Powered by Deep Web Technologies
Note: This page contains sample records for the topic "increase recovery rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Assessment of opportunities to increase the recovery and recycling rates of waste oils  

SciTech Connect (OSTI)

Waste oil represents an important energy resource that, if properly managed and reused, would reduce US dependence on imported fuels. Literature and current practice regarding waste oil generation, regulations, collection, and reuse were reviewed to identify research needs and approaches to increase the recovery and recycling of this resource. The review revealed the need for research to address the following three waste oil challenges: (1) recover and recycle waste oil that is currently disposed of or misused; (2) identify and implement lubricating oil source and loss reduction opportunities; and (3) develop and foster an effective waste oil recycling infrastructure that is based on energy savings, reduced environment at impacts, and competitive economics. The United States could save an estimated 140 {times} 1012 Btu/yr in energy by meeting these challenges.

Graziano, D.J.; Daniels, E.J.

1995-08-01T23:59:59.000Z

2

Effect of Density Gradient Centrifugation on Quality and Recovery Rate of Equine Sperm  

E-Print Network [OSTI]

gradient volume (height) on stallion sperm quality and recovery rate in sperm pellets following centrifugation. In all three experiments, equine semen was initially centrifuged to increase sperm concentration. In Experiment 1, one-mL aliquots were layered...

Edmond, Ann J.

2010-07-14T23:59:59.000Z

3

Increase of unit efficiency by improved waste heat recovery  

SciTech Connect (OSTI)

For coal-fired power plants with flue gas desulfurization by wet scrubbing and desulfurized exhaust gas discharge via cooling tower, a further improvement of new power plant efficiency is possible by exhaust gas heat recovery. The waste heat of exhaust gas is extracted in a flue gas cooler before the wet scrubber and recovered for combustion air and/or feedwater heating by either direct or indirect coupling of heat transfer. Different process configurations for heat recovery system are described and evaluated with regard to net unit improvement. For unite firing bituminous coal an increase of net unit efficiency of 0.25 to 0.7 percentage points and for lignite 0.7 to 1.6 percentage points can be realized depending on the process configurations of the heat recovery systems.

Bauer, G.; Lankes, F.

1998-07-01T23:59:59.000Z

4

Pyrolysis of polyolefins for increasing the yield of monomers' recovery  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Thermal and catalytic pyrolysis of mixed polyolefins in fluidized bed has been studied. Black-Right-Pointing-Pointer We tested applicability of a commercial Ziegler-Natta catalyst (Z-N: TiCl{sub 4}/MgCl{sub 2}). Black-Right-Pointing-Pointer The catalyst has a strong influence on product distribution, increasing gas fraction. Black-Right-Pointing-Pointer At 650 Degree-Sign C the monomer generation increased by 55% when the catalyst was used. Black-Right-Pointing-Pointer We showed the concept of treatment of mixed polyolefins without a need of separation. - Abstract: Pyrolysis of plastic waste is an alternative way of plastic recovery and could be a potential solution for the increasing stream of solid waste. The objective of this work was to increase the yield the gaseous olefins (monomers) as feedstock for polymerization process and to test the applicability of a commercial Ziegler-Natta (Z-N): TiCl{sub 4}/MgCl{sub 2} for cracking a mixture of polyolefins consisted of 46% wt. of low density polyethylene (LDPE), 30% wt. of high density polyethylene (HDPE) and 24% wt. of polypropylene (PP). Two sets of experiments have been carried out at 500 and 650 Degree-Sign C via catalytic pyrolysis (1% of Z-N catalyst) and at 650 and 730 Degree-Sign C via only-thermal pyrolysis. These experiments have been conducted in a lab-scale, fluidized quartz-bed reactor of a capacity of 1-3 kg/h at Hamburg University. The results revealed a strong influence of temperature and presence of catalyst on the product distribution. The ratios of gas/liquid/solid mass fractions via thermal pyrolysis were: 36.9/48.4/15.7% wt. and 42.4/44.7/13.9% wt. at 650 and 730 Degree-Sign C while via catalytic pyrolysis were: 6.5/89.0/4.5% wt. and 54.3/41.9/3.8% wt. at 500 and 650 Degree-Sign C, respectively. At 650 Degree-Sign C the monomer generation increased by 55% up to 23.6% wt. of total pyrolysis products distribution while the catalyst was added. Obtained yields of olefins were compared with the naphtha steam cracking process and other potentially attractive processes for feedstock generation. The concept of closed cycle material flow for polyolefins has been discussed, showing the potential benefits of feedstock recycling in a plastic waste management.

Donaj, Pawel J., E-mail: pawel@mse.kth.se [Royal Institute of Technology, School of Industrial Engineering and Management, Division of Energy and Furnace Technology, Brinellvagen 23, 100-44 Stockholm (Sweden); Kaminsky, W. [University of Hamburg, Institute of Technical and Macromolecular Chemistry, Martin-Luther-King Platz 6, 20146 Hamburg (Germany); Buzeto, F. [State University of Campinas - UNICAMP, College of Chemical Engineering, Department of Polymer Science - Av. Albert Einstein 13083-852 Campinas (Brazil); Yang, W. [Royal Institute of Technology, School of Industrial Engineering and Management, Division of Energy and Furnace Technology, Brinellvagen 23, 100-44 Stockholm (Sweden)

2012-05-15T23:59:59.000Z

5

Optimizing bit hydraulics increases penetration rate  

SciTech Connect (OSTI)

At some point, rate of penetration depends as much or more on hydraulics as on bit weight and rotary speed. An easy-to-follow graphical technique shows how to maximize ROP at the rig by finding the optimum pressure drop through the bit and the highest possible crossflow velocity.

Robinson, L.

1982-07-01T23:59:59.000Z

6

Oil Recovery Increases by Low-Salinity Flooding: Minnelusa and Green River Formations  

SciTech Connect (OSTI)

Waterflooding is by far the most widely used method in the world to increase oil recovery. Historically, little consideration has been given in reservoir engineering practice to the effect of injection brine composition on waterflood displacement efficiency or to the possibility of increased oil recovery through manipulation of the composition of the injected water. However, recent work has shown that oil recovery can be significantly increased by modifying the injection brine chemistry or by injecting diluted or low salinity brine. This paper reports on laboratory work done to increase the understanding of improved oil recovery by waterflooding with low salinity injection water. Porous media used in the studies included outcrop Berea sandstone (Ohio, U.S.A.) and reservoir cores from the Green River formation of the Uinta basin (Utah, U.S.A.). Crude oils used in the experimental protocols were taken from the Minnelusa formation of the Powder River basin (Wyoming, U.S.A.) and from the Green River formation, Monument Butte field in the Uinta basin. Laboratory corefloods using Berea sandstone, Minnelusa crude oil, and simulated Minnelusa formation water found a significant relationship between the temperature at which the oil- and water-saturated cores were aged and the oil recovery resulting from low salinity waterflooding. Lower aging temperatures resulted in very little to no additional oil recovery, while cores aged at higher temperatures resulted in significantly higher recoveries from dilute-water floods. Waterflood studies using reservoir cores and fluids from the Green River formation of the Monument Butte field also showed significantly higher oil recoveries from low salinity waterfloods with cores flooded with fresher water recovering 12.4% more oil on average than those flooded with undiluted formation brine.

Eric P. Robertson

2010-09-01T23:59:59.000Z

7

Geothermal energy for the increased recovery of copper by flotation enhancement  

SciTech Connect (OSTI)

The possible use of geothermal energy (a) to speed the recovery of copper from ore flotation and/or leaching of flotation tailings and (b) to utilize geothermal brines to replace valuable fresh water in copper flotation operations was evaluated. Geothermal energy could be used to enhance copper and molybdenum recovery in mineral flotation by increasing the kinetics of the flotation process. In another approach, geothermal energy could be used to heat the leaching solution which might permit greater copper recovery using the same residence time in a tailings leach facility. Since there is no restriction on the temperature of the leaching fluid, revenues generated from the additional copper recovered would be greater for tailings leach operations than for other types of leach operations (for example, dump leaching operation) for which temperature restrictions exist. The estimated increase in total revenues resulting from two percent increase copper recovery in a 50,000 tons ore/day plant was estimated to be over $2,000,000 annually. It would require an estimated geothermal investment of about $2,130,000 for a geothermal well and pumping system. Thus, the capital investment would be paid out in about one year. Furthermore, considerable savings of fresh waters and process equipment are possible if the geothermal waters can be used directly in the mine-mill operations, which is believed to be practical.

White, D.H.; Goldstone, L.A.

1982-08-01T23:59:59.000Z

8

Property:Heat Recovery Rating | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:PlugNumberOfArraProjectTypeTopic2GrossGen JumpRating Jump to:

9

Effects of nutritional status on metabolic rate, exercise and recovery in a freshwater fish  

SciTech Connect (OSTI)

The influence of feeding on swimming performance and exercise recovery in fish is poorly understood. Examining swimming behavior and physiological status following periods of feeding and fasting is important because wild fish often face periods of starvation. In the current study, researchers force fed and fasted groups of largemouth bass (Micropterus salmoides) of similar sizes for a period of 16 days. Following this feeding and fasting period, fish were exercised for 60 s and monitored for swimming performance and physiological recovery. Resting metabolic rates were also determined. Fasted fish lost an average of 16 g (nearly 12%) of body mass, while force fed fish maintained body mass. Force fed fish swam 28% further and required nearly 14 s longer to tire during exercise. However, only some physiological conditions differed between feeding groups. Resting muscle glycogen concentrations was twofold greater in force fed fish, at rest and throughout recovery, although it decreased in both feeding treatments following exercise. Liver mass was nearly three times greater in force fed fish, and fasted fish had an average of 65% more cortisol throughout recovery. Similar recovery rates of most physiological responses were observed despite force fed fish having a metabolic rate 75% greater than fasted fish. Results are discussed as they relate to largemouth bass starvation in wild systems and how these physiological differences might be important in an evolutionary context.

Gingerich, Andrew J.; Philipp, D. P.; Suski, C. D.

2010-11-20T23:59:59.000Z

10

PROCESS WATER RECOVERY: DISSOLVED AIR FLOTATION COMPARED TO HIGH SHEAR RATE SEPARATION  

E-Print Network [OSTI]

PROCESS WATER RECOVERY: DISSOLVED AIR FLOTATION COMPARED TO HIGH SHEAR RATE SEPARATION John H to the feed without dissolved air or with the addition of dual polymer flocculating polymers. Although fiber intend to investigate the effect of pacifying stickies by precipitating calcium carbonate with carbon

Abubakr, Said

11

Tomography increases key rates of quantum-key-distribution protocols  

E-Print Network [OSTI]

We construct a practically implementable classical processing for the BB84 protocol and the six-state protocol that fully utilizes the accurate channel estimation method, which is also known as the quantum tomography. Our proposed processing yields at least as high key rate as the standard processing by Shor and Preskill. We show two examples of quantum channels over which the key rate of our proposed processing is strictly higher than the standard processing. In the second example, the BB84 protocol with our proposed processing yields a positive key rate even though the so-called error rate is higher than the 25% limit.

Shun Watanabe; Ryutaroh Matsumoto; Tomohiko Uyematsu

2008-07-22T23:59:59.000Z

12

An increased estimate of the merger rate of double neutron  

E-Print Network [OSTI]

-star merger rate in the Galaxy is crucial in order to predict whether current gravity wave detectors of only a few double-neutron-star binaries with merger times less than the age of the Universe. Here we position and flux density for the pulsar. Knowledge of the pulsar position with subarcsecond precision

Sarkissian, John M.

13

EIS-0031: Bonneville Power Administration 1979 Wholesale Rate Increase  

Broader source: Energy.gov [DOE]

The Bonneville Power Administration (BPA) developed this statement to explain the reasons for BPA's proposed power rate schedule, to conduct an analysis of the impacts which the proposal or alternatives thereto could have on both physical and socioeconomic characteristics of the human environment and to identify methods for mitigating the effects of the proposal.

14

Synthetic aperture design for increased SAR image rate  

DOE Patents [OSTI]

High resolution SAR images of a target scene at near video rates can be produced by using overlapped, but nevertheless, full-size synthetic apertures. The SAR images, which respectively correspond to the apertures, can be analyzed in sequence to permit detection of movement in the target scene.

Bielek, Timothy P. (Albuquerque, NM); Thompson, Douglas G. (Albuqerque, NM); Walker, Bruce C. (Albuquerque, NM)

2009-03-03T23:59:59.000Z

15

Modification of chemical and physical factors in steamflood to increase heavy oil recovery  

SciTech Connect (OSTI)

This report covers the work performed in the various physicochemical factors for the improvement of oil recovery efficiency. In this context the following general areas were studied: (1) The understanding of vapor-liquid flows in porous media, including processes in steam injection; (2) The effect of reservoir heterogeneity in a variety of foams, from pore scale to macroscopic scale; (3) The flow properties of additives for improvement of recovery efficiency, particularly foams and other non-Newtonian fluids; and (4) The development of optimization methods to maximize various measures of oil recovery.

Yortsos, Yanis C.

2000-01-19T23:59:59.000Z

16

INCREASED OIL PRODUCTION AND RESERVES UTILIZING SECONDARY/TERTIARY RECOVERY TECHNIQUES ON SMALL RESERVOIRS IN THE PARADOX BASIN, UTAH  

SciTech Connect (OSTI)

The Paradox Basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from shallow-shelf carbonate buildups or mounds within the Desert Creek zone of the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field at a 15 to 20 percent recovery rate. Five fields in southeastern Utah were evaluated for waterflood or carbon-dioxide (CO{sub 2})-miscible flood projects based upon geological characterization and reservoir modeling. Geological characterization on a local scale focused on reservoir heterogeneity, quality, and lateral continuity as well as possible compartmentalization within each of the five project fields. The Desert Creek zone includes three generalized facies belts: (1) open-marine, (2) shallow-shelf and shelf-margin, and (3) intra-shelf, salinity-restricted facies. These deposits have modern analogs near the coasts of the Bahamas, Florida, and Australia, respectively, and outcrop analogs along the San Juan River of southeastern Utah. The analogs display reservoir heterogeneity, flow barriers and baffles, and lithofacies geometry observed in the fields; thus, these properties were incorporated in the reservoir simulation models. Productive carbonate buildups consist of three types: (1) phylloid algal, (2) coralline algal, and (3) bryozoan. Phylloid-algal buildups have a mound-core interval and a supra-mound interval. Hydrocarbons are stratigraphically trapped in porous and permeable lithotypes within the mound-core intervals of the lower part of the buildups and the more heterogeneous supramound intervals. To adequately represent the observed spatial heterogeneities in reservoir properties, the phylloid-algal bafflestones of the mound-core interval and the dolomites of the overlying supra-mound interval were subdivided into ten architecturally distinct lithotypes, each of which exhibits a characteristic set of reservoir properties obtained from outcrop analogs, cores, and geophysical logs. The Anasazi and Runway fields were selected for geostatistical modeling and reservoir compositional simulations. Models and simulations incorporated variations in carbonate lithotypes, porosity, and permeability to accurately predict reservoir responses. History matches tied previous production and reservoir pressure histories so that future reservoir performances could be confidently predicted. The simulation studies showed that despite most of the production being from the mound-core intervals, there were no corresponding decreases in the oil in place in these intervals. This behavior indicates gravity drainage of oil from the supra-mound intervals into the lower mound-core intervals from which the producing wells' major share of production arises. The key to increasing ultimate recovery from these fields (and similar fields in the basin) is to design either waterflood or CO{sub 2}-miscible flood projects capable of forcing oil from high-storage-capacity but low-recovery supra-mound units into the high-recovery mound-core units. Simulation of Anasazi field shows that a CO{sub 2} flood is technically superior to a waterflood and economically feasible. For Anasazi field, an optimized CO{sub 2} flood is predicted to recover a total 4.21 million barrels (0.67 million m3) of oil representing in excess of 89 percent of the original oil in place. For Runway field, the best CO{sub 2} flood is predicted to recover a total of 2.4 million barrels (0.38 million m3) of oil representing 71 percent of the original oil in place. If the CO{sub 2} flood performed as predicted, it is a financially robust process for increasing the reserves in the many small fields in the Paradox Basin. The results can be applied to other fields in the Rocky Mountain region, the Michigan and Illinois Basins, and the Midcontinent.

Thomas C. Chidsey, Jr.

2002-11-01T23:59:59.000Z

17

Modification of reservoir chemical and physical factors in steamfloods to increase heavy oil recovery  

SciTech Connect (OSTI)

Thermal methods, and particularly steam injection, are currently recognized as the most promising for the efficient recovery of heavy oil. Despite significant progress, however, important technical issues remain open. Specifically, still inadequate is our knowledge of the complex interaction between porous media and the various fluids of thermal recovery (steam, water, heavy oil, gases, and chemicals). While, the interplay of heat transfer and fluid flow with pore- and macro-scale heterogeneity is largely unexplored. The objectives of this contract are to continue previous work and to carry out new fundamental studies in the following areas of interest to thermal recovery: displacement and flow properties of fluids involving phase change (condensation-evaporation) in porous media; flow properties of mobility control fluids (such as foam); and the effect of reservoir heterogeneity on thermal recovery. The specific projects are motivated by and address the need to improve heavy oil recovery from typical reservoirs as well as less conventional fractured reservoirs producing from vertical or horizontal wells. Accomplishments for this period are presented.

Yortsos, Y.C.

1992-01-01T23:59:59.000Z

18

Modification of chemical and physical factors in steamflood to increase heavy oil recovery  

SciTech Connect (OSTI)

This report covers work performed in the area related to the physicochemical factors for the improvement of the oil recovery efficiency in steamfloods. In this context, three general areas are studied: (1) The understanding of vapor-liquid flow in porous media, whether the flow is internal (boiling), external (steam injection) or countercurrent (as in vertical heat pipes). (2) The effect of reservoir heterogeneity, particularly as it regards fractured systems and long and narrow reservoirs (which are typical of oil reservoirs). (3) The flow properties of additives for the improvement of recovery efficiency, in particular the properties of foams.

Yortsos, Y.C.

1992-04-01T23:59:59.000Z

19

Like all other vertebrates, fish need time to recover after exhaustive activity. Furthermore, a rapid rate of recovery may  

E-Print Network [OSTI]

Like all other vertebrates, fish need time to recover after exhaustive activity. Furthermore. For example, a rapid rate of recovery is needed to keep migratory passage timely when adult salmon use of anaerobic swimming because the entire upstream migration is completed using stored energy reserves

Farrell, Anthony P.

20

Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah  

SciTech Connect (OSTI)

The primary objective of this project is to enhance domestic petroleum production by field demonstration and technology transfer of an advanced- oil-recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m3) of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-(CO2-) miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

Jr., Chidsey, Thomas C.; Allison, M. Lee

1999-11-02T23:59:59.000Z

Note: This page contains sample records for the topic "increase recovery rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah  

SciTech Connect (OSTI)

The primary objective of this project was to enhance domestic petroleum production by field demonstration and technology transfer of an advanced-oil-recovery technology in the Paradox Basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox Basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m3) of oil. This project was designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-(CO2-) miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

Chidsey Jr., Thomas C.

2003-02-06T23:59:59.000Z

22

Increased Oil Production and Reserves Utilizing Secondary/Terriary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah  

SciTech Connect (OSTI)

The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to about 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO -) 2 flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. Two activities continued this quarter as part of the geological and reservoir characterization of productive carbonate buildups in the Paradox basin: (1) diagenetic characterization of project field reservoirs, and (2) technology transfer.

David E. Eby; Thomas C. Chidsey, Jr.

1998-04-08T23:59:59.000Z

23

The push for increased coal injection rates -- Blast furnace experience at AK Steel Corporation  

SciTech Connect (OSTI)

An effort has been undertaken to increase the coal injection rate on Amanda blast furnace at AK Steel Corporation`s Ashland Works in Ashland, Kentucky to decrease fuel costs and reduce coke demand. Operating practices have been implemented to achieve a sustained coal injection rate of 140 kg/MT, increased from 100--110 kg/MT. In order to operate successfully at the 140 kg/MT injection rate; changes were implemented to the furnace charging practice, coal rate control methodology, orientation of the injection point, and the manner of distribution of coal to the multiple injection points. Additionally, changes were implemented in the coal processing facility to accommodate the higher demand of pulverized coal; grinding 29 tonnes per hour, increased from 25 tonnes per hour. Further increases in injection rate will require a supplemental supply of fuel.

Dibert, W.A.; Duncan, J.H.; Keaton, D.E.; Smith, M.D. [AK Steel Corp., Middletown, OH (United States)

1994-12-31T23:59:59.000Z

24

INCREASED OIL RECOVERY FROM MATURE OIL FIELDS USING GELLED POLYMER TREATMENTS  

SciTech Connect (OSTI)

Gelled polymer treatments are applied to oil reservoirs to increase oil production and to reduce water production by altering the fluid movement within the reservoir. This report describes the results of a three-year research program aimed at reducing barriers to the widespread use of gelled polymer treatments by (1) developing methods to predict gel behavior during placement in matrix rock and fractures, (2) determining the persistence of permeability reduction after gel placement, and (3) developing methods to design production well treatments to control water production. The work focused on the gel system composed of polyacrylamide and chromium acetate. The molar mass of the polymer was about six million. Chromium(III) acetate reacted and formed crosslinks between polymer molecules. The crosslinked polymer molecules, or pre-gel aggregates, combine and grow to eventually form a 3-dimensional gel. A fundamental study to characterize the formation and growth of pre-gel aggregates was conducted. Two methods, flow field-flow fractionation (FFFF) and multi-angle laser light scattering (MALLS) were used. Studies using FFFF were inconclusive. Data taken using MALLS showed that at the gel time the average molar mass of gel aggregates increased by a factor of about three while the average size increase was approximately 50%. Increased acetate concentration in the gelant increases the gel time. The in situ performance of an added-acetate system was investigated to determine the applicability for in-depth treatments. Increased acetate concentrations delayed the development of increased flow resistance during gelant injection in short sandpacks. The development of increased flow resistance (in situ gelation) was extended from 2 to 34 days by increasing the acetate-to-chromium ratio from 38 to 153. In situ gelation occurred at a time that was approximately 22% of the bulk gelation time. When carbonate rocks are treated with gel, chromium retention in the rock may limit in-depth treatment. Chromium retention due to precipitation was investigated by flowing chromium acetate solutions through carbonate rock. Chromium precipitated faster in the rocks than in beaker experiments at similar conditions. A mathematical model previously developed fit the precipitation data reasonably well. The stability of gels when subjected to stress was investigated by experiments with gels placed in tubes and in laboratory-scale fractures. Rupture pressures for gels placed in small diameter tubes were correlated with the ratio of tube length to tube ID. In fractures, fluid leakoff from the fracture to adjacent matrix rock affected gel formation and gel stability in a positive way. Disproportionate permeability reduction (DPR) was studied in unconsolidated sandpacks and in Berea sandstone cores. A conceptual model was developed to explain the presence of DPR. The effect of a pressure gradient, imposed by injection of oil or brine, on the permeability of gel-treated cores was investigated. DPR increased significantly as the pressure gradient was decreased. The magnitude of the pressure gradient had a much larger effect on water permeability than on oil permeability.

G.P. Willhite; D.W. Green; C.S. McCool

2003-05-01T23:59:59.000Z

25

Increased Oil Recovery from Mature Oil Fields Using Gelled Polymer Treatments  

SciTech Connect (OSTI)

Gelled polymer treatments were applied to oil reservoirs to increase oil production and to reduce water production by altering the fluid movement within the reservoir. This report is aimed at reducing barriers to the widespread use of these treatments by developing methods to predict gel behavior during placement in matrix rock and fractures, determining the persistence of permeability reduction after gel placement, and by developing methods to design production well treatments to control water production. Procedures were developed to determine the weight-average molecular weight and average size of polyacrylamide samples in aqueous solutions. Sample preparation techniques were key to achieving reproducible results.

Willhite, G.P.; Green, D.W.; McCool, S.

2001-03-28T23:59:59.000Z

26

Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah.  

SciTech Connect (OSTI)

The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide- (CO{sub 2}-) flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

Chidsey, T.C. Jr.; Lorenz, D.M.; Culham, W.E.

1997-10-15T23:59:59.000Z

27

Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah  

SciTech Connect (OSTI)

The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to about 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million bbl of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO-) flood 2 project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

Allison, M. Lee; Chidsey, Jr., Thomas

1999-11-03T23:59:59.000Z

28

Increased oil recovery from mature oil fields using gelled polymer treatments  

SciTech Connect (OSTI)

Gelled polymer treatments are applied to oil reservoirs to increase oil production to reduce water production by altering the fluid movement within the reservoir. This research program is aimed at reducing barriers to the widespread use of these treatments by developing methods to predict gel behavior during placement in matrix rock and fractures, determining the persistence of permeability reduction after gel placement, and by developing methods to design production well treatments to control water production. This report describes the progress of the research during the first six months of work. A Dawn EOS multi-angle laser light scattering detector was purchased, installed and calibrated. Experiments were conducted to determine the permeabilities of a bulk gel and of a filter cake which forms when a gel is dehydrated. The pressure at which a gel in a tube is ruptured was measured and was correlated to the length and diameter of the gel.

Willhite, G. Paul; Green, Down W.; McCool, Stan

2000-02-23T23:59:59.000Z

29

Investigating the pore-scale mechanisms of microbial enhanced oil recovery Ryan T. Armstrong, Dorthe Wildenschild n  

E-Print Network [OSTI]

capillary desaturation test, where flooding rate was increased post secondary recovery. FurthermoreInvestigating the pore-scale mechanisms of microbial enhanced oil recovery Ryan T. Armstrong recovery biosurfactant bioclogging micromodel water flooding multiphase flow interfacial curvature a b

Wildenschild, Dorthe

30

What is the maximum rate at which entropy of a string can increase?  

SciTech Connect (OSTI)

According to Susskind, a string falling toward a black hole spreads exponentially over the stretched horizon due to repulsive interactions of the string bits. In this paper such a string is modeled as a self-avoiding walk and the string entropy is found. It is shown that the rate at which information/entropy contained in the string spreads is the maximum rate allowed by quantum theory. The maximum rate at which the black hole entropy can increase when a string falls into a black hole is also discussed.

Ropotenko, Kostyantyn [State Administration of Communications, Ministry of Transport and Communications of Ukraine 22, Khreschatyk, 01001, Kyiv (Ukraine)

2009-03-15T23:59:59.000Z

31

Dietary mercury exposure causes decreased escape takeoff flight performance and increased molt rate in European starlings  

E-Print Network [OSTI]

Dietary mercury exposure causes decreased escape takeoff flight performance and increased molt rate 2014 Ă? Springer Science+Business Media New York 2014 Abstract Mercury is a widespread and persistent that forage from primarily terrestrial sources have shown evidence of bioaccumula- tion of mercury, but little

Swaddle, John

32

Original article Increase of plasma eCG binding rate after  

E-Print Network [OSTI]

Original article Increase of plasma eCG binding rate after administration of repeated high dose of eCG to cows Pierre V. DRIONa*, Rudy DE ROOVERb, Jean-Yves HOUTAINc, Edmond M. MCNAMARAd, Benoît chorionic gonadotrophin (eCG) is still used to promote follicular growth in cat- tle and, more recently

Paris-Sud XI, Université de

33

Documentation of toxicity testing results on increased supernate treatment rate of 2700 gallons/batch  

SciTech Connect (OSTI)

In February 1991, Reactor Materials increased the rate of supernate treatment in the M-Area Dilute Effluent Treatment Facility (DETF) from 1800 gallons to [approximately]2700 gallons of supernate per 36,000 gallon dilute wastewater batch. The first release of the treated effluent began on March 3, 1991. A series of whole effluent toxicity tests was conducted on the DETF effluent to determine if the increased supernate concentration would result in any chronic toxicity affects in the receiving stream (Tims Branch). The toxicity tests were conducted at instream concentrations equivalent to DETF release rates of 5, 10, 15, 20, and 25 gallons/min. The test results, based on 7-day Ceriodaphnia dubia chronic toxicity, indicated no toxicity effects at any concentration tested. Supernate treatment in DETF continued at the higher concentration.

Pickett, J.B.

1992-07-06T23:59:59.000Z

34

Recovery Act: Energy Efficiency of Data Networks through Rate Adaptation (EEDNRA) - Final Technical Report  

SciTech Connect (OSTI)

This Concept Definition Study focused on developing a scientific understanding of methods to reduce energy consumption in data networks using rate adaptation. Rate adaptation is a collection of techniques that reduce energy consumption when traffic is light, and only require full energy when traffic is at full provisioned capacity. Rate adaptation is a very promising technique for saving energy: modern data networks are typically operated at average rates well below capacity, but network equipment has not yet been designed to incorporate rate adaptation. The Study concerns packet-switching equipment, routers and switches; such equipment forms the backbone of the modern Internet. The focus of the study is on algorithms and protocols that can be implemented in software or firmware to exploit hardware power-control mechanisms. Hardware power-control mechanisms are widely used in the computer industry, and are beginning to be available for networking equipment as well. Network equipment has different performance requirements than computer equipment because of the very fast rate of packet arrival; hence novel power-control algorithms are required for networking. This study resulted in five published papers, one internal report, and two patent applications, documented below. The specific technical accomplishments are the following: • A model for the power consumption of switching equipment used in service-provider telecommunication networks as a function of operating state, and measured power-consumption values for typical current equipment. • An algorithm for use in a router that adapts packet processing rate and hence power consumption to traffic load while maintaining performance guarantees on delay and throughput. • An algorithm that performs network-wide traffic routing with the objective of minimizing energy consumption, assuming that routers have less-than-ideal rate adaptivity. • An estimate of the potential energy savings in service-provider networks using feasibly-implementable rate adaptivity. • A buffer-management algorithm that is designed to reduce the size of router buffers, and hence energy consumed. • A packet-scheduling algorithm designed to minimize packet-processing energy requirements. Additional research is recommended in at least two areas: further exploration of rate-adaptation in network switching equipment, including incorporation of rate-adaptation in actual hardware, allowing experimentation in operational networks; and development of control protocols that allow parts of networks to be shut down while minimizing disruption to traffic flow in the network. The research is an integral part of a large effort within Bell Laboratories, Alcatel-Lucent, aimed at dramatic improvements in the energy efficiency of telecommunication networks. This Study did not explicitly consider any commercialization opportunities.

Matthew Andrews; Spyridon Antonakopoulos; Steve Fortune; Andrea Francini; Lisa Zhang

2011-07-12T23:59:59.000Z

35

INCREASE  

ScienceCinema (OSTI)

The Interdisciplinary Consortium for Research and Educational Access in Science and Engineering (INCREASE), assists minority-serving institutions in gaining access to world-class research facilities.

None

2013-07-22T23:59:59.000Z

36

The Toppler Effect : irregular leader transitions and the rate of state failure recovery  

E-Print Network [OSTI]

State failure is becoming increasingly prevalent across the globe, creating human suffering, black markets, lost economic opportunities, and safe havens for militant actors. It is imperative that the international community ...

Wahedi, Laila A

2011-01-01T23:59:59.000Z

37

Nervous system cancer : analysis of historical mortality rates in the United States and Japan indicate sudden increases in environmental risk  

E-Print Network [OSTI]

Nervous System cancer age-specific mortality rates began being recorded for European and Non-European Americans in 1930 and for Japanese in 1952. All ethnic groups show significant historical increases in mortality rates. ...

Alhassani, Ali K

2008-01-01T23:59:59.000Z

38

Increased  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching.348 270 300AptamersstabilityIncreased confinement

39

Method for increasing the rate of compressive strength gain in hardenable mixtures containing fly ash  

DOE Patents [OSTI]

The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention provides a method for increasing the rate of strength gain of a hardenable mixture containing fly ash by exposing the fly ash to an aqueous slurry of calcium oxide (lime) prior to its incorporation into the hardenable mixture. The invention further relates to such hardenable mixtures, e.g., concrete and mortar, that contain fly ash pre-reacted with calcium oxide. In particular, the fly ash is added to a slurry of calcium oxide in water, prior to incorporating the fly ash in a hardenable mixture. The hardenable mixture may be concrete or mortar. In a specific embodiment, mortar containing fly ash treated by exposure to an aqueous lime slurry are prepared and tested for compressive strength at early time points. 2 figs.

Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

1997-10-28T23:59:59.000Z

40

Method for increasing the rate of compressive strength gain in hardenable mixtures containing fly ash  

DOE Patents [OSTI]

The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention provides a method for increasing the rate of strength gain of a hardenable mixture containing fly ash by exposing the fly ash to an aqueous slurry of calcium oxide (lime) prior to its incorporation into the hardenable mixture. The invention further relates to such hardenable mixtures, e.g., concrete and mortar, that contain fly ash pre-reacted with calcium oxide. In particular, the fly ash is added to a slurry of calcium oxide in water, prior to incorporating the fly ash in a hardenable mixture. The hardenable mixture may be concrete or mortar. In a specific embodiment, mortar containing fly ash treated by exposure to an aqueous lime slurry are prepared and tested for compressive strength at early time points.

Liskowitz, John W. (Belle Mead, NJ); Wecharatana, Methi (Parsippany, NJ); Jaturapitakkul, Chai (Bangkok, TH); Cerkanowicz, deceased, Anthony E. (late of Livingston, NJ)

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "increase recovery rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

The Utilization of the Microflora Indigenous to and Present in Oil-Bearing Formations to Selectively Plug the More Porous Zones Thereby Increasing Oil Recovery During Waterflooding  

SciTech Connect (OSTI)

This project was designed to demonstrate that a microbially enhanced oil recovery process (MEOR), developed in part under DOE Contract No. DE-AC22-90BC14665, will increase oil recovery from fluvial dominated deltaic oil reservoirs. The process involves stimulating the in-situ indigenous microbial population in the reservoir to grow in the more permeable zones, thus diverting flow to other areas of the reservoir, thereby increasing the effectiveness of the waterflood. This five and a half year project is divided into three phases, Phase I, Planning and Analysis (9 months), Phase II, Implementation (45 months), and Phase III, Technology Transfer (12 months). Phase I was completed and reported in the first annual report. This fifth annual report covers the completion of Phase II and the first six months of Phase III.

Brown, Lewis R.; Byrnes, Martin J.; Stephens, James O.; Vadie, Alex A.

1999-07-01T23:59:59.000Z

42

Increased network efficiency for variable rate video streams in an Integrated Services Packet Network environment  

E-Print Network [OSTI]

with a way to reserve a fixed quantity of network resources for their exclusive use. Most video encoders, however, are variable rate. This research describes a mechanism by which variable bit-rate, real-time video streams can be sent over a fixed rate...

Schroeder, Charles Grant

1996-01-01T23:59:59.000Z

43

Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox Basin, Utah, Class II  

SciTech Connect (OSTI)

The primary objective of this project is to enhance domestic petroleum production by field demonstration and technology transfer of an advanced-oil-recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m{sup 3}) of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

Chidsey, Thomas C.

2000-07-28T23:59:59.000Z

44

Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low-Dip Slope and Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California, Class III  

SciTech Connect (OSTI)

The objective of the project is not just to commercially produce oil from the Pru Fee property, but rather to test which operational strategies best optimize total oil recovery at economically acceptable rates of production volumes and costs.

Schamel, Steven; Deo, Milind; Deets, Mike

2002-02-21T23:59:59.000Z

45

Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low-Dip Slope and Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California, Class III  

SciTech Connect (OSTI)

The objective of this project is not just to produce oil from the Pru Fee property, but rather to test which operational strategies best optimize total oil recovery at economically acceptable rates of production and production costs.

Schamel, S.

2001-01-09T23:59:59.000Z

46

Combustion processes in black liquor recovery: Analysis and interpretation of combustion rate data and an engineering design model  

SciTech Connect (OSTI)

The overall objective of this project is to develop computational models for predicting the combustion times for black liquor droplets in a recovery furnace environment. These models are needed as an important component of large-scale, global recovery boiler models. The work is divided into two tasks: interpretation of experimental black liquor single droplet combustion data from two laboratories; and formulation and evaluation of computational models for the stages of combustion of black liquor droplets. This report contains the results of the project. 109 refs., 64 figs., 12 tabs.

Fredrick, W.J.

1990-03-01T23:59:59.000Z

47

Geobacter sulfurreducens strain engineered for increased rates of respiration Mounir Izallalen a,, Radhakrishnan Mahadevan b  

E-Print Network [OSTI]

environments and for converting organic compounds to electricity in microbial fuel cells. However, faster rates-based in silico modeling Strain optimization a b s t r a c t Geobacter species are among the most effective of electron transfer could aid in optimizing these processes. Therefore, the Optknock strain design

Lovley, Derek

48

Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Annual report  

SciTech Connect (OSTI)

The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate buildups or mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels of oil per field at a 15 to 20% recovery rate. At least 200 million barrels of oil is at risk of being unrecovered in these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Five fields (Anasazi, mule, Blue Hogan, heron North, and Runway) within the Navajo Nation of southeastern utah are being evaluated for waterflood or carbon-dioxide-miscible flood projects based upon geological characterization and reservoir modeling. The results can be applied to other fields in the Paradox basin and the Rocky Mountain region, the Michigan and Illinois basins, and the Midcontinent. The reservoir engineering component of the work completed to date included analysis of production data and well tests, comprehensive laboratory programs, and preliminary mechanistic reservoir simulation studies. A comprehensive fluid property characterization program was completed. Mechanistic reservoir production performance simulation studies were also completed.

Chidsey, T.C. Jr.

1997-02-01T23:59:59.000Z

49

Influence of wetting effect at the outer surface of the pipe on increase in leak rate - experimental results and discussion  

SciTech Connect (OSTI)

Experimental and computed results applicable to Leak Before Break analysis are presented. The specific area of investigation is the effect of the temperature distribution changes due to wetting of the test pipe near the crack on the increase in the crack opening area and leak rate. Two 12-inch straight pipes subjected to both internal pressure and thermal load, but not to bending load, are modelled. The leak rate was found to be very susceptible to the metal temperature of the piping. In leak rate tests, therefore, it is recommended that temperature distribution be measured precisely for a wide area.

Isozaki, Toshikuni; Shibata, Katsuyuki

1997-04-01T23:59:59.000Z

50

Increased oil production and reserves utilizing secondary/teritiary recovery techniques on small reservoirs in the Paradox Basin, Utah. Quarterly report, July 1 - September 30, 1996  

SciTech Connect (OSTI)

The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meeting, and publication in newsletters and various technical or trade journals. Four activities continued this quarter as part of the geological and reservoir characterization: (1) interpretation of outcrop analogues; (2) reservoir mapping, (3) reservoir engineering analysis of the five project fields; and (4) technology transfer.

Allison, M.L.

1996-10-01T23:59:59.000Z

51

Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Technical progress report, January 1, 1995--March 31, 1995  

SciTech Connect (OSTI)

The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

Allison, M.L.

1995-05-30T23:59:59.000Z

52

Understanding the Rate of Clean Up for Oil Zones after a Gel Treatment R.S. Seright, SPE, New Mexico Petroleum Recovery Research Center, W. Brent Lindquist, SPE, and Rong Cai,  

E-Print Network [OSTI]

SPE 112976 Understanding the Rate of Clean Up for Oil Zones after a Gel Treatment R.S. Seright, SPE, New Mexico Petroleum Recovery Research Center, W. Brent Lindquist, SPE, and Rong Cai, Stony Brook at the 2008 SPE Improved Oil Recovery Symposium held in Tulsa, Oklahoma, U.S.A., 19­23 April 2008. This paper

New York at Stoney Brook, State University of

53

THEORY OF THREE-PHASE FLOW APPLIED TO WATER-ALTERNATING-GAS ENHANCED OIL RECOVERY  

E-Print Network [OSTI]

is the key to this improvement. 1. Introduction In secondary oil recovery, water or gas is injectedTHEORY OF THREE-PHASE FLOW APPLIED TO WATER-ALTERNATING-GAS ENHANCED OIL RECOVERY D. MARCHESIN, we show that this theory can be applied to increase the rate of oil recovery, during certain

54

Apply: Increase Residential Energy Code Compliance Rates (DE-FOA-0000953) |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2 (April 2012)Tie Ltd |Line, LLC:LLC |Department of Energy Increase

55

Volume rendering at interactive frame rates remains a chal-lenge, especially with today's increasingly large datasets. We pro-  

E-Print Network [OSTI]

Abstract Volume rendering at interactive frame rates remains a chal- lenge, especially with today's increasingly large datasets. We pro- pose a framework, using concepts from Image-Based Rendering (IBR), that decreases the required framerate for the volume ren- derer significantly. All the volume renderer needs

Crawfis, Roger

56

Volume rendering at interactive frame rates remains a chal-lenge, especially with today's increasingly large datasets. We pro-  

E-Print Network [OSTI]

1 Abstract Volume rendering at interactive frame rates remains a chal- lenge, especially with today's increasingly large datasets. We pro- pose a framework, using concepts from Image-Based Rendering (IBR), that decreases the required framerate for the volume ren- derer significantly. All the volume renderer needs

Mueller, Klaus

57

Multi-piconet Formation to Increase Channel Utilization in IEEE 802.15.3 High-Rate WPAN  

E-Print Network [OSTI]

.15.3 WPAN. 1 Introduction Recently, we have witnessed a noticeable increase of personal devices. The devices physical cables. Wireless Personal Area Networks (WPANs) can con- nect various personal devices within}@ece.skku.ac.kr {jsd, hslee75, tgkwon, chojw}@keti.re.kr Abstract. IEEE 802.15.3 high-rate Wireless Personal Area

Lee, Tae-Jin

58

Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Annual report, February 9, 1996--February 8, 1997  

SciTech Connect (OSTI)

The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate buildups or mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels of oil per field at a 15 to 20% recovery rate. At least 200 million barrels of oil is at risk of being unrecovered in these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Five fields (Anasazi, Mule, Blue Hogan, Heron North, and Runway) within the Navajo Nation of southeastern Utah are being evaluated for waterflood or carbon-dioxide-miscible flood projects based upon geological characterization and reservoir modeling. The results can be applied to other fields in the Paradox basin and the Rocky Mountain region, the Michigan and Illinois basins, and the Midcontinent. The Anasazi field was selected for the initial geostatistical modeling and reservoir simulation. A compositional simulation approach is being used to model primary depletion, waterflood, and CO{sub 2}-flood processes. During this second year of the project, team members performed the following reservoir-engineering analysis of Anasazi field: (1) relative permeability measurements of the supra-mound and mound-core intervals, (2) completion of geologic model development of the Anasazi reservoir units for use in reservoir simulation studies including completion of a series of one-dimensional, carbon dioxide-displacement simulations to analyze the carbon dioxide-displacement mechanism that could operate in the Paradox basin system of reservoirs, and (3) completion of the first phase of the full-field, three-dimensional Anasazi reservoir simulation model, and the start of the history matching and reservoir performance prediction phase of the simulation study.

Chidsey, T.C. Jr.

1997-08-01T23:59:59.000Z

59

Documentation of toxicity testing results on increased supernate treatment rate of 2700 gallons/batch. Revision 1  

SciTech Connect (OSTI)

In February 1991, Reactor Materials increased the rate of supernate treatment in the M-Area Dilute Effluent Treatment Facility (DETF) from 1800 gallons to {approximately}2700 gallons of supernate per 36,000 gallon dilute wastewater batch. The first release of the treated effluent began on March 3, 1991. A series of whole effluent toxicity tests was conducted on the DETF effluent to determine if the increased supernate concentration would result in any chronic toxicity affects in the receiving stream (Tims Branch). The toxicity tests were conducted at instream concentrations equivalent to DETF release rates of 5, 10, 15, 20, and 25 gallons/min. The test results, based on 7-day Ceriodaphnia dubia chronic toxicity, indicated no toxicity effects at any concentration tested. Supernate treatment in DETF continued at the higher concentration.

Pickett, J.B.

1992-07-06T23:59:59.000Z

60

Experimental Design for a Macrofoam-Swab Study Relating the Recovery Efficiency and False Negative Rate to Low Concentrations of Two Bacillus anthracis Surrogates on Four Surface Materials  

SciTech Connect (OSTI)

This report describes the experimental design for a laboratory study to quantify the recovery efficiencies and false negative rates of a validated, macrofoam-swab sampling method for low concentrations of Bacillus anthracis Sterne (BAS) and Bacillus atrophaeus (BG) spores on four surface materials (stainless steel, glass, vinyl tile, plastic light cover panel). Two analytical methods (culture and polymerase chain reaction) will be used. Only one previous study has investigated how the false negative rate depends on test factors. The surrogates BAS and BG have not been tested together in the same study previously. Hence, this study will provide for completing gaps in the available information on the performance of macrofoam-swab sampling at low concentrations.

Piepel, Gregory F.; Hutchison, Janine R.

2014-12-05T23:59:59.000Z

Note: This page contains sample records for the topic "increase recovery rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

The effects of production rates and some reservoir parameters on recovery in a strong water drive gas reservoir  

E-Print Network [OSTI]

Page 11 12 17 23 LIST OF FIGURES Figure 1 Reservoir Configuration and the Cell Break-up . . . 2 Relative Permeability Data 3 Capillary Pressure Data 4 Compressibility (Z) Factor Vs Pressure . . 5a P/Z Vs Cumulative Gas Produced for Cases 1, 2... Cumulative Gas Produced for Cases 16, 17, 18 g P/Z Vs Cumulative Gas Produced for Cases 19, 20, 21 6a Gas Production Rate Vs Time for Cases I, 2, 3 b Gas Production Rate Vs Time for Cases 4, 5, 6 c Gas Production Rate Vs Time for Cases 7, 8, 9 . . . . d...

Soemarso, Christophorus

1978-01-01T23:59:59.000Z

62

USING CABLE SUSPENDED SUBMERSIBLE PUMPS TO REDUCE PRODUCTION COSTS TO INCREASE ULTIMATE RECOVERY IN THE RED MOUNTAIN FIELD OF THE SAN JUAN BASIN REGION  

SciTech Connect (OSTI)

This report discusses: (1) being able to resume marginal oil production operations in the Red Mountain Oil Field, located in McKinley County, New Mexico by installing a cable suspended electric submersible pumping system (HDESP); (2) determining if this system can reduce life costs making it a more cost effective production system for similar oil fields within the region, and if warranted, drill additional wells to improve the economics. In April 2003, a cooperative 50% cost share agreement between Enerdyne and the DOE was executed to investigate the feasibility of using cable suspended electric submersible pumps to reduce the life costs and increase the ultimate oil recovery of the Red Mountain Oil Field, located on the Chaco Slope of the San Juan Basin, New Mexico. The field was discovered in 1934 and has produced approximately 55,650 cubic meters (m{sup 3}), (350,000 barrels, 42 gallons) of oil. Prior to April 2003, the field was producing only a few cubic meters of oil each month; however, the reservoir characteristics suggest that the field retains ample oil to be economic. This field is unique, in that, the oil accumulations, above fresh water, occur at depths from 88-305 meters, (290 feet to 1000 feet), and serves as a relatively good test area for this experiment.

Don L. Hanosh

2004-11-01T23:59:59.000Z

63

Modification of reservoir chemical and physical factors in steamfloods to increase heavy oil recovery. Quarterly report, October 1--December 31, 1994  

SciTech Connect (OSTI)

Thermal methods, and particularly steam injection, are currently recognized as the most promising for the efficient recovery of heavy oil. Despite significant progress, however, important technical issues remain open. Specifically, still inadequate is our knowledge of the complex interaction between porous media and the various fluids of thermal recovery (steam, water, heavy oil, gases, and chemicals). While, the interplay of heat transfer and fluid flow with pore- and macro-scale heterogeneity is largely unexplored. The objectives of this contract are to continue previous work and to carry out new fundamental studies in the following areas of interest to thermal recovery: displacement and flow properties of fluids involving phase change (condensation-evaporation) in porous media; flow properties of mobility control fluids (such as foam); and the effect of reservoir heterogeneity on thermal recovery. The specific projects are motivated by and address the need to improve heavy oil recovery from typical reservoirs as well as less conventional fractured reservoirs producing from vertical or horizontal wells. This quarterly report covers work accomplished for studies in: vapor-liquid flow; recovery processes in heterogeneous reservoirs; and chemical additives.

Yortsos, Y.C.

1994-12-06T23:59:59.000Z

64

Experimental Design for a Macrofoam Swab Study Relating the Recovery Efficiency and False Negative Rate to Low Concentrations of Two Bacillus anthracis Surrogates on Four Surface Materials  

SciTech Connect (OSTI)

This report describes the experimental design for a laboratory study to quantify the recovery efficiencies and false negative rates of a validated, macrofoam swab sampling method for low concentrations of Bacillus anthracis Sterne (BAS) and Bacillus atrophaeus (BG) spores on four surface materials (stainless steel, glass, vinyl tile, plastic light cover panel). Two analytical methods (plating/counting and polymerase chain reaction) will be used. Only one previous study has investigated false negative as a function of affecting test factors. The surrogates BAS and BG have not been tested together in the same study previously. Hence, this study will provide for completing gaps in the available information on the performance of macrofoam swab sampling at low concentrations.

Piepel, Gregory F.; Hutchison, Janine R.

2014-04-16T23:59:59.000Z

65

Modification of reservoir chemical and physical factors in steamfloods to increase heavy oil recovery. [Quarterly] report, October 1--December 31, 1992  

SciTech Connect (OSTI)

Thermal methods, and particularly steam injection, are currently recognized as the most promising for the efficient recovery of heavy oil. Despite significant progress, however, important technical issues remain open. Specifically, still inadequate is our knowledge of the complex interaction between porous media and the various fluids of thermal recovery (steam, water, heavy oil, gases, and chemicals). While, the interplay of heat transfer and fluid flow with pore- and macro-scale heterogeneity is largely unexplored. The objectives of this contract are to continue previous work and to carry out new fundamental studies in the following areas of interest to thermal recovery: displacement and flow properties of fluids involving phase change (condensation-evaporation) in porous media; flow properties of mobility control fluids (such as foam); and the effect of reservoir heterogeneity on thermal recovery. The specific projects are motivated by and address the need to improve heavy oil recovery from typical reservoirs as well as less conventional fractured reservoirs producing from vertical or horizontal wells. Accomplishments for this period are presented.

Yortsos, Y.C.

1992-12-31T23:59:59.000Z

66

Shock recovery experiments: An assessment  

SciTech Connect (OSTI)

Systematic shock recovery experiments, in which microstructural and mechanical property effects are characterized quantitatively, constitute an important means of increasing our understanding of shock processes. Through studies of the effects of variations in metallurgical and shock loading parameters on structure/property relationships, the micromechanisms of shock deformation, and how they differ from conventional strain rate processes, are beginning to emerge. This paper will highlight the state-of-the-art in shock recovery of metallic and ceramic materials. Techniques will be described which are utilized to ''soft'' recover shock-loaded metallic samples possessing low residual strain; crucial to accurate ''post-mortem'' metallurgical investigations of the influence of shock loading on material behavior. Illustrations of the influence of shock assembly design on the structure/property relationships in shock-recovered copper samples including such issues as residual strain and contact stresses, and their consequences are discussed. Shock recovery techniques used on brittle materials will be reviewed and discussed in light of recent experimental results. Finally, shock recovery structure/property results and VISAR data on the /alpha/--/omega/ shock-induced phase transition in titanium will be used to illustrate the beneficial link between shock recovery and ''real-time'' shock data. 26 refs., 3 figs.

Gray, G.T. III

1989-01-01T23:59:59.000Z

67

Modification of chemical and physical factors in steamflood to increase heavy oil recovery. Annual report, October 1, 1992--September 30, 1993  

SciTech Connect (OSTI)

Thermal methods, and particularly steam injection, are currently recognized as the most promising for the efficient recovery of heavy oil. Despite significant progress, however, important technical issues remain open. Specifically, still inadequate is our knowledge of the complex interaction between porous media and the various fluids of thermal recovery (steam, water, heavy oil, gases, and chemicals). While, the interplay of heat transfer and fluid flow with pore- and macro-scale heterogeneity is largely unexplored. Objectives of this work contract are to carry out new studies in the following areas: displacement and flow properties of fluids involving phase change in porous media; flow properties of mobility control fluids (such as foam); and the effect of reservoir heterogeneity on thermal recovery. Specific projects address the need to improve heavy oil recovery from typical reservoirs as well as less conventional fractured reservoirs producing from vertical or horizontal wells. In the area of vapor-liquid flow, we present the continuation of work on the pore network modeling of bubble growth in porous media driven by the application of a prescribed heat flux or superheat. The scaling of bubble growth in porous media is also discussed. In another study we study the problem of steam injection in fractured systems using visualization in micromodels. The interplay of drainage, imbibition and bubble growth problems is discussed.

Yortsos, Y.C.

1994-10-01T23:59:59.000Z

68

Modification of reservoir chemical and physical factors in steamfloods to increase heavy oil recovery. [Quarterly report], January 1--March 31, 1996  

SciTech Connect (OSTI)

Thermal methods, and particularly steam injection, are currently recognized as the most promising for the efficient recovery of heavy oil. Despite significant progress, however, important technical issues remain open. Specifically, still inadequate is our knowledge of the complex interaction between porous media and the various fluids of thermal recovery (steam, water, heavy oil, gases, and chemicals). While, the interplay of heat transfer and fluid flow with pore- and macro-scale heterogeneity is largely unexplored. The objectives of this contract are to continue previous work and to carry out new fundamental studies in the following areas of interest to thermal recovery: displacement and flow properties of fluids involving phase change in porous media; flow properties of mobility control fluids (such as foam); and the effect of reservoir heterogeneity on thermal recovery. During this quarter, we focused on the development of relative permeabilities during steam displacement. Two particular directions were pursued: One involves the derivation of relative permeabilities based on a recently completed work on the pore-level mechanics of steam displacement. Progress has been made to relate the relative permeabilities to effects such as heat transfer and condensation, which are specific to steam injection problems. The second direction involves the development of three-phase relative permeabilities using invasion percolation concepts. We have developed models that predict the specific dependence of the permeabilities of three immiscible phases (e.g. awe, water and gas) on saturations and the saturation history. Both works are still in progress. In addition, work continues in the analysis of the stability of phase change fronts in porous media using a macroscopic approach.

Yortsos, Y.C.

1996-07-01T23:59:59.000Z

69

Modification of chemical and physical factors in steamflood in increase heavy oil recovery. Annual report, October 1, 1994--September 30, 1995  

SciTech Connect (OSTI)

The objectives of this contract is to carry our fundamental research in heavy oil recovery in the following areas: displacement and flow properties of fluids involving phase change (condensation-evaporation) in porous media; flow properties of mobility control fluids (such as foam); and the effect of reservoir heterogeneity on oil recovery. The specific projects are motivated by and address the need to improve heavy oil recovery from typical reservoirs as well as less conventional fractured reservoirs. This report covers the work performed in these three areas in the past year. In the area of vapor-liquid flow we present a theoretical and numerical study of steam injection in a pore network. We characterize the displacement in terms of an effective mobility ratio and heat transfer parameters. Displacement patterns axe identified in the parameter space. In another study we discuss the problem of steam injection in fractured systems using visualization with micromodels. The interplay of drainage, imbibition and bubble growth is visualized. Conclusions are reached regarding the potential for steamflooding fractured systems. A third study focuses on the development of a pore-network model for foam formation and propagation in porous media. This model, for the first time, accounts for the fundamental mechanisms of foam propagation at the microscale and leads to the determination of various parameters that are currently treated empirically. The effect of viscous forces in displacements in heterogeneous media is described in two separate studies, one involving an extension of percolation theory to account for viscous effects, and another discussing the effect of geometry in general displacement processes.

Yortsos, Y.C

1996-10-01T23:59:59.000Z

70

Rate Optimization for Polymer and CO2 Flooding Under Geologic Uncertainty  

E-Print Network [OSTI]

, in terms of optimal production and injection rates, to maximize recovery. The increasing deployment of smart well completions and i-field has inspired many researchers to develop algorithms to optimize the production/injection rates along intervals of smart...

Sharma, Mohan

2012-10-19T23:59:59.000Z

71

The utilization of the microflora indigenous to and present in oil-bearing formations to selectively plug the more porous zones thereby increasing oil recovery during waterflooding, Class 1  

SciTech Connect (OSTI)

The objectives of this project were (1) to demonstrate the in situ microbial population in a fluvial dominated deltaic reservoir could be induced to proliferate to such an extent that they will selectively restrict flow in the more porous zones in the reservoir thereby forcing injection water to flow through previously unswept areas thus improving the sweep efficiency of the waterflood and (2) to obtain scientific validation that microorganisms are indeed responsible for the increased oil recovery. One expected outcome of this new technology was the prolongation of economical life of the reservoir, i.e. economical oil recovery should continue for much longer periods in areas of the reservoir subjected to the MPPM technology than it would if it followed its historic trend.

Stephens, James O.; Brown, Lewis R.; Vadie, A. Alex

2000-02-02T23:59:59.000Z

72

Increased metabolic rate and insulin sensitivity in male mice lacking the carcino-embryonic antigen-related cell adhesion  

E-Print Network [OSTI]

and increased spontaneous activity. The mechanisms underlying sexual dimorphism in energy balance with the loss and energy expenditure in skeletal muscle. Keywords Brown adipogenesis . CEACAM2 . Energy balance . Energy of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA Diabetologia DOI 10

Toledo, University of

73

Development of equations to determine the increase in pavement condition due to treatment and the rate of decrease in condition after treatment for a local agency pavement network.  

E-Print Network [OSTI]

DEVELOPMENT OF EQUATIONS TO DETERMINE THE INCREASE IN PAVEMENT CONDITION DUE TO TREATMENT AND THE RATE OF DECREASE IN CONDITION AFTER TREATMENT FOR A LOCAL AGENCY PAVEMENT NETWORK A Thesis by MAITHILEE MUKUND DESHMUKH Submitted... to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 2009 Major Subject: Civil Engineering DEVELOPMENT OF EQUATIONS TO DETERMINE THE INCREASE IN PAVEMENT...

Deshmukh, Maithilee Mukund.

2010-07-14T23:59:59.000Z

74

Speeding up protein folding: mutations that increase the rate at which Rop folds and unfolds by over four orders of magnitude  

E-Print Network [OSTI]

Speeding up protein folding: mutations that increase the rate at which Rop folds and unfolds. Introduction When a protein folds, the backbone and sidechain atoms organize from the extensive number protein folding usually occurs on the order of milliseconds to seconds, it is gener- ally accepted

Mochrie, Simon

75

Power Recovery  

E-Print Network [OSTI]

.POWER RECOVERY Fletcher Mlirray Monsanto Chemical Company AB5'-:::0 p.p., will ??vi.w 'h. '.ohnnln,y nf 'h.::v,n. T:X:~~T ~ methods for estimating the power recovery potential from fluid streams. The ideal gas law formula for expanding gases.... Gas Law Estimation Power recovery estimates from a vapor stream can be made using the formula: which is derived from the Ideal Gas Law. At first glance the. formula seems imposing and perhaps difficult to occasionally use. If however; the formula...

Murray, F.

76

Recovery Act  

Broader source: Energy.gov [DOE]

Recovery Act and Energy Department programs were designed to stimulate the economy while creating new power sources, conserving resources and aligning the nation to once again lead the global energy economy.

77

Treasury, Energy Announce More Than $2 Billion in Recovery Act...  

Energy Savers [EERE]

Recovery Act to increase US manufacturing output, improve energy efficiency, and develop alternative sources of energy." The Recovery Act created a new tax credit program by...

78

Evaluation of two-stage system for neutron measurement aiming at increase in count rate at Japan Atomic Energy Agency-Fusion Neutronics Source  

SciTech Connect (OSTI)

In order to increase the count rate capability of a neutron detection system as a whole, we propose a multi-stage neutron detection system. Experiments to test the effectiveness of this concept were carried out on Fusion Neutronics Source. Comparing four configurations of alignment, it was found that the influence of an anterior stage on a posterior stage was negligible for the pulse height distribution. The two-stage system using 25 mm thickness scintillator was about 1.65 times the count rate capability of a single detector system for d-D neutrons and was about 1.8 times the count rate capability for d-T neutrons. The results suggested that the concept of a multi-stage detection system will work in practice.

Shinohara, K., E-mail: shinohara.koji@jaea.go.jp; Ochiai, K.; Sukegawa, A. [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan); Ishii, K.; Kitajima, S. [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai, Miyagi 980-8579 (Japan); Baba, M. [Cyclotron and Radioisotope Center, Tohoku University, Sendai, Miyagi 980-8578 (Japan); Sasao, M. [Organization for Research Initiatives and Development, Doshisha University, Kyoto 602-8580 (Japan)

2014-11-15T23:59:59.000Z

79

Significant Increase in Hydrogen Photoproduction Rates and Yields by Wild-Type Algae is Detected at High Photobioreactor Gas Phase Volume (Fact Sheet)  

SciTech Connect (OSTI)

This NREL Hydrogen and Fuel Cell Technical Highlight describes how hydrogen photoproduction activity in algal cultures can be improved dramatically by increasing the gas-phase to liquid-phase volume ratio of the photobioreactor. NREL, in partnership with subcontractors from the Institute of Basic Biological Problems in Pushchino, Russia, demonstrated that the hydrogen photoproduction rate in algal cultures always decreases exponentially with increasing hydrogen partial pressure above the culture. The inhibitory effect of high hydrogen concentrations in the photobioreactor gas phase on hydrogen photoproduction by algae is significant and comparable to the effect observed with some anaerobic bacteria.

Not Available

2012-07-01T23:59:59.000Z

80

Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect (OSTI)

A previously idle portion of the Midway-Sunset field, the ARCO Western Energy Pru Fee property, is being brought back into commercial production through tight integration of geologic characterization, geostatistical modeling, reservoir simulation, and petroleum engineering. This property, shut-in over a decade ago as economically marginal using conventional cyclic steaming methods, has a 200-300 foot thick oil column in the Monarch Sand. However, the sand lacks effective steam barriers and has a thick water-saturation zone above the oil-water contact. These factors require an innovative approach to steam flood production design that will balance optimal total oil production against economically viable steam-oil ratios and production rates. The methods used in the Class III demonstration are accessible to most operators in the Midway-Sunset field and could be used to revitalize properties with declining production of heavy oils throughout the region. In January 1997 the project entered its second and main phase with the purpose of demonstrating whether steamflood can be a more effective mode of production of the heavy, viscous oils from the Monarch Sand reservoir than the more conventional cyclic steaming. The objective is not just to produce the pilot site within the Pru Fee property south of Taft, but to test which production parameters optimize total oil recovery at economically acceptable rates of production and production costs.

Steven Schamel

1998-02-27T23:59:59.000Z

Note: This page contains sample records for the topic "increase recovery rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Water alternating enriched gas injection to enhance oil production and recovery from San Francisco Field, Colombia  

E-Print Network [OSTI]

The main objectives of this study are to determine the most suitable type of gas for a water-alternating-gas (WAG) injection scheme, the WAG cycle time, and gas injection rate to increase oil production rate and recovery from the San Francisco field...

Rueda Silva, Carlos Fernando

2012-06-07T23:59:59.000Z

82

Recovery Act: State Assistance for Recovery Act Related Electricity...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Center Recovery Act Recovery Act: State Assistance for Recovery Act Related Electricity Policies Recovery Act: State Assistance for Recovery Act Related Electricity...

83

Evaluate Supply and Recovery of Woody Biomass for Energy  

E-Print Network [OSTI]

Biomass Recovery DataContrasting Woody Biomass Recovery Data Forest Biomass Supply in the Southeastern4/11/2011 1 Evaluate Supply and Recovery of Woody Biomass for Energy Production from Natural. Other studies of biomass supply have supply have assumedassumed a technical recovery rate

Gray, Matthew

84

Some Fundamental Experiments on Apparent Dissolution Rate of Gas Phase in the Groundwater Recovery Processes of the Geological Disposal System - 12146  

SciTech Connect (OSTI)

The apparent dissolution rates of gas phase in the co-presence of solid phase were examined by in-room experiments in this study. The apparent dissolution rate of gas phase q (mol/m{sup 3}.s) was generally defined by q=aK{sub L}(?P{sub g}-c), where a (1/m) is specific surface area of the interface between gas and liquid phases, K{sub L} (m/s) is overall mass transfer coefficient, ? (mol/(Pa.m{sup 3})) is reciprocal number of Henry constant, P{sub g} (Pa) is partial pressure of gas phase, and c (mol/m{sup 3}) is the concentration of gas component in liquid phase. As a model gas, CO{sub 2} gas was used. For evaluating the values of K{sub L}, this study monitored pH or the migration rate of the interface between water/gas phases, using some experiments such as the packed beds and the micro channel consisting of granite chip and rubber sheet including a slit. In the results, the values of K{sub L} were distributed in the range from 5.0x10{sup -6} m/s to 5.0x10{sup -7} m/s. These values were small, in comparison with that (7.8x10{sup -4} m/s) obtained from the bubbling test where gas phase was continually injected into deionized water without solid phase. This means that the solid phase limits the local mixing of water phase near gas-liquid interfaces. (authors)

Yoshii, Taiki; Niibori, Yuichi; Mimura, Hitoshi [Dept. of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, 6-6-01-2, Aramaki, Aza-Aoba, Aoba-ku, Sendai 980-8579 (Japan)

2012-07-01T23:59:59.000Z

85

Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect (OSTI)

This project reactivates ARCO's idle Pru Fee lease in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming was used to reestablish baseline production within the reservoir characterization phase of the project completed in December 1996. During the demonstration phase begun in January 1997, a continuous steamflood enhanced oil recovery is testing the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having simular producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially t o other producers in California, through an aggressive technology transfer program.

Deo, M.; Forster, C.; Jenkins, C.; Schamel, S.; Sprinkel, D.; and Swain, R.

1999-02-01T23:59:59.000Z

86

Reactivation of an Idle Lease to Increase Heavy Oil Recovery Through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Resrvoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect (OSTI)

This project reactivates ARCO?s idle Pru Fee lease in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming is being used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase scheduled to begin in January 1997, a continuous steamflood enhanced oil recovery will be initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.

Creties Jenkins; Doug Sprinkel; Milind Deo; Ray Wydrinski; Robert Swain

1997-10-21T23:59:59.000Z

87

Road to Recovery: Bringing Recovery to Small Town America  

ScienceCinema (OSTI)

The Recovery Act hits the road to reach out to surrounding towns of the Savannah River Site that are struggling with soaring unemployment rates. This project helps recruit thousands of people to new jobs in environmental cleanup at the Savannah River Site.

Nettamo, Paivi

2012-06-14T23:59:59.000Z

88

Thermal acidization and recovery process for recovering viscous petroleum  

DOE Patents [OSTI]

A thermal acidization and recovery process for increasing production of heavy viscous petroleum crude oil and synthetic fuels from subterranean hydrocarbon formations containing clay particles creating adverse permeability effects is described. The method comprises injecting a thermal vapor stream through a well bore penetrating such formations to clean the formation face of hydrocarbonaceous materials which restrict the flow of fluids into the petroleum-bearing formation. Vaporized hydrogen chloride is then injected simultaneously to react with calcium and magnesium salts in the formation surrounding the bore hole to form water soluble chloride salts. Vaporized hydrogen fluoride is then injected simultaneously with its thermal vapor to dissolve water-sensitive clay particles thus increasing permeability. Thereafter, the thermal vapors are injected until the formation is sufficiently heated to permit increased recovery rates of the petroleum.

Poston, Robert S. (Winter Park, FL)

1984-01-01T23:59:59.000Z

89

Recovery FAQ - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Recovery Act of 2009 > Hanford ARRA FAQ Recovery Act of 2009 Hanford ARRA FAQ Hanford ARRA Weekly Reports Hanford ARRA News Hanford ARRA Photogallery Hanford ARRA Videos Hanford...

90

Energy efficiency of substance and energy recovery of selected waste fractions  

SciTech Connect (OSTI)

In order to reduce the ecological impact of resource exploitation, the EU calls for sustainable options to increase the efficiency and productivity of the utilization of natural resources. This target can only be achieved by considering resource recovery from waste comprehensively. However, waste management measures have to be investigated critically and all aspects of substance-related recycling and energy recovery have to be carefully balanced. This article compares recovery methods for selected waste fractions with regard to their energy efficiency. Whether material recycling or energy recovery is the most energy efficient solution, is a question of particular relevance with regard to the following waste fractions: paper and cardboard, plastics and biowaste and also indirectly metals. For the described material categories material recycling has advantages compared to energy recovery. In accordance with the improved energy efficiency of substance opposed to energy recovery, substance-related recycling causes lower emissions of green house gases. For the fractions paper and cardboard, plastics, biowaste and metals it becomes apparent, that intensification of the separate collection systems in combination with a more intensive use of sorting technologies can increase the extent of material recycling. Collection and sorting systems must be coordinated. The objective of the overall system must be to achieve an optimum of the highest possible recovery rates in combination with a high quality of recyclables. The energy efficiency of substance related recycling of biowaste can be increased by intensifying the use of anaerobic technologies. In order to increase the energy efficiency of the overall system, the energy efficiencies of energy recovery plants must be increased so that the waste unsuitable for substance recycling is recycled or treated with the highest possible energy yield.

Fricke, Klaus, E-mail: klaus.fricke@tu-bs.de [Technical University of Braunschweig, Leichtweiss-Institute, Department of Waste and Resource Management, Beethovenstrasse 51a, 38106 Braunschweig (Germany); Bahr, Tobias, E-mail: t.bahr@tu-bs.de [Technical University of Braunschweig, Leichtweiss-Institute, Department of Waste and Resource Management, Beethovenstrasse 51a, 38106 Braunschweig (Germany); Bidlingmaier, Werner, E-mail: werner.bidlingmaier@uni-weimar.de [Bauhaus-Universitaet Weimar, Faculty of Civil Engineering, Waste Management, Coudraystrasse 7, 99423 Weimar (Germany); Springer, Christian, E-mail: christian.springer@uni-weimar.de [Bauhaus-Universitaet Weimar, Faculty of Civil Engineering, Waste Management, Coudraystrasse 7, 99423 Weimar (Germany)

2011-04-15T23:59:59.000Z

91

Locating Heat Recovery Opportunities  

E-Print Network [OSTI]

Basic concepts of heat recovery are defined as they apply to the industrial community. Methods for locating, ranking, and developing heat recovery opportunities are presented and explained. The needs for useful heat 'sinks' are emphasized as equal...

Waterland, A. F.

1981-01-01T23:59:59.000Z

92

Recovery Act Milestones  

ScienceCinema (OSTI)

Every 100 days, the Department of Energy is held accountable for a progress report on the American Recovery and Reinvestment Act. Update at 200 days, hosted by Matt Rogers, Senior Advisor to Secretary Steven Chu for Recovery Act Implementation.

Rogers, Matt

2013-05-29T23:59:59.000Z

93

Waste Steam Recovery  

E-Print Network [OSTI]

applicable to other sources of steam. The interaction of the recovery system with the plant's steam/power system has been included. Typical operating economics have been prepared. It was found that the profitability of most recovery schemes is generally...

Kleinfeld, J. M.

1979-01-01T23:59:59.000Z

94

Abstract--With increasing international trade of secondary materials it is imperative to start including it in our analysis of  

E-Print Network [OSTI]

Abstract-- With increasing international trade of secondary materials it is imperative to start, exhibiting an increase in waste recovery and recycling rates. However, the key underlying factor driving trade, taking recycling overseas, where there exists not only a greater demand for secondary materials

Gutowski, Timothy

95

Battleground Energy Recovery Project  

SciTech Connect (OSTI)

In October 2009, the project partners began a 36-month effort to develop an innovative, commercial-scale demonstration project incorporating state-of-the-art waste heat recovery technology at Clean Harbors, Inc., a large hazardous waste incinerator site located in Deer Park, Texas. With financial support provided by the U.S. Department of Energy, the Battleground Energy Recovery Project was launched to advance waste heat recovery solutions into the hazardous waste incineration market, an area that has seen little adoption of heat recovery in the United States. The goal of the project was to accelerate the use of energy-efficient, waste heat recovery technology as an alternative means to produce steam for industrial processes. The project had three main engineering and business objectives: Prove Feasibility of Waste Heat Recovery Technology at a Hazardous Waste Incinerator Complex; Provide Low-cost Steam to a Major Polypropylene Plant Using Waste Heat; and ď?· Create a Showcase Waste Heat Recovery Demonstration Project.

Daniel Bullock

2011-12-31T23:59:59.000Z

96

Carbon dioxide for the recovery of crude oil. Annual report, November 1978-November 1979  

SciTech Connect (OSTI)

The displacement of residual oil to waterflooding by miscible fluid injection has been studied using scaled physical models of line-drive systems. The effects of flow rate, mobility ratio, and density ratio, were investigated. This work was a first step in an overall program of studying miscible displacement in particular by carbon dioxide, of residual oil as a process for recovering additional crude oil from reservoirs which had been waterflooded. The ratios of gravitational and viscous forces which exist in tertiary recovery operations, using carbon dioxide as a recovery reagent, were approximated in a scaled physical model at ambient pressure and temperature. The viscosity ratio was now very unfavorable and displacement of moveable water was inefficient. Consequently, the displacement of the residual oil by the solvent, which was simulating the role of carbon dioxide, was also poor. The recovery efficiency could not be improved by reasonable increases in the fluid velocity because the unfavorable mobility-caused viscous fingering was so dominant. Insomuch as carbon dioxide flooding, an imperfectly miscible recovery process, cannot be expected to perform as well as a perfectly miscible recovery process, these experiments point to the need for imposing a strong measure of mobility control if the injection of carbon dioxide is to achieve widespread usage for the recovery of residual oil.

Doscher, T.M.

1980-08-01T23:59:59.000Z

97

An Examination of Harvest Rates and Brood-Take Rates as  

E-Print Network [OSTI]

An Examination of Harvest Rates and Brood-Take Rates as Management Strategies to Assist Recovery of Resource Management Project Number: 546 Title of Project: An Examination of Harvest Rates and Brood-Take Rates as Management Strategies to Assist Recovery of Cowichan River Chinook Salmon Examining Committee

98

Experimental Design for a Sponge-Wipe Study to Relate the Recovery Efficiency and False Negative Rate to the Concentration of a Bacillus anthracis Surrogate for Six Surface Materials  

SciTech Connect (OSTI)

Two concerns were raised by the Government Accountability Office following the 2001 building contaminations via letters containing Bacillus anthracis (BA). These included the: 1) lack of validated sampling methods, and 2) need to use statistical sampling to quantify the confidence of no contamination when all samples have negative results. Critical to addressing these concerns is quantifying the probability of correct detection (PCD) (or equivalently the false negative rate FNR = 1 ? PCD). The PCD/FNR may depend on the 1) method of contaminant deposition, 2) surface concentration of the contaminant, 3) surface material being sampled, 4) sample collection method, 5) sample storage/transportation conditions, 6) sample processing method, and 7) sample analytical method. A review of the literature found 17 laboratory studies that focused on swab, wipe, or vacuum samples collected from a variety of surface materials contaminated by BA or a surrogate, and used culture methods to determine the surface contaminant concentration. These studies quantified performance of the sampling and analysis methods in terms of recovery efficiency (RE) and not PCD/FNR (which left a major gap in available information). Quantifying the PCD/FNR under a variety of conditions is a key aspect of validating sample and analysis methods, and also for calculating the confidence in characterization or clearance decisions based on a statistical sampling plan. A laboratory study was planned to partially fill the gap in PCD/FNR results. This report documents the experimental design developed by Pacific Northwest National Laboratory and Sandia National Laboratories (SNL) for a sponge-wipe method. The study will investigate the effects on key response variables from six surface materials contaminated with eight surface concentrations of a BA surrogate (Bacillus atrophaeus). The key response variables include measures of the contamination on test coupons of surface materials tested, contamination recovered from coupons by sponge-wipe samples, RE, and PCD/FNR. The experimental design involves 16 test runs, to be performed in two blocks of eight runs. Three surface materials (stainless steel, vinyl tile, and ceramic tile) were tested in the first block, while three other surface materials (plastic, painted wood paneling, and faux leather) will be tested in the second block. The eight surface concentrations of the surrogate were randomly assigned to test runs within each block. Some of the concentrations will be very low and may present challenges for deposition, sampling, and analysis. However, such tests are needed to investigate RE and PCD/FNR over the full range of concentrations of interest. In each run, there will be 10 test coupons of each of the three surface materials. A positive control sample will be generated prior to each test sample. The positive control results will be used to 1) calculate RE values for the wipe sampling and analysis method, and 2) fit RE- and PCD-concentration equations, for each of the six surface materials. Data analyses will support 1) estimating the PCD for each combination of contaminant concentration and surface material, 2) estimating the surface concentrations and their uncertainties of the contaminant for each combination of concentration and surface material, 3) estimating RE (%) and their uncertainties for each combination of contaminant concentration and surface material, 4) fitting PCD-concentration and RE-concentration equations for each of the six surface materials, 5) assessing goodness-of-fit of the equations, and 6) quantifying the uncertainty in PCD and RE predictions made with the fitted equations.

Piepel, Gregory F.; Amidan, Brett G.; Krauter, Paula; Einfeld, Wayne

2010-12-16T23:59:59.000Z

99

Experimental Design for a Sponge-Wipe Study to Relate the Recovery Efficiency and False Negative Rate to the Concentration of a Bacillus anthracis Surrogate for Six Surface Materials  

SciTech Connect (OSTI)

Two concerns were raised by the Government Accountability Office following the 2001 building contaminations via letters containing Bacillus anthracis (BA). These included the: 1) lack of validated sampling methods, and 2) need to use statistical sampling to quantify the confidence of no contamination when all samples have negative results. Critical to addressing these concerns is quantifying the false negative rate (FNR). The FNR may depend on the 1) method of contaminant deposition, 2) surface concentration of the contaminant, 3) surface material being sampled, 4) sample collection method, 5) sample storage/transportation conditions, 6) sample processing method, and 7) sample analytical method. A review of the literature found 17 laboratory studies that focused on swab, wipe, or vacuum samples collected from a variety of surface materials contaminated by BA or a surrogate, and used culture methods to determine the surface contaminant concentration. These studies quantified performance of the sampling and analysis methods in terms of recovery efficiency (RE) and not FNR (which left a major gap in available information). Quantifying the FNR under a variety of conditions is a key aspect of validating sample and analysis methods, and also for calculating the confidence in characterization or clearance decisions based on a statistical sampling plan. A laboratory study was planned to partially fill the gap in FNR results. This report documents the experimental design developed by Pacific Northwest National Laboratory and Sandia National Laboratories (SNL) for a sponge-wipe method. The testing was performed by SNL and is now completed. The study investigated the effects on key response variables from six surface materials contaminated with eight surface concentrations of a BA surrogate (Bacillus atrophaeus). The key response variables include measures of the contamination on test coupons of surface materials tested, contamination recovered from coupons by sponge-wipe samples, RE, and FNR. The experimental design involves 16 test runs, performed in two blocks of eight runs. Three surface materials (stainless steel, vinyl tile, and ceramic tile) were tested in the first block, while three other surface materials (plastic, painted wood paneling, and faux leather) were tested in the second block. The eight surface concentrations of the surrogate were randomly assigned to test runs within each block. Some of the concentrations were very low and presented challenges for deposition, sampling, and analysis. However, such tests are needed to investigate RE and FNR over the full range of concentrations of interest. In each run, there were 10 test coupons of each of the three surface materials. A positive control sample was generated at the same time as each test sample. The positive control results will be used to 1) calculate RE values for the wipe sampling and analysis method, and 2) fit RE- and FNR-concentration equations, for each of the six surface materials. Data analyses will support 1) estimating the FNR for each combination of contaminant concentration and surface material, 2) estimating the surface concentrations and their uncertainties of the contaminant for each combination of concentration and surface material, 3) estimating RE (%) and their uncertainties for each combination of contaminant concentration and surface material, 4) fitting FNR-concentration and RE-concentration equations for each of the six surface materials, 5) assessing goodness-of-fit of the equations, and 6) quantifying the uncertainty in FNR and RE predictions made with the fitted equations.

Piepel, Gregory F.; Amidan, Brett G.; Krauter, Paula; Einfeld, Wayne

2011-05-01T23:59:59.000Z

100

Waste Heat Recovery  

Office of Environmental Management (EM)

DRAFT - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. Introduction to the TechnologySystem ......

Note: This page contains sample records for the topic "increase recovery rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Recovery Act Project Stories  

Broader source: Energy.gov [DOE]

Funded by the American Recovery and Reinvestment Act, these Federal Energy Management Program (FEMP) projects exemplify the range of technical assistance provided to federal agencies.

102

Process and apparatus for recovery of fissionable materials from spent reactor fuel by anodic dissolution  

DOE Patents [OSTI]

An electrochemical process and apparatus for the recovery of uranium and plutonium from spent metal clad fuel pins is disclosed. The process uses secondary reactions between U.sup.+4 cations and elemental uranium at the anode to increase reaction rates and improve anodic efficiency compared to prior art processes. In another embodiment of the process, secondary reactions between Cd.sup.+2 cations and elemental uranium to form uranium cations and elemental cadmium also assists in oxidizing the uranium at the anode.

Tomczuk, Zygmunt (Orland Park, IL); Miller, William E. (Naperville, IL); Wolson, Raymond D. (Lockport, IL); Gay, Eddie C. (Park Forest, IL)

1991-01-01T23:59:59.000Z

103

Enhanced oil recovery using flash-driven steamflooding  

DOE Patents [OSTI]

The present invention is directed to a novel steamflooding process which utilizes three specific stages of steam injection for enhanced oil recovery. The three stages are as follows: As steam is being injected into an oil-bearing reservoir through an injection well, the production rate of a production well located at a distance from the injection well is gradually restricted to a point that the pressure in the reservoir increases at a predetermined rate to a predetermined maximum value. After the maximum pressure has been reached, the production rate is increased to a value such that the predetermined maximum pressure value is maintained. Production at maximum pressure is continued for a length of time that will be unique for each individual reservoir. In some cases, this step of the steamflooding process of the invention may be omitted entirely. In the third stage of the steamflooding process of the invention, production rates at the producing well are increased gradually to allow the pressure to decrease down from the maximum pressure value to the original pressure value at the producing well. The rate of pressure reduction will be unique for each reservoir. After completing stage three, the three stages can be repeated or the steamflood may be terminated as considered desirable.

Roark, Steven D. (Bartlesville, OK)

1990-01-01T23:59:59.000Z

104

Economic Implementation and Optimization of Secondary Oil Recovery  

SciTech Connect (OSTI)

The St Mary West Barker Sand Unit (SMWBSU or Unit) located in Lafayette County, Arkansas was unitized for secondary recovery operations in 2002 followed by installation of a pilot injection system in the fall of 2003. A second downdip water injection well was added to the pilot project in 2005 and 450,000 barrels of saltwater has been injected into the reservoir sand to date. Daily injection rates have been improved over initial volumes by hydraulic fracture stimulation of the reservoir sand in the injection wells. Modifications to the injection facilities are currently being designed to increase water injection rates for the pilot flood. A fracture treatment on one of the production wells resulted in a seven-fold increase of oil production. Recent water production and increased oil production in a producer closest to the pilot project indicates possible response to the water injection. The reservoir and wellbore injection performance data obtained during the pilot project will be important to the secondary recovery optimization study for which the DOE grant was awarded. The reservoir characterization portion of the modeling and simulation study is in progress by Strand Energy project staff under the guidance of University of Houston Department of Geosciences professor Dr. Janok Bhattacharya and University of Texas at Austin Department of Petroleum and Geosystems Engineering professor Dr. Larry W. Lake. A geologic and petrophysical model of the reservoir is being constructed from geophysical data acquired from core, well log and production performance histories. Possible use of an outcrop analog to aid in three dimensional, geostatistical distribution of the flow unit model developed from the wellbore data will be investigated. The reservoir model will be used for full-field history matching and subsequent fluid flow simulation based on various injection schemes including patterned water flooding, addition of alkaline surfactant-polymer (ASP) to the injected water, and high pressure air injection (HPAI) for in-situ low temperature oxidization (LTO) will be studied for optimization of the secondary recovery process.

Cary D. Brock

2006-01-09T23:59:59.000Z

105

Wettability and Oil Recovery by Imbibition and Viscous Displacement from Fractured and Heterogeneous Carbonates  

SciTech Connect (OSTI)

About one-half of U.S. oil reserves are held in carbonate formations. The remaining oil in carbonate reservoirs is regarded as the major domestic target for improved oil recovery. Carbonate reservoirs are often fractured and have great complexity even at the core scale. Formation evaluation and prediction is often subject to great uncertainty. This study addresses quantification of crude oil/brine/rock interactions and the impact of reservoir heterogeneity on oil recovery by spontaneous imbibition and viscous displacement from pore to field scale. Wettability-alteration characteristics of crude oils were measured at calcite and dolomite surfaces and related to the properties of the crude oils through asphaltene content, acid and base numbers, and refractive index. Oil recovery was investigated for a selection of limestones and dolomites that cover over three orders of magnitude in permeability and a factor of four variation in porosity. Wettability control was achieved by adsorption from crude oils obtained from producing carbonate reservoirs. The induced wettability states were compared with those measured for reservoir cores. The prepared cores were used to investigate oil recovery by spontaneous imbibition and viscous displacement. The results of imbibition tests were used in wettability characterization and to develop mass transfer functions for application in reservoir simulation of fractured carbonates. Studies of viscous displacement in carbonates focused on the unexpected but repeatedly observed sensitivity of oil recovery to injection rate. The main variables were pore structure, mobility ratio, and wettability. The potential for improved oil recovery from rate-sensitive carbonate reservoirs by increased injection pressure, increased injectivity, decreased well spacing or reduction of interfacial tension was evaluated.

Norman R. Morrow; Jill Buckley

2006-04-01T23:59:59.000Z

106

Supervisory Control and Data Acquisition System Design for CO2 Enhanced Oil Recovery  

E-Print Network [OSTI]

with low production rates such as CO2 enhanced oil recovery (EOR). This paper proposes a SCADA systemSupervisory Control and Data Acquisition System Design for CO2 Enhanced Oil Recovery Xie Lu College

Sekhon, Jasjeet S.

107

BPA proposes rate increase to bolster  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Station, the region's only nuclear power plant. This fuel purchase agreement, the Depleted Uranium Enrichment Program, reduces costs by 22 million per year. In addition, Energy...

108

BPA proposes rate increase to bolster  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScience Program CumulusA tC:\Documents and Settings\mxk9505\Local5 12

109

Small Business Administration Recovery Act Implementation | Department...  

Broader source: Energy.gov (indexed) [DOE]

Small Business Administration Recovery Act Implementation Small Business Administration Recovery Act Implementation Small Business Administration Recovery Act Implementation Small...

110

Recovery Boiler Corrosion Chemistry  

E-Print Network [OSTI]

11/13/2014 1 Recovery Boiler Corrosion Chemistry Sandy Sharp and Honghi Tran Symposium on Corrosion of a recovery boiler each cause their own forms of corrosion and cracking Understanding the origin of the corrosive conditions enables us to operate a boiler so as to minimize corrosion and cracking select

Das, Suman

111

Mass and Heat Recovery  

E-Print Network [OSTI]

In the last few years heat recovery was under spot and in air conditioning fields usually we use heat recovery by different types of heat exchangers. The heat exchanging between the exhaust air from the building with the fresh air to the building...

Hindawai, S. M.

2010-01-01T23:59:59.000Z

112

Jobs Creation Economic Recovery  

E-Print Network [OSTI]

Commission (Energy Commission) collects the American Recovery and Reinvestment Act of 2009 (ARRA) jobs creation and retention data (jobs data) from its subrecipients through the Energy Commission's ARRAJobs Creation and Economic Recovery Prompt, Fair, and Reasonable Use of ARRA Funds Subrecipient

113

Reactivation of an Idle Lease to Increase Heavy Oil Recovery Through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect (OSTI)

A previously idle portion of the Midway-Sunset field, the ARCO Western Energy Pru Fee property, is being brought back into commercial production through tight integration of geologic characterization, geostatistical modeling, reservoir simulation, and petroleum engineering. This property, shut-in over a decade ago as economically marginal using conventional cyclic steaming methods, has a 200-300 foot thick oil column in the Monarch Sand. However, the sand lacks effective steam barriers and has a thick water-saturation zone above the oil-water contact. These factors require an innovative approach to steam flood production design that will balance optimal total oil production against economically viable steam-oil ratios and production rates. The methods used in the Class III demonstration are accessible to most operators in the Midway-Sunset field and could be used to revitalize properties with declining production of heavy oils throughout the region.

Steven Schamel

1998-03-20T23:59:59.000Z

114

Recovery Act Funds at Work  

Broader source: Energy.gov [DOE]

Funds from the American Recovery and Reinvestment Act of 2009 (Recovery Act) are being put to work to improve safety, reliability, and service in systems across the country. Here are case studies from a variety of Recovery Act programs.

115

Geomechanical Study of Bakken Formation for Improved Oil Recovery  

SciTech Connect (OSTI)

On October 1, 2008 US DOE-sponsored research project entitled “Geomechanical Study of Bakken Formation for Improved Oil Recovery” under agreement DE-FC26-08NT0005643 officially started at The University of North Dakota (UND). This is the final report of the project; it covers the work performed during the project period of October 1, 2008 to December 31, 2013. The objectives of this project are to outline the methodology proposed to determine the in-situ stress field and geomechanical properties of the Bakken Formation in Williston Basin, North Dakota, USA to increase the success rate of horizontal drilling and hydraulic fracturing so as to improve the recovery factor of this unconventional crude oil resource from the current 3% to a higher level. The success of horizontal drilling and hydraulic fracturing depends on knowing local in-situ stress and geomechanical properties of the rocks. We propose a proactive approach to determine the in-situ stress and related geomechanical properties of the Bakken Formation in representative areas through integrated analysis of field and well data, core sample and lab experiments. Geomechanical properties are measured by AutoLab 1500 geomechanics testing system. By integrating lab testing, core observation, numerical simulation, well log and seismic image, drilling, completion, stimulation, and production data, in-situ stresses of Bakken formation are generated. These in-situ stress maps can be used as a guideline for future horizontal drilling and multi-stage fracturing design to improve the recovery of Bakken unconventional oil.

Ling, Kegang; Zeng, Zhengwen; He, Jun; Pei, Peng; Zhou, Xuejun; Liu, Hong; Huang, Luke; Ostadhassan, Mehdi; Jabbari, Hadi; Blanksma, Derrick; Feilen, Harry; Ahmed, Salowah; Benson, Steve; Mann, Michael; LeFever, Richard; Gosnold, Will

2013-12-31T23:59:59.000Z

116

Solvent recycle/recovery  

SciTech Connect (OSTI)

This report describes Phase I of the Solvent Recycle/Recovery Task of the DOE Chlorinated Solvent Substitution Program for the US Air Force by the Idaho National Engineering Laboratory, EG G Idaho, Inc., through the US Department of Energy, Idaho Operations Office. The purpose of the task is to identify and test recovery and recycling technologies for proposed substitution solvents identified by the Biodegradable Solvent Substitution Program and the Alternative Solvents/Technologies for Paint Stripping Program with the overall objective of minimizing hazardous wastes. A literature search to identify recycle/recovery technologies and initial distillation studies has been conducted. 4 refs.

Paffhausen, M.W.; Smith, D.L.; Ugaki, S.N.

1990-09-01T23:59:59.000Z

117

Oil recovery enhancement from fractured, low permeability reservoirs. Annual report 1990--1991, Part 1  

SciTech Connect (OSTI)

Joint funding by the Department of Energy and the State of Texas has Permitted a three year, multi-disciplinary investigation to enhance oil recovery from a dual porosity, fractured, low matrix permeability oil reservoir to be initiated. The Austin Chalk producing horizon trending thru the median of Texas has been identified as the candidate for analysis. Ultimate primary recovery of oil from the Austin Chalk is very low because of two major technological problems. The commercial oil producing rate is based on the wellbore encountering a significant number of natural fractures. The prediction of the location and frequency of natural fractures at any particular region in the subsurface is problematical at this time, unless extensive and expensive seismic work is conducted. A major portion of the oil remains in the low permeability matrix blocks after depletion because there are no methods currently available to the industry to mobilize this bypassed oil. The following multi-faceted study is aimed to develop new methods to increase oil and gas recovery from the Austin Chalk producing trend. These methods may involve new geological and geophysical interpretation methods, improved ways to study production decline curves or the application of a new enhanced oil recovery technique. The efforts for the second year may be summarized as one of coalescing the initial concepts developed during the initial phase to more in depth analyses. Accomplishments are predicting natural fractures; relating recovery to well-log signatures; development of the EOR imbibition process; mathematical modeling; and field test.

Poston, S.W.

1991-12-31T23:59:59.000Z

118

Enhanced oil recovery in Rumania  

SciTech Connect (OSTI)

The wide oil field experience of the Romanian oil men in producing hydrocarbon reservoirs is based on an old tradition, but only after 1945 reservoir engineering studies were started in Romania. Beginning with 1950 conventional recovery methods expanded continually. During the last 10 years, however, the crude oil, as energy resource, has become of tremendous importance. The need for increasing the ultimate oil recovery has been felt in Romania as everywhere else. To attain this goal EOR methods were and are tested and expanded on a commercial scale. The paper describes the application of the fire-floods to a broad range of Romanian oil reservoirs and crude properties and reviews the field tests of polymer flooding, surfactant flooding and alkaline flooding. A commercial scale project with cyclic steam injection is presented and also the use of the domestic CO/sub 2/ sources to enhance oil recovery. The results and the diffuculties encountered are briefly discussed and also the potential of EOR methods in Romania are presented.

Carcoana, A.N.

1982-01-01T23:59:59.000Z

119

Imbibition assisted oil recovery  

E-Print Network [OSTI]

analyzed in detail to investigate oil recovery during spontaneous imbibition with different types of boundary conditions. The results of these studies have been upscaled to the field dimensions. The validity of the new definition of characteristic length...

Pashayev, Orkhan H.

2004-11-15T23:59:59.000Z

120

Recovery Efficiency Test Project: Phase 1, Activity report  

SciTech Connect (OSTI)

The recovery Efficiency Test well project addressed a number of technical issues. The primary objective was to determine the increased efficiency gas recovery of a long horizontal wellbore over that of a vertical wellbore and, more specifically, what improvements can be expected from inducing multiple hydraulic fractures from such a wellbore. BDM corporation located, planned, and drilled a long radius turn horizontal well in the Devonian shale Lower Huron section in Wayne County, West Virginia, demonstrating that state-of-the-art technology is capable of drilling such wells. BDM successfully tested drilling, coring, and logging in a horizontal well using air as the circulating medium; conducted reservoir modeling studies to protect flow rates and reserves in advance of drilling operations; observed two phase flow conditions in the wellbore not observed previously; cored a fracture zone which produced gas; observed that fractures in the core and the wellbore were not systematically spaced (varied from 5 to 68 feet in different parts of the wellbore); observed that highest gas show rates reported by the mud logger corresponded to zone with lowest fracture spacing (five feet) or high fracture frequency. Four and one-half inch casting was successfully installed in the borehole and was equipped to isolate the horizontal section into eight (8) zones for future testing and stimulation operations. 6 refs., 48 figs., 10 tabs.

Overbey, W.K. Jr.; Carden, R.S.; Kirr, J.N.

1987-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "increase recovery rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Alternate Materials for Recovery Boiler Superheater Tubes  

SciTech Connect (OSTI)

The ever escalating demands for increased efficiency of all types of boilers would most sensibly be realized by an increase in the steam parameters of temperature and pressure. However, materials and corrosion limitations in the steam generating components, particularly the superheater tubes, present major obstacles to boiler designers in achieving systems that can operate under the more severe conditions. This paper will address the issues associated with superheater tube selection for many types of boilers; particularly chemical recovery boilers, but also addressing the similarities in issues for biomass and coal fired boilers. It will also review our recent study of materials for recovery boiler superheaters. Additional, more extensive studies, both laboratory and field, are needed to gain a better understanding of the variables that affect superheater tube corrosion and to better determine the best means to control this corrosion to ultimately permit operation of recovery boilers at higher temperatures and pressures.

Keiser, James R [ORNL; Kish, Joseph [McMaster University; Singbeil, Douglas [FPInnovations

2009-01-01T23:59:59.000Z

122

Experimental study of Morichal heavy oil recovery using combined steam and propane injection  

E-Print Network [OSTI]

with steam (for the purpose of increasing steam recovery efficiency) are being evaluated. An experimental study has been performed to investigate the effect of combined steam and propane injection on recovery of heavy oil from the Morichal field, Venezuela...

Goite Marcano, Jose Gregorio

1999-01-01T23:59:59.000Z

123

DOE Award Results in Several Patents, Potential Increased Coal Recovery  

Broader source: Energy.gov [DOE]

A $13 million cooperative effort with the Office of Fossil Energy's National Energy Technology Laboratory (NETL) over the past seven years has resulted in the successful demonstration of a novel technology that addresses a problem plaguing coal operators and environmentalists alike: separating fine coal particles from water and their ultimate use as a significant energy resource.

124

Improved oil recovery in fluvial dominated deltaic reservoirs of Kansas -- Near term. Quarterly report, June 30--September 30, 1995  

SciTech Connect (OSTI)

The objective of this project is to address waterflood problems of the type found in Cherokee Group reservoirs in southeastern Kansas and in Morrow sandstone reservoirs in southwestern Kansas. Two demonstration sites operated by different independent oil operators are involved in the project. General topics to be addressed will be (1) reservoir management and performance evaluation; (2) waterflood optimization, and (3) the demonstration of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. The reservoir management portion of the project will involve performance evaluation and will include such work as (1) reservoir characterization and the development of a reservoir database, (2) identification of operational problems, (3) identification of near wellbore problems, (4) identification of unrecovered mobile oil and estimation of recovery factors, and (5) identification of the most efficient and economical recovery process. The waterflood optimization portion of the project involves only the Nelson Lease. It will be based on the performance evaluation and will involve (1) design and implementation of a water cleanup system for the waterflood, (2) application of well remedial work such as polymer gel treatments to improve vertical sweep efficiency, and (3) changes in waterflood patterns to increase sweep efficiency. Finally, it is planned to implement an improved recovery process on both field demonstration sites.

Green, D.W.; Willhite, G.P.; Walton, A.; Schoeling, L.; Reynolds, R.; Michnick, M.; Watney, L.

1995-10-15T23:59:59.000Z

125

Thermal Recovery Methods  

SciTech Connect (OSTI)

Thermal Recovery Methods describes the basic concepts of thermal recovery and explains the injection patterns used to exploit reservoir conditions. Basic reservoir engineering is reviewed with an emphasis on changes in flow characteristics caused by temperature. The authors discuss an energy balance for steam and combustion drive, and they explain in situ reactions. Heat loss, combustion drive, and steam displacement also are examined in detail, as well as cyclic steam injection, downhole ignition, well heating, and low-temperature oxidation. Contents: Thermal processes; Formation and reservoir evaluations; Well patterns and spacing; Flow and process equations; Laboratory simulation of thermal recovery; Heat loss and transmission; Displacement and production; Equipment; Basic data for field selection; Laboratory evaluation of combustion characteristics; Thermal properties of reservoirs and fluids.

White, P.D.; Moss, J.T.

1983-01-01T23:59:59.000Z

126

Enhanced coalbed methane recovery  

SciTech Connect (OSTI)

The recovery of coalbed methane can be enhanced by injecting CO{sub 2} in the coal seam at supercritical conditions. Through an in situ adsorption/desorption process the displaced methane is produced and the adsorbed CO{sub 2} is permanently stored. This is called enhanced coalbed methane recovery (ECBM) and it is a technique under investigation as a possible approach to the geological storage of CO{sub 2} in a carbon dioxide capture and storage system. This work reviews the state of the art on fundamental and practical aspects of the technology and summarizes the results of ECBM field tests. These prove the feasibility of ECBM recovery and highlight substantial opportunities for interdisciplinary research at the interface between earth sciences and chemical engineering.

Mazzotti, M.; Pini, R.; Storti, G. [ETH, Zurich (Switzerland). Inst. of Process Engineering

2009-01-15T23:59:59.000Z

127

UNDERSTANDING THE EFFECT OF DYNAMIC FEED CONDITIONS ON WATER RECOVERY FROM IC ENGINE EXHAUST BY CAPILLARY CONDENSATION WITH INORGANIC MEMBRANES  

SciTech Connect (OSTI)

An inorganic membrane water recovery concept is evaluated as a method to recovering water from the exhaust of an internal combustion engine. Integrating the system on-board a vehicle would create a self-sustaining water supply that would make engine water injection technologies consumer transparent . In laboratory experiments, water recovery from humidified air was measured to evaluate how different operating parameters affect the membrane system s efficiency. The observed impact of transmembrane pressure and gas flow rate suggest that gas residence time is more important than water flux through the membrane. Heat transfer modeling suggests that increasing membrane length can be used to improve efficiency and allow greater flow per membrane, an important parameter for practical applications where space is limited. The membrane water recovery concept was also experimentally validated by extracting water from diesel exhaust coming from a stationary generator. The insight afforded by these studies provides a basis for developing improved membrane designs that balance both efficiency and cost.

DeBusk, Melanie Moses [ORNL] [ORNL; Bischoff, Brian L [ORNL] [ORNL; Hunter, James A [ORNL] [ORNL; Klett, James William [ORNL] [ORNL; Nafziger, Eric J [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL

2014-01-01T23:59:59.000Z

128

The Economic Recovery Tax Act of 1981.  

E-Print Network [OSTI]

The Texas A&M University System Texas Agricultural Extension Service Zerle L. Carpenter, Director College Station B-1456 The Economic Recovery Tax Act of 1981 Better Estate Plannin CONTENTS Increase in Unified Credit... .................................................................... 7 Repeal of Orphans' Exclusion ............................................................. 7 Delay in the Imposition of New Generation-Skipping Tax .................................... 7 Technical Changes in Special Use Valuation Provisions...

Pena, Jose G.; Lovell, Ashley C.; Kensing, Robert H.

1983-01-01T23:59:59.000Z

129

Recovery Act Recipient Data | Department of Energy  

Office of Environmental Management (EM)

Recovery Act Recipient Data Recovery Act Recipient Data A listing of all Recovery Act recipients and their allocations. Updated weekly. recoveryactfunding.xls More Documents &...

130

Some Thoughts on Econometric Information Recovery  

E-Print Network [OSTI]

Paper 1135 Some Thoughts on Econometric Information Recoverys). Some Thoughts on Econometric Information Recovery GeorgeTheoretic Approach To Econometric Information Recovery

Judge, George G.

2013-01-01T23:59:59.000Z

131

Inherently safe in situ uranium recovery  

DOE Patents [OSTI]

An in situ recovery of uranium operation involves circulating reactive fluids through an underground uranium deposit. These fluids contain chemicals that dissolve the uranium ore. Uranium is recovered from the fluids after they are pumped back to the surface. Chemicals used to accomplish this include complexing agents that are organic, readily degradable, and/or have a predictable lifetime in an aquifer. Efficiency is increased through development of organic agents targeted to complexing tetravalent uranium rather than hexavalent uranium. The operation provides for in situ immobilization of some oxy-anion pollutants under oxidizing conditions as well as reducing conditions. The operation also artificially reestablishes reducing conditions on the aquifer after uranium recovery is completed. With the ability to have the impacted aquifer reliably remediated, the uranium recovery operation can be considered inherently safe.

Krumhansl, James L; Brady, Patrick V

2014-04-29T23:59:59.000Z

132

Challenges in Industrial Heat Recovery  

E-Print Network [OSTI]

This presentation will address several completed and working projects involving waste heat recovery in a chemical plant. Specific examples will be shown and some of the challenges to successful implementation and operation of heat recovery projects...

Dafft, T.

2007-01-01T23:59:59.000Z

133

Can You Afford Heat Recovery?  

E-Print Network [OSTI]

many companies to venture into heat recovery projects without due consideration of the many factors involved. Many of these efforts have rendered less desirable results than expected. Heat recovery in the form of recuperation should be considered...

Foust, L. T.

1983-01-01T23:59:59.000Z

134

[Waste water heat recovery system  

SciTech Connect (OSTI)

The production capabilities for and field testing of the heat recovery system are described briefly. Drawings are included.

Not Available

1993-04-28T23:59:59.000Z

135

Evaluation of solvent-based in situ processes for upgrading and recovery of heavy oil bitumen  

SciTech Connect (OSTI)

Solvent-based in situ recovery processes have been proposed as lower cost alternatives to thermal processes for recovery of heavy oil and bitumen. Advantages of solvent based processes are: reduced steam requirements, reduced water treating, and in situ upgrading of the produced oil. Lab results and process calculations show that low-pressure, low-energy solvent-based in situ processes have considerable technical and economic potential for upgrading and recovery of bitumen and heavy oil. In a lab flow test using Athabasca tar sand and propane as solvent, 50 percent of the bitumen was recovered as upgraded oil. Relative to the raw bitumen, API gravity increased by about 10{degrees}API, viscosity was reduced 30-fold, sulfur content was reduced about 50 percent, and metals content was also substantially reduced. Process uncertainties that will have a major impact on economics are: (1) oil production rate, (2) oil recovery, (3) extent of in situ upgrading, and (4) solvent losses. Additional lab development and field testing are required to reduce these process uncertainties and to predict commercial-scale economics.

Duerksen, J.H.; Eloyan, A. [Chevron Petroleum Technology Co., La Habra, CA (United States)

1995-12-31T23:59:59.000Z

136

Driving Functional Behavioral Recovery Using Activity-Dependent Stimulation  

E-Print Network [OSTI]

The purpose of this project was to determine if artificially linking spared motor and sensory areas following a cortical lesion would lead to increased behavioral recovery on a skilled reaching task. Sensory-motor integration is critical for skilled...

Guggenmos, David

2012-12-31T23:59:59.000Z

137

Elemental sulfur recovery process  

DOE Patents [OSTI]

An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO[sub 2] in the regenerator off gas stream to elemental sulfur in the presence of a catalyst. 4 figures.

Flytzani-Stephanopoulos, M.; Zhicheng Hu.

1993-09-07T23:59:59.000Z

138

Recovery Boiler Modeling  

E-Print Network [OSTI]

, east, e, west, w, bot tom, b, and top, t, neighbors. The neighboring cou pling coefficients (an, a., .. , etc) express the magnitudes of the convection and diffusion which occur across the control volume boundaries. The variable b p represents... represents a model of one half of the recovery boiler. The boiler has three air levels. The North, South and East boundaries of the computational domain represent the water walls of the boiler. The West boundary represents a symmetry plane. It should...

Abdullah, Z.; Salcudean, M.; Nowak, P.

139

Waste Heat Recovery Opportunities for Thermoelectric Generators...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Waste Heat Recovery Opportunities for Thermoelectric Generators Waste Heat Recovery Opportunities for Thermoelectric Generators Thermoelectrics have unique advantages for...

140

ARM - Recovery Act  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosionAnnouncementsgovMeasurementsgovPublicationsPublicgovAboutRecovery

Note: This page contains sample records for the topic "increase recovery rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

ARM - Recovery Act Instruments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC :ProductsSCM Forcing Data DerivedInstruments Related Links RelatedActRecovery

142

Recovery Boiler Superheater Ash Corrosion Field Study  

SciTech Connect (OSTI)

With the trend towards increasing the energy efficiency of black liquor recovery boilers operated in North America, there is a need to utilize superheater tubes with increased corrosion resistance that will permit operation at higher temperatures and pressures. In an effort to identify alloys with improved corrosion resistance under more harsh operating conditions, a field exposure was conducted that involved the insertion of an air-cooled probe, containing six candidate alloys, into the superheater section of an operating recovery boiler. A metallographic examination, complete with corrosion scale characterization using EMPA, was conducted after a 1,000 hour exposure period. Based on the results, a ranking of alloys based on corrosion performance was obtained.

Keiser, James R [ORNL] [ORNL; Kish, Joseph [McMaster University] [McMaster University; Singbeil, Douglas [FPInnovations] [FPInnovations

2010-01-01T23:59:59.000Z

143

Improved Oil Recovery in Fluvial Dominated Deltaic Reservoirs of Kansas - Near-Term  

SciTech Connect (OSTI)

The objective of this project is to address waterflood problems of the type found in Morrow sandstone reservoirs in southwestern Kansas and in Cherokee Group reservoirs in southeastern Kansas. Two demonstration sites operated by different independent oil operators are involved in this project. The Stewart Field is located in Finney County, Kansas and is operated by PetroSantander, Inc. Te Nelson Lease is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. General topics to be addressed are (1) reservoir management and performance evaluation, (2) waterflood optimization, and (3) the demonstration of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. In the Stewart Project, the reservoir management portion of the project conducted during Budget Period 1 involved performance evaluation. This included (1) reservoir characterization and the development of a reservoir database, (2) volumetric analysis to evaluate production performance, (3) reservoir modeling, (4) laboratory work, (5) identification of operational problems, (6) identification of unrecovered mobile oil and estimation of recovery factors, and (7) identification of the most efficient and economical recovery process. To accomplish these objectives the initial budget period was subdivided into three major tasks. The tasks were (1) geological and engineering analysis, (2) laboratory testing, and (3) unitization. Due to the presence of different operators within the field, it was necessary to unitize the field in order to demonstrate a field-wide improved recovery process. This work was completed and the project moved into Budget Period 2.

Green, D.W.; McCune, D.; Michnick, M.; Reynolds, R.; Walton, A.; Watney, L.; Willhite G.P.

1999-10-29T23:59:59.000Z

144

Improved Oil Recovery in Fluvial Dominated Deltaic Reservoirs of Kansas - Near-Term  

SciTech Connect (OSTI)

The objective of this project is to address waterflood problems of the type found in Morrow sandstone reservoirs in southwestern Kansas and in Cherokee Group reservoirs in southeastern Kansas. Two demonstration sites operated by different independent oil operators are involved in this project. The Stewart Field is located in Finney County, Kansas and is operated by PetroSantander, Inc. Te Nelson Lease is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. General topics to be addressed are (1) reservoir management and performance evaluation, (2) waterflood optimization, and (3) the demonstration of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. In the Stewart Project, the reservoir management portion of the project conducted during Budget Period 1 involved performance evaluation. This included (1) reservoir characterization and the development of a reservoir database, (2) volumetric analysis to evaluate production performance, (3) reservoir modeling, (4) laboratory work, (5) identification of operational problems, (6) identification of unrecovered mobile oil and estimation of recovery factors, and (7) Identification of the most efficient and economical recovery process. To accomplish these objectives the initial budget period was subdivided into three major tasks. The tasks were (1) geological and engineering analysis, (2) laboratory testing, and (3) unitization. Due to the presence of different operators within the field, it was necessary to unitize the field in order to demonstrate a field-wide improved recovery process. This work was completed and the project moved into Budget Period 2.

Green, Don W.; McCune, A.D.; Michnick, M.; Reynolds, R.; Walton, A.; Watney, L.; Willhite, G. Paul

1999-11-03T23:59:59.000Z

145

Metal recovery from porous materials  

DOE Patents [OSTI]

A method for recovering plutonium and other metals from materials by leaching comprising the steps of incinerating the materials to form a porous matrix as the residue of incineration, immersing the matrix into acid in a microwave-transparent pressure vessel, sealing the pressure vessel, and applying microwaves so that the temperature and the pressure in the pressure vessel increase. The acid for recovering plutonium can be a mixture of HBF.sub.4 and HNO.sub.3 and preferably the pressure is increased to at least 100 PSI and the temperature to at least 200.degree. C. The porous material can be pulverized before immersion to further increase the leach rate.

Sturcken, Edward F. (P.O. Box 900, Isle of Palms, SC 29451)

1992-01-01T23:59:59.000Z

146

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

three Recovery Act-funded Smart Grid Investment Grant (SGIG) projects. February 28, 2014 Smart Meter Investments Yield Positive Results in Maine Central Maine Power's (CMP) SGIG...

147

Economic Recovery Loan Program (Maine)  

Broader source: Energy.gov [DOE]

The Economic Recovery Loan Program provides subordinate financing to help businesses remain viable and improve productivity. Eligibility criteria are based on ability to repay, and the loan is...

148

Reactivation of an idle lease to increase heavy oil recovery through application of conventional steam drive technology in a low dip slope and basin reservoir in the Midway-Sunset field, San Jaoquin Basin, California. Annual report, June 13, 1995--June 13, 1996  

SciTech Connect (OSTI)

This project reactivates ARCO`s idle Pru Fee lease in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming is being used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase scheduled to begin in January 1997, a continuous steamflood enhanced oil recovery will be initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.

Deo, M.; Jenkins, C.; Sprinkel, D.; Swain, R.; Wydrinski, R.; Schamel, S.

1998-09-01T23:59:59.000Z

149

Biological Kraft Chemical Recycle for Augmentation of Recovery Furnace Capacity  

SciTech Connect (OSTI)

The chemicals used in pulping of wood by the kraft process are recycled in the mill in the recovery furnace, which oxidizes organics while simultaneously reducing sulfate to sulfide. The recovery furnace is central to the economical operation of kraft pulp mills, but it also causes problems. The total pulp production of many mills is limited by the recovery furnace capacity, which cannot easily be increased. The furnace is one of the largest sources of air pollution (as reduced sulfur compounds) in the kraft pulp mill.

Stuart E. Strand

2001-12-06T23:59:59.000Z

150

Energy recovery system  

DOE Patents [OSTI]

The present invention is directed to an improved wet air oxidation system and method for reducing the chemical oxygen demand (COD) of waste water used from scrubbers of coal gasification plants, with this COD reduction being sufficient to effectively eliminate waste water as an environmental pollutant. The improvement of the present invention is provided by heating the air used in the oxidation process to a temperature substantially equal to the temperature in the oxidation reactor before compressing or pressurizing the air. The compression of the already hot air further heats the air which is then passed in heat exchange with gaseous products of the oxidation reaction for "superheating" the gaseous products prior to the use thereof in turbines as the driving fluid. The superheating of the gaseous products significantly minimizes condensation of gaseous products in the turbine so as to provide a substantially greater recovery of mechanical energy from the process than heretofore achieved.

Moore, Albert S. (Morgantown, WV); Verhoff, Francis H. (Morgantown, WV)

1980-01-01T23:59:59.000Z

151

Enhanced oil recovery system  

DOE Patents [OSTI]

All energy resources available from a geopressured geothermal reservoir are used for the production of pipeline quality gas using a high pressure separator/heat exchanger and a membrane separator, and recovering waste gas from both the membrane separator and a low pressure separator in tandem with the high pressure separator for use in enhanced oil recovery, or in powering a gas engine and turbine set. Liquid hydrocarbons are skimmed off the top of geothermal brine in the low pressure separator. High pressure brine from the geothermal well is used to drive a turbine/generator set before recovering waste gas in the first separator. Another turbine/generator set is provided in a supercritical binary power plant that uses propane as a working fluid in a closed cycle, and uses exhaust heat from the combustion engine and geothermal energy of the brine in the separator/heat exchanger to heat the propane.

Goldsberry, Fred L. (Spring, TX)

1989-01-01T23:59:59.000Z

152

Hydraulic waste energy recovery  

SciTech Connect (OSTI)

Water distribution systems are typically a municipality's largest consumer of energy and greatest expense. The water distribution network has varying pressure requirements due to the age of the pipeline and topographical differences. Certain circumstances require installation of pressure reducing devices in the pipeline to lower the water pressure in the system. The consequence of this action is that the hydraulic energy supplied by the high lift or booster pumps is wasted in the process of reducing the pressure. A possible solution to capture the waste hydraulic energy is to install an in-line electricity generating turbine. Energy recovery using in-line turbine systems is an emerging technology. Due to the lack of technical and other relevant information on in-line turbine system installations, questions of constructability and legal issues over the power service contract have yet to be answered. This study seeks to resolve these questions and document the findings so that other communities may utilize this information. 10 figs.

Lederer, C.C.; Thomas, A.H.; McGuire, J.L. (Detroit Buildings and Safety Engineering Dept., MI (USA))

1990-12-01T23:59:59.000Z

153

Speech recovery device  

DOE Patents [OSTI]

There is provided an apparatus and method for assisting speech recovery in people with inability to speak due to aphasia, apraxia or another condition with similar effect. A hollow, rigid, thin-walled tube with semi-circular or semi-elliptical cut out shapes at each open end is positioned such that one end mates with the throat/voice box area of the neck of the assistor and the other end mates with the throat/voice box area of the assisted. The speaking person (assistor) makes sounds that produce standing wave vibrations at the same frequency in the vocal cords of the assisted person. Driving the assisted person's vocal cords with the assisted person being able to hear the correct tone enables the assisted person to speak by simply amplifying the vibration of membranes in their throat.

Frankle, Christen M.

2004-04-20T23:59:59.000Z

154

Metal recovery from porous materials  

DOE Patents [OSTI]

The present invention relates to recovery of metals. More specifically, the present invention relates to the recovery of plutonium and other metals from porous materials using microwaves. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

Sturcken, E.F.

1991-01-01T23:59:59.000Z

155

Energy-efficient modification of reduction-melting for lead recovery from cathode ray tube funnel glass  

SciTech Connect (OSTI)

Highlights: • We recovered Pb from cathode ray tube funnel glass using reduction melting process. • We modified the melting process to achieve Pb recovery with low energy consumption. • Pb in the funnel glass is efficiently recovered at 1000 °C by adding Na{sub 2}CO{sub 3}. • Pb remaining in the glass after reduction melting is extracted with 1 M HCl. • 98% of Pb in the funnel glass was recovered by reduction melting and HCl leaching. - Abstract: Lead can be recovered from funnel glass of waste cathode ray tubes via reduction melting. While low-temperature melting is necessary for reduced energy consumption, previously proposed methods required high melting temperatures (1400 °C) for the reduction melting. In this study, the reduction melting of the funnel glass was performed at 900–1000 °C using a lab-scale reactor with varying concentrations of Na{sub 2}CO{sub 3} at different melting temperatures and melting times. The optimum Na{sub 2}CO{sub 3} dosage and melting temperature for efficient lead recovery was 0.5 g per 1 g of the funnel glass and 1000 °C respectively. By the reduction melting with the mentioned conditions, 92% of the lead in the funnel glass was recovered in 60 min. However, further lead recovery was difficult because the rate of the lead recovery decreased as with the recovery of increasing quantity of the lead from the glass. Thus, the lead remaining in the glass after the reduction melting was extracted with 1 M HCl, and the lead recovery improved to 98%.

Okada, Takashi, E-mail: t-okada@u-fukui.ac.jp; Yonezawa, Susumu

2013-08-15T23:59:59.000Z

156

Rate Schedules  

Broader source: Energy.gov [DOE]

One of the major responsibilities of Southeastern is to design, formulate, and justify rate schedules. Repayment studies prepared by the agency determine revenue requirements and appropriate rate...

157

Uncertainty quantification for CO2 sequestration and enhanced oil recovery  

E-Print Network [OSTI]

This study develops a statistical method to perform uncertainty quantification for understanding CO2 storage potential within an enhanced oil recovery (EOR) environment at the Farnsworth Unit of the Anadarko Basin in northern Texas. A set of geostatistical-based Monte Carlo simulations of CO2-oil-water flow and reactive transport in the Morrow formation are conducted for global sensitivity and statistical analysis of the major uncertainty metrics: net CO2 injection, cumulative oil production, cumulative gas (CH4) production, and net water injection. A global sensitivity and response surface analysis indicates that reservoir permeability, porosity, and thickness are the major intrinsic reservoir parameters that control net CO2 injection/storage and oil/gas recovery rates. The well spacing and the initial water saturation also have large impact on the oil/gas recovery rates. Further, this study has revealed key insights into the potential behavior and the operational parameters of CO2 sequestration at CO2-EOR s...

Dai, Zhenxue; Fessenden-Rahn, Julianna; Middleton, Richard; Pan, Feng; Jia, Wei; Lee, Si-Yong; McPherson, Brian; Ampomah, William; Grigg, Reid

2014-01-01T23:59:59.000Z

158

Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas  

SciTech Connect (OSTI)

The new waste heat and water recovery technology based on a nanoporous ceramic membrane vapor separation mechanism has been developed for power plant flue gas application. The recovered water vapor and its latent heat from the flue gas can increase the power plant boiler efficiency and reduce water consumption. This report describes the development of the Transport Membrane Condenser (TMC) technology in details for power plant flue gas application. The two-stage TMC design can achieve maximum heat and water recovery based on practical power plant flue gas and cooling water stream conditions. And the report includes: Two-stage TMC water and heat recovery system design based on potential host power plant coal fired flue gas conditions; Membrane performance optimization process based on the flue gas conditions, heat sink conditions, and water and heat transport rate requirement; Pilot-Scale Unit design, fabrication and performance validation test results. Laboratory test results showed the TMC system can exact significant amount of vapor and heat from the flue gases. The recovered water has been tested and proved of good quality, and the impact of SO{sub 2} in the flue gas on the membrane has been evaluated. The TMC pilot-scale system has been field tested with a slip stream of flue gas in a power plant to prove its long term real world operation performance. A TMC scale-up design approach has been investigated and an economic analysis of applying the technology has been performed.

Dexin Wang

2012-03-31T23:59:59.000Z

159

The effect of asphalt deposition on recovery of oil by a pentane slug  

E-Print Network [OSTI]

":ty reduction increases, in general, with the increase in amount of, asphalt contained ir the oil. The increases in recovery at breakthrough due to asphalt deposition were noted for four asphaltic crude oils and were compared to those of asphalt-free refined... substantial range, the gain in recovery at breakthrough of asphaltic oils over refined oils of the same viscosity increases with increase in size of slug used. This is attributed to more favorable mobility ratios resulting from asphalt deposition during...

Bhagia, Nanik S

1965-01-01T23:59:59.000Z

160

Bypass valve and coolant flow controls for optimum temperatures in waste heat recovery systems  

DOE Patents [OSTI]

Implementing an optimized waste heat recovery system includes calculating a temperature and a rate of change in temperature of a heat exchanger of a waste heat recovery system, and predicting a temperature and a rate of change in temperature of a material flowing through a channel of the waste heat recovery system. Upon determining the rate of change in the temperature of the material is predicted to be higher than the rate of change in the temperature of the heat exchanger, the optimized waste heat recovery system calculates a valve position and timing for the channel that is configurable for achieving a rate of material flow that is determined to produce and maintain a defined threshold temperature of the heat exchanger, and actuates the valve according to the calculated valve position and calculated timing.

Meisner, Gregory P

2013-10-08T23:59:59.000Z

Note: This page contains sample records for the topic "increase recovery rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Recovery Act Milestones | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Recovery and Reinvestment Act. Update at 200 days, hosted by Matt Rogers, Senior Advisor to Secretary Steven Chu for Recovery Act Implementation. Speakers Matt Rogers...

162

Recovery Act?Transportation Electrification Education Partnership...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Recovery ActTransportation Electrification Education Partnership for Green Jobs and Sustainable Mobility Recovery ActTransportation Electrification Education Partnership for...

163

Optimize carbon dioxide sequestration, enhance oil recovery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate...

164

Bonneville Power Administration Program Specific Recovery Plan...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Bonneville Power Administration Program Specific Recovery Plan Bonneville Power Administration Program Specific Recovery Plan Microsoft Word - PSRP May 15 2009 BPA Final.docx...

165

Wastewater heat recovery apparatus  

DOE Patents [OSTI]

A heat recovery system is described with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature. 6 figs.

Kronberg, J.W.

1992-09-01T23:59:59.000Z

166

Wastewater heat recovery apparatus  

DOE Patents [OSTI]

A heat recovery system with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature.

Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

1992-01-01T23:59:59.000Z

167

SURFACTANT BASED ENHANCED OIL RECOVERY AND FOAM MOBILITY CONTROL  

SciTech Connect (OSTI)

Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. Also, the addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacial tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured, oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine.

George J. Hirasaki; Clarence A. Miller; Gary A. Pope; Richard E. Jackson

2004-02-01T23:59:59.000Z

168

Improved oil recovery in fluvial dominated deltaic reservoirs of Kansas - near-term. Quarterly report, April 1 - June 30, 1996  

SciTech Connect (OSTI)

The objective of this project is to address waterflood problems of the type found in Morrow sandstone reservoirs in southwestern Kansas and Cherokee Group reservoirs in southeastern Kansas. Two demonstration sites, Stewart Field, and Savonburg Field, operated by different independent oil operators are involved in this project. General topics to be addressed are: (1) reservoir management and performance evaluation; (2) waterflood optimization; and (3) the demonstration of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. For the Stewart Field project, work is summarized for the last quarter on waterflood operations and reservoir management. For the Savonburg Field project, work on water plant development, and pattern changes and wellbore cleanup are briefly described.

Green, D.W.; Willhite, G.P.; Walton, A.; Schoeling, L.; Reynolds, R.; Michnick, M.; Watney, L.

1996-07-01T23:59:59.000Z

169

Guided wave acoustic monitoring of corrosion in recovery boiler tubing  

SciTech Connect (OSTI)

Corrosion of tubing used in black-liquor recovery boilers is a major concern in all pulp and paper mills. Extensive corrosion in recovery boiler tubes can result in a significant safety and environmental hazard. Considerable plant resources are expended to inspect recovery boiler tubing. Currently, visual and ultrasonic inspections are primarily used during the annual maintenance shutdown to monitor corrosion rates and cracking of tubing. This Department of Energy, Office of Industrial Technologies project is developing guided acoustic waves for use on recovery boiler tubing. The feature of this acoustic technique is its cost-effectiveness in inspecting long lengths of tubes from a single inspection point. A piezoelectric or electromagnetic transducer induces guided waves into the tubes. The transducer detects fireside defects from the coldside or fireside of the tube. Cracking and thinning on recovery boiler tubes have been detected with this technique in both laboratory and field applications. This technique appears very promising for recovery boiler tube application, potentially expediting annual inspection of tube integrity.

Quarry, M J; Chinn, D J

2004-02-19T23:59:59.000Z

170

Metal recovery from porous materials  

DOE Patents [OSTI]

A method is described for recovering plutonium and other metals from materials by leaching comprising the steps of incinerating the materials to form a porous matrix as the residue of incineration, immersing the matrix into acid in a microwave-transparent pressure vessel, sealing the pressure vessel, and applying microwaves so that the temperature and the pressure in the pressure vessel increase. The acid for recovering plutonium can be a mixture of HBF[sub 4] and HNO[sub 3] and preferably the pressure is increased to at least 100 PSI and the temperature to at least 200 C. The porous material can be pulverized before immersion to further increase the leach rate.

Sturcken, E.F.

1992-10-13T23:59:59.000Z

171

Reactivation of an idle lease to increase heavy oil recovery through application of conventional steam drive technology in a low dip slope and basin reservoir in the Midway-Sunset field, San Joaquin basin, California. Quarterly report, January 1--March 31, 1996  

SciTech Connect (OSTI)

This project will reactivate ARCO`s idle Pru Fee lease in the Midway-Sunset field, California and conduct a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. The objectives of the project are: (1) to return the shut-in portion of the reservoir to commercial production; (2) to accurately describe the reservoir and recovery process; and (3) convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program. The producibility problems initially thought to be responsible for the low recovery in the Pru Fee property are: (a) the shallow dip of the bedding; (b) complex reservoir structure, (c) thinning pay zone; and (d) the presence of bottom water. The project is using tight integration of reservoir characterization and simulation modeling to evaluate the magnitude of and alternative solutions to these problems. Two main activities were brought to completion during the first quarter of 1996: (1) lithologic and petrophysical description of the core taken form the new well Pru 101 near the center of the demonstration site and (2) development of a stratigraphic model for the Pru Fee project area. In addition, the first phase of baseline cyclic steaming of the Pru Fee demonstration site was continued with production tests and formation temperature monitoring.

Schamel, S.

1996-06-28T23:59:59.000Z

172

Heat Recovery Steam Generator Simulation  

E-Print Network [OSTI]

The paper discusses the applications of Heat Recovery Steam Generator Simulation. Consultants, plant engineers and plant developers can evaluate the steam side performance of HRSGs and arrive at the optimum system which matches the needs...

Ganapathy, V.

173

Recovery Act Funding Opportunities Webcast  

Broader source: Energy.gov [DOE]

As a result of the 2009 American Reinvestment and Recovery Act, the Geothermal Technologies Office (GTO) has four open Funding Opportunity Announcements (FOAs) totaling $484 million for cost-shared...

174

Recovery and purification of ethylene  

SciTech Connect (OSTI)

A process for the recovery and purification of ethylene and optionally propylene from a stream containing lighter and heavier components that employs an ethylene distributor column and a partially thermally coupled distributed distillation system.

Reyneke, Rian (Katy, TX); Foral, Michael J. (Aurora, IL); Lee, Guang-Chung (Houston, TX); Eng, Wayne W. Y. (League City, TX); Sinclair, Iain (Warrington, GB); Lodgson, Jeffery S. (Naperville, IL)

2008-10-21T23:59:59.000Z

175

Olefin recovery via chemical absorption  

SciTech Connect (OSTI)

The recovery of fight olefins in petrochemical plants has generally been accomplished through cryogenic distillation, a process which is very capital and energy intensive. In an effort to simplify the recovery process and reduce its cost, BP Chemicals has developed a chemical absorption technology based on an aqueous silver nitrate solution. Stone & Webster is now marketing, licensing, and engineering the technology. The process is commercially ready for recovering olefins from olefin derivative plant vent gases, such as vents from polyethylene, polypropylene, ethylene oxide, and synthetic ethanol units. The process can also be used to debottleneck C{sub 2} or C{sub 3} splinters, or to improve olefin product purity. This paper presents the olefin recovery imp technology, discusses its applications, and presents economics for the recovery of ethylene and propylene.

Barchas, R. [Stone & Webster Engineering Corporation, Houston, TX (United States)

1998-06-01T23:59:59.000Z

176

Low Level Heat Recovery Technology  

E-Print Network [OSTI]

level heat recovery technology. This paper discusses heat distribution systems, latest developments in absorption refrigeration and organic Rankine cycles, and pressure, minimization possibilities. The relative merits and economics of the various...

O'Brien, W. J.

1982-01-01T23:59:59.000Z

177

Waste Heat Recovery from Refrigeration  

E-Print Network [OSTI]

heat recovery from refrigeration machines is a concept which has great potential for implementation in many businesses. If a parallel requirement for refrigeration and hot water exists, the installation of a system to provide hot water as a by...

Jackson, H. Z.

1982-01-01T23:59:59.000Z

178

Developing a Regional Recovery Framework  

SciTech Connect (OSTI)

Abstract A biological attack would present an unprecedented challenge for local, state, and federal agencies; the military; the private sector; and individuals on many fronts ranging from vaccination and treatment to prioritization of cleanup actions to waste disposal. To prepare the Seattle region to recover from a biological attack, the Seattle Urban Area Security Initiative (UASI) partners collaborated with military and federal agencies to develop a Regional Recovery Framework for a Biological Attack in the Seattle Urban Area. The goal was to reduce the time and resources required to recover and restore wide urban areas, military installations, and other critical infrastructure following a biological incident by providing a coordinated systems approach. Based on discussions in small workshops, tabletop exercises, and interviews with emergency response agency staff, the partners identified concepts of operation for various areas to address critical issues the region will face as recovery progresses. Key to this recovery is the recovery of the economy. Although the Framework is specific to a catastrophic, wide-area biological attack using anthrax, it was designed to be flexible and scalable so it could also serve as the recovery framework for an all-hazards approach. The Framework also served to coalesce policy questions that must be addressed for long-term recovery. These questions cover such areas as safety and health, security, financial management, waste management, legal issues, and economic development.

Lesperance, Ann M.; Olson, Jarrod; Stein, Steven L.; Clark, Rebecca; Kelly, Heather; Sheline, Jim; Tietje, Grant; Williamson, Mark; Woodcock, Jody

2011-09-01T23:59:59.000Z

179

Evaluation of Delisting Criteria and Rebuilding Schedules for Snake River Spring/Summer Chinook, Fall Chinook and Sockeye Salmon : Recovery Issues for Threatened and Endangered Snake River Salmon : Technical Report 10 of 11.  

SciTech Connect (OSTI)

We develop a framework for distinguishing healthy and threatened populations, and we analyze specific criteria by which these terms can be measured for threatened populations of salmon in the Snake River. We review reports and analyze existing data on listed populations of salmon in the Snake River to establish a framework for two stages of the recovery process: (1) defining de-listing criteria, and (2) estimating the percentage increase in survival that will be necessary for recovery of the population within specified time frames, given the de-listing criteria that must be achieved. We develop and apply a simplified population model to estimate the percentage improvement in survival that will be necessary to achieve different rates of recovery. We considered five main concepts identifying de-listing criteria: (1) minimum population size, (2) rates of population change, (3) number of population subunits, (4) survival rates, and (5) driving variables. In considering minimum population size, we conclude that high variation in survival rates poses a substantially greater probability of causing extinction than does loss of genetic variation. Distinct population subunits exist and affect both the genetic variability of the population and the dynamics of population decline and growth. We distinguish between two types of population subunits, (1) genetic and (2) geographic, and we give examples of their effects on population recovery.

Cramer, Steven P.; Neeley, Doug

1993-06-01T23:59:59.000Z

180

Energy Rating  

E-Print Network [OSTI]

Consistent, accurate, and uniform ratings based on a single statewide rating scale Reasonable estimates of potential utility bill savings and reliable recommendations on cost-effective measures to improve energy efficiency Training and certification procedures for home raters and quality assurance procedures to promote accurate ratings and to protect consumers Labeling procedures that will meet the needs of home buyers, homeowners, renters, the real estate industry, and mortgage lenders with an interest in home energy ratings

Cabec Conference; Rashid Mir P. E

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "increase recovery rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

An investigation of the effect of ammonia and amines on the recovery of oil  

E-Print Network [OSTI]

und/or techniques which will afford these desired results. The present work is an effort in this direction. Essentially all efforts to increase oil recovery by reducing the oil-retaining forces in the reservoir have iavclved waterflood ing... of Oil by Air' Drive with Amines ~ ~ ~ ~ e ~ o a e e 29 10. Comparison of Recovery by Air Drive with and Without Amines ~ aao ~ ~ ~ ~ e ~ ~ ~ o ~ ~ ~ ~ ~ ~ ~ ~ ~ o aors 31 11. Recovery oi' Oil by Waterflooding Following Air Drives. ~ ~ ~ ~ 0...

Richardson, James Malone

1958-01-01T23:59:59.000Z

182

Energy Department Invests $6 Million to Increase Building Energy...  

Energy Savers [EERE]

Energy Department Invests 6 Million to Increase Building Energy Code Compliance Rates Energy Department Invests 6 Million to Increase Building Energy Code Compliance Rates August...

183

Heat Integration and Heat Recovery at a Large Chemical Manufacturing Plant  

E-Print Network [OSTI]

in the hydrogenation process. The hydrogenation process uses a catalyst to react the purified phenol with hydrogen, forming a mixture of cyclohexanone and cyclohexanol. The reaction is exothermic and is cooled with water to control the rate of reaction... Process Heat Recovery The process heat recovery opportunity was identified in the hydrogenation process. The hydrogenation process contains an exothermic reaction which is cooled with water to control the rate of reaction. The heated water...

Togna, K .A.

2012-01-01T23:59:59.000Z

184

Laboratory Heat Recovery System  

E-Print Network [OSTI]

In 1976 Continental Oil Company (now Conoco, Inc.) made a far reaching decision. Looking at the future needs of the country in the energy field, it decided to increase and improve its research and development facilities in order to be able to meet...

Burrows, D. B.; Mendez, F. J.

1981-01-01T23:59:59.000Z

185

Improved Oil Recovery in Fluvial Dominated Deltaic Reservoirs of Kansas Near Term  

SciTech Connect (OSTI)

The objective of this project is to address waterflood problems of the type found in Morrow sandstone reservoirs in southwestern Kansas and Cherokee Group reservoirs in southeastern Kansas. Two demonstration sites operated by different independent oil operators are involved in this project. The Stewart Field is located in Finney County, Kansas and is operated by North American Resources Company. The Nelson Lease is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. General topics to be addressed are (1) reservoir management and performance evaluation, (2) waterflood optimization, and (3) the demonstration of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. In the Stewart Project, the reservoir management portion of the project conducted during Budget Period I involved performance evaluation. This included (1) reservoir characterization and the development of a reservoir database, (2) volumetric analysis to evaluate production performance, (3) reservoir modeling, (4) laboratory work, (5) identification of operational problems, (6) identification of unrecovered mobile oil and estimation of recovery factors, and (7) identification of the most efficient and economical recovery process. To accomplish these objectives the initial budget period was subdivided into three major tasks. The tasks were (1) geological and engineering analysis, (2) laboratory testing, and (3) unitization. Due to the presence of different operators within the field, it was necessary to unitize the field in order to demonstrate a field-wide improved recovery process. This work was completed and the project moved into Budget Period 2. Budget Period 2 objectives consisted of the design, construction, and operation of a field-wide waterflood utilizing state-of-the-art, off-the-shelf technologies in an attempt to optimize secondary oil recovery. To accomplish these objectives the second budget period was subdivided into five major tasks. The tasks were (1) design and construction of a waterflood plant, (2) design and construction of a water injection system, (3) design and construction of tank battery consolidation and gathering system, (4) initiation of waterflood operations and reservoir management, and (5) technology transfer. In the Savonburg Project, the reservoir management portion involves performance evaluation. This work included (1) reservoir characterization and the development of a reservoir database, (2) identification of operational problems, (3) identification of near wellbore problems such as plugging caused from poor water quality, (4) identification of unrecovered mobile oil and estimation of recovery factors, and (5) preliminary identification of the most efficient and economical recovery process i.e., polymer augmented waterflooding or infill drilling (vertical or horizontal wells). To accomplish this work the initial budget period was subdivided into four major tasks. The tasks included (1) geological and engineering analysis, (2) waterplant optimization, (3) wellbore cleanup and pattern changes, and (4) field operations. This work was completed and the project has moved into Budget Period 2. The Budget Period 2 objectives consisted of continual optimization of this mature waterflood in an attempt to optimize secondary and tertiary oil recovery. To accomplish these objectives the second budget period was subdivided into six major tasks. The tasks were (1) waterplant development, (2) profile modification treatments, (3) pattern changes, new wells and wellbore cleanups, (4) reservoir development (polymer flooding), (5) field operations, and (6) technology transfer.

Green, D.W.; Willhlte, C.P.; Walton, A.; Schoeling, L.; Reynolds, R.; Michnick, M.; Watney, L.

1997-04-15T23:59:59.000Z

186

Improved Oil Recovery in Fluvial Dominated Deltaic Reservoirs of Kansas - Near-Term  

SciTech Connect (OSTI)

The objective of this project is to address waterflood problems of the type found in Morrow sandstone reservoirs in southwestern Kansas and in Cherokee Group reservoirs in southeastern Kansas. Two demonstration sites operated by different independent oil operators are involved in this project. The Stewart Field is located in Finney County, Kansas and is operated by North American Resources Company. The Nelson Lease is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. General topics to be addressed are 1) reservoir management and performance evaluation, 2) waterflood optimization, and 3) the demonstration of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. In the Stewart Project, the reservoir management portion of the project conducted during Budget Period 1 involved performance evaluation. This included 1) reservoir characterization and the development of a reservoir database, 2) volumetric analysis to evaluate production performance, 3) reservoir modeling, 4) laboratory work, 5) identification of operational problems, 6) identification of unrecovered mobile oil and estimation of recovery factors, and 7) identification of the most efficient and economical recovery process. To accomplish these objectives the initial budget period was subdivided into three major tasks. The tasks were 1) geological and engineering analysis, 2) laboratory testing, and 3) unitization. Due to the presence of different operators within the field, it was necessary to unitize the field in order to demonstrate a field-wide improved recovery process. This work was completed and the project moved into Budget Period 2. Budget Period 2 objectives consisted of the design, construction, and operation of a field-wide waterflood utilizing state-of-the-art, off-the-shelf technologies in an attempt to optimize secondary oil recovery. To accomplish these objectives the second budget period was subdivided into five major tasks. The tasks were 1) design and construction of a waterflood plant, 2) design and construction of a water injection system, 3) design and construction of tank battery consolidation and gathering system, 4) initiation of waterflood operations and reservoir management, and 5) technology transfer. Tasks 1-3 have been completed and water injection began in October 1995. In the Savonburg Project, the reservoir management portion involves performance evaluation. This work included 1) reservoir characterization and the development of a reservoir database, 2) identification of operational problems, 3) identification of near wellbore problems such as plugging caused from poor water quality, 4) identification of unrecovered mobile oil and estimation of recovery factors, and 5) preliminary identification of the most efficient and economical recovery process i.e., polymer augmented waterflooding or infill drilling (vertical or horizontal wells). To accomplish this work the initial budget period was subdivided into four major tasks. The tasks included 1) geological and engineering analysis, 2) waterplant optimization, 3) wellbore cleanup and pattern changes, and 4) field operations. This work was completed and the project has moved into Budget Period 2. The Budget Period 2 objectives consisted of continual optimization of this mature waterflood in an attempt to optimize secondary and tertiary oil recovery. To accomplish these objectives the second budget period is subdivided into six major tasks. The tasks were 1) waterplant development, 2) profile modification treatments, 3) pattern changes, new wells and wellbore cleanups, 4) reservoir development (polymer flooding), 5) field operations, and 6) technology transfer.

A. Walton; Don W. Green; G. Paul Whillhite; L. Schoeling; L. Watney; M. Michnick; R. Reynolds

1997-07-15T23:59:59.000Z

187

ORIGINAL PAPER Effects of nutritional status on metabolic rate, exercise  

E-Print Network [OSTI]

-Verlag 2009 Abstract The influence of feeding on swimming perfor- mance and exercise recovery in fish is poorly understood. Examining swimming behavior and physiological status following periods of feeding for swimming performance and physiological recovery. Rest- ing metabolic rates were also determined. Fasted

Suski, Cory David

188

Reactivation of an idle lease to increase heavy oil recovery through application of conventional steam drive technology in a low dip slope and basin reservoir in the Midway-Sunset field, San Joaquin Basin, California. [Quarterly report], June 14, 1995--September 30, 1995  

SciTech Connect (OSTI)

This project will reactivate ARCO`s idle Pru Fee lease in the Midway-Sunset field, California and conduct a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming will be used to re-establish baseline production within the reservoir characterization phase of the project. During the demonstration phase, a continuous steamflood enhanced oil recover will be initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program. A summary of technical progress covers: geological and reservoir characterization, and reservoir simulation.

Schamel, S.

1996-01-19T23:59:59.000Z

189

RECENT PROCESS AND EQUIPMENT IMPROVEMENTS TO INCREASE HIGH LEVEL WASTE THROUGHPUT AT THE DEFENSE WASTE PROCESSING FACILITY  

SciTech Connect (OSTI)

The Savannah River Site's (SRS) Defense Waste Processing Facility (DWPF) began stabilizing high level waste (HLW) in a glass matrix in 1996. Over the past few years, there have been several process and equipment improvements at the DWPF to increase the rate at which the high level waste can be stabilized. These improvements have either directly increased waste processing rates or have desensitized the process to upsets, thereby minimizing downtime and increasing production. Improvements due to optimization of waste throughput with increased HLW loading of the glass resulted in a 6% waste throughput increase based upon operational efficiencies. Improvements in canister production include the pour spout heated bellows liner (5%), glass surge (siphon) protection software (2%), melter feed pump software logic change to prevent spurious interlocks of the feed pump with subsequent dilution of feed stock (2%) and optimization of the steam atomized scrubber (SAS) operation to minimize downtime (3%) for a total increase in canister production of 12%. A number of process recovery efforts have allowed continued operation. These include the off gas system pluggage and restoration, slurry mix evaporator (SME) tank repair and replacement, remote cleaning of melter top head center nozzle, remote melter internal inspection, SAS pump J-Tube recovery, inadvertent pour scenario resolutions, dome heater transformer bus bar cooling water leak repair and new Infra-red camera for determination of glass height in the canister are discussed.

Odriscoll, R; Allan Barnes, A; Jim Coleman, J; Timothy Glover, T; Robert Hopkins, R; Dan Iverson, D; Jeff Leita, J

2008-01-15T23:59:59.000Z

190

Laboratories for the 21st Century: Best Practices; Energy Recovery in Laboratory Facilities (Brochure)  

SciTech Connect (OSTI)

This guide regarding energy recovery is one in a series on best practices for laboratories. It was produced by Laboratories for the 21st Century ('Labs 21'), a joint program of the U.S. Environmental Protection Agency and the U.S. Department of Energy. Laboratories typically require 100% outside air for ventilation at higher rates than other commercial buildings. Minimum ventilation is typically provided at air change per hour (ACH) rates in accordance with codes and adopted design standards including Occupational Safety and Health Administration (OSHA) Standard 1910.1450 (4 to 12 ACH - non-mandatory) or the 2011 American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) Applications Handbook, Chapter 16 - Laboratories (6 to 12 ACH). While OSHA states this minimum ventilation rate 'should not be relied on for protection from toxic substances released into the laboratory' it specifically indicates that it is intended to 'provide a source of air for breathing and for input to local ventilation devices (e.g., chemical fume hoods or exhausted bio-safety cabinets), to ensure that laboratory air is continually replaced preventing the increase of air concentrations of toxic substances during the working day, direct air flow into the laboratory from non-laboratory areas and out to the exterior of the building.' The heating and cooling energy needed to condition and move this outside air can be 5 to 10 times greater than the amount of energy used in most office buildings. In addition, when the required ventilation rate exceeds the airflow needed to meet the cooling load in low-load laboratories, additional heating energy may be expended to reheat dehumidified supply air from the supply air condition to prevent over cooling. In addition to these low-load laboratories, reheat may also be required in adjacent spaces such as corridors that provide makeup air to replace air being pulled into negative-pressure laboratories. Various types of energy recovery devices and systems can substantially reduce heating and cooling energy required for conditioning spaces in laboratories. Heating and cooling systems can be downsized when energy recovery is used because these systems reduce peak heating and cooling requirements. Heating and cooling systems can also be downsized by capturing heat generated in high-load spaces and transferring it to spaces requiring reheat. There are many opportunities for energy recovery in laboratories. This guide includes descriptions of several air-to-air energy recovery devices and methods, such as using enthalpy wheels (Figure 1), heat pipes, or run-around loops in new construction. These devices generally recover energy from exhaust air. This recovered energy is used to precondition supply air during both cooling and heating modes of operation. In addition to air-to-air energy recovery options, this guide includes a description of a water-to-water heat recovery system that collects heat from high-load spaces and transfers it to spaces that require reheat. While air-to-air recovery devices provide significant energy reduction, in some laboratory facilities the amount of energy available in the exhaust air exceeds the pre-heat and pre-cooling needed to maintain supply air conditions. During these periods of time, controls typically reduce the energy recovery capacity to match the reduced load. If the energy recovered in the exhaust is not needed then it is rejected from the facility. By using a water-to-water recovery system, it is possible to significantly reduce overall building energy use by reusing heating or cooling energy generated in the building before it is rejected to the outdoors. Laboratory managers are encouraged to perform a life-cycle cost analysis of an energy-recovery technology to determine the feasibility of its application in their laboratory. Usually, the shortest payback periods occur when the heating and cooling load reduction provided by an energy recovery system allows the laboratory to install and use smaller heating (e.g., hot water or steam) and cooling (e.g., c

Not Available

2012-06-01T23:59:59.000Z

191

Material and energy recovery in integrated waste management systems: The potential for energy recovery  

SciTech Connect (OSTI)

Highlights: > The amount of waste available for energy recovery is significantly higher than the Unsorted Residual Waste (URW). > Its energy potential is always higher than the complement to 100% of the Source Separation Level (SSL). > Increasing SSL has marginal effects on the potential for energy recovery. > Variations in the composition of the waste fed to WtE plants affect only marginally their performances. > A large WtE plant with a treatment capacity some times higher than a small plant achieves electric efficiency appreciably higher. - Abstract: This article is part of a set of six coordinated papers reporting the main findings of a research project carried out by five Italian universities on 'Material and energy recovery in Integrated Waste Management Systems (IWMS)'. An overview of the project and a summary of the most relevant results can be found in the introductory article of the series. This paper describes the work related to the evaluation of mass and energy balances, which has consisted of three major efforts (i) development of a model for quantifying the energy content and the elemental compositions of the waste streams appearing in a IWMS; (ii) upgrade of an earlier model to predict the performances of Waste-to-Energy (WtE) plants; (iii) evaluation of mass and energy balances of all the scenarios and the recovery paths considered in the project. Results show that not only the amount of material available for energy recovery is significantly higher than the Unsorted Residual Waste (URW) left after Separate Collection (SC), because selection and recycling generate significant amounts of residues, but its heating value is higher than that of the original, gross waste. Therefore, the energy potential of what is left after recycling is always higher than the complement to 100% of the Source Separation Level (SSL). Also, increasing SSL has marginal effects on the potential for energy recovery: nearly doubling SSL (from 35% to 65%) reduces the energy potential only by one fourth. Consequently, even at high SSL energy recovery is a fundamental step of a sustainable waste management system. Variations of SSL do bring about variations of the composition, heating value and moisture content of the material fed to WtE plants, but these variations (i) are smaller than one can expect; (ii) have marginal effects on the performances of the WtE plant. These considerations suggest that the mere value of SSL is not a good indicator of the quality of the waste management system, nor of its energy and environmental outcome. Given the well-known dependence of the efficiency of steam power plants with their power output, the efficiency of energy recovery crucially depends on the size of the IWMS served by the WtE plant. A fivefold increase of the amount of gross waste handled in the IWMS (from 150,000 to 750,000 tons per year of gross waste) allows increasing the electric efficiencies of the WtE plant by about 6-7 percentage points (from 21-23% to 28.5% circa).

Consonni, Stefano [Department of Energy, Politecnico di Milano, Via Lambruschini 4, 20156 Milan (Italy); LEAP - Laboratorio Energia Ambiente Piacenza, Via Bixio 27, 29100 Piacenza (Italy); Vigano, Federico, E-mail: federico.vigano@polimi.it [Department of Energy, Politecnico di Milano, Via Lambruschini 4, 20156 Milan (Italy); LEAP -Laboratorio Energia Ambiente Piacenza, Via Bixio 27, 29100 Piacenza (Italy)

2011-09-15T23:59:59.000Z

192

Advanced Energy and Water Recovery Technology from Low Grade Waste Heat  

SciTech Connect (OSTI)

The project has developed a nanoporous membrane based water vapor separation technology that can be used for recovering energy and water from low-temperature industrial waste gas streams with high moisture contents. This kind of exhaust stream is widely present in many industrial processes including the forest products and paper industry, food industry, chemical industry, cement industry, metal industry, and petroleum industry. The technology can recover not only the sensible heat but also high-purity water along with its considerable latent heat. Waste heats from such streams are considered very difficult to recover by conventional technology because of poor heat transfer performance of heat-exchanger type equipment at low temperature and moisture-related corrosion issues. During the one-year Concept Definition stage of the project, the goal was to prove the concept and technology in the laboratory and identify any issues that need to be addressed in future development of this technology. In this project, computational modeling and simulation have been conducted to investigate the performance of a nanoporous material based technology, transport membrane condenser (TMC), for waste heat and water recovery from low grade industrial flue gases. A series of theoretical and computational analyses have provided insight and support in advanced TMC design and experiments. Experimental study revealed condensation and convection through the porous membrane bundle was greatly improved over an impermeable tube bundle, because of the membrane capillary condensation mechanism and the continuous evacuation of the condensate film or droplets through the membrane pores. Convection Nusselt number in flue gas side for the porous membrane tube bundle is 50% to 80% higher than those for the impermeable stainless steel tube bundle. The condensation rates for the porous membrane tube bundle also increase 60% to 80%. Parametric study for the porous membrane tube bundle heat transfer performance was also done, which shows this heat transfer enhancement approach works well in a wide parameters range for typical flue gas conditions. Better understanding of condensing heat transfer mechanism for porous membrane heat transfer surfaces, shows higher condensation and heat transfer rates than non-permeable tubes, due to existence of the porous membrane walls. Laboratory testing has documented increased TMC performance with increased exhaust gas moisture content levels, which has exponentially increased potential markets for the product. The TMC technology can uniquely enhance waste heat recovery in tandem with water vapor recovery for many other industrial processes such as drying, wet and dry scrubber exhaust gases, dewatering, and water chilling. A new metallic substrate membrane tube development and molded TMC part fabrication method, provides an economical way to expand this technology for scaled up applications with less than 3 year payback expectation. A detailed market study shows a broad application area for this advanced waste heat and water recovery technology. A commercialization partner has been lined up to expand this technology to this big market. This research work led to new findings on the TMC working mechanism to improve its performance, better scale up design approaches, and economical part fabrication methods. Field evaluation work needs to be done to verify the TMC real world performance, and get acceptance from the industry, and pave the way for our commercial partner to put it into a much larger waste heat and waste water recovery market. This project is addressing the priority areas specified for DOE Industrial Technologies Program's (ITP's): Energy Intensive Processes (EIP) Portfolio - Waste Heat Minimization and Recovery platform.

Dexin Wang

2011-12-19T23:59:59.000Z

193

CO2 Enhanced Oil Recovery Feasibility Evaluation for East Texas Oil Field  

E-Print Network [OSTI]

Carbon dioxide enhanced oil recovery (CO2-EOR) has been undergoing for four decades and is now a proven technology. CO2-EOR increases oil recovery, and in the meantime reduces the greenhouse gas emissions by capture CO2 underground. The objectives...

Lu, Ping

2012-08-31T23:59:59.000Z

194

ECMOR XIV 14th European Conference on the Mathematics of Oil Recovery  

E-Print Network [OSTI]

ECMOR XIV ­ 14th European Conference on the Mathematics of Oil Recovery Catania, Sicily, Italy, 8 respectively. We achieved an increase of 15.2% in the secondary objective for a decrease of 0.5% in the primary of Oil Recovery Catania, Sicily, Italy, 8-11 September 2014 Introduction Various model-based optimization

Van den Hof, Paul

195

RECOVERY OF UNDERSTORY BIRD MOVEMENT ACROSS THE INTERFACE OF PRIMARY AND SECONDARY AMAZON RAINFOREST  

E-Print Network [OSTI]

RECOVERY OF UNDERSTORY BIRD MOVEMENT ACROSS THE INTERFACE OF PRIMARY AND SECONDARY AMAZON increased with age of secondary forest for all guilds except non-forest species. Mean recovery to pre areas of secondary forest because of widespread regeneration following timber harvests, yet the value

Stouffer, Phil

196

Recovery | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising ScienceRecent SREL ReprintsHeaviestRecoveryRecovery |

197

Coal recovery process  

DOE Patents [OSTI]

A method for the beneficiation of coal by selective agglomeration and the beneficiated coal product thereof is disclosed wherein coal, comprising impurities, is comminuted to a particle size sufficient to allow impurities contained therein to disperse in water, an aqueous slurry is formed with the comminuted coal particles, treated with a compound, such as a polysaccharide and/or disaccharide, to increase the relative hydrophilicity of hydrophilic components, and thereafter the slurry is treated with sufficient liquid agglomerant to form a coagulum comprising reduced impurity coal.

Good, Robert J. (Grand Island, NY); Badgujar, Mohan (Williamsville, NY)

1992-01-01T23:59:59.000Z

198

Ecosystem recovery after climatic extremes enhanced by genotypic diversity  

E-Print Network [OSTI]

Ecosystem recovery after climatic extremes enhanced by genotypic diversity Thorsten B. H. Reusch with such climatic extremes is a question central to contem- porary ecology and biodiversity conservation. Previous, and it may buffer against extreme climatic events. In a manipulative field experiment, increasing

Myers, Ransom A.

199

Process for the recovery of alumina from fly ash  

DOE Patents [OSTI]

An improvement in the lime-sinter process for recovering alumina from pulverized coal fly ash is disclosed. The addition of from 2 to 10 weight percent carbon and sulfur to the fly ash-calcium carbonate mixture increase alumina recovery at lower sintering temperatures.

Murtha, M.J.

1983-08-09T23:59:59.000Z

200

Supporting technology for enhanced oil recovery: Chemical flood predictive model  

SciTech Connect (OSTI)

The Chemical Flood Predictive Model (CFPM) was developed by Scientific Software-Intercomp for the US Department of Energy and was used in the National Petroleum Council's (NPC) 1984 survey of US enhanced oil recovery potential (NPC, 1984). The CFPM models micellar (surfactant)-polymer (MP) floods in reservoirs which have been previously waterflooded to residual oil saturation. Thus, only true tertiary floods are considered. An option is available in the model which allows a rough estimate of oil recovery by caustic (alkaline) or caustic-polymer processes. This ''caustic'' option, added for the NPC survey, is not modeled as a separate process. Rather, the caustic and caustic-polymer oil recoveries are computed simply as 15% and 40%, respectively, of the MP oil recovery. In the CFPM, an oil rate versus time function for a single pattern is computed and the results are passed to the economic routines. To estimate multi-pattern project behavior, a pattern development schedule must be specified. After-tax cash flow is computed by combining revenues with capital costs for drilling, conversion and upgrading of wells, chemical handling costs, fixed and variable operating costs, injectant costs, depreciation, royalties, severance, state, federal, and windfall profit taxes, cost and price inflation rates, and the discount rate. A lumped parameter uncertainty routine is used to estimate risk, and allows for variation in computed project performance within an 80% confidence interval. The CFPM uses theory and the results of numerical simulation to predict MP oil recovery in five-spot patterns. Oil-bank and surfactant breakthrough and project life are determined from fractional flow theory. A Koval-type factor, based on the Dykstra-Parsons (1950) coefficient, is used to account for the effects of reservoir heterogeneity on surfactant and oil bank velocities. 18 refs., 17 figs., 27 tabs.

Ray, R.M.; Munoz, J.D.

1986-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "increase recovery rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Biosurfactant and enhanced oil recovery  

DOE Patents [OSTI]

A pure culture of Bacillus licheniformis strain JF-2 (ATCC No. 39307) and a process for using said culture and the surfactant lichenysin produced thereby for the enhancement of oil recovery from subterranean formations. Lichenysin is an effective surfactant over a wide range of temperatures, pH's, salt and calcium concentrations.

McInerney, Michael J. (Norman, OK); Jenneman, Gary E. (Norman, OK); Knapp, Roy M. (Norman, OK); Menzie, Donald E. (Norman, OK)

1985-06-11T23:59:59.000Z

202

RESEARCH ARTICLE Lifespan Extension and Increased Pumping  

E-Print Network [OSTI]

RESEARCH ARTICLE Lifespan Extension and Increased Pumping Rate Accompany Pharyngeal Muscle in multiple behavioral defects; slower pharyngeal pumping rate, impaired egg laying, defective motility nfi-1 must be expressed to rescue the pharyngeal pumping defect. Expression of nfi-1 from

Gronostajski, Richard M.

203

Department of Energy Recovery Act Investment in Biomass Technologies...  

Broader source: Energy.gov (indexed) [DOE]

Department of Energy Recovery Act Investment in Biomass Technologies Department of Energy Recovery Act Investment in Biomass Technologies The American Recovery and Reinvestment Act...

204

Opportunities and Challenges of Thermoelectrlic Waste Heat Recovery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for Automotive Waste Heat Recovery Develop Thermoelectric Technology for Automotive Waste Heat Recovery Thermoelectric Generator Development for Automotive Waste Heat Recovery...

205

Department of Energy Completes Five Recovery Act Projects - Moves...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Five Recovery Act Projects - Moves Closer to Completing Recovery Act Funded Work at Oak Ridge Site Department of Energy Completes Five Recovery Act Projects - Moves Closer to...

206

Recovery Act: Clean Coal Power Initiative | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Recovery Act: Clean Coal Power Initiative Recovery Act: Clean Coal Power Initiative A report detailling the Clean Coal Power initiative funded under the American Recovery and...

207

Recovery Act – Transportation Electrification  

SciTech Connect (OSTI)

ChargePoint America demonstrated the viability, economic and environmental benefits of an electric vehicle-charging infrastructure. Electric vehicles (EVs) and plug-in electric vehicles (PHEVs) arrived in late 2010, there was a substantial lack of infrastructure to support these vehicles. ChargePoint America deployed charging infrastructure in ten (10) metropolitan regions in coordination with vehicle deliveries targeting those same regions by our OEM partners: General Motors, Nissan, Fisker Automotive, Ford, smart USA, and BMW. The metropolitan regions include Central Texas (Austin/San Antonio), Bellevue/Redmond (WA), Southern Michigan, Los Angeles area (CA), New York Metro (NY), Central Florida (Orlando/Tampa), Sacramento (CA), San Francisco/San Jose (CA), Washington DC and Boston (MA). ChargePoint America installed more than 4,600 Level 2 (220v) SAE J1772™ UL listed networked charging ports in home, public and commercial locations to support approximately 2000 program vehicles. ChargePoint collected data to analyze how individuals, businesses and local governments used their vehicles. Understanding driver charging behavior patterns will provide the DoE with critical information as EV adoption increases in the United States.

Gogineni, Kumar

2013-12-31T23:59:59.000Z

208

Bioelectrochemical Integration of Waste Heat Recovery, Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

electrolytic cell, designed to integrate waste heat recovery (i.e a microbial heat recovery cell or MHRC), can operate as a fuel cell and convert effluent streams into...

209

Flare Gas Recovery in Shell Canada Refineries  

E-Print Network [OSTI]

Two of Shell Canada's refineries have logged about six years total operating experience with modern flare gas recovery facilities. The flare gas recovery systems were designed to recover the normal continuous flare gas flow for use in the refinery...

Allen, G. D.; Wey, R. E.; Chan, H. H.

1983-01-01T23:59:59.000Z

210

Automated intrusion recovery for web applications  

E-Print Network [OSTI]

In this dissertation, we develop recovery techniques for web applications and demonstrate that automated recovery from intrusions and user mistakes is practical as well as effective. Web applications play a critical role ...

Chandra, Ramesh, Ph. D. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

211

HVAC Energy Recovery Design and Economic Evaluation  

E-Print Network [OSTI]

ENRECO has prepared this paper on HVAC energy recovery to provide the engineer with an overview of the design engineering as well as the economic analysis considerations necessary to evaluate the potential benefits of energy recovery....

Kinnier, R. J.

1979-01-01T23:59:59.000Z

212

Note: Operation of gamma-ray microcalorimeters at elevated count rates using filters with constraints  

SciTech Connect (OSTI)

Microcalorimeter sensors operated near 0.1 K can measure the energy of individual x- and gamma-ray photons with significantly more precision than conventional semiconductor technologies. Both microcalorimeter arrays and higher per pixel count rates are desirable to increase the total throughput of spectrometers based on these devices. The millisecond recovery time of gamma-ray microcalorimeters and the resulting pulse pileup are significant obstacles to high per pixel count rates. Here, we demonstrate operation of a microcalorimeter detector at elevated count rates by use of convolution filters designed to be orthogonal to the exponential tail of a preceding pulse. These filters allow operation at 50% higher count rates than conventional filters while largely preserving sensor energy resolution.

Alpert, B. K.; Horansky, R. D.; Bennett, D. A.; Doriese, W. B.; Fowler, J. W.; Ullom, J. N. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Hoover, A. S.; Rabin, M. W. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2013-05-15T23:59:59.000Z

213

Study seeks to boost Appalachian gas recovery  

SciTech Connect (OSTI)

Ashland Exploration Inc. and the Gas Research Institute (GRI) are trying to find ways to increase gas recovery in the Appalachian basin. They are working together to investigate Mississippian Berea sandstone and Devonian shale in a program designed to achieve better understanding and improved performance of tight natural gas formations in the area. This paper reports that three wells on Ashland Exploration acreage in Pike County, Ky., are involved in the research program. Findings from the first two wells will be used to optimize evaluation and completion of the third well. The first two wells have been drilled. Drilling of the third well was under way at last report. Ashland Exploration has been involved with GRI's Devonian shale research since 1988. GRI's initial focus was on well stimulation because Devonian shale wells it reviewed had much lower recoveries than could be expected, based on estimated gas in place. Research during the past few years was designed to improve the execution and quality control of well stimulation.

Not Available

1992-07-20T23:59:59.000Z

214

Recovery of benzene in an organic vapor monitor  

E-Print Network [OSTI]

solid adsorbents available (silica gel, activated alumina, etc. ), activated charcoal is most frequently utilized. Activated charcoal has retentivity for sorbed vapors several times that of silica gel and it displays a selectivity for organic vapors... (diffusion rate) of the vapor molecules to the sur- face of the adsorbent. The adsorption process determine how effective the adsorbent collects and holds the contam- inant on the surface of the activated charcoal. Recovery of the contaminant from...

Krenek, Gregory Joel

1980-01-01T23:59:59.000Z

215

Successes of the Recovery Act - January 2012 | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy Strain Rate4 Recovery Act/Buy American

216

Increasing fMRI Sampling Rate Improves Granger Causality Estimates  

E-Print Network [OSTI]

' adherence to PLOS ONE policies on sharing data and materials. * Email: fhlin@ntu.edu.tw Introduction measures of effective connectivity [1­3]. Previously, effective connectivity analyses of human PET [4

217

Increasing ion sorption and desorption rates of conductive electrodes  

DOE Patents [OSTI]

An electrolyte system includes a reactor having a pair of electrodes that may sorb ions from an electrolyte. The electrolyte system also includes at least one power supply in electrical communication with the reactor. The at least one power supply may supply a DC signal and an AC signal to the pair of electrodes during sorption of the ions. In addition, the power supply may supply only the AC signal to the pair of electrodes during desorption of the ions.

DePaoli, David William; Kiggans, Jr., James O; Tsouris, Costas; Bourcier, William; Campbell, Robert; Mayes, Richard T

2014-12-30T23:59:59.000Z

218

Die Materials for Critical Applications and Increased Production Rates  

SciTech Connect (OSTI)

Die materials for aluminum die-casting need to be resistant to heat checking, and have good resistance to washout and to soldering in a fast flow of molten aluminum. To resist heat checking, die materials should have a low coefficient of thermal expansion, high thermal conductivity, high hot yield strength, good temper softening resistance, high creep strength, and adequate ductility. To resist the washout and soldering, die materials should have high hot hardness, good temper resistance, low solubility in molten aluminum and good oxidation resistance. It is difficult for one material to satisfy with all above requirements. In practice, H13 steel is the most popular material for aluminum die casting dies. While it is not an ideal choice, it is substantially less expensive to use than alternative materials. However, in very demanding applications, it is sometimes necessary to use alternative materials to ensure a reasonable die life. Copper-base, nickel-base alloys and superalloys, titanium-,molybdenum-, tungsten-base alloys, and to some extent yttrium and niobium alloys, have all been considered as potential materials for demanding die casting applications. Most of these alloys exhibit superior thermal fatigue resistance, but suffer from other shortcomings.

David Schwam; John Wallace; Sebastian Birceanu

2002-11-30T23:59:59.000Z

219

Apply: Increase Residential Energy Code Compliance Rates (DE...  

Broader source: Energy.gov (indexed) [DOE]

view the webinar or presentation slides. Buildings Home About Emerging Technologies Residential Buildings Commercial Buildings Appliance & Equipment Standards Building Energy Codes...

220

Sandia National Laboratories: increasing average wind turbine power rating  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbine blade manufacturing the viability offuelincreased

Note: This page contains sample records for the topic "increase recovery rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Gas-assisted gravity drainage (GAGD) process for improved oil recovery  

DOE Patents [OSTI]

A rapid and inexpensive process for increasing the amount of hydrocarbons (e.g., oil) produced and the rate of production from subterranean hydrocarbon-bearing reservoirs by displacing oil downwards within the oil reservoir and into an oil recovery apparatus is disclosed. The process is referred to as "gas-assisted gravity drainage" and comprises the steps of placing one or more horizontal producer wells near the bottom of a payzone (i.e., rock in which oil and gas are found in exploitable quantities) of a subterranean hydrocarbon-bearing reservoir and injecting a fluid displacer (e.g., CO.sub.2) through one or more vertical wells or horizontal wells. Pre-existing vertical wells may be used to inject the fluid displacer into the reservoir. As the fluid displacer is injected into the top portion of the reservoir, it forms a gas zone, which displaces oil and water downward towards the horizontal producer well(s).

Rao, Dandina N. (Baton Rouge, LA)

2012-07-10T23:59:59.000Z

222

Improved oil recovery in fluvial dominated deltaic reservoirs of Kansas, Near-term. Third quarterly report, January 1, 1994--April 1, 1994  

SciTech Connect (OSTI)

The objective of this project is to address waterflood problems of the type found in Cherokee Group reservoirs in southeastern Kansas and in Morrow sandstone reservoirs in southwestern Kansas. Two demonstration sites operated by different independent oil operators are involved in the project. The Nelson Lease (an existing waterflood) is located in Allen County, Kansas in the N.E. Savonburg Field. The Stewart Field is located in Finney County, Kansas. General topics to be addressed will be (1) reservoir management and performance evaluation, (2) waterflood optimization, and (3) the demonstration of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. The reservoir management portion of the project will involve performance evaluation and will include such work as (1) reservoir characterization and the development of a reservoir database, (2) identification of operational problems, (3) identification of near wellbore problems, (4) identification of unrecovered mobile oil and estimation of recovery factors, and (5) identification of the most efficient and economical recovery process. The waterflood optimization portion of the project involves only the Nelson Lease. It will be based on the performance evaluation and will involve (1) design and implementation of a water cleanup system for the waterflood, (2) application of well remedial work such as polymer gel treatments to improve vertical sweep efficiency, and (3) changes in waterflood patterns to increase sweep efficiency. Finally, it is planned to implement an improved recovery process, possibly polymer augmented waterflooding on both field demonstration sites. Progress reports are presented for the following tasks: engineering and geological analysis; water plant development; pattern changes and wellbore cleanup; field operations; laboratory testing; and utilization.

Green, D.W.; Willhite, G.P.; Walton, A.; Schoeling, L.; Reynolds, R.; Michnick, M.; Watney, L.

1994-04-15T23:59:59.000Z

223

Improved oil recovery in fluvial dominated deltaic reservoirs of Kansas -- near-term. Eighth quarterly report, April 1, 1995--June 30, 1995  

SciTech Connect (OSTI)

The objective of this project is to address waterflood problems of the type found in Cherokee Group reservoirs in southeastern Kansas and in Morrow sandstone reservoirs in southwestern Kansas. Two demonstration sites operated by different independent oil operators are involved in the project. The Nelson Lease (an existing waterflood) is located in Allen County, Kansas in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. The Stewart Field (on latter stage of primary production) is located in Finney County, Kansas and is operated by North American Resources Company General topics to be addressed will be (1) reservoir management and performance evaluation, (2) waterflood optimization, and (3) the demonstration, of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. The reservoir management portion of the project will involve performance evaluation and will include such work as (1) reservoir characterization and the development of a reservoir database, (2) identification of operational problems, (3) identification of near wellbore problems, (4) identification of unrecovered mobile oil and estimation of recovery factors, and 5) identification of the most efficient and economical recovery process. The waterflood optimization portion of the project involves only the Nelson Lease. It will be based on the performance evaluation and will involve (1) design and implementation of a water cleanup system for the waterflood, (2) application of well remedial work such as polymer gel treatments to improve vertical sweep efficiency, and (3) changes in waterflood patterns to increase sweep efficiency. Finally, it is planned to implement an improved recovery process on both field demonstration sites.

Green, D.W.; Willhite, G.P.; Walton, A.; Schoeling, L.; Reynolds, R.; Michnick, M.; Watney, L.

1995-07-15T23:59:59.000Z

224

Improved oil recovery in fluvial dominated deltaic reservoirs of Kansas -- near-term. Seventh quarterly report, February 1, 1995--April 1, 1995  

SciTech Connect (OSTI)

The objective of this project is to address waterflood problems of the type found in Cherokee Group reservoirs in southeastern Kansas and in Morrow sandstone reservoirs in southwestern Kansas. Two demonstration sites operated by different independent oil operators are involved in the project. The Nelson Lease (an existing waterflood) is located in Allen County, Kansas in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. The Stewart Field (on latter stage of primary production) is located in Finney County, Kansas and is operated by Sharon Resources, Inc. General topics to be addressed will be (1) reservoir management and performance evaluation, (2) waterflood optimization, and (3) the demonstration of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. The reservoir management portion of the project will involve performance evaluation and will include such work as (1) reservoir characterization and the development of a reservoir database, (2) identification of operational problems, (3) identification of near wellbore problems, (4) identification of unrecovered mobile oil and estimation of recovery factors, and (5) identification of the most efficient and economical recovery process. The waterflood optimization portion of the project involves only the Nelson Lease. It will be based on the performance evaluation and will involve (1) design and implementation of a water cleanup system for the waterflood, (2) application of well remedial work such as polymer gel treatments to improve vertical sweep efficiency, and (3) changes in waterflood patterns to increase sweep efficiency. Finally, it is planned to implement an improved recovery process, possibly polymer augmented waterflood: on both field demonstration sites.

Green, D.W.; Willhite, G.P.; Walton, A.; Schoeling, L.; Reynolds, R.; Michnick, M.; Watney, L.

1995-04-15T23:59:59.000Z

225

Application of geostatistical reservoir description for maximizing waterflood infill drilling recovery from La Cira Field, Colombia  

E-Print Network [OSTI]

One of the prospective ways to increase the oil production is to maximize the oil recovery from mature oil fields. In this study we apply an integrated approach that combines geostatistical reservoir description and reservoir simulation to evaluate...

Cubillos Gutierrez, Helber

1995-01-01T23:59:59.000Z

226

Enhanced oil recovery in Rumania  

SciTech Connect (OSTI)

The paper describes the application of the fire-floods to a broad range of Romanian oil reservoirs and crude properties and reviews the field tests of polymer flooding, surfactant flooding and alkaline flooding. A commercial scale project with cyclic steam injection is presented and also the use of the domestic CO/sub 2/ sources to enhanced oil recovery. The results and the difficulties encountered are briefly discussed and also the potential of EOR methods in Romania are presented. 17 refs.

Carcoana, A.N.

1982-01-01T23:59:59.000Z

227

Recovery Act | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and Launches theResidentialRecovery Act State SummariesPast

228

State Agency Recovery Act Funding  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScopingOverview *Agency Recovery Act Funding .Alabama

229

RECENT X-RAY VARIABILITY OF {eta} CARINAE: THE QUICK ROAD TO RECOVERY  

SciTech Connect (OSTI)

We report continued monitoring of the superluminous binary system {eta} Car by the Proportional Counter Array on the Rossi X-ray Timing Observatory (RXTE) through the 2009 X-ray minimum. The RXTE campaign shows that the minimum began on 2009 January 16, consistent with the phasings of the two previous minima, and overall, the temporal behavior of the X-ray emission was similar to that observed by RXTE in the previous two cycles. However, important differences did occur. The 2-10 keV X-ray flux and X-ray hardness decreased in the 2.5 year interval leading up to the 2009 minimum compared to the previous cycle. Most intriguingly, the 2009 X-ray minimum was about 1 month shorter than either of the previous two minima. During the egress from the 2009 minimum the X-ray hardness increased markedly as it had during egress from the previous two minima, although the maximum X-ray hardness achieved was less than the maximum observed after the two previous recoveries. We suggest that the cycle-to-cycle variations, especially the unexpectedly early recovery from the 2009 X-ray minimum, might have been the result of a decline in {eta} Car's wind momentum flux produced by a drop in {eta} Car's mass loss rate or wind terminal velocity (or some combination), though if so the change in wind momentum flux required to match the X-ray variation is surprisingly large.

Corcoran, M. F.; Hamaguchi, K. [CRESST and X-ray Astrophysics Laboratory, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Pittard, J. M. [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom); Russell, C. M. P.; Owocki, S. P. [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Parkin, E. R. [Institut d'Astrophysique et de Geophysique, Universite de Liege, 17, Allee du 6 Aout, B5c, B-4000 Sart Tilman (Belgium); Okazaki, A. [Faculty of Engineering, Hokkai-Gakuen University, Toyohira-ku, Sapporo 062-8605 (Japan)

2010-12-20T23:59:59.000Z

230

Recovery Act ? An Interdisciplinary Program for Education and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Recovery Act An Interdisciplinary Program for Education and Outreach in Transportation Electrification Recovery Act An Interdisciplinary Program for Education and...

231

Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric...

232

Kraft recovery boiler physical and chemical processes  

SciTech Connect (OSTI)

The focus of this book is on the recent research into the physical and chemical processes occurring in and around a black liquor recovery boiler. Almost all of the detailed technical information in this book has previously appeared in the open literature. The purpose here is not to present research for the first time, but to present it in a context of the other processes occurring in recovery boilers. Topics covered include: general characteristics of recovery boilers; black liquor thermal and transport properties; black liquor droplet formation and combustion; recovery boiler char bed processes; flow and mixing in Kraft recovery boilers; entrainment and carryover in recovery furnaces; fume formation and dust chemistry; deposits and boiler plugging; and recovery boiler thermal performance. 257 refs., 102 figs., 38 tabs.

Adams, T.N.; Frederick, W.J. (Adams (Terry N.), Tacoma, WA (USA); Oregon State Univ., Corvallis, OR (USA). Dept. of Chemical Engineering)

1988-01-01T23:59:59.000Z

233

Methane Recovery from Hydrate-bearing Sediments  

SciTech Connect (OSTI)

Gas hydrates are crystalline compounds made of gas and water molecules. Methane hydrates are found in marine sediments and permafrost regions; extensive amounts of methane are trapped in the form of hydrates. Methane hydrate can be an energy resource, contribute to global warming, or cause seafloor instability. This study placed emphasis on gas recovery from hydrate bearing sediments and related phenomena. The unique behavior of hydrate-bearing sediments required the development of special research tools, including new numerical algorithms (tube- and pore-network models) and experimental devices (high pressure chambers and micromodels). Therefore, the research methodology combined experimental studies, particle-scale numerical simulations, and macro-scale analyses of coupled processes. Research conducted as part of this project started with hydrate formation in sediment pores and extended to production methods and emergent phenomena. In particular, the scope of the work addressed: (1) hydrate formation and growth in pores, the assessment of formation rate, tensile/adhesive strength and their impact on sediment-scale properties, including volume change during hydrate formation and dissociation; (2) the effect of physical properties such as gas solubility, salinity, pore size, and mixed gas conditions on hydrate formation and dissociation, and it implications such as oscillatory transient hydrate formation, dissolution within the hydrate stability field, initial hydrate lens formation, and phase boundary changes in real field situations; (3) fluid conductivity in relation to pore size distribution and spatial correlation and the emergence of phenomena such as flow focusing; (4) mixed fluid flow, with special emphasis on differences between invading gas and nucleating gas, implications on relative gas conductivity for reservoir simulations, and gas recovery efficiency; (5) identification of advantages and limitations in different gas production strategies with emphasis; (6) detailed study of CH4-CO2 exchange as a unique alternative to recover CH4 gas while sequestering CO2; (7) the relevance of fines in otherwise clean sand sediments on gas recovery and related phenomena such as fines migration and clogging, vuggy structure formation, and gas-driven fracture formation during gas production by depressurization.

J. Carlos Santamarina; Costas Tsouris

2011-04-30T23:59:59.000Z

234

Rate schedule  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, andEpidermal Growth Factor. |INCIDENCET3PACI-T3Rate

235

The Hanford Story: Recovery Act  

Broader source: Energy.gov [DOE]

This is the third chapter of The Hanford Story. This chapter is a tribute to the thousands of workers and representatives of regulatory agencies, neighboring states, Tribes, stakeholders, and surrounding communities who came together to put stimulus funding to work at Hanford. The video describes how the Department of Energy and its contractors turned a nearly $2 billion investment of American Recovery and Reinvestment Act funding in 2009 into nearly $4 billion worth of environmental cleanup work over the past two years. At the same time, Hanford workers have reduced the cleanup footprint of the Hanford Site by more than half (586 square miles to 241 sq. mi. through August -- 59 percent).

236

Recovery Efficiency Test Project: Phase 1, Activity report. Volume 1: Site selection, drill plan preparation, drilling, logging, and coring operations  

SciTech Connect (OSTI)

The recovery Efficiency Test well project addressed a number of technical issues. The primary objective was to determine the increased efficiency gas recovery of a long horizontal wellbore over that of a vertical wellbore and, more specifically, what improvements can be expected from inducing multiple hydraulic fractures from such a wellbore. BDM corporation located, planned, and drilled a long radius turn horizontal well in the Devonian shale Lower Huron section in Wayne County, West Virginia, demonstrating that state-of-the-art technology is capable of drilling such wells. BDM successfully tested drilling, coring, and logging in a horizontal well using air as the circulating medium; conducted reservoir modeling studies to protect flow rates and reserves in advance of drilling operations; observed two phase flow conditions in the wellbore not observed previously; cored a fracture zone which produced gas; observed that fractures in the core and the wellbore were not systematically spaced (varied from 5 to 68 feet in different parts of the wellbore); observed that highest gas show rates reported by the mud logger corresponded to zone with lowest fracture spacing (five feet) or high fracture frequency. Four and one-half inch casting was successfully installed in the borehole and was equipped to isolate the horizontal section into eight (8) zones for future testing and stimulation operations. 6 refs., 48 figs., 10 tabs.

Overbey, W.K. Jr.; Carden, R.S.; Kirr, J.N.

1987-04-01T23:59:59.000Z

237

Livingston Parish Landfill Methane Recovery Project (Feasibility Study)  

SciTech Connect (OSTI)

The Woodside Landfill is owned by Livingston Parish, Louisiana and is operated under contract by Waste Management of Louisiana LLC. This public owner/private operator partnership is commonplace in the solid waste industry today. The landfill has been in operation since approximately 1988 and has a permitted capacity of approximately 41 million cubic yards. Based on an assumed in-place waste density of 0.94 ton per cubic yard, the landfill could have an expected design capacity of 39.3 million tons. The landfill does have an active landfill gas collection and control system (LFGCCS) in place because it meets the minimum thresholds for the New Source Performance Standards (NSPS). The initial LFGCS was installed prior to 2006 and subsequent phases were installed in 2007 and 2010. The Parish received a grant from the United States Department of Energy in 2009 to evaluate the potential for landfill gas recovery and utilization at the Woodside Landfill. This includes a technical and economic feasibility study of a project to install a landfill gas to energy (LFGTE) plant and to compare alternative technologies. The LFGTE plant can take the form of on-site electrical generation, a direct use/medium Btu option, or a high-Btu upgrade technology. The technical evaluation in Section 2 of this report concludes that landfill gas from the Woodside landfill is suitable for recovery and utilization. The financial evaluations in sections 3, 4, and 5 of this report provide financial estimates of the returns for various utilization technologies. The report concludes that the most economically viable project is the Electricity Generation option, subject to the Parish’s ability and willingness to allocate adequate cash for initial capital and/or to obtain debt financing. However, even this option does not present a solid return: by our estimates, there is a 19 year simple payback on the electricity generation option. All of the energy recovery options discussed in this report economically stressed. The primary reason for this is the recent fundamental shift in the US energy landscape. Abundant supplies of natural gas have put downward pressure on any project that displaces natural gas or natural gas substitutes. Moreover, this shift appears long-term as domestic supplies for natural gas may have been increased for several hundred years. While electricity prices are less affected by natural gas prices than other thermal projects, they are still significantly affected since much of the power in the Entergy cost structure is driven by natural gas-fired generation. Consequently, rates reimbursed by the power company based on their avoided cost structure also face downward pressure over the near and intermediate term. In addition, there has been decreasing emphasis on environmental concerns regarding the production of thermal energy, and as a result both the voluntary and mandatory markets that drive green attribute prices have softened significantly over the past couple of years. Please note that energy markets are constantly changing due to fundamental supply and demand forces, as well as from external forces such as regulations and environmental concerns. At any point in the future, the outlook for energy prices may change and could deem either the electricity generation or pipeline injection project more feasible. This report is intended to serve as the primary background document for subsequent decisions made at Parish staff and governing board levels.

White, Steven

2012-11-15T23:59:59.000Z

238

Final Report, Materials for Industrial Heat Recovery Systems, Tasks 3 and 4 Materials for Heat Recovery in Recovery Boilers  

SciTech Connect (OSTI)

The DOE-funded project on materials for industrial heat recovery systems included four research tasks: materials for aluminum melting furnace recuperator tubes, materials and operational changes to prevent cracking and corrosion of the co-extruded tubes that form primary air ports in black liquor recovery boilers, the cause of and means to prevent corrosion of carbon steel tubes in the mid-furnace area of recovery boilers, and materials and operational changes to prevent corrosion and cracking of recovery boiler superheater tubes. Results from studies on the latter two topics are given in this report while separate reports on results for the first two tasks have already been published. Accelerated, localized corrosion has been observed in the mid-furnace area of kraft recovery boilers. This corrosion of the carbon steel waterwall tubes is typically observed in the vicinity of the upper level of air ports where the stainless clad co-extruded wall tubes used in the lower portion of the boiler are welded to the carbon steel tubes that extend from this transition point or “cut line” to the top of the boiler. Corrosion patterns generally vary from one boiler to another depending on boiler design and operating parameters, but the corrosion is almost always found within a few meters of the cut line and often much closer than that. This localized corrosion results in tube wall thinning that can reach the level where the integrity of the tube is at risk. Collection and analysis of gas samples from various areas near the waterwall surface showed reducing and sulfidizing gases were present in the areas where corrosion was accelerated. However, collection of samples from the same areas at intervals over a two year period showed the gaseous environment in the mid-furnace section can cycle between oxidizing and reducing conditions. These fluctuations are thought to be due to gas flow instabilities and they result in an unstable or a less protective scale on the carbon steel tubes. Also, these fluctuating air flow patterns can result in deposition of black liquor on the wall tubes, and during periods when deposition is high, there is a noticeable increase in the concentrations of sulfur-bearing gases like hydrogen sulfide and methyl mercaptan. Laboratory studies have shown that chromized and aluminized surface treatments on carbon steel improve the resistance to sulfidation attack. Studies of superheater corrosion and cracking have included laboratory analyses of cracked tubes, laboratory corrosion studies designed to simulate the superheater environment and field tests to study the movement of superheater tubes and to expose a corrosion probe to assess the corrosion behavior of alternate superheater alloys, particularly alloys that would be used for superheaters operating at higher temperatures and higher pressures than most current boilers. In the laboratory corrosion studies, samples of six alternate materials were immersed in an aggressive, low melting point salt mixture and exposed for times up to 336 h, at temperatures of 510, 530 or 560°C in an inert or reactive cover gas. Using weight change and results of metallographic examination, the samples were graded on their resistance to the various environments. For the superheater corrosion probe studies, samples of the same six materials were exposed on an air-cooled corrosion probe exposed in the superheater section of a recovery boiler for 1000 h. Post exposure examination showed cracking and/or subsurface attack in the samples exposed at the higher temperatures with the attack being more severe for samples 13 exposed above the first melting temperature of the deposits that collected on the superheater tubes. From these superheater studies, a ranking was developed for the six materials tested. The task addressing cracking and corrosion of primary air port tubes that was part of this project produced results that have been extensively implemented in recovery boilers in North America, the Nordic countries and many other parts of the world. By utilizing these results, boilers ar

Keiser, James R.; Kish, Joseph R.; Singh, Preet M.; Sarma, Gorti B.; Yuan, Jerry; Gorog, J. Peter; Frederick, Laurie A.; Jette, Francois R.; Meisner, Roberta A.; Singbeil, Douglas L.

2007-12-31T23:59:59.000Z

239

An evaluation of known remaining oil resources in the state of California. Volume 2, Project on Advanced Oil Recovery and the States  

SciTech Connect (OSTI)

The Interstate Oil and Gas Compact Commission (IOGCC) has conducted a series of studies to evaluate the known, remaining oil resource in twenty-three (23) states. The primary objective of the IOGCC`s effort is to examine the potential impact of an aggressive and focused program of research, development, and demonstration (RD&D) and technology transfer on future oil recovery in the United States. As a part of this larger effort by the IOGCC, this report focuses on the potential economic benefits of improved oil recovery in the state of California. Individual reports for seven other oil producing states and a national report have been separately published by the IOGCC. The analysis presented in this report is based on the databases and models available in the Tertiary Oil Recovery Information System (TORIS). Overall, well abandonments and more stringent environmental regulations could limit economic access to California`s known, remaining oil resource. The high risk of near-term abandonment and the significant benefits of future application of improved oil recovery technology, clearly point to a need for more aggressive transfer of currently available technologies to oil producers. Development and application of advanced oil recovery technologies could have even greater benefits to the state and the nation. A collaborative, focused RD&D effort, integrating the resources and expertise of industry, state and local governments, and the Federal government, is clearly warranted. With effective RD&D and a program of aggressive technology transfer to widely disseminate its results, California oil production could be maximized. The resulting increase in production rates, employment, operator profits, state and Federal tax revenues, and energy security will benefit both the state of California and the nation as a whole.

Not Available

1994-10-01T23:59:59.000Z

240

An evaluation of known remaining oil resources in the state of New Mexico and Wyoming. Volume 4, Project on Advanced Oil Recovery and the States  

SciTech Connect (OSTI)

The Interstate Oil and Gas Compact Commission (IOGCC) has conducted a series of studies to evaluate the known, remaining oil resource in twenty-three (23) states. The primary objective of the IOGCC`s effort is to examine the potential impact of an aggressive and focused program of research, development, and demonstration (RD&D) and technology transfer on future oil recovery in the United States. As part of a larger effort by the IOGCC, this report focuses on the potential economic benefits of improved oil recovery in the states of New Mexico and Wyoming. Individual reports for six other oil producing states and a national report have been separately published by the IOGCC. The analysis presented in this report is based on the databases and models available in the Tertiary Oil Recovery Information System (TORIS). Overall, well abandonments and more stringent environmental regulations could limit economic access to New Mexico`s known, remaining oil resource. The high risk of near-term abandonment and the significant benefits of future application of improved oil recovery technology, clearly point to a need for more aggressive transfer of currently available technologies to domestic oil producers. Development and application of advanced oil recovery technologies could have even greater benefits to the state and the nation. A collaborative, focused RD&D effort, integrating the resources and expertise of industry, state and local governments, and the Federal government, is clearly warranted. With effective RD&D and a program of aggressive technology transfer to widely disseminate its results, oil production could be maximized. The resulting increase in production rates, employment, operator profits, state and Federal tax revenues, and energy security will benefit both the states of New Mexico and Wyoming and the nation as a whole.

Not Available

1994-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "increase recovery rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

An evaluation of known remaining oil resources in the state of Kansas and Oklahoma. Volume 5, Project on Advanced Oil Recovery and the States  

SciTech Connect (OSTI)

The Interstate Oil and Gas Compact Commission (IOGCC) has conducted a series of studies to evaluate the known, remaining oil resource in twenty-three (23) states. The primary objective of the IOGCC`s effort is to examine the potential impact of an aggressive and focused program of research, development, and demonstration (RD&D) and technology transfer on future oil recovery in the United States. As part of a larger effort by the IOGCC, this report focuses on the potential economic benefits of improved oil recovery in the states of Kansas, Illinois and Oklahoma for five other oil producing states and a national report have been separately published by the IOGCC. The analysis presented in this report is based on the databases and models available in the Tertiary Oil Recovery Information System (TORIS). Overall, well abandonments and more stringent environmental regulations could limit economic access to Kansas` known, remaining oil resource. The high risk of near-term abandonment and the significant benefits of future application of improved oil recovery technology, clearly point to a need for more aggressive transfer of currently available technologies to domestic oil producers. Development and application of advanced oil recovery technologies could have even greater benefits to the state and the nation. A collaborative, focused RD&D effort, integrating the resources and expertise of industry, state and local governments, and the Federal government, is clearly warranted. With effective RD&D and a program of aggressive technology transfer to widely disseminate its results, oil production could be maximized. The resulting increase in production rates, employment, operator profits, state and Federal tax revenues, and energy security will benefit both the state of Kansas, Illinois and Oklahoma and the nation as a whole.

Not Available

1994-11-01T23:59:59.000Z

242

Recovery from chemical, biological, and radiological incidents :  

SciTech Connect (OSTI)

To restore regional lifeline services and economic activity as quickly as possible after a chemical, biological or radiological incident, emergency planners and managers will need to prioritize critical infrastructure across many sectors for restoration. In parallel, state and local governments will need to identify and implement measures to promote reoccupation and economy recovery in the region. This document provides guidance on predisaster planning for two of the National Disaster Recovery Framework Recovery Support Functions: Infrastructure Systems and Economic Recovery. It identifies key considerations for infrastructure restoration, outlines a process for prioritizing critical infrastructure for restoration, and identifies critical considerations for promoting regional economic recovery following a widearea disaster. Its goal is to equip members of the emergency preparedness community to systematically prioritize critical infrastructure for restoration, and to develop effective economic recovery plans in preparation for a widearea CBR disaster.

Franco, David Oliver; Yang, Lynn I.; Hammer, Ann E.

2012-06-01T23:59:59.000Z

243

Methane recovery from coalbeds project. Monthly progress report  

SciTech Connect (OSTI)

Progress made on the Methane Recovery from Coalbeds Project (MRCP) is reported in the Raton Mesa Coal Region. The Uinta and Warrior basin reports have been reviewed and will be published and delivered in early December. A cooperative core test with R and P Coal Company on a well in Indiana County, Pennsylvania, was negotiated. In a cooperative effort with the USGS Coal Branch on three wells in the Wind River Basin, desorption of coal samples showed little or no gas. Completed field testing at the Dugan Petroleum well in the San Juan Basin. Coal samples showed minimal gas. Initial desorption of coal samples suggests that at least a moderate amount of gas was obtained from the Coors well test in the Piceance Basin. Field work for the Piceance Basin Detailed Site Investigation was completed. In the Occidental Research Corporation (ORC) project, a higher capacity vacuum pump to increase CH/sub 4/ venting operations has been installed. Drilling of Oxy No. 12 experienced delays caused by mine gas-offs and was eventually terminated at 460 ft after an attempt to drill through a roll which produced a severe dog leg and severely damaged the drill pipe. ORC moved the second drill rig and equipment to a new location in the same panel as Oxy No. 12 and set the stand pipe for Oxy No. 13. Drill rig No. 1 has been moved east of the longwall mining area in anticipation of drilling cross-panel on 500 foot intervals. Waynesburg College project, Equitable Gas Company has received the contract from Waynesburg College and has applied to the Pennsylvania Public Utilities Commission for a new tariff rate. Waynesburg College has identified a contractor to make the piping connections to the gas line after Equitable establishes their meter and valve requirements.

Not Available

1980-11-01T23:59:59.000Z

244

SURFACTANT BASED ENHANCED OIL RECOVERY AND FOAM MOBILITY CONTROL  

SciTech Connect (OSTI)

Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactants makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. Also, the addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacial tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured, oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine. Mobility control is essential for surfactant EOR. Foam is evaluted to improve the sweep efficiency of surfactant injected into fractured reservoirs. UTCHEM is a reservoir simulator specially designed for surfactant EOR. A dual-porosity version is demonstrated as a potential scale-up tool for fractured reservoirs.

George J. Hirasaki; Clarence A. Miller; Gary A. Pope; Richard E. Jackson

2004-07-01T23:59:59.000Z

245

Research on Oil Recovery Mechanisms in Heavy Oil Reservoirs  

SciTech Connect (OSTI)

The goal of this project is to increase recovery of heavy oils. Towards that goal studies are being conducted in how to assess the influence of temperature and pressure on the absolute and relative permeability to oil and water and on capillary pressure; to evaluate the effect of different reservoir parameters on the in site combustion process; to develop and understand mechanisms of surfactants on for the reduction of gravity override and channeling of steam; and to improve techniques of formation evaluation.

Louis M. Castanier; William E. Brigham

1998-03-31T23:59:59.000Z

246

CALIFORNIA RECOVERY ACT SNAPSHOT | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

has substantial natural resources, including oil, gas, solar, wind, geothermal, and hydroelectric power .The American Recovery & Reinvestment Act (ARRA) is making a meaningful down...

247

Clean Cities Recovery Act: Vehicle & Infrastructure Deployment  

Broader source: Energy.gov (indexed) [DOE]

project through collection of vehicle, infrastructure and training information. RELEVANCE Alternative Fuel & Advance Technology Vehicles Pilot Program Clean Cities Recovery Act:...

248

American Recovery and Reinvestment Act, Financial Assistance...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

- ARRAAttachment3.rtf FOIA Frequently Requested Documents: DE-EE0002884 Recovery Act - Integrated Algal Biorefinery (IABR) Financial Assistance Funding Opportunity Announcement...

249

Faces of the Recovery Act: 1366 Technologies  

Broader source: Energy.gov [DOE]

LEXINGTON, MA - At 1366 Technologies, Ely Sachs and Frank van Mierlo are using ARPA-E Recovery Act funding to dramatically reduce the costs of solar panel production.

250

Weatherization Formula Grants - American Recovery and Reinvestment...  

Energy Savers [EERE]

Act of 2009 waprecoveryactfoa.pdf More Documents & Publications Microsoft Word - nDE-FOA-0000051.rtf Weatherization Formula Grants - American Recovery and Reinvestment Act...

251

Bioelectrochemical Integration of Waste Heat Recovery, Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

MHRC System Concept ADVANCED MANUFACTURING OFFICE Bioelectrochemical Integration of Waste Heat Recovery, Waste-to-Energy Conversion, and Waste-to-Chemical Conversion with...

252

Recovery Act Progress Update: Reactor Closure Feature  

SciTech Connect (OSTI)

A Recovery Act Progress Update. Decommissioning of two nuclear reactor sites at the Department of Energy's facilities has been approved and is underway.

Cody, Tom

2010-01-01T23:59:59.000Z

253

Recovery Act Progress Update: Reactor Closure Feature  

ScienceCinema (OSTI)

A Recovery Act Progress Update. Decommissioning of two nuclear reactor sites at the Department of Energy's facilities has been approved and is underway.

Cody, Tom

2012-06-14T23:59:59.000Z

254

Optimize carbon dioxide sequestration, enhance oil recovery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate the potential of storing carbon dioxide in depleted oil fields...

255

DEVELOPMENT OF BIOSURFACTANT-MEDIATED OIL RECOVERY IN MODEL POROUS SYSTEMS AND COMPUTER SIMULATIONS OF BIOSURFACTANT-MEDIATED OIL RECOVERY  

SciTech Connect (OSTI)

Current technology recovers only one-third to one-half of the oil that is originally present in an oil reservoir. Entrapment of petroleum hydrocarbons by capillary forces is a major factor that limits oil recovery (1, 3, 4). Hydrocarbon displacement can occur if interfacial tension (IFT) between the hydrocarbon and aqueous phases is reduced by several orders of magnitude. Microbially-produced biosurfactants may be an economical method to recover residual hydrocarbons since they are effective at low concentrations. Previously, we showed that substantial mobilization of residual hydrocarbon from a model porous system occurs at biosurfactant concentrations made naturally by B. mojavensis strain JF-1 if a polymer and 2,3-butanediol were present (2). In this report, we include data on oil recovery from Berea sandstone experiments along with our previous data from sand pack columns in order to relate biosurfactant concentration to the fraction of oil recovered. We also investigate the effect that the JF-2 biosurfactant has on interfacial tension (IFT). The presence of a co-surfactant, 2,3-butanediol, was shown to improve oil recoveries possibly by changing the optimal salinity concentration of the formulation. The JF-2 biosurfactant lowered IFT by nearly 2 orders of magnitude compared to typical values of 28-29 mN/m. Increasing the salinity increased the IFT with or without 2,3-butanediol present. The lowest interfacial tension observed was 0.1 mN/m. Tertiary oil recovery experiments showed that biosurfactant solutions with concentrations ranging from 10 to 60 mg/l in the presence of 0.1 mM 2,3-butanediol and 1 g/l of partially hydrolyzed polyacrylamide (PHPA) recovered 10-40% of the residual oil present in Berea sandstone cores. When PHPA was used alone, about 10% of the residual oil was recovered. Thus, about 10% of the residual oil recovered in these experiments was due to the increase in viscosity of the displacing fluid. Little or no oil was recovered at biosurfactant concentrations below the critical micelle concentration (about 10 mg/l). Below this concentration, the IFT values were high. At biosurfactant concentrations from 10 to 40 mg/l, the IFT was 1 mN/m. As the biosurfactant concentration increased beyond 40 mg/l, IFT decreased to about 0.1 mN/m. At biosurfactant concentrations in excess of 10 mg/l, residual oil recovery was linearly related to biosurfactant concentration. A modified mathematical model that relates oil recovery to biosurfactant concentration adequately predicted the experimentally observed changes in IFT as a function of biosurfactant concentration.

M.J. McInerney; S.K. Maudgalya; R. Knapp; M. Folmsbee

2004-05-31T23:59:59.000Z

256

INT. J. CONTROL, 1989, VOL. 49, NO. 4, 1249 1271 Loop recovery via Hm/* sensitivity recovery  

E-Print Network [OSTI]

;1250 J. B. Moore and T T Tay context of Anderson and Moore ( 1971 ) and Kwakernaak and Sivan ( 1972INT. J. CONTROL, 1989, VOL. 49, NO. 4, 1249­ 1271 Loop recovery via Hm/* sensitivity recovery J. B. MOOREt and T. T. TAY~ Loop transfer recovery (LTR) techniques are known to enhance the input or output

Moore, John Barratt

257

Well blowout rates and consequences in California Oil and Gas District 4 from 1991 to 2005: Implications for geological storage of carbon dioxide  

SciTech Connect (OSTI)

Well blowout rates in oil fields undergoing thermally enhanced recovery (via steam injection) in California Oil and Gas District 4 from 1991 to 2005 were on the order of 1 per 1,000 well construction operations, 1 per 10,000 active wells per year, and 1 per 100,000 shut-in/idle and plugged/abandoned wells per year. This allows some initial inferences about leakage of CO2 via wells, which is considered perhaps the greatest leakage risk for geological storage of CO2. During the study period, 9% of the oil produced in the United States was from District 4, and 59% of this production was via thermally enhanced recovery. There was only one possible blowout from an unknown or poorly located well, despite over a century of well drilling and production activities in the district. The blowout rate declined dramatically during the study period, most likely as a result of increasing experience, improved technology, and/or changes in safety culture. If so, this decline indicates the blowout rate in CO2-storage fields can be significantly minimized both initially and with increasing experience over time. Comparable studies should be conducted in other areas. These studies would be particularly valuable in regions with CO2-enhanced oil recovery (EOR) and natural gas storage.

Jordan, Preston; Jordan, Preston D.; Benson, Sally M.

2008-05-15T23:59:59.000Z

258

Surfactant Based Enhanced Oil Recovery and Foam Mobility Control  

SciTech Connect (OSTI)

Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. A combination of two surfactants was found to be particularly effective for application in carbonate formations at low temperature. A formulation has been designed for a particular field application. The addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacial tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. The design of the process to maximize the region of ultra-low IFT is more challenging since the ratio of soap to synthetic surfactant is a parameter in the conditions for optimal salinity. Compositional simulation of the displacement process demonstrates the interdependence of the various components for oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured, oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine. Mobility control is essential for surfactant EOR. Foam is evaluated to improve the sweep efficiency of surfactant injected into fractured reservoirs. UTCHEM is a reservoir simulator specially designed for surfactant EOR. It has been modified to represent the effects of a change in wettability. Simulated case studies demonstrate the effects of wettability.

George J. Hirasaki; Clarence A. Miller; Gary A. Pope

2005-07-01T23:59:59.000Z

259

Method for enhanced oil recovery  

DOE Patents [OSTI]

The present invention is directed to an improved method for enhanced recovery of oil from relatively "cold" reservoirs by carbon dioxide flooding. In oil reservoirs at a temperature less than the critical temperature of 87.7.degree. F. and at a pore pressure greater than the saturation pressure of carbon dioxide at the temperature of the reservoir, the carbon dioxide remains in the liquid state which does not satisfactorily mix with the oil. However, applicants have found that carbon dioxide can be vaporized in situ in the reservoir by selectively reducing the pore pressure in the reservoir to a value less than the particular saturated vapor pressure so as to greatly enhance the mixing of the carbon dioxide with the oil.

Comberiati, Joseph R. (Morgantown, WV); Locke, Charles D. (Morgantown, WV); Kamath, Krishna I. (Chicago, IL)

1980-01-01T23:59:59.000Z

260

Enhanced oil recovery using hydrogen peroxide injection  

SciTech Connect (OSTI)

NOVATEC received an US Patent on a novel method to recovery viscous oil by hydrogen peroxide injection. The process appears to offer several significant improvements over existing thermal methods of oil recovery. Tejas joined NOVATEC to test the process in the laboratory and to develop oil field applications and procedures.

Moss, J.T. Jr.; Moss, J.T.

1995-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "increase recovery rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Thermal recovery of oil and bitumen  

SciTech Connect (OSTI)

This book is organized into the following chapters: Introduction to Thermal Recovery; Conduction of Heat Within Solids; Convective Heating within Reservoirs; Steamfloodings; The Displacement of Heavy Oil; Cyclic Steam Simulation; Steam-Assisted Gravity Drainage; Steam Recovery Equipment and Facilities; and In Situ Combustion.

Butler, R.M. (Dept. of Chemical and Petroleum Engineering, Univ. of Calgary, Calgary, Alberta (CA))

1991-01-01T23:59:59.000Z

262

Faces of the Recovery Act: Sun Catalytix  

ScienceCinema (OSTI)

BOSTON- At the Massachusetts Institute of Technology, Dan Nocera talks about Sun Catalytix, the next generation of solar energy, and ARPA-E funding through the Recovery Act. To learn about more ARPA-E projects through the Recovery Act: http://arpa-e.energy.gov/FundedProjects.aspx

Nocera, Dave

2013-05-29T23:59:59.000Z

263

Optimize carbon dioxide sequestration, enhance oil recovery  

E-Print Network [OSTI]

- 1 - Optimize carbon dioxide sequestration, enhance oil recovery January 8, 2014 Los Alamos simulation to optimize carbon dioxide (CO2) sequestration and enhance oil recovery (CO2-EOR) based on known production. Due to carbon capture and storage technology advances, prolonged high oil prices

264

Upgraded recovery boiler meets low air emissions standards  

SciTech Connect (OSTI)

In the fall of 1990, the Boise Cascade mill in International Falls, MN, carried out a millwide modernization project. One critical element of the project was the upgrade of their recovery boiler. As a result of the recovery boiler upgrade, the mill was required to obtain a prevention of significant deterioration (PSD) air permit. A best available control technology (BACT) assessment was performed as a requirement of the PSD regulations. Ultimately, a number of more stringent air pollution emission limits were established for the boiler, and a continuous emissions monitoring system (CEMS) was purchased and installed to report daily results to the Minnesota Pollution Control Agency. This paper describes efforts to achieve increased firing capacity in the mill's recovery boiler while meeting more severe air emissions regulations. The authors will show that each of the emissions limits, including CO, SO[sub 2], NO[sub x], TRS, and opacity, are met by the upgraded boiler, while achieving an increase in firing capacity over pre-upgrade levels of up to 40%.

La Fond, J.F.; Jansen, J.H. (Jansen Combustion and Boiler Technologies, Inc., Woodinville, WA (United States)); Eide, P. (Boise Cascade Corp., International Falls, MN (United States))

1994-12-01T23:59:59.000Z

265

Impact of increased electric vehicle use on battery recycling infrastructure  

SciTech Connect (OSTI)

State and Federal regulations have been implemented that are intended to encourage more widespread use of low-emission vehicles. These regulations include requirements of the California Air Resources Board (CARB) and regulations pursuant to the Clean Air Act Amendments of 1990 and the Energy Policy Act. If the market share of electric vehicles increases in response to these initiatives, corresponding growth will occur in quantities of spent electric vehicle batteries for disposal. Electric vehicle battery recycling infrastructure must be adequate to support collection, transportation, recovery, and disposal stages of waste battery handling. For some battery types, such as lead-acid, a recycling infrastructure is well established; for others, little exists. This paper examines implications of increasing electric vehicle use for lead recovery infrastructure. Secondary lead recovery facilities can be expected to have adequate capacity to accommodate lead-acid electric vehicle battery recycling. However, they face stringent environmental constraints that may curtail capacity use or new capacity installation. Advanced technologies help address these environmental constraints. For example, this paper describes using backup power to avoid air emissions that could occur if electric utility power outages disable emissions control equipment. This approach has been implemented by GNB Technologies, a major manufacturer and recycler of lead-acid batteries. Secondary lead recovery facilities appear to have adequate capacity to accommodate lead waste from electric vehicles, but growth in that capacity could be constrained by environmental regulations. Advances in lead recovery technologies may alleviate possible environmental constraints on capacity growth.

Vimmerstedt, L.; Hammel, C. [National Renewable Energy Lab., Golden, CO (United States); Jungst, R. [Sandia National Labs., Albuquerque, NM (United States)

1996-12-01T23:59:59.000Z

266

Synergistic air port corrosion in kraft recovery boilers  

SciTech Connect (OSTI)

Localized hot corrosion can occur on the cold-side of air-ports in Kraft recovery boilers. Depending on the basicity of the molten salt, either acidic or basic fluxing takes place, with a solubility minima at the transition between the two reactions. For stainless steel, if the basicity of the fused salt is between the iron and chromium oxide solubility minima, then a synergistic effect can occur that leads to rapid corrosion. The products of one reaction are the reactants of the other, which eliminates the need for rate-controlling diffusion. This effect can explain why stainless steel is attacked more readily than carbon steel.

Holcomb, Gordon R.

2001-08-01T23:59:59.000Z

267

Waste heat recovery steam curves with unfired HRSGs  

SciTech Connect (OSTI)

A compilation of waste heat recovery steam curves for a sampling of gas turbines ranging in output from around 1 MW to more than 200 MW is presented. The gas turbine output data shown with each set of curves differs from the values given in the Performance Specifications section of the Handbook. That's because the values have been calculated to reflect the effects of a 4 inch inlet and 10 inch outlet pressure drop on power output (lower), heat rate (higher), mass flow (higher), and exhaust temperature (higher).

Not Available

1993-01-01T23:59:59.000Z

268

An algorithm for recovery of distributed applications with directed dependencies  

E-Print Network [OSTI]

recovery. The thesis proposes a distributed algorithm which coordinates management entities, called agents, to monitor the managed resources (which have directed failure and recovery dependencies among them) and perform recovery actions once failures have...

Yang, Jiantian

1996-01-01T23:59:59.000Z

269

Hanford Information Related to the American Recovery and Reinvestment...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Recovery Act of 2009 Recovery Act of 2009 Recovery Act of 2009 Hanford ARRA FAQ Hanford ARRA Weekly Reports Hanford ARRA News Hanford ARRA Photogallery Hanford ARRA Videos Hanford...

270

2007 Wholesale Power Rate Case Initial Proposal : Risk Analysis Study.  

SciTech Connect (OSTI)

The Federal Columbia River Power System (FCRPS), operated on behalf of the ratepayers of the PNW by BPA and other Federal agencies, faces many uncertainties during the FY 2007-2009 rate period. Among these uncertainties, the largest revolve around hydro conditions, market prices and river operations for fish recovery. In order to provide a high probability of making its U.S. Treasury payments, BPA performs a Risk Analysis as part of its rate-making process. In this Risk Analysis, BPA identifies key risks, models their relationships, and then analyzes their impacts on net revenues (total revenues less expenses). BPA subsequently evaluates in the ToolKit Model the Treasury Payment Probability (TPP) resulting from the rates, risks, and risk mitigation measures described here and in the Wholesale Power Rate Development Study (WPRDS). If the TPP falls short of BPA's standard, additional risk mitigation revenues, such as PNRR and CRAC revenues are incorporated in the modeling in ToolKit until the TPP standard is met. Increased wholesale market price volatility and six years of drought have significantly changed the profile of risk and uncertainty facing BPA and its stakeholders. These present new challenges for BPA in its effort to keep its power rates as low as possible while fully meeting its obligations to the U.S. Treasury. As a result, the risk BPA faces in not receiving the level of secondary revenues that have been credited to power rates before receiving those funds is greater. In addition to market price volatility, BPA also faces uncertainty around the financial impacts of operations for fish programs in FY 2006 and in the FY 2007-2009 rate period. A new Biological Opinion or possible court-ordered change to river operations in FY 2006 through FY 2009 may reduce BPA's net revenues included Initial Proposal. Finally, the FY 2007-2009 risk analysis includes new operational risks as well as a more comprehensive analysis of non-operating risks. Both the operational and non-operational risks will be described in Section 2.0 of this study. Given these risks, if rates are designed using BPA's traditional approach of only adding Planned Net Revenues for Risk (PNRR), power rates would need to recover a much larger ''risk premium'' to meet BPA's TPP standard. As an alternative to high fixed risk premiums, BPA is proposing a risk mitigation package that combines PNRR with a variable rate mechanism similar to the cost recovery adjustment mechanisms used in the FY 2002-2006 rate period. The proposed risk mitigation package is less expensive on a forecasted basis because the rates can be adjusted on an annual basis to respond to uncertain financial outcomes. BPA is also proposing a Dividend Distribution Clause (DDC) to refund reserves in excess of $800M to customers in the event net revenues in the next rate period exceed current financial forecasts.

United States. Bonneville Power Administration.

2005-11-01T23:59:59.000Z

271

Bone marrow stromal cells increase oligodendrogenesis after stroke  

E-Print Network [OSTI]

Bone marrow stromal cells increase oligodendrogenesis after stroke Jing Zhang1 , Yi Li1 , Zheng cell (BMSC) treatment of stroke in rats. Rats were subjected to the middle cerebral artery occlusion (MCAo). BMSCs have been shown to promote functional recovery post stroke. A therapeutic dose of BMSC (3

Cai, Long

272

Secretary Chu Announces Nearly $50 Million of Recovery Act Funding...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nearly 50 Million of Recovery Act Funding to Accelerate Deployment of Geothermal Heat Pumps Secretary Chu Announces Nearly 50 Million of Recovery Act Funding to...

273

Secretary Chu Announces Nearly $50 Million of Recovery Act Funding...  

Office of Environmental Management (EM)

50 Million of Recovery Act Funding to Accelerate Deployment of Geothermal Heat Pumps Secretary Chu Announces Nearly 50 Million of Recovery Act Funding to Accelerate Deployment of...

274

Recovery Act - Geothermal Technologies Program:Ground Source...  

Broader source: Energy.gov (indexed) [DOE]

Recovery Act - Geothermal Technologies Program:Ground Source Heat Pumps Recovery Act - Geothermal Technologies Program:Ground Source Heat Pumps A detailled description of the...

275

Energy Secretary Chu Announces $138 Million in Recovery Act Funding...  

Energy Savers [EERE]

38 Million in Recovery Act Funding for Environmental Cleanup in Ohio Energy Secretary Chu Announces 138 Million in Recovery Act Funding for Environmental Cleanup in Ohio March 31,...

276

Energy Secretary Chu Announces $148 million in Recovery Act Funding...  

Energy Savers [EERE]

48 million in Recovery Act Funding for Environmental Cleanup in New York Energy Secretary Chu Announces 148 million in Recovery Act Funding for Environmental Cleanup in New York...

277

Energy Secretary Chu Announces $384 Million in Recovery Act Funding...  

Energy Savers [EERE]

384 Million in Recovery Act Funding for Environmental Cleanup in New Mexico Energy Secretary Chu Announces 384 Million in Recovery Act Funding for Environmental Cleanup in New...

278

Exsolution Enhanced Oil Recovery with Concurrent CO2 Sequestration...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Exsolution Enhanced Oil Recovery with Concurrent CO2 Sequestration. Exsolution Enhanced Oil Recovery with Concurrent CO2 Sequestration. Abstract: A novel EOR method using...

279

ITP Energy Intensive Processes: Improved Heat Recovery in Biomass...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Improved Heat Recovery in Biomass-Fired Boilers ITP Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers biomass-firedboilers.pdf More Documents &...

280

Recovery Act, Office of the Biomass Program,Funding Opportunity...  

Broader source: Energy.gov (indexed) [DOE]

Recovery Act, Office of the Biomass Program,Funding Opportunity Announcements Special Notice Recovery Act, Office of the Biomass Program,Funding Opportunity Announcements Special...

Note: This page contains sample records for the topic "increase recovery rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

"Recovery Act: Training Program Development for Commercial Building...  

Broader source: Energy.gov (indexed) [DOE]

"Recovery Act: Training Program Development for Commercial Building Equipment Technicians, Building Operators, and Energy Commissioning AgentsAuditors" "Recovery Act: Training...

282

addiction recovery principles: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

management, and recovery coaching helped, or are now helping, transform addiction treatment into a more person-centered, holistic, family-centered, and recovery-focused system...

283

Amino acid treatment enhances protein recovery from sediment...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

treatment enhances protein recovery from sediment and soils for metaproteomic studies . Amino acid treatment enhances protein recovery from sediment and soils for metaproteomic...

284

Ab Initio Atomic Simulations of Antisite Pair Recovery in Cubic...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Atomic Simulations of Antisite Pair Recovery in Cubic Silicon Carbide. Ab Initio Atomic Simulations of Antisite Pair Recovery in Cubic Silicon Carbide. Abstract: The thermal...

285

Post-Shred Materials Recovery Technology Development and Demonstration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Shred Materials Recovery Technology Development and Demonstration Post-Shred Materials Recovery Technology Development and Demonstration 2009 DOE Hydrogen Program and Vehicle...

286

Post-Shred Materials Recovery Technology Development and Demonstration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Post-Shred Materials Recovery Technology Development and Demonstration Post-Shred Materials Recovery Technology Development and Demonstration Presentation from the U.S. DOE Office...

287

Vehicle Technologies Office: Materials for Energy Recovery Systems...  

Energy Savers [EERE]

Energy Recovery Systems and Controlling Exhaust Gases Vehicle Technologies Office: Materials for Energy Recovery Systems and Controlling Exhaust Gases The typical internal...

288

Department of Energy Issues Loan Guarantee Supported by Recovery...  

Office of Environmental Management (EM)

Loan Guarantee Supported by Recovery Act for Nevada Geothermal Project Department of Energy Issues Loan Guarantee Supported by Recovery Act for Nevada Geothermal Project September...

289

Department of Energy Issues Loan Guarantee Supported by Recovery...  

Energy Savers [EERE]

Department of Energy Issues Loan Guarantee Supported by Recovery Act for Nevada Geothermal Project Department of Energy Issues Loan Guarantee Supported by Recovery Act for Nevada...

290

Mineral Recovery Creates Revenue Stream for Geothermal Energy...  

Energy Savers [EERE]

Mineral Recovery Creates Revenue Stream for Geothermal Energy Development Mineral Recovery Creates Revenue Stream for Geothermal Energy Development January 21, 2014 - 12:00am...

291

CLOSEOUT PROCEDURES FOR RECOVERY ACT GRANTS UNDER THE WEATHERIZATION...  

Broader source: Energy.gov (indexed) [DOE]

CLOSEOUT PROCEDURES FOR RECOVERY ACT GRANTS UNDER THE WEATHERIZATION ASSISTANCE PROGRAM CLOSEOUT PROCEDURES FOR RECOVERY ACT GRANTS UNDER THE WEATHERIZATION ASSISTANCE PROGRAM This...

292

Treasury, Energy Surpass $1 Billion Milestone in Recovery Act...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Secretary Steven Chu hosted a group of clean energy developers and manufacturers at the White House to discuss how the American Recovery and Reinvestment Act (Recovery Act) is...

293

American Recovery and Reinvestment Act General Guidelines for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

White House American Recovery and Reinvestment Act General Guidelines for Emblem and Logo Applications Page 1 American Recovery and Reinvestment Act General Guidelines for...

294

High Efficiency Microturbine with Integral Heat Recovery - Presentatio...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High Efficiency Microturbine with Integral Heat Recovery - Presentation by Capstone Turbine Corporation, June 2011 High Efficiency Microturbine with Integral Heat Recovery -...

295

FOIA Frequently Requested Documents: DE-EE0002884 Recovery Act...  

Energy Savers [EERE]

FOIA Frequently Requested Documents: DE-EE0002884 Recovery Act - Integrated Algal Biorefinery (IABR) FOIA Frequently Requested Documents: DE-EE0002884 Recovery Act - Integrated...

296

Office of Electricity Delivery and Energy Reliability Recovery...  

Broader source: Energy.gov (indexed) [DOE]

Electricity Delivery and Energy Reliability Recovery Program Plan Office of Electricity Delivery and Energy Reliability Recovery Program Plan Microsoft Word - OE PSRP June 5 2009...

297

Recovery Act: Wind Energy Consortia between Institutions of Higher...  

Broader source: Energy.gov (indexed) [DOE]

Recovery Act: Wind Energy Consortia between Institutions of Higher Learning and Industry Recovery Act: Wind Energy Consortia between Institutions of Higher Learning and Industry A...

298

American Recovery & Reinvestment Act, ARRA, clean energy projects...  

Energy Savers [EERE]

Recovery & Reinvestment Act, ARRA, clean energy projects, energy efficiency, smart grid, alternative fuels, geothermal energy American Recovery & Reinvestment Act, ARRA, clean...

299

abnormal metabolic recovery: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

simulation to optimize carbon dioxide (CO2) sequestration and enhance oil recovery (CO2-EOR) based on known 140 Key recovery in a business environment Computer Technologies...

300

advanced secondary recovery: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

simulation to optimize carbon dioxide (CO2) sequestration and enhance oil recovery (CO2-EOR) based on known 116 Key recovery in a business environment Computer Technologies...

Note: This page contains sample records for the topic "increase recovery rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

RECOVERY ACT -- CLEAN ENERGY COALITION MICHIGAN GREEN FLEETS...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

RECOVERY ACT -- CLEAN ENERGY COALITION MICHIGAN GREEN FLEETS RECOVERY ACT -- CLEAN ENERGY COALITION MICHIGAN GREEN FLEETS 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle...

302

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles...  

Broader source: Energy.gov (indexed) [DOE]

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles Thermoelectric Waste Heat Recovery Program for Passenger Vehicles 2013 DOE Hydrogen and Fuel Cells Program and...

303

President Obama Announces Over $467 Million in Recovery Act Funding...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Over 467 Million in Recovery Act Funding for Geothermal and Solar Energy Projects President Obama Announces Over 467 Million in Recovery Act Funding for Geothermal and Solar...

304

President Obama Announces Over $467 Million in Recovery Act Funding...  

Energy Savers [EERE]

Announces Over 467 Million in Recovery Act Funding for Geothermal and Solar Energy Projects President Obama Announces Over 467 Million in Recovery Act Funding for Geothermal and...

305

Cumulative Federal Payments to OE Recovery Act Recipients, through...  

Broader source: Energy.gov (indexed) [DOE]

September 30, 2014 Cumulative Federal Payments to OE Recovery Act Recipients, through September 30, 2014 Cumulative Federal Payments to OE Recovery Act Recipients, through...

306

Cumulative Federal Payments to OE Recovery Act Recipients, through...  

Broader source: Energy.gov (indexed) [DOE]

3 Cumulative Federal Payments to OE Recovery Act Recipients, through June 30, 2013 Graph of cumulative Federal Payments to OE Recovery Act Recipients, through June 30, 2013. OE...

307

Cumulative Federal Payments to OE Recovery Act Recipients, through...  

Broader source: Energy.gov (indexed) [DOE]

4 Cumulative Federal Payments to OE Recovery Act Recipients, through June 30, 2014 Cumulative Federal Payments to OE Recovery Act Recipients, through June 30, 2014. OE ARRA...

308

Secretary Chu Announces More than $57 Million in Recovery Act...  

Broader source: Energy.gov (indexed) [DOE]

57 Million in Recovery Act Funding to Advance Smart Grid Development Secretary Chu Announces More than 57 Million in Recovery Act Funding to Advance Smart Grid Development July...

309

Recovery Act Selections for Smart Grid Investment Grant Awards...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Recovery Act Selections for Smart Grid Investment Grant Awards- By Category Updated July 2010 Recovery Act Selections for Smart Grid Investment Grant Awards- By Category Updated...

310

Synchrophasor Technologies and their Deployment in the Recovery...  

Energy Savers [EERE]

Synchrophasor Technologies and their Deployment in the Recovery Act Smart Grid Programs (August 2013) Synchrophasor Technologies and their Deployment in the Recovery Act Smart Grid...

311

Recovery Act Selections for Smart Grid Invesment Grant Awards...  

Broader source: Energy.gov (indexed) [DOE]

Recovery Act Selections for Smart Grid Invesment Grant Awards- By Category Updated July 2010 Recovery Act Selections for Smart Grid Invesment Grant Awards- By Category Updated July...

312

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Waste Heat Recovery Program for Passenger Vehicles Thermoelectric Waste Heat Recovery Program for Passenger Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

313

An Overview of Thermoelectric Waste Heat Recovery Activities...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

An Overview of Thermoelectric Waste Heat Recovery Activities in Europe An Overview of Thermoelectric Waste Heat Recovery Activities in Europe An overview presentation of R&D...

314

Energy Secretary Chu Announces $79 Million in Recovery Act Funding...  

Broader source: Energy.gov (indexed) [DOE]

79 Million in Recovery Act Funding for Environmental Cleanup in Kentucky Energy Secretary Chu Announces 79 Million in Recovery Act Funding for Environmental Cleanup in Kentucky...

315

LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM 02/11/2014...  

Energy Savers [EERE]

LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM 02112014 LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM 02112014 mineral-webinar.pdf More Documents & Publications LOW...

316

Dynamic Recovery in Silicate-Apatite Structures Under Irradiation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Recovery in Silicate-Apatite Structures Under Irradiation and Implications for Long-Term Immobilization of Actinides. Dynamic Recovery in Silicate-Apatite Structures Under...

317

Steelmaker Matches Recovery Act Funds to Save Energy & Reduce...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and installed with DOE Recovery Act Funding. Blast Furnace Gas Recovery Boiler Provides Steam and Power at Steel Mill More Documents & Publications Capturing Waste Gas: Saves...

318

Laboratories for the 21st Century Best Practices: Energy Recovery...  

Broader source: Energy.gov (indexed) [DOE]

Laboratories for the 21st Century Best Practices: Energy Recovery in Laboratory Facilities Laboratories for the 21st Century Best Practices: Energy Recovery in Laboratory...

319

Audit Report: The Department of Energy's American Recovery and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Energy's American Recovery and Reinvestment Act - California State Energy Program Audit Report: The Department of Energy's American Recovery and Reinvestment Act - California...

320

Modeling effects of diffusion and gravity drainage on oil recovery in naturally fractured reservoirs under gas injection  

E-Print Network [OSTI]

Gas injection in naturally fractured reservoirs maintains the reservoir pressure, and increases oil recovery primarily by gravity drainage and to a lesser extent by mass transfer between the flowing gas in the fracture and the porous matrix...

Jamili, Ahmad

2010-04-22T23:59:59.000Z

Note: This page contains sample records for the topic "increase recovery rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Final Report: Guided Acoustic Wave Monitoring of Corrosion in Recovery Boiler Tubing  

SciTech Connect (OSTI)

Corrosion of tubing used in black-liquor recovery boilers is a major concern in all pulp and paper mills. Extensive corrosion in recovery boiler tubes can result in a significant safety and environmental hazard. Considerable plant resources are expended to inspect recovery boiler tubing. Currently, visual and ultrasonic inspections are primarily used during the annual maintenance shutdown to monitor corrosion rates and cracking of tubing. This Department of Energy, Office of Industrial Technologies project is developing guided acoustic waves for use on recovery boiler tubing. The feature of this acoustic technique is its cost-effectiveness in inspecting long lengths of tubes from a single inspection point. A piezoelectric or electromagnetic transducer induces guided waves into the tubes. The transducer detects fireside defects from the cold side or fireside of the tube. Cracking and thinning on recovery boiler tubes have been detected with this technique in both laboratory and field applications. This technique appears very promising for recovery boiler tube application, potentially expediting annual inspection of tube integrity.

Chinn, D J; Quarry, M J; Rose, J L

2005-03-31T23:59:59.000Z

322

Efficient Energy Management and Data Recovery in Sensor Networks using Latent Variables Based Tensor  

E-Print Network [OSTI]

Efficient Energy Management and Data Recovery in Sensor Networks using Latent Variables Based factor in a successful sensor network deployment is finding a good balance between maximizing the number of measurements taken (to maintain a good sampling rate) and minimizing the overall energy consumption (to extend

Simunic, Tajana

323

Improved oil recovery in fluvial dominated deltaic reservoirs of Kansas -- Near-term. Quarterly report, January 1--March 31, 1998  

SciTech Connect (OSTI)

The objective of this project is to address waterflood problems of the type found in Morrow sandstone reservoirs in southwestern Kansas and in Cherokee Group reservoirs in southeastern Kansas. Two demonstration sites operated by different independent oil operators are involved in this project. The Stewart Field is located in Finney County, Kansas and is operated by PetroSantander, Inc. The Nelson Lease is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. General topics to be addressed are (1) reservoir management and performance evaluation, (2) waterflood optimization, and (3) the demonstration of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. Progress is described for the Stewart field on the following tasks: design/construct waterflood plant; design/construct injection system; design/construct battery consolidation and gathering system; waterflood operations and reservoir management; and technology transfer. Progress for the Savonburg Field includes: water plant development; profile modification treatments; pattern changes and wellbore cleanup; reservoir development (polymer flooding); field operations; and technology transfer.

Green, D.W.; Willhite, G.P.; Walton, A.; McCune, D.; Reynolds, R.; Michnick, M.; Watney, L.

1998-04-15T23:59:59.000Z

324

Report for the ASC CSSE L2 Milestone (4873) - Demonstration of Local Failure Local Recovery Resilient Programming Model.  

SciTech Connect (OSTI)

Recovery from process loss during the execution of a distributed memory parallel application is presently achieved by restarting the program, typically from a checkpoint file. Future computer system trends indicate that the size of data to checkpoint, the lack of improvement in parallel file system performance and the increase in process failure rates will lead to situations where checkpoint restart becomes infeasible. In this report we describe and prototype the use of a new application level resilient computing model that manages persistent storage of local state for each process such that, if a process fails, recovery can be performed locally without requiring access to a global checkpoint file. LFLR provides application developers with an ability to recover locally and continue application execution when a process is lost. This report discusses what features are required from the hardware, OS and runtime layers, and what approaches application developers might use in the design of future codes, including a demonstration of LFLR-enabled MiniFE code from the Matenvo mini-application suite.

Heroux, Michael A.; Teranishi, Keita [Sandia National Laboratories, Livermore, CA

2014-06-01T23:59:59.000Z

325

Mathematical Analysis of a Novel Approach to Maximize Waste Recovery in a Life Support System  

SciTech Connect (OSTI)

NASA has been evaluating closed-loop atmosphere revitalization architectures carbon dioxide, CO2, reduction technologies. The CO2 and steam, H2O, co-electrolysis process is another option that NASA has investigated. Utilizing recent advances in the fuel cell technology sector, the Idaho National Laboratory, INL, has developed a CO2 and H2O co-electrolysis process to produce oxygen and syngas (carbon monoxide, CO and hydrogen, H2 mixture) for terrestrial (energy production) application. The technology is a combined process that involves steam electrolysis, CO2 electrolysis, and the reverse water gas shift (RWGS) reaction. Two process models were developed to evaluate novel approaches for waster recovery in a life support system. The first is a model INL co-electrolysis process combined with a methanol production process. The second is the INL co-electrolysis process combined with a pressure swing adsorption (PSA) process. For both processes, the overall power increases as the syngas ratio, H2/CO, increases because more water is needed to produce more hydrogen at a set CO2 incoming flow rate. The power for the methanol cases is less than the PSA because heat is available from the methanol reactor to preheat the water and carbon dioxide entering the co-electrolysis process.

Michael G. McKellar; Rick A. Wood; Carl M. Stoots; Lila Mulloth; Bernadette Luna

2011-02-01T23:59:59.000Z

326

THE MATHEMATICAL ANALYSIS OF A NOVEL APPROACH TO MAXIMIZE WASTE RECOVERY IN A LIFE SUPPORT SYSTEM  

SciTech Connect (OSTI)

NASA has been evaluating closed-loop atmosphere revitalization architectures that include carbon dioxide (CO2) reduction technologies. The CO2 and steam (H2O) co-electrolysis process is one of the reduction options that NASA has investigated. Utilizing recent advances in the fuel cell technology sector, the Idaho National Laboratory, INL, has developed a CO2 and H2O co-electrolysis process to produce oxygen and syngas (carbon monoxide (CO) and hydrogen (H2) mixture) for terrestrial (energy production) application. The technology is a combined process that involves steam electrolysis, CO2 electrolysis, and the reverse water gas shift (RWGS) reaction. Two process models were developed to evaluate novel approaches for energy storage and resource recovery in a life support system. In the first model, products from the INL co-electrolysis process are combined to produce methanol fuel. In the second co-electrolysis, products are separated with a pressure swing adsorption (PSA) process. In both models the fuels are burned with added oxygen to produce H2O and CO2, the original reactants. For both processes, the overall power increases as the syngas ratio, H2/CO, increases because more water is needed to produce more hydrogen at a set CO2 incoming flow rate. The power for the methanol cases is less than pressure swing adsorption, PSA, because heat is available from the methanol reactor to preheat the water and carbon dioxide entering the co-electrolysis process.

Michael G. McKellar; Rick A. Wood; Carl M. Stoots; Lila Mulloth; Bernadette Luna

2011-11-01T23:59:59.000Z

327

Hydraulic fracturing accelerates coalbed methane recovery  

SciTech Connect (OSTI)

Methane production from deep coal seams that never will be mined requires hydraulic fracturing for faster, optimal recovery. Since this can be a complex process, proper formation evaluation beforehand is essential, according to this paper.

Holditch, S.A. (Texas A and M Univ. (US)); Ely, J.W.; Semmelbeck, M.E.; Carter, R.H. (S.A. Holditch and Associates (US)); Hinkel, J.J.; Jeffrey, R.G. Jr. (Dowell Schlumberger (US))

1990-11-01T23:59:59.000Z

328

Recovery Act-Funded HVAC projects  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy was allocated funding from the American Recovery and Reinvestment Act to conduct research into heating, ventilation, and air conditioning (HVAC) technologies and...

329

Autonomous thruster failure recovery for underactuated spacecraft  

E-Print Network [OSTI]

Thruster failures historically account for a large percentage of failures that have occurred on orbit. Therefore, autonomous thruster failure detection, isolation, and recovery (FDIR) is an essential component to any robust ...

Pong, Christopher Masaru

2010-01-01T23:59:59.000Z

330

RECOVERY ACT: TAPOCO PROJECT: CHEOAH UPGRADE  

SciTech Connect (OSTI)

Under Funding Opportunity Announcement Number: DE-FOA-0000120, Recovery Act: Hydroelectric Facility Modernization, Alcoa Power Generating Inc. (APGI), a fully owned subsidiary of Alcoa Inc., implemented major upgrades at its Cheoah hydroelectric facility near Robbinsville, North Carolina.

Paul Tran; 293 Highway 740; Baden, NC 28009

2013-02-28T23:59:59.000Z

331

Use Feedwater Economizers for Waste Heat Recovery  

SciTech Connect (OSTI)

This revised ITP tip sheet on feedwater economizers for waste heat recovery provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

332

Industrial Heat Recovery with Organic Rankine Cycles  

E-Print Network [OSTI]

Rising energy costs are encouraging energy intensive industries to investigate alternative means of waste heat recovery from process streams. The use of organic fluids in Rankine cycles offers improved potential for economical cogeneration from...

Hnat, J. G.; Patten, J. S.; Cutting, J. C.; Bartone, L. M.

1982-01-01T23:59:59.000Z

333

Recovery Act-Funded Working Fluid Projects  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy was allocated funding from the American Recovery and Reinvestment Act to conduct research into working fluid technologies and applications. Projects funded by the...

334

Autonomous Thruster Failure Recovery for Underactuated Spacecraft  

E-Print Network [OSTI]

. Miller September 2010 SSL #13­10 #12;2 #12;Autonomous Thruster Failure Recovery for Underactuated Spacecraft Christopher Masaru Pong, David W. Miller September 2010 SSL #12­11 This work is based

335

Gravity Recovery and Interior Laboratory (GRAIL) Launch  

E-Print Network [OSTI]

Gravity Recovery and Interior Laboratory (GRAIL) Launch Press Kit/AUGUst 2011 #12;http of its four channels to AC-3, making each channel's secondary audio MPEG 1 Layer II. For digital downlink

336

Pennsylvania Solid Waste- Resource Recovery Development Act  

Broader source: Energy.gov [DOE]

This act promotes the construction and the application of solid waste disposal/processing and resource recovery systems that preserve and enhance the quality of air, water, and land resources. The...

337

Heat Recovery Design Considerations for Cogeneration Systems  

E-Print Network [OSTI]

The design and integration of the heat recovery section, which includes the steam generation, auxiliary firing, and steam turbine modules, is critical to the overall performance and economics of cogeneration, systems. In gas turbine topping...

Pasquinelli, D. M.; Burns, E. D.

338

Recovery Act-Funded Water Heating Projects  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy was allocated funding from the American Recovery and Reinvestment Act to conduct research into water heating technologies and applications. Projects funded by the...

339

Recovery Act Worker Update: Mike Gunnels  

SciTech Connect (OSTI)

Mike Gunnels at the Savannah River Site tells how the Recovery Act got him out of unemployment and the benefits of training and teamwork in his new job with the Department of Energy.

Tire, Brian

2010-01-01T23:59:59.000Z

340

Energy Recovery from Potato Chip Fryers  

E-Print Network [OSTI]

The design, operating characteristics, and energy savings from an energy recovery system employed on a potato chip fryer which became operational in December, 1979, is discussed. The design incorporates a modification to an odor control system which...

McKee, H. B.; Kympton, H. W.; Arnold, J. W.; Paisan, J. J.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "increase recovery rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

An Introduction to Waste Heat Recovery  

E-Print Network [OSTI]

our dependence on petroleum-based fuels, paper, glass, and agricultural and automotive and hence improve our merchandise .trade balance. equipment industries have all had proven success with heat recovery projects. Solar, wind, geothermal, oil shale...

Darby, D. F.

342

Catastrophic Incident Recovery: Long-Term Recovery from an Anthrax Event Symposium  

SciTech Connect (OSTI)

On March 19, 2008, policy makers, emergency managers, and medical and Public Health officials convened in Seattle, Washington, for a workshop on Catastrophic Incident Recovery: Long-Term Recovery from an Anthrax Event. The day-long symposium was aimed at generating a dialogue about restoration and recovery through a discussion of the associated challenges that impact entire communities, including people, infrastructure, and critical systems.

Lesperance, Ann M.

2008-06-30T23:59:59.000Z

343

Pressure swing adsorption with intermediate product recovery  

SciTech Connect (OSTI)

A pressure swing adsorption process is used to achieve intermediate product recovery by the introduction of a gas displacement step before, simultaneous with or subsequent to pressure equalization between beds of a multi-bed adsorption system. A cocurrent depressurization step is then employed to achieve intermediate product recovery. A portion of said intermediate product or of the more readily adsorbable component recovered from a bed advantageously being employed to provide displacement gas for another bed in the adsorption system.

Fuderer, A.

1985-04-23T23:59:59.000Z

344

Modeling Dynamics of Post Disaster Recovery  

E-Print Network [OSTI]

Subject: Civil Engineering iii ABSTRACT Modeling Dynamics of Post Disaster Recovery. (August 2011) Ali Nejat, B.S., Zanjan University, Zanjan, Iran; M.S., Islamic Azad University, Tehran, Iran Chair of Advisory Committee: Dr. Ivan Damnjanovic... MODELING DYNAMICS OF POST DISASTER RECOVERY A Dissertation by ALI NEJAT Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY...

Nejat, Ali

2012-10-19T23:59:59.000Z

345

Faces of the Recovery Act: 1366 Technologies  

SciTech Connect (OSTI)

LEXINGTON, MA - At 1366 Technologies, Ely Sachs and Frank van Mierlo are using ARPA-E Recovery Act funding to dramatically reduce the costs of solar panel production. To read more about the project: http://arpa-e.energy.gov/FundedProjects.aspx#1366 To see more projects funded by the Recovery Act through ARPA-E: http://arpa-e.energy.gov/FundedProjects.aspx

Sachs, Ely; Mierlo, Frank van; Obama, Barack

2010-01-01T23:59:59.000Z

346

Exhaust Gas Energy Recovery Technology Applications  

SciTech Connect (OSTI)

Exhaust waste heat recovery systems have the potential to significantly improve vehicle fuel economy for conventional and hybrid electric powertrains spanning passenger to heavy truck applications. This chapter discusses thermodynamic considerations and three classes of energy recovery technologies which are under development for vehicle applications. More specifically, this chapter describes the state-of-the-art in exhaust WHR as well as challenges and opportunities for thermodynamic power cycles, thermoelectric devices, and turbo-compounding systems.

Wagner, Robert M [ORNL] [ORNL; Szybist, James P [ORNL] [ORNL

2014-01-01T23:59:59.000Z

347

Biochemically enhanced oil recovery and oil treatment  

SciTech Connect (OSTI)

This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil.

Premuzic, Eugene T. (East Moriches, NY); Lin, Mow (Rocky Point, NY)

1994-01-01T23:59:59.000Z

348

Biochemically enhanced oil recovery and oil treatment  

DOE Patents [OSTI]

This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. 62 figures.

Premuzic, E.T.; Lin, M.

1994-03-29T23:59:59.000Z

349

Faces of the Recovery Act: 1366 Technologies  

ScienceCinema (OSTI)

LEXINGTON, MA - At 1366 Technologies, Ely Sachs and Frank van Mierlo are using ARPA-E Recovery Act funding to dramatically reduce the costs of solar panel production. To read more about the project: http://arpa-e.energy.gov/FundedProjects.aspx#1366 To see more projects funded by the Recovery Act through ARPA-E: http://arpa-e.energy.gov/FundedProjects.aspx

Sachs, Ely; Mierlo, Frank van; Obama, Barack

2013-05-29T23:59:59.000Z

350

Recovery of tritium from tritiated molecules  

DOE Patents [OSTI]

This invention relates to the recovery of tritium from various tritiated molecules by reaction with uranium. More particularly, the invention relates to the recovery of tritium from tritiated molecules by reaction with uranium wherein the reaction is conducted in a reactor which permits the reaction to occur as a moving front reaction from the point where the tritium enters the reactor charged with uranium down the reactor until the uranium is exhausted.

Swansiger, W.A.

1984-10-17T23:59:59.000Z

351

Recovery Act State Summaries | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and Launches theResidentialRecovery Act State Summaries Recovery

352

An evaluation of known remaining oil resources in the state of California: Project on advanced oil recovery and the states. Volume 2  

SciTech Connect (OSTI)

The Interstate Oil and Gas Compact Commission (IOGCC) has conducted a series of studies to evaluate the known, remaining oil resource in twenty-three (23) states. The primary objective of die IOGCC`s effort is to examine the potential impact of an aggressive and focused program of research, development, and demonstration (RD&D) and technology transfer on future oil recovery in the United States. As part of a larger effort by the IOGCC, this report focuses on the potential economic benefits of improved oil recovery in the state of California. Individual reports for seven other oil producing states and a national report have been separately published by the IOGCC. Several major technical insights for state and Federal policymakers and regulators can be reached from this analysis. Overall, well abandonments and more stringent environmental regulations could limit economic access to the nation`s known, remaining oil resource. The high risk of near-term abandonment and the significant benefits of future application of improved oil recovery technoloy, clearly point to a need for more aggressive transfer of currently available technologies to domestic oil producers. Development and application of advanced oil recovery technologies could leave even greater benefits to the nation. A collaborative, focused RD&D effort, integrating the resources and expertise of industry, state and local governments, and the Federal government, is clearly warranted. With effective RD&D and a program of aggressive technology transfer to widely disseminate its results, California oil production could be maximized. The resulting increase and improvement in production rates, employment, operator profits, state and Federal tax revenues, energy security will benefit both the state of California and the nation as a whole.

NONE

1993-11-01T23:59:59.000Z

353

An evaluation of known remaining oil resources in the United States: Project on advanced oil recovery and the states. Volume 1  

SciTech Connect (OSTI)

The Interstate Oil and Gas Compact Commission (IOGCC) has conducted a series of studies to evaluate the known, remaining oil resource in twenty-three (23) states. The primary objective of die IOGCC`s effort is to examine the potential impact of an aggressive and focused program of research, development, and demonstration (RD&D) and technology transfer on future oil recovery in the United States. As part of a larger effort by the IOGCC, this report focuses on the potential economic, social, and political benefits of improved oil recovery to the nation as a whole. Individual reports for major oil producing states have been separately published. The individual state reports include California, Illinois, Kansas, Louisiana, New Mexico, Oklahoma, Texas, and Wyoming. Overall, well abandonments and more stringent environmental regulations could limit economic access to the nation`s known, remaining oil resource. The high risk of near-term abandonment and the significant benefits of future application of improved oil recovery technoloy, clearly point to a need for more aggressive transfer of currently available technologies to domestic oil producers. Development and application of advanced oil recovery technologies could leave even greater benefits to the nation. A collaborative, focused RD&D effort, integrating the resources and expertise of industry, state and local governments, and the Federal government, is clearly warranted. With effective RD&D and a program of aggressive technology transfer to widely disseminate its results, domestic oil production could be maximized. The resulting increase and improvement in production rates, employment, operator profits, state and Federal tax revenues, energy security will benefit the nation as a whole.

NONE

1993-11-01T23:59:59.000Z

354

An evaluation of known remaining oil resources in the state of Texas: Project on advanced oil recovery and the states. Volume 8  

SciTech Connect (OSTI)

The Interstate Oil and Gas Compact Commission (IOGCC) has conducted a series of studies to evaluate the known, remaining oil resource in twenty-three (23) states. The primary objective of die IOGCC`s effort is to examine the potential impact of an aggressive and focused program of research, development, and demonstration (RD&D) and technology transfer on future oil recovery in the United States. As part of a larger effort by the IOGCC, this report focuses on the potential economic benefits of improved oil recovery in the state of Texas. Individual reports for seven other oil producing states and a national report have been separately published by the IOGCC. Several major technical insights for state and Federal policymakers and regulators can be reached from this analysis. Overall, well abandonments and more stringent environmental regulations could limit economic access to Texas` known, remaining oil resource. The high risk of near-term abandonment and the significant benefits of future application of improved oil recovery technoloy, clearly point to a need for more aggressive transfer of currently available technologies to domestic oil producers. Development and application of advanced oil recovery technologies could leave even greater benefits to the nation. A collaborative, focused RD&D effort, integrating the resources and expertise of industry, state and local governments, and the Federal government, is clearly warranted. With effective RD&D and a program of aggressive technology transfer to widely disseminate its results, Texas oil production could be maximized. The resulting increase and improvement in production rates, employment, operator profits, state and Federal tax revenues, energy security will benefit both the state of Texas and the nation as a whole.

NONE

1993-11-01T23:59:59.000Z

355

An evaluation of known remaining oil resources in the state of Kansas: Project on advanced oil recovery and the states. Volume 4  

SciTech Connect (OSTI)

The Interstate Oil and Gas Compact Commission (IOGCC) has conducted a series of studies to evaluate the known, remaining oil resource in twenty-three (23) states. The primary objective of die IOGCC`s effort is to examine the potential impact of an aggressive and focused program of research, development, and demonstration (RD&D) and technology transfer on future oil recovery in the United States. As part of a larger effort by the IOGCC, this report focuses on the potential economic benefits of improved oil recovery in the state of Kansas. Individual reports for seven other oil producing states and a national report have been separately published by the IOGCC. Several major technical insights for state and Federal policymakers and regulators can be reached from this analysis. Overall, well abandonments and more stringent environmental regulations could limit economic access to the nation`s known, remaining oil resource. The high risk of near-term abandonment and the significant benefits of future application of improved oil recovery technoloy, clearly point to a need for more aggressive transfer of currently available technologies to domestic oil producers. Development and application of advanced oil recovery technologies could leave even greater benefits to the nation. A collaborative, focused RD&D effort, integrating the resources and expertise of industry, state and local governments, and the Federal government, is clearly warranted. With effective RD&D and a program of aggressive technology transfer to widely disseminate its results, Kansas oil production could be maximized. The resulting increase in production rates, employment, operator profits, state and Federal tax revenues, energy security will benefit the state of Kansas and the nation as a whole.

NONE

1993-11-01T23:59:59.000Z

356

An evaluation of known remaining oil resources in the state of Oklahoma: Project on advanced oil recovery and the states. Volume 7  

SciTech Connect (OSTI)

The Interstate Oil and Gas Compact Commission (IOGCC) has conducted a series of studies to evaluate the known, remaining oil resource in twenty-three (23) states. The primary objective of die IOGCC`s effort is to examine the potential impact of an aggressive and focused program of research, development, and demonstration (RD&D) and technology transfer on future oil recovery in the United States. As part of a larger effort by the IOGCC, this report focuses on the potential economic benefits of improved oil recovery in the state of Oklahoma. Individual reports for seven other oil producing states and a national report have been separately published by the IOGCC. Several major technical insights for state and Federal policymakers and regulators can be reached from this analysis. Overall, well abandonments and more stringent environmental regulations could limit economic access to Oklahoma`s known, remaining oil resource. The high risk of near-term abandonment and the significant benefits of future application of improved oil recovery technoloy, clearly point to a need for more aggressive transfer of currently available technologies to domestic oil producers. Development and application of advanced oil recovery technologies could leave even greater benefits to the nation. A collaborative, focused RD&D effort, integrating the resources and expertise of industry, state and local governments, and the Federal government, is clearly warranted. With effective RD&D and a program of aggressive technology transfer to widely disseminate its results, Oklahoma oil production could be maximized. The resulting increase and improvement in production rates, employment, operator profits, state and Federal tax revenues, energy security will benefit both the state of Oklahoma and the nation as a whole.

NONE

1993-11-01T23:59:59.000Z

357

LOWER COLUMBIA SALMON RECOVERY & SUBBASIN PLAN December 2004 RECOVERY GOALS 5-1  

E-Print Network [OSTI]

." This vision for recovery encompasses ESA de-listing goals in the sense that ESA de-listing could be achieved

358

Commercial Demonstration of Wood Recovery, Recycling, and Value Adding Technologies  

SciTech Connect (OSTI)

This commercial demonstration project demonstrated the technical feasibility of converting low-value, underutilized and waste stream solid wood fiber material into higher valued products. With a growing need to increase product/production yield and reduce waste in most sawmills, few recovery operations and practically no data existed to support the viability of recovery operations. Prior to our efforts, most all in the forest products industry believed that recovery was difficult, extremely labor intensive, not cost effective, and that recovered products had low value and were difficult to sell. This project provided an opportunity for many within the industry to see through demonstration that converting waste stream material into higher valued products does in fact offer a solution. Our work, supported by the U.S. Department of Energy, throughout the project aimed to demonstrate a reasonable approach to reducing the millions of recoverable solid wood fiber tons that are annually treated as and converted into low value chips, mulch and fuel. Consequently sawmills continue to suffer from reduced availability of forest resources, higher raw material costs, growing waste disposal problems, increased global competition, and more pressure to operate in an Environmentally Friendly manner. It is our belief (based upon the experience of this project) that the successful mainstreaming of the recovery concept would assist in alleviating this burden as well as provide for a realistically achievable economic benefit to those who would seriously pursue the concept and tap into the rapidly growing ''GREEN'' building marketplace. Ultimately, with participation and aggressive pursuit of the recovery concept, the public would benefit in that: (1) Landfill/disposal waste volume could be reduced adding greater life to existing municipal landfill sites thereby minimizing the need to prematurely license and open added facilities. Also, there would be a cost avoidance benefit associated to what would have been the added municipal (community) management costs involved with maintaining closed landfills. (2) With greater quantities of recovered material being returned to and integrated into manufacturing and the marketplace, reduced demand upon virgin wood sources could help lead the way to promoting improved relations and environmental balance between producers and consumers further expanding the value of our natural resource without adding environmental burden.

Auburn Machinery, Inc.

2004-07-15T23:59:59.000Z

359

Audit Report on "The Department of Energy's American Recovery and Reinvestment Act -- Florida State Energy Program"  

SciTech Connect (OSTI)

The Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) provides grants to states, territories, and the District of Columbia to support their energy priorities through the State Energy Program (SEP). The SEP provides Federal financial assistance to carry out energy efficiency and renewable energy projects that meet each state's unique energy needs while also addressing national goals such as energy security. Federal funding is based on a grant formula that takes into account population and energy consumption. The SEP emphasizes the state's role as the decision maker and administrator for the program. The American Recovery and Reinvestment Act of 2009 (Recovery Act) expanded the SEP, authorizing $3.1 billion in grants. Based on existing grant formulas and after reviewing state-level plans, EERE made awards to states. The State of Florida's Energy Office (Florida) was allocated $126 million - a 90-fold increase over Florida's average annual SEP grant of $1.4 million. Per the Recovery Act, this funding must be obligated by September 30, 2010, and spent by April 30, 2012. As of March 10, 2010, Florida had expended $13.2 million of the SEP Recovery Act funds. Florida planned to use its grant funds to undertake activities that would preserve and create jobs; save energy; increase renewable energy sources; and, reduce greenhouse gas emissions. To accomplish Recovery Act objectives, states could either fund new or expand existing projects. As a condition of the awards, EERE required states to develop and implement sound internal controls over the use of Recovery Act funds. Based on the significant increase in funding from the Recovery Act, we initiated this review to determine whether Florida had internal controls in place to provide assurance that the goals of the SEP and Recovery Act will be met and accomplished efficiently and effectively. We identified weaknesses in the implementation of SEP Recovery Act projects that have adversely impacted Florida's ability to meet the goals of the SEP and the Recovery Act. Specifically: (1) Florida used about $8.3 million to pay for activities that did not meet the intent of the Recovery Act to create new or save existing jobs. With the approval of the Department, Florida used these funds to pay for rebates related to solar energy projects that had been completed prior to passage of the Recovery Act; (2) State officials did not meet Florida's program goals to obligate all Recovery Act funds by January 1, 2010, thus delaying projects and preventing them from achieving the desired stimulative economic impact. Obligations were delayed because Florida officials selected a number of projects that either required a lengthy review and approval process or were specifically prohibited. In June 2009, the Department notified Florida that a number of projects would not be approved; however, as of April 1, 2010, the State had not acted to name replacement projects or move funds to other projects; (3) Florida officials had not ensured that 7 of the 18 award requirements for Recovery Act funding promulgated by the Department had been passed down to sub-recipients of the award, as required; and, (4) Certain internal control weaknesses that could jeopardize the program and increase the risk of fraud, waste and abuse were identified in the Solar Energy System Incentives Program during our September 2009 visit to Florida. These included a lack of separation of duties related to the processing of rebates and deficiencies in the written procedures for grant managers to review and approve rebates. From a forward looking perspective, absent aggressive corrective action, these weaknesses threaten Florida's efforts to meet future Recovery Act goals. In response to our review, Florida took corrective action to incorporate the additional award requirements in sub-recipient documents. It also instituted additional controls to correct the internal control weaknesses we identified. More, however, needs to be done with respect to Department oversight. This report details the circumstances sur

None

2010-06-01T23:59:59.000Z

360

Modification of chemical and physical factors in steamflood to increase heavy oil recovery  

SciTech Connect (OSTI)

This report summarizes research progress made during the period October 1, 1988--September 30, 1989. We report advances in the following general areas: (1) chemical-steam simulation model, (2) vapor-liquid flow in porous media, (3) foam flow in porous media, (4) caustic flooding at elevated temperatures, and (5) reservoir heterogeneity. Additional efforts have been devoted in the last quarter of the past year in upgrading and debugging the simulator. New features were added in three-phase relative permeabilities, the vertical equilibrium and the phase behavior subroutines. 123 refs., 79 figs., 2 tabs.

Yortsos, Y.C.

1990-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "increase recovery rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

New technology for sulfide reduction and increased oil recovery. Second quarter progress report  

SciTech Connect (OSTI)

The purpose of this project is to demonstrate reduction of sulfide contamination, as well as possible improvement of production in oil and gas production systems. This will be accomplished by application of the BioCompetitive Exclusion (BCX) process developed by GMT. A broad spectrum of well types and geographical locations is anticipated. The BCX process is designed to manipulate indigenous reservoir bacteria with the addition of synergistic inorganic chemical formulae. These treatments will stimulate growth of beneficial microbes, while suppressing metabolic activity of sulfate reducing bacteria (SRB), the primary source of harmful sulfide production. Progress in 7 oil and gas fields is summarized.

NONE

1998-12-20T23:59:59.000Z

362

New technology for sulfide reduction and increased oil recovery. Third quarter progress report  

SciTech Connect (OSTI)

Project work was initiated by Geo-Microbial Technologies, Inc. (GMT), Ochelata, Oklahoma for Contract Number DE-FG01-97EE15659 on June 18, 1997. The purpose of this project is to demonstrate reduction of sulfide contamination, as well as possible improvement of production in oil and gas production systems. This will be accomplished by application of the BioCompetitive Exclusion (BCX) process developed by GMT. A broad spectrum of well types and geographical locations is anticipated. The BCX process is designed to manipulate indigenous reservoir bacteria with the addition of synergistic inorganic chemical formulae. These treatments will stimulate growth of beneficial microbes, while suppressing metabolic activity of sulfate reducing bacteria (SRB), the primary source of harmful sulfide production.

NONE

1998-03-20T23:59:59.000Z

363

DOE-Sponsored Project Tests Novel Method to Increase Oil Recovery |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA - U.S. DepartmenttoJune 16,April 29,May 23, 1996JanuaryDepartment

364

Increased Oil Recovery from Mature Oil Fields Using Gelled Polymer Treatments  

SciTech Connect (OSTI)

This report describes the progress of the first year of a three-year research program. This program is aimed at reducing barriers to the widespread use of gelled polymer treatments by (1) developing methods to predict gel behavior during placement in matrix rock and fractures, (2) determining the persistence of permeability reduction after gel placement, and (3) developing methods to design production well treatments to control water production.

Willhite, G.P.; Green, D.W.; McCool, C.S.

2001-01-22T23:59:59.000Z

365

Venting and Rapid Recompression Increase Survival and Improve Recovery for Red Snapper with Barotrauma  

E-Print Network [OSTI]

predator. A condition index of impairment, the barotrauma reflex (BtR) score, was used to assess sublethal external barotrauma injuries, reflex responses, and behavioral responses. Greater capture depths resulted in higher BtR scores (more impairment). Non...

Drumhiller, Karen L

2012-12-01T23:59:59.000Z

366

OPERATIONAL ASPECTS OF HIGH POWER ENERGY RECOVERY LINACS  

SciTech Connect (OSTI)

We have been operating a high-power energy-recovery linac (ERL) at Jefferson Lab for several years. In the process we have learned quite a bit about both technical and physics limitations in high power ERLs. Several groups are now considering new ERLs that greatly increase either the energy, the current or both. We will present some of our findings on what to consider when designing, building, and operating a high power ERL. Our remarks for this paper are limited to lattice design and setup, magnets, vacuum chamber design, diagnostics, and beam stability.

Stephen Benson; David Douglas; Pavel Evtushenko; Kevin Jordan; George Neil; Paul Powers

2006-08-21T23:59:59.000Z

367

Reductive stripping process for uranium recovery from organic extracts  

DOE Patents [OSTI]

In the reductive stripping of uranium from an organic extractant in a uranium recovery process, the use of phosphoric acid having a molarity in the range of 8 to 10 increases the efficiency of the reductive stripping and allows the strip step to operate with lower aqueous to organic recycle ratios and shorter retention time in the mixer stages. Under these operating conditions, less solvent is required in the process, and smaller, less expensive process equipment can be utilized. The high strength H/sub 3/PO/sub 4/ is available from the evaporator stage of the process.

Hurst, F.J. Jr.

1983-06-16T23:59:59.000Z

368

Reuse of Produced Water from CO2 Enhanced Oil Recovery, Coal-Bed Methane, and Mine Pool Water by Coal-Based Power Plants  

SciTech Connect (OSTI)

Power generation in the Illinois Basin is expected to increase by as much as 30% by the year 2030, and this would increase the cooling water consumption in the region by approximately 40%. This project investigated the potential use of produced water from CO{sub 2} enhanced oil recovery (CO{sub 2}-EOR) operations; coal-bed methane (CBM) recovery; and active and abandoned underground coal mines for power plant cooling in the Illinois Basin. Specific objectives of this project were: (1) to characterize the quantity, quality, and geographic distribution of produced water in the Illinois Basin; (2) to evaluate treatment options so that produced water may be used beneficially at power plants; and (3) to perform a techno-economic analysis of the treatment and transportation of produced water to thermoelectric power plants in the Illinois Basin. Current produced water availability within the basin is not large, but potential flow rates up to 257 million liters per day (68 million gallons per day (MGD)) are possible if CO{sub 2}-enhanced oil recovery and coal bed methane recovery are implemented on a large scale. Produced water samples taken during the project tend to have dissolved solids concentrations between 10 and 100 g/L, and water from coal beds tends to have lower TDS values than water from oil fields. Current pretreatment and desalination technologies including filtration, adsorption, reverse osmosis (RO), and distillation can be used to treat produced water to a high quality level, with estimated costs ranging from $2.6 to $10.5 per cubic meter ($10 to $40 per 1000 gallons). Because of the distances between produced water sources and power plants, transportation costs tend to be greater than treatment costs. An optimization algorithm was developed to determine the lowest cost pipe network connecting sources and sinks. Total water costs increased with flow rate up to 26 million liters per day (7 MGD), and the range was from $4 to $16 per cubic meter ($15 to $60 per 1000 gallons), with treatment costs accounting for 13 â?? 23% of the overall cost. Results from this project suggest that produced water is a potential large source of cooling water, but treatment and transportation costs for this water are large.

Chad Knutson; Seyed Dastgheib; Yaning Yang; Ali Ashraf; Cole Duckworth; Priscilla Sinata; Ivan Sugiyono; Mark Shannon; Charles Werth

2012-04-30T23:59:59.000Z

369

Application of Biochemical and Physiological Indicators for Assessing Recovery of Fish Populations in a Disturbed Stream  

SciTech Connect (OSTI)

Recovery dynamics in a previously disturbed streamwere investigated to determine the influence of a series of remedial actions on stream recovery and to evaluate the potential application of bioindicators as an environmental management tool. A suite of bioindicators, representing five different functional response groups, were measured annually for a sentinel fish species over a 15 year period during which a variety of remedial and pollution abatement actions were implemented. Trends in biochemical, physiological, condition, growth, bioenergetic, and nutritional responses demonstrated that the health status of a sentinel fish species in the disturbed stream approached that of fish in the reference stream by the end of the study. Two major remedial actions, dechlorination and water flow management, had large effects on stream recovery resulting in an improvement in the bioenergetic, disease, nutritional, and organ condition status of the sentinel fish species. A subset of bioindicators responded rather dramatically to temporal trends affecting all sites, but some indicators showed little response to disturbance or to restoration activities. In assessing recovery of aquatic systems, application of appropriate integrative structural indices along with a variety of sensitive functional bioindicators should be used to understand the mechanistic basis of stress and recovery and to reduce the risk of false positives. Understanding the mechanistic processes involved between stressors, stress responses of biota, and the recovery dynamics of aquatic systems reduces the uncertainty involved in environmental management and regulatory decisions resulting in an increased ability to predict the consequences of restoration and remedial actions for aquatic systems.

Adams, Marshall [ORNL; Ham, Kenneth [ORNL

2011-01-01T23:59:59.000Z

370

Application of Biochemical and Physiological Indicators for Assessing Recovery of Fish Populations in a Disturbed Stream  

SciTech Connect (OSTI)

Recovery dynamics in a previously disturbed streamwere investigated to determine the influence of a series of remedial actions on stream recovery and to evaluate the potential application of bioindicators as an environmental management tool. A suite of bioindicators, representing five different functional response groups, were measured annually for a sentinel fish species over a 15 year period during which a variety of remedial and pollution abatement actions were implemented. Trends in biochemical, physiological, condition, growth, bioenergetic, and nutritional responses demonstrated that the health status of a sentinel fish species in the disturbed stream approached that of fish in the reference stream by the end of the study. Two major remedial actions, dechlorination and water flow management, had large effects on stream recovery resulting in an improvement in the bioenergetic, disease, nutritional, and organ condition status of the sentinel fish species. A subset of bioindicators responded rather dramatically to temporal trends affecting all sites, but some indicators showed little response to disturbance or to restoration activities. In assessing recovery of aquatic systems, application of appropriate integrative structural indices along with a variety of sensitive functional bioindicators should be used to understand the mechanistic basis of stress and recovery and to reduce the risk of false positives. Understanding the mechanistic processes involved between stressors, stress responses of biota, and the recovery dynamics of aquatic systems reduces the uncertainty involved in environmental management and regulatory decisions resulting in an increased ability to predict the consequences of restoration and remedial actions for aquatic systems.

Adams, S. M.; Ham, Kenneth D.

2011-06-01T23:59:59.000Z

371

Resource Recovery Opportunities at America’s Water Resource Recovery Facilities  

Broader source: Energy.gov [DOE]

Breakout Session 3A—Conversion Technologies III: Energy from Our Waste—Will we Be Rich in Fuel or Knee Deep in Trash by 2025? Resource Recovery Opportunities at America’s Water Resource Recovery Facilities Todd Williams, Deputy Leader for Wastewater Infrastructure Practice, CH2M HILL

372

Productivity increases in science  

SciTech Connect (OSTI)

The study quantifies the impact on the cost of experimentation of synergistic advancements in instrumentation, theory, and computation over the last two decades. The study finds that the productivity of experimental investigation (experimental results/$) is increasing as science is transformed from a linear, isolated approach to a hierarchical, multidisciplinary approach. Developments such as massively parallel processors coupled with instrumental systems with multiple probes and diverse data analysis capabilities will further this transformation and increase the productivity of scientific studies. The complexities and scale of today`s scientific challenges are much greater than in the past, however, so that the costs of research are increasing. Even though science is much more productive in terms of the experimental results, the challenges facing scientific investigators are increasing at an even faster pace. New approaches to infrastructure investments must capitalize on the changing dynamics of research and allow the scientific community to maximize gains in productivity so that complex problems can be attacked cost-effectively. Research strategies that include user facilities and coordinated experimental, computational, and theoretical research are needed.

Danko, J.E. [ed.; Young, J.K.; Molton, P.M.; Dirks, J.A.

1993-02-01T23:59:59.000Z

373

Productivity increases in science  

SciTech Connect (OSTI)

The study quantifies the impact on the cost of experimentation of synergistic advancements in instrumentation, theory, and computation over the last two decades. The study finds that the productivity of experimental investigation (experimental results/$) is increasing as science is transformed from a linear, isolated approach to a hierarchical, multidisciplinary approach. Developments such as massively parallel processors coupled with instrumental systems with multiple probes and diverse data analysis capabilities will further this transformation and increase the productivity of scientific studies. The complexities and scale of today's scientific challenges are much greater than in the past, however, so that the costs of research are increasing. Even though science is much more productive in terms of the experimental results, the challenges facing scientific investigators are increasing at an even faster pace. New approaches to infrastructure investments must capitalize on the changing dynamics of research and allow the scientific community to maximize gains in productivity so that complex problems can be attacked cost-effectively. Research strategies that include user facilities and coordinated experimental, computational, and theoretical research are needed.

Danko, J.E. (ed.); Young, J.K.; Molton, P.M.; Dirks, J.A.

1993-02-01T23:59:59.000Z

374

Chlorite Dissolution Rates  

SciTech Connect (OSTI)

Spreadsheets provides measured chlorite rate data from 100 to 300C at elevated CO2. Spreadsheet includes derived rate equation.

Carroll, Susan

2013-07-01T23:59:59.000Z

375

Chlorite Dissolution Rates  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Spreadsheets provides measured chlorite rate data from 100 to 300C at elevated CO2. Spreadsheet includes derived rate equation.

Carroll, Susan

376

The Interest Rate Conundrum  

E-Print Network [OSTI]

Flows and US Interest Rates,” NBER Working Paper No 12560. [Working Paper # 2008 -03 The Interest Rate Conundrum Roger

Craine, Roger; Martin, Vance L.

2009-01-01T23:59:59.000Z

377

Supporting technology for enhanced oil recovery: Polymer predictive model  

SciTech Connect (OSTI)

The Polymer Flood Predictive Model (PFPM) was developed by Scientific Software-Intercomp for the National Petroleum Council's (NPC) 1984 survey of US enhanced oil recovery potential (NPC, 1984). The PFPM is switch-selectable for either polymer or waterflooding, and an option in the model allows the calculation of the incremental oil recovery and economics of polymer relative to waterflooding. The architecture of the PFPM is similar to that of the other predictive models in the series: in-situ combustion, steam drive (Aydelotte and Pope, 1983), chemical flooding (Paul et al., 1982) and CO/sub 2/ miscible flooding (Paul et al., 1984). In the PFPM, an oil rate versus time function for a single pattern is computed and then is passed to the economic calculations. Data for reservoir and process development, operating costs, and a pattern schedule (if multiple patterns are desired) allow the computation of discounted cash flow and other measures of profitability. The PFPM is a three-dimensional (stratified, five-spot), two-phase (water and oil) model which computes water from breakthrough and oil recovery using fractional flow theory, and models areal and vertical sweeps using a streamtube approach. A correlation based on numerical simulation results is used to model the polymer slug size effect. The physical properties of polymer fluids, such as adsorption, permeability reduction, and non-Newtonian effects, are included in the model. Pressure drop between the injector and producer is kept constant, and the injectivity at each time step is calculated based on the mobility in each streamtube. Heterogeneity is accounted for by either entering detailed layer data or using the Dykstra-Parsons coefficient for a reservoir with a log-normal permeability distribution. 24 refs., 27 figs., 59 tabs.

Not Available

1986-12-01T23:59:59.000Z

378

Theoretical simulation of carrier capture and relaxation rates in quantum-dot semiconductor optical amplifiers  

SciTech Connect (OSTI)

Based on Auger scattering mechanism, carrier-carrier scattering dynamics between the two-dimensional carrier reservoir (also called wetting layer, i.e., WL) and the confined quantum dot ground and first excited state in quantum-dot semiconductor optical amplifiers (QD-SOAs) are investigated theoretically in this paper. The scattering rates for independent electron and hole densities are calculated. The results show an ultra-fast carrier capture (relaxation) rate up to 1 ps{sup ?1}, and there is a complex dependence of the Coulomb scattering rates on the WL electron and hole densities. In addition, due to the different effective mass and the level distribution, the scattering rates for electron and hole are very different. Finally, in order to provide a direction to control (increase or decrease) the input current in realistic QD-SOA systems, a simple method is proposed to determine the trends of the carrier recovery rates with the WL carrier densities in the vicinity of the steady-state.

Wu, Yunhu [College of Physical Science and Technology, Central China Normal University, Wuhan 430079 (China); Department of Physics, Kashi Normal College, Kashi 844006 (China); Zhang, Guoping, E-mail: gpzhang@phy.ccnu.edu.cn [College of Physical Science and Technology, Central China Normal University, Wuhan 430079 (China); Guo, Ling; Qi, Guoqun [Department of Physics, Kashi Normal College, Kashi 844006 (China); Li, Xiaoming [Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China)

2014-06-14T23:59:59.000Z

379

RUMINAL ADAPTATION TO INCREASING LEVELS OF CONCENTRATES  

E-Print Network [OSTI]

.0 % citrus pulp, 1.0 % lard, 7.0 % sugarbeet pulp, 3.3 % oat husk meal, 2.0 % coconut expeller and 2-chromatography. The rate of lactate fermentation was measured by incubation of 10 ml rumen fluid (taken at 14.00 h) with 1. If adaptation occurs one should expect an increase of lactate and a higher rate of L- lactate fermentation

Paris-Sud XI, Université de

380

IOWA RECOVERY ACT SNAPSHOT | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department ofIOWA RECOVERY ACT SNAPSHOT IOWA RECOVERY ACT

Note: This page contains sample records for the topic "increase recovery rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Los Alamos plants willows for flood recovery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund Las Conchas recoveryNuclearPhysicist honored byplants

382

Horizontal oil well applications and oil recovery assessment. Technical progress report, April--June 1994  

SciTech Connect (OSTI)

Thousands of horizontal wells are being drilled each year in the U.S.A. and around the world. Horizontal wells have increased oil and gas production rates 3 to 8 times those of vertical wells in many areas and have converted non-economic oil reserves to economic reserves. However, the use of horizontal technology in various formation types and applications has not always yielded anticipated success. The primary objective of this project is to examine factors affecting technical and economic success of horizontal well applications. The project`s goals will be accomplished through six tasks designed to evaluate the technical and economic success of horizontal drilling, highlight current limitations, and outline technical needs to overcome these limitations. Data describing operators` experiences throughout the domestic oil and gas industry will be gathered and organized. Canadian horizontal technology will also be documented with an emphasis on lessons the US industry can learn from Canada`s experience. MEI databases containing detailed horizontal case histories will also be used. All these data will be categorized and analyzed to assess the status of horizontal well technology and estimate the impact of horizontal wells on present and future domestic oil recovery and reserves.

McDonald, W.J.

1993-06-03T23:59:59.000Z

383

Transient recovery voltage considerations in the application of medium voltage circuit breakers  

SciTech Connect (OSTI)

Medium Voltage Circuit Breakers can fail to interrupt 3-phase fault currents when power systems have Transient Recovery Voltage (TRV) characteristics which exceed the rating of the circuit breaker. This paper examines the application of 13.8kV generation and load switchgear for an oil refinery in which circuit parameters as originally designed would have exceeded the 13.8kV circuit breakers TRV ratings had corrective measures not been taken. This paper illustrates this case and discusses the basis of TRV, how TRV is assessed, and alternative actions taken to bring circuits to within the 13.8 kV circuit breaker ratings.

Swindler, D.L.; Schwartz, P.; Hamer, P.S.; Lambert, S.R.

1995-12-31T23:59:59.000Z

384

Residential propane prices increase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter Apropane prices increase The average

385

Residential propane prices increase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter Apropane prices increase The

386

Residential propane prices increase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter Apropane prices increase Thepropane

387

Residential propane prices increase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter Apropane prices increase

388

Model based methodology development for energy recovery in flash heat exchange systems  

E-Print Network [OSTI]

Model based methodology development for energy recovery in flash heat exchange systems Problem with a condensing heat exchanger can be used when heat exchange is required between two streams and where at leastH, consistency etc.). To increase the efficiency of heat exchange, a cascade of these units in series can be used

McCarthy, John E.

389

High potential recovery -- Gas repressurization  

SciTech Connect (OSTI)

The objective of this project was to demonstrate that small independent oil producers can use existing gas injection technologies, scaled to their operations, to repressurize petroleum reservoirs and increase their economic oil production. This report gives background information for gas repressurization technologies, the results of workshops held to inform small independent producers about gas repressurization, and the results of four gas repressurization field demonstration projects. Much of the material in this report is based on annual reports (BDM-Oklahoma 1995, BDM-Oklahoma 1996, BDM-Oklahoma 1997), a report describing the results of the workshops (Olsen 1995), and the four final reports for the field demonstration projects which are reproduced in the Appendix. This project was designed to demonstrate that repressurization of reservoirs with gas (natural gas, enriched gas, nitrogen, flue gas, or air) can be used by small independent operators in selected reservoirs to increase production and/or decrease premature abandonment of the resource. The project excluded carbon dioxide because of other DOE-sponsored projects that address carbon dioxide processes directly. Two of the demonstration projects, one using flue gas and the other involving natural gas from a deeper coal zone, were both technical and economic successes. The two major lessons learned from the projects are the importance of (1) adequate infrastructure (piping, wells, compressors, etc.) and (2) adequate planning including testing compatibility between injected gases and fluids, and reservoir gases, fluids, and rocks.

Madden, M.P.

1998-05-01T23:59:59.000Z

390

2007 Wholesale Power Rate Case Final Proposal : Wholesale Power Rate Development Study.  

SciTech Connect (OSTI)

The Wholesale Power Rate Development Study (WPRDS) serves two primary purposes. It synthesizes information supplied by the other final studies that comprise the BPA rate proposal and shows the actual calculations for BPA's power rates. In addition, the WPRDS is the primary source for certain information used in establishing the power rates. Information developed in the WPRDS includes rate design (including seasonal and diurnal shapes for energy rates, demand, and load variance rates), the risk mitigation tools (Cost Recovery Adjustment Clause (CRAC), along with the [N]ational Marine Fisheries Service [F]ederal Columbia River Power System [B]iological Opinion (NFB) Adjustment, the Emergency NFB Surcharge, and Dividend Distribution Clause (DDC)), development of the Slice rate, and all discounts and other adjustments that are included in the rate schedules and the General Rate Schedule Provisions. The WPRDS also includes the description of the methodology for the Cost of Service Analysis (COSA), and the various rate design steps necessary to establish BPA's power rates. The WPRDS also shows the calculations for inter-business line revenues and expenses, the revenue forecast and, finally, includes a description of all of the rate schedules. The actual rate schedules are shown in ''Administrator's Final Record of Decision (ROD), Appendix A: 2007 Wholesale Power Rate Schedules and General Rate Schedule Provisions, WP-07-A-02''. The WPRDS also includes the Partial Resolution of Issues, shown in Attachment 1 of the ROD. The Partial Resolution of Issues affected many of the features described in this study. These are noted where appropriate.

United States. Bonneville Power Administration.

2006-07-01T23:59:59.000Z

391

Thermal Behavior of Floor Tubes in a Kraft Recovery Boiler  

SciTech Connect (OSTI)

The temperatures of floor tubes in a slope-floored black liquor recovery boiler were measured using an array of thermocouples located on the tube crowns. It was found that sudden, short duration temperature increases occurred with a frequency that increased with distance from the spout wall. To determine if the temperature pulses were associated with material falling from the convective section of the boiler, the pattern of sootblower operation was recorded and compared with the pattern of temperature pulses. During the period from September, 1998, through February, 1999, it was found that more than 2/3 of the temperature pulses occurred during the time when one of the fast eight sootblowers, which are directed at the back of the screen tubes and the leading edge of the first superheater bank, was operating.

Barker, R.E.; Choudhury, K.A.; Gorog, J.P.; Hall, L.M.; Keiser, J.R.; Sarma, G.B.

1999-09-12T23:59:59.000Z

392

VOC recovery using microwave regeneration of adsorbents: Pilot-column studies  

SciTech Connect (OSTI)

A pilot-scale column was constructed to evaluate the technical feasibility of microwave (MW) heating as a means of regenerating adsorbents for recovery of volatile organic compounds (VOCs). The 6 inch diameter moving-bed column, which has a throughput capacity of 200 lb/hr of adsorbent, is representative of a full-scale component of a small-capacity recovery system or a single element of a large-capacity system. Regeneration experiments were conducted to study the effects of key process variables, including adsorbent and stripping gas feed rates, initial adsorbent coverage and microwave power input, on column performance. Two adsorbents with contrasting dielectric loss characteristics were studied, Dowex Optipore L502 (low dielectric loss styrene-based) and Rohm and Haas Ambersorb 600 (moderate dielectric loss carbonaceous). Adsorbates included polar and nonpolar compounds: isopropyl alcohol (iPA), methyl ethyl ketone (MEK) and toluene. Solvent recovery rates of 20--30 lbs/hr were achieved. The results of the pilot-column experiments demonstrate that axial temperature and desorption profiles are dependent on the dielectric characteristics of the adsorbent/sorbate pair, and that final regeneration coverage can be correlated with a dimensionless stripping gas ratio and final adsorbent temperature. Implications for design of microwave-regenerated VOC recovery systems are discussed.

Salinas, M.J.; Price, D.W.; Schmidt, P.S.

1999-07-01T23:59:59.000Z

393

Software Update Recovery for Wireless Sensor Networks  

E-Print Network [OSTI]

mechanism that uses loss-of- control to provide high-reliability, low energy, software updates, includingSoftware Update Recovery for Wireless Sensor Networks Stephen Brown1 and Cormac J. Sreenan2 1 Laboratory, University College Cork, Ireland Abstract. Updating software over the network is important

Sreenan, Cormac J.

394

Rankine cycle waste heat recovery system  

DOE Patents [OSTI]

This disclosure relates to a waste heat recovery (WHR) system and to a system and method for regulation of a fluid inventory in a condenser and a receiver of a Rankine cycle WHR system. Such regulation includes the ability to regulate the pressure in a WHR system to control cavitation and energy conversion.

Ernst, Timothy C.; Nelson, Christopher R.

2014-08-12T23:59:59.000Z

395

Remediation and Recovery of Uranium from Contaminated  

E-Print Network [OSTI]

Remediation and Recovery of Uranium from Contaminated Subsurface Environments with Electrodes K E L that Geobacter species can effectively remove uranium from contaminated groundwater by reducing soluble U was stably precipitated until reoxidized in the presence of oxygen. When an electrode was placed in uranium

Lovley, Derek

396

Recovery Act Weekly Video: 200 West Drilling  

ScienceCinema (OSTI)

President of Cascade Drilling, Bruce, talks about his contract with the Department of Energy and what his team is doing to improve water treatment and environmental cleanup. The small business owner hits on how the Recovery Act saved him from downsizing and helped him stay competitive and safe on site.

None

2012-06-14T23:59:59.000Z

397

Fluid Catalytic Cracking Power Recovery Computer Simulation  

E-Print Network [OSTI]

re covery available in new plants results in the air string being almost self sustaining, 8S far as direct input power. With some processes, it is possible to produce excess power on the order of 1,000 to 9,000 HP. Waste heat recovery in the form...

Samurin, N. A.

1979-01-01T23:59:59.000Z

398

PREDICTIVE MODELS. Enhanced Oil Recovery Model  

SciTech Connect (OSTI)

PREDICTIVE MODELS is a collection of five models - CFPM, CO2PM, ICPM, PFPM, and SFPM - used in the 1982-1984 National Petroleum Council study of enhanced oil recovery (EOR) potential. Each pertains to a specific EOR process designed to squeeze additional oil from aging or spent oil fields. The processes are: 1 chemical flooding; 2 carbon dioxide miscible flooding; 3 in-situ combustion; 4 polymer flooding; and 5 steamflood. CFPM, the Chemical Flood Predictive Model, models micellar (surfactant)-polymer floods in reservoirs, which have been previously waterflooded to residual oil saturation. Thus, only true tertiary floods are considered. An option allows a rough estimate of oil recovery by caustic or caustic-polymer processes. CO2PM, the Carbon Dioxide miscible flooding Predictive Model, is applicable to both secondary (mobile oil) and tertiary (residual oil) floods, and to either continuous CO2 injection or water-alternating gas processes. ICPM, the In-situ Combustion Predictive Model, computes the recovery and profitability of an in-situ combustion project from generalized performance predictive algorithms. PFPM, the Polymer Flood Predictive Model, is switch-selectable for either polymer or waterflooding, and an option allows the calculation of the incremental oil recovery and economics of polymer relative to waterflooding. SFPM, the Steamflood Predictive Model, is applicable to the steam drive process, but not to cyclic steam injection (steam soak) processes. The IBM PC/AT version includes a plotting capability to produces a graphic picture of the predictive model results.

Ray, R.M. [DOE Bartlesville Energy Technology Center, Bartlesville, OK (United States)

1992-02-26T23:59:59.000Z

399

Disaster Resiliency and Recovery: Capabilities (Fact Sheet)  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory (NREL) is the nation's leader in energy efficient and renewable energy technologies, practices, and strategies. For the last 15 years, NREL has provided expertise, tools, and innovations to private industry; federal, state, and local governments; non-profit organizations; and communities during the planning, recovery, and rebuilding stages after disaster strikes.

Not Available

2012-11-01T23:59:59.000Z

400

Asynchronous intrusion recovery for interconnected web services  

E-Print Network [OSTI]

Asynchronous intrusion recovery for interconnected web services Ramesh Chandra, Taesoo Kim, and tracking down and recovering from such an attack re- quires significant manual effort. Web services for such web services. Aire addresses several challenges, such as propagating repair across services when some

Sabatini, David M.

Note: This page contains sample records for the topic "increase recovery rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Heat Recovery Boilers for Process Applications  

E-Print Network [OSTI]

of the use of heat recovery due primarily to process considerations. On the other hand, cost and payback are main considerations in the case of gas turbine and incineration plants, where large quantities of gases are exhausted at temperatures varying from 800...

Ganapathy, V.; Rentz, J.; Flanagan, D.

402

California's Energy Recovery and Reinvestment Act  

E-Print Network [OSTI]

efficiency measures - $25 million · Green Job Workforce - $20 millionGreen Job Workforce $20 million · EnergyCalifornia's Energy Recovery and Reinvestment Act P I iti tiProgram Initiatives November 18, 2009 Director Economic Stimulus Program California Energy CommissionCalifornia Energy Commission #12

403

Managing Manure with Biogas Recovery Systems  

E-Print Network [OSTI]

such as natural gas, propane, and fuel oil. Biogas can also be flared to control odor if energy recovery: a digester, a gas-handling system, a gas-use device, and a manure storage tank or pond to hold the treat- ed.g., storage tanks, storage ponds, lagoons). These benefits include odor control, improved air and water

Mukhtar, Saqib

404

Asset Management Equipment Disposal Form -Refrigerant Recovery  

E-Print Network [OSTI]

enters the waste stream with the charge intact (e.g., motor vehicle air conditioners, refrigeratorsAsset Management Equipment Disposal Form - Refrigerant Recovery Safe Disposal Requirements Under refrigeration, cold storage warehouse refrigeration, chillers, and industrial process refrigeration) has to have

Sin, Peter

405

An Integrated Low Level Heat Recovery System  

E-Print Network [OSTI]

A large amount of low level thermal energy is lost to air or water in a typical petroleum refinery. This paper discusses a complex integrated low level heat recovery system that is being engineered for installation in a large petroleum refinery...

Sierra, A. V., Jr.

1981-01-01T23:59:59.000Z

406

Waste water treatment and metal recovery  

E-Print Network [OSTI]

Waste water treatment and metal recovery Nickel catalysts for hydrogen production Nickel and single versions of which contained cobalt, chromium, carbon, molybdenum, tungsten, and nickel. In 1911 and 1912% on their stainless steel production. The company paid sizable dividends to its owners until it was dissolved

Braun, Paul

407

Avoided Gigawatts Through Utility Capital Recovery Fees  

E-Print Network [OSTI]

structure is possible through the use of capital recovery fees for new electric meter hookups similar to those commonly used for new water and wastewater hookups where the developer/owner is required to capitalize the marginal cost of new demand. By giving...

Frosenfeld, A. N.; Verdict, M. E.

1985-01-01T23:59:59.000Z

408

Immediate Deployment of Waste Energy Recovery Technologies at Multi Sites  

SciTech Connect (OSTI)

Verso Paper Corp. implemented a portfolio of 13 commercially available proven industrial technologies each exceeding 30% minimum threshold efficiency and at least 25% efficiency increase. These sub-projects are a direct result of a grant received from the Department of Energy (DOE) through its FOA 0000044 (Deployment of Combined Heat and Power (CHP) Systems, District Energy Systems, Waste Energy Recovery Systems, and Efficient Industrial Equipment), which was funded by the American Recovery Act. These were installed at 3 sites in 2 states and are helping to reduce Verso costs, making the facilities more competitive. This created approximately 100 construction jobs (FTE's) and reduced impacted Verso facilities' expense budgets. These sub-projects were deployed at Verso paper mills located in Jay, Maine, Bucksport, Maine, and Sartell, Minnesota. The paper mills are the economic engines of the rural communities in which these mills are located. Reinvestment in waste energy recovery capital improvements is providing a stimulus to help maintain domestic jobs and to competitively position the US pulp and paper industry with rising energy costs. Energy efficiency improvements are also providing a positive environmental impact by reducing greenhouse gas emissions, the quantity of wastewater treated and discharged, and fossil fuel demand. As a result of these projects, when fully operating, Verso realized a total of approximately 1.5 TBtu/Year reduction in overall energy consumption, which is 119% of the project objectives. Note that three paper machines have since been permanently curtailed. However even with these shutdowns, the company still met its energy objectives. Note also that the Sartell mill's paper machine is down due to a recent fire which damaged the mill's electrical infrastructure (the company has not decided on the mill's future).

Dennis Castonguay

2012-06-29T23:59:59.000Z

409

Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production  

E-Print Network [OSTI]

DIGESTERS AND BIOGAS RECOVERY Digesters Do Not Address theMethane Digesters and Biogas Recovery-Masking theII. METHANE DIGESTERS AND BIOGAs RECOVERY- IN THE

Di Camillo, Nicole G.

2011-01-01T23:59:59.000Z

410

E-Print Network 3.0 - additional reserve recovery Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

recovery Summary: , measuring the recovery of congeners of polychlorinated dibenzo-p-dioxins (PCDDs). In addition, we measured... and showed satisfactory recoveries of all of the...

411

Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production  

E-Print Network [OSTI]

Methane Digesters and Biogas Recovery-Masking theII. METHANE DIGESTERS AND BIOGAs RECOVERY- IN THE2011] METHANE DIGESTERS AND BIOGAS RECOVERY methane, and 64%

Di Camillo, Nicole G.

2011-01-01T23:59:59.000Z

412

Effective Rate Period  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of the FY Mid-Year Change 10012013 - 03312014 04012014 - 09302014 Power Rates Annual Revenue Requirement Rate Schedule Power Revenue Requirement 73,441,557...

413

Recovery Act Helps Fuel Cell Company Stay on Course | Department...  

Broader source: Energy.gov (indexed) [DOE]

Recovery Act Helps Fuel Cell Company Stay on Course Recovery Act Helps Fuel Cell Company Stay on Course January 7, 2010 - 3:41pm Addthis Joshua DeLung An innovative company in...

414

BRIEF REPORT Autonomic recovery and habituation in social anxiety  

E-Print Network [OSTI]

trait socially anxious (HTSA) and low trait socially anxious (LTSA) individuals show comparable between groups might emerge during recovery or habituation, 35 HTSA and LTSA participants gave two the LTSA participants, autonomic measures showed comparable reactivity, habituation, and recovery

Gross, James J.

415

SIMULTANEOUS DEMULTIPLEXING, ELECTRICAL CLOCK RECOVERY, AND OPTICAL CLOCK GENERATION USING  

E-Print Network [OSTI]

SIMULTANEOUS DEMULTIPLEXING, ELECTRICAL CLOCK RECOVERY, AND OPTICAL CLOCK GENERATION USING of the PLL. As a result, simultaneous demultiplexing, electrical clock recovery and optical clock generation), and Masashi Usami (2) 1 : Department of Electrical and Computer Engineering, University of California Santa

Bowers, John

416

Energy Savings By Recovery of Condensate From Steam Heating System  

E-Print Network [OSTI]

The recovery and utilization of condensate has a remarkable energy saving effect if the following are properly done: 1) Determination of a correct and reasonable recovery plan; 2) Selection of bleed valve with good performance; 3) Solving...

Cheng, W. S.; Zhi, C. S.

417

Integration of a "Passive Water Recovery" MEA into a Portable...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Integration of a "Passive Water Recovery" MEA into a Portable DMFC Power Supply Integration of a "Passive Water Recovery" MEA into a Portable DMFC Power Supply Download slides from...

418

Methane productivity and nutrient recovery from manure Henrik B. Mller  

E-Print Network [OSTI]

Methane productivity and nutrient recovery from manure Henrik B. Mřller Danish Institute This thesis, entitled "Methane productivity and nutrient recovery from manure" is presented in partial of digested and separated products.................... 13 3. Methane productivity and greenhouse gas emissions

419

Industrial HVAC Air-to-Air Energy Recovery Retrofit Economics  

E-Print Network [OSTI]

Retrofitting air-to-air energy recovery equipment is relatively simply to design and easy to install. Additionally, HVAC energy recovery is almost risk free when compared to process retrofit. Life cycle cost analysis is the best way to illustrate...

Graham, E. L.

1980-01-01T23:59:59.000Z

420

SUBJECT: CALCULATION OF JOB CREATION THROUGH RECOVERY ACT FUNDING...  

Broader source: Energy.gov (indexed) [DOE]

SUBJECT: CALCULATION OF JOB CREATION THROUGH RECOVERY ACT FUNDING SUBJECT: CALCULATION OF JOB CREATION THROUGH RECOVERY ACT FUNDING wpn10-14asep10-07aeecbg10-08a.pdf More...

Note: This page contains sample records for the topic "increase recovery rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Energy Secretary Steven Chu to Attend Grand Opening of Recovery...  

Office of Environmental Management (EM)

to Attend Grand Opening of Recovery Act-Funded A123 Systems Battery Plant Energy Secretary Steven Chu to Attend Grand Opening of Recovery Act-Funded A123 Systems Battery Plant...

422

Kraft lignin recovery by ultrafiltration: economic feasibility and impact on the kraft recovery system  

SciTech Connect (OSTI)

The widespread use of the kraft pulping process could provide a ready supply of lignin materials for many uses. Simulation studies demonstrate that recovery of the high-molecular-weight kraft lignin by ultrafiltration of a fraction of the black liquor flow is attractive from both an economic and an operational standpoint. Benefits are derived from relief of a furnace-limited recovery system and from the marketing of the lignin or modified lignin products. 10 references.

Kirkman, A.G.; Gratzl, J.S.; Edwards, L.L.

1986-05-01T23:59:59.000Z

423

Low-Salinity Waterflooding to Improve Oil Recovery - Historical Field Evidence  

SciTech Connect (OSTI)

Waterflooding is by far the most widely applied method of improved oil recovery. Crude oil/brine/rock interactions can lead to large variations in the displacement efficiency of wa-terfloods. Laboratory water-flood tests and single-well tracer tests have shown that injection of dilute brine can increase oil recovery, but work designed to test the method on a field scale has not yet been undertaken. Historical waterflood records could unintentionally provide some evidence of improved recovery from waterflooding with lower salinity brine. Nu-merous fields in the Powder River basin of Wyoming have been waterflooded using low salinity brine (about 500 ppm) obtained from the Madison limestone or Fox Hills sandstone. Three Minnelusa formation fields in the basin were identified as potential candidates for waterflood comparisons based on the salinity of the connate and injection water. Historical pro-duction and injection data for these fields were obtained from the public record. Field waterflood data were manipulated to be displayed in the same format as laboratory coreflood re-sults. Recovery from fields using lower salinity injection wa-ter was greater than that using higher salinity injection wa-ter—matching recovery trends for laboratory and single-well tests.

Eric P. Robertson

2007-11-01T23:59:59.000Z

424

Response of left ventricular ejection fraction to recovery from general anesthesia: measurement by gated radionuclide angiography  

SciTech Connect (OSTI)

To test the hypothesis that, after anesthesia for noncardiac surgical procedures, the increased cardiac work during recovery induces wall motion and ejection fraction (EF) abnormalities in patients with mild angina pectoris, gated radionuclide angiography was performed in patients undergoing simple cholecystectomy under narcotic-relaxant general anesthesia. The ejection fraction was determined during anesthesia at the end of surgery, and then determined 3 min and 3 hr after extubation. A new angiography was performed 24 hr later, and a myocardial scintigraphy (Thallium 201) was performed during infusion of the coronary vasodilator, dipyridamole. In the first part of the investigation, eight patients without coronary artery disease (CAD) (group 1) and 20 patients with mild angina (group 2) were studied. In the second part of the study, seven patients (group 3) with mild angina pectoris received an intravenous infusion of 0.4 microgram X kg-1 X min-1 of nitroglycerin started before surgery and gradually decreased 4 hr after extubation. In group 1, EF remained unchanged at recovery. In contrast in group 2, EF responded abnormally to recovery: EF decreased from 55% during anesthesia to 45% 3 min after extubation (P less than 0.001). Patients in group 3, who received intravenous nitroglycerin, showed no change of EF at recovery. This study demonstrates that recovery from general anesthesia causes abnormalities in left ventricular function in patients suffering from CAD. These abnormalities are prevented by prophylactic intravenous nitroglycerin.

Coriat, P.; Mundler, O.; Bousseau, D.; Fauchet, M.; Rous, A.C.; Echter, E.; Viars, P.

1986-06-01T23:59:59.000Z

425

Develop Thermoelectric Technology for Automotive Waste Heat Recovery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable...

426

Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Presentation: Caterpillar Inc. 2002deerhopmann.pdf More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel...

427

Optimization Online - Sparse Recovery on Euclidean Jordan Algebras  

E-Print Network [OSTI]

Feb 3, 2013 ... Keywords: Sparse recovery on Euclidean Jordan algebra, nuclear norm minimization, restricted isometry property, null space property, ...

Lingchen Kong

2013-02-03T23:59:59.000Z

428

200,000 homes weatherized under the Recovery Act  

Broader source: Energy.gov [DOE]

Today Vice President Biden announced that the Weatherization Assistance Program has weatherized 200,000 homes under the Recovery Act.

429

Develop Thermoelectric Technology for Automotive Waste Heat Recovery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Development of Thermoelectric Technology for Automotive Waste Heat Recovery Development of Thermoelectric Technology for Automotive Waste Heat...

430

Development of More Effective Biosurfactants for Enhanced Oil Recovery  

SciTech Connect (OSTI)

The overall goal of this research was to develop effective biosurfactant production for enhanced oil recovery in the United States.

McInerney, M.J.; Mouttaki, H.; Folmsbee, M.; Knapp, R.; Nagle, D.

2003-01-24T23:59:59.000Z

431

[Waste water heat recovery system]. Final report, September 30, 1992  

SciTech Connect (OSTI)

The production capabilities for and field testing of the heat recovery system are described briefly. Drawings are included.

Not Available

1993-04-28T23:59:59.000Z

432

Special Report "The American Recovery and Reinvestment Act and the Department of Energy"  

SciTech Connect (OSTI)

The American Recovery and Reinvestment Act of 2009 (Recovery Act) was signed into law on February 17, 2009, as a way to jumpstart the U.S. economy, create or save millions of jobs, spur technological advances in science and health, and invest in the Nation's energy future. This national effort will require an unprecedented level of transparency and accountability to ensure that U.S. citizens know where their tax dollars are going and how they are being spent. As part of the Recovery Act, the Department of Energy will receive more than $38 billion to support a number of science, energy, and environmental initiatives. Additionally, the Department's authority to make or guarantee energy-related loans has increased to about $127 billion. The Department plans to disburse the vast majority of the funds it receives through grants, cooperative agreements, contracts, and other financial instruments. The supplemental funding provided to the Department of Energy under the Recovery Act dwarfs the Department's annual budget of about $27 billion. The infusion of these funds and the corresponding increase in effort required to ensure that they are properly controlled and disbursed in a timely manner will, without doubt, strain existing resources. It will also have an equally challenging impact on the inherent risks associated with operating the Department's sizable portfolio of missions and activities and, this is complicated by the fact that, in many respects, the Recovery Act requirements represent a fundamental transformation of the Department's mission. If these challenges are to be met successfully, all levels of the Department's structure and its many constituents, including the existing contractor community; the national laboratory system; state and local governments; community action groups and literally thousands of other contract, grant, loan and cooperative agreement recipients throughout the Nation will have to strengthen existing or design new controls to safeguard Recovery Act funds.

None

2009-03-01T23:59:59.000Z

433

Recovery efficiency test project, Phase 2 activity report  

SciTech Connect (OSTI)

The Recovery Efficiency Test well project addressed a number of technical issues. The primary objective was to determine the increased efficiency of gas recovery of a long horizontal wellbore over that of a vertical wellbore and, more specifically, what improvements can be expected from inducing multiple hydraulic fractures from such a wellbore. This volume contains appendices for: (1) supporting material and procedures for data frac'' stimulation of zone 6 using nitrogen and nitrogen foam; (2) supporting material and procedures for stimulation no. 1 nitrogen gas frac on zone no. 1; (3) supporting material and procedures for stimulation no. 2 in zone no. 1 using liquid CO{sub 2}; (4) supporting material and procedures for frac no. 3 on zone no.1 using nitrogen foam and proppant; (5) supporting material and procedures for stimulation no. 4 in zones 2--3 and 4 using nitrogen foam and proppant; (6) supporting materials and procedures for stimulation no. 5 in zones 5 and 8; and (7) fracture diagnostics reports and supporting materials.

Overbey, W.K. Jr.; Salamy, S.P.; Locke, C.D.

1989-02-01T23:59:59.000Z

434

UF/sub 6/-recovery process utilizing desublimation  

DOE Patents [OSTI]

The invention is a UF/sub 6/-recovery process of the kind in which a stream of substantially pure gaseous UF/sub 6/ is directed through an externally chilled desublimer to convert the UF/sub 6/ directly to an annular solid ring adhering to the interior wall of the desublimer. After accumulation of a desired amount of solid UF/sub 6/, the desublimer is heated to liquefy the solid. Subsequently, the liquid is recovered from the desublimer. It has been found that during the heating operation the desublimer is subjected to excessive mechanical stresses. In addition, it has been found that the incorporation of a very small percentage of relatively noncondensable, nonreactive gas (e.g., nitrogen) in the UF/sub 6/ input to the desublimer effects significant decreases in the stresses generated during the subsequent melting operation. This modification to the process provides valuable advantages in terms of reduced hazard, lower operating costs for the desublimer, and increased service life for the desublimer and its auxiliaries. The new process is especially suitable for the recovery of enriched UF/sub 6/ from high-speed UF/sub 6/ gas-centrifuge cascades.

Eby, R.S.; Stephenson, M.J.; Andrews, D.H.; Hamilton, T.H.

1983-12-21T23:59:59.000Z

435

Shale-oil-recovery systems incorporating ore beneficiation. Final report.  

SciTech Connect (OSTI)

This study analyzed the recovery of oil from oil shale by use of proposed systems which incorporate beneficiation of the shale ore (that is concentration of the kerogen before the oil-recovery step). The objective was to identify systems which could be more attractive than conventional surface retorting of ore. No experimental work was carried out. The systems analyzed consisted of beneficiation methods which could increase kerogen concentrations by at least four-fold. Potentially attractive low-enrichment methods such as density separation were not examined. The technical alternatives considered were bounded by the secondary crusher as input and raw shale oil as output. A sequence of ball milling, froth flotation, and retorting concentrate is not attractive for Western shales compared to conventional ore retorting; transporting the concentrate to another location for retorting reduces air emissions in the ore region but cost reduction is questionable. The high capital and energy cost s results largely from the ball milling step which is very inefficient. Major improvements in comminution seem achievable through research and such improvements, plus confirmation of other assumptions, could make high-enrichment beneficiation competitive with conventional processing. 27 figures, 23 tables.

Weiss, M.A.; Klumpar, I.V.; Peterson, C.R.; Ring, T.A.

1982-10-01T23:59:59.000Z

436

Determining the optimum nanofluid for enhanced oil recovery  

E-Print Network [OSTI]

Determining the optimum nanofluid for enhanced oil recovery Presented by Katie Aurand katherine and size for EOR applications Determining the optimum nanofluid for enhanced oil recovery Presented = particle modification and testing 3 Determining the optimum nanofluid for enhanced oil recovery Presented

437

The design and operation of a combustion tube for investigation of combustion oil recovery  

E-Print Network [OSTI]

containing native oil and water must be burned in a combustion tube in the laboratory to determine the practicality of' this oil-recovery process for the prospect. Informa- tion obtained from combustion tube studies includes the amount of fuel burned.... Temperature measurements were made by stationary thermocouples at 8-inch intervals, and ignition was achieved by means of a 2 Kw electric ignitor. 3 In 1958, Martin et al. , discussed the effect of fuel and air re- quirements, rates of advance...

Penberthy, Walter Lawren

1965-01-01T23:59:59.000Z

438

Novel Regenerated Solvent Extraction Processes for the Recovery of Carboxylic Acids or Ammonia from Aqueous Solutions Part II. Recovery of Ammonia from Sour Waters  

SciTech Connect (OSTI)

Two novel regenerated solvent extraction processes are examined. The first process has the potential to reduce the energy costs inherent in the recovery of low-volatility carboxylic acids from dilute aqueous solutions. The second process has the potential for reducing the energy costs required for separate recovery of ammonia and acid gases (e.g. CO{sub 2} and H{sub 2}S) from industrial sour waters. The recovery of carboxylic acids from dilute aqueous solution can be achieved by extraction with tertiary amines. An approach for regeneration and product recovery from such extracts is to back-extract the carboxylic acid with a water-soluble, volatile tertiary amine, such as trimethylamine. The resulting trimethylammonium carboxylate solution can be concentrated and thermally decomposed, yielding the product acid and the volatile amine for recycle. Experimental work was performed with lactic acid, SUCCiOlC acid, and fumaric acid. Equilibrium data show near-stoichiometric recovery of the carboxylic acids from an organic solution of Alamine 336 into aqueous solutions of trimethylamine. For fumaric and succinic acids, partial evaporation of the aqueous back extract decomposes the carboxylate and yields the acid product in crystalline form. The decomposition of aqueous solutions of trimethylammonium lactates was not carried out to completion, due to the high water solubility of lactic acid and the tendency of the acid to self-associate. The separate recovery of ammonia and acid gases from sour waters can be achieved by combining steam-stripping of the acid gases with simultaneous removal of ammonia by extraction with a liquid cation exchanger. The use of di-2,4,4-trimethylpentyl phosphinic acid as the liquid cation exchanger is explored in this work. Batch extraction experiments were carried out to measure the equilibrium distribution ratio of ammonia between an aqueous buffer solution and an organic solution of the phosphinic acid (0.2N) in Norpar 12. The concentration-based distribution ratios increase from 0.11 to 0.46 as the aqueous phase pH increases from 7.18 to 8.15. Regeneration of the organic extractant solution was carried out by stripping at elevated temperatures to remove the ammonia, with 99% recovery of the ammonia being obtained at 125 C.

Poole, L.J.; King, C.J.

1990-03-01T23:59:59.000Z

439

3) In the small intestine, as in liver, post-prandial FSR increase is observed  

E-Print Network [OSTI]

, and as in muscle, a high protein diet increases FSR only during the fed state. Lack of recovery of muscle proteins capac- ity does not seem to be related to a lack of stimulation of protein synthesis. 3) It could result3) In the small intestine, as in liver, post-prandial FSR increase is observed with both diets

Paris-Sud XI, Université de

440

Infiltration Heat Recovery in Building Walls: Computational Fluid Dynamics Investigations Results  

E-Print Network [OSTI]

LBNL-51324 Infiltration Heat Recovery in Building Walls: Computational Fluid Dynamics leading to partial recovery of heat conducted through the wall. The Infiltration Heat Recovery (IHR) factor was introduced to quantify the heat recovery and correct the conventional calculations

Note: This page contains sample records for the topic "increase recovery rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Microbial enhanced oil recovery and compositions therefor  

DOE Patents [OSTI]

A method is provided for microbial enhanced oil recovery, wherein a combination of microorganisms is empirically formulated based on survivability under reservoir conditions and oil recovery efficiency, such that injection of the microbial combination may be made, in the presence of essentially only nutrient solution, directly into an injection well of an oil bearing reservoir having oil present at waterflood residual oil saturation concentration. The microbial combination is capable of displacing residual oil from reservoir rock, which oil may be recovered by waterflooding without causing plugging of the reservoir rock. Further, the microorganisms are capable of being transported through the pores of the reservoir rock between said injection well and associated production wells, during waterflooding, which results in a larger area of the reservoir being covered by the oil-mobilizing microorganisms.

Bryant, Rebecca S. (Bartlesville, OK)

1990-01-01T23:59:59.000Z

442

Aqueous flooding methods for tertiary oil recovery  

DOE Patents [OSTI]

A method of aqueous flooding of subterranean oil bearing formation for tertiary oil recovery involves injecting through a well into the formation a low alkaline pH aqueous sodium bicarbonate flooding solution. The flooding solution's pH ranges from about 8.25 to 9.25 and comprises from 0.25 to 5 weight percent and preferably about 0.75 to 3.0 weight percent of sodium bicarbonate and includes a petroleum recovery surfactant of 0.05 to 1.0 weight percent and between 1 and 20 weight percent of sodium chloride. After flooding, an oil and water mixture is withdrawn from the well and the oil is separated from the oil and water mixture.

Peru, Deborah A. (Bartlesville, OK)

1989-01-01T23:59:59.000Z

443

Microbial enhancement of oil recovery: Recent advances  

SciTech Connect (OSTI)

During recent years, systematic, scientific, and engineering effort by researchers in the United States and abroad, has established the scientific basis for Microbial Enhanced Oil Recovery (MEOR) technology. The successful application of MEOR technology as an oil recovery process is a goal of the Department of Energy (DOE). Research efforts involving aspects of MEOR in the microbiological, biochemical, and engineering fields led DOE to sponsor an International Conference at Brookhaven National Laboratory in 1992, to facilitate the exchange of information and a discussion of ideas for the future research emphasis. At this, the Fourth International MEOR Conference, where international attendees from 12 countries presented a total of 35 papers, participants saw an equal distribution between research'' and field applications.'' In addition, several modeling and state-of-the-art'' presentations summed up the present status of MEOR science and engineering. Individual papers in this proceedings have been process separately for inclusion in the Energy Science and Technology Database.

Premuzic, E.T.; Woodhead, A.D.; Vivirito, K.J. (eds.)

1992-01-01T23:59:59.000Z

444

Financial Recovery: Homeowner's Property Insurance Issues  

E-Print Network [OSTI]

- owner?s property insurance. Does my property insurance cover water damage? Basic property policies do not insure against flood damage. Homeown- ers have to rely on flood coverage purchased separately through FEMA?s National Flood Insurance Program (NFIP... ER-035 9-23 Financial Recovery: Homeowner?s Property Insurance Issues Nancy L. Granovsky, Professor and Extension Family Economics Specialist, The Texas A&M University System People affected by hurricanes have many questions about their home...

Granovsky, Nancy L.

2008-09-23T23:59:59.000Z

445

Waste Heat Recovery Power Generation with WOWGen  

E-Print Network [OSTI]

Waste Heat Recovery Power Generation with WOWGen? Business Overview WOW operates in the energy efficiency field - one of the fastest growing energy sectors in the world today. The two key products - WOWGen? and WOWClean? provide more... energy at cheaper cost and lower emissions. ? WOWGen? - Power Generation from Industrial Waste Heat ? WOWClean? - Multi Pollutant emission control system Current power generation technology uses only 35% of the energy in a fossil fuel...

Romero, M.

446

Cement Kiln Flue Gas Recovery Scrubber Project  

SciTech Connect (OSTI)

The Cement Kiln Flue Gas Recovery Scrubber Project was a technical success and demonstrated the following: CKD can be used successfully as the sole reagent for removing SO2 from cement kiln flue gas, with removal efficiencies of 90 percent or greater; Removal efficiencies for HCl and VOCs were approximately 98 percent and 70 percent, respectively; Particulate emissions were low, in the range of 0.005 to 0.007 grains/standard cubic foot; The treated CKD sorbent can be recycled to the kiln after its potassium content has been reduced in the scrubber, thereby avoiding the need for landfilling; The process can yield fertilizer-grade K2SO4, a saleable by-product; and Waste heat in the flue gas can provide the energy required for evaporation and crystallization in the by-product recovery operation. The demonstration program established the feasibility of using the Recovery Scrubber{trademark} for desulfurization of flue gas from cement kilns, with generally favorable economics, assuming tipping fees are available for disposal of ash from biomass combustion. The process appears to be suitable for commercial use on any type of cement kiln. EPA has ruled that CKD is a nonhazardous waste, provided the facility meets Performance Standards for the Management of CKD (U.S. Environmental Protection Agency 1999d). Therefore, regulatory drivers for the technology focus more on reduction of air pollutants and pollution prevention, rather than on treating CKD as a hazardous waste. Application of the Recovery Scrubbe{trademark} concept to other waste-disposal operations, where pollution and waste reductions are needed, appears promising.

National Energy Technology Laboratory

2001-11-30T23:59:59.000Z

447

PREDICTIVE MODELS. Enhanced Oil Recovery Model  

SciTech Connect (OSTI)

PREDICTIVE MODELS is a collection of five models - CFPM, CO2PM, ICPM, PFPM, and SFPM - used in the 1982-1984 National Petroleum Council study of enhanced oil recovery (EOR) potential. Each pertains to a specific EOR process designed to squeeze additional oil from aging or spent oil fields. The processes are: 1 chemical flooding, where soap-like surfactants are injected into the reservoir to wash out the oil; 2 carbon dioxide miscible flooding, where carbon dioxide mixes with the lighter hydrocarbons making the oil easier to displace; 3 in-situ combustion, which uses the heat from burning some of the underground oil to thin the product; 4 polymer flooding, where thick, cohesive material is pumped into a reservoir to push the oil through the underground rock; and 5 steamflood, where pressurized steam is injected underground to thin the oil. CFPM, the Chemical Flood Predictive Model, models micellar (surfactant)-polymer floods in reservoirs, which have been previously waterflooded to residual oil saturation. Thus, only true tertiary floods are considered. An option allows a rough estimate of oil recovery by caustic or caustic-polymer processes. CO2PM, the Carbon Dioxide miscible flooding Predictive Model, is applicable to both secondary (mobile oil) and tertiary (residual oil) floods, and to either continuous CO2 injection or water-alternating gas processes. ICPM, the In-situ Combustion Predictive Model, computes the recovery and profitability of an in-situ combustion project from generalized performance predictive algorithms. PFPM, the Polymer Flood Predictive Model, is switch-selectable for either polymer or waterflooding, and an option allows the calculation of the incremental oil recovery and economics of polymer relative to waterflooding. SFPM, the Steamflood Predictive Model, is applicable to the steam drive process, but not to cyclic steam injection (steam soak) processes.

Ray, R.M. [DOE Bartlesville Energy Technology Technology Center, Bartlesville, OK (United States)

1992-02-26T23:59:59.000Z

448

Investigations of nonsurgical embryo recovery in swine  

E-Print Network [OSTI]

Major Subject. : Animal Science INVESTIGATIONS OF NONSURGICAL EMBRYO RECOVERY IN SWINE A Thesis by RUSSELL LYNN ALTENHOF Approved as to style and content by: D C. K ae er (Co-Chairman of Committee) T. D. Tanksle , Jr. (Co-Chairman of Committee... and Krall, 1977). Recent evidence indicates that beta adrenegic agonists stimulate cANP- + + dependent phosphorylation and Na /K transport that + + in turn stimulated Na /Ca exchange at the plasma membrane or in the sarcoplasmic reticulum (Scheid et al...

Altenhof, Russell Lynn

1982-01-01T23:59:59.000Z

449

Improved energy recovery from geothermal reservoirs  

SciTech Connect (OSTI)

The behavior of a liquid-dominated geothermal reservoir in response to production from different horizons is studied using numerical simulation methods. The Olkaria geothermal field in Kenya is used as an example where a two-phase vapor-dominated zone overlies the main liquid-dominated reservoir. The possibility of improving energy recovery from vapor-dominated reservoirs by tapping deeper horizons is considered.

Bodvarsson, G.S.; Pruess, K.; Lippmann, M.J.

1981-01-01T23:59:59.000Z

450

Improved oil recovery in fluvial dominated deltaic reservoirs of Kansas -- Near-term. Quarterly progress report, October 1--December 31, 1997  

SciTech Connect (OSTI)

The objective of this project is to address waterflood problems of the type found in Morrow sandstone reservoirs in southwestern Kansas and in Cherokee Group reservoirs in southeastern Kansas. Two demonstration sites operated by different independent oil operators are involved in this project. The Stewart Field is located in Finney County, Kansas and is operated by PetroSantander, Inc. The Nelson Lease is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. General topics to be addressed are (1) reservoir management and performance evaluation, (2) waterflood optimization, and (3) the demonstration of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. Progress in the Stewart field project is described for the following tasks: design/construct waterflood plant; design/construct injection system; design/construct battery consolidation and gathering system; waterflood operations and reservoir management; and technology transfer. Progress in the Savonburg field project is described for the following tasks: profile modification treatments; pattern changes and wellbore cleanup; reservoir development (polymer flooding); and technology transfer.

Green, D.W.; Willhite, G.P.; Walton, A.; McCune, D.; Reynolds, R.; Michnick, M.; Watney, L.

1997-01-15T23:59:59.000Z

451

HEAVY AND THERMAL OIL RECOVERY PRODUCTION MECHANISMS  

SciTech Connect (OSTI)

The Stanford University Petroleum Research Institute (SUPRI-A) conducts a broad spectrum of research intended to help improve the recovery efficiency from difficult to produce reservoirs including heavy oil and fractured low permeability systems. Our scope of work is relevant across near-, mid-, and long-term time frames. The primary functions of the group are to conduct direction-setting research, transfer research results to industry, and educate and train students for careers in industry. Presently, research in SUPRI-A is divided into 5 main project areas. These projects and their goals include: (1) Multiphase flow and rock properties--to develop better understanding of the physics of displacement in porous media through experiment and theory. This category includes work on imbibition, flow in fractured media, and the effect of temperature on relative permeability and capillary pressure. (2) Hot fluid injection--to improve the application of nonconventional wells for enhanced oil recovery and elucidate the mechanisms of steamdrive in low permeability, fractured porous media. (3) Mechanisms of primary heavy oil recovery--to develop a mechanistic understanding of so-called ''foamy oil'' and its associated physical chemistry. (4) In-situ combustion--to evaluate the effect of different reservoir parameters on the insitu combustion process. (5) Reservoir definition--to develop and improve techniques for evaluating formation properties from production information. What follows is a report on activities for the past year. Significant progress was made in all areas.

Anthony R. Kovscek; Louis M. Castanier

2002-09-30T23:59:59.000Z

452

SURFACTANT - POLYMER INTERACTION FOR IMPROVED OIL RECOVERY  

SciTech Connect (OSTI)

The goal of this research is to use the interaction between a surfactant and a polymer for efficient displacement of tertiary oil by improving slug integrity, adsorption and mobility control. Surfactant--polymer flooding has been shown to be highly effective in laboratory-scale linear floods. The focus of this proposal is to design an inexpensive surfactant-polymer mixture that can efficiently recover tertiary oil by avoiding surfactant slug degradation high adsorption and viscous/heterogeneity fingering. A mixture comprising a ''pseudo oil'' with appropriate surfactant and polymer has been selected to study micellar-polymer chemical flooding. The physical properties and phase behavior of this system have been determined. A surfactant-polymer slug has been designed to achieve high efficiency recovery by improving phase behavior and mobility control. Recovery experiments have been performed on linear cores and a quarter 5-spot. The same recovery experiments have been simulated using a commercially available simulator (UTCHEM). Good agreement between experimental data and simulation results has been achieved.

Unknown

1998-10-01T23:59:59.000Z

453

Imaging of CO2 injection during an enhanced-oil-recovery experiment  

E-Print Network [OSTI]

Injection during an Enhanced-Oil-Recovery Experiment RolandEnergy (DOE) as an enhanced oil recovery (EOR) project, was

Gritto, Roland; Daley, Thomas M.; Myer, Larry R.

2003-01-01T23:59:59.000Z

454

Proposed Guideline Clarifications for American Recovery and Reinvestment Act of 2009  

E-Print Network [OSTI]

th align="right" valign="top">CFDA: Design Recovery> 1642990396473 CFDA>2004031CFDA> CFDA-title>Design Recovery Transparency

Wilde, Erik; Kansa, Eric C; Yee, Raymond

2009-01-01T23:59:59.000Z

455

Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM  

SciTech Connect (OSTI)

The Nash Draw Brushy Canyon Pool in Eddy County New Mexico was a cost-shared field demonstration project in the U.S. Department of Energy Class III Program. A major goal of the Class III Program was to stimulate the use of advanced technologies to increase ultimate recovery from slope-basin clastic reservoirs. Advanced characterization techniques were used at the Nash Draw Pool (NDP) project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. The objective of the project was to demonstrate that a development program, which was based on advanced reservoir management methods, could significantly improve oil recovery at the NDP. Initial goals were (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to other oil and gas producers. Analysis, interpretation, and integration of recently acquired geological, geophysical, and engineering data revealed that the initial reservoir characterization was too simplistic to capture the critical features of this complex formation. Contrary to the initial characterization, a new reservoir description evolved that provided sufficient detail regarding the complexity of the Brushy Canyon interval at Nash Draw. This new reservoir description was used as a risk reduction tool to identify 'sweet spots' for a development drilling program as well as to evaluate pressure maintenance strategies. The reservoir characterization, geological modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well stimulation, and well spacing to improve recovery from this reservoir. An Advanced Log Analysis technique developed from the NDP project has proven useful in defining additional productive zones and refining completion techniques. This program proved to be especially helpful in locating and evaluating potential recompletion intervals, which has resulted in low development costs with only small incremental increases in lifting costs. To develop additional reserves at lower costs, zones behind pipe in existing wells were evaluated using techniques developed for the Brushy Canyon interval. These techniques were used to complete uphole zones in thirteen of the NDP wells. A total of 14 recompletions were done: four during 1999, four during 2000, two during 2001, and four during 2002-2003. These workovers added reserves of 332,304 barrels of oil (BO) and 640,363 MCFG (thousand cubic feet of gas) at an overall weighted average development cost of $1.87 per BOE (barrel of oil equivalent). A pressure maintenance pilot project in a developed area of the field was not conducted because the pilot area was pressure depleted, and the reservoir in that area was found to be compartmentalized and discontinuous. Economic analyses and simulation studies indicated that immiscible injection of lean hydrocarbon gas for pressure maintenance was not warranted at the NDP and would need to be considered for implementation in similar fields very soon after production has started. Simulation studies suggested that the injection of miscible carbon dioxide (CO{sub 2}) could recover significant quantities of oil at the NDP, but a source of low-cost CO{sub 2} was not available in the area. Results from the project indicated that further development will be under playa lakes and potash areas that were beyond the regions covered by well control and are not accessible with vertical wells. These areas, covered by 3-D seismic surveys that were obtained as part of the project, were accessed with combinations of deviated/horizontal wells. Three directional/horizontal wells have been drilled and completed to develop reserves under surface-restricted areas and potash mines. The third

Mark B. Murphy

2005-09-30T23:59:59.000Z

456

Composite tube cracking in kraft recovery boilers: A state-of-the-art review  

SciTech Connect (OSTI)

Beginning in the mid-1960s, increasing energy costs in Finland and Sweden made energy recovery more critical to the cost-effective operation of a kraft pulp mill. Boiler designers responded to this need by raising the steam operating pressure, but almost immediately the wall tubes in these new boilers began to corrode rapidly. Test panels installed in the walls of the most severely corroding boiler identified austenitic stainless steel as sufficiently resistant to the new corrosive conditions, and discussions with Sandvik AB, a Swedish tube manufacturer, led to the suggestion that coextruded tubes be used for water wall service in kraft recovery boilers. Replacement of carbon steel by coextruded tubes has solved most of the corrosion problems experienced by carbon steel wall tubes, however, these tubes have not been problem-free. Beginning in early 1995, a multidisciplinary research program funded by the US Department of Energy was established to investigate the cause of cracking in coextruded tubes and to develop improved materials for use in water walls and floors of kraft recovery boilers. One portion of that program, a state-of-the-art review of public- and private-domain documents related to coextruded tube cracking in kraft recovery boilers is reported here. Sources of information that were consulted for this review include the following: tube manufacturers, boiler manufacturers, public-domain literature, companies operating kraft recovery boilers, consultants and failure analysis laboratories, and failure analyses conducted specifically for this project. Much of the information contained in this report involves cracking problems experienced in recovery boiler floors and those aspects of spout and air-port-opening cracking not readily attributable to thermal fatigue. 61 refs.

Singbeil, D.L.; Prescott, R. [Pulp and Paper Research Inst. of Canada, Vancouver, British Columbia (Canada); Keiser, J.R.; Swindeman, R.W. [Oak Ridge National Lab., TN (United States)

1997-07-01T23:59:59.000Z

457

Cushioned centrifugation of stallion semen: factors impacting equine sperm recovery rate and quality  

E-Print Network [OSTI]

Centrifugation of stallion semen is an integral part of the cryopreservation procedure, primarily allowing for the concentration of sperm and removal of seminal plasma. In addition, centrifugation is required for maximizing spermatozoal quality...

Waite, Jessica Arlene

2009-05-15T23:59:59.000Z

458

Cushioned centrifugation of stallion semen: factors impacting equine sperm recovery rate and quality  

E-Print Network [OSTI]

Centrifugation of stallion semen is an integral part of the cryopreservation procedure, primarily allowing for the concentration of sperm and removal of seminal plasma. In addition, centrifugation is required for maximizing spermatozoal quality...

Waite, Jessica Arlene

2008-10-10T23:59:59.000Z

459

Heat recovery and seed recovery development project: preliminary design report (PDR)  

SciTech Connect (OSTI)

The preliminary design and performance characteristics are described of the 20 MWt heat recovery and seed recovery (HRSR) system to be fabricated, installed, and evaluated to provide a technological basis for the design of commercial size HRSR systems for coal-fired open-cycle MHD power plants. The system description and heat and material balances, equipment description and functional requirements, controls, interfacing systems, and operation and maintenance are detailed. Appendices include: (1) recommended environmental requirements for compliance with federal and state of Tennessee regulations, (2) channel and diffuser simulator, (3) equipment arrangement drawings, and (4) channel and diffuser simulator barrel drawings. (WHK)

Arkett, A. H.; Alexander, K. C.; Bolek, A. D.; Blackman, B. K.; Kurrle, P. E.; Tram, S. V.; Warren, A. M.; Ziobrowski, A. J.

1981-06-01T23:59:59.000Z

460

Enhanced oil recovery projects data base  

SciTech Connect (OSTI)

A comprehensive enhanced oil recovery (EOR) project data base is maintained and updated at the Bartlesville Project Office of the Department of Energy. This data base provides an information resource that is used to analyze the advancement and application of EOR technology. The data base has extensive information on 1,388 EOR projects in 569 different oil fields from 1949 until the present, and over 90% of that information is contained in tables and graphs of this report. The projects are presented by EOR process, and an index by location is provided.

Pautz, J.F.; Sellers, C.A.; Nautiyal, C.; Allison, E.

1992-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "increase recovery rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

After a Disaster: Recovery Safety Tips  

E-Print Network [OSTI]

. Natural gas leaks are the top cause of fires after a disaster. That is why you never turn gas back on by yourself. Contact your local utility company for a trained professional to restore your gas service. ? Prevent carbon monoxide poisoning. Carbon... Disaster: Recovery Safety Tips enclosed area ? even if the area has ventilation. Opening doors and windows or using fans will not prevent carbon monoxide from building up in the home. If you start to feel sick, dizzy, or weak while using a generator...

FCS Project Team - FDRM UNIT

2005-09-30T23:59:59.000Z

462

Plutonium recovery from carbonate wash solutions  

SciTech Connect (OSTI)

Periodically higher than expected levels of plutonium are found in carbonate solutions used to wash second plutonium cycle solvent. The recent accumulation of plutonium in carbonate wash solutions has led to studies to determine the cause of that plutonium accumulation, to evaluate the quality of all canyon solvents, and to develop additional criteria needed to establish when solvent quality is acceptable. Solvent from three canyon solvent extraction cycles was used to evaluate technology required to measure tributyl phosphate (TBP) degradation products and was used to evaluate solvent quality criteria during the development of plutonium recovery processes. 1 fig.

Gray, J.H.; Reif, D.J.; Chostner, D.F.; Holcomb, H.P.

1991-12-31T23:59:59.000Z

463

Chateaurenard field test recovery mechanisms and interpretation  

SciTech Connect (OSTI)

The Chateaurenard micellar/polymer field test was conducted between 1976 and 1980 in the south part of the Paris Bassin. Pilot design, operations and oil production results have already been presented. We present a detailled analysis of the effluents. It appears that surfactant, most of wich remained trapped in the reservoir, is associated with calcium in the oil when produced, as a result of sodium exchange with the calcium associated with the clay in the reservoir sand. Supporting phase studies and floods through sandpacks are presented to quantify this cation exchange and investigate its influence on oil recovery and phase trapping.

Bourdarot, G.; Putz, A.; Sardin, M.

1984-04-01T23:59:59.000Z

464

Catalyst for elemental sulfur recovery process  

DOE Patents [OSTI]

A catalytic reduction process is described for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides high activity and selectivity, as well as stability in the reaction atmosphere, for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over a metal oxide composite catalyst having one of the following empirical formulas: [(FO[sub 2])[sub 1[minus]n](RO)[sub n

Flytzani-Stephanopoulos, M.; Liu, W.

1995-01-24T23:59:59.000Z

465

Environmental regulations handbook for enhanced oil recovery  

SciTech Connect (OSTI)

This handbook is intended to assist owners and operators of enhanced oil recovery (EOR) operations in acquiring some introductory knowledge of the various state agencies, the US Environmental Protection Agency, and the many environmental laws, rules and regulations which can have jurisdiction over their permitting and compliance activities. It is a compendium of summarizations of environmental rules. It is not intended to give readers specific working details of what is required from them, nor can it be used in that manner. Readers of this handbook are encouraged to contact environmental control offices nearest to locations of interest for current regulations affecting them.

Madden, M.P. [National Inst. for Petroleum and Energy Research, Bartlesville, OK (United States); Blatchford, R.P.; Spears, R.B. [Spears and Associates, Inc., Tulsa, OK (United States)

1991-12-01T23:59:59.000Z

466

Enhanced Oil Recovery | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember 2011DistrictLLC | Department ofEnhanced Oil Recovery

467

NREL: Technology Deployment - Disaster Resiliency and Recovery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F. Geisz, Ph.D.SolarRequest

468

LANL sponsors Recovery Act Job Fair  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfraredJeffersonJonathanMultimaterial2Recovery Act Job Fair October 30, 2009

469

Industrial Plate Exchangers Heat Recovery and Fouling  

E-Print Network [OSTI]

(still)for separation of light oil from the wash oil,which is then returned to absorber tower.The debenzolised wash 0 0 oil is cooled indirectly to 20 C/30 C before returning to the absorber tower. This is toprevent condensation of water from the gas... Industrial Energy Technology Conference Houston, TX, April 26-29, 1981 -- c.O.G. LIGHT OIL SCRUBBER COKE OVEN GAS(C.O.G,J BENZINE COOLING WATER BENZOLISED ~WASH OILSTRIPPER CONVENTIONAL LIGHT OIL RECOVERY PLANT DEBENZOLISED WASH OIL / COOLING WATER...

Cross, P. H.

1981-01-01T23:59:59.000Z

470

Exhaust Energy Recovery | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCof EnergyHouse11 DOEExhaust energy recovery proposed to

471

Exhaust Energy Recovery | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCof EnergyHouse11 DOEExhaust energy recovery proposed

472

Exhaust Energy Recovery | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCof EnergyHouse11 DOEExhaust energy recovery

473

Exhaust Energy Recovery | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCof EnergyHouse11 DOEExhaust energy recovery2010 DOE Vehicle

474

Exhaust Energy Recovery | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCof EnergyHouse11 DOEExhaust energy recovery2010 DOE

475

IDAHO RECOVERY ACT SNAPSHOT | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department of EnergyKickoff MeetingIDAHO RECOVERY ACT

476

Sandia National Laboratories: Recovery Act (ARRA) Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik SpoerkeSolar Regional TestClimateResearchRecovery Act (ARRA) Projects

477

Optimize carbon dioxide sequestration, enhance oil recovery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratorySpeeding access1phenol-pyrrolidino[60]fullerenes

478

Surfactant Based Enhanced Oil Recovery and Foam Mobility Control  

SciTech Connect (OSTI)

Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. A mixture of two surfactants was found to be particularly effective for application in carbonate formations at low temperature. The mixture is single phase for higher salinity or calcium concentrations than that for either surfactant used alone. This makes it possible to inject the surfactant slug with polymer close to optimal conditions and yet be single phase. A formulation has been designed for a particular field application. It uses partially hydrolyzed polyacrylamide for mobility control. The addition of an alkali such as sodium carbonate makes possible in situ generation of naphthenic soap and significant reduction of synthetic surfactant adsorption. The design of the process to maximize the region of ultra-low IFT takes advantage of the observation that the ratio of soap to synthetic surfactant is a parameter in the conditions for optimal salinity. Even for a fixed ratio of soap to surfactant, the range of salinity for low IFT was wider than that reported for surfactant systems in the literature. Low temperature, forced displacement experiments in dolomite and silica sandpacks demonstrate that greater than 95% recovery of the waterflood remaining oil is possible with 0.2% surfactant concentration, 0.5 PV surfactant slug, with no alcohol. Compositional simulation of the displacement process demonstrates the role of soap/surfactant ratio on passage of the profile through the ultralow IFT region, the importance of a wide salinity range of low IFT, and the importance of the viscosity of the surfactant slug. Mobility control is essential for surfactant EOR. Foam is evaluated to improve the sweep efficiency of surfactant injected into fractured reservoirs as well as a drive fluid for ASP flooding. UTCHEM is a reservoir simulator specially designed for surfactant EOR. It has been modified to represent the effects of a change in wettability produced by surfactant injection.

George J. Hirasaki; Clarence A. Miller

2006-09-09T23:59:59.000Z

479

Method of controlling fusion reaction rates  

DOE Patents [OSTI]

A method of controlling the reaction rates of the fuel atoms in a fusion reactor comprises the step of polarizing the nuclei of the fuel atoms in a particular direction relative to the plasma confining magnetic field. Fusion reaction rates can be increased or decreased, and the direction of emission of the reaction products can be controlled, depending on the choice of polarization direction.

Kulsrud, Russell M. (Princeton, NJ); Furth, Harold P. (Princeton, NJ); Valeo, Ernest J. (Princeton Junction, NJ); Goldhaber, Maurice (Bayport, NY)

1988-01-01T23:59:59.000Z

480

IMPROVED OIL RECOVERY IN MISSISSIPPIAN CARBONATE RESERVOIRS OF KANSAS - NEAR TERM - CLASS 2  

SciTech Connect (OSTI)

This annual report describes progress during the final year of the project entitled ''Improved Oil Recovery in Mississippian Carbonate Reservoirs in Kansas''. This project funded under the Department of Energy's Class 2 program targets improving the reservoir performance of mature oil fields located in shallow shelf carbonate reservoirs. The focus of the project was development and demonstration of cost-effective reservoir description and management technologies to extend the economic life of mature reservoirs in Kansas and the mid-continent. As part of the project, tools and techniques for reservoir description and management were developed, modified and demonstrated, including PfEFFER spreadsheet log analysis software. The world-wide-web was used to provide rapid and flexible dissemination of the project results through the Internet. A summary of demonstration phase at the Schaben and Ness City North sites demonstrates the effectiveness of the proposed reservoir management strategies and technologies. At the Schaben Field, a total of 22 additional locations were evaluated based on the reservoir characterization and simulation studies and resulted in a significant incremental production increase. At Ness City North Field, a horizontal infill well (Mull Ummel No.4H) was planned and drilled based on the results of reservoir characterization and simulation studies to optimize the location and length. The well produced excellent and predicted oil rates for the first two months. Unexpected presence of vertical shale intervals in the lateral resulted in loss of the hole. While the horizontal well was not economically successful, the technology was demonstrated to have potential to recover significant additional reserves in Kansas and the Midcontinent. Several low-cost approaches were developed to evaluate candidate reservoirs for potential horizontal well applications at the field scale, lease level, and well level, and enable the small independent producer to identify efficiently candidate reservoirs and also to predict the performance of horizontal well applications.

Timothy R. Carr; Don W. Green; G. Paul Willhite

2000-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "increase recovery rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Apparatus and method for simultaneous recovery of hydrogen from water and from hydrocarbons  

DOE Patents [OSTI]

Apparatus and method for simultaneous recovery of hydrogen from water and from hydrocarbon feed material. The feed material is caused to flow over a heated catalyst which fosters the water-gas shift reaction (H.sub.2 O+COH.sub.2 +CO.sub.2) and the methane steam reforming reaction (CH.sub.4 +H.sub.2 O3 H.sub.2 +CO). Both of these reactions proceed only to partial completion. However, by use of a Pd/Ag membrane which is exclusively permeable to hydrogen isotopes in the vicinity of the above reactions and by maintaining a vacuum on the permeate side of the membrane, product hydrogen isotopes are removed and the reactions are caused to proceed further toward completion. A two-stage palladium membrane reactor was tested with a feed composition of 28% CQ.sub.4, 35% Q.sub.2 O (where Q=H, D, or T), and 31% Ar in 31 hours of continuous operation during which 4.5 g of tritium were processed. Decontamination factors were found to increase with decreasing inlet rate. The first stage was observed to have a decontamination factor of approximately 200, while the second stage had a decontamination factor of 2.9.times.10.sup.6. The overall decontamination factor was 5.8.times.10.sup.8. When a Pt/.alpha.-Al.sub.2 O.sub.3 catalyst is employed, decoking could be performed without catalyst degradation. However, by adjusting the carbon to oxygen ratio of the feed material with the addition of oxygen, coking could be altogether avoided.

Willms, R. Scott (Los Alamos, NM); Birdsell, Stephen A. (Los Alamos, NM)

2000-01-01T23:59:59.000Z

482

Microbial enhanced oil recovery research. Final report, Annex 5  

SciTech Connect (OSTI)

The objective of this project was to develop an engineering framework for the exploitation of microorganisms to enhance oil recovery. An order of magnitude analysis indicated that selective plugging and the production of biosurfactants are the two most likely mechanisms for the mobilization of oil in microbial enhanced oil recovery (MEOR). The latter, biosurfactant production, is easier to control within a reservoir environment and was investigated in some detail. An extensive literature survey indicated that the bacterium Bacillus licheniformis JF-2 produces a very effective surface active agent capable of increasing the capillary number to values sufficiently low for oil mobilization. In addition, earlier studies had shown that growth of this bacterium and biosurfactant production occur under conditions that are typically encountered in MEOR, namely temperatures up to 55{degrees}C, lack of oxygen and salinities of up to 10% w/v. The chemical structure of the surfactant, its interfacial properties and its production by fermentation were characterized in some detail. In parallel, a set of experiments as conducted to measure the transport of Bacillus licheniformis JF-2 in sandpacks. It was shown that the determining parameters for cell transport in porous media are: cell size and degree of coagulation, presence of dispersants, injection velocity and cell concentration. The mechanisms of bacteria retention within the pores of the reservoir were analyzed based on heuristic arguments. A mathematical simulator of MEOR was developed using conservation equations in which the mechanisms of bacteria retention and the growth kinetics of the cells were incorporated. The predictions of the model agreed reasonably well with experimental results.

Sharma, M.M.; Gerogiou, G.

1993-07-01T23:59:59.000Z

483

Ultrasonic reactor for the recovery of bitumen from tar sand: Final report  

SciTech Connect (OSTI)

A bench scale ultrasonic reactor was designed for testing to determine its feasiblity for enhancing the dissolution and extraction of bitumen from Utah tar sands using both solvent and water as a liquid medium for dissolution and extraction and to compare the results. The ultrasonic reactor did not significantly enhance dissolution of bitumen into the sovlent. Ultrasonic energy did appear to enhance intraparticle diffusion in consolidated tar sand. The rate of disengagement of the bitumen from the sand in hot water extraction was slightly enhanced and a continuous flow unit may show promise for the recovery of bitumen from tar sands. Assuming that high recovery efficiency can be obtained, the energy requirements for the ultrasonic reactor did not appear to be prohibitive. 5 figs., 3 tabs.

Bunger, J.W.; Miller, J.D.; Johnson, S.A.

1987-07-28T23:59:59.000Z

484

Importance of satellite cells in recovery from eccentric contraction-induced muscle injury  

E-Print Network [OSTI]

. Armstrong The purpose of this study was to determine if the elimination of satellite cell proliferation with ~irradiation would inhibit normal force recovery following eccentric contraction-induced injury. Adult female ICR mice were implanted with a.... Caiozzo, F. Haddad, and K. M. Baldwin. Cellular and molecular responses to increased skeletal muscle loading after irradiation. Am. J. Physiol. Cell Phys. 283: C1182-C1195, 2002. 2. Armstrong R. B. , R. W. Ogilvie, and J. A. Schwane. Eccentric exercise...

Rathbone, Christopher Ronald

2003-01-01T23:59:59.000Z

485

Enhanced Recovery Utilizing Variable Frequency Drives and a Distributed Power System  

SciTech Connect (OSTI)

This report describes complete results of the project entitled ''Enhanced Recovery Utilizing Variable Frequency Drives and a Distributed Power System''. This demonstration project was initiated in July 2003 and completed in March 2005. The objective of the project was to develop an integrated power production/variable frequency drive system that could easily be deployed in the oil field that would increase production and decrease operating costs. This report describes all the activities occurred and documents results of the demonstration.

Randy Peden; Sanjiv Shah

2005-07-26T23:59:59.000Z

486

(Passamaquoddy Technology Recovery Scrubber trademark , March 1992)  

SciTech Connect (OSTI)

The Passamaquoddy Technology Recovery Scrubber{trademark} has been built and is being demonstrated on-line at the Dragon Products Plant in Thomaston, Maine. This Innovative Clean Coal Technology is using waste cement kiln dust (CKD) to scrub sulfur dioxide, some NO{sub x}, as well as a small amount of carbon dioxide from a coal burning kiln exhaust flue gas. The process also enables the cement plant to reuse the treated CKD, eliminating the need to landfill this material. Potassium, the offending contaminant in the CKD, is extracted in a useful form, potassium sulfate, which is used as a fertilizer. These useful products generate income from operation of this Recovery Scrubber. System start-up was begun in late December of 1990. At that time, several mechanical problems were encountered. These relatively minor problems were resolved enabling Phase III to begin on August 20, 1991. While inefficiencies are still being worked out, major program objectives are being met. Resolution of remaining operability problems is well in hand and should not hamper attainment of all project goals.

Not Available

1992-03-03T23:59:59.000Z

487

"Smart" Multifunctional Polymers for Enhanced Oil Recovery  

SciTech Connect (OSTI)

Recent recommendations made by the Department of Energy, in conjunction with ongoing research at the University of Southern Mississippi, have signified a need for the development of 'smart' multi-functional polymers (SMFPs) for Enhanced Oil Recovery (EOR) processes. Herein we summarize research from the period of September 2003 through March 2007 focusing on both Type I and Type II SMFPs. We have demonstrated the synthesis and behavior of materials that can respond in situ to stimuli (ionic strength, pH, temperature, and shear stress). In particular, Type I SMFPs reversibly form micelles in water and have the potential to be utilized in applications that serve to lower interfacial tension at the oil/water interface, resulting in emulsification of oil. Type II SMFPs, which consist of high molecular weight polymers, have been synthesized and have prospective applications related to the modification of fluid viscosity during the recovery process. Through the utilization of these advanced 'smart' polymers, the ability to recover more of the original oil in place and a larger portion of that by-passed or deemed 'unrecoverable' by conventional chemical flooding should be possible.

Charles McCormick; Andrew Lowe

2007-03-20T23:59:59.000Z

488

Thermal processes for heavy oil recovery  

SciTech Connect (OSTI)

This status report summarizes the project BE11B (Thermal Processes for Heavy Oil Recovery) research activities conducted in FY93 and completes milestone 7 of this project. A major portion of project research during FY93 was concentrated on modeling and reservoir studies to determine the applicability of steam injection oil recovery techniques in Texas Gulf Coast heavy oil reservoirs. In addition, an in-depth evaluation of a steamflood predictive model developed by Mobil Exploration and Production Co. (Mobil E&P) was performed. Details of these two studies are presented. A topical report (NIPER-675) assessing the NIPER Thermal EOR Research Program over the past 10 years was also written during this fiscal year and delivered to DOE. Results of the Gulf Coast heavy oil reservoir simulation studies indicated that though these reservoirs can be successfully steamflooded and could recover more than 50% of oil-in-place, steamflooding may not be economical at current heavy oil prices. Assessment of Mobil E&P`s steamflood predictive model capabilities indicate that the model in its present form gives reasonably good predictions of California steam projects, but fails to predict adequately the performance of non-California steam projects.

Sarkar, A.K.; Sarathi, P.S.

1993-11-01T23:59:59.000Z

489

CT imaging of enhanced oil recovery experiments  

SciTech Connect (OSTI)

X-ray computerized tomography (Cr) has been used to study fluid distributions during chemical enhanced oil recovery experiments. Four CT-monitored corefloods were conducted, and oil saturation distributions were calculated at various stages of the experiments. Results suggested that this technique could add significant information toward interpretation and evaluation of surfactant/polymer EOR recovery methods. CT-monitored tracer tests provided information about flow properties in the core samples. Nonuniform fluid a