly instrumented apparatus consisting of a hot (exhaust gas) and a cold (coolant liquid) side rectangular ducts enclosing the thermoelectric elements has been built. Measurements of thermoelectric voltage output and flow and surface temperatures were acquired and analyzed to investigate the power generation and heat transfer properties of the apparatus. Effects of inserting aluminum wool packing material inside the hot side duct on augmentation of heat transfer from the gas stream to duct walls were studied. Data were collected for both the unpacked and packed cases to allow for detection of packing influence on flow and surface temperatures. Effects of gas and coolant inlet temperatures as well as gas flow rate on the thermoelectric power output were examined. The results indicate that thermoelectric power production is increased at higher gas inlet temperature or flow rate. However, thermoelectric power generation decreases with a higher coolant temperature as a consequence of the reduced hot-cold side temperature differential. For the hot-side duct, a large temperature gradient exists between the gas and solid surface temperature due to poor heat transfer through the gaseous medium. Adding the packing material inside the exhaust duct enhanced heat transfer and hence raised hot-side duct surface temperatures and thermoelectric power compared to the unpacked duct, particularly where the gas-to-surface temperature differential is highest. Therefore it is recommended that packing of exhaust duct becomes common practice in thermoelectric waste energy harvesting applications.

Ibrahim, Essam [Alabama A& M University, Normal; Szybist, James P [ORNL; Parks, II, James E [ORNL

2010-01-01T23:59:59.000Z

302

Radiological aspects of in situ uranium recovery  

SciTech Connect

In the last few years, there has been a significant increase in the demand for Uranium as historical inventories have been consumed and new reactor orders are being placed. Numerous mineralized properties around the world are being evaluated for Uranium recovery and new mining / milling projects are being evaluated and developed. Ore bodies which are considered uneconomical to mine by conventional methods such as tunneling or open pits, can be candidates for non-conventional recovery techniques, involving considerably less capital expenditure. Technologies such as Uranium in situ leaching in situ recovery (ISL / ISR), have enabled commercial scale mining and milling of relatively small ore pockets of lower grade, and may make a significant contribution to overall world wide uranium supplies over the next ten years. Commercial size solution mining production facilities have operated in the US since 1975. Solution mining involves the pumping of groundwater, fortified with oxidizing and complexing agents into an ore body, solubilizing the uranium in situ, and then pumping the solutions to the surface where they are fed to a processing plant. Processing involves ion exchange and may also include precipitation, drying or calcining and packaging operations depending on facility specifics. This paper presents an overview of the ISR process and the health physics monitoring programs developed at a number of commercial scale ISL / ISR Uranium recovery and production facilities as a result of the radiological character of these processes. Although many radiological aspects of the process are similar to that of conventional mills, conventional-type tailings as such are not generated. However, liquid and solid byproduct materials may be generated and impounded. The quantity and radiological character of these by products are related to facility specifics. Some special monitoring considerations are presented which are required due to the manner in which Radon gas is evolved in the process and the unique aspects of controlling solution flow patterns underground. An overview of the major aspects of the health physics and radiation protection programs that were developed at these facilities are discussed and contrasted to circumstances of the current generation and state of the art of Uranium ISR technologies and facilities. (authors)

BROWN, STEVEN H. [SHB INC., 7505 S. Xanthia Place, Centennial, Colorado (United States)

2007-07-01T23:59:59.000Z

303

HEAVY AND THERMAL OIL RECOVERY PRODUCTION MECHANISMS  

SciTech Connect

This technical progress report describes work performed from October 1 through December 31, 2002 , for the project ''Heavy and Thermal Oil Recovery Production Mechanisms.'' In this project, a broad spectrum of research is undertaken related to thermal and heavy-oil recovery. The research tools and techniques used are varied and span from pore-level imaging of multiphase fluid flow to definition of reservoir-scale features through streamline-based history-matching techniques. During this period, experimental data regarding multidimensional imbibition was analyzed to obtain shape factors appropriate for dual-porosity simulation. It is shown that the usual assumption of constant, time-independent shape factors is incorrect. In other work, we continued to study the mechanisms by which oil is produced from fractured media at high pressure and high temperature. High temperature significantly increased the apparent wettability and affected water relative permeability of cores used in previous experiments. A phenomenological and mechanistic cause for this behavior is sought. Our work in the area of primary production of heavy oil continues with field cores and crude oil. On the topic of reservoir definition, work continued on developing techniques that integrate production history into reservoir models using streamline-based properties.

Anthony R. Kovscek

2003-01-01T23:59:59.000Z

304

c) UNBUNDLING.- Any stranded cost recovery charge authorized by the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

c) UNBUNDLING.- Any stranded cost recovery charge authorized by the c) UNBUNDLING.- Any stranded cost recovery charge authorized by the Commission to be assessed by the Tennessee Valley Authority shall be unbundled from the otherwise applicable rates and charges to such customer and separately stated on the bill of such customer. The Tennessee Valley Authority shall not recover wholesale stranded costs from any customer through any other rate, charge, or mechanism. (d) REPORT.-Beginning in fiscal year 2001, as part of the annual management report submitted by the Tennessee Valley Authority to Congress, the Tennessee Valley Authority shall also specifically report: (1) the status of the Tennessee Valley Authority's long-range financial plans and the progress toward its goal of competitively priced electric power, and a general discussion of the Tennessee

305

Die Materials for Critical Applications and Increased Production Rates  

SciTech Connect

Die materials for aluminum die-casting need to be resistant to heat checking, and have good resistance to washout and to soldering in a fast flow of molten aluminum. To resist heat checking, die materials should have a low coefficient of thermal expansion, high thermal conductivity, high hot yield strength, good temper softening resistance, high creep strength, and adequate ductility. To resist the washout and soldering, die materials should have high hot hardness, good temper resistance, low solubility in molten aluminum and good oxidation resistance. It is difficult for one material to satisfy with all above requirements. In practice, H13 steel is the most popular material for aluminum die casting dies. While it is not an ideal choice, it is substantially less expensive to use than alternative materials. However, in very demanding applications, it is sometimes necessary to use alternative materials to ensure a reasonable die life. Copper-base, nickel-base alloys and superalloys, titanium-,molybdenum-, tungsten-base alloys, and to some extent yttrium and niobium alloys, have all been considered as potential materials for demanding die casting applications. Most of these alloys exhibit superior thermal fatigue resistance, but suffer from other shortcomings.

David Schwam; John Wallace; Sebastian Birceanu

2002-11-30T23:59:59.000Z

306

Increasing ion sorption and desorption rates of conductive electrodes  

DOE Patents (OSTI)

An electrolyte system includes a reactor having a pair of electrodes that may sorb ions from an electrolyte. The electrolyte system also includes at least one power supply in electrical communication with the reactor. The at least one power supply may supply a DC signal and an AC signal to the pair of electrodes during sorption of the ions. In addition, the power supply may supply only the AC signal to the pair of electrodes during desorption of the ions.

DePaoli, David William; Kiggans, Jr., James O; Tsouris, Costas; Bourcier, William; Campbell, Robert; Mayes, Richard T

2014-12-30T23:59:59.000Z

307

Increasing fMRI Sampling Rate Improves Granger Causality Estimates  

E-Print Network (OSTI)

' adherence to PLOS ONE policies on sharing data and materials. * Email: fhlin@ntu.edu.tw Introduction measures of effective connectivity [1­3]. Previously, effective connectivity analyses of human PET [4

308

Mutual Inhibition Increases Adaptation Rate in an Electrosensory System 1  

E-Print Network (OSTI)

are the responses of MG cells to the sh's own electric organ discharge (EOD). Corollary discharge signals associated with the motor command that drives the EOD project to the ELL as parallel bers that terminate on apical dendrites of MG cells. Adaptation of MG cells to changes in EOD-evoked electrosensory patterns result from changes

Roberts, Patrick D.

309

New PDC bit design increased penetration rate in slim wells  

SciTech Connect

This paper describes slim hole bit design developed at the Paris School of Mines and Security DBS. The design is a compromise between several criteria such as drilling efficiency, uniform wear distribution around the bit face and low level of vibration of the bit, according to the hole diameter and the formation characteristics. Two new bits were manufactured and run successfully in a full scale drilling test bench and in field test in Gabon. The result show improvement of the drilling performances in slimhole application.

Gerbaud, L.; Sellami, H. [Paris School of Mines (France); Lamine, E.; Sagot, A.

1997-07-01T23:59:59.000Z

310

Recovery of benzene in an organic vapor monitor  

E-Print Network (OSTI)

solid adsorbents available (silica gel, activated alumina, etc. ), activated charcoal is most frequently utilized. Activated charcoal has retentivity for sorbed vapors several times that of silica gel and it displays a selectivity for organic vapors... (diffusion rate) of the vapor molecules to the sur- face of the adsorbent. The adsorption process determine how effective the adsorbent collects and holds the contam- inant on the surface of the activated charcoal. Recovery of the contaminant from...

Krenek, Gregory Joel

2012-06-07T23:59:59.000Z

311

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 24, 2013 September 24, 2013 Carbon fiber material produced at SGL Automotive Carbon Fibers in Moses Lake, Wash. (Photo courtesy of SGL Automotive Carbon Fibers) Electric Car Featuring High-Tech Material Made in the USA Makes Its Debut One of the world's first electric vehicles built using ultra lightweight carbon fiber material manufactured in the U.S. was recently unveiled. September 20, 2013 Electrical transmission lines cross a snow-covered field in Dallas Dam, Oregon. | Energy Department photo. Top 9 Things You Didn't Know About America's Power Grid Ever wonder how electricity gets to your home? Test your knowledge with these top power grid facts. September 16, 2013 Cumulative Federal Payments to OE Recovery Act Recipients, through August 31, 2013 Graph of cumulative Federal Payments to OE Recovery Act Recipients, through

312

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

19, 2010 19, 2010 North Community Police Substation upgraded its solar energy system with the help of Recovery Act funds. The city's electric bill will be about $5,000 cheaper. | Courtesy of the City of Henderson Police Station Triples Solar Power - and Savings The Henderson, Nevada, police department is going above and beyond the call of duty by tripling the size of its solar panel system on its LEED-certified station, saving the city thousands of dollars in energy costs. July 15, 2010 VP 100: President Obama Hails Electric-Vehicle Battery Plant President Obama visits Compact Power in Holland, Michigan -- one of nine new battery plants under construction as a result of the $2.4 billion in Recovery Act advanced battery and electric vehicle awards the President announced last August.

313

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 25, 2010 February 25, 2010 Bluegrass State Getting Greener To help reduce Kentucky's energy appetite, the state set a goal of 25-percent energy reduction by 2025 and is using Recovery Act funding from the U.S. Department of Energy to improve the energy-efficiency of its buildings. February 19, 2010 Homes Weatherized by State for Calendar Year 2009 February 19, 2010 Secretary Chu's Remarks on the Anniversary of the Recovery Act February 19, 2010 January 26, 2010 Electric Cars Coming to Former Delaware GM Plant If a company's cars are luxurious enough for the Crown Prince of Denmark, then just imagine how the vehicles - which have a 50-mile, emission-free range on a single electric charge - might be received by folks in the U.S. January 15, 2010 Secretary Chu Announces More than $37 Million for Next Generation Lighting

314

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 22, 2010 April 22, 2010 Weatherization Subgrantees Reach More N.Y. Homes Why weatherization is booming in the South Bronx. April 21, 2010 Vice President Biden Kicks Off Five Days of Earth Day Activities with Announcement of Major New Energy Efficiency Effort 25 Communities Selected for Recovery Act "Retrofit Ramp-Up" Awards April 15, 2010 Arkansas Preparing for Wind Power Arkansas energy leaders are working to get the best data for potential wind energy decisions. April 1, 2010 Wisconsin LED Plant Benefits from Recovery Act "It's a win for everyone: the environment, the cities, buildings, for us," says Gianna O'Keefe, marketing manager for Ruud Lighting, which is producing LED lights that emit more light, have a longer life and provide anywhere from 50 to 70 percent in energy savings.

315

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

46.3 Million in 46.3 Million in Weatherization Funding and Energy Efficiency Grants for Alaska Part of nearly $8 billion in Recovery Act funding for energy efficiency efforts nationwide that will create 100,000 jobs and cut energy bills for families March 12, 2009 Obama-Biden Administration Announces More Than $127.3 Million in Weatherization Funding and Energy Efficiency Grants for Alabama Part of nearly $8 billion in Recovery Act funding for energy efficiency efforts nationwide that will create 100,000 jobs and cut energy bills for families March 11, 2009 Statement of Steven Chu Secretary of Energy Before the Committee on the Budget March 11, 2009 March 5, 2009 Secretary Steven Chu Editorial in USA Today Washington, D.C. - This morning's edition of USA Today includes the following editorial from Energy Secretary Steven Chu highlighting President

316

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

185.5 Million in 185.5 Million in Weatherization Funding and Energy Efficiency Grants for Missouri Part of nearly $8 billion in Recovery Act funding for energy efficiency efforts nationwide that will create 100,000 jobs and cut energy bills for families March 12, 2009 Obama-Biden Administration Announces More Than $35.1 Million in Weatherization Funding and Energy Efficiency Grants for Wyoming Washington, DC -- Vice President Joe Biden and Energy Secretary Chu today announced Wyoming will receive $35,180,261 in weatherization and energy efficiency funding - including $10,239,261 for the Weatherization Assistance Program and $24,941,000 for the State Energy Program. This is part of a nationwide investment announced today of nearly $8 billion under the President's American Recovery and Reinvestment Act - an investment that

317

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 2, 2009 December 2, 2009 Alabama Family Staying Nice and Cozy This Fall Recovery Act money to weatherize homes has resulted in much lower energy bills for Alabama families, including Mary, whose bill is about $300 cheaper now. December 2, 2009 Training Center Gets People Work, Teaches New Skills Corporation for Ohio Appalachian Development, a nonprofit organization comprised of 17 community action agencies involved in weatherization, has been awarded Recovery Act funds to help train weatherization providers and create jobs across Ohio. December 2, 2009 Former Auto Worker Gauges Efficiency of American Homes Holland, Michigan resident retools skills learned testing car parts to land new job assessing home energy efficiency as a weatherization inspector. October 15, 2009

318

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 22, 2011 June 22, 2011 Recovery Act SGDP View a map which combines the above two maps View the full list of selected projects June 22, 2011 Recovery Act: Smart Grid Interoperability Standards and Framework May 18, 2009 Locke, Chu Announce Significant Steps in Smart Grid Development WASHINGTON - U.S. Commerce Secretary Gary Locke and U.S. Energy Secretary Steven Chu today announced significant progress that will help expedite development of a nationwide "smart" electric power grid. June 22, 2011 Strategic Plan A modern, reliable, secure, affordable and environmentally sensitive national energy infrastructure is fundamental to our quality of life and energy future. Yet since 1982, growth in peak demand for electricity has exceeded the growth and development of our electric grid. This demand

319

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 12, 2011 April 12, 2011 Department of Energy Offers Conditional Commitment for $1.187 Billion Loan Guarantee to Support California Solar Generation Project Recovery Act-Supported Project Estimated to Create Over 350 Jobs and Avoid over 430,000 Tons of Carbon Dioxide Annually March 3, 2011 Department of Energy Offers Conditional Commitment for a Loan Guarantee to Support Maine Wind Project Recovery Act-Funded Project Expected to Create Approximately 200 Jobs and Avoid over 70,000 Tons of Carbon Pollution Annually February 17, 2011 Department of Energy Offers Support for an Oregon Solar Manufacturing Project Project Estimated to Create Over 700 Jobs and Greater Efficiencies in the Production of Photovoltaic Panels February 15, 2011 Department of Energy Finalizes Loan Guarantee for New Transmission Project

320

Energy recovery with turbo expanders  

SciTech Connect

In the oil, gas and petrochemical industry, there are many instances where energy is under-utilized, if not actually wasted. In many cases it may be possible to recover some of this energy and obtain useful work, thereby improving plant efficiency and the economics of the operation. The turbo expander is a simple device that can make a significant contribution to the recovery of energy in all kinds of plants. This paper considers some ways in which turbo expanders may be used and looks in detail at an application in the gas industry where the energy lost in pressure reduction may be recovered and used to assist in reducing operating costs. The design criteria for such turbo expanders are discussed and areas for future development are proposed. The paper concludes that there are significant gains to be made in the recovery of waste energy and that the turbo expander can play a major role in this activity.

Cleveland, A.

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "increase recovery rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 17, 2010 March 17, 2010 Solar panels at Terry Sandstrom's home in Wheatland, Wyo. | Photo courtesy of Terry Sandstrom Solar and Wind Powering Wyoming Home Terry Sandstrom never thought he would run his house entirely on renewable energy, but when faced with a $100,000 price tag to get connected to the grid, he had to look at alternative options. March 17, 2010 DOE Releases New Report on Benefits of Recovery Act for Small Businesses in Clean Energy, Environmental Management Sectors WASHINGTON - The Department of Energy today released a new report highlighting the benefits of the Recovery Act to small businesses throughout the clean, renewable energy industry and environmental management sector. The report found that as of early March 2010, small businesses have been selected to receive nearly $5.4 billion in funding

322

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 14, 2009 September 14, 2009 Obama Administration Delivers More than $60 Million for Weatherization Programs in Six States and Territories Recovery Act funding to expand weatherization assistance programs, create jobs and weatherize nearly 17,000 homes in American Samoa, Northern Arapahoe Tribe, Northern Mariana Islands, Puerto Rico, Tennessee and the U.S. Virgin Islands September 14, 2009 DOE Delivers More than $354 Million for Energy Efficiency and Conservation Projects in 22 States Washington, DC - Energy Secretary Steven Chu announced today that more than $354 million in funding from the American Recovery and Reinvestment Act is being awarded to 22 states to support energy efficiency and conservation activities. Under the Department of Energy's Efficiency and Conservation

323

Gas-assisted gravity drainage (GAGD) process for improved oil recovery  

DOE Patents (OSTI)

A rapid and inexpensive process for increasing the amount of hydrocarbons (e.g., oil) produced and the rate of production from subterranean hydrocarbon-bearing reservoirs by displacing oil downwards within the oil reservoir and into an oil recovery apparatus is disclosed. The process is referred to as "gas-assisted gravity drainage" and comprises the steps of placing one or more horizontal producer wells near the bottom of a payzone (i.e., rock in which oil and gas are found in exploitable quantities) of a subterranean hydrocarbon-bearing reservoir and injecting a fluid displacer (e.g., CO.sub.2) through one or more vertical wells or horizontal wells. Pre-existing vertical wells may be used to inject the fluid displacer into the reservoir. As the fluid displacer is injected into the top portion of the reservoir, it forms a gas zone, which displaces oil and water downward towards the horizontal producer well(s).

Rao, Dandina N. (Baton Rouge, LA)

2012-07-10T23:59:59.000Z

324

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 25, 2013 April 25, 2013 Economic Impact of Recovery Act Investments in the Smart Grid Report Now Available A report on the Economic Impact of Recovery Act Investments in the Smart Grid is now available. This study analyzes the economy-wide impacts of the Recovery Act funding for smart grid project deployment in the United States, administered by Office of Electricity Delivery and Energy Reliability. Key findings include: April 25, 2013 Smart Grid: Powering Our Way to a Greener Future Learning how to be smarter and more efficient about reducing our energy consumption is on the minds of everyone this week. The smart grid, with its improved efficiency and performance, is helping consumers conserve energy and save money every day. April 9, 2013 The Notrees Wind Storage Demonstration Project is a 36-megawatt energy storage and power management system, which completed testing and became fully operational in December. It shows how energy storage can moderate the intermittent nature of wind by storing excess energy when the wind is blowing and making it available later to the electric grid to meet customer demand.

325

Improved oil recovery in fluvial dominated deltaic reservoirs of Kansas, Near-term. Third quarterly report, January 1, 1994--April 1, 1994  

SciTech Connect

The objective of this project is to address waterflood problems of the type found in Cherokee Group reservoirs in southeastern Kansas and in Morrow sandstone reservoirs in southwestern Kansas. Two demonstration sites operated by different independent oil operators are involved in the project. The Nelson Lease (an existing waterflood) is located in Allen County, Kansas in the N.E. Savonburg Field. The Stewart Field is located in Finney County, Kansas. General topics to be addressed will be (1) reservoir management and performance evaluation, (2) waterflood optimization, and (3) the demonstration of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. The reservoir management portion of the project will involve performance evaluation and will include such work as (1) reservoir characterization and the development of a reservoir database, (2) identification of operational problems, (3) identification of near wellbore problems, (4) identification of unrecovered mobile oil and estimation of recovery factors, and (5) identification of the most efficient and economical recovery process. The waterflood optimization portion of the project involves only the Nelson Lease. It will be based on the performance evaluation and will involve (1) design and implementation of a water cleanup system for the waterflood, (2) application of well remedial work such as polymer gel treatments to improve vertical sweep efficiency, and (3) changes in waterflood patterns to increase sweep efficiency. Finally, it is planned to implement an improved recovery process, possibly polymer augmented waterflooding on both field demonstration sites. Progress reports are presented for the following tasks: engineering and geological analysis; water plant development; pattern changes and wellbore cleanup; field operations; laboratory testing; and utilization.

Green, D.W.; Willhite, G.P.; Walton, A.; Schoeling, L.; Reynolds, R.; Michnick, M.; Watney, L.

1994-04-15T23:59:59.000Z

326

Improved oil recovery in fluvial dominated deltaic reservoirs of Kansas -- near-term. Eighth quarterly report, April 1, 1995--June 30, 1995  

SciTech Connect

The objective of this project is to address waterflood problems of the type found in Cherokee Group reservoirs in southeastern Kansas and in Morrow sandstone reservoirs in southwestern Kansas. Two demonstration sites operated by different independent oil operators are involved in the project. The Nelson Lease (an existing waterflood) is located in Allen County, Kansas in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. The Stewart Field (on latter stage of primary production) is located in Finney County, Kansas and is operated by North American Resources Company General topics to be addressed will be (1) reservoir management and performance evaluation, (2) waterflood optimization, and (3) the demonstration, of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. The reservoir management portion of the project will involve performance evaluation and will include such work as (1) reservoir characterization and the development of a reservoir database, (2) identification of operational problems, (3) identification of near wellbore problems, (4) identification of unrecovered mobile oil and estimation of recovery factors, and 5) identification of the most efficient and economical recovery process. The waterflood optimization portion of the project involves only the Nelson Lease. It will be based on the performance evaluation and will involve (1) design and implementation of a water cleanup system for the waterflood, (2) application of well remedial work such as polymer gel treatments to improve vertical sweep efficiency, and (3) changes in waterflood patterns to increase sweep efficiency. Finally, it is planned to implement an improved recovery process on both field demonstration sites.

Green, D.W.; Willhite, G.P.; Walton, A.; Schoeling, L.; Reynolds, R.; Michnick, M.; Watney, L.

1995-07-15T23:59:59.000Z

327

Improved oil recovery in fluvial dominated deltaic reservoirs of Kansas -- near-term. Seventh quarterly report, February 1, 1995--April 1, 1995  

SciTech Connect

The objective of this project is to address waterflood problems of the type found in Cherokee Group reservoirs in southeastern Kansas and in Morrow sandstone reservoirs in southwestern Kansas. Two demonstration sites operated by different independent oil operators are involved in the project. The Nelson Lease (an existing waterflood) is located in Allen County, Kansas in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. The Stewart Field (on latter stage of primary production) is located in Finney County, Kansas and is operated by Sharon Resources, Inc. General topics to be addressed will be (1) reservoir management and performance evaluation, (2) waterflood optimization, and (3) the demonstration of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. The reservoir management portion of the project will involve performance evaluation and will include such work as (1) reservoir characterization and the development of a reservoir database, (2) identification of operational problems, (3) identification of near wellbore problems, (4) identification of unrecovered mobile oil and estimation of recovery factors, and (5) identification of the most efficient and economical recovery process. The waterflood optimization portion of the project involves only the Nelson Lease. It will be based on the performance evaluation and will involve (1) design and implementation of a water cleanup system for the waterflood, (2) application of well remedial work such as polymer gel treatments to improve vertical sweep efficiency, and (3) changes in waterflood patterns to increase sweep efficiency. Finally, it is planned to implement an improved recovery process, possibly polymer augmented waterflood: on both field demonstration sites.

Green, D.W.; Willhite, G.P.; Walton, A.; Schoeling, L.; Reynolds, R.; Michnick, M.; Watney, L.

1995-04-15T23:59:59.000Z

328

Recovery Act State Memos Virgin Islands  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Virgin Virgin Islands For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 For total Recovery Act jobs numbers in the U.S. Virgin Islands go to www.recovery.gov

329

CALIFORNIA RECOVERY ACT SNAPSHOT | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CALIFORNIA RECOVERY ACT SNAPSHOT CALIFORNIA RECOVERY ACT SNAPSHOT CALIFORNIA RECOVERY ACT SNAPSHOT California has substantial natural resources, including oil, gas, solar, wind, geothermal, and hydroelectric power .The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in California are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to solar and wind, geothermal and biofuels, carbon capture and storage, and environmental cleanup. Through these investments, California's businesses, universities, national labs, non-profits, and local governments are creating quality jobs today and positioning California to play an important role in the new energy economy

330

Recovery Act State Memos American Samoa  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

American American Samoa For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ................................................................................................ 1 For total Recovery Act jobs numbers in American Samoa go to www.recovery.gov

331

CALIFORNIA RECOVERY ACT SNAPSHOT | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CALIFORNIA RECOVERY ACT SNAPSHOT CALIFORNIA RECOVERY ACT SNAPSHOT CALIFORNIA RECOVERY ACT SNAPSHOT California has substantial natural resources, including oil, gas, solar, wind, geothermal, and hydroelectric power .The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in California are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to solar and wind, geothermal and biofuels, carbon capture and storage, and environmental cleanup. Through these investments, California's businesses, universities, national labs, non-profits, and local governments are creating quality jobs today and positioning California to play an important role in the new energy economy

332

Recovery Act ? An Interdisciplinary Program for Education and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Recovery Act An Interdisciplinary Program for Education and Outreach in Transportation Electrification Recovery Act An Interdisciplinary Program for Education and...

333

Develop Thermoelectric Technology for Automotive Waste Heat Recovery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Documents & Publications Development of Thermoelectric Technology for Automotive Waste Heat Recovery Development of Thermoelectric Technology for Automotive Waste Heat Recovery...

334

EM Recovery Act Performance | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mission » Recovery Act » EM Recovery Act Performance Mission » Recovery Act » EM Recovery Act Performance EM Recovery Act Performance Footprint Reduction The Office of Environmental Management's (EM) American Recovery and Reinvestment Act Program recently achieved 74 percent footprint reduction, exceeding the originally established goal of 40 percent. EM has reduced its pre-Recovery Act footprint of 931 square miles, established in 2009, by 690 square miles. Reducing its contaminated footprint to 241 square miles has proven to be a monumental task, and a challenge the EM team was ready to take on from the beginning. In 2009, EM identified a goal of 40 percent footprint reduction by September 2011 as its High Priority Performance Goal. EM achieved that goal in April 2011, five months ahead of schedule, and continues to achieve

335

IOWA RECOVERY ACT SNAPSHOT | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IOWA RECOVERY ACT SNAPSHOT IOWA RECOVERY ACT SNAPSHOT IOWA RECOVERY ACT SNAPSHOT Iowa has substantial natural resources, including wind power and is the largest ethanol producer in the United States. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Iowa are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to the Ames Laboratory. Through these investments, Iowa's businesses, universities, national labs, non-profits, and local governments are creating quality jobs today and positioning Iowa to play an important role in the new energy economy of the future. IOWA RECOVERY ACT SNAPSHOT More Documents & Publications Iowa Recovery Act State Memo

336

Recovery News Flashes | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery News Flashes Recovery News Flashes Recovery News Flashes RSS January 29, 2013 "TRU" Success: SRS Recovery Act Prepares to Complete Shipment of More Than 5,000 Cubic Meters of Nuclear Waste to WIPP With the American Recovery and Reinvestment Act funding, Savannah River Site (SRS) continues to safely treat and dispose of radioactive waste created while producing materials for nuclear weapons throughout the Cold War. The DOE site in Aiken, S.C., is safely, steadily, and cost-effectively making progress to analyze, measure, and then carefully cleanup or dispose of legacy transuranic (TRU) waste remaining at SRS after the lengthy nuclear arms race. November 2, 2012 Recovery Act Exceeds Major Cleanup Milestone, DOE Complex Now 74 Percent Remediated The Office of Environmental Management's (EM) American Recovery and

337

Enhanced Oil Recovery | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enhanced Oil Recovery Enhanced Oil Recovery Enhanced Oil Recovery Cross-section illustrating how carbon dioxide and water can be used to flush residual oil from a subsurface rock formation between wells. Cross-section illustrating how carbon dioxide and water can be used to flush residual oil from a subsurface rock formation between wells. Crude oil development and production in U.S. oil reservoirs can include up to three distinct phases: primary, secondary, and tertiary (or enhanced) recovery. During primary recovery, the natural pressure of the reservoir or gravity drive oil into the wellbore, combined with artificial lift techniques (such as pumps) which bring the oil to the surface. But only about 10 percent of a reservoir's original oil in place is typically produced during primary recovery. Secondary recovery techniques extend a

338

Drain Water Heat Recovery | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Drain Water Heat Recovery Drain Water Heat Recovery Drain Water Heat Recovery June 15, 2012 - 6:20pm Addthis Diagram of a drain water heat recovery system. Diagram of a drain water heat recovery system. How does it work? Use heat from water you've already used to preheat more hot water, reducing your water heating costs. Any hot water that goes down the drain carries away energy with it. That's typically 80%-90% of the energy used to heat water in a home. Drain-water (or greywater) heat recovery systems capture this energy from water you've already used (for example, to shower, wash dishes, or wash clothing) to preheat cold water entering the water heater or going to other water fixtures. This reduces the amount of energy needed for water heating. How It Works Drain-water heat recovery technology works well with all types of water

339

Drain Water Heat Recovery | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Drain Water Heat Recovery Drain Water Heat Recovery Drain Water Heat Recovery June 15, 2012 - 6:20pm Addthis Diagram of a drain water heat recovery system. Diagram of a drain water heat recovery system. How does it work? Use heat from water you've already used to preheat more hot water, reducing your water heating costs. Any hot water that goes down the drain carries away energy with it. That's typically 80%-90% of the energy used to heat water in a home. Drain-water (or greywater) heat recovery systems capture this energy from water you've already used (for example, to shower, wash dishes, or wash clothing) to preheat cold water entering the water heater or going to other water fixtures. This reduces the amount of energy needed for water heating. How It Works Drain-water heat recovery technology works well with all types of water

340

Overview of the DOE studies of recovery boiler floor tube cracking  

SciTech Connect

Cracking of the stainless steel layer of coextruded 304L/SA210 recovery boiler floor tubes has been observed in an increasing number of black liquor recovery boilers. Because failure of such tubes is a serious safety concern as well as an economic issue, this project was initiated with the objective of identifying alternate materials or process changes that would prevent tube cracking. Tensile stresses are essential for the most likely failure mechanisms, i.e., fatigue or stress corrosion cracking, therefore stresses were measured at room temperature and modeling was used to predict stresses under operating conditions. Laboratory studies have identified conditions under which composite tubes crack due to thermal fatigue and stress corrosion. Floor tube temperature measurements have defined the magnitude and frequency of temperature fluctuations experienced by such tubes, and smelt corrosion studies have measured the degradation rate when molten smelt comes in contact with tubes. Based on these observations, certain materials appear more likely to resist cracking and certain process changes should help avoid conditions that cause composite tube cracking.

Keiser, J.R.; Taljat, B.; Wang, X.L. [and others

1998-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "increase recovery rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Kootenai River White Sturgeon Recovery Implementation Plan and Schedule; 2005-2010, Technical Report 2004-2005.  

SciTech Connect

Kootenai River white sturgeon have been declining for at least 50 years and extinction of the wild population is now imminent (Paragamian et al. 2005). Only 630 adults were estimated to remain in 2002 from a population ten times that size just 20 years ago. Significant recruitment of young sturgeon has not been observed since the early 1970s and consistent annual recruitment has not been seen since the 1950s. The remaining wild population consists of a cohort of large, old fish that is declining by about 9% per year as fish die naturally and are not replaced. At this rate, the wild population will disappear around the year 2040. Numbers have already reached critical low levels where genetic and demographic risks are acute. The Kootenai River White Sturgeon Recovery Team was convened in 1994, provided a draft Recovery Plan in 1996 and the first complete Recovery Plan for Kootenai River white sturgeon in 1999 (USFWS 1996, 1999). The Plan outlined a four part strategy for recovery, including: (1) measures to restore natural recruitment, (2) use of conservation aquaculture to prevent extinction, (3) monitoring survival and recovery, and (4) updating and revising recovery plan criteria and objectives as new information becomes available. Sturgeon recovery efforts are occurring against a backdrop of a broader ecosystem protection and restoration program for the Kootenai River ecosystem. With abundance halving time of approximately 8 years, the Kootenai River white sturgeon population is rapidly dwindling, leaving managers little time to act. Decades of study consistently indicate that recruitment failure occurs between embryo and larval stages. This assertion is based on four key observations. First, almost no recruitment has occurred during the last 30 years. Second, thousands of naturally produced white sturgeon embryos, most viable, have been collected over the past decade, resulting from an estimated 9 to 20 spawning events each year. Third, Kootenai River white sturgeon spawning has been documented during most years from 1990 through 2005. Finally, no larvae and very few wild juveniles have been collected during recent decades despite years of intensive sampling. Concurrently, post-release hatchery reared juveniles (as young as 9 months of age at release) consistently exhibit successful growth and survival (Ireland et al. 2002). Recruitment has failed, in part because fish are currently spawning at sites where or when conditions appear unsuitable for successful incubation and early rearing. Research to date suggests that recruitment failure is caused by egg or larval suffocation, predation and/or other mortality factors associated with these early life stages. A variety of interrelated factors have clearly contributed to the decline of Kootenai white sturgeon; various hypotheses for recruitment failure are not mutually exclusive. Anders et al. (2002) suggested that Kootenai River white sturgeon recruitment failure is likely the result of additive mortality from: (1) increased predation efficiencies due to low turbidity, velocity, and an relative increase in predatory fishes, (2) a reduced number of eggs produced by a dwindling spawning population, and (3) spawning in habitat lacking interstitial space (embryo suffocation). Quite simply, the combined egg and embryo mortality from all biotic and abiotic factors kills more eggs and embryos than the dwindling wild population is currently capable of producing. Thus, natural recruitment failure appears to be caused by some combination of habitat and stock limitation, by the mechanisms mentioned above. Although past research has helped narrow the range of possible causes of natural recruitment failure, the relative significance of each potential impact remains uncertain because multiple ecological, biological, and physical habitat changes occurred simultaneously. This makes it difficult to choose among competing hypotheses and difficult to know where exactly to focus recovery efforts for maximum benefit. In an ideal world, specific recovery measures would be identified and imple

Anders, Paul

2007-03-01T23:59:59.000Z

342

Method for Increasing Atmospheric Carbon Dioxide in Bacteriological Incubators  

Science Journals Connector (OSTI)

...Method for Increasing Atmospheric Carbon Dioxide in...Method for Increasing Atmospheric Carbon Dioxide in...experience with water-jacket incubators...that the area of water used be the maximum...does not create condensation. For culturing...was made of the recovery of Mycobacterium...

Alfred G. Karslon; Patrick E. Caskey

1969-07-01T23:59:59.000Z

343

A feasibility study of ECBM recovery and CO2 storage for a producing CBM field in Southeast Qinshui Basin, China  

Science Journals Connector (OSTI)

Abstract This paper presents a geo-engineering and economic analysis of the potential for enhanced coalbed methane (ECBM) recovery and CO2 storage in the South Shizhuang CBM Field, Southeast Qinshui Basin, China. We construct a static model using the well log and laboratory data and then upscale this model to use in dynamic simulations. We history match field water and gas rates using the dynamic model. The parameters varied during the history match include porosity and permeability. Using the history matched dynamic model, we make predictions of CBM and ECBM recoveries for various field developments. We build a techno-economic model that calculates the incremental nominal net present value (NPV) of the ECBM incremental recovery and CO2 storage over the CBM recovery. We analyse how the NPV is affected by well spacing, CH4 price, carbon credit and the type of coal. Our analyses suggest that 300 m is the optimum well spacing for the study area under the current CH4 price in China and with a zero carbon credit. Using this well spacing, we predict the recoveries for different injection gas compositions of CO2 and N2 and different injection starting times. The results show that gas injection yields incremental CBM production whatever the composition of the injected gas. Pure CO2 injection yields highest ECBM for low swelling coals while flue gas injection gives highest ECBM for high swelling coals. However, the differences in recoveries are small. Injection can be economically viable depending on the CH4 price and the carbon credit. At current prices and no carbon credit, flue gas injection is commercial. At higher CH4 prices and/or with the introduction of carbon credits, co-optimisation could be commercially viable. High carbon credits favour injecting pure CO2 rather than other gases because this stores more CO2. Injecting CO2 at late stage increases CO2 storage but decreases the project's NPV. High-swelling coals require about $20/tonnes additional carbon credit.

Fengde Zhou; Wanwan Hou; Guy Allinson; Jianguang Wu; Jianzhong Wang; Yildiray Cinar

2013-01-01T23:59:59.000Z

344

Treasury, Energy Announce More Than $3 Billion in Recovery Act Funds for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Treasury, Energy Announce More Than $3 Billion in Recovery Act Treasury, Energy Announce More Than $3 Billion in Recovery Act Funds for Renewable Energy Projects Treasury, Energy Announce More Than $3 Billion in Recovery Act Funds for Renewable Energy Projects July 9, 2009 - 12:00am Addthis WASHINGTON - As part of an innovative partnership aimed at increasing economic development in urban and rural areas while setting our nation on the path to energy independence, the U.S. Department of the Treasury and the U.S. Department of Energy today announced an estimated $3 billion for the development of renewable energy projects around the country and made available the guidance businesses will need to submit a successful application. Funded through the American Recovery and Reinvestment Act (Recovery Act), the program will provide direct payments in lieu of tax

345

Treasury, Energy Announce More Than $3 Billion in Recovery Act Funds for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Treasury, Energy Announce More Than $3 Billion in Recovery Act Treasury, Energy Announce More Than $3 Billion in Recovery Act Funds for Renewable Energy Projects Treasury, Energy Announce More Than $3 Billion in Recovery Act Funds for Renewable Energy Projects July 9, 2009 - 12:00am Addthis WASHINGTON - As part of an innovative partnership aimed at increasing economic development in urban and rural areas while setting our nation on the path to energy independence, the U.S. Department of the Treasury and the U.S. Department of Energy today announced an estimated $3 billion for the development of renewable energy projects around the country and made available the guidance businesses will need to submit a successful application. Funded through the American Recovery and Reinvestment Act (Recovery Act), the program will provide direct payments in lieu of tax

346

Treasury, Energy Announce More Than $2 Billion in Recovery Act Tax Credits  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Treasury, Energy Announce More Than $2 Billion in Recovery Act Tax Treasury, Energy Announce More Than $2 Billion in Recovery Act Tax Credits for Energy Manufacturers Treasury, Energy Announce More Than $2 Billion in Recovery Act Tax Credits for Energy Manufacturers August 13, 2009 - 12:00am Addthis WASHINGTON - As part of an innovative partnership aimed at increasing economic development while setting our nation on the path to energy independence, the U.S. Department of the Treasury and the U.S. Department of Energy today announced a program to award $2.3 billion in tax credits for manufacturers of advanced energy equipment. Authorized by the American Recovery and Reinvestment Act (Recovery Act), this new program will provide tax credits to manufacturers who produce clean energy equipment. "This program will help encourage innovation in design of clean energy

347

The Hanford Story: Recovery Act  

Energy.gov (U.S. Department of Energy (DOE))

This is the third chapter of The Hanford Story. This chapter is a tribute to the thousands of workers and representatives of regulatory agencies, neighboring states, Tribes, stakeholders, and surrounding communities who came together to put stimulus funding to work at Hanford. The video describes how the Department of Energy and its contractors turned a nearly $2 billion investment of American Recovery and Reinvestment Act funding in 2009 into nearly $4 billion worth of environmental cleanup work over the past two years. At the same time, Hanford workers have reduced the cleanup footprint of the Hanford Site by more than half (586 square miles to 241 sq. mi. through August -- 59 percent).

348

Final Report, Materials for Industrial Heat Recovery Systems, Tasks 3 and 4 Materials for Heat Recovery in Recovery Boilers  

SciTech Connect

The DOE-funded project on materials for industrial heat recovery systems included four research tasks: materials for aluminum melting furnace recuperator tubes, materials and operational changes to prevent cracking and corrosion of the co-extruded tubes that form primary air ports in black liquor recovery boilers, the cause of and means to prevent corrosion of carbon steel tubes in the mid-furnace area of recovery boilers, and materials and operational changes to prevent corrosion and cracking of recovery boiler superheater tubes. Results from studies on the latter two topics are given in this report while separate reports on results for the first two tasks have already been published. Accelerated, localized corrosion has been observed in the mid-furnace area of kraft recovery boilers. This corrosion of the carbon steel waterwall tubes is typically observed in the vicinity of the upper level of air ports where the stainless clad co-extruded wall tubes used in the lower portion of the boiler are welded to the carbon steel tubes that extend from this transition point or “cut line” to the top of the boiler. Corrosion patterns generally vary from one boiler to another depending on boiler design and operating parameters, but the corrosion is almost always found within a few meters of the cut line and often much closer than that. This localized corrosion results in tube wall thinning that can reach the level where the integrity of the tube is at risk. Collection and analysis of gas samples from various areas near the waterwall surface showed reducing and sulfidizing gases were present in the areas where corrosion was accelerated. However, collection of samples from the same areas at intervals over a two year period showed the gaseous environment in the mid-furnace section can cycle between oxidizing and reducing conditions. These fluctuations are thought to be due to gas flow instabilities and they result in an unstable or a less protective scale on the carbon steel tubes. Also, these fluctuating air flow patterns can result in deposition of black liquor on the wall tubes, and during periods when deposition is high, there is a noticeable increase in the concentrations of sulfur-bearing gases like hydrogen sulfide and methyl mercaptan. Laboratory studies have shown that chromized and aluminized surface treatments on carbon steel improve the resistance to sulfidation attack. Studies of superheater corrosion and cracking have included laboratory analyses of cracked tubes, laboratory corrosion studies designed to simulate the superheater environment and field tests to study the movement of superheater tubes and to expose a corrosion probe to assess the corrosion behavior of alternate superheater alloys, particularly alloys that would be used for superheaters operating at higher temperatures and higher pressures than most current boilers. In the laboratory corrosion studies, samples of six alternate materials were immersed in an aggressive, low melting point salt mixture and exposed for times up to 336 h, at temperatures of 510, 530 or 560°C in an inert or reactive cover gas. Using weight change and results of metallographic examination, the samples were graded on their resistance to the various environments. For the superheater corrosion probe studies, samples of the same six materials were exposed on an air-cooled corrosion probe exposed in the superheater section of a recovery boiler for 1000 h. Post exposure examination showed cracking and/or subsurface attack in the samples exposed at the higher temperatures with the attack being more severe for samples 13 exposed above the first melting temperature of the deposits that collected on the superheater tubes. From these superheater studies, a ranking was developed for the six materials tested. The task addressing cracking and corrosion of primary air port tubes that was part of this project produced results that have been extensively implemented in recovery boilers in North America, the Nordic countries and many other parts of the world. By utilizing these results, boilers ar

Keiser, James R.; Kish, Joseph R.; Singh, Preet M.; Sarma, Gorti B.; Yuan, Jerry; Gorog, J. Peter; Frederick, Laurie A.; Jette, Francois R.; Meisner, Roberta A.; Singbeil, Douglas L.

2007-12-31T23:59:59.000Z

349

NETL: News Release - DOE Oil Recovery Project Extends Success through  

NLE Websites -- All DOE Office Websites (Extended Search)

5 , 2007 5 , 2007 DOE Oil Recovery Project Extends Success through Technology Transfer New Technologies & Techniques Boost U.S. Proved Oil Reserves, Travel the Globe WASHINGTON, DC - A groundbreaking oil-recovery project funded by the U.S. Department of Energy (DOE) is coming to a close, but its success will continue to be felt throughout the United States and the world. MORE INFO Read 03.10.06 Techline: DOE-Funded Project Revives Aging California Oilfield The project, titled "Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterizations and Thermal Production Technologies," began in 1995 with the goal of increasing recoverable heavy oil reserves in those sections of the Wilmington oilfield operated by Long

350

Recovery News Flashes | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery News Flashes Recovery News Flashes Recovery News Flashes RSS September 1, 2011 Workers Complete Asbestos Removal at West Valley to Prepare Facility for Demolition American Recovery and Reinvestment Act workers safely cleared asbestos from more than 5,500 feet of piping in the Main Plant Process Building. Project completion is an important step in preparing the former commercial nuclear fuel reprocessing building for demolition. August 29, 2011 Idaho Workers Complete Last of Transuranic Waste Transfers Funded by Recovery Act American Recovery and Reinvestment Act workers successfully transferred 130 containers of remote-handled transuranic waste – each weighing up to 15 tons – to a facility for repackaging and shipment to a permanent disposal location.

351

Recovery News Flashes | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 10, 2011 March 10, 2011 American Recovery and Reinvestment Act Payments Surge Past $4 Billion EM has made more than $4 billion in Recovery Act payments, or 32 percent of the DOE's $12.4 billion in Recovery Act payments. DOE received $35.2 billion from the Recovery Act, and EM's portion of that was $6 billion, or 17 percent. March 7, 2011 Recovery Act-Funded Study Assesses Contamination at Former Test Site in California Workers in a study funded by $38 million from the American Recovery and Reinvestment Act to assess radiological contamination have collected more than 600 soil samples and surveyed 120 acres of land for gamma radiation. Under an interagency agreement with DOE, the Environmental Protection Agency (EPA) is conducting the study at Santa Susana Field Laboratory

352

Recovery Act Milestones | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Milestones Milestones Recovery Act Milestones Addthis Description Every 100 days, the Department of Energy is held accountable for a progress report on the American Recovery and Reinvestment Act. Update at 200 days, hosted by Matt Rogers, Senior Advisor to Secretary Steven Chu for Recovery Act Implementation. Speakers Matt Rogers Duration 3:07 Topic Energy Efficiency Batteries Recovery Act Energy Policy Credit Energy Department Video MATTHEW ROGERS: So I'm Matt Rogers. I'm the senior adviser to the secretary for Recovery Act implementation. And Saturday, September the 5th, was the 200th day of the Recovery Act. And it should be no surprise that we are accountable every hundred days; so it was a good chance to reflect on what we've accomplished and where we're headed over the next

353

Overview of Recovery Act FAR Clauses  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act FAR Clauses Recovery Act FAR Clauses The Table below provides a brief overview of the FAR clauses in FAC 2005-32. These clauses and H.999 Special provisions relating to work funded under American Recovery and Reinvestment Act of 2009 must be incorporated into all contracts and orders that will have Recovery Act funds. ARRA Requirement Clause Number Prescription 52.225-21 Include in Recovery Act funded contracts for construction projects under $7,443,000 - replaces 52.225-9 52.225-22 Include if using 52.225-21 - replaces 52.225-10 52.225-23 Include Recovery Act funded contracts for construction projects of $7,443,000 or more - replaces 52.225-11 Section 1605 Buy American 52.225-24 Include if using 52.225-23 - replaces 52.225-12 Section 1552 Whistleblower

354

Livingston Parish Landfill Methane Recovery Project (Feasibility Study)  

SciTech Connect

The Woodside Landfill is owned by Livingston Parish, Louisiana and is operated under contract by Waste Management of Louisiana LLC. This public owner/private operator partnership is commonplace in the solid waste industry today. The landfill has been in operation since approximately 1988 and has a permitted capacity of approximately 41 million cubic yards. Based on an assumed in-place waste density of 0.94 ton per cubic yard, the landfill could have an expected design capacity of 39.3 million tons. The landfill does have an active landfill gas collection and control system (LFGCCS) in place because it meets the minimum thresholds for the New Source Performance Standards (NSPS). The initial LFGCS was installed prior to 2006 and subsequent phases were installed in 2007 and 2010. The Parish received a grant from the United States Department of Energy in 2009 to evaluate the potential for landfill gas recovery and utilization at the Woodside Landfill. This includes a technical and economic feasibility study of a project to install a landfill gas to energy (LFGTE) plant and to compare alternative technologies. The LFGTE plant can take the form of on-site electrical generation, a direct use/medium Btu option, or a high-Btu upgrade technology. The technical evaluation in Section 2 of this report concludes that landfill gas from the Woodside landfill is suitable for recovery and utilization. The financial evaluations in sections 3, 4, and 5 of this report provide financial estimates of the returns for various utilization technologies. The report concludes that the most economically viable project is the Electricity Generation option, subject to the Parish’s ability and willingness to allocate adequate cash for initial capital and/or to obtain debt financing. However, even this option does not present a solid return: by our estimates, there is a 19 year simple payback on the electricity generation option. All of the energy recovery options discussed in this report economically stressed. The primary reason for this is the recent fundamental shift in the US energy landscape. Abundant supplies of natural gas have put downward pressure on any project that displaces natural gas or natural gas substitutes. Moreover, this shift appears long-term as domestic supplies for natural gas may have been increased for several hundred years. While electricity prices are less affected by natural gas prices than other thermal projects, they are still significantly affected since much of the power in the Entergy cost structure is driven by natural gas-fired generation. Consequently, rates reimbursed by the power company based on their avoided cost structure also face downward pressure over the near and intermediate term. In addition, there has been decreasing emphasis on environmental concerns regarding the production of thermal energy, and as a result both the voluntary and mandatory markets that drive green attribute prices have softened significantly over the past couple of years. Please note that energy markets are constantly changing due to fundamental supply and demand forces, as well as from external forces such as regulations and environmental concerns. At any point in the future, the outlook for energy prices may change and could deem either the electricity generation or pipeline injection project more feasible. This report is intended to serve as the primary background document for subsequent decisions made at Parish staff and governing board levels.

White, Steven

2012-11-15T23:59:59.000Z

355

Recovery Act State Memos North Dakota  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dakota Dakota For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 4

356

Recovery Act State Memos South Dakota  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dakota Dakota For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 4

357

Recovery Act State Memos South Carolina  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carolina Carolina For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 4

358

Recovery Act State Memos New York  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

York York For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 6

359

Recovery Act State Memos New Jersey  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jersey Jersey For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 5

360

Recovery Act State Memos North Carolina  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carolina Carolina For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 5

Note: This page contains sample records for the topic "increase recovery rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Recovery Act State Memos Puerto Rico  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Puerto Rico Puerto Rico For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 5

362

Recovery Act State Memos New Mexico  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mexico Mexico For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 4

363

Recovery Act State Memos Rhode Island  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rhode Island Rhode Island For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 4

364

Recovery Act State Memos Washington, DC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Washington, DC Washington, DC For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 5

365

Recovery Act State Memos New Hampshire  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hampshire Hampshire For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 4

366

Recovery Efficiency Test Project: Phase 1, Activity report. Volume 1: Site selection, drill plan preparation, drilling, logging, and coring operations  

SciTech Connect

The recovery Efficiency Test well project addressed a number of technical issues. The primary objective was to determine the increased efficiency gas recovery of a long horizontal wellbore over that of a vertical wellbore and, more specifically, what improvements can be expected from inducing multiple hydraulic fractures from such a wellbore. BDM corporation located, planned, and drilled a long radius turn horizontal well in the Devonian shale Lower Huron section in Wayne County, West Virginia, demonstrating that state-of-the-art technology is capable of drilling such wells. BDM successfully tested drilling, coring, and logging in a horizontal well using air as the circulating medium; conducted reservoir modeling studies to protect flow rates and reserves in advance of drilling operations; observed two phase flow conditions in the wellbore not observed previously; cored a fracture zone which produced gas; observed that fractures in the core and the wellbore were not systematically spaced (varied from 5 to 68 feet in different parts of the wellbore); observed that highest gas show rates reported by the mud logger corresponded to zone with lowest fracture spacing (five feet) or high fracture frequency. Four and one-half inch casting was successfully installed in the borehole and was equipped to isolate the horizontal section into eight (8) zones for future testing and stimulation operations. 6 refs., 48 figs., 10 tabs.

Overbey, W.K. Jr.; Carden, R.S.; Kirr, J.N.

1987-04-01T23:59:59.000Z

367

Research on Oil Recovery Mechanisms in Heavy Oil Reservoirs  

SciTech Connect

The goal of this project is to increase recovery of heavy oils. Towards that goal studies are being conducted in how to assess the influence of temperature and pressure on the absolute and relative permeability to oil and water and on capillary pressure; to evaluate the effect of different reservoir parameters on the in site combustion process; to develop and understand mechanisms of surfactants on for the reduction of gravity override and channeling of steam; and to improve techniques of formation evaluation.

Louis M. Castanier; William E. Brigham

1998-03-31T23:59:59.000Z

368

An evaluation of known remaining oil resources in the state of California. Volume 2, Project on Advanced Oil Recovery and the States  

SciTech Connect

The Interstate Oil and Gas Compact Commission (IOGCC) has conducted a series of studies to evaluate the known, remaining oil resource in twenty-three (23) states. The primary objective of the IOGCC`s effort is to examine the potential impact of an aggressive and focused program of research, development, and demonstration (RD&D) and technology transfer on future oil recovery in the United States. As a part of this larger effort by the IOGCC, this report focuses on the potential economic benefits of improved oil recovery in the state of California. Individual reports for seven other oil producing states and a national report have been separately published by the IOGCC. The analysis presented in this report is based on the databases and models available in the Tertiary Oil Recovery Information System (TORIS). Overall, well abandonments and more stringent environmental regulations could limit economic access to California`s known, remaining oil resource. The high risk of near-term abandonment and the significant benefits of future application of improved oil recovery technology, clearly point to a need for more aggressive transfer of currently available technologies to oil producers. Development and application of advanced oil recovery technologies could have even greater benefits to the state and the nation. A collaborative, focused RD&D effort, integrating the resources and expertise of industry, state and local governments, and the Federal government, is clearly warranted. With effective RD&D and a program of aggressive technology transfer to widely disseminate its results, California oil production could be maximized. The resulting increase in production rates, employment, operator profits, state and Federal tax revenues, and energy security will benefit both the state of California and the nation as a whole.

Not Available

1994-10-01T23:59:59.000Z

369

An evaluation of known remaining oil resources in the state of New Mexico and Wyoming. Volume 4, Project on Advanced Oil Recovery and the States  

SciTech Connect

The Interstate Oil and Gas Compact Commission (IOGCC) has conducted a series of studies to evaluate the known, remaining oil resource in twenty-three (23) states. The primary objective of the IOGCC`s effort is to examine the potential impact of an aggressive and focused program of research, development, and demonstration (RD&D) and technology transfer on future oil recovery in the United States. As part of a larger effort by the IOGCC, this report focuses on the potential economic benefits of improved oil recovery in the states of New Mexico and Wyoming. Individual reports for six other oil producing states and a national report have been separately published by the IOGCC. The analysis presented in this report is based on the databases and models available in the Tertiary Oil Recovery Information System (TORIS). Overall, well abandonments and more stringent environmental regulations could limit economic access to New Mexico`s known, remaining oil resource. The high risk of near-term abandonment and the significant benefits of future application of improved oil recovery technology, clearly point to a need for more aggressive transfer of currently available technologies to domestic oil producers. Development and application of advanced oil recovery technologies could have even greater benefits to the state and the nation. A collaborative, focused RD&D effort, integrating the resources and expertise of industry, state and local governments, and the Federal government, is clearly warranted. With effective RD&D and a program of aggressive technology transfer to widely disseminate its results, oil production could be maximized. The resulting increase in production rates, employment, operator profits, state and Federal tax revenues, and energy security will benefit both the states of New Mexico and Wyoming and the nation as a whole.

Not Available

1994-11-01T23:59:59.000Z

370

Cost Recovery Charge (CRC) Calculation Tables  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost Recovery Charge (CRC) Calculation Table Updated: October 6, 2014 FY 2016 September 2014 CRC Calculation Table (pdf) Final FY 2015 CRC Letter & Table (pdf) Note: The Cost...

371

Recovery Act Progress Update: Reactor Closure Feature  

ScienceCinema (OSTI)

A Recovery Act Progress Update. Decommissioning of two nuclear reactor sites at the Department of Energy's facilities has been approved and is underway.

Cody, Tom

2012-06-14T23:59:59.000Z

372

Exhaust Energy Recovery | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Documents & Publications A Quantum Leap for Heavy-Duty Truck Engine Efficiency - Hybrid Power System of Diesel and WHR-ORC Engines Cummins Waste Heat Recovery Exhaust Energy...

373

Recovery Act Workforce Development | Department of Energy  

Energy Savers (EERE)

Act Local Energy Assurance Planning Recovery Act Enhancing State Energy Assurance Planning Educational Resources Reporting Library New Reports & Other Materials Meetings & Events...

374

Vehicle Technologies Office: Waste Heat Recovery | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Batteries Fuel Efficiency & Emissions Combustion Engines Fuel Effects on Combustion Idle Reduction Emissions Waste Heat Recovery Lightweighting Parasitic Loss Reduction Lubricants...

375

Weatherization Formula Grants - American Recovery and Reinvestment...  

Energy Savers (EERE)

Act of 2009 waprecoveryactfoa.pdf More Documents & Publications Microsoft Word - nDE-FOA-0000051.rtf Weatherization Formula Grants - American Recovery and Reinvestment Act...

376

Waste Isolation Pilot Plant Recovery Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

measures were quickly implemented to establish a safe operating envelope for response and recovery. 5 An Operational Readiness Review is a disciplined, systematic, documented...

377

Recovery Act: Local Energy Assurance Planning Initiatives  

Energy.gov (U.S. Department of Energy (DOE))

These emergency preparedness plans, funded under the American Recovery and Reinvestment Act, will help ensure local governments can recover and restore power quickly following any energy supply disruptions.

378

Department of Energy Releases WIPP Recovery Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

the Waste Isolation Pilot Plant (WIPP) Recovery Plan, outlining the necessary steps to resume operations at the transuranic waste disposal site outside of Carlsbad, N.M. WIPP...

379

Effects of fracturing fluid recovery upon well performance and ultimate recovery of hydraulically fractured gas wells  

E-Print Network (OSTI)

EFFECTS OF FRACTURING FLUID RECOVERY UPON WELL PERFORMANCE AND ULTIMATE RECOVERY OF HYDRAULICALLY FRACTURED GAS WELLS A Thesis IAN MARIE BERTHELOT Submitted to the Office of Graduate Studies of Texas AdtM University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May 1990 Major Subject: Petroleum Engineering EFFECTS OF FRACTURING FLUID RECOVERY UPON WELL PERFORMANCE AND ULTIMATE RECOVERY OF HYDRAULICALLY FRACTURED GAS WELLS by JAN MARIE BERTIIELOT Appmved...

Berthelot, Jan Marie

2012-06-07T23:59:59.000Z

380

natural gas+ condensing flue gas heat recovery+ water creation+ CO2  

Open Energy Info (EERE)

natural gas+ condensing flue gas heat recovery+ water creation+ CO2 natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building energy efficiency+ industrial energy efficiency+ power plant energy efficiency+ Home Increase Natural Gas Energy Efficiency Description: Increased natural gas energy efficiency = Reduced utility bills = Profit In 2011 the EIA reports that commercial buildings, industry and the power plants consumed approx. 17.5 Trillion cu.ft. of natural gas. How much of that energy was wasted, blown up chimneys across the country as HOT exhaust into the atmosphere? 40% ~ 60% ? At what temperature? Links: The technology of Condensing Flue Gas Heat Recovery natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building

Note: This page contains sample records for the topic "increase recovery rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Efficient Failure Recovery in Multi-Disk Multimedia Servers Harrick M. Vin, Prashant J. Shenoy and Sriram Rao  

E-Print Network (OSTI)

-invoked on-the-fly failure recovery process does not impose any additional load on the disk array. We also that each surviving disk would see an on-the-fly reconstruction load increase of G,1=D,1 instead of D,1=D,1Efficient Failure Recovery in Multi-Disk Multimedia Servers Harrick M. Vin, Prashant J. Shenoy

Vin, Harrick M.

382

Department of Energy - Recovery Act  

383

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 15, 2012 May 15, 2012 Workers install the final LED streetlight for DC's EECBG-funded energy efficient lighting upgrade. | Energy Department photo, credit Chris Galm. Brighter Lights, Safer Streets Thanks to support from an Energy Department Recovery Act grant, Washington, DC streets are becoming brighter. May 1, 2012 A student gets hands-on experience in the electric sector during an internship and mentoring program with Northeast Utilities, through ARRA workforce development funding. | Photo courtesy of Office of Electricity Delivery and Energy Reliability. Building Tomorrow's Smart Grid Workforce Today Many community colleges, universities, utilities and manufacturers across America are taking smart, pragmatic steps to train the next generation of workers needed to modernize the nation's electric grid.

384

State Agency Recovery Act Funding  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Agency Agency Recovery Act Funding .Alabama Alabama Public Service Commission $868,824 .Alaska Regulatory Commission of Alaska $767,493 .Arizona Arizona Corporation Commission $915,679 .Arkansas Arkansas Public Service Commission $822,779 .California California Public Utilities Commission $1,686,869 .Colorado The Public Utilities Commission of the State of Colorado $875,899 .Connecticut Connecticut Department of Public Utility Control $839,241 .Delaware Delaware Public Service Commission $772,254 .District of Columbia Public Service Commission of the District of Columbia $765,085 .Florida Florida Public Service Commission $1,217,160 .Georgia Georgia Public Service Commission $996,874 .Hawaii Hawaii Public Utilities Commission $782,834 .Idaho Idaho Public Utilities Commission $788,840 .Illinois

385

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 23, 2012 August 23, 2012 New Report Highlights Growth of America's Clean Energy Job Sector Taking a moment to break-down key findings from the latest Clean Energy Jobs Roundup. August 13, 2012 INFOGRAPHIC: Wind Energy in America August 3, 2012 A worker suppresses dust during the final demolition stages of the historic DP West site, located at Los Alamos National Laboratory's (LANL) Technical Area 21. The demolition was funded by the American Recovery and Reinvestment Act (ARRA) and is part of $212 million in ARRA funds the Lab received for environmental remediation. | Photo courtesy of Los Alamos National Laboratory. Photo of the Week: August 3, 2012 Check out our favorite energy-related photos! August 2, 2012 With new pipes and controls, the natural gas kilns Highland Craftsmen uses to produce poplar bark shingles will operate about 40 percent more efficiently, saving the company $5,000 a year in energy costs. | Photo courtesy of Highland Craftsmen.

386

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 7, 2010 September 7, 2010 MetroTek installed a 620kW solar panel system at Buckman's Inc. in Pottstown, PA. The Recovery Act-funded project is expected to save the pool chemical business $5 million over the next 25 years. | Photo Courtesy of MetroTek Electrical Services Pennsylvania Pool Chemical Business Soaks Up Rays Most people catching rays poolside don't realize this, but it takes a lot of energy to make swimming pool chemicals. So much so that Buckman's Inc., a small business in Pottstown, PA, decided to tap into a fitting energy source to help offset high energy costs from its pool chemical manufacturing facility: the sun. September 2, 2010 Ice storage coolers lie next to the central plant for the American Indian Cultural Center and Museum in Oklahoma City, OK. | Photo courtesy of the American Indian Cultural Center and Museum |

387

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 18, 2011 July 18, 2011 Secretary Chu speaks at the A123 Systems lithium-ion battery manufacturing plant in Romulus, Michigan, while employees look on. | Photo Courtesy of Damien LaVera, Energy Department Secretary Chu Visits Advanced Battery Plant in Michigan, Announces New Army Partnership Thirty new manufacturing plants across the country for electric vehicle batteries and components - including A123 in Michigan - were supported through the Recovery Act, meaning we'll have the capacity to manufacture enough batteries and components for 500,000 electric vehicles annually by 2015. July 26, 2011 Smart Meters Helping Oklahoma Consumers Save Hundreds During Summer Heat With already 32 days reaching over 100 degrees this summer, Oklahoma is certainly feeling the heat. But smart meters -- just one of the advanced

388

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 4, 2011 November 4, 2011 The Lawrence Community team, leadership pictured above, saved the highest total amount of any community. They hold a basketball signed by Kansas Governor Brownback. The basketball signifies both the sport's history in Kansas, as well as the fact that the average Kansas home has enough energy leaks in their home to equal a basketball-sized hole in their roof. 'Taking Charge': Kansans Save $2.3M in Challenge to Change Their Energy Behavior How did the Climate and Energy Project (CEP), a small environmental organization that has received Recovery Act funding, achieve $2.3 million in savings annually for Kansans? Learn more about the Take Charge Challenge, a 9-month competition in which residents across 16 communities competed against each other to save the most energy and money.

389

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 14, 2010 May 14, 2010 Club's Chairman Leading by Example Why the Sierra Club Oregon Chairman is helping his organization live up to its legacy. May 14, 2010 Cincinnati Non-profits Getting Help Saving Energy How one church is saving money and saving energy. May 14, 2010 Charlevoix, MI is using Recovery Act funds for energy upgrades | Photo courtesy Charlevoix, Michigan, City Manager | Michigan Town Committed to Sustainable Future Charlevoix, Mich. residents are taking steps to become a more environmentally-conscious community, and a $50,000 Energy Efficiency and Conservation Block Grant will help that cause. The funding will be used to launch projects aimed at energy efficiency and sustainability, such as retrofitting the city's fire and emergency vehicles with new,

390

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

19, 2010 19, 2010 The Blaine County Public Safety Facility houses between 60 and 80 prisoners and roughly 30 staffers. | Photo courtesy of Blaine High Water Heating Bills on Lockdown at Idaho Jail Using funds from the American Recovery and Reinvestment Act, the county is installing a solar thermal hot water system that will provide nearly 70 percent of the power required for heating 600,000 gallons of water for the jail annually. August 16, 2010 800,000 Jobs by 2012 President Barack Obama visited ZBB Energy Corporation in Wisconsin and declared that our commitment to clean energy is expected to lead to more than 800,000 jobs by 2012. August 16, 2010 An array of solar collectors | Photo courtesy of Trane Knox County Detention Facility Goes Solar for Heating Water Hot water demand soars at the six-building Knox County Detention Facility

391

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 16, 2010 August 16, 2010 New energy recovery systems and occupancy sensors are greatly reducing energy costs at Woonsocket Middle School at Hamlet. | Photo courtesy of Woonsocket Education Department New School Year Means New Energy Systems for Two Rhode Island Schools How Woonsocket, R.I. is making two of their new middle schools energy efficient this time around. August 13, 2010 The Crayola solar farm became fully operational this week. Ten children from around the country, known as the "Crayola Green Team," helped dedicate the newest addition to the Easton, Pa.-plant. Photos courtesy of Crayola. | Photo Courtesy of Crayola Crayola's True Color Shines Through: Green About 26,000 "thin-film" solar panels - manufactured by First Solar in Perrysburg, Ohio - are providing enough power to make 1 billion crayons.

392

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 15, 2010 March 15, 2010 A woodchip-fired combined heat and power system will be built in Montpelier, Vt. | File photo Jobs, sustainable heating coming to Vermont city Their new woodchip-fired combined heat and power system will heat the Capitol Complex, the city's schools, City Hall and as many as 156 other buildings in the downtown area. March 12, 2010 Reginald Speight, CEO of Martin County Community Action | Photo courtesy of Martin County Community Action N.C. Agency Growing, Helping Citizens Save Money MCCA runs a hybrid program in the state that has expanded energy efficiency services to municipalities and made advanced-income households eligible for weatherization, and this work helped prepare the agency for the workload it is seeing now under the Recovery Act.

393

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

21, 2011 21, 2011 Smart grid technology installations provided not only new work, but new customers for Narrows Electric owner Gary Miklethun, far l., and his team, from l. to r., Ken Dehart, Rodney Thomas and Dave Brosie. Smart Grid Technology Gives Small Business New Light Gary Miklethun, the owner of Narrows Electric, a small electrical contractor in Gig Harbor, Wash., that specializes in residential and small commercial projects, definitely felt it when the economy slowed down. But installing new smart grid technology in 500 homes not only gave his team new work, but new customers. September 21, 2011 Communications and Guidance Issued Guidance: Throughout the life of the Recovery Act, it has at times been necessary to issue guidance around certain policies or procedures.

394

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 24, 2010 September 24, 2010 MONDAY: Secretary Chu Travels to New Jersey and Philadelphia WASHINGTON - On Monday, September 27, 2010, U.S. Energy Secretary Steven Chu and Representative Rush Holt will tour Applied Photovoltaics. With help from a Recovery Act-funded $1.1 million clean energy manufacturing tax credit, Applied Photovoltaics will manufacture solar energy modules for use in building-integrated photovoltaics. September 22, 2010 Assistant Secretary Cathy Zoi and Senior Advisor Matt Rogers to Participate in Platts Energy Reporter Roundtable WASHINGTON -Thursday, September 23, 2010, Cathy Zoi, Assistant Secretary of Energy Efficiency and Renewable Energy and Matt Rogers, Senior Advisor to the Secretary of Energy, will participate in a roundtable discussion with

395

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 17, 2009 November 17, 2009 Obama Administration Announces Nearly $40 Million for Energy Efficiency and Conservation Projects in Florida and Maine Washington, DC - Energy Secretary Steven Chu announced today that DOE is awarding nearly $40 million in funding from the American Recovery and Reinvestment Act to Florida and Maine to support clean energy projects. Under DOE's Energy Efficiency and Conservation Block Grant (EECBG) program, these states will implement programs that lower energy use, reduce carbon pollution, and create green jobs locally. November 16, 2009 Oak Ridge 'Jaguar' Supercomputer is World's Fastest Six-core upgrade has 70 percent more computational muscle than last year's quad-core November 10, 2009 DOE Announces New Executive Director of Loan Guarantee Program

396

Enhanced liquid hydrocarbon recovery process  

SciTech Connect

This patent describes a process for the recovery of liquid hydrocarbons from a subterranean hydrocarbon-bearing formation. It comprises injecting natural gas into the formation via a well in fluid communication with the formation, the natural gas being at a temperature which is insufficient to significantly mobilize light density oil in the formation and at a pressure such that the natural gas is immiscible with the light density oil in the formation, the natural gas being injected in a volume sufficient to contact light density oil in the formation within a radius from the well of about 50 meters; shutting in the well for a period of time of about 1 to about 100 days which is sufficient to render the contacted light density oil mobile; and producing the light density oil which has been mobilized by solution of the natural gas from the well.

Haines, H.K.; Monger, T.G.; Kenyon, D.E.; Galvin, L.J.

1991-06-25T23:59:59.000Z

397

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 14, 2010 May 14, 2010 PPG and MAG Team Up for Turbine Blade Research Two companies work together to move forward in the industry, researching materials and processes that could lead to stronger, more reliable wind blades. May 14, 2010 Energy Corps Takes Root in Montana, Seeks to Make America Greener For the last 17 years, AmeriCorps members have pledged to uphold their duties as public servants, vowing to "get things done for America-to make our people safer, smarter and healthier." But a new type of volunteering in Montana is adding one more thing to that list: making America greener. May 14, 2010 Recovery Act Funding Hundreds of Jobs in California Solar Power, Inc. of Roseville, Calif., does almost everything in solar photovoltaics - from manufacturing and testing to home solar panel

398

Method for enhanced oil recovery  

DOE Patents (OSTI)

The present invention is directed to an improved method for enhanced recovery of oil from relatively "cold" reservoirs by carbon dioxide flooding. In oil reservoirs at a temperature less than the critical temperature of 87.7.degree. F. and at a pore pressure greater than the saturation pressure of carbon dioxide at the temperature of the reservoir, the carbon dioxide remains in the liquid state which does not satisfactorily mix with the oil. However, applicants have found that carbon dioxide can be vaporized in situ in the reservoir by selectively reducing the pore pressure in the reservoir to a value less than the particular saturated vapor pressure so as to greatly enhance the mixing of the carbon dioxide with the oil.

Comberiati, Joseph R. (Morgantown, WV); Locke, Charles D. (Morgantown, WV); Kamath, Krishna I. (Chicago, IL)

1980-01-01T23:59:59.000Z

399

Deformation behavior in bulk nanocrystalline-ultrafine aluminum :in situ evidence of plastic strain recovery.  

SciTech Connect

The plastic deformation behavior of bulk nanocrystalline-ultrafine Al was investigated under in situ compressive loading using high-energy synchrotron X-ray diffraction. After one loading-unloading cycle, to 2% strain, we find reversible peak broadening within the nanocrystalline grain volume and tensile residual stress (80 MPa) within the ultrafine grain volume. Upon unloading, we detect recovery of 12% of the plastic strain, and this recovery increases up to 28% at even higher applied deformations to 4%.

Lonardelli, I.; Almer, J.; Ischia, G; Menapace, C.; Molinari, A.; Univ. of Trento

2009-04-01T23:59:59.000Z

400

Components of disaster-tolerant computing: analysis of disaster recovery, IT application downtime and executive visibility  

Science Journals Connector (OSTI)

This paper provides a review of disaster-tolerant Information Technology (IT). The state of traditional disaster recovery approaches is outlined. The risks of IT application downtime attributable to the increasing dependence on critical information ... Keywords: IT application availability, IT application downtime, business continuity, complex infrastructure systems, criticality-driven, disaster recovery, disaster tolerance, disaster-tolerant computing, emergency management, executive visibility, information technology, interaction, interdependent, survivability

Chad M. Lawler; Michael A. Harper; Stephen A. Szygenda; Mitchell A. Thornton

2008-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "increase recovery rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Optimize carbon dioxide sequestration, enhance oil recovery  

E-Print Network (OSTI)

- 1 - Optimize carbon dioxide sequestration, enhance oil recovery January 8, 2014 Los Alamos simulation to optimize carbon dioxide (CO2) sequestration and enhance oil recovery (CO2-EOR) based on known production. Due to carbon capture and storage technology advances, prolonged high oil prices

402

Enhanced oil recovery using hydrogen peroxide injection  

SciTech Connect

NOVATEC received an US Patent on a novel method to recovery viscous oil by hydrogen peroxide injection. The process appears to offer several significant improvements over existing thermal methods of oil recovery. Tejas joined NOVATEC to test the process in the laboratory and to develop oil field applications and procedures.

Moss, J.T. Jr.; Moss, J.T.

1995-02-01T23:59:59.000Z

403

Faces of the Recovery Act: Sun Catalytix  

ScienceCinema (OSTI)

BOSTON- At the Massachusetts Institute of Technology, Dan Nocera talks about Sun Catalytix, the next generation of solar energy, and ARPA-E funding through the Recovery Act. To learn about more ARPA-E projects through the Recovery Act: http://arpa-e.energy.gov/FundedProjects.aspx

Nocera, Dave

2013-05-29T23:59:59.000Z

404

Western Pond Turtle Recovery Columbia Gorge  

E-Print Network (OSTI)

Western Pond Turtle Recovery in the Columbia Gorge Project ID 200102700 Submitted by: 4 March 2009 species of concern Western Pond Turtle Washington Status #12;Columbia Mainstem Goals · Maintain;Western Pond Turtle Recovery Current Efforts · Head Start · Population Reintroduction · Predator Control

405

Recovery Act Reports | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 22, 2011 August 22, 2011 Audit Report: OAS-RA-11-11 The Advanced Research Projects July 28, 2011 Audit Report: OAS-RA-11-10 The Department of Energy's American Recovery and Reinvestment Act - California State Energy Program July 21, 2011 Audit Report: OAS-RA-L-11-10 Department of Energy's Controls over Recovery Act Spending at the Idaho National Laboratory July 7, 2011 Audit Report: OAS-RA-L-11-09 Performance of Recovery Act Funds at the Waste Isolation Pilot Plant June 13, 2011 Audit Report: OAS-RA-11-09 The Department of Energy's Weatherization Assistance Program under the American Recovery and Reinvestment Act in the State of West Virginia June 6, 2011 Audit Report: OAS-RA-11-07 The Department of Energy's Weatherization Assistance Program Funded under the American Recovery and Reinvestment Act for the State of Wisconsin

406

Federal Energy Management Program: Recovery Act  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovery Act Recovery Act The American Recovery and Reinvestment Act of 2009 included funding for the Federal Energy Management Program (FEMP) to facilitate the Federal Government's implementation of sound, cost-effective energy management and investment practices to enhance the nation's energy security and environmental stewardship. FEMP completed nearly 120 technical assistance projects through this effort. FEMP national laboratory teams and contractor service providers visited more than 80 Federal sites located throughout the U.S. The site visits were a key component of FEMP Recovery Act funded technical assistance activity, which provided more than $13.2 million in funding for direct technical assistance to energy managers across the Federal Government. This service helped agencies accelerate their Recovery Act projects and make internal management decisions for investment in energy efficiency and deployment of renewable energy.

407

Ohio Celebrates Recovery Act Weatherization Program Performance |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ohio Celebrates Recovery Act Weatherization Program Performance Ohio Celebrates Recovery Act Weatherization Program Performance Ohio Celebrates Recovery Act Weatherization Program Performance June 10, 2010 - 12:41pm Addthis Ohio Celebrates Recovery Act Weatherization Program Performance Joshua DeLung What are the key facts? More than 10,000 Ohio homes have been weatherized, making the state one of the national leaders in helping income-eligible families become more energy-efficient. Ohio has reached a milestone in the clean energy economy - more than 10,000 homes in the state have been weatherized, making the state one of the national leaders in helping income-eligible families become more energy-efficient. Ohio officials celebrated the success of weatherization work funded by the American Recovery and Reinvestment Act with about 100 attendees at a

408

OE Recovery Act News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Recovery Act News OE Recovery Act News RSS April 17, 2012 ARRA Program Celebrates Milestone 600,000 Smart Meter Installations On April 11, 2012, DOE Recovery Act funding recipient Sacramento Municipal Utility District (SMUD) celebrated a major milestone in the development of a regional smart grid in California: the installation of over 600,000 smart meters. February 15, 2011 Department of Energy Finalizes Loan Guarantee for New Transmission Project to Deliver Renewable Energy to Southwest Nevada Project Expected to Create Over 400 Jobs and Improve Grid Reliability September 16, 2009 Department of Energy Announces Start of Western Area Power Administration Recovery Act Project New transmission line to help move renewable energy resources to market May 18, 2009 Locke, Chu Announce Significant Steps in Smart Grid Development

409

Ohio Celebrates Recovery Act Weatherization Program Performance |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ohio Celebrates Recovery Act Weatherization Program Performance Ohio Celebrates Recovery Act Weatherization Program Performance Ohio Celebrates Recovery Act Weatherization Program Performance June 10, 2010 - 12:41pm Addthis Ohio Celebrates Recovery Act Weatherization Program Performance Joshua DeLung What are the key facts? More than 10,000 Ohio homes have been weatherized, making the state one of the national leaders in helping income-eligible families become more energy-efficient. Ohio has reached a milestone in the clean energy economy - more than 10,000 homes in the state have been weatherized, making the state one of the national leaders in helping income-eligible families become more energy-efficient. Ohio officials celebrated the success of weatherization work funded by the American Recovery and Reinvestment Act with about 100 attendees at a

410

IDAHO RECOVERY ACT SNAPSHOT | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IDAHO RECOVERY ACT SNAPSHOT IDAHO RECOVERY ACT SNAPSHOT IDAHO RECOVERY ACT SNAPSHOT Idaho has substantial natural resources, including wind, geothermal, and hydroelectric power .The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Idaho are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to geothermal and alternative fuels, as well as major commitments to research efforts and environmental cleanup at the Idaho National Laboratory in Idaho Falls. Through these investments, Idaho's businesses, universities, national labs, non-profits, and local governments are creating quality jobs today and positioning Idaho to play an important role in the new

411

Well blowout rates and consequences in California Oil and Gas District 4 from 1991 to 2005: Implications for geological storage of carbon dioxide  

SciTech Connect

Well blowout rates in oil fields undergoing thermally enhanced recovery (via steam injection) in California Oil and Gas District 4 from 1991 to 2005 were on the order of 1 per 1,000 well construction operations, 1 per 10,000 active wells per year, and 1 per 100,000 shut-in/idle and plugged/abandoned wells per year. This allows some initial inferences about leakage of CO2 via wells, which is considered perhaps the greatest leakage risk for geological storage of CO2. During the study period, 9% of the oil produced in the United States was from District 4, and 59% of this production was via thermally enhanced recovery. There was only one possible blowout from an unknown or poorly located well, despite over a century of well drilling and production activities in the district. The blowout rate declined dramatically during the study period, most likely as a result of increasing experience, improved technology, and/or changes in safety culture. If so, this decline indicates the blowout rate in CO2-storage fields can be significantly minimized both initially and with increasing experience over time. Comparable studies should be conducted in other areas. These studies would be particularly valuable in regions with CO2-enhanced oil recovery (EOR) and natural gas storage.

Jordan, Preston; Jordan, Preston D.; Benson, Sally M.

2008-05-15T23:59:59.000Z

412

Nitrogen oxide emissions from a kraft recovery furnace  

SciTech Connect

Nitrogen Oxide (NOx) emissions from a rebuilt kraft recovery furnace slightly exceeded the specified limit of 1.1 lb/ton (0.55 kg/metric ton) of black-liquor solids. Mill trials were undertaken to determine whether NOx emissions could be minimized by modifying furnace operation. NOx emissions increased when secondary air was shifted to tertiary ports. NOx emissions fell when the amounts of primary and total air were decreased, but this increased emissions of other pollutants. After demonstrating that best operation of the furnace could not meet the permit with an emissions limit that matched the furnace's performance at best operation.

Prouty, A.L.; Stuart, R.C. (James River Corp., Camas, WA (United States)); Caron, A.L. (NCASI West Coast Regional Office, Corvallis, OR (United States))

1993-01-01T23:59:59.000Z

413

Upgraded recovery boiler meets low air emissions standards  

SciTech Connect

In the fall of 1990, the Boise Cascade mill in International Falls, MN, carried out a millwide modernization project. One critical element of the project was the upgrade of their recovery boiler. As a result of the recovery boiler upgrade, the mill was required to obtain a prevention of significant deterioration (PSD) air permit. A best available control technology (BACT) assessment was performed as a requirement of the PSD regulations. Ultimately, a number of more stringent air pollution emission limits were established for the boiler, and a continuous emissions monitoring system (CEMS) was purchased and installed to report daily results to the Minnesota Pollution Control Agency. This paper describes efforts to achieve increased firing capacity in the mill's recovery boiler while meeting more severe air emissions regulations. The authors will show that each of the emissions limits, including CO, SO[sub 2], NO[sub x], TRS, and opacity, are met by the upgraded boiler, while achieving an increase in firing capacity over pre-upgrade levels of up to 40%.

La Fond, J.F.; Jansen, J.H. (Jansen Combustion and Boiler Technologies, Inc., Woodinville, WA (United States)); Eide, P. (Boise Cascade Corp., International Falls, MN (United States))

1994-12-01T23:59:59.000Z

414

Recovery Act: Smart Grid Investment Grants | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Investment Grants Investment Grants Recovery Act: Smart Grid Investment Grants Smart Grid Investment Grant Awards Recipients by State Smart Grid Investment Grant Awards Recipients by State GRID MODERNIZATION President Obama has announced the largest single grid modernization investment in U.S. history, funding a broad range of technologies to spur the nation's transition to a smarter, stronger, more efficient and reliable electric system. This will promote energy-saving choices for consumers, increase energy efficiency, and foster the growth of renewable energy sources like wind and solar power. The $3.4 billion in investments are part of the American Reinvestment and Recovery Act, and will be matched by industry funding for a total public-private investment worth over $8

415

Cost-cutting for offshore sulfur recovery processes studied  

SciTech Connect

An increasing portion of future US gas supply is likely to come from offshore, primarily Gulf of Mexico. Because this gas can be sour, the industry has sought lower cost H{sub 2}S-removal/recovery processes for treating it. Usually the gas contains < 5 tons/day (tpd) of sulfur. A study to compare several emerging sulfur-removal/recovery processes against a baseline Amine/LO-CAT II process has indicated that some emerging processes, though not yet commercialized, show considerable potential for reducing costs. Specifically, the major findings were that Double Loop and CrystaSulf, developed by Radian International LLC, Austin, were the least expensive capital-cost processes by a significant margin and that Marathon Oil Co.`s Hysulf`s cost has the potential to compete with Double Loop and CrystaSulf.

Quinlan, M.P.; Echterhoff, L.W. [M.W. Kellogg Co., Houston, TX (United States); Leppin, D.; Meyer, H.S. [Gas Research Inst., Chicago, IL (United States)

1997-07-21T23:59:59.000Z

416

Marathon lab seeks non-EOR recovery improvement  

SciTech Connect

In an exclusive interview, William P. McKinnell Jr. says that Marathon Oil Co. is redoing all of the geology of its highly productive reservoirs to learn more about those parts of the cross section that are nonproductive. Production improvement means more than enhanced oil recovery. There are many ways that more oil can be recovered from a given reservoir short of a fluid-injection project of one type or another. On the premise that most new technology comes from the research laboratories, Petroleum Engineer International Editor W.B. Bleakley visited with Dr. William P. McKinnell Jr., Research Director, Marathon Oil Co., Littleton, Colo., to learn what one aggressive company is doing to relieve some production problems, increase ultimate recovery, and cut production costs.

Not Available

1983-11-01T23:59:59.000Z

417

Progress Continues Post-Recovery Act Award at Hanford Site |...  

Energy Savers (EERE)

Progress Continues Post-Recovery Act Award at Hanford Site Progress Continues Post-Recovery Act Award at Hanford Site American Recovery and Reinvestment Act work at the Hanford...

418

An algorithm for recovery of distributed applications with directed dependencies  

E-Print Network (OSTI)

recovery. The thesis proposes a distributed algorithm which coordinates management entities, called agents, to monitor the managed resources (which have directed failure and recovery dependencies among them) and perform recovery actions once failures have...

Yang, Jiantian

1996-01-01T23:59:59.000Z

419

American Recovery and Reinvestment Act Payments Surge Past $4 Billion  

Energy.gov (U.S. Department of Energy (DOE))

EM has made more than $4 billion in Recovery Act payments, or 32 percent of the DOE's $12.4 billion in Recovery Act payments. DOE received $35.2 billion from the Recovery Act, and EM's portion of...

420

Waste heat recovery steam curves with unfired HRSGs  

SciTech Connect

A compilation of waste heat recovery steam curves for a sampling of gas turbines ranging in output from around 1 MW to more than 200 MW is presented. The gas turbine output data shown with each set of curves differs from the values given in the Performance Specifications section of the Handbook. That's because the values have been calculated to reflect the effects of a 4 inch inlet and 10 inch outlet pressure drop on power output (lower), heat rate (higher), mass flow (higher), and exhaust temperature (higher).

Not Available

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "increase recovery rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Synergistic air port corrosion in kraft recovery boilers  

SciTech Connect

Localized hot corrosion can occur on the cold-side of air-ports in Kraft recovery boilers. Depending on the basicity of the molten salt, either acidic or basic fluxing takes place, with a solubility minima at the transition between the two reactions. For stainless steel, if the basicity of the fused salt is between the iron and chromium oxide solubility minima, then a synergistic effect can occur that leads to rapid corrosion. The products of one reaction are the reactants of the other, which eliminates the need for rate-controlling diffusion. This effect can explain why stainless steel is attacked more readily than carbon steel.

Holcomb, Gordon R.

2001-08-01T23:59:59.000Z

422

Bone marrow stromal cells increase oligodendrogenesis after stroke  

E-Print Network (OSTI)

Bone marrow stromal cells increase oligodendrogenesis after stroke Jing Zhang1 , Yi Li1 , Zheng cell (BMSC) treatment of stroke in rats. Rats were subjected to the middle cerebral artery occlusion (MCAo). BMSCs have been shown to promote functional recovery post stroke. A therapeutic dose of BMSC (3

Cai, Long

423

Connecticut Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Connecticut Recovery Act State Memo Connecticut Recovery Act State Memo Connecticut Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful downpayment on the nation's energy and environmental future. The Recovery Act investments in Connecticut are supporting abroad range of clean energy projects, from energy efficiency and the smartgrid to alternative fuels and geothermal energy. Through these investments, Connecticut's businesses, universities,non-profits, and local governments are creating quality jobs today and positioning Connecticut to play an important role in the new energy economy of the future. Connecticut Recovery Act State Memo More Documents & Publications California Recovery Act State Memo District of Columbia Recovery Act State Memo

424

Advanced Research Projects Agency - Energy Program Specific Recovery...  

Office of Environmental Management (EM)

Advanced Research Projects Agency - Energy Program Specific Recovery Plan Advanced Research Projects Agency - Energy Program Specific Recovery Plan Microsoft Word - 44F1801D.doc...

425

Recovery Act Selections for Smart Grid Investment Grant Awards...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Recovery Act Selections for Smart Grid Investment Grant Awards- By Category Updated July 2010 Recovery Act Selections for Smart Grid Investment Grant Awards- By Category Updated...

426

Synchrophasor Technologies and their Deployment in the Recovery...  

Energy Savers (EERE)

Synchrophasor Technologies and their Deployment in the Recovery Act Smart Grid Programs (August 2013) Synchrophasor Technologies and their Deployment in the Recovery Act Smart Grid...

427

Recovery Act Selections for Smart Grid Invesment Grant Awards...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act Selections for Smart Grid Invesment Grant Awards- By Category Updated July 2010 Recovery Act Selections for Smart Grid Invesment Grant Awards- By Category Updated July...

428

Steelmaker Matches Recovery Act Funds to Save Energy & Reduce...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

factsheet describing how ArcelorMittal Indiana Harbor Energy Recovery & Reuse 504 Boiler was constructed and installed with DOE Recovery Act Funding. Blast Furnace Gas...

429

EM Recovery Act Top Line Messages | Department of Energy  

Energy Savers (EERE)

Recovery Act Top Line Messages - April, 2013 More Documents & Publications Workers at Hanford Site Achieve Recovery Act Legacy Cleanup Goals Ahead of Schedule Audit Report:...

430

Hanford's Recovery Act Payments Jump Past $1 Billion | Department...  

Office of Environmental Management (EM)

Richland Operations Office's (RL) American Recovery and Reinvestment Act payments at Hanford recently surpassed 1 billion. RL was allocated 1.63 billion from the Recovery Act...

431

President Obama Announces Over $467 Million in Recovery Act Funding...  

Office of Environmental Management (EM)

Over 467 Million in Recovery Act Funding for Geothermal and Solar Energy Projects President Obama Announces Over 467 Million in Recovery Act Funding for Geothermal and Solar...

432

President Obama Announces Over $467 Million in Recovery Act Funding...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Announces Over 467 Million in Recovery Act Funding for Geothermal and Solar Energy Projects President Obama Announces Over 467 Million in Recovery Act Funding for Geothermal and...

433

CLOSEOUT PROCEDURES FOR RECOVERY ACT GRANTS UNDER THE WEATHERIZATION...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CLOSEOUT PROCEDURES FOR RECOVERY ACT GRANTS UNDER THE WEATHERIZATION ASSISTANCE PROGRAM CLOSEOUT PROCEDURES FOR RECOVERY ACT GRANTS UNDER THE WEATHERIZATION ASSISTANCE PROGRAM This...

434

FY 2011 OIG Recovery Act Plan Overview | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FY 2011 OIG Recovery Act Plan Overview FY 2011 OIG Recovery Act Plan Overview The primary objective of the Office of Inspector General's oversight strategy involves the...

435

Ab Initio Atomic Simulations of Antisite Pair Recovery in Cubic...  

NLE Websites -- All DOE Office Websites (Extended Search)

Atomic Simulations of Antisite Pair Recovery in Cubic Silicon Carbide. Ab Initio Atomic Simulations of Antisite Pair Recovery in Cubic Silicon Carbide. Abstract: The thermal...

436

LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM 02/11/2014...  

Energy Savers (EERE)

LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM 02112014 LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM 02112014 mineral-webinar.pdf More Documents & Publications LOW...

437

Model Recovery Procedure for Response to a Radiological Transportation...  

Office of Environmental Management (EM)

Recovery Procedure for Response to a Radiological Transportation Incident Model Recovery Procedure for Response to a Radiological Transportation Incident This Transportation...

438

Secretary Chu Announces Nearly $50 Million of Recovery Act Funding...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nearly 50 Million of Recovery Act Funding to Accelerate Deployment of Geothermal Heat Pumps Secretary Chu Announces Nearly 50 Million of Recovery Act Funding to...

439

Secretary Chu Announces Nearly $50 Million of Recovery Act Funding...  

Office of Environmental Management (EM)

50 Million of Recovery Act Funding to Accelerate Deployment of Geothermal Heat Pumps Secretary Chu Announces Nearly 50 Million of Recovery Act Funding to Accelerate Deployment of...

440

Recovery Act - Geothermal Technologies Program:Ground Source...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act - Geothermal Technologies Program:Ground Source Heat Pumps Recovery Act - Geothermal Technologies Program:Ground Source Heat Pumps A detailled description of the...

Note: This page contains sample records for the topic "increase recovery rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Exsolution Enhanced Oil Recovery with Concurrent CO2 Sequestration...  

NLE Websites -- All DOE Office Websites (Extended Search)

Exsolution Enhanced Oil Recovery with Concurrent CO2 Sequestration. Exsolution Enhanced Oil Recovery with Concurrent CO2 Sequestration. Abstract: A novel EOR method using...

442

Energy Secretary Chu Announces $148 million in Recovery Act Funding...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

48 million in Recovery Act Funding for Environmental Cleanup in New York Energy Secretary Chu Announces 148 million in Recovery Act Funding for Environmental Cleanup in New York...

443

Energy Secretary Chu Announces $384 Million in Recovery Act Funding...  

Energy Savers (EERE)

384 Million in Recovery Act Funding for Environmental Cleanup in New Mexico Energy Secretary Chu Announces 384 Million in Recovery Act Funding for Environmental Cleanup in New...

444

Recovery Act, Office of the Biomass Program,Funding Opportunity...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act, Office of the Biomass Program,Funding Opportunity Announcements Special Notice Recovery Act, Office of the Biomass Program,Funding Opportunity Announcements Special...

445

ITP Energy Intensive Processes: Improved Heat Recovery in Biomass...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers ITP Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers biomass-firedboilers.pd...

446

"Recovery Act: Training Program Development for Commercial Building...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

"Recovery Act: Training Program Development for Commercial Building Equipment Technicians, Building Operators, and Energy Commissioning AgentsAuditors" "Recovery Act: Training...

447

Treasury, Energy Announce More Than $3 Billion in Recovery Act...  

Energy Savers (EERE)

3 Billion in Recovery Act Funds for Renewable Energy Projects Treasury, Energy Announce More Than 3 Billion in Recovery Act Funds for Renewable Energy Projects July 9, 2009 -...

448

AVTA: Chrysler RAM Experimental PHEV Pickup Truck Recovery Act...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RAM Experimental PHEV Pickup Truck Recovery Act project testing results AVTA: Chrysler RAM Experimental PHEV Pickup Truck Recovery Act project testing results The Vehicle...

449

Amino acid treatment enhances protein recovery from sediment...  

NLE Websites -- All DOE Office Websites (Extended Search)

treatment enhances protein recovery from sediment and soils for metaproteomic studies . Amino acid treatment enhances protein recovery from sediment and soils for metaproteomic...

450

Office of Science Recovery Plan | Department of Energy  

Office of Environmental Management (EM)

Office of Science Recovery Plan Office of Science Recovery Plan PSRP SC Updated More Documents & Publications Microsoft Word - PSRP Updates 6-25-10v2...

451

Treasury, Energy Surpass $1 Billion Milestone in Recovery Act...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Secretary Steven Chu hosted a group of clean energy developers and manufacturers at the White House to discuss how the American Recovery and Reinvestment Act (Recovery Act) is...

452

Model Recovery Procedure for Response to a Radiological Transportation Incident  

Energy.gov (U.S. Department of Energy (DOE))

This Transportation Emergency Preparedness Program (TEPP) Model Recovery Procedure contains the recommended elements for developing and conducting recovery planning at transportation incident scene...

453

Office of Electricity Delivery and Energy Reliability Recovery...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electricity Delivery and Energy Reliability Recovery Program Plan Office of Electricity Delivery and Energy Reliability Recovery Program Plan Microsoft Word - OE PSRP June 5 2009...

454

Mineral Recovery Creates Revenue Stream for Geothermal Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Mineral Recovery Creates Revenue Stream for Geothermal Energy Development Mineral Recovery Creates Revenue Stream for Geothermal Energy Development January 21, 2014 - 12:00am...

455

Department of Energy Issues Loan Guarantee Supported by Recovery...  

Energy Savers (EERE)

Loan Guarantee Supported by Recovery Act for Nevada Geothermal Project Department of Energy Issues Loan Guarantee Supported by Recovery Act for Nevada Geothermal Project September...

456

Recovery Act: Wind Energy Consortia between Institutions of Higher...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act: Wind Energy Consortia between Institutions of Higher Learning and Industry Recovery Act: Wind Energy Consortia between Institutions of Higher Learning and Industry A...

457

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles Thermoelectric Waste Heat Recovery Program for Passenger Vehicles 2013 DOE Hydrogen and Fuel Cells Program and...

458

American Recovery & Reinvestment Act, ARRA, clean energy projects...  

Energy Savers (EERE)

Recovery & Reinvestment Act, ARRA, clean energy projects, energy efficiency, smart grid, alternative fuels, geothermal energy American Recovery & Reinvestment Act, ARRA, clean...

459

RECOVERY ACT -- CLEAN ENERGY COALITION MICHIGAN GREEN FLEETS...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

RECOVERY ACT -- CLEAN ENERGY COALITION MICHIGAN GREEN FLEETS RECOVERY ACT -- CLEAN ENERGY COALITION MICHIGAN GREEN FLEETS 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

460

RECOVERY ACT -- CLEAN ENERGY COALITION MICHIGAN GREEN FLEETS...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

RECOVERY ACT -- CLEAN ENERGY COALITION MICHIGAN GREEN FLEETS RECOVERY ACT -- CLEAN ENERGY COALITION MICHIGAN GREEN FLEETS 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle...

Note: This page contains sample records for the topic "increase recovery rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

NREL: Technology Deployment - Disaster Recovery Support at FEMA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Disaster Recovery Support at FEMA Incorporates Sustainability in Rebuilding Efforts News FEMA Engages NREL in Hurricane Sandy Recovery Effort NREL's Federal Fueling Station Data...

462

An Overview of Thermoelectric Waste Heat Recovery Activities...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

An Overview of Thermoelectric Waste Heat Recovery Activities in Europe An Overview of Thermoelectric Waste Heat Recovery Activities in Europe An overview presentation of R&D...

463

Calculation of Job Creation Through DOE Recovery Act Funding...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Calculation of Job Creation Through DOE Recovery Act Funding Calculation of Job Creation Through DOE Recovery Act Funding U.S. Department of Energy (DOE) Office of Energy...

464

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles Thermoelectric Waste Heat Recovery Program for Passenger Vehicles 2012 DOE Hydrogen and Fuel Cells Program and...

465

Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing Important Geologic CO2 Storage Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing Important...

466

Development of a Waste Heat Recovery System for Light Duty Diesel Engines  

Energy.gov (U.S. Department of Energy (DOE))

Substantial increases in engine efficiency of a light-duty diesel engine, which require utilization of the waste energy found in the coolant, EGR, and exhaust streams, may be increased through the development of a Rankine cycle waste heat recovery system

467

2007 Wholesale Power Rate Case Initial Proposal : Risk Analysis Study.  

SciTech Connect

The Federal Columbia River Power System (FCRPS), operated on behalf of the ratepayers of the PNW by BPA and other Federal agencies, faces many uncertainties during the FY 2007-2009 rate period. Among these uncertainties, the largest revolve around hydro conditions, market prices and river operations for fish recovery. In order to provide a high probability of making its U.S. Treasury payments, BPA performs a Risk Analysis as part of its rate-making process. In this Risk Analysis, BPA identifies key risks, models their relationships, and then analyzes their impacts on net revenues (total revenues less expenses). BPA subsequently evaluates in the ToolKit Model the Treasury Payment Probability (TPP) resulting from the rates, risks, and risk mitigation measures described here and in the Wholesale Power Rate Development Study (WPRDS). If the TPP falls short of BPA's standard, additional risk mitigation revenues, such as PNRR and CRAC revenues are incorporated in the modeling in ToolKit until the TPP standard is met. Increased wholesale market price volatility and six years of drought have significantly changed the profile of risk and uncertainty facing BPA and its stakeholders. These present new challenges for BPA in its effort to keep its power rates as low as possible while fully meeting its obligations to the U.S. Treasury. As a result, the risk BPA faces in not receiving the level of secondary revenues that have been credited to power rates before receiving those funds is greater. In addition to market price volatility, BPA also faces uncertainty around the financial impacts of operations for fish programs in FY 2006 and in the FY 2007-2009 rate period. A new Biological Opinion or possible court-ordered change to river operations in FY 2006 through FY 2009 may reduce BPA's net revenues included Initial Proposal. Finally, the FY 2007-2009 risk analysis includes new operational risks as well as a more comprehensive analysis of non-operating risks. Both the operational and non-operational risks will be described in Section 2.0 of this study. Given these risks, if rates are designed using BPA's traditional approach of only adding Planned Net Revenues for Risk (PNRR), power rates would need to recover a much larger ''risk premium'' to meet BPA's TPP standard. As an alternative to high fixed risk premiums, BPA is proposing a risk mitigation package that combines PNRR with a variable rate mechanism similar to the cost recovery adjustment mechanisms used in the FY 2002-2006 rate period. The proposed risk mitigation package is less expensive on a forecasted basis because the rates can be adjusted on an annual basis to respond to uncertain financial outcomes. BPA is also proposing a Dividend Distribution Clause (DDC) to refund reserves in excess of $800M to customers in the event net revenues in the next rate period exceed current financial forecasts.

United States. Bonneville Power Administration.

2005-11-01T23:59:59.000Z

468

Modeling effects of diffusion and gravity drainage on oil recovery in naturally fractured reservoirs under gas injection  

E-Print Network (OSTI)

Gas injection in naturally fractured reservoirs maintains the reservoir pressure, and increases oil recovery primarily by gravity drainage and to a lesser extent by mass transfer between the flowing gas in the fracture and the porous matrix...

Jamili, Ahmad

2010-04-22T23:59:59.000Z

469

Resource Recovery OpportunitiesatAmericas Water Resource Recovery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

* Meet 100-200% of demand (5-10 MW net gen) * Sell excess green energy * Reduce air and GHG emissions * Increase operational reliability Original Facility (3 engines) First WWTP...

470

Secretary Chu Announces Nearly $800 Million from Recovery Act to Accelerate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nearly $800 Million from Recovery Act to Nearly $800 Million from Recovery Act to Accelerate Biofuels Research and Commercialization Secretary Chu Announces Nearly $800 Million from Recovery Act to Accelerate Biofuels Research and Commercialization May 5, 2009 - 12:00am Addthis WASHINGTON, D.C. - As part of the ongoing effort to increase the use of domestic renewable fuels, U.S. Secretary of Energy Steven Chu today announced plans to provide $786.5 million from the American Recovery and Reinvestment Act to accelerate advanced biofuels research and development and to provide additional funding for commercial-scale biorefinery demonstration projects. "Developing the next generation of biofuels is key to our effort to end our dependence on foreign oil and address the climate crisis -- while creating

471

Tracer Recovery and Mixing from Two Geothermal Injection-Backflow Studies |  

Open Energy Info (EERE)

Tracer Recovery and Mixing from Two Geothermal Injection-Backflow Studies Tracer Recovery and Mixing from Two Geothermal Injection-Backflow Studies Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Tracer Recovery and Mixing from Two Geothermal Injection-Backflow Studies Details Activities (2) Areas (2) Regions (0) Abstract: Injection-backflow tracer testing on a single well is not a commonly used procedure for geothermal reservoir evaluation, and, consequently, there is little published information on the character or interpretation of tracer recovery curves. Two field experiments were conducted to develop chemical tracer procedures for use with injection-backflow testing, one on the fracture-permeability Raft River reservoir and the other on the matrix-permeability East Mesa reservoir. Results from tests conducted with incremental increases in the injection

472

President Obama Announces Over $467 Million in Recovery Act Funding for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

President Obama Announces Over $467 Million in Recovery Act Funding President Obama Announces Over $467 Million in Recovery Act Funding for Geothermal and Solar Energy Projects President Obama Announces Over $467 Million in Recovery Act Funding for Geothermal and Solar Energy Projects May 27, 2009 - 12:00am Addthis WASHINGTON - President Obama today announced over $467 million from the American Reinvestment and Recovery Act to expand and accelerate the development, deployment, and use of geothermal and solar energy throughout the United States. The funding announced today represents a substantial down payment that will help the solar and geothermal industries overcome technical barriers, demonstrate new technologies, and provide support for clean energy jobs for years to come. Today's announcement supports the Obama Administration's strategy to increase American economic

473

President Obama Announces Over $467 Million in Recovery Act Funding for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Over $467 Million in Recovery Act Funding Over $467 Million in Recovery Act Funding for Geothermal and Solar Energy Projects President Obama Announces Over $467 Million in Recovery Act Funding for Geothermal and Solar Energy Projects May 27, 2009 - 12:00am Addthis WASHINGTON - President Obama today announced over $467 million from the American Reinvestment and Recovery Act to expand and accelerate the development, deployment, and use of geothermal and solar energy throughout the United States. The funding announced today represents a substantial down payment that will help the solar and geothermal industries overcome technical barriers, demonstrate new technologies, and provide support for clean energy jobs for years to come. Today's announcement supports the Obama Administration's strategy to increase American economic

474

New CO2 Enhanced Recovery Technology Could Greatly Boost U.S. Oil |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CO2 Enhanced Recovery Technology Could Greatly Boost U.S. Oil CO2 Enhanced Recovery Technology Could Greatly Boost U.S. Oil New CO2 Enhanced Recovery Technology Could Greatly Boost U.S. Oil March 3, 2006 - 11:40am Addthis WASHINGTON , D.C. - The Department of Energy (DOE) released today reports indicating that state-of-the-art enhanced oil recovery techniques could significantly increase recoverable oil resources of the United States in the future. According to the findings, 89 billion barrels or more could eventually be added to the current U.S. proven reserves of 21.4 billion barrels. "These promising new technologies could further help us reduce our reliance on foreign sources of oil," Energy Secretary Samuel W. Bodman said. "By using the proven technique of carbon sequestration, we get the double

475

NETL-RUA Scans for Improved Enhanced Oil Recovery Technique | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Scans for Improved Enhanced Oil Recovery Technique Scans for Improved Enhanced Oil Recovery Technique NETL-RUA Scans for Improved Enhanced Oil Recovery Technique April 4, 2012 - 1:00pm Addthis Washington, DC - Researchers participating in the National Energy Technology Laboratory Regional University Alliance (NETL-RUA) are using a familiar piece of medical equipment - a CT scanner - to evaluate cutting-edge improvements to enhanced oil recovery (EOR) techniques. Results from these studies could be used to help increase domestic oil supplies from EOR while helping to reduce the amount of carbon dioxide (CO2) emitted to the atmosphere. Scientists from the University of Pittsburgh, University of Bristol, Rutherford Appleton Laboratory, URS, and NETL are using the scanner and surfactants (fluids added to injected CO2 that change its flow properties)

476

EM Recovery NEWS FLASH RECOVERY.GOV U.S. Depar  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 23, 2011 August 23, 2011 We are now in the homestretch of Recovery Act work, and surpassing $5 billion in Recovery Act payments is an important milestone in our accelerated cleanup of the legacy of the Cold War. The $5 billion has been instrumental in significantly exceeding the Admin- istration's High Priority Performance Goal of 40 percent footprint reduction within EM, a full five months ahead of schedule. EM's footprint has been reduced a total of 489 square miles, or 53 percent, through July as a result of the Recovery Act funding. EM Recovery Act Program Director Thomas Johnson, Jr. American Recovery and Reinvestment Act Payments Surge Past $5 Billion More than $5 billion in Recovery Act payments are accelerating environmental cleanup Site Spend Plan

477

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

American Recovery and American Recovery and Reinvestment Act Related Categorical Exclusion Determinations: American Recovery and Reinvestment Act Related Categorical Exclusion Determinations issued for actions related to the the American Recovery and Reinvestment Act of 2009. DOCUMENTS AVAILABLE FOR DOWNLOAD September 14, 2011 CX-006764: Categorical Exclusion Determination Texas Propane Fleet Pilot Program CX(s) Applied: A1, A7, B5.1 Date: 09/14/2011 Location(s): Haltom City, Texas Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 14, 2011 CX-006763: Categorical Exclusion Determination Texas Propane Fleet Pilot Program CX(s) Applied: A1, A7, B5.1 Date: 09/14/2011 Location(s): Friendswood, Texas Office(s): Energy Efficiency and Renewable Energy, National Energy

478

LANL exceeds Early Recovery Act recycling goals  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL exceeds Early Recovery Act recycling goals LANL exceeds Early Recovery Act recycling goals LANL exceeds Early Recovery Act recycling goals Lab demolition projects under the American Recovery and Reinvestment Act have recovered more than 136 tons of recyclable metal since work began last year. March 8, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

479

LANL sponsors Recovery Act Job Fair  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovery Act Job Fair Recovery Act Job Fair LANL sponsors Recovery Act Job Fair The fair was aimed at filling current and future positions with subcontractors working on environmental cleanup under the American Recovery and Reinvestment Act. October 30, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

480

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Categorical Exclusion Determinations: American Recovery and Categorical Exclusion Determinations: American Recovery and Reinvestment Act Related Categorical Exclusion Determinations: American Recovery and Reinvestment Act Related Categorical Exclusion Determinations issued for actions related to the the American Recovery and Reinvestment Act of 2009. DOCUMENTS AVAILABLE FOR DOWNLOAD November 23, 2010 CX-004590: Categorical Exclusion Determination Re-Utilization of Industrial Carbon Dioxide for Algae Production Using a Phase Change Material CX(s) Applied: A9, A11, B3.6 Date: 11/23/2010 Location(s): Dexter, Michigan Office(s): Fossil Energy, National Energy Technology Laboratory November 23, 2010 CX-004556: Categorical Exclusion Determination Kentucky-County-Hardin CX(s) Applied: B3.6, B5.1 Date: 11/23/2010 Location(s): Hardin County, Kentucky

Note: This page contains sample records for the topic "increase recovery rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Categorical Exclusion Determinations: American Recovery and Categorical Exclusion Determinations: American Recovery and Reinvestment Act Related Categorical Exclusion Determinations: American Recovery and Reinvestment Act Related Categorical Exclusion Determinations issued for actions related to the the American Recovery and Reinvestment Act of 2009. DOCUMENTS AVAILABLE FOR DOWNLOAD April 5, 2010 CX-001438: Categorical Exclusion Determination Clean Cities Transportation Sector Petroleum Reduction Project CX(s) Applied: A7 Date: 04/05/2010 Location(s): Utah Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory April 5, 2010 CX-001437: Categorical Exclusion Determination Market Title: Clean Energy Grant Program CX(s) Applied: A9, A11 Date: 04/05/2010 Location(s): Florida Office(s): Energy Efficiency and Renewable Energy, National Energy

482

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Categorical Exclusion Determinations: American Recovery and Categorical Exclusion Determinations: American Recovery and Reinvestment Act Related Categorical Exclusion Determinations: American Recovery and Reinvestment Act Related Categorical Exclusion Determinations issued for actions related to the the American Recovery and Reinvestment Act of 2009. DOCUMENTS AVAILABLE FOR DOWNLOAD November 2, 2009 CX-000026: Categorical Exclusion Determination Ivanoff Bay Village Energy Efficiency and Conservation Strategy CX(s) Applied: A1, A9, A11 Date: 11/02/2009 Location(s): Ivanoff Bay, Alaska Office(s): Energy Efficiency and Renewable Energy November 2, 2009 CX-000025: Categorical Exclusion Determination Cortina Rancheria of Wintun Indians Renewable Energy Technologies (Wind) on Government Buildings CX(s) Applied: B5.1, B3.6, A1

483

Recovery Act Reports | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 19, 2013 February 19, 2013 Examination Report: OAS-RA-13-09 North Carolina State Energy Office - Energy Efficiency and Conservation Block Grant Program Funds Provided by the American Recovery and Reinvestment Act of 2009 February 8, 2013 Special Report: OAS-RA-13-10 The Department of Energy's Management of the Award of a $150 Million Recovery Act Grant to LG Chem Michigan Inc January 17, 2013 Audit Report: OAS-RA-13-07 The Department of Energy's Weatherization Assistance Program Funded under the American Recovery and Reinvestment Act for the State of Maryland January 17, 2013 Examination Report: OAS-RA-13-06 Montgomery County Department of Housing and Community Affairs - Weatherization Assistance Program Funds Provided by the American Recovery and Reinvestment Act of 2009

484

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Categorical Exclusion Determinations: American Recovery and Categorical Exclusion Determinations: American Recovery and Reinvestment Act Related Categorical Exclusion Determinations: American Recovery and Reinvestment Act Related Categorical Exclusion Determinations issued for actions related to the the American Recovery and Reinvestment Act of 2009. DOCUMENTS AVAILABLE FOR DOWNLOAD January 19, 2011 CX-005047: Categorical Exclusion Determination Chicago Area Alternative Fuels Deployment Project CX(s) Applied: B5.1 Date: 01/19/2011 Location(s): Chicago, Illinois Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory January 19, 2011 CX-005039: Categorical Exclusion Determination Development and Validation of a Gas-Fired Residential Heat Pump Water Heater CX(s) Applied: B3.6 Date: 01/19/2011

485

EM American Recovery and Reinvestment Act Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act Program Recovery Act Program www.em.doe.gov 1 Thomas Johnson, Jr. Recovery Act Program Director PRESENTED TO: Environmental Management Advisory Board (EMAB) December 5, 2011 EM's Mission "Complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons www.em.doe.gov 2 nuclear weapons development, production, and Government- sponsored nuclear energy research." EM's Recovery Act Program $6 Billion at 17 sites (12 states) Accelerated existing scope › Soil and groundwater remediation › Radioactive solid waste disposition › Facility decontamination & decommissioning www.em.doe.gov 3 Selected projects were "shovel-ready" › Fully-defined cost, scope, and schedule › Established regulatory framework › Proven technology

486

American Recovery and Reinvestment Act of 2009  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, 2009 3pm Contracts , 2009 3pm Contracts [Use as an H clause or include under the Laws, Regulations and Directives clause.] H.999 Special provisions relating to work funded under American Recovery and Reinvestment Act of 2009 (Feb 2009) Preamble: Work performed under this contract will be funded, in whole or in part, with funds appropriated by the American Recovery and Reinvestment Act of 2009, Pub. L. 111-5, (Recovery Act or Act). The Recovery Act's purposes are to stimulate the economy and to create and retain jobs. The Act gives preference to activities that can be started and completed expeditiously, including a goal of using at least 50 percent of the funds made available by it for activities that can be initiated not later than June 17, 2009. Contractors should begin planning activities for their first tier subcontractors, including

487

Recovery Act Reports | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 22, 2012 February 22, 2012 Audit Report: OAS-RA-12-06 The Management of Post-Recovery Act Workforce Transition at Office of Environmental Management Sites February 9, 2012 Inspection Report: INS-RA-12-01 Alleged Misuse of American Recovery and Reinvestment Act Grant Funds by the Western Arizona Council of Governments January 26, 2012 Audit Report: OAS-RA-L-12-03 The Department of Energy's American Recovery and Reinvestment Act - Arizona State Energy Program January 20, 2012 Examination Report: OAS-RA-12-05 Saratoga County Economic Opportunity Council, Inc. -Weatherization Assistance Program Funds Provided by the American Recovery and Reinvestment Act of 2009 January 20, 2012 Audit Report: OAS-RA-12-04 The Department's Management of the Smart Grid Investment Grant Program

488

Lab completes Recovery Act-funded  

NLE Websites -- All DOE Office Websites (Extended Search)

projects.Later, the building provided office and lab space for LANL's research on nuclear fusion."This is a major milestone for us," said Gordon Dover, LANL's director of Recovery...

489

Heat Pump for High School Heat Recovery  

E-Print Network (OSTI)

ICEBO2006, Shenzhen, China Renewable Energy Resources and a Greener Future Vol.VIII-12-1 Heat Pump for High School Bathroom Heat Recovery Kunrong Huang Hanqing Wang Xiangjiang Zhou Associate professor Professor Professor School...

Huang, K.; Wang, H.; Zhou, X.

2006-01-01T23:59:59.000Z

490

Tomboy tackles tough Recovery Act work  

NLE Websites -- All DOE Office Websites (Extended Search)

Seeking job security, the couple applied for work at the Paducah Site. Plant operator USEC Inc. hired Mike while Rebecca took the Recovery Act job. She hopes her training and...

491

An Introduction to Waste Heat Recovery  

E-Print Network (OSTI)

our dependence on petroleum-based fuels, paper, glass, and agricultural and automotive and hence improve our merchandise .trade balance. equipment industries have all had proven success with heat recovery projects. Solar, wind, geothermal, oil shale...

Darby, D. F.

492

Industrial Heat Recovery with Organic Rankine Cycles  

E-Print Network (OSTI)

Rising energy costs are encouraging energy intensive industries to investigate alternative means of waste heat recovery from process streams. The use of organic fluids in Rankine cycles offers improved potential for economical cogeneration from...

Hnat, J. G.; Patten, J. S.; Cutting, J. C.; Bartone, L. M.

1982-01-01T23:59:59.000Z

493

Use Feedwater Economizers for Waste Heat Recovery  

SciTech Connect

This revised ITP tip sheet on feedwater economizers for waste heat recovery provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

494

Hydraulic fracturing accelerates coalbed methane recovery  

SciTech Connect

Methane production from deep coal seams that never will be mined requires hydraulic fracturing for faster, optimal recovery. Since this can be a complex process, proper formation evaluation beforehand is essential, according to this paper.

Holditch, S.A. (Texas A and M Univ. (US)); Ely, J.W.; Semmelbeck, M.E.; Carter, R.H. (S.A. Holditch and Associates (US)); Hinkel, J.J.; Jeffrey, R.G. Jr. (Dowell Schlumberger (US))

1990-11-01T23:59:59.000Z

495

Recovery Act-Funded HVAC projects  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy was allocated funding from the American Recovery and Reinvestment Act to conduct research into heating, ventilation, and air conditioning (HVAC) technologies and...