Powered by Deep Web Technologies
Note: This page contains sample records for the topic "increase fuel efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Using polymer electrolyte membrane fuel cells in a hybrid surface ship propulsion plant to increase fuel efficiency .  

E-Print Network [OSTI]

??An increasingly mobile US Navy surface fleet and oil price uncertainty contrast with the Navy's desire to lower the amount of money spent purchasing fuel.… (more)

Kroll, Douglas M.

2010-01-01T23:59:59.000Z

2

Alternative Fuels Data Center: Staples Delivers on Fuel Efficiency  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Staples Delivers on Staples Delivers on Fuel Efficiency to someone by E-mail Share Alternative Fuels Data Center: Staples Delivers on Fuel Efficiency on Facebook Tweet about Alternative Fuels Data Center: Staples Delivers on Fuel Efficiency on Twitter Bookmark Alternative Fuels Data Center: Staples Delivers on Fuel Efficiency on Google Bookmark Alternative Fuels Data Center: Staples Delivers on Fuel Efficiency on Delicious Rank Alternative Fuels Data Center: Staples Delivers on Fuel Efficiency on Digg Find More places to share Alternative Fuels Data Center: Staples Delivers on Fuel Efficiency on AddThis.com... April 7, 2011 Staples Delivers on Fuel Efficiency " Over time, we'll look to increase the number of these trucks in the Staples fleet as an effective way to service our delivery customers while reducing

3

Increasing Efficiency of Fuel Ethanol Production from Lignocellulosic Biomass by Process Integration  

Science Journals Connector (OSTI)

(8-10) To our knowledge, the thermal integration of ethanol fermentation and thermochemical conversion of its residues has only been investigated for ethanol production from sugar cane and power cogeneration from the by-produced bagasse with an integrated gasification combined cycle (IGCC) instead of a conventional single cycle. ... Considering the energetic value of the byproducts in Table 2 and the important heat requirement for distillation and rectification of the raw product to fuel quality of Figure 2(c), this section compares different alternatives for integrating the fuel production and the energy and exergy recovery processes. ... biofuels as well as to indicate the emerging challenges and opportunities of the application of process integration on such processes towards innovative and sustainable solns. ...

Martin Gassner; François Maréchal

2013-03-12T23:59:59.000Z

4

Fuel changes will increase fuel prices  

Science Journals Connector (OSTI)

Within a year the changes in fuels will push fuel prices upward. ... Although some people debate the necessity for, or the amount of price increases for, alternate fuels, there seems little doubt that whatever emerges at the gas pump will cost more. ...

JOSEPH HAGGIN

1992-04-20T23:59:59.000Z

5

If Cars Were More Efficient Would We Use Less Fuel?  

E-Print Network [OSTI]

Efficient, Would We Use Less Fuel? B Y K E N N E T H A . S Mtask: just increase vehicle fuel efficiency, also known asexisting Corporate Average Fuel Economy (CAFE) standards.

Small, Kenneth A.; Dender, Kurt Van

2007-01-01T23:59:59.000Z

6

Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Efficient Driving Efficient Driving Behaviors to Conserve Fuel to someone by E-mail Share Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel on Facebook Tweet about Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel on Twitter Bookmark Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel on Google Bookmark Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel on Delicious Rank Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel on Digg Find More places to share Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel on AddThis.com... More in this section... Idle Reduction Parts & Equipment Maintenance Driving Behavior Management Strategies

7

Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office supports research to design engines optimized for alternative fuels that increases efficiency and takes advantage of these fuels' unique properties.

8

Gasoline Ultra Fuel Efficient Vehicle  

Broader source: Energy.gov (indexed) [DOE]

Principal Investigator 13MY11 2011 DOE Vehicle Technologies Review Gasoline Ultra Fuel Efficient Vehicle ACE064 "This presentation does not contain any proprietary,...

9

Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition and  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel-Efficient Vehicle Fuel-Efficient Vehicle Acquisition and Alternative Fuel Use Requirements to someone by E-mail Share Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition and Alternative Fuel Use Requirements on Facebook Tweet about Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition and Alternative Fuel Use Requirements on Twitter Bookmark Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition and Alternative Fuel Use Requirements on Google Bookmark Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition and Alternative Fuel Use Requirements on Delicious Rank Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition and Alternative Fuel Use Requirements on Digg Find More places to share Alternative Fuels Data Center:

10

Alternative Fuels Data Center: Fuel-Efficient Tire Program Development  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel-Efficient Tire Fuel-Efficient Tire Program Development to someone by E-mail Share Alternative Fuels Data Center: Fuel-Efficient Tire Program Development on Facebook Tweet about Alternative Fuels Data Center: Fuel-Efficient Tire Program Development on Twitter Bookmark Alternative Fuels Data Center: Fuel-Efficient Tire Program Development on Google Bookmark Alternative Fuels Data Center: Fuel-Efficient Tire Program Development on Delicious Rank Alternative Fuels Data Center: Fuel-Efficient Tire Program Development on Digg Find More places to share Alternative Fuels Data Center: Fuel-Efficient Tire Program Development on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel-Efficient Tire Program Development The California Energy Commission (CEC) must adopt and implement a

11

Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Goals  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel-Efficient Vehicle Fuel-Efficient Vehicle Acquisition Goals to someone by E-mail Share Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Goals on Facebook Tweet about Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Goals on Twitter Bookmark Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Goals on Google Bookmark Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Goals on Delicious Rank Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Goals on Digg Find More places to share Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Goals on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel-Efficient Vehicle Acquisition Goals To help achieve the statewide goal of reducing petroleum use by 20% by July

12

Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel-Efficient Vehicle Fuel-Efficient Vehicle Acquisition Requirement to someone by E-mail Share Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Requirement on Facebook Tweet about Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Requirement on Twitter Bookmark Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Requirement on Google Bookmark Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Requirement on Delicious Rank Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Requirement on Digg Find More places to share Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

13

Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel-Efficient Vehicle Fuel-Efficient Vehicle Acquisition Requirements to someone by E-mail Share Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Requirements on Facebook Tweet about Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Requirements on Twitter Bookmark Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Requirements on Google Bookmark Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Requirements on Delicious Rank Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Requirements on Digg Find More places to share Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

14

Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel-Efficient Vehicle Fuel-Efficient Vehicle Acquisition Requirements to someone by E-mail Share Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Requirements on Facebook Tweet about Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Requirements on Twitter Bookmark Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Requirements on Google Bookmark Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Requirements on Delicious Rank Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Requirements on Digg Find More places to share Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

15

Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel-Efficient Vehicle Fuel-Efficient Vehicle Acquisition Requirements to someone by E-mail Share Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Requirements on Facebook Tweet about Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Requirements on Twitter Bookmark Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Requirements on Google Bookmark Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Requirements on Delicious Rank Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Requirements on Digg Find More places to share Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

16

Prospects for and problems of using light-water supercritical-pressure coolant in nuclear reactors in order to increase the efficiency of the nuclear fuel cycle  

SciTech Connect (OSTI)

Trends in the development of the power sector of the Russian and world power industries both at present time and in the near future are analyzed. Trends in the rise of prices for reserves of fossil and nuclear fuels used for electricity production are compared. An analysis of the competitiveness of electricity production at nuclear power plants as compared to the competitiveness of electricity produced at coal-fired and natural-gas-fired thermal power plants is performed. The efficiency of the open nuclear fuel cycle and various versions of the closed nuclear fuel cycle is discussed. The requirements on light-water reactors under the scenario of dynamic development of the nuclear power industry in Russia are determined. Results of analyzing the efficiency of fuel utilization for various versions of vessel-type light-water reactors with supercritical coolant are given. Advantages and problems of reactors with supercritical-pressure water are listed.

Alekseev, P. N.; Semchenkov, Yu. M.; Sedov, A. A., E-mail: sedov@dhtp.kial.ru; Subbotin, S. A.; Chibinyaev, A. V. [Russian Research Centre Kurchatov Institute (Russian Federation)

2011-12-15T23:59:59.000Z

17

Fuel Economy Standards, New Vehicle Sales, and Average Fuel Efficiency  

Science Journals Connector (OSTI)

The average fuel efficiency of new automobiles sold in the ... trend stagnated in 1981, however, and average fuel efficiency has actually fallen since 1987. Corporate Average Fuel Economy (CAFE) standards—the maj...

Steven G. Thorpe

1997-05-01T23:59:59.000Z

18

Alternative Fuels Data Center: Fuel-Efficient and Alternative Fuel Vehicle  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel-Efficient and Fuel-Efficient and Alternative Fuel Vehicle Use to someone by E-mail Share Alternative Fuels Data Center: Fuel-Efficient and Alternative Fuel Vehicle Use on Facebook Tweet about Alternative Fuels Data Center: Fuel-Efficient and Alternative Fuel Vehicle Use on Twitter Bookmark Alternative Fuels Data Center: Fuel-Efficient and Alternative Fuel Vehicle Use on Google Bookmark Alternative Fuels Data Center: Fuel-Efficient and Alternative Fuel Vehicle Use on Delicious Rank Alternative Fuels Data Center: Fuel-Efficient and Alternative Fuel Vehicle Use on Digg Find More places to share Alternative Fuels Data Center: Fuel-Efficient and Alternative Fuel Vehicle Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

19

Alternative Fuels Data Center: Transportation System Efficiency  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Transportation System Transportation System Efficiency to someone by E-mail Share Alternative Fuels Data Center: Transportation System Efficiency on Facebook Tweet about Alternative Fuels Data Center: Transportation System Efficiency on Twitter Bookmark Alternative Fuels Data Center: Transportation System Efficiency on Google Bookmark Alternative Fuels Data Center: Transportation System Efficiency on Delicious Rank Alternative Fuels Data Center: Transportation System Efficiency on Digg Find More places to share Alternative Fuels Data Center: Transportation System Efficiency on AddThis.com... More in this section... Idle Reduction Parts & Equipment Maintenance Driving Behavior Fleet Rightsizing System Efficiency Ridesharing Mass Transit Active Transit Multi-Modal Transportation Telework

20

Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel and Fuel and Fuel-Efficient Vehicle Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle Tax Credit on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle Tax Credit on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle Tax Credit on AddThis.com... More in this section... Federal State Advanced Search

Note: This page contains sample records for the topic "increase fuel efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Alternative Fuels Data Center: Low Carbon Fuel and Fuel-Efficient Vehicle  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low Carbon Fuel and Low Carbon Fuel and Fuel-Efficient Vehicle Acquisition Requirement to someone by E-mail Share Alternative Fuels Data Center: Low Carbon Fuel and Fuel-Efficient Vehicle Acquisition Requirement on Facebook Tweet about Alternative Fuels Data Center: Low Carbon Fuel and Fuel-Efficient Vehicle Acquisition Requirement on Twitter Bookmark Alternative Fuels Data Center: Low Carbon Fuel and Fuel-Efficient Vehicle Acquisition Requirement on Google Bookmark Alternative Fuels Data Center: Low Carbon Fuel and Fuel-Efficient Vehicle Acquisition Requirement on Delicious Rank Alternative Fuels Data Center: Low Carbon Fuel and Fuel-Efficient Vehicle Acquisition Requirement on Digg Find More places to share Alternative Fuels Data Center: Low Carbon Fuel and Fuel-Efficient Vehicle Acquisition Requirement on AddThis.com...

22

Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel and Fuel and Fuel-Efficient Vehicle Title Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle Title Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle Title Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle Title Tax Exemption on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle Title Tax Exemption on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle Title Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle Title Tax Exemption on AddThis.com...

23

Vehicle Technologies Office: Fuel Efficiency and Emissions |...  

Broader source: Energy.gov (indexed) [DOE]

Batteries Fuel Efficiency & Emissions Combustion Engines Fuel Effects on Combustion Idle Reduction Emissions Waste Heat Recovery Lightweighting Parasitic Loss Reduction Lubricants...

24

Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel and Alternative Fuel and Fuel-Efficient Vehicle Acquisition and Use Requirements to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle Acquisition and Use Requirements on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle Acquisition and Use Requirements on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle Acquisition and Use Requirements on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle Acquisition and Use Requirements on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle Acquisition and Use Requirements on Digg Find More places to share Alternative Fuels Data Center: Alternative

25

Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel and Alternative Fuel and Fuel-Efficient Vehicle Acquisition and Emissions Reduction Requirements to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle Acquisition and Emissions Reduction Requirements on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle Acquisition and Emissions Reduction Requirements on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle Acquisition and Emissions Reduction Requirements on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle Acquisition and Emissions Reduction Requirements on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle Acquisition and Emissions Reduction Requirements on

26

Report: Efficiency, Alternative Fuels to Impact Market Through...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency, Alternative Fuels to Impact Market Through 2040 Report: Efficiency, Alternative Fuels to Impact Market Through 2040 February 26, 2014 - 12:00am Addthis Fuel efficiency...

27

Report: Efficiency, Alternative Fuels to Impact Market Through 2040  

Broader source: Energy.gov [DOE]

Fuel efficiency improvements and increased use of alternative fuels, will shrink gasoline's share of the fuel market 14% by 2040, according to a new report based on analysis of the U.S. Energy Information Administration in its Annual Energy Outl

28

DOE Announces $14 Million Industry Partnership Projects to Increase Fuel  

Broader source: Energy.gov (indexed) [DOE]

4 Million Industry Partnership Projects to Increase 4 Million Industry Partnership Projects to Increase Fuel Efficiency DOE Announces $14 Million Industry Partnership Projects to Increase Fuel Efficiency May 26, 2005 - 1:02pm Addthis WASHINGTON, DC - Secretary of Energy Samuel Bodman today announced a public-private partnership between the Department of Energy, industry and academia aimed at significantly improving the vehicle efficiency of cars and trucks through advances in technology. The partnership consists of six projects with a value including cost share of over $14 million. "Achieving the goal of increased vehicle efficiency will require a coordinated approach involving government agencies, private companies and researchers. Partnerships like this will propel innovation, and eventually lead to a day when our children and grandchildren will call the

29

DOE Announces $14 Million Industry Partnership Projects to Increase Fuel  

Broader source: Energy.gov (indexed) [DOE]

DOE Announces $14 Million Industry Partnership Projects to Increase DOE Announces $14 Million Industry Partnership Projects to Increase Fuel Efficiency DOE Announces $14 Million Industry Partnership Projects to Increase Fuel Efficiency May 26, 2005 - 1:02pm Addthis WASHINGTON, DC - Secretary of Energy Samuel Bodman today announced a public-private partnership between the Department of Energy, industry and academia aimed at significantly improving the vehicle efficiency of cars and trucks through advances in technology. The partnership consists of six projects with a value including cost share of over $14 million. "Achieving the goal of increased vehicle efficiency will require a coordinated approach involving government agencies, private companies and researchers. Partnerships like this will propel innovation, and

30

Matching Government Needs with Energy Efficient Fuel Cells |...  

Broader source: Energy.gov (indexed) [DOE]

Government Needs with Energy Efficient Fuel Cells Matching Government Needs with Energy Efficient Fuel Cells The Fuel Cell Technologies Office, Federal Energy Management Program,...

31

Matching National Laboratory Needs with Energy Efficient Fuel...  

Broader source: Energy.gov (indexed) [DOE]

National Laboratory Needs with Energy Efficient Fuel Cells Matching National Laboratory Needs with Energy Efficient Fuel Cells The Fuel Cell Technologies Office, Federal Energy...

32

fuel efficiency | OpenEI Community  

Open Energy Info (EERE)

fuel efficiency fuel efficiency Home Graham7781's picture Submitted by Graham7781(1992) Super contributor 13 December, 2012 - 14:40 The Apps for Vehicles Challenge has begun! contest data fuel efficiency launch Obama Administration OpenEI Vehicles Data Challenge **Update: Visit the Apps for Vehicles page for all the information you need on the challenge.** Graham7781's picture Submitted by Graham7781(1992) Super contributor 30 August, 2012 - 15:16 Historic Fuel Standards auto fuel efficiency obama standards vehicle White House On Tuesday, Ray Lahood, Secretary of the U.S. Department of Transportation, and Lisa P. Jackson, Environmental Protection Agency Administrator, unveiled the joint effort, along with the Obama Administration, to create record fuel standards for vehicles built between 2017 and 2025.

33

Gasoline Ultra Fuel Efficient Vehicle  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

34

DOE Announces 12 Projects To Increase Vehicle Efficiency | Department of  

Broader source: Energy.gov (indexed) [DOE]

Announces 12 Projects To Increase Vehicle Efficiency Announces 12 Projects To Increase Vehicle Efficiency DOE Announces 12 Projects To Increase Vehicle Efficiency February 16, 2005 - 10:16am Addthis Industry Partners to Cost-Share Funding on $175 Million in Research Projects WASHINGTON, DC -- Secretary of Energy Samuel Bodman today announced the selection of projects that will increase the energy efficiency of passenger and commercial vehicles while maintaining low emissions. Twelve projects, with a total value of $175 million (50 percent, or $87.5 million contributed by the private sector) will focus on development of advanced combustion engine and waste heat recovery technologies. "Together with our private sector partners, the Department of Energy is pursuing innovative new technologies to improve vehicle fuel efficiency and

35

Increasing Renewable Energy with Hydrogen Storage and Fuel Cell...  

Broader source: Energy.gov (indexed) [DOE]

Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies Download presentation...

36

BOILERS, BOILER FUEL AND BOILER EFFICIENCY  

E-Print Network [OSTI]

This paper describes the modern boilers in the South African sugar industry. A new equation for the calculation of the net calorific value (NCV) of bagasse is suggested and a distinction is made between boiler design efficiency and boiler operation efficiency. Methods to calculate fuel calorific values and boiler efficiencies from first principles are presented.

A Wienese

37

The Role of Lubricant Additives in Fuel Efficiency and Emission...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Lubricant Additives in Fuel Efficiency and Emission Reductions: Viscosity Effects The Role of Lubricant Additives in Fuel Efficiency and Emission Reductions: Viscosity Effects...

38

How Exhaust Emissions Drive Diesel Engine Fuel Efficiency | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

How Exhaust Emissions Drive Diesel Engine Fuel Efficiency How Exhaust Emissions Drive Diesel Engine Fuel Efficiency 2004 Diesel Engine Emissions Reduction (DEER) Conference...

39

Improving Vehicle Fuel Efficiency Through Tire Design, Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight 2012 DOE Hydrogen...

40

Sandia National Laboratories: More Efficient Fuel Cells under...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ECFacilitiesCenter for Infrastructure Research and Innovation (CIRI)More Efficient Fuel Cells under Development by Engineers More Efficient Fuel Cells under Development by...

Note: This page contains sample records for the topic "increase fuel efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies  

Broader source: Energy.gov [DOE]

Download presentation slides from the DOE Fuel Cell Technologies Office webinar Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies held on August 19, 2014.

42

A Materials Approach to Fuel-Efficient Tires | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel-Efficient Tires A Materials Approach to Fuel-Efficient Tires 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

43

Development and Demonstration of a Fuel-Efficient HD Engine  

Broader source: Energy.gov [DOE]

Approach to selection of technologies and their contribution to enhance heavy-duty truck fuel efficiency.

44

Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Maximizing Alternative Maximizing Alternative Fuel Vehicle Efficiency to someone by E-mail Share Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Facebook Tweet about Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Twitter Bookmark Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Google Bookmark Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Delicious Rank Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Digg Find More places to share Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines

45

NREL Improves System Efficiency and Increases Energy Transfer with Wind2H2 Project, Enabling Reduced Cost Electrolysis Production (Fact Sheet), Hydrogen and Fuel Cell Technical Highlights (HFCTH)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 * November 2010 5 * November 2010 Energy transfer improvements from the 10-kW wind turbine tested by NREL. The graph shows successive improvement, including the latest preliminary third generation improvement in the green shaded area. Increased Energy Transfer: NREL continues to improve energy transfer from a 10-kW solar PV array, comparing directly coupling the PV array to the electrolyzer stack with a connection through a maximum power point tracking (MPPT) power electronics package designed at NREL. The experimental testing (above) revealed that direct coupling outperformed power electronics when solar irradiance levels are below 500 W/m 2 while the MPPT power converter delivered more energy to the stacks between 500 and 1,100 W/m 2 . These findings

46

Fuel efficient power trains and vehicles  

SciTech Connect (OSTI)

The pressure on the automotive industry to improve fuel economy has already resulted in major developments in power train technology, as well as highlighting the need to treat the vehicle as a total system. In addition emissions legislation has resulted in further integration of the total vehicle engineering requirement. This volume discusses subject of fuel efficiency in the context of vehicle performance. The contents include: energy and the vehicle; the interaction of fuel economy and emission control in Europe-a literature study; comparison of a turbocharger to a supercharger on a spark ignited engine; knock protection - future fuel and engines; the unomatic transmission; passenger car diesel engines charged by different systems for improved fuel economy.

Not Available

1984-01-01T23:59:59.000Z

47

Case Study: Fuel Cells Increase Reliability at First National...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Increase Reliability at First National Bank of Omaha Case Study: Fuel Cells Increase Reliability at First National Bank of Omaha First National Bank of Omaha installed a fuel cell...

48

High Efficiency Direct Carbon and Hydrogen Fuel Cells for Fossil Fuel Power Generation  

SciTech Connect (OSTI)

Hydrogen he1 cells have been under development for a number of years and are now nearing commercial applications. Direct carbon fuel cells, heretofore, have not reached practical stages of development because of problems in fuel reactivity and cell configuration. The carbon/air fuel cell reaction (C + O{sub 2} = CO{sub 2}) has the advantage of having a nearly zero entropy change. This allows a theoretical efficiency of 100 % at 700-800 C. The activities of the C fuel and CO{sub 2} product do not change during consumption of the fuel. Consequently, the EMF is invariant; this raises the possibility of 100% fuel utilization in a single pass. (In contrast, the high-temperature hydrogen fuel cell has a theoretical efficiency of and changes in fuel activity limit practical utilizations to 75-85%.) A direct carbon fuel cell is currently being developed that utilizes reactive carbon particulates wetted by a molten carbonate electrolyte. Pure COZ is evolved at the anode and oxygen from air is consumed at the cathode. Electrochemical data is reported here for the carbon/air cell utilizing carbons derived from he1 oil pyrolysis, purified coal, purified bio-char and petroleum coke. At 800 O C, a voltage efficiency of 80% was measured at power densities of 0.5-1 kW/m2. Carbon and hydrogen fuels may be produced simultaneously at lugh efficiency from: (1) natural gas, by thermal decomposition, (2) petroleum, by coking or pyrolysis of distillates, (3) coal, by sequential hydrogasification to methane and thermal pyrolysis of the methane, with recycle of the hydrogen, and (4) biomass, similarly by sequential hydrogenation and thermal pyrolysis. Fuel production data may be combined with direct C and H2 fuel cell operating data for power cycle estimates. Thermal to electric efficiencies indicate 80% HHV [85% LHV] for petroleum, 75.5% HHV [83.4% LHV] for natural gas and 68.3% HHV [70.8% LHV] for lignite coal. Possible benefits of integrated carbon and hydrogen fuel cell power generation cycles are: (1) increased efficiency by a factor of up to 2 over many conventional fossil fuel steam plants, (2) reduced power generation cost, especially for increasing fossil fuel cost, (3) reduced CO2 emission per kWh, and (4) direct sequestration or reuse (e.g., in enhanced oil or NG recovery) of the CO{sub 2} product.

Steinberg, M; Cooper, J F; Cherepy, N

2002-01-02T23:59:59.000Z

49

Alternative Fuels Data Center: Reduced Registration Fee for Fuel-Efficient  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Reduced Registration Reduced Registration Fee for Fuel-Efficient Vehicles to someone by E-mail Share Alternative Fuels Data Center: Reduced Registration Fee for Fuel-Efficient Vehicles on Facebook Tweet about Alternative Fuels Data Center: Reduced Registration Fee for Fuel-Efficient Vehicles on Twitter Bookmark Alternative Fuels Data Center: Reduced Registration Fee for Fuel-Efficient Vehicles on Google Bookmark Alternative Fuels Data Center: Reduced Registration Fee for Fuel-Efficient Vehicles on Delicious Rank Alternative Fuels Data Center: Reduced Registration Fee for Fuel-Efficient Vehicles on Digg Find More places to share Alternative Fuels Data Center: Reduced Registration Fee for Fuel-Efficient Vehicles on AddThis.com... More in this section... Federal State Advanced Search

50

Alternative Fuels Data Center: Fuel-Efficient Green Fleets Policy and Fleet  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel-Efficient Green Fuel-Efficient Green Fleets Policy and Fleet Management Program Development to someone by E-mail Share Alternative Fuels Data Center: Fuel-Efficient Green Fleets Policy and Fleet Management Program Development on Facebook Tweet about Alternative Fuels Data Center: Fuel-Efficient Green Fleets Policy and Fleet Management Program Development on Twitter Bookmark Alternative Fuels Data Center: Fuel-Efficient Green Fleets Policy and Fleet Management Program Development on Google Bookmark Alternative Fuels Data Center: Fuel-Efficient Green Fleets Policy and Fleet Management Program Development on Delicious Rank Alternative Fuels Data Center: Fuel-Efficient Green Fleets Policy and Fleet Management Program Development on Digg Find More places to share Alternative Fuels Data Center:

51

Novel Materials for High Efficiency Direct Methanol Fuel Cells  

Broader source: Energy.gov (indexed) [DOE]

or otherwise restricted information Novel Materials for High Efficiency Direct Methanol Fuel Cells Chris Roger and David Mountz October 1, 2009 2009 Fuel Cell Projects Kickoff...

52

Step change in Fuel Efficiency:Eaton's perspective | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technologies Vehicles Home About Vehicle Technologies Office Plug-in Electric Vehicles & Batteries Fuel Efficiency & Emissions Alternative Fuels Modeling, Testing, Data & Results...

53

Impact of Battery Management on Fuel Efficiency Validity | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Validity Impact of Battery Management on Fuel Efficiency Validity 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

54

Fast Reactor Subassembly Design Modifications for Increasing Electricity Generation Efficiency  

SciTech Connect (OSTI)

Suggested for Track 7: Advances in Reactor Core Design and In-Core Management _____________________________________________________________________________________ Fast Reactor Subassembly Design Modifications for Increasing Electricity Generation Efficiency R. Wigeland and K. Hamman Idaho National Laboratory Given the ability of fast reactors to effectively transmute the transuranic elements as are present in spent nuclear fuel, fast reactors are being considered as one element of future nuclear power systems to enable continued use and growth of nuclear power by limiting high-level waste generation. However, a key issue for fast reactors is higher electricity cost relative to other forms of nuclear energy generation. The economics of the fast reactor are affected by the amount of electric power that can be produced from a reactor, i.e., the thermal efficiency for electricity generation. The present study is examining the potential for fast reactor subassembly design changes to improve the thermal efficiency by increasing the average coolant outlet temperature without increasing peak temperatures within the subassembly, i.e., to make better use of current technology. Sodium-cooled fast reactors operate at temperatures far below the coolant boiling point, so that the maximum coolant outlet temperature is limited by the acceptable peak temperatures for the reactor fuel and cladding. Fast reactor fuel subassemblies have historically been constructed using a large number of small diameter fuel pins contained within a tube of hexagonal cross-section, or hexcan. Due to this design, there is a larger coolant flow area next to the hexcan wall as compared to flow area in the interior of the subassembly. This results in a higher flow rate near the hexcan wall, overcooling the fuel pins next to the wall, and a non-uniform coolant temperature distribution. It has been recognized for many years that this difference in sodium coolant temperature was detrimental to achieving greater thermal efficiency, since it causes the fuel pins in the center of the subassembly to operate at higher temperatures than those near the hexcan walls, and it is the temperature limit(s) for those fuel pins that limits the average coolant outlet temperature. Fuel subassembly design changes are being investigated using computational fluid dynamics (CFD) to quantify the effect that the design changes have on reducing the intra-subassembly coolant flow and temperature distribution. Simulations have been performed for a 19-pin test subassembly geometry using typical fuel pin diameters and wire wrap spacers. The results have shown that it may be possible to increase the average coolant outlet temperature by 20 C or more without changing the peak temperatures within the subassembly. These design changes should also be effective for reactor designs using subassemblies with larger numbers of fuel pins. R. Wigeland, Idaho National Laboratory, P.O. Box 1625, Mail Stop 3860, Idaho Falls, ID, U.S.A., 83415-3860 email – roald.wigeland@inl.gov fax (U.S.) – 208-526-2930

R. Wigeland; K. Hamman

2009-09-01T23:59:59.000Z

55

NREL: Hydrogen and Fuel Cells Research - Webinar August 19: Increasing...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

August 19: Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies August 15, 2014 The Energy Department will present a live webinar titled "Increasing...

56

Equivalent circuits and efficiencies of fuel cells  

Science Journals Connector (OSTI)

By introducing an equivalent thermal potential fixed in terms of the heat of reaction, a thermodynamic equivalent circuit is determined for a fuel cell which yields the correct current-potential curve of the cell for low current by formal application of Ohm's law. The thermodynamic power balance and the thermodynamic efficiency also are given correctly. A linear electrical equivalent circuit is constructed which represents closely the electrical performance of the cell over a wide range of current (not approaching zero). The effect of polarization processes on the electrical power and efficiency is taken into account through a single constant parameter. Introduction of the equivalent thermal potential into the circuit yields a thermodynamic equivalent circuit whose output computed by formal use of Ohm's law coincides exactly with that given by the electrical equivalent circuit. The correct electrical properties, thermodynamic power balance, and thermodynamic efficiency follow directly from the circuit. A general theorem is formulated, independently of the validity of an equivalent circuit, connecting the thermodynamic and electrical efficiencies of a fuel cell. Confirmatory experimental results based on hydrogen—oxygen cells are presented, which underline the large reduction in available power brought about by polarization processes and entropy changes in a fuel cell.

J.J. Gilvarry; J.I. Slaughtert

1963-01-01T23:59:59.000Z

57

Alternative Fuels Data Center: Idle Reduction and Fuel-Efficient, Low  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Reduction and Reduction and Fuel-Efficient, Low Emission Vehicle Acquisition Requirements to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction and Fuel-Efficient, Low Emission Vehicle Acquisition Requirements on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction and Fuel-Efficient, Low Emission Vehicle Acquisition Requirements on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction and Fuel-Efficient, Low Emission Vehicle Acquisition Requirements on Google Bookmark Alternative Fuels Data Center: Idle Reduction and Fuel-Efficient, Low Emission Vehicle Acquisition Requirements on Delicious Rank Alternative Fuels Data Center: Idle Reduction and Fuel-Efficient, Low Emission Vehicle Acquisition Requirements on Digg Find More places to share Alternative Fuels Data Center: Idle

58

Road to Fuel Savings: GM Technology Ramps Up Engine Efficiency...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Road to Fuel Savings: GM Technology Ramps Up Engine Efficiency Road to Fuel Savings: GM Technology Ramps Up Engine Efficiency August 14, 2014 - 11:25am Addthis Pictured here is an...

59

Alternative Fuels Data Center: Weight Restriction Increase for Natural Gas  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Weight Restriction Weight Restriction Increase for Natural Gas Vehicles to someone by E-mail Share Alternative Fuels Data Center: Weight Restriction Increase for Natural Gas Vehicles on Facebook Tweet about Alternative Fuels Data Center: Weight Restriction Increase for Natural Gas Vehicles on Twitter Bookmark Alternative Fuels Data Center: Weight Restriction Increase for Natural Gas Vehicles on Google Bookmark Alternative Fuels Data Center: Weight Restriction Increase for Natural Gas Vehicles on Delicious Rank Alternative Fuels Data Center: Weight Restriction Increase for Natural Gas Vehicles on Digg Find More places to share Alternative Fuels Data Center: Weight Restriction Increase for Natural Gas Vehicles on AddThis.com... More in this section... Federal State Advanced Search

60

Fuel Efficiency Potential of Hydrogen Vehicles | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency Potential of Hydrogen Vehicles Fuel Efficiency Potential of Hydrogen Vehicles 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer...

Note: This page contains sample records for the topic "increase fuel efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Alternative Fuels Data Center: Clean and Efficient Fleet Assistance  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Clean and Efficient Clean and Efficient Fleet Assistance to someone by E-mail Share Alternative Fuels Data Center: Clean and Efficient Fleet Assistance on Facebook Tweet about Alternative Fuels Data Center: Clean and Efficient Fleet Assistance on Twitter Bookmark Alternative Fuels Data Center: Clean and Efficient Fleet Assistance on Google Bookmark Alternative Fuels Data Center: Clean and Efficient Fleet Assistance on Delicious Rank Alternative Fuels Data Center: Clean and Efficient Fleet Assistance on Digg Find More places to share Alternative Fuels Data Center: Clean and Efficient Fleet Assistance on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Clean and Efficient Fleet Assistance Western Washington Clean Cities and the Puget Sound Clean Air Agency

63

Alternative Fuels Data Center: State Energy Efficiency and Conservation  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

State Energy State Energy Efficiency and Conservation Plans to someone by E-mail Share Alternative Fuels Data Center: State Energy Efficiency and Conservation Plans on Facebook Tweet about Alternative Fuels Data Center: State Energy Efficiency and Conservation Plans on Twitter Bookmark Alternative Fuels Data Center: State Energy Efficiency and Conservation Plans on Google Bookmark Alternative Fuels Data Center: State Energy Efficiency and Conservation Plans on Delicious Rank Alternative Fuels Data Center: State Energy Efficiency and Conservation Plans on Digg Find More places to share Alternative Fuels Data Center: State Energy Efficiency and Conservation Plans on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

64

Petroleum Reduction Strategies to Improve Vehicle Fuel Efficiency |  

Broader source: Energy.gov (indexed) [DOE]

Improve Vehicle Fuel Efficiency Improve Vehicle Fuel Efficiency Petroleum Reduction Strategies to Improve Vehicle Fuel Efficiency October 7, 2013 - 11:53am Addthis YOU ARE HERE: Step 3 For reducing greenhouse gas emissions, the table below describes petroleum reduction strategies to improve vehicle fuel efficiency, as well as guidance and best practices for each strategy. Table 1. Determining When and How to Promote the Use of Strategies to Improve Fuel Efficiency Strategy When Applicable Best Practices Acquiring higher fuel economy vehicles Applicable to all types of vehicles, regardless of ownership or vehicle and fuel type Mission and geographical (e.g., terrain, climate) constraints should be evaluated when acquiring new vehicles Use a VAM to ensure vehicles are right-sized to their intended mission.

65

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Use and Fuel-Efficient Vehicle Requirements State-owned vehicle fleets must implement petroleum displacement plans to increase the use of alternative fuels and fuel-efficient...

66

Fuel Processing for High-Temperature High-Efficiency Fuel Cells  

Science Journals Connector (OSTI)

With commonly available fuels such as natural gas, only the high-temperature fuel cells MCFC and SOFC have reached electrical efficiencies of ?50% lower heating value (LHV). ... A high electrical efficiency of 60% has recently been demonstrated in a stationary field test system by Ceramic Fuel Cells Ltd. with a 2 kW(electrical) unit fueled by natural gas using DIR as fuel processing option. ... Some catalyst manufacturers supply their catalysts in the reduced and stabilized state at a premium price. ...

Khaliq Ahmed; Karl Föger

2010-07-15T23:59:59.000Z

67

Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Emissions Optimization of Heavy-Duty Diesel Engines using Model-Based Transient Calibration Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel Engines using...

68

Petroleum Reduction Strategies to Improve Vehicle Fuel Efficiency  

Broader source: Energy.gov [DOE]

For reducing greenhouse gas emissions, the table below describes petroleum reduction strategies to improve vehicle fuel efficiency, as well as guidance and best practices for each strategy.

69

Automotive Fuel Efficiency Improvement via Exhaust Gas Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Waste Heat Conversion to Electricity Automotive Fuel Efficiency Improvement via Exhaust Gas Waste Heat Conversion to Electricity Working to expand the usage of thermoelectric...

70

Agile, Robust Designs: Increasing Quality and Efficiency  

Science Journals Connector (OSTI)

The Software Cleanroom is a concept that integrates the product teams, information technology, and the demand for increasing quality. It is designed to fulfill the long-term vision: to develop and integrate new t...

James A. Crowder; Shelli Friess

2013-01-01T23:59:59.000Z

71

Integrated Advanced Reciprocating Internal Combustion Engine System for Increased Utilization of Gaseous Opportunity Fuels  

SciTech Connect (OSTI)

The project is addressing barriers to or opportunities for increasing distributed generation (DG)/combined heat and power (CHP) use in industrial applications using renewable/opportunity fuels. This project brings together novel gas quality sensor (GQS) technology with engine management for opportunity fuels such as landfill gas, digester gas and coal bed methane. By providing the capability for near real-time monitoring of the composition of these opportunity fuels, the GQS output can be used to improve the performance, increase efficiency, raise system reliability, and provide improved project economics and reduced emissions for engines used in distributed generation and combined heat and power.

Pratapas, John; Zelepouga, Serguei; Gnatenko, Vitaliy; Saveliev, Alexei; Jangale, Vilas; Li, Hailin; Getz, Timothy; Mather, Daniel

2013-08-31T23:59:59.000Z

72

INFOGRAPHIC: The Road to Fuel Efficiency | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

The Road to Fuel Efficiency The Road to Fuel Efficiency INFOGRAPHIC: The Road to Fuel Efficiency November 27, 2012 - 11:01am Addthis This infographic takes a look at fuel economy standards and how recent improvements in these standards will benefit consumers and the U.S. economy. | Infographic by Sarah Gerrity. This infographic takes a look at fuel economy standards and how recent improvements in these standards will benefit consumers and the U.S. economy. | Infographic by Sarah Gerrity. Sarah Gerrity Sarah Gerrity Multimedia Editor, Office of Public Affairs The Obama Administration's new national fuel economy standards for passenger vehicles will improve vehicle efficiency and save Americans money at the pump, all while reducing our dependence on foreign oil and growing

73

Public Finance Mechanisms to Increase Investment in Energy Efficiency |  

Open Energy Info (EERE)

Public Finance Mechanisms to Increase Investment in Energy Efficiency Public Finance Mechanisms to Increase Investment in Energy Efficiency Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Public Finance Mechanisms to Increase Investment in Energy Efficiency Agency/Company /Organization: United Nations Environment Programme Sector: Energy Focus Area: Energy Efficiency Topics: Finance Resource Type: Publications Website: www.sefalliance.org/fileadmin/media/base/downloads/pfm_EE.pdf Public Finance Mechanisms to Increase Investment in Energy Efficiency Screenshot References: Public Finance Mechanisms to Increase Investment in Energy Efficiency[1] Background "The report identifies the market barriers and financing gaps that energy efficiency technologies, companies and projects encounter on the way from conception to commercialisation and highlights existing public sector

74

Automobile Buyer Decisions about Fuel Economy and Fuel Efficiency  

E-Print Network [OSTI]

Consumer Response to Automobile Regulation and TechnologicalConsumer Discounting of Automobile Fuel Economy: ReviewingDecisions: Evidence from Automobiles” Research Report.

Kurani, Ken; Turrentine, Thomas

2004-01-01T23:59:59.000Z

75

U.S. and China Continue to Increase Cooperation on Vehicle Efficiency |  

Broader source: Energy.gov (indexed) [DOE]

Continue to Increase Cooperation on Vehicle Continue to Increase Cooperation on Vehicle Efficiency U.S. and China Continue to Increase Cooperation on Vehicle Efficiency September 20, 2007 - 2:41pm Addthis WASHINGTON, DC - Representing the two largest automotive markets in the world, the U.S. Department of Energy (DOE) and the China's Ministry of Science and Technology (MOST) this week signed a five-year agreement to promote large-scale deployment of next-generation efficiency vehicle technologies in the U.S. and China, specifically focusing on electric, hybrid-electric, fuel cell, and alternative fuel technologies. This agreement falls under the "umbrella" Agreement on Cooperation in Science and Technology between the U.S. and Chinese governments, and implements a Protocol for Cooperation in the Fields of Energy Efficiency and Renewable

76

U.S. and China Continue to Increase Cooperation on Vehicle Efficiency |  

Broader source: Energy.gov (indexed) [DOE]

U.S. and China Continue to Increase Cooperation on Vehicle U.S. and China Continue to Increase Cooperation on Vehicle Efficiency U.S. and China Continue to Increase Cooperation on Vehicle Efficiency September 20, 2007 - 2:41pm Addthis WASHINGTON, DC - Representing the two largest automotive markets in the world, the U.S. Department of Energy (DOE) and the China's Ministry of Science and Technology (MOST) this week signed a five-year agreement to promote large-scale deployment of next-generation efficiency vehicle technologies in the U.S. and China, specifically focusing on electric, hybrid-electric, fuel cell, and alternative fuel technologies. This agreement falls under the "umbrella" Agreement on Cooperation in Science and Technology between the U.S. and Chinese governments, and implements a Protocol for Cooperation in the Fields of Energy Efficiency and Renewable

77

Energy Efficiency First Fuel Requirement (Gas and Electric) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Energy Efficiency First Fuel Requirement (Gas and Electric) Energy Efficiency First Fuel Requirement (Gas and Electric) Energy Efficiency First Fuel Requirement (Gas and Electric) < Back Eligibility Investor-Owned Utility Utility Program Info State Massachusetts Program Type Energy Efficiency Resource Standard Provider Massachusetts Energy Efficiency Advisory Council Note: The 2013 Three Year Efficiency Plans have not yet been approved. The process is underway. For the latest draft plan, review the Massachusetts Energy Efficiency Advisory Council [http://www.ma-eeac.org/3%20Year%20Draft%20Plan%20November%202012.htm web site]. This summary will be updated once the Three Year Efficiency Plans have been approved in early 2013. In 2008, Governor Patrick signed a major energy reform bill, the [http://www.malegislature.gov/Laws/SessionLaws/Acts/2008/Chapter169 Green

78

Global Fuel Economy Initiative Auto Fuel Efficiency ToolSet | Open Energy  

Open Energy Info (EERE)

Global Fuel Economy Initiative Auto Fuel Efficiency ToolSet Global Fuel Economy Initiative Auto Fuel Efficiency ToolSet Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Global Fuel Economy Initiative Auto Fuel Efficiency ToolSet Agency/Company /Organization: FIA Foundation, International Energy Agency, International Transport Forum, United Nations Environment Programme Focus Area: Vehicles Topics: Best Practices Website: www.unep.org/transport/gfei/autotool/ This tool is designed to provide policymakers and interested individuals and groups with overviews of policy tools and approaches to improving fleet-wide automobile fuel efficiency and promote lower CO2 and non-CO2 emissions from cars, along with case studies that depict these approaches from developed and developing countries. How to Use This Tool

79

High Efficiency Microturbine Leads to Increased Market Share  

Office of Energy Efficiency and Renewable Energy (EERE)

EERE-supported microturbine research and development for a device that increased electrical efficiency of the unit from about 17%-22% to 33%.

80

"Increasing Solar Panel Efficiency And Reliability By Evaporative...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Increasing Solar Panel Efficiency And Reliability By Evaporative Cooling" Inventors..--.. Lewis Meixler, Charles Gentile, Patricia Hillyer, Dylan Carpe, Jason Wang, Caroline Brooks...

Note: This page contains sample records for the topic "increase fuel efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Advanced proton-exchange materials for energy efficient fuel cells.  

SciTech Connect (OSTI)

The ''Advanced Proton-Exchange Materials for Energy Efficient Fuel Cells'' Laboratory Directed Research and Development (LDRD) project began in October 2002 and ended in September 2005. This LDRD was funded by the Energy Efficiency and Renewable Energy strategic business unit. The purpose of this LDRD was to initiate the fundamental research necessary for the development of a novel proton-exchange membranes (PEM) to overcome the material and performance limitations of the ''state of the art'' Nafion that is used in both hydrogen and methanol fuel cells. An atomistic modeling effort was added to this LDRD in order to establish a frame work between predicted morphology and observed PEM morphology in order to relate it to fuel cell performance. Significant progress was made in the area of PEM material design, development, and demonstration during this LDRD. A fundamental understanding involving the role of the structure of the PEM material as a function of sulfonic acid content, polymer topology, chemical composition, molecular weight, and electrode electrolyte ink development was demonstrated during this LDRD. PEM materials based upon random and block polyimides, polybenzimidazoles, and polyphenylenes were created and evaluated for improvements in proton conductivity, reduced swelling, reduced O{sub 2} and H{sub 2} permeability, and increased thermal stability. Results from this work reveal that the family of polyphenylenes potentially solves several technical challenges associated with obtaining a high temperature PEM membrane. Fuel cell relevant properties such as high proton conductivity (>120 mS/cm), good thermal stability, and mechanical robustness were demonstrated during this LDRD. This report summarizes the technical accomplishments and results of this LDRD.

Fujimoto, Cy H.; Grest, Gary Stephen; Hickner, Michael A.; Cornelius, Christopher James; Staiger, Chad Lynn; Hibbs, Michael R.

2005-12-01T23:59:59.000Z

82

DOE Expands International Effort to Develop Fuel-Efficient Trucks |  

Broader source: Energy.gov (indexed) [DOE]

Expands International Effort to Develop Fuel-Efficient Trucks Expands International Effort to Develop Fuel-Efficient Trucks DOE Expands International Effort to Develop Fuel-Efficient Trucks June 30, 2008 - 2:15pm Addthis GOTHENBURG, SWEDEN - U.S. Department of Energy's (DOE) Assistant Secretary for Energy Efficiency and Renewable Energy Alexander Karsner and Volvo Group CEO Leif Johansson today agreed to expand cooperation to develop more fuel-efficient trucks. Once contractual negotiations are complete later this year, the cooperative program will be extended for three more years. An additional $9 million over three years in DOE funds will be matched by $9 million in Swedish government funds and $18 million from Volvo Group. When added with the existing $12 million commitment from the United States, Sweden and the Volvo Group the overall value of the cooperation will be $48

83

U.S. HDV GHG and Fuel Efficiency Final Rule | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

HDV GHG and Fuel Efficiency Final Rule U.S. HDV GHG and Fuel Efficiency Final Rule Reviews medium- and heavy-duty truck fuel efficiency and greenhouse gas emissions standards and...

84

Spent Fuel Storage Operational Experience With Increased Crud Activities  

SciTech Connect (OSTI)

A significant part of the electricity production in Hungary is provided by 4 units of VVER 440 nuclear reactors at the Paks Nuclear Power Plant. Interim dry storage of the spent fuel assemblies that are generated during the operation of the reactors is provided in a Modular Vault Dry Storage (MVDS) facility that is located in the immediate vicinity of the Paks Nuclear Power Plant. The storage capacity of the MVDS is being continuously extended in accordance with spent the fuel production rate from the four reactors. An accident occurred at unit 2 of the Paks Nuclear Power Plant in 2003, when thirty irradiated fuel assemblies were damaged during a cleaning process. The fuel assemblies were not inside the reactor at the time of the accident, but in a separate tank within the adjacent fuel decay pool. As a result of this accident, contamination from the badly damaged fuel assemblies spread to the decay pool water and also became deposited onto the surface of (hermetic) spent fuel assemblies within the decay pool. Therefore, it was necessary to review the design basis of the MVDS and assess the effects of taking the surface contaminated spent fuel assemblies into dry storage. The contaminated hermetic assemblies were transferred from the unit 2 pool to the interim storage facility in the period between 2005 and 2007. Continuous inspection and measurement was carried out during the transfer of these fuel assemblies. On the basis of the design assessments and measurement of the results during the fuel transfer, it was shown that radiological activity values increased due to the consequences of the accident but that these levels did not compromise the release and radiation dose limits for the storage facility. The aim of this paper is to show the effect on the operation of the MVDS interim storage facility as a result of the increased activity values due to the accident that occurred in 2003, as well as to describe the measurements that were taken, and their results and experience gained. In summary: On the basis of the design assessments and measurement of the results during the fuel transfer operations, it was shown that radiological activity values increased due to the consequences of the 2003 accident but that these levels did not compromise the release and dose limits for the fuel storage facility. In the environment there was no measurable radioactivity as a result of the operation of the Paks ISFSI. The exposure of the surrounding population was calculated on measured releases and meteorological data. The calculations show negligible doses until 2004. Due to the increased surface contamination on the spent fuel assemblies the dose rate increased almost 5 times compared to the least annual value, but still less then 0.01 percent of the allowed dose restriction. (authors)

Barnabas, I. [Public Agency for Radioactive Waste, Management (PURAM) (Hungary); Eigner, T. [Paks NPP (Hungary); Gresits, I. [Technical University of Budapest (Hungary); Ordagh, M. [SOM System Llc, (Hungary)

2008-07-01T23:59:59.000Z

85

FuelEff&PhysicsAutosSanders FUEL EFFICIENCY AND THE PHYSICS OF AUTOMOBILES1  

E-Print Network [OSTI]

FuelEff&PhysicsAutosSanders 1 FUEL EFFICIENCY AND THE PHYSICS OF AUTOMOBILES1 Marc Ross, Physics in the operation of a modern automobile are expressed in terms of simple algebraic approximations. One purpose-engine thermodynamic efficiency, and engine and transmission frictions. The analysis applies to today's automobiles

Edwards, Paul N.

86

Cheyenne Light, Fuel and Power (Electric) - Residential Energy Efficiency  

Broader source: Energy.gov (indexed) [DOE]

Cheyenne Light, Fuel and Power (Electric) - Residential Energy Cheyenne Light, Fuel and Power (Electric) - Residential Energy Efficiency Rebate Program Cheyenne Light, Fuel and Power (Electric) - Residential Energy Efficiency Rebate Program < Back Eligibility Multi-Family Residential Residential Savings Category Appliances & Electronics Commercial Lighting Lighting Water Heating Program Info State Wyoming Program Type Utility Rebate Program Rebate Amount Home Energy Audit: Contact Cheyenne Light, Fuel and Power CFL Bulbs: Up to 10 CFL bulbs at reduced cost Water Heater: $75 Refrigerator Recycling: $30 Cheyenne Light, Fuel and Power offers incentives to electric customers who wish to install energy efficient equipment in participating homes. Incentives are available for home energy audits, CFL light bulbs, tank water heaters and refrigerator recycling. Water heater purchases and

87

Berkeley Lab's Ashok Gadgil Takes Fuel Efficient Cookstoves to Ethiopia |  

Broader source: Energy.gov (indexed) [DOE]

Berkeley Lab's Ashok Gadgil Takes Fuel Efficient Cookstoves to Berkeley Lab's Ashok Gadgil Takes Fuel Efficient Cookstoves to Ethiopia Berkeley Lab's Ashok Gadgil Takes Fuel Efficient Cookstoves to Ethiopia February 8, 2011 - 1:21pm Addthis Darfuri woman using a Berkeley-Darfur cookstove | Courtesy of darfurstoves.org Darfuri woman using a Berkeley-Darfur cookstove | Courtesy of darfurstoves.org April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs What does this mean for me? Clean-burning cookstoves reduce the need for firewood in the developing world. Refugees are able to spend less time outside of the camps searching for fuel, therefore reducing the risk of violence and assault. By using less fuel, clean-burning cookstoves decrease deforestation and lessen greenhouse gas emissions. Researchers at the Department of Energy's Lawrence Berkeley National

88

National Fuel (Gas) - Residential Energy Efficiency Rebates | Department of  

Broader source: Energy.gov (indexed) [DOE]

National Fuel (Gas) - Residential Energy Efficiency Rebates National Fuel (Gas) - Residential Energy Efficiency Rebates National Fuel (Gas) - Residential Energy Efficiency Rebates < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Maximum Rebate Rebate amount cannot exceed the purchase price Program Info Start Date 1/1/2013 Expiration Date 3/31/2014 State New York Program Type Utility Rebate Program Rebate Amount Furnace: $250 Forced Air Furnace with ECM: $350 Hot Water Boiler: $350 Steam Boiler: $200 Programmable Thermostat: $25 Indirect Water Heater: $250 Provider Energy Federation Incorporated (EFI) National Fuel offers pre-qualified equipment rebates for the installation of certain energy efficiency measures to residential customers in Western

89

Lean Gasoline System Development for Fuel Efficient Small Car...  

Broader source: Energy.gov (indexed) [DOE]

Small Car Lean Gasoline System Development for Fuel Efficient Small Car Vehicle Technologies Office Merit Review 2014: ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine...

90

SuperTruck Making Leaps in Fuel Efficiency  

Office of Energy Efficiency and Renewable Energy (EERE)

Find out how the Energy Department and industry partners are improving fuel efficiency of long-haul tractor-trailers in an effort to reduce the nation’s oil consumption, decrease carbon pollution, and move our economy forward.

91

Uniform Methods for Determining Energy Efficiency Savings and Increasing  

Broader source: Energy.gov (indexed) [DOE]

Uniform Methods for Determining Energy Efficiency Savings and Uniform Methods for Determining Energy Efficiency Savings and Increasing Electric Utility Confidence in Reported Savings Now Available Uniform Methods for Determining Energy Efficiency Savings and Increasing Electric Utility Confidence in Reported Savings Now Available May 23, 2013 - 4:01pm Addthis The National Renewable Energy Laboratory (NREL) has published protocols for estimating energy savings for residential and commercial energy efficiency programs and measures through the recently released "The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures." Funded by the Office of Electricity Delivery and Energy Reliability and the Office of Energy Efficiency and Renewable Energy, the developed protocols provide a straightforward method for evaluating gross

92

Cost of Increased Energy Efficiency for Residential Water Heaters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cost of Increased Energy Efficiency for Residential Water Heaters Cost of Increased Energy Efficiency for Residential Water Heaters Speaker(s): Alex Lekov Date: March 22, 2001 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Julie Osborn This presentation describes the analysis of the costs of increased energy efficiency for residential water heaters. Here, we focus on the cost and efficiency data for electric and gas-fired water heaters. This data formed the basis of the Technical Support Document for the Department of Energy's (DOE) Final Rule on Water Heaters. The engineering analysis uses computer simulation models to investigate the efficiency improvements due to design options and combinations thereof. The analysis covers four polyurethane foam insulation types based on non-ozone-depleting substances as blowing

93

Cheyenne Light, Fuel and Power (Gas) - Residential Energy Efficiency Rebate  

Broader source: Energy.gov (indexed) [DOE]

Cheyenne Light, Fuel and Power (Gas) - Residential Energy Cheyenne Light, Fuel and Power (Gas) - Residential Energy Efficiency Rebate Program (Wyoming) Cheyenne Light, Fuel and Power (Gas) - Residential Energy Efficiency Rebate Program (Wyoming) < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Construction Design & Remodeling Sealing Your Home Ventilation Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate Insulation (Wall/Ceiling/Floor): $750 Insulation (Duct): $170 Infiltration Control: $200 Duct Sealing: $285 Program Info State Wyoming Program Type Utility Rebate Program Rebate Amount Home Energy Audit: Required for Infiltration Control, Insulation, Duct Sealing, and Window Rebates

94

Upconversion as a Viable Route to Increased Efficiency Solar Energy  

E-Print Network [OSTI]

Upconversion as a Viable Route to Increased Efficiency Solar Energy Conversion Joshua Zide, Matt University of Delaware Energy Institute #12;Efficiency drives reduced $/W.... http://www.nrel.gov/ncpv/! Shockley-Queisser Limit! *adopted from http://www.lbl.gov/Science-Articles/Archive/MSD-full-spectrum-solar

Firestone, Jeremy

95

Using Transportation Technology to Increase Efficiencies in Shipping: Real  

Broader source: Energy.gov (indexed) [DOE]

Using Transportation Technology to Increase Efficiencies in Using Transportation Technology to Increase Efficiencies in Shipping: Real Life Experience in Oak Ridge Using Transportation Technology to Increase Efficiencies in Shipping: Real Life Experience in Oak Ridge RFITS has enabled DOE ORO to establish a complex-wide initiative, supporting on-site electronic shipping and transportation of waste while utilizing industry best practices to develop and maintain a cost effective and sustainable logistics and inventory management system. Using Transportation Technology to Increase Efficiencies in Shipping: Real Life Experience in Oak Ridge More Documents & Publications Above on the left is K-25, at Oak Ridge before and after the 844,000 sq-ft demolition. In addition, on the right: K Cooling Tower at Savannah River Site demolition.

96

DOE Increases Energy Efficiency Standards for Residential Furnaces &  

Broader source: Energy.gov (indexed) [DOE]

DOE Increases Energy Efficiency Standards for Residential Furnaces DOE Increases Energy Efficiency Standards for Residential Furnaces & Boilers DOE Increases Energy Efficiency Standards for Residential Furnaces & Boilers November 19, 2007 - 4:31pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced it has increased the energy efficiency standards for residential furnaces and boilers, underscoring the Department's commitment to meet its aggressive, five-year appliance standard rulemaking schedule, as established in its January 31, 2006, Report to Congress. The Department estimates that these amended standards, which become effective in 2015, will save the equivalent of the total amount of energy consumed by 2.5 million American households in one year, or approximately 0.25 quadrillion (10x15) British thermal

97

Using Transportation Technology to Increase Efficiencies in Shipping: Real  

Broader source: Energy.gov (indexed) [DOE]

Using Transportation Technology to Increase Efficiencies in Using Transportation Technology to Increase Efficiencies in Shipping: Real Life Experience in Oak Ridge Using Transportation Technology to Increase Efficiencies in Shipping: Real Life Experience in Oak Ridge RFITS has enabled DOE ORO to establish a complex-wide initiative, supporting on-site electronic shipping and transportation of waste while utilizing industry best practices to develop and maintain a cost effective and sustainable logistics and inventory management system. Using Transportation Technology to Increase Efficiencies in Shipping: Real Life Experience in Oak Ridge More Documents & Publications Above on the left is K-25, at Oak Ridge before and after the 844,000 sq-ft demolition. In addition, on the right: K Cooling Tower at Savannah River Site demolition.

98

DOE Increases Energy Efficiency Standards for Residential Furnaces &  

Broader source: Energy.gov (indexed) [DOE]

DOE Increases Energy Efficiency Standards for Residential Furnaces DOE Increases Energy Efficiency Standards for Residential Furnaces & Boilers DOE Increases Energy Efficiency Standards for Residential Furnaces & Boilers November 19, 2007 - 4:31pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced it has increased the energy efficiency standards for residential furnaces and boilers, underscoring the Department's commitment to meet its aggressive, five-year appliance standard rulemaking schedule, as established in its January 31, 2006, Report to Congress. The Department estimates that these amended standards, which become effective in 2015, will save the equivalent of the total amount of energy consumed by 2.5 million American households in one year, or approximately 0.25 quadrillion (10x15) British thermal

99

Retro-Commissioning Increases Data Center Efficiency at Low Cost  

Broader source: Energy.gov [DOE]

Fact sheet discusses a success story detailing a retro-commissioning project at the Department of Energy's Savannah River Site to increase data center energy efficiency at low costs.

100

High Efficiency Microturbine Leads to Increased Market Share...  

Energy Savers [EERE]

power system that led to the commercialization of that product. Capstone increased electrical efficiency of the unit from about 17%-22% to 33%, and it has seen more than 83...

Note: This page contains sample records for the topic "increase fuel efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Increase Natural Gas Energy Efficiency | OpenEI Community  

Open Energy Info (EERE)

Groups > Groups > Increase Natural Gas Energy Efficiency Content Group Activity By term Q & A Feeds There are no feeds from external sites for this group. Groups Menu You must...

102

Cultivating corn in clumps increases water efficiency, yield  

E-Print Network [OSTI]

-tional rows increases water use efficiency and corn yield. Researchers are Dr. B.A. Stewart and graduate student Mohankumar Kapan-igowda of West Texas A&M University in Canyon, and Drs. Terry Howell, Louis Baumhardt, and Paul Colaizzi of the Conservation... have discovered that corn grown in clumps (left) rather than in traditional rows (right) increases water use efficiency and corn yield. ...

Wythe, Kathy

2008-01-01T23:59:59.000Z

103

Fuel-Efficient Stove Programs in Humanitarian Settings | Open Energy  

Open Energy Info (EERE)

Fuel-Efficient Stove Programs in Humanitarian Settings Fuel-Efficient Stove Programs in Humanitarian Settings Jump to: navigation, search Tool Summary Name: Fuel-Efficient Stove Programs in Humanitarian Settings Agency/Company /Organization: USAID Sector: Energy Focus Area: Biomass, Energy Efficiency Phase: Evaluate Options, Prepare a Plan, Evaluate Effectiveness and Revise as Needed Resource Type: Guide/manual, Lessons learned/best practices, Presentation, Publications User Interface: Spreadsheet, Website Website: www.energytoolbox.org/cookstoves/ Cost: Free Language: English A step-by-step process of assessment, planning, implementation, and monitoring and evaluation of a Cookstove activity This Toolkit is designed to take you and your organization through a step-by-step process of assessment, planning, implementation, and

104

Department of Energy Finalizes Regulations to Increase Energy Efficiency in  

Broader source: Energy.gov (indexed) [DOE]

Department of Energy Finalizes Regulations to Increase Energy Department of Energy Finalizes Regulations to Increase Energy Efficiency in New Federal Buildings by 30% Department of Energy Finalizes Regulations to Increase Energy Efficiency in New Federal Buildings by 30% December 21, 2007 - 4:58pm Addthis WASHINGTON DC - The U.S. Department of Energy (DOE) today announced it has established regulations that require new Federal buildings to achieve at least 30% greater energy efficiency over prevailing building codes. Mandated by the Energy Policy Act of 2005 (EPAct), these standards apply to new federal commercial and multi-family high-rise residential buildings, as well as new federal low-rise residential buildings designed for construction that began on or after January 3, 2007. These standards are also 40% more efficient than the current Code of Federal Regulations (CFR)

105

High efficiency carbonate fuel cell/turbine hybrid power cycle  

SciTech Connect (OSTI)

The hybrid power cycle studies were conducted to identify a high efficiency, economically competitive system. A hybrid power cycle which generates power at an LHV efficiency > 70% was identified that includes an atmospheric pressure direct carbonate fuel cell, a gas turbine, and a steam cycle. In this cycle, natural gas fuel is mixed with recycled fuel cell anode exhaust, providing water for reforming fuel. The mixed gas then flows to a direct carbonate fuel cell which generates about 70% of the power. The portion of the anode exhaust which is not recycled is burned and heat transferred through a heat exchanger (HX) to the compressed air from a gas turbine. The heated compressed air is then heated further in the gas turbine burner and expands through the turbine generating 15% of the power. Half the exhaust from the turbine provides air for the anode exhaust burner. All of the turbine exhaust eventually flows through the fuel cell cathodes providing the O2 and CO2 needed in the electrochemical reaction. Exhaust from the cathodes flows to a steam system (heat recovery steam generator, staged steam turbine generating 15% of the cycle power). Simulation of a 200 MW plant with a hybrid power cycle had an LHV efficiency of 72.6%. Power output and efficiency are insensitive to ambient temperature, compared to a gas turbine combined cycle; NOx emissions are 75% lower. Estimated cost of electricity for 200 MW is 46 mills/kWh, which is competitive with combined cycle where fuel cost is > $5.8/MMBTU. Key requirement is HX; in the 200 MW plant studies, a HX operating at 1094 C using high temperature HX technology currently under development by METC for coal gassifiers was assumed. A study of a near term (20 MW) high efficiency direct carbonate fuel cell/turbine hybrid power cycle has also been completed.

Steinfeld, G.; Maru, H.C. [Energy Research Corp., Danbury, CT (United States); Sanderson, R.A. [Sanderson (Robert) and Associates, Wethersfield, CT (United States)

1996-07-01T23:59:59.000Z

106

Fuel Efficiency of New European HD Vehicles  

Broader source: Energy.gov [DOE]

Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

107

Substrate Degradation Kinetics, Microbial Diversity, and Current Efficiency of Microbial Fuel Cells Supplied with Marine Plankton  

Science Journals Connector (OSTI)

...Efficiency of Microbial Fuel Cells Supplied with Marine Plankton Published...plankton addition fuel cell experiments...In this study, marine plankton was observed...efficiency of microbial fuel cells supplied with marine plankton. | The...

Clare E. Reimers; Hilmar A. Stecher III; John C. Westall; Yvan Alleau; Kate A. Howell; Leslie Soule; Helen K. White; Peter R. Girguis

2007-08-31T23:59:59.000Z

108

Gratings for Increasing Solid-State Laser Gain and Efficiency  

SciTech Connect (OSTI)

We introduce new concepts for increasing the efficiency of solid state lasers by using gratings deposited on laser slabs or disks. The gratings improve efficiency in two ways: (1) by coupling out of the slab deleterious amplified spontaneous emission (ASE) and (2) by increasing the absorption efficiency of pump light. The gratings also serve as antireflective coatings for the extracting laser beam. To evaluate the potential for such coatings to improve laser performance, we calculated optical properties of a 2500 groove/mm, tantala-silica grating on a 1cm x 4cm x 8cm titanium-doped sapphire slab and performed ray-trace calculations for ASE and pump light. Our calculations show substantial improvements in efficiency due to grating ASE-coupling properties. For example, the gratings reduce pump energy required to produce a 0.6/cm gain coefficient by 9%, 20% and 35% for pump pulse durations of 0.5 {micro}s, 1{micro}s and 3{micro}s, respectively. Gratings also increase 532-nm pump-light absorption efficiency, particularly when the product slab overall absorption is small. For example, when the single-pass absorption is 1 neper, absorption efficiency increases from 66%, without gratings, to 86%, when gratings are used.

Erlandson, A C; Britten, J A; Bonlie, J D

2010-04-16T23:59:59.000Z

109

Cheyenne Light, Fuel and Power (Gas) - Commercial and Industrial Efficiency  

Broader source: Energy.gov (indexed) [DOE]

Cheyenne Light, Fuel and Power (Gas) - Commercial and Industrial Cheyenne Light, Fuel and Power (Gas) - Commercial and Industrial Efficiency Rebate Program (Wyoming) Cheyenne Light, Fuel and Power (Gas) - Commercial and Industrial Efficiency Rebate Program (Wyoming) < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Appliances & Electronics Water Heating Maximum Rebate Custom: 50% of project cost Program Info Start Date 06/09/2011 State Wyoming Program Type Utility Rebate Program Rebate Amount Water Heater: $75 - $300 Furnaces: $250 - $400 Boilers: $150 - $400 Setback Thermostat: $25 - $50 Convection Oven: $100 High Efficiency Range/Oven: $500 Conveyor Oven: $500 Fryer: $500 Broiler: $100 Steam Cooker: $500 Vent Dampers for Boilers: $125 Custom: Two year buy down or 50% of project cost, whichever is less

110

Holographic technology could increase solar efficiency | Department of  

Broader source: Energy.gov (indexed) [DOE]

Holographic technology could increase solar efficiency Holographic technology could increase solar efficiency Holographic technology could increase solar efficiency October 12, 2010 - 1:00pm Addthis Luminit's co-generation technology could combine photovoltaics (shown in this file photo) and solar thermal energy. | File photo Luminit's co-generation technology could combine photovoltaics (shown in this file photo) and solar thermal energy. | File photo Lorelei Laird Writer, Energy Empowers Co-generation technology could combine photovoltaics and solar thermal Luminit's technology bends and redirects sunlight to produce energy Research funded by Small Business Innovation Research grant There are two major technologies in solar energy: photovoltaics and solar thermal. Most people are more familiar with photovoltaics (PV) - the flat solar

111

Fees and rebates on new vehicles: Impacts on fuel efficiency, carbon dioxide emissions, and consumer surplus  

Science Journals Connector (OSTI)

Several incentive systems are examined that provide rebates on vehicles with higher-than-average fuel efficiency and levy fees on vehicles with less efficiency. The rebates and fees are applied to new vehicles at the time of purchase, and the rates are set such that the total outlay for rebates equals the revenues from fees. We find that moderately-sized rebates and fees result in a substantial increase in average fuel efficiency. Most of the effect is due to manufacturers' incorporating more fuel-efficiency technologies into the vehicles that they offer, since the rebates and fees effectively lower the price to manufacturers of these technologies. Consumer surplus is found to rise, and the profits of domestic manufacturers are estimated to drop only slightly under most systems and actually to rise under one system.

Kenneth E. Train; William B. Davis; Mark D. Levine

1997-01-01T23:59:59.000Z

112

The 2014 Fuel Economy Guide Can Help You Choose Your Next Fuel-Efficient  

Broader source: Energy.gov (indexed) [DOE]

The 2014 Fuel Economy Guide Can Help You Choose Your Next The 2014 Fuel Economy Guide Can Help You Choose Your Next Fuel-Efficient Vehicle The 2014 Fuel Economy Guide Can Help You Choose Your Next Fuel-Efficient Vehicle January 8, 2014 - 1:10pm Addthis Read the 2014 Fuel Economy Guide to inform your new car purchase this year. | Photo courtesy of ©iStockphoto.com/Thomas_EyeDesign Read the 2014 Fuel Economy Guide to inform your new car purchase this year. | Photo courtesy of ©iStockphoto.com/Thomas_EyeDesign Jason Lutterman Communications Specialist, Office of Energy Efficiency and Renewable Energy Other ways to save money at the pump You can save money and use less fuel even without the purchase of a new car. Check out these easy tips to boost your gas mileage and save money. Are you in the market for a new car to start off the New Year? Choosing the

113

Pellet Fueling Technology Development Leading to Efficient Fueling of ITER Burning Plasmas  

SciTech Connect (OSTI)

Pellet injection is the primary fueling technique planned for central fueling of the ITER burning plasma, which is a requirement for achieving high fusion gain. Injection of pellets from the inner wall has been shown on present day tokamaks to provide efficient fueling and is planned for use on ITER [1,2]. Significant development of pellet fueling technology has occurred as a result of the ITER R&D process. Extrusion rates with batch extruders have reached more than 1/2 of the ITER design specification of 1.3 cm3/s [3] and the ability to fuel efficiently from the inner wall by injecting through curved guide tubes has been demonstrated on several fusion devices. Modeling of the fueling deposition from inner wall pellet injection has been done using the Parks et al. ExB drift model [4] shows that inside launched pellets of 3mm size and speeds of 300 m/s have the capability to fuel well inside the separatrix. Gas fueling on the other hand is calculated to have very poor fueling efficiency due to the high density and wide scrape off layer compared to current machines. Isotopically mixed D/T pellets can provide efficient tritium fueling that will minimize tritium wall loading when compared to gas puffing of tritium. In addition, the use of pellets as an ELM trigger has been demonstrated and continues to be investigated as an ELM mitigation technique. During the ITER CDA and EDA the U.S. was responsible for ITER fueling system design and R&D and is in good position to resume this role for the ITER pellet fueling system. Currently the performance of the ITER guide tube design is under investigation. A mockup is being built that will allow tests with different pellet sizes and repetition rates. The results of these tests and their implication for fueling efficiency and central fueling will be discussed. The ITER pellet injection technology developments to date, specified requirements, and remaining development issues will be presented along with a plan to reach the design goal in time for employment on ITER.

Baylor, Larry R [ORNL; Combs, Stephen Kirk [ORNL; Jernigan, Thomas C [ORNL; Houlberg, Wayne A [ORNL; Maruyama, S. [ITER International Team, Garching, Germany; Owen, Larry W [ORNL; Parks, P. B. [General Atomics; Rasmussen, David A [ORNL

2005-01-01T23:59:59.000Z

114

Increasing efficiency, reducing emissions with hydrous ethanol in diesel engines  

E-Print Network [OSTI]

Increasing efficiency, reducing emissions with hydrous ethanol in diesel engines Ethanol continuedOber 2013 Catalystcts.umn.edu Nearly all corn-based ethanol produced in the United States is anhydrous processes required to remove the water from ethanol consume a great deal of energy. Researchers from

Minnesota, University of

115

Invertible Clipping for Increasing the Power Efficiency of OFDM Amplification  

E-Print Network [OSTI]

Invertible Clipping for Increasing the Power Efficiency of OFDM Amplification Salvatore Ragusa amplification in mobile communication systems. In this paper, we propose a new Peak-to- Average Power Ratio.Louet@supelec.fr Abstract-- Large fluctuations of OFDM signal amplitude rep- resent an important problem for power

Paris-Sud XI, Université de

116

Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines  

SciTech Connect (OSTI)

The purpose of this program was to develop low-emissions, efficient fuel-flexible combustion technology which enables operation of a given gas turbine on a wider range of opportunity fuels that lie outside of current natural gas-centered fuel specifications. The program encompasses a selection of important, representative fuels of opportunity for gas turbines with widely varying fundamental properties of combustion. The research program covers conceptual and detailed combustor design, fabrication, and testing of retrofitable and/or novel fuel-flexible gas turbine combustor hardware, specifically advanced fuel nozzle technology, at full-scale gas turbine combustor conditions. This project was performed over the period of October 2008 through September 2011 under Cooperative Agreement DE-FC26-08NT05868 for the U.S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled "Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines". The overall objective of this program was met with great success. GE was able to successfully demonstrate the operability of two fuel-flexible combustion nozzles over a wide range of opportunity fuels at heavy-duty gas turbine conditions while meeting emissions goals. The GE MS6000B ("6B") gas turbine engine was chosen as the target platform for new fuel-flexible premixer development. Comprehensive conceptual design and analysis of new fuel-flexible premixing nozzles were undertaken. Gas turbine cycle models and detailed flow network models of the combustor provide the premixer conditions (temperature, pressure, pressure drops, velocities, and air flow splits) and illustrate the impact of widely varying fuel flow rates on the combustor. Detailed chemical kinetic mechanisms were employed to compare some fundamental combustion characteristics of the target fuels, including flame speeds and lean blow-out behavior. Perfectly premixed combustion experiments were conducted to provide experimental combustion data of our target fuels at gas turbine conditions. Based on an initial assessment of premixer design requirements and challenges, the most promising sub-scale premixer concepts were evaluated both experimentally and computationally. After comprehensive screening tests, two best performing concepts were scaled up for further development. High pressure single nozzle tests were performed with the scaled premixer concepts at target gas turbine conditions with opportunity fuels. Single-digit NOx emissions were demonstrated for syngas fuels. Plasma-assisted pilot technology was demonstrated to enhance ignition capability and provide additional flame stability margin to a standard premixing fuel nozzle. However, the impact of plasma on NOx emissions was observed to be unacceptable given the goals of this program and difficult to avoid.

Venkatesan, Krishna

2011-11-30T23:59:59.000Z

117

Northwest home buyers' fuel and energy-efficiency preferences  

SciTech Connect (OSTI)

This study for the Bonneville Power Administration (Bonneville) investigated home buyers' heating fuel and energy-efficiency preferences, and the influence of incentives on their choices. The study was conducted in four regions of Washington State: Spokane and Pierce Counties, where the Model Conservation Standards (MCS) for new electrically heated homes have been adopted as local code, and King and Clark Counties, where the MCS has been implemented only through a voluntary marketing program. The results of this study provide useful information about energy-efficiency, space heating fuel type, and alternative incentive programs. They provide initial evidence that fuel-specific energy-efficiency standards may significantly affect the shares of different heating fuels in the new home market. They also suggest that cash rebates and utility rate incentives may have a modest effect on the shares for different heating fuels. Because these results are based on a technique relying on hypothetical choices and because they reflect only four metropolitan areas, further study must be conducted to determine whether the results apply to other locations and whether other analytic approaches produce similar findings. 3 refs.

Lee, A.D.; Harkreader, S.A.; Bruneau, C.L.; Volke, S.M.

1990-11-01T23:59:59.000Z

118

Waste Shipment Tracking Technology Lowers Costs, Increases Efficiency |  

Broader source: Energy.gov (indexed) [DOE]

Shipment Tracking Technology Lowers Costs, Increases Shipment Tracking Technology Lowers Costs, Increases Efficiency Waste Shipment Tracking Technology Lowers Costs, Increases Efficiency February 27, 2013 - 12:00pm Addthis This graphic shows how the radiofrequency identification technology tracks and monitors packages in transport, in-transit stops and storage. This graphic shows how the radiofrequency identification technology tracks and monitors packages in transport, in-transit stops and storage. The technology developed by EM’s Office of Packaging and Transportation Packaging Certification Program technology development team was selected by the RFID Journal as the "Most Innovated Use of RFIDs.” Team members pictured here include Dr. John Lee, Dr. Yung Liu, Dr. Jim Shuler, Dr. Hanchung Tsai and John Anderson. Team members not pictured are Brian Craig and Dr. Kun Chen.

119

SuperTruck ? Development and Demonstration of a Fuel-Efficient...  

Energy Savers [EERE]

and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

120

Development and Demonstration of a Fuel-Efficient Class 8 Highway...  

Energy Savers [EERE]

and Demonstration of a Fuel-Efficient Class 8 Highway Vehicle 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

Note: This page contains sample records for the topic "increase fuel efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Development and Demonstration of a Fuel-Efficient Class 8 Highway...  

Energy Savers [EERE]

and Demonstration of a Fuel-Efficient Class 8 Highway Vehicle 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

122

Supertruck - Development and Demonstration of a Fuel-Efficient...  

Broader source: Energy.gov (indexed) [DOE]

Attain 50% BTE Engine Demonstrate path towards 55% BTE Engine Barriers Assemble a cost effective, robust, reduced weight technologies for 50% freight efficiency Increase...

123

Increase energy efficiency in systems and buildings and improve indoor  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Increase energy efficiency in systems and buildings and improve indoor Increase energy efficiency in systems and buildings and improve indoor environment: How to validate comfort and energy reduction Speaker(s): Wouter Borsboom Date: December 8, 2009 - 12:00pm Location: 90-3122 TNO is a research institute which is active in the energy saving and indoor environment. We like to present our research, our goals and discuss the challenges and the opportunities for cooperation. Therefore we like to give a presentation about the following topic and we are also interested in a presentation of LBL and UC Berkeley. An important topic in the building industry is near zero energy buildings. Most countries in Europe implemented programs to advance this goal in one way or another. In near-zero energy buildings, the interaction between building and systems

124

Integrated Electrorefining Efficiency Test for Pyrochemical Fuel Cycle  

SciTech Connect (OSTI)

Pyrochemical processing plays an important role in the development of next generation nuclear reactors and closed nuclear fuel cycle technology. The Idaho National Laboratory (INL) has implemented a pyrochemical process for the treatment of sodium-bonded spent fuel from the Experimental Breeder Reactor-II (EBR-II). A successful demonstration of the technology was performed from 1996 to 1999 for the Department of Energy (DOE) [1]. Processing of the spent fuel and associated research and development activities have been integrated into DOE’s Advanced Fuel Cycle Initiatives (AFCI) program since 2003. Electrorefining can be considered to be the signature or central technology for pyrochemical processing. In order to assess the efficiencies involved in the electrorefining process, an integrated electrorefining efficiency test was performed in the Mk-IV electrorefiner. This paper summarizes the observations and results obtained from the test. EXPERIMENT AND RESULTS The primary goal of the integrated processing efficiency test is to demonstrate the integrated actinide dissolution and recovery efficiencies typical for the fixed operating parameters that have been applied to Mk-IV electrorefiner (ER) and cathode processor (CP) to treat spent EBR-II driver fuel during the last three years. The findings are of importance for scaling-up the pyroprocess to recover and recycle valuable actinides from spent nuclear fuel. The test was performed in the Mk-IV electrorefiner. The ER is located in the hot cell of the Fuel Conditioning Facility at the Materials and Fuels Complex. Descriptions of the major components of the ER and the process in general have been provided elsewhere [2]. Salt and cadmium levels were measured, and multiple samples were obtained prior to performing the integrated test to establish an ER baseline for assessing the test results. The test consisted of four electrorefining batches of spent driver fuel with approximately 50 kg heavy metal. Typically, three to four ER runs are required to complete a batch. Fig. 1 shows pictures of the cathodes produced by three electrorefining runs during the second batch. The cathode No.3 in the figure has clearly different morphology than that of the first two. The cathodes produced by the other three batches have the similar morphology as those pictured. The first and second cathodes are ordinary uranium dendrite, and the third and fourth cathode show typically high Zr content morphology [3]. The end-point for each batch was determined by weighing each anode basket and assuring a net residue mass being equal or less than 3.0 kg. The 3.0 kg residue included any un-dissolved fuel constituents and adhering salt. Previous operating experience has shown that uranium dissolution in excess of 99.7 wt% was achieved when using this established end-point. Cladding hull samples were taken from each basket after it was removed from the ER. The actinide dissolution efficiency will be evaluated when the analytical results become available. Cathode No. 1 Cathode No. 2 Cathode No. 3 Fig.1 Three cathodes produced through electrorefining the second batch of spent EBR-II driver fuel As a part of the integrated efficiency test, the cat

S. X. Li; T. A. Johnson; R. W. Benedict; D. Vaden; B. R. Westphal

2006-11-01T23:59:59.000Z

125

Design and testing of a procedure for evaluating fuel-efficient crankcase lubricants  

SciTech Connect (OSTI)

Experiments were conducted to design and evaluate a procedure for evaluating the fuel efficiency characteristics of crankcase lubricants using the driving cycles of the 1975 Federal Test Procedure and the Highway Fuel Economy Test. Most of the test protocol was based on guidelines proposed by the American Society for Testing and Materials. Three crankcase lubricants and five oil supplements, as well as a baseline lubricant, were used in eight 1980 model-year vehicles of identical make. The vehicles were operated at 75/sup 0/F (24/sup 0/C) in closely controlled chassis dynamometer tests designed to detect small changes in fuel efficiency. Results from these tests showed measurable increases in fuel economy of 0 to 6% with the test lubricants when compared to a common SAE 30 grade oil. These results are not definitive because of lack of quantification of mileage accumulation effects. The test protocol did reduce measurement variability greatly; this procedure can be applied to evaluation of fuel-efficient oils using larger test fleets. A good potential exists for improving the fuel economy of the US automotive fleet. Because of the large quantities of petroleum consumed in the automotive sector, this potential savings translates into conserving a very significant quantity of petroleum.

Naman, T.M.

1981-04-01T23:59:59.000Z

126

Efficient Use of Natural Gas Based Fuels in Heavy-Duty Engines...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Use of Natural Gas Based Fuels in Heavy-Duty Engines Efficient Use of Natural Gas Based Fuels in Heavy-Duty Engines Natural gas and other liquid feedstocks for transportation fuels...

127

SuperTruck Making Leaps in Fuel Efficiency  

Broader source: Energy.gov [DOE]

The recent SuperTruck demonstration at the Energy Department's headquarters in Washington, D.C., showed off a new Class 8 tractor-trailer that achieves a 20% increase in engine efficiency and a 70% increase in freight efficiency, reaching over 10

128

Use of a Diesel Fuel Processor for Rapid and Efficient Regeneration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Use of a Diesel Fuel Processor for Rapid and Efficient Regeneration of Single Leg NOx Adsorber Systems Use of a Diesel Fuel Processor for Rapid and Efficient Regeneration of Single...

129

Increase of unit efficiency by improved waste heat recovery  

SciTech Connect (OSTI)

For coal-fired power plants with flue gas desulfurization by wet scrubbing and desulfurized exhaust gas discharge via cooling tower, a further improvement of new power plant efficiency is possible by exhaust gas heat recovery. The waste heat of exhaust gas is extracted in a flue gas cooler before the wet scrubber and recovered for combustion air and/or feedwater heating by either direct or indirect coupling of heat transfer. Different process configurations for heat recovery system are described and evaluated with regard to net unit improvement. For unite firing bituminous coal an increase of net unit efficiency of 0.25 to 0.7 percentage points and for lignite 0.7 to 1.6 percentage points can be realized depending on the process configurations of the heat recovery systems.

Bauer, G.; Lankes, F.

1998-07-01T23:59:59.000Z

130

Increasing the efficiency of thermoacoustic carbon nanotube sound projectors  

Science Journals Connector (OSTI)

Carbon nanotubes (CNTs) can generate smooth-spectra sound emission over a wide frequency range (1–105 Hz) by means of thermoacoustics (TA). However, in the low frequencies f, where the need for large area sound projectors is high, the sound generation efficiency ? of open CNT sheets is low, since ? ? f2. Together with this problem, the nanoscale thickness of CNT sheets, their high sensitivity to the environment and the high surface temperatures useful for TA sound generation are other drawbacks, which we address here by protective encapsulation of free-standing CNT sheets in inert gases. We provide an extensive experimental study of such closed systems for different thermodynamic regimes and rationalize our observations within a basic theoretical framework. The observed sound pressure levels for encapsulated argon filled TA transducers (130 dB in air and 200 dB underwater in the near field at 5 cm distance, and 100 and 170 dB in the far field at 1 m distance) are Q times higher than those for open systems, where Q is the resonant quality factor of the thin enclosure plates. Moreover, the sound generation efficiency of the encapsulated system increases toward low frequencies (? ? 1/f2). Another method to increase ? in the low frequency region is by modulation of the applied high frequency carrier current with a low frequency resonant envelope. This approach enables sound generation at the frequency of the applied current without the need for additional energy-consuming biasing. The acoustical and geometrical parameters providing further increases in efficiency and transduction performance for resonant systems are discussed.

Ali E Aliev; Yuri N Gartstein; Ray H Baughman

2013-01-01T23:59:59.000Z

131

Sipping fuel and saving lives: increasing fuel economy without sacrificing safety  

E-Print Network [OSTI]

Ford delays plans to boost fuel economy of its SUVs. WallImproving safety without impacting fuel economy. Honda MotorCompany, October 4. SIPPING FUEL AND SAVING LIVES / 24

Gordon, Deborah; Greene, David L.; Ross, Marc H.; Wenzel, Tom P.

2008-01-01T23:59:59.000Z

132

Assessment of fuel efficiency of neem biodiesel (Azadirachta indica) in a single cylinder diesel engine  

Science Journals Connector (OSTI)

Increase of petroleum diesel usage and its environmental pollution necessitate the study of alternate fuel production. Vegetable oils are the viable alternate form of non-polluted, renewable fuel to diesel engines. In this work, the non-edible oil, neem (Azadirachta indica) was used to produce biodiesel by a two step transesterification process. The fuel properties of the biodiesel thus produced were determined by standard methods. It is further tested in a single cylinder diesel engine by mixing with petroleum diesel in various percentages. The brake thermal efficiency (BTE) and specific fuel consumption (SFC) of the engine running with biodiesel blends (10-50%) were compared with the petroleum diesel. The results have shown that the performance of the diesel engine was similar as that of normal diesel and thus the use of biodiesel in diesel engine is viable.

M. Mathiyazhagan; T. Elango; T. Senthilkumar; A. Ganapathi

2013-01-01T23:59:59.000Z

133

Turning Bacteria into Fuel: Cyanobacteria Designed for Solar-Powered Highly Efficient Production of Biofuels  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: ASU is engineering a type of photosynthetic bacteria that efficiently produce fatty acids—a fuel precursor for biofuels. This type of bacteria, called Synechocystis, is already good at converting solar energy and carbon dioxide (CO2) into a type of fatty acid called lauric acid. ASU has modified the organism so it continuously converts sunlight and CO2 into fatty acids—overriding its natural tendency to use solar energy solely for cell growth and maximizing the solar-to-fuel conversion process. ASU’s approach is different because most biofuels research focuses on increasing cellular biomass and not on excreting fatty acids. The project has also identified a unique way to convert the harvested lauric acid into a fuel that can be easily blended with existing transportation fuels.

None

2010-01-01T23:59:59.000Z

134

Fact #657: January 10, 2011 Record Increase for New Light Vehicle Fuel Economy  

Broader source: Energy.gov [DOE]

The sales-weighted fuel economy average of all light vehicles sold in model year (MY) 2009 was 1.4 miles per gallon (mpg) higher than MY2008. This is the largest annual increase in fuel economy...

135

Evaluation of soy based heavy fuel oil emulsifiers for energy efficiency and environmental improvement  

SciTech Connect (OSTI)

It is known that the emulsification of water into heavy fuel oil (No. 6) can result in improved atomization of the fuel in a combustion chamber, which results in several benefits. In this study, two soybean lecithin based emulsifiers were evaluated. The emulsifiers were added to the No. 6 fuel at 0.5% and 1 % levels and emulsions of 10% and 15% water were prepared and burned in a pilot scale combustion chamber. The results showed a significant decrease in NO{sub x} emissions, and a reduction in carbon particulates, as well as a decrease in the excess oxygen requirement when the emulsions were burned when compared to fuel oil alone and a fuel oil/water mixture without the emulsifier. It was concluded that the use of a soybean lecithin based emulsifier may be used to increase the burning efficiency of heavy fuel oils, reduce emissions and particulates, and reduce down time for cleaning. This can be very important in utility plants which burn large volumes of heavy fuel oil and are located near urban areas.

Lee, P.K.; Szuhaj, B.F. [Central Soya Company, Inc., Fort Wayne, IN (United States); Diego, A. [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

1996-12-31T23:59:59.000Z

136

Chemical-looping combustion -- Efficient conversion of chemical energy in fuels into work  

SciTech Connect (OSTI)

In thermal power plants, a large amount of the useful energy in the fuel is destroyed during the combustion process. This paper presents theoretical thermodynamic studies of a new system to increase the energy conversion efficiency of chemical energy in fuels into work. The system includes a gas turbine system with chemical-looping combustion where a metal oxide is used as an oxygen carrier. Instead of conventional combustion, the oxidation of the fuel is carried out in a two-step reaction. The first reaction step is an exothermic oxidation of a metal with air and the second reaction step an endothermic oxidation of the fuel with the metal oxide from the first step. The low grade heat in the exhaust gas is used to drive the endothermic reaction. This two-step reaction has proven to be one way to increase the energy utilization compared to conventional combustion. Results for a gas turbine reheat cycle with methane as a fuel and NiO as an oxygen carrier show that the gain in net power efficiency for the chemical-looping combustion system is as high as 5 percentage points compared to a similar conventional gas turbine system. An exergy analysis of the reactions shows that less irreversibilities are generated with chemical looping combustion than with conventional combustion. Another advantage with chemical-looping combustion is that the greenhouse gas CO{sub 2} is separated from the other exhaust gases without decreasing the overall-system thermal efficiency. This is an important feature since future regulations of CO{sub 2} emission are likely to be strict. Today, most of the suggested CO{sub 2} separation methods are considered to reduce the thermal efficiency at least 5--10 percentage points and to require expensive equipment.

Anheden, M.; Naesholm, A.S.; Svedberg, G. [Royal Inst. of Technology, Stockholm (Sweden)

1995-12-31T23:59:59.000Z

137

Hydrogen Fuel Cell Problems 1) Explain why the hydrogen fuel cell vehicle is not as efficient as the reported "tank  

E-Print Network [OSTI]

Hydrogen Fuel Cell Problems 1) Explain why the hydrogen fuel cell vehicle is not as efficient as the reported "tank to wheel" efficiencies would suggest. Hydrogen must be produced, stored, and transported to heat and leaking of hydrogen in the atmosphere. Additionally it takes power to produce hydrogen

Bowen, James D.

138

Increased Engine Efficiency via Advancements in Engine Combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. deer10sisken.pdf More Documents & Publications High-Efficiency...

139

NREL Uses Fuel Cells to Increase the Range of Battery Electric Vehicles (Fact Sheet)  

SciTech Connect (OSTI)

NREL analysis identifies potential cost-effective scenarios for using small fuel cell power units to increase the range of medium-duty battery electric vehicles.

Not Available

2014-01-01T23:59:59.000Z

140

Webinar: Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies  

Broader source: Energy.gov [DOE]

Video recording and text version of the webinar titled "Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies," originally presented on August 19, 2014.

Note: This page contains sample records for the topic "increase fuel efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Alcoa: C-Suite Participation in Energy Efficiency Increases Accountabi...  

Broader source: Energy.gov (indexed) [DOE]

Staff Engagement Throughout the Organization (March 2011) More Documents & Publications Energy Efficiency Projects: Overcoming Internal Barriers to Implementation Replicate Best...

142

Fact #658: January 17, 2011 Increasing Use of Vehicle Technologies to Meet Fuel Economy Requirements  

Broader source: Energy.gov [DOE]

Vehicle manufacturers are turning to vehicle technologies to improve efficiency and meet strict fuel economy requirements. Over the last 10 years, the use of engine technologies like multi-valves...

143

Cheyenne Light, Fuel and Power (Electric) - Commercial Energy Efficiency  

Broader source: Energy.gov (indexed) [DOE]

Electric) - Commercial Energy Electric) - Commercial Energy Efficiency Rebate Program (Wyoming) Cheyenne Light, Fuel and Power (Electric) - Commercial Energy Efficiency Rebate Program (Wyoming) < Back Eligibility Commercial Industrial Savings Category Other Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate Custom: 50% of project cost Program Info Start Date 06/09/2011 State Wyoming Program Type Utility Rebate Program Rebate Amount T8 Fixtures: $5 - $18 /system or $0.50 /lamp Fluorescents: $4 - $125 CFLs: $8 - $25 Indirect Lighting: $16 - $24 Pulse Start Metal Halide Fixtures: $25 - $65 Lighting Controls: $12 - $35 Variable Frequency Drive: $30 /hp Totally Enclosed Fan-Cooled: $10 - $600 Open Drip-Proof: $10 - $600 Custom: Buy down to 2 year pay back or 50% of cost, whichever is less

144

Increasing transcurium production efficiency through direct resonance shielding  

SciTech Connect (OSTI)

The Radiochemical Engineering Development Center at Oak Ridge National Laboratory is the world s leader in production of 252Cf. This and other heavy actinides are produced by irradiation of mixed curium/americium targets in the High Flux Isotope Reactor. Due to the strong dependence of isotopic cross sections upon incoming neutron energy, the efficiency with which an isotope is transmuted is highly dependent upon the neutron flux energy spectrum and intensities. There are certain energy ranges in which the rate of fissions in feedstock materials can be minimized relative to the rate of (n, ) absorptions. It is shown that by perturbing the flux spectrum, it is possible to alter the net consumption of curium feedstock, as well as the yields of key isotopes for the heavy element research program, such as 249Bk and 252Cf. This flux spectrum perturbation is accomplished by means of focused resonance shielding through the use of filter materials. It is further shown that these perturbations can alter the target yields in a significant way, increasing the amount of 252Cf produced per unit curium consumption by over 40%.

Hogle, Susan L [ORNL; Maldonado, G Ivan [ORNL; Alexander, Charles W [ORNL

2013-01-01T23:59:59.000Z

145

Gas Turbines Increase the Energy Efficiency of Industrial Processes  

E-Print Network [OSTI]

clean fuel gas for the gas turbine is produced by gasification of coal, are presented. Waste heat from the gasifier and the gas turbine exhaust is converted to high pressure steam for steam turbines. Gas turbines may find application in other industrial...

Banchik, I. N.; Bohannan, W. R.; Stork, K.; McGovern, L. J.

1981-01-01T23:59:59.000Z

146

NETL: News Release - DOE Selects 4 Projects that Increase Efficiency, Lower  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

11, 2000 11, 2000 DOE Selects 4 Projects That Increase Efficiency, Lower Energy-Production Costs, Emissions from Coal Plants Four new research projects selected this week by the U.S. Department of Energy show that innovations to boost the performance of tomorrow's power plants can take many forms - from new ways to mix biomass and municipal waste into future fuels to new microbiological techniques that minimize water intake obstructions. The four projects are among the more than 40 that have emerged as winners in a broad program-wide competition in the department's Office of Fossil Energy.The common thread in this set of projects is that all can improve efficiency and help defray the costs of energy production from fossil fuel energy systems. The Energy Department will provide $1.4 million to the four winning organizations. The private sector partners will more than match the federal funding, providing about $2 million for the new research ventures.The winning projects are as follows. Dollar amounts are preliminary and may change during upcoming negotiations.

147

Advanced Wear-resistant Nanocomposites for Increased Energy Efficiency  

SciTech Connect (OSTI)

This report summarizes the work performed by an Ames-led project team under a 4-year DOE-ITP sponsored project titled, 'Advanced Wear-resistant Nanocomposites for Increased Energy Efficiency.' The Report serves as the project deliverable for the CPS agreement number 15015. The purpose of this project was to develop and commercialize a family of lightweight, bulk composite materials that are highly resistant to degradation by erosive and abrasive wear. These materials, based on AlMgB{sub 14}, are projected to save over 30 TBtu of energy per year when fully implemented in industrial applications, with the associated environmental benefits of eliminating the burning of 1.5 M tons/yr of coal and averting the release of 4.2 M tons/yr of CO{sub 2} into the air. This program targeted applications in the mining, drilling, machining, and dry erosion applications as key platforms for initial commercialization, which includes some of the most severe wear conditions in industry. Production-scale manufacturing of this technology has begun through a start-up company, NewTech Ceramics (NTC). This project included providing technical support to NTC in order to facilitate cost-effective mass production of the wear-resistant boride components. Resolution of issues related to processing scale-up, reduction in energy intensity during processing, and improving the quality and performance of the composites, without adding to the cost of processing were among the primary technical focus areas of this program. Compositional refinements were also investigated in order to achieve the maximum wear resistance. In addition, synthesis of large-scale, single-phase AlMgB{sub 14} powder was conducted for use as PVD sputtering targets for nanocoating applications.

Cook, B. A.; Harringa, J. L.; Russel, A. M.

2012-12-01T23:59:59.000Z

148

Increase Natural Gas Energy Efficiency - Q & A | OpenEI Community  

Open Energy Info (EERE)

Efficiency - Q & A Home > Increase Natural Gas Energy Efficiency Content Group Activity By term Q & A Feeds No questions have been added to this group yet....

149

Fuel-Mix, Fuel Efficiency, and Transport Demand Affect Prospects for Biofuels in Northern Europe  

Science Journals Connector (OSTI)

Consumption structure parameters describe how the four road transport processes are being consumed, such as, for example, the amount of car-sharing and private vehicle ownership per capita—and are based on country-specific trend extrapolation using data provided by national statistical agencies and other research institutions (13-17, 35). ... As Ohrogge et al. point out, although there are uncertainties in the pace of electric car development and market penetration, future strategies aimed at promoting bioelectricity instead of ethanol for substituting conventional fuels like gasoline in cars and promoting more diesel engines in heavier vehicles may be the best route to the goal of reducing petroleum consumption and CO2 emissions (69). ... In the case of Sweden, where forest operations are highly and efficiently mechanized, this stage consumes more fossil fuels than other elements of the wood supply chain (such as silviculture and logging operations). ...

Ryan M. Bright; Anders Hammer Strømman

2010-02-17T23:59:59.000Z

150

Efficiency alone as a solution to increasing energy consumption  

E-Print Network [OSTI]

A statistical analysis was performed to determine the effect of efficiency on the total US energy consumption of automobiles and refrigerators. Review of literature shows that there are many different opinions regarding ...

Haidorfer, Luke

2005-01-01T23:59:59.000Z

151

Improving Efficiency and Load Range of Boosted HCCI using Partial Fuel Stratification with Conventional Gasoline  

Broader source: Energy.gov [DOE]

Explores the potential of partial fuel stratification to improve the efficiency of internal combustion engines utilizing the homogeneous charge compression-ignition cycle.

152

Feebates, rebates and gas-guzzler taxes: a study of incentives for increased fuel economy  

Science Journals Connector (OSTI)

US fuel economy standards have not been changed significantly in 20 years. Feebates are a market-based alternative in which vehicles with fuel consumption rates above a “pivot point” are charged fees while vehicles below receive rebates. By choice of pivot points, feebate systems can be made revenue neutral. Feebates have been analyzed before. This study re-examines feebates using recent data, assesses how the undervaluing of fuel economy by consumers might affect their efficacy, tests sensitivity to the cost of fuel economy technology and price elasticities of vehicle demand, and adds assessments of gas-guzzler taxes or rebates alone. A feebate rate of $500 per 0.01 gallon per mile (GPM) produces a 16 percent increase in fuel economy, while a $1000 per 0.01 GPM results in a 29 percent increase, even if consumers count only the first 3 years of fuel savings. Unit sales decline by about 0.5 percent but sales revenues increase because the added value of fuel economy technologies outweighs the decrease in sales. In all cases, the vast majority of fuel economy increase is due to adoption of fuel economy technologies rather than shifts in sales.

David L. Greene; Philip D. Patterson; Margaret Singh; Jia Li

2005-01-01T23:59:59.000Z

153

Novel Materials for High Efficiency Direct Methanol Fuel Cells  

Broader source: Energy.gov [DOE]

Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 – October 1, 2009

154

Management of Trickle Irrigated Orchards for Increased Water Use Efficiency  

E-Print Network [OSTI]

Trickle irrigation is the most efficient method of irrigating peach orchards in Texas. With a trickle irrigation system, a producer may make full use of a limited or low-volume water supply to apply precise amounts of water to the root zones...

Punthakey, J. F.; McFarland, M. J.; Rodrigue, P. B.; Worthington, J. W.

155

The Impacts of the Domestic Fuel Increases on Prices of the Indonesian Economic Sectors  

Science Journals Connector (OSTI)

Abstract Fuel price subsidy policy in Indonesia has hindered other energy programs, namely energy conservation and energy diversification. This study tries to analyze the impact of fuel price hike to the economic sector. This study utilizes the IO table analysis of Indonesia in 2005, a 66 X 66 classification of domestic transactions on the basis of producer prices. This study examines the impact of the increasing 10 percent, 20 percent and 30 percent of fuel prices to the economic sector. The analysis found that the increasing fuel price would have a devastating impact on the transportation sector. The government should preserve those sectors which exposed the largest impact from the increasing of the fuel price.

Dhani Setyawan

2014-01-01T23:59:59.000Z

156

U.S. Diesel Fuel Price Increases for First Time Since June  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

diesel fuel price increase for first time since June The U.S. average retail price for on-highway diesel fuel rose to 3.68 a gallon on Monday. That's up 5.4 cents from a week ago...

157

Increasing LTC Engine Efficiency by Reducing Pressure-Oscillation-Related Heat Transfer Losses  

Broader source: Energy.gov [DOE]

This research discusses how reducing heat-transfer losses from pressure oscillation can increase low-temperature combustion engine efficiency.

158

EM Safely and Efficiently Manages Spent Nuclear Fuel | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Services » Waste Management » Nuclear Materials & Waste » EM Services » Waste Management » Nuclear Materials & Waste » EM Safely and Efficiently Manages Spent Nuclear Fuel EM Safely and Efficiently Manages Spent Nuclear Fuel Dry storage casks at Idaho National Laboratory can safely house spent nuclear fuel for decades. Dry storage casks at Idaho National Laboratory can safely house spent nuclear fuel for decades. EM's mission is to safely and efficiently manage its spent nuclear fuel and prepare it for disposal in a geologic repository. Previously, the Office of Environmental Management's (EM) mission had included the safe and efficient management of its spent nuclear fuel (SNF) and preparation for its disposal in a geologic repository. However, in May 2009, the planned geologic repository at Yucca Mountain was cancelled. The

159

Increasing the CO tolerance of PEM fuel cells via current pulsing and self-oxidation  

E-Print Network [OSTI]

An investigation was conducted to determine and compare the effect of cell current pulsing and "self-oxidation" in increasing the CO tolerance of a PEM fuel cell. The most effective pulsing parameter values were also determined. Current pulsing...

Thomason, Arthur Hugh

2004-09-30T23:59:59.000Z

160

Peak Oil Demand: The Role of Fuel Efficiency and Alternative Fuels in a Global Oil Production Decline  

Science Journals Connector (OSTI)

Peak Oil Demand: The Role of Fuel Efficiency and Alternative Fuels in a Global Oil Production Decline ... (11) Another analysis suggests that a transition to hydrogen- and natural-gas-fueled vehicles—and the associated climate benefits—will partly be driven by dwindling oil supplies. ... Within each class, we do not attempt to predict the exact substitute that will dominate (for example, whether electricity, hydrogen fuel cells, or natural gas will prevail in the passenger car market), but rather model the aggregate contribution of alternatives to conventional oil. ...

Adam R. Brandt; Adam Millard-Ball; Matthew Ganser; Steven M. Gorelick

2013-05-22T23:59:59.000Z

Note: This page contains sample records for the topic "increase fuel efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Lean Gasoline System Development for Fuel Efficient Small Car  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

162

A Materials Approach to Fuel-Efficient Tires  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

163

Potential of Thermoelectrics forOccupant Comfort and Fuel Efficiency...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Documents & Publications Vehicle Fuel Economy Improvement through Thermoelectric Waste Heat Recovery Caterpillar Diesel Racing: Yesterday & Today Thermoelectric Conversion of...

164

Lean Gasoline System Development for Fuel Efficient Small Car  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

165

Matching Federal Government Energy Needs with Energy Efficient Fuel Cells  

Broader source: Energy.gov [DOE]

This presentation by Keith Spitznagel of LOGANEnergy was given at the Fuel Cell Meeting in April 2007.

166

Air Force Achieves Fuel Efficiency through Industry Best Practices (Brochure), Federal Energy Management Program (FEMP)  

Broader source: Energy.gov (indexed) [DOE]

highest potential to save aviation fuel. highest potential to save aviation fuel. All MAF personnel are encouraged to propose fuel savings ideas. These ideas are then processed as initiatives, assigned a primary point of contact, and routed through an analysis process to prepare the initiative for presenta- tion to the Air Force's corporate structure. The corporate structure then evaluates and determines the initiatives with the highest potential fuel savings. Fuel-saving efforts focus on six major areas: policy, planning, execution, maintenance, science and technology, and fuel-efficient aircraft systems. The MAF also established a predetermined set of fuel-savings metrics and required reporting. In fiscal year 2011, implemented fuel initiatives saved the MAF more than 42 million gallons of aviation fuel in both

167

54.5 MPG and Beyond: Fueling Energy-Efficient Vehicles | Department of  

Broader source: Energy.gov (indexed) [DOE]

4.5 MPG and Beyond: Fueling Energy-Efficient Vehicles 4.5 MPG and Beyond: Fueling Energy-Efficient Vehicles 54.5 MPG and Beyond: Fueling Energy-Efficient Vehicles November 27, 2012 - 11:08am Addthis This infographic looks how new fuel economy standards will save Americans money at the pump, reduce our dependence on foreign oil and grow the U.S. economy. Click here to view the full infographic. | Infographic by Sarah Gerrity. This infographic looks how new fuel economy standards will save Americans money at the pump, reduce our dependence on foreign oil and grow the U.S. economy. Click here to view the full infographic. | Infographic by Sarah Gerrity. This infographic looks how new fuel economy standards will save Americans money at the pump, reduce our dependence on foreign oil and grow the U.S. economy. Click here to view the full infographic. | Infographic by Sarah Gerrity.

168

Road to Fuel Savings: GM Technology Ramps Up Engine Efficiency...  

Energy Savers [EERE]

support from the Energy Department, is having a big impact on the vehicle's fuel consumption. Called the Intake Valve Lift Control, this technology is helping drivers save up...

169

Lubricants - Pathway to Improving Fuel Efficiency of Legacy Fleet...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for low-viscosity lubricants and low-friction surfaces and additives to reduce fuel consumption, and impact of such approaches on other critical lubricant metrics...

170

Developing Low-Cost, Highly Efficient Heat Recovery for Fuel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy is utilizing its current commercialization channels to market the new hybrid fuel cell technologies. Distribution partners LOGAN Energy, Pfister Energy, and PPL Energy Plus...

171

Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency  

Broader source: Energy.gov [DOE]

Besides their energy security and environmental benefits, many alternative fuels such as biodiesel, ethanol, and natural gas have unique chemical properties that offer advantages to drivers. These...

172

Energy Department Offers $50 Million to Advance Fuel Efficient...  

Broader source: Energy.gov (indexed) [DOE]

lightweighting materials; cost-effective batteries and power electronics; advanced heating, ventilation, and air conditioning systems; and improved fuels and lubricants. With...

173

Gasoline Ultra Fuel Efficient Vehicle | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace064confer2012o.pdf More Documents & Publications...

174

Gasoline Ultra Fuel Efficient Vehicle | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ace064confer2011o.pdf More Documents & Publications Gasoline...

175

Lean Gasoline System Development for Fuel Efficient Small Car  

Broader source: Energy.gov (indexed) [DOE]

NOx after-treatment systems have functional implementation limitations (i.e. performance, cost, packaging, etc.) * Significant fuel economy improvement requires integration of...

176

Lean Gasoline System Development for Fuel Efficient Small Car...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace063smith2012o.pdf More Documents & Publications Lean Gasoline System Development for Fuel...

177

Lean Gasoline System Development for Fuel Efficient Small Car...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ace063smith2011o.pdf More Documents & Publications Lean Gasoline System Development for Fuel...

178

Future Engine Fluids Technologies: Durable, Fuel-Efficient, and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Market Introducution in Europe Characteristics and Effects of Lubricant Additive Chemistry and Exhaust Conditions on Diesel Particulate Filter Service Life and Vehicle Fuel...

179

Economic, Environmental, and Job Impacts of Increased Efficiency in Existing Coal-Fired Power Plants  

Science Journals Connector (OSTI)

Analyses of the CO2...mitigation potential of increasing the efficiency of existing U.S. coal-fired power plants have indicated that significant...2...emissions could be avoided if the efficiency of existing plan...

Roger H. Bezdek; Robert M. Wendling

2013-04-01T23:59:59.000Z

180

Webinar: Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies  

Broader source: Energy.gov [DOE]

The Energy Department will present a webinar titled "Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies" on Tuesday, August 19, from 12:00 to 1:00 p.m. Eastern Daylight Time (EDT). The webinar will feature representatives from the National Renewable Energy Laboratory presenting a unique opportunity for the integration of multiple sectors including transportation, industrial, heating fuel, and electric sectors on hydrogen.

Note: This page contains sample records for the topic "increase fuel efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

A proliferation resistant hexagonal tight lattice BWR fueled core for increased burnup and reduced fuel storage requirements. Annual progress report: August, 1999 to July, 2000 [DOE NERI  

SciTech Connect (OSTI)

(OAK/B204) A proliferation resistant hexagonal tight lattice BWR fueled core for increased burnup and reduced fuel storage requirements. Annual progress report: August, 1999 to July, 2000 [DOE NERI

Hiroshi Takahashi; Upendra Rohatgi; T.J. Downar

2000-08-04T23:59:59.000Z

182

Improving the lifetime performance of ceramic fuel cells Fuel cells generate electricity from fuels more efficiently and with  

E-Print Network [OSTI]

received an $800,000 Department of Energy grant to study how to make one type of fuel cell--solid oxide is now seeking just a 0.2 percent loss of output per 1,000 hours. Solid oxide fuel cells operate at high to the development of low-cost, modular and fuel-flexible solid oxide fuel cell technology. #12;

Rollins, Andrew M.

183

Integrated Powertrain and Vehicle Technologies for Fuel Efficiency Improvement and CO2 Reduction  

Broader source: Energy.gov [DOE]

Meeting the most stringent emission standards in the world (EPA2002, EPA2007, EPA2010) required the strength of global organizations EPA2002 emission regulation was associated with a significant drop in engine thermal efficiency; DOE support of R&D program helped avoid further efficiency drop in 2007; EPA2010 will lead to simultaneous improvements in emissions and fuel efficiency for most manufacturers

184

Substrate Degradation Kinetics, Microbial Diversity, and Current Efficiency of Microbial Fuel Cells Supplied with Marine Plankton  

Science Journals Connector (OSTI)

...experiments, the rate of TOC consumption increased. This carbon...established on the active fuel cell anodes, respiration...using an upflow microbial fuel cell. Environ. Sci...carbon production and consumption in anoxic marine sediments...three types of microbial fuel cell. Enzymol. Microbiol...

Clare E. Reimers; Hilmar A. Stecher III; John C. Westall; Yvan Alleau; Kate A. Howell; Leslie Soule; Helen K. White; Peter R. Girguis

2007-08-31T23:59:59.000Z

185

Opportunities of increase of energy efficiency of Andijan Hydro Power Plant using wind farms. Part 1  

Science Journals Connector (OSTI)

The possibility of the increase in energy efficiency of Andijan Hydro Power Plant by the design of wind farm build-ups has been shown.

U. A. Tadjiev; E. I. Kiseleva; M. U. Tadjiev; R. A. Zakhidov

2014-07-01T23:59:59.000Z

186

Increasing Federal Office Building Water Efficiency, Federal Energy Management Program (FEMP) (Fact Sheet)  

SciTech Connect (OSTI)

Quick guide to increasing Federal office building water efficiency, water management planning, performing a water audit, calculating a water balance, and best management practices.

Not Available

2010-04-01T23:59:59.000Z

187

Fume Hood Sash Stickers Increases Laboratory Safety and Efficiency at Minimal Cost  

Broader source: Energy.gov [DOE]

Case study describes two University of California campuses that increased laboratory exhaust efficiency and safety by using fume hood sash stickers.

188

Veolia and Johnson Controls Get the Job Done with Clean, Fuel Efficient  

Broader source: Energy.gov (indexed) [DOE]

Veolia and Johnson Controls Get the Job Done with Clean, Fuel Veolia and Johnson Controls Get the Job Done with Clean, Fuel Efficient Fleets Veolia and Johnson Controls Get the Job Done with Clean, Fuel Efficient Fleets March 9, 2012 - 2:15pm Addthis With their presence in almost every neighborhood and community, refuse trucks, like the one shown above, can benefit from alternative fuels and advanced technology. | Photo courtesy of Veolia Environmental Services. With their presence in almost every neighborhood and community, refuse trucks, like the one shown above, can benefit from alternative fuels and advanced technology. | Photo courtesy of Veolia Environmental Services. Shannon Brescher Shea Communications Manager, Clean Cities Program What are the key facts? Veolia operates four compressed natural gas (CNG) fueling stations

189

Veolia and Johnson Controls Get the Job Done with Clean, Fuel Efficient  

Broader source: Energy.gov (indexed) [DOE]

Veolia and Johnson Controls Get the Job Done with Clean, Fuel Veolia and Johnson Controls Get the Job Done with Clean, Fuel Efficient Fleets Veolia and Johnson Controls Get the Job Done with Clean, Fuel Efficient Fleets March 9, 2012 - 2:15pm Addthis With their presence in almost every neighborhood and community, refuse trucks, like the one shown above, can benefit from alternative fuels and advanced technology. | Photo courtesy of Veolia Environmental Services. With their presence in almost every neighborhood and community, refuse trucks, like the one shown above, can benefit from alternative fuels and advanced technology. | Photo courtesy of Veolia Environmental Services. Shannon Brescher Shea Communications Manager, Clean Cities Program What are the key facts? Veolia operates four compressed natural gas (CNG) fueling stations

190

Fact #764: January 28, 2013 Model Year 2013 Brings More Fuel Efficient Choices for Consumers  

Broader source: Energy.gov [DOE]

Over the last six years, manufacturers have made more fuel efficient choices available to consumers in several size classes. For a consumer purchasing a new large car in 2008, the highest combined...

191

Analysis of the fuel efficiency of gas-turbine cogeneration stations  

Science Journals Connector (OSTI)

A technique for evaluating the fuel efficiency of the combined generation of electricity and heat at a gas-turbine cogeneration station is presented. The effects the regeneration degree of the gas-turbine cycle a...

V. I. Evenko; A. S. Strebkov

2006-10-01T23:59:59.000Z

192

The impact of aircraft design reference mission on fuel efficiency in the air transportation system  

E-Print Network [OSTI]

Existing commercial aircraft are designed for high mission flexibility, which results in decreased fuel efficiency throughout the operational life of an aircraft. The objective of this research is to quantify the impact ...

Yutko, Brian M. (Brian Matthew)

2014-01-01T23:59:59.000Z

193

Lubricants- Pathway to Improving Fuel Efficiency of Legacy Fleet Vehicles  

Broader source: Energy.gov [DOE]

Reviews recent studies on potential for low-viscosity lubricants and low-friction surfaces and additives to reduce fuel consumption, and impact of such approaches on other critical lubricant metrics

194

A Temperature Stabilized Tachometer for the Fuel Efficient Automobile  

Science Journals Connector (OSTI)

In this day of energy conversion and high petroleum costs the optimum consumption of fuel is the goal of all owners of gas and diesel vehicles. The tachometer used with internal combustion engines permits engine revolution monitoring and with proper ...

G. Wilcox; J. L. Mason

1980-08-01T23:59:59.000Z

195

Correlations of fuel economy, exhaust hydro-carbon concentrations, and vehicle performance efficiency  

E-Print Network [OSTI]

CORRELATIONS OF FUEL ECONOMY, EXHAUST HYDROCARBON CONCENTRATIONS, AND VEHICLE PERFORMANCE EFFICIENCY A Thesis by PHILIP DOUGLAS BAUMANN Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE December 1974 Major Subject: Civil Engineering CORRELATIONS OF FUEL ECONOMY, EXHAUST HYDROCARBON CONCENTRATIONS, AND VEHICLE PERFORMANCE EFFICIENCY A Thesis by PHILIP DOUGLAS BAUMANN Approved as to style and content by...

Baumann, Philip Douglas

2012-06-07T23:59:59.000Z

196

Pyroprocessing oxide spent nuclear fuels for efficient disposal  

SciTech Connect (OSTI)

Pyrochemical processing as a means for conditioning spent nuclear fuels for disposal offers significant advantages over the direct disposal option. The advantages include reduction in high-level waste volume; conversion of most of the high-level waste to a low-level waste in which nearly all the transuranics (TRU) have been removed; and incorporation of the TRUs into a stable, highly radioactive waste form suitable for interim storage, ultimate destruction, or repository disposal. The lithium process has been under development at Argonne National Laboratory for use in pyrochemical conditioning of spent fuel for disposal. All of the process steps have been demonstrated in small-scale (0.5-kg simulated spent fuel) experiments. Engineering-scale (20-kg simulated spent fuel) demonstration of the process is underway, and small-scale experiments have been conducted with actual spent fuel from a light water reactor (LWR). The lithium process is simple, operates at relatively low temperatures, and can achieve high decontamination factors for the TRU elements. Ordinary materials, such as carbon steel, can be used for process containment.

McPheeters, C.C.; Pierce, R.D.; Mulcahey, T.P. [Argonne National Lab., IL (United States). Chemical Technology Div.

1994-12-31T23:59:59.000Z

197

Transport Studies Enabling Efficiency Optimization of Cost-Competitive Fuel Cell Stacks  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AURORA Program Overview Topic 4A. Transport within the PEM Stack / Transport Studies Transport Studies Enabling Efficiency Optimization of Cost-Competitive Fuel Cell Stacks Award#: DE-EE0000472 US DOE Fuel Cell Projects Kickoff Meeting Washington, DC September 30, 2009 Program Objectives The objective of this program is to optimize the efficiency of a stack technology meeting DOE cost targets. As cost reduction is of central importance in commercialization, the objective of this program addresses all fuel cell applications. AURORA C. Performance Technical Barriers Premise: DOE cost targets can be met by jointly exceeding both the Pt loading (1.0 W/cm2) targets.

198

Federal Energy and Water Management Award Winner 22nd Operations Group Fuel Efficiency Office  

Broader source: Energy.gov (indexed) [DOE]

Efficiency Efficiency Office U.S. Air Force McConnell Air Force Base, Kansas During FY 2012, the 22nd Operations Group Fuel Efficiency Office (FEO) designed and implemented multiple measures, including a focus on institutional culture change, to reduce inefficiency in fuel management of the KC-135 aircraft and save the Air Force $4.3 million during a 42 percent rise in local sorties (the deployment of aircraft for missions of national defense or aircrew proficiency). These efforts included reducing KC-135 landing fuel by 5000 lb per sortie to save 1.94 million gallons per year; changing the KC-135 standard landing configuration to save 50 lb of fuel per approach; and implementing a new training configuration to reduce aircraft basic weight by 1,600 lb. The FEO also incorporated Mission Index Flying

199

Alternative Fuels Data Center: College Students Engineer Efficient...  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

American college teams were challenged to reduce the environmental impact and improve the energy efficiency of a Chevrolet Malibu sedan without compromising performance, safety,...

200

Final Scientific Report - "Improved Fuel Efficiency from Nanocomposite Tire Tread"  

SciTech Connect (OSTI)

Rolling resistance, a measure of the energy lost as a tire rotates while moving, is a significant source of power and fuel loss. Recently, low rolling resistant tires have been formulated by adding silica to tire tread. These "Green Tires" (so named from the environmental advantages of lower emissions and improved fuel economy) have seen some commercial success in Europe, where high fuel prices and performance drive tire selection. Unfortunately, the higher costs of the silica and a more complicated manufacturing process have prevented significant commercialization - and the resulting fuel savings - in the U.S. In this project, TDA Research, Inc. (TDA) prepared an inexpensive alternative to silica that leads to tire components with lower rolling resistance. These new tire composite materials were processed with traditional rubber processing equipment. We prepared specially designed nanoparticle additives, based on a high purity, inorganic mineral whose surface can be easily modified for compatibility with tire tread formulations. Our nanocomposites decreased energy losses to hysteresis, the loss of energy from the compression and relaxation of an elastic material, by nearly 20% compared to a blank SBR sample. We also demonstrated better performance than a leading silica product, with easier production of our final rubber nanocomposite.

Dr. Andrew Myers

2005-12-30T23:59:59.000Z

Note: This page contains sample records for the topic "increase fuel efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

U.S. and China Sign Agreement to Increase Industrial Energy Efficiency |  

Broader source: Energy.gov (indexed) [DOE]

U.S. and China Sign Agreement to Increase Industrial Energy U.S. and China Sign Agreement to Increase Industrial Energy Efficiency U.S. and China Sign Agreement to Increase Industrial Energy Efficiency September 14, 2007 - 2:33pm Addthis DOE to Conduct Energy Efficiency Audits on up to 12 Facilities SAN FRANCISCO, CA - U.S. Department of Energy (DOE) Assistant Secretary for Policy and International Affairs Karen Harbert and Vice Chairman of the National Development and Reform Committee (NDRC) Chen Deming, this week signed a Memorandum of Understanding (MOU) to increase cooperation and energy efficiency in China's industrial sector, which accounts for 70 percent of the country's total energy demand. This MOU, titled Industrial Energy Efficiency Cooperation, follows discussions this week at the third U.S.-China Energy Policy Dialogue where the U.S. and China agreed to

202

U.S. and China Sign Agreement to Increase Industrial Energy Efficiency |  

Broader source: Energy.gov (indexed) [DOE]

Sign Agreement to Increase Industrial Energy Sign Agreement to Increase Industrial Energy Efficiency U.S. and China Sign Agreement to Increase Industrial Energy Efficiency September 14, 2007 - 2:33pm Addthis DOE to Conduct Energy Efficiency Audits on up to 12 Facilities SAN FRANCISCO, CA - U.S. Department of Energy (DOE) Assistant Secretary for Policy and International Affairs Karen Harbert and Vice Chairman of the National Development and Reform Committee (NDRC) Chen Deming, this week signed a Memorandum of Understanding (MOU) to increase cooperation and energy efficiency in China's industrial sector, which accounts for 70 percent of the country's total energy demand. This MOU, titled Industrial Energy Efficiency Cooperation, follows discussions this week at the third U.S.-China Energy Policy Dialogue where the U.S. and China agreed to

203

Effect of a homogeneous combustion catalyst on the combustion characteristics and fuel efficiency in a diesel engine  

Science Journals Connector (OSTI)

The influence of a ferrous picrate based homogeneous combustion catalyst on the combustion characteristics and fuel efficiency was studied using a fully instrumented diesel engine. A naturally aspirated four stroke, single cylinder, air cooled, direct injection diesel engine was tested at engine speeds of 2800 rpm, 3200 rpm and 3600 rpm under variable load conditions, with different dosing ratio of the catalyst in a commercial diesel fuel. The results indicated that the brake specific fuel consumption decreased and the brake thermal efficiency increased with the addition of the catalyst. At the catalyst dosing ratio of 1:10,000, the brake specific fuel consumption was reduced by 3.3–4.2% at light engine load of 0.12 MPa and 2.0–2.4% at heavy engine load of 0.4 MPa due to the application of the catalyst. From the in-cylinder pressure and heat release rate analysis, it was found that the catalyst reduced ignition delay and combustion duration of fuel in the engine, resulting in slightly higher peak cylinder pressure and faster heat release rate.

Mingming Zhu; Yu Ma; Dongke Zhang

2012-01-01T23:59:59.000Z

204

Achieving increased spent fuel storage capacity at the High Flux Isotope Reactor (HFIR)  

SciTech Connect (OSTI)

The HFIR facility was originally designed to store approximately 25 spent cores, sufficient to allow for operational contingencies and for cooling prior to off-site shipment for reprocessing. The original capacity has now been increased to 60 positions, of which 53 are currently filled (September 1994). Additional spent cores are produced at a rate of about 10 or 11 per year. Continued HFIR operation, therefore, depends on a significant near-term expansion of the pool storage capacity, as well as on a future capability of reprocessing or other storage alternatives once the practical capacity of the pool is reached. To store the much larger inventory of spent fuel that may remain on-site under various future scenarios, the pool capacity is being increased in a phased manner through installation of a new multi-tier spent fuel rack design for higher density storage. A total of 143 positions was used for this paper as the maximum practical pool capacity without impacting operations; however, greater ultimate capacities were addressed in the supporting analyses and approval documents. This paper addresses issues related to the pool storage expansion including (1) seismic effects on the three-tier storage arrays, (2) thermal performance of the new arrays, (3) spent fuel cladding corrosion concerns related to the longer period of pool storage, and (4) impacts of increased spent fuel inventory on the pool water quality, water treatment systems, and LLLW volume.

Cook, D.H.; Chang, S.J.; Dabs, R.D.; Freels, J.D.; Morgan, K.A.; Rothrock, R.B. [Oak Ridge National Lab., TN (United States); Griess, J.C. [Griess (J.C.), Knoxville, TN (United States)

1994-12-31T23:59:59.000Z

205

Feebates, rebates and gas-guzzler taxes: a study of incentives for increased fuel economy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 (2005) 757-775 Feebates, rebates and gas-guzzler taxes: a study of incentives for increased fuel economy $ David L. Greene a, *, Philip D. Patterson b , Margaret Singh c , Jia Li d a Oak Ridge National Laboratory, National Transportation Research Center, 2360 Cherahala Boulevard, Knoxville, TN 37932, USA b Office of Planning, Budget Formulation and Analysis, US Department of Energy, Forestall Building (EE-3B), 1000 Independence Avenue, S.W., Washington, DC 20585, USA c Argonne National Laboratory, 955 L'Enfant Plaza, S.W., Suite 6000, Washington, DC 20024, USA d National Transportation Research Center, The University of Tennessee, 2360 Cherahala Boulevard, Knoxville, TN 37932, USA Abstract US fuel economy standards have not been changed significantly in 20 years. Feebates are a market-based alternative in which vehicles with fuel consumption rates above a ''pivot point''

206

Efficiency and emissions of a spark ignition engine fueled with synthetic gases obtained from catalytic decomposition of biogas  

Science Journals Connector (OSTI)

This paper presents the results of the tests developed in a naturally aspirated spark ignition engine, intended for installation in vehicles, fueled with synthetic gases obtained from catalytic decomposition of biogas. The experimental tests were carried out at three equivalence ratios and different speeds and loads. Two synthetic blends were used and the results were compared with those of gasoline and methane. Efficiency and emissions were calculated for the different fuels under the same operation conditions and it was found that at lean equivalence ratios, brake thermal efficiency with synthetic gases approached to the traditional fuels and even improved it at ? = 0.7. BSCO2 emissions increased due to the CO2 content of the gaseous blends. While CO increased at stoichiometric conditions, it decreased at lean conditions because the H2 contained in synthetic gases improved combustion at these conditions. BSHC measured were very low with synthetic gases because of the low content of methane in blends. The change in the fraction of H2 and CO2 of the synthetic blends led to quite different results in BSNOx. Syngas 1 \\{BSNOx\\} emissions were the lowest of all fuels, while syngas 2 \\{BSNOx\\} were the highest because of its high H2 fraction.

J. Arroyo; F. Moreno; M. Muñoz; C. Monné

2013-01-01T23:59:59.000Z

207

Vehicle Technologies Office Merit Review 2014: Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight  

Broader source: Energy.gov [DOE]

Presentation given by Cooper Tire at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about improving vehicle fuel efficiency...

208

Two-step fuel oxidation to improve efficiency in the conversion of chemical energy into work  

SciTech Connect (OSTI)

It is well known that in the conversion of chemical exergy into work a remarkable percentage of exergy is destroyed during the combustion process. Obviously, hypothetical reversible combustions, as proposed in some papers, are not to be taken into account. On the contrary, recent studies of a new system to increase the efficiency of the conversion of chemical exergy into work appear interesting. The proposed system includes a gas turbine system with chemical-looping combustion where a metal oxide is used as an oxygen carrier. Instead of conventional combustion, the oxidation of fuel is carried out in a two-step reaction. The first step is an endothermic reaction in which a metal oxide is reduced by fuel at low temperature and the second step an exothermic reaction in which the products of the former reaction are subjected to oxidation. The thermal energy of low exergy value in the exhaust gas is employed to drive the endothermic reaction. Various systems have been proposed and tested. The power-generation system (called CLSA), with chemical-looping combustion and air saturation seems the most convenient. When only saturated air is used, exergy destruction becomes small in the middle- and low temperature range. However, the inefficiency in the high temperature range remains. On the other hand, when only chemical-looping combustion is used, exergy destruction becomes small in the high- and middle temperature range. However, the inefficiency in the low-temperature range is now not removed. When both technologies are combined, exergy efficiency may become much greater than that obtained from each individual process. The synergistic effect of combining these two technologies is analogous to the improvement achieved when a combined system was designed as a new power-generation system by combining a gas turbine with a steam turbine. For a model system, an exergy efficiency of 53.3% is obtained when the process water is recovered and a value of about 55% is obtained when water is not recovered. A significant advantage of the CLSA system is that CO{sub 2} can be easily recovered. The CO{sub 2} produced in the reduction reactor is not diluted by air since air and fuel enter different reactors. This is quite different from a traditional combustor in which CO{sub 2} is diluted in air and hence cannot be concentrated and separated economically. In the CLSA system, since the exhaust gas from the reduction reactor is composed only of high-concentration CO{sub 2} and water vapor, CO{sub 2} can be easily recovered by cooling the exhaust gas and removing the liquid water, i.e. very little energy expenditure is required for recovering CO{sub 2} from the exhaust gas. The recovered CO{sub 2} may be utilized, e.g., in artificial photosynthesis, whereas a simple recovery without any utilization but only to reduce greenhouse effect seems questionable. Another significant characteristic of CLSA system is that the most of the water vapor in the exhaust gas can be recovered by cooling the exhaust gas from the oxidation reactor. In chemical-looping combustion, fuel is not burned directly and the gas discharged from the oxidation reactor has no impurities from the fuel. Hence, there will be no corrosion of the apparatus when the exhaust gas is cooled to a very low temperature and low cost materials can be utilized for the heat exchangers. Because of the recycling of the most part of water, the CLSA system can be used in locations with limited water resources. Chemical-looping combustion system can be also combined with an integrated coal gasification and this topic appears very interesting. Indeed, to achieve better conversion efficiencies and lower pollutant emissions in power plants, new technologies that combines coal gasification with a gas turbine based combined cycle have been extensively studied worldwide.

Bisio, G.; Rubatto, R.; Marletta, L.

1998-07-01T23:59:59.000Z

209

Management of Services Quality as a Tool to Increase Water Supply Companies’ Efficiency  

Science Journals Connector (OSTI)

The proof of necessity to control and manage service quality as a main factor for water supply enterprise efficiency increase is given in the article. Drinking water quality is reasoned to be a utility ... with a...

Olga Krakashova Dr.; Anna Pelevina Dr.; Vladimir Yaroslavtsev

2012-01-01T23:59:59.000Z

210

Energy Department/Electric Power Research Institute Cooperation to Increase Energy Efficiency  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) and the Electric Power Research Institute (EPRI) strengthened cooperation for research, development and deployment of energy technologies aimed at promoting increased energy efficiency.

211

Efficiency of incentives to jointly increase carbon sequestration and species conservation  

E-Print Network [OSTI]

Efficiency of incentives to jointly increase carbon sequestration and species conservation the provision of carbon sequestration and species conservation across heterogeneous landscapes. Using data from the Willamette Basin, Oregon, we compare the provision of carbon sequestration and species conservation under

Weiblen, George D

212

"Working to increase the efficiency of jet engines while reducing their  

E-Print Network [OSTI]

"Working to increase the efficiency of jet engines while reducing their environmental impact of renewable biofuels. A list of currently and recently funded research projects are described below. #12

Acton, Scott

213

Hydrogen Air Fuel Cell Powered Passenger Car Fever — Fuel Cell Electric Vehicle for Efficiency and Range  

Science Journals Connector (OSTI)

Various technologies are used or developed to alleviate the atmospheric pollution due to exhaust gases from the vehicles: catalytic post — treatment, gaseous fuel and electric vehicles. Renault has decided to ...

J. C. Griesemann; D. Corgier; P. Achard…

1998-01-01T23:59:59.000Z

214

Thermally efficient melting and fuel reforming for glass making  

DOE Patents [OSTI]

An integrated process for utilizing waste heat from a glass making furnace. The hot off-gas from the furnace is initially partially cooled, then fed to a reformer. In the reformer, the partially cooled off-gas is further cooled against a hydrocarbon which is thus reformed into a synthesis gas, which is then fed into the glass making furnace as a fuel. The further cooled off-gas is then recycled back to absorb the heat from the hot off-gas to perform the initial cooling.

Chen, Michael S. (Zionsville, PA); Painter, Corning F. (Allentown, PA); Pastore, Steven P. (Allentown, PA); Roth, Gary S. (Trexlertown, PA); Winchester, David C. (Allentown, PA)

1991-01-01T23:59:59.000Z

215

Optimization of efficiency and energy density of passive micro fuel cells and galvanic hydrogen generators  

E-Print Network [OSTI]

A PEM micro fuel cell system is described which is based on self-breathing PEM micro fuel cells in the power range between 1 mW and 1W. Hydrogen is supplied with on-demand hydrogen production with help of a galvanic cell, that produces hydrogen when Zn reacts with water. The system can be used as a battery replacement for low power applications and has the potential to improve the run time of autonomous systems. The efficiency has been investigated as function of fuel cell construction and tested for several load profiles.

Hahn, Robert; Krumbholz, Steffen; Reichl, Herbert

2008-01-01T23:59:59.000Z

216

Analysis of Underground Storage Tanks System Materials to Increased Leak Potential Associated with E15 Fuel  

SciTech Connect (OSTI)

The Energy Independence and Security Act (EISA) of 2007 was enacted by Congress to move the nation toward increased energy independence by increasing the production of renewable fuels to meet its transportation energy needs. The law establishes a new renewable fuel standard (RFS) that requires the nation to use 36 billion gallons annually (2.3 million barrels per day) of renewable fuel in its vehicles by 2022. Ethanol is the most widely used renewable fuel in the US, and its production has grown dramatically over the past decade. According to EISA and RFS, ethanol (produced from corn as well as cellulosic feedstocks) will make up the vast majority of the new renewable fuel requirements. However, ethanol use limited to E10 and E85 (in the case of flex fuel vehicles or FFVs) will not meet this target. Even if all of the E0 gasoline dispensers in the country were converted to E10, such sales would represent only about 15 billion gallons per year. If 15% ethanol, rather than 10% were used, the potential would be up to 22 billion gallons. The vast majority of ethanol used in the United States is blended with gasoline to create E10, that is, gasoline with up to 10% ethanol. The remaining ethanol is sold in the form of E85, a gasoline blend with as much as 85% ethanol that can only be used in FFVs. Although DOE remains committed to expanding the E85 infrastructure, that market will not be able to absorb projected volumes of ethanol in the near term. Given this reality, DOE and others have begun assessing the viability of using intermediate ethanol blends as one way to transition to higher volumes of ethanol. In October of 2010, the EPA granted a partial waiver to the Clean Air Act allowing the use of fuel that contains up to 15% ethanol for the model year 2007 and newer light-duty motor vehicles. This waiver represents the first of a number of actions that are needed to move toward the commercialization of E15 gasoline blends. On January 2011, this waiver was expanded to include model year 2001 light-duty vehicles, but specifically prohibited use in motorcycles and off-road vehicles and equipment. UST stakeholders generally consider fueling infrastructure materials designed for use with E0 to be adequate for use with E10, and there are no known instances of major leaks or failures directly attributable to ethanol use. It is conceivable that many compatibility issues, including accelerated corrosion, do arise and are corrected onsite and, therefore do not lead to a release. However, there is some concern that higher ethanol concentrations, such as E15 or E20, may be incompatible with current materials used in standard gasoline fueling hardware. In the summer of 2008, DOE recognized the need to assess the impact of intermediate blends of ethanol on the fueling infrastructure, specifically located at the fueling station. This includes the dispenser and hanging hardware, the underground storage tank, and associated piping. The DOE program has been co-led and funded by the Office of the Biomass Program and Vehicle Technologies Program with technical expertise from the Oak Ridge National Laboratory (ORNL) and the National Renewable Energy Laboratory (NREL). The infrastructure material compatibility work has been supported through strong collaborations and testing at Underwriters Laboratories (UL). ORNL performed a compatibility study investigating the compatibility of fuel infrastructure materials to gasoline containing intermediate levels of ethanol. These results can be found in the ORNL report entitled Intermediate Ethanol Blends Infrastructure Materials Compatibility Study: Elastomers, Metals and Sealants (hereafter referred to as the ORNL intermediate blends material compatibility study). These materials included elastomers, plastics, metals and sealants typically found in fuel dispenser infrastructure. The test fuels evaluated in the ORNL study were SAE standard test fuel formulations used to assess material-fuel compatibility within a relatively short timeframe. Initially, these material studies included test fuels of Fuel C,

Kass, Michael D [ORNL; Theiss, Timothy J [ORNL; Janke, Christopher James [ORNL; Pawel, Steven J [ORNL

2012-07-01T23:59:59.000Z

217

IMPROVING THE NATION'S ENERGY SECURITY: CAN CARS AND TRUCKS BE MADE MORE FUEL EFFICIENT - Testimony to the U.S. House of Representatives Science Committee, February 9, 2005  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

IMPROVING THE NATION'S ENERGY SECURITY: CAN CARS AND TRUCKS IMPROVING THE NATION'S ENERGY SECURITY: CAN CARS AND TRUCKS BE MADE MORE FUEL EFFICIENT? 2:00 pm, Wednesday, February 9, 2005 Rayburn House Office Building, Room 2318 by Dr. David L. Greene Corporate Fellow Engineering Science and Technology Division Oak Ridge National Laboratory 1. WHAT ARE THE POLICY OPTIONS FOR ENCOURAGING THE ADOPTION OF FUEL EFFICIENT TECHNOLOGIES AND THEIR ADVANTAGES AND DISADVANTAGES? There are many ways to structure policies to achieve significant increases in fuel economy effectively and efficiently. I will focus on five below. It is possible to create policies that are reasonably effective, efficient, and fair. Our own experience with our CAFE standards and difficulties we have had updating the CAFE law indicates that we should also prefer policies that

218

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

State Agency Petroleum Reduction Plan All state agencies must reduce their fleets' petroleum consumption by increasing vehicle fuel economy and operating efficiency and reducing...

219

Modelling transport fuel demand  

Science Journals Connector (OSTI)

Transport fuels account for an increasing share of oil ... interest to study the economics of the transport fuel market and thereby to evaluate the efficiency of the price mechanism as an instrument of policy in ...

Thomas Sterner; Carol A. Dahl

1992-01-01T23:59:59.000Z

220

Krakow Clean Fossil Fuels and Energy Efficiency Program  

SciTech Connect (OSTI)

The Support for Eastern European Democracy (SEED) Act of 1989 directed the US Department of Energy (DOE) to undertake an equipment assessment project aimed at developing the capability within Poland to manufacture or modify industrial-scale combustion equipment to utilize fossil fuels cleanly. The project is being conducted in three phases. In Phase I, testing and analytical activities will establish the current level of emissions from existing equipment and operating practices, and will provide estimates of the costs and emission reductions of various options. Phase II consists of a series of public meetings in both Poland and the United States to present the results of Phase I activities. In Phase III, DOE will issue a solicitation for Polish/US joint ventures to perform commercial feasibility studies for the use of US technology in one or more of the areas under consideration. This report provides interim results from Phase 1.

Butcher, T.; Pierce, B.; Krishna, C.R.

1992-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "increase fuel efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Improving gasoline direct injection (GDI) engine efficiency and emissions with hydrogen from exhaust gas fuel reforming  

Science Journals Connector (OSTI)

Abstract Exhaust gas fuel reforming has been identified as a thermochemical energy recovery technology with potential to improve gasoline engine efficiency, and thereby reduce CO2 in addition to other gaseous and particulate matter (PM) emissions. The principle relies on achieving energy recovery from the hot exhaust stream by endothermic catalytic reforming of gasoline and a fraction of the engine exhaust gas. The hydrogen-rich reformate has higher enthalpy than the gasoline fed to the reformer and is recirculated to the intake manifold, i.e. reformed exhaust gas recirculation (REGR). The REGR system was simulated by supplying hydrogen and carbon monoxide (CO) into a conventional EGR system. The hydrogen and CO concentrations in the REGR stream were selected to be achievable in practice at typical gasoline exhaust temperatures. Emphasis was placed on comparing REGR to the baseline gasoline engine, and also to conventional EGR. The results demonstrate the potential of REGR to simultaneously increase thermal efficiency, reduce gaseous emissions and decrease PM formation.

Daniel Fennell; Jose Herreros; Athanasios Tsolakis

2014-01-01T23:59:59.000Z

222

The effects of fuel type and stove design on emissions and efficiency of natural-draft semi-gasifier biomass cookstoves  

Science Journals Connector (OSTI)

Abstract To assess the effects of stove design and fuel type on efficiency and emissions, five configurations of natural-draft, top-lit up-draft (TLUD) semi-gasifier cookstoves were tested with two biomass fuels.  An energy balance model was developed using measured temperature data to identify the major sources of efficiency loss.  Emissions and efficiency varied substantially with stove design and fuel type, and transient increases in CO emission correlated with refueling.  The highest measured thermal efficiency was 42%.  The lowest CO and PM emissions were 0.6 g MJd? 1 and 48 g MJd? 1. These results fall within Tier 3 for high-power efficiency and emissions and suggest that development of a Tier 4 natural-draft semi-gasifier cookstove is possible. The energy balance illustrates that up to 60% of the energy input as fuel can remain as char once the fuel has gasified. This result suggests that both thermal and overall efficiencies should be calculated when evaluating TLUD cookstoves.

Jessica Tryner; Bryan D. Willson; Anthony J. Marchese

2014-01-01T23:59:59.000Z

223

U.S. Department of Energy and SuperPower, Inc. Increase Energy Efficiency  

Broader source: Energy.gov (indexed) [DOE]

and SuperPower, Inc. Increase Energy and SuperPower, Inc. Increase Energy Efficiency in the Nation's Electric Grid U.S. Department of Energy and SuperPower, Inc. Increase Energy Efficiency in the Nation's Electric Grid February 21, 2008 - 11:29am Addthis $27 Million Project Demonstrates Advanced Superconductivity Technology ALBANY, NY- The U.S. Department of Energy (DOE) and SuperPower, Inc. today commemorated the Albany High-Temperature Superconducting (HTS) Cable Project, the world's first use of second-generation HTS wire on the grid. This 350-meter HTS cable runs between the Riverside and Menands Substations in Albany, New York. HTS cables encounter essentially no resistance in electricity flow, which increases efficiency by eliminating 7-10 percent of the energy losses of conventional copper-based cables. DOE's over $13.5

224

U.S. Department of Energy and SuperPower, Inc. Increase Energy Efficiency  

Broader source: Energy.gov (indexed) [DOE]

Department of Energy and SuperPower, Inc. Increase Energy Department of Energy and SuperPower, Inc. Increase Energy Efficiency in the Nation's Electric Grid U.S. Department of Energy and SuperPower, Inc. Increase Energy Efficiency in the Nation's Electric Grid February 21, 2008 - 11:46am Addthis $27 Million Project Demonstrates Advanced Superconductivity Technology ALBANY, NY- The U.S. Department of Energy (DOE) and SuperPower, Inc. today commemorated the Albany High-Temperature Superconducting (HTS) Cable Project, the world's first use of second-generation HTS wire on the grid. This 350-meter HTS cable runs between the Riverside and Menands Substations in Albany, New York. HTS cables encounter essentially no resistance in electricity flow, which increases efficiency by eliminating 7-10 percent of the energy losses of conventional copper-based cables. DOE's over $13.5

225

INL receives GreenGov Presidential Award for fleet fuel efficiency improvements  

ScienceCinema (OSTI)

Idaho National Laboratory has received a 2010 GreenGov Presidential Award for outstanding achievement in fuel efficiency in its bus and automotive fleets. The award was presented today in Washington, D.C., as part of a three-day symposium on improving sustainability and energy efficiency across the federal government. Lots more content like this is available at INL's facebook page http://www.facebook.com/idahonationallaboratory.

None

2013-05-28T23:59:59.000Z

226

DOE Steps Lead to Significant Increase in Compliance with Energy Efficiency  

Broader source: Energy.gov (indexed) [DOE]

Steps Lead to Significant Increase in Compliance with Energy Steps Lead to Significant Increase in Compliance with Energy Efficiency Reporting Requirements DOE Steps Lead to Significant Increase in Compliance with Energy Efficiency Reporting Requirements January 12, 2010 - 12:00am Addthis WASHINGTON DC - The Department of Energy announced today that it has received certifications for over 600,000 residential appliances in 15 different product categories in response to the Department's enhanced energy efficiency enforcement efforts. DOE recently announced that manufacturers had until January 8, 2010 to submit correct energy use data to the Department of Energy before aggressive enforcement actions were taken. The certification data provided by 160 different manufacturers will allow DOE to review manufacturers' compliance with minimum energy

227

Project Information Form Project Title Routing Strategies for Efficient Deployment of Alt. Fuel Vehicles for  

E-Print Network [OSTI]

agency or organization) US DOT $90,000 Total Project Cost $90,000 Agency ID or Contract Number DTRT13-GProject Information Form Project Title Routing Strategies for Efficient Deployment of Alt. Fuel-UTC29 Start and End Dates May 16, 2014 to May 31, 2015 Brief Description of Research Project

California at Davis, University of

228

Sustainable Transportation: Accelerating Widespread Adoption of Energy Efficient Vehicles & Fuels (Brochure)  

SciTech Connect (OSTI)

While energy efficient transportation strategies have the potential to simultaneously slash oil consumption and reduce greenhouse gas (GHG) emissions, a truly sustainable solution will require more than just putting drivers behind the wheels of new fuel-efficient cars. As the only national laboratory dedicated 100% to renewable energy and energy efficiency, the National Renewable Energy Laboratory (NREL) accelerates widespread adoption of high-performance, low-emission, energy-efficient passenger and freight vehicles, as well as alternative fuels and related infrastructure. Researchers collaborate closely with industry, government, and research partners, using a whole-systems approach to design better batteries, drivetrains, and engines, as well as thermal management, energy storage, power electronic, climate control, alternative fuel, combustion, and emission systems. NREL's sustainable transportation research, development, and deployment (RD&D) efforts are not limited to vehicles, roads, and fueling stations. The lab also explores ways to save energy and reduce GHGs by integrating transportation technology advancements with renewable energy generation, power grids and building systems, urban planning and policy, and fleet operations.

Not Available

2014-12-01T23:59:59.000Z

229

Increasing Energy Efficiency and Reducing Emissions from China's Cement Kilns: Audit Report of Two Cement Plants in Shandong Province, China  

E-Print Network [OSTI]

energy reduction through energy efficiency improvements and the second section addresses reduction of pollutants with minimum or no change in fuelenergy reduction through energy efficiency improvements and the second section addresses reduction of pollutants with minimum or no change in fuel

Price, Lynn

2013-01-01T23:59:59.000Z

230

As the world economy continues to expand the demand for petroleum based fuel increases and the price of these fuels rises  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 4 Structural Studies of Catalytically Stabilized Industrial Hydrotreating Catalysts Myriam Perez De la Rosa 1 , Gilles Berhault 2 , Apurva Mehta 3 , Russell R. Chianelli 1 1 University of Texas at El Paso, Materials Research Technology Institute, El Paso, TX 2 Institut de Recherches sur la Catalyse, CNRS, Villeurbanne cedex, France 3 Stanford Synchrotron Radiation Laboratory, Menlo Park, CA Figure 1: MoS 2 layered structure. As the world economy continues to expand the demand for petroleum based fuel increases and the price of these fuels rises. The rising price of fuel has another consequence: refiners tend to purchase cheaper fuels of poorer quality. These poor quality fuels contain increasing amounts of sulfur and other pollutants leading to a decline

231

Prospects for increased low-grade bio-fuels use in home and commercial heating applications .  

E-Print Network [OSTI]

??Though we must eventually find viable alternatives for fossil fuels in large segments of the energy market, there are economically attractive fossil fuel alternatives today… (more)

Pendray, John Robert

2007-01-01T23:59:59.000Z

232

Considerations for increasing unit 1 spent fuel pool capacity at the Laguna Verde station  

SciTech Connect (OSTI)

To increase the spent fuel storage capacity at the Laguna Verde Station in a safe and economical manner and assure a continuous operation of the first Mexican Nuclear Plant, Comision Federal de Electricidad (CFE), the Nation's Utility, seeked alternatives considering the overall world situation, the safety and licensing aspects, as well as the economics and the extent of the nuclear program of Mexico. This paper describes the alternatives considered, their evaluation and how the decision taken by CFE in this field, provides the Laguna Verde Station with a maximum of 37 years storage capacity plus full core reserve.

Vera, A. (Comision Federal de Electricidad, Veracruz, Ver. (Mexico))

1992-01-01T23:59:59.000Z

233

Beryllium Impregnation of Uranium Fuel: Thermal Modeling of Cylindrical Objects for Efficiency Evaluation  

E-Print Network [OSTI]

, the graphs created need to be compared as shown below in figure 3.2. The goal of the new additive is to have a better heat conductivity throughout the fuel pellet in a reactor core leading to more power output from the fuel and better burnup. To see... conductivity. This leads to the temperature of the fuel to increase in order to produce the same power output as a higher thermal conductivity material. The Beryllium Oxide(BeO) that is to be used in this experiment is such a material that can raise...

Lynn, Nicholas

2011-08-04T23:59:59.000Z

234

Recovery Act Projects Funded for Fuel Cell Market Transformation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

SOFC technology by increasing net output power and fuel processing efficiency, decreasing heat loss and parasitic power loss, and establishing diesel fuel compatibility. The...

235

Plasmon-damping Chemical Sensor for Hydrogen Fuel Monitoring.  

E-Print Network [OSTI]

??Hydrogen (H2) is a clean, sustainable, and highly energy efficient fuel source which will meet the increasing energy demand. Fuel cells can utilize H2 and… (more)

Ede, Rama Krishna

2011-01-01T23:59:59.000Z

236

High efficiency direct fuel cell hybrid power cycle for near term application  

SciTech Connect (OSTI)

Direct carbonate fuel cells being developed by Energy Research Corporation can generate power at an efficiency approaching 60% LHV. This unique fuel cell technology can consume natural gas and other hydrocarbon based fuels directly without requiring an external reformer, thus providing a simpler and inherently efficient power generation system. A 2 MW power plant demonstration of this technology has been initiated at an installation in the city of Santa Clara in California. A 2.85 MW commercial configuration shown in Figure 1 is presently being developed. The complete plant includes the carbonate fuel cell modules, an inverter, transformer and switchgear, a heat recovery unit and supporting instrument air and water treatment systems. The emission levels for this 2.85 MW plant are projected to be orders of magnitude below existing or proposed standards. The 30 year levelized cost of electricity, without inflation, is projected to be approximately 5{cents}/kW-h assuming capital cost for the carbonate fuel cell system of $1000/kW.

Steinfeld, G.; Maru, H.C. [Energy Research Corp., Danbury, CT (United States); Sanderson, R.A. [Fuel Cell Systems Consultant, Wethersfield, CT (United States)

1996-12-31T23:59:59.000Z

237

Possibilities of increasing the efficiency of Si and CuInSe2 solar cells  

Science Journals Connector (OSTI)

The paper proposes a method of increasing the efficiency of Si and CuInSe2 solar cells using the impact ionization and impurity...pZnTe-pSi-nSi and pZnTe-pCuInSe2-n(CuInSe2)1?x (2InAs) ...

M. S. Saidov

2011-09-01T23:59:59.000Z

238

Nonlinear harmonic modeling of phemt devices for increased power amplifier efficiencies  

E-Print Network [OSTI]

This thesis is a comprehensive study of how harmonic terminations can greatly increase a power amplifier's efficiency (PAE). To show this improvement, the PHEMT amplifier is biased in the low noise region of operation (L, = 20 mA, Vd, = 3 V...

Strassner, Bernd Herbert

1997-01-01T23:59:59.000Z

239

Increasing efficiency of data mining systems by machine unification and double machine cache  

E-Print Network [OSTI]

Increasing efficiency of data mining systems by machine unification and double machine cache and in general data mining systems, we need to search through huge spaces of machine learn- ing algorithms. Meta-learning and other complex data mining approaches need to train and test thousands of learning machines while

Jankowski, Norbert

240

BOSTON COLLEGE AND MIT RESEARCHERS ACHIEVE DRAMATIC INCREASE IN THERMOELECTRIC EFFICIENCY  

E-Print Network [OSTI]

materials in a cost-effective manner." "These thermoelectric materials are already used in many applications antimony telluride is a material commonly used in thermoelectric products, and the researchers crushedBOSTON COLLEGE AND MIT RESEARCHERS ACHIEVE DRAMATIC INCREASE IN THERMOELECTRIC EFFICIENCY Nanotech

Huang, Jianyu

Note: This page contains sample records for the topic "increase fuel efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Modifying woody plants for efficient conversion to liquid and gaseous fuels  

SciTech Connect (OSTI)

The Short Rotation Woody Crop Program (SRWCP), Department of Energy, is developing woody plant species as sources of renewable energy. Much progress has been made in identifying useful species, and testing site adaptability, stand densities, coppicing abilities, rotation lengths, and harvesting systems. Conventional plant breeding and intensive cultural practices have been used to increase above-ground biomass yields. Given these and foreseeable accomplishments, program leaders are now shifting attention to prospects for altering biomass physical and chemical characteristics, and to ways for improving the efficiency with which biomass can be converted to gaseous and liquid fuels. This report provides a review and synthesis of literature concerning the quantity and quality of such characteristics and constituents, and opportunities for manipulating them via conventional selection and breeding and/or molecular biology. Species now used by SRWCP are emphasized, with supporting information drawn from others as needed. Little information was found on silver maple (Acer saccharinum), but general comparisons (Isenberg 1981) suggest composition and behavior similar to those of the other species. Where possible, conclusions concerning means for and feasibility of manipulation are given, along with expected impacts on conversion efficiency. Information is also provided on relationships to other traits, genotype X environment interactions, and potential trade-offs or limitations. Biomass productivity per se is not addressed, except in terms of effects that may by caused by changes in constituent quality and/or quantity. Such effects are noted to the extent they are known or can be estimated. Likely impacts of changes, however effected, on suitability or other uses, e.g., pulp and paper manufacture, are notes. 311 refs., 4 figs., 9 tabs.

Dinus, R.J.; Dimmel, D.R.; Feirer, R.P.; Johnson, M.A.; Malcolm, E.W. (Institute of Paper Science and Technology, Atlanta, GA (USA))

1990-07-01T23:59:59.000Z

242

National Renewable Energy Laboratory (NREL) Reports Increase in Durability and Reliability for Current Generation Fuel Cell Buses (Fact Sheet), Hydrogen and Fuel Cell Technical Highlights (HFCTH)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

869 * November 2010 869 * November 2010 National Renewable Energy Laboratory (NREL) Reports Increase in Durability and Reliability for Current Generation Fuel Cell Buses NREL Team: Hydrogen Technology Validation, Leslie Eudy Accomplishment: NREL recently reported an increase in durability and reliability for fuel cell systems demonstrated in transit service (first reported in July 2010). Context: The transit industry provides an excellent test-bed for developing and optimizing advanced transportation technologies, such as fuel cells. In coordination with the Federal Transit Administration, the Department of Energy (DOE) funds the evaluation of fuel cell buses (FCBs) in real-world service. Under this funding, NREL has collected and analyzed data on nine early generation FCBs operated by four transit agencies in the United States.

243

NATIONAL ENERGY POLICY Using Energy Wisely Increasing Energy Conservation and Efficiency  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Using Energy Wisely Using Energy Wisely Increasing Energy Conservation and Efficiency The Department of Energy has installed two low-sulfur light bulbs as a test at its Forrestal Building headquar- ters in Washington, D.C. The two golf ball-sized bulbs, like those on the opposite page, are at each end of a 240-foot, 10-inch-wide reflective plastic "light pipe." U.S. DEPARTMENTOF ENERGY U.S. DEPARTMENTOF ENERGY E nergy efficiency is the ability to use less energy to produce the same amount of lighting, heating, transportation, and other energy services. For a family or business, conserving energy means lower energy bills. For the country as a whole, greater en- ergy efficiency helps us make the most of U.S. energy resources, reduces energy shortages, lowers our reliance on energy

244

Increasing Federal Office Building Water Efficiency, Federal Energy Management Program (FEMP) (Fact Sheet)  

Broader source: Energy.gov (indexed) [DOE]

requires a two percent annual reduction in water use (compared to requires a two percent annual reduction in water use (compared to a FY 2007 baseline), significantly reducing total Federal water consumption by FY 2020. View Federal water requirements at www.femp.energy.gov/program/waterefficiency_ requirements.html. Increasing Federal Office Building Water Efficiency With less than one percent of Earth's water available for human use, the Federal Government is leading by example with water efficiency and conservation efforts. Federal laws and regulations require agencies to implement water efficiency efforts and reduce water consumption, making water an integral part of every comprehensive resource management program. Water Management Planning A comprehensive water management plan includes clear information on how a Federal facility uses water from

245

Increasing Federal Office Building Water Efficiency, Federal Energy Management Program (FEMP) (Fact Sheet)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Order 13514 requires a two percent annual reduction in water use (compared to Order 13514 requires a two percent annual reduction in water use (compared to a FY 2007 baseline), significantly reducing total Federal water consumption by FY 2020. View Federal water requirements at www.femp.energy.gov/program/waterefficiency_ requirements.html. Increasing Federal Office Building Water Efficiency With less than one percent of Earth's water available for human use, the Federal Government is leading by example with water efficiency and conservation efforts. Federal laws and regulations require agencies to implement water efficiency efforts and reduce water consumption, making water an integral part of every comprehensive resource management program. Water Management Planning A comprehensive water management plan includes clear information on

246

Fuel cells -- An increasingly competitive reality now for on-site applications and for mobile applications before the year 2000  

SciTech Connect (OSTI)

A fuel cell converts the energy released when hydrogen and oxygen combine to produce water, directly into electricity and heat--without combustion and without moving parts. Fuel cells are inherently clean, highly efficient and reliable. The most attractive near-term application is commercial cogeneration followed by distributed power. A fleet of over 70 ONSI 200 kW cogeneration plants has demonstrated reliability and durability significantly better than mature conventional cogeneration equipment. The cities of Chicago and Vancouver will introduce small fleets of prototype commercial fuel cell buses over the next two years and Daimler-Benz launched a prototype fuel cell powered car in May 1996. The US and Japanese governments are providing commercialization support to accelerate the market introduction of near-term stationary systems and plant will achieve competitive costs by 1998/99. Commercial buses will become available in 1998 and cars are expected within the following decade.

Nurdin, M.A.B. [World Fuel Cell Council, Frankfurt am Main (Germany)

1997-07-01T23:59:59.000Z

247

Retrofit Options for Increasing Energy Efficiency in Office Buildings- Methodology Review  

E-Print Network [OSTI]

RETROFIT OPTIONS FOR INCREASING ENERGY EFFICIENCY IN OFFICE BUILDINGS - METHODOLOGY REVIEW Nuno Cl?maco Pereira MIT|Portugal Program, Sustainable Energy Systems Ph.D. Student Instituto Superior T?cnico, Universidade T?cnica de Lisboa Lisboa... technical framework, where existing technologies and best case-studies can be considered, in order to drive passive measures retrofitting forward. This paper presents an overview of a methodology development which pretends to include the energy component...

Pereira, N. C.

248

POTENTIAL IMPACT OF INTERFACIAL BONDING EFFICIENCY ON USED NUCLEAR FUEL VIBRATION INTEGRITY DURING NORMAL TRANSPORTATION  

SciTech Connect (OSTI)

Finite element analysis (FEA) was used to investigate the impacts of interfacial bonding efficiency at pellet pellet and pellet clad interfaces on surrogate of used nuclear fuel (UNF) vibration integrity. The FEA simulation results were also validated and benchmarked with reversible bending fatigue test results on surrogate rods consisting of stainless steel (SS) tubes with alumina-pellet inserts. Bending moments (M) are applied to the FEA models to evaluate the system responses of the surrogate rods. From the induced curvature, , the flexural rigidity EI can be estimated as EI=M/ . The impacts of interfacial bonding efficiency include the moment carrying capacity distribution between pellets and clad and cohesion influence on the flexural rigidity of the surrogate rod system. The result also indicates that the immediate consequences of interfacial de-bonding are a load carrying capacity shift from the fuel pellets to the clad and a reduction of the composite rod flexural rigidity. Therefore, the flexural rigidity of the surrogate rod and the bending moment bearing capacity between the clad and fuel pellets are strongly dependent on the efficiency of interfacial bonding at the pellet pellet and pellet clad interfaces. FEA models will be further used to study UNF vibration integrity.

Jiang, Hao [ORNL] [ORNL; Wang, Jy-An John [ORNL] [ORNL; Wang, Hong [ORNL] [ORNL

2014-01-01T23:59:59.000Z

249

INCREASE  

ScienceCinema (OSTI)

The Interdisciplinary Consortium for Research and Educational Access in Science and Engineering (INCREASE), assists minority-serving institutions in gaining access to world-class research facilities.

None

2013-07-22T23:59:59.000Z

250

Sustainability assessment of renovation packages for increased energy efficiency for multi-family buildings in Sweden  

Science Journals Connector (OSTI)

In this paper, we propose a method for assessing renovation packages drawn up with the goal of increasing energy efficiency. The method includes calculation of bought energy demand, life-cycle cost (LCC) analysis and assessment of the building according to the Swedish environmental rating tool Miljöbyggnad (MB). In this way the methodology assesses economic, indoor environmental quality (IEQ) and specifically environmental aspects associated with energy demand of such packages from a sustainability point-of-view. Through MB, energy efficiency packages are placed in context with other necessary measures required to improve environmental performance in buildings, providing a consistent and systematic basis other than simply financial performance by which to compare capital improvements. The method is further explained and analyzed by applying it in three case studies. In each case study a multi-family building representing a typologically significant class in the Swedish building stock is considered, and for each building a base case and two renovation packages with higher initial investment requirement and higher energy efficiency are defined. It is shown that higher efficiency packages can impact IEQ indicators both positively and negatively and that packages reducing energy demand by approx. 50% have somewhat higher LCC. Identified positive IEQ impacts point to added value for packages that may not otherwise be communicated, while negative impacts identify areas where packages need to be improved, or where MB indicators may be referred to as specifications in procurement procedures.

Nils W.O. Brown; Tove Malmqvist; Wei Bai; Marco Molinari

2013-01-01T23:59:59.000Z

251

Influence of input momentum and losses in the turbine on the efficiency of a turbofan engine with periodic fuel combustion  

Science Journals Connector (OSTI)

It is shown that research carried out by leading aeroengine manufactures on the use of the thermodynamically high-efficient GTE cycle with the periodic fuel combustion is very urgent. The investigation results...

V. I. Bogdanov; A. K. Dormidontov

2009-09-01T23:59:59.000Z

252

Vehicle Technologies Office 2013 Merit Review: A MultiAir / MultiFuel Approach to Enhancing Engine System Efficiency  

Broader source: Energy.gov [DOE]

A presentation given by Chrysler at the 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting on its project to research a multi-air and multi-fuel approach to improving engine efficiency.

253

Case Study: Fuel Cells Increase Reliability at First National Bank of Omaha  

Fuel Cell Technologies Publication and Product Library (EERE)

A case study of the First National Bank of Omaha fuel cell system, covering 1999 through October 2009. The system reduced heating bills by more than $1 million.

254

Increasing the efficiency of organic solar cells by photonic and electrostatic-field enhancements  

SciTech Connect (OSTI)

Organic photovoltaic (OPV) technology is an attractive solar-electric conversion paradigm due to the promise of low cost roll-to-roll production and amenability to flexible substrates. Power conversion efficiency (PCE) exceeding 7% has recently been achieved. OPV cells suffer from low charge carrier mobilities of polymers, leading to recombination losses, higher series resistances and lower fill-factors. Thus, it is imperative to develop fabrication methodologies that can enable efficient optical absorption in films thinner than optical absorption length. Active layers conformally deposited on light-trapping, microscale textured, grating-type surfaces is one possible approach to achieve this objective. In this study, 40% theoretical increase in photonic absorption over flat OPVs is shown for devices with textured geometry by the simulation results. For verifying this theoretical result and improving the efficiency of OPVs by light trapping, OPVs were fabricated on grating-type textured substrates possessing t pitch and -coat PV active-layer on these textured substrates led to over filling of the valleys and shunts at the crest, which severely affected the performance of the resultant PV devices. Thus, it is established that although the optical design is important for OPV performance but the potential of light trapping can only be effectively tapped if the textures are amenable for realizing a conformal active layer. It is discovered that if the height of the underlying topographical features is reduced to sub-micron regime (e.g. 300 nm) and the pitch is increased to more than a micron (e.g. 2 ?m), the textured surface becomes amenable to coating a conformal PV active-layer. The resultant PV cells showed 100% increase in average light absorption near the band edge due to trapping of higher wavelength photons, and 20% improvement in power conversion efficiency as compared with the flat PV cell. Another factor that severely limits the performance of OPVs is recombination of charge carriers. Thus it becomes imperative to understand the effect of processing conditions such as spin coating speed and drying rate on defect density and hence induced carrier recombination mechanism. In this study, It is shown that slow growth (longer drying time) of the active-layer leads to reduction of sub-bandgap traps by an order of magnitude as compared to fast grown active-layer. By coupling the experimental results with simulations, it is demonstrated that at one sun condition, slow grown device has bimolecular recombination as the major loss mechanism while in the fast grown device with high trap density, the trap assisted recombination dominates. It has been estimated that non-radiative recombination accounts nearly 50% of efficiency loss in modern OPVs. Generally, an external bias (electric field) is required to collect all the photogenerated charges and thus prevent their recombination. The motivation is to induce additional electric field in otherwise low mobility conjugated polymer based active layer by incorporating ferroelectric dipoles. This is expected to facilitate singlet exciton dissociation in polymer matrix and impede charge transfer exciton (CTE) recombination at polymer:fullerene interface. For the first time, it is shown that the addition of ferroelectric dipoles to modern bulk heterojunction (BHJ) can significantly improve exciton dissociation, resulting in a ~50% enhancement of overall solar cell efficiency. The devices also exhibit the unique ferroelectric-photovoltaic effect with polarization-controlled power conversion efficiency.

Nalwa, Kanwar

2012-11-03T23:59:59.000Z

255

Development and Demonstration of a New Generation High Efficiency 10kW Stationary Fuel Cell System  

SciTech Connect (OSTI)

The overall project objective is to develop and demonstrate a polymer electrolyte membrane fuel cell combined heat and power (PEMFC CHP) system that provides the foundation for commercial, mass produced units which achieve over 40% electrical efficiency (fuel to electric conversion) from 50-100% load, greater than 70% overall efficiency (fuel to electric energy + usable waste heat energy conversion), have the potential to achieve 40,000 hours durability on all major process components, and can be produced in high volumes at under $400/kW (revised to $750/kW per 2011 DOE estimates) capital cost.

Howell, Thomas Russell

2013-04-30T23:59:59.000Z

256

Efficient storage of hydrogen fuel into leaky cages of clathrate hydrate  

Science Journals Connector (OSTI)

We demonstrate an alternative principle to efficiently store molecular hydrogen fuel into clathrate hydrate medium. Hydrogen-free hydrate powders quickly absorb the hydrogen gas at moderate pressure appropriate for industrial applications. The absorption kinetics was observed in situ by nuclear magnetic resonance(NMR)spectroscopy in a pressurized tube. The diffusion of hydrogen through the solid hydrate medium was directly measured by pulsed field gradient NMR. At temperatures down to 250 K the stored hydrogen is still mobile so that the hydrate storage should work well even in cold environments.

Takuo Okuchi; Igor L. Moudrakovski; John. A. Ripmeester

2007-01-01T23:59:59.000Z

257

NREL Uses Fuel Cells to Increase the Range of Battery Electric...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Range Limitation of Medium-Duty Battery Electric Vehicles through the Use of Hydrogen Fuel Cells." SAE Int.; DOI: 10.42712013-01-2471. Extrapolation from parcel delivery vehicle...

258

Interactions between fuel choice and energy-efficiency in new homes in the Pacific Northwest  

SciTech Connect (OSTI)

In recent years the Bonneville Power Administration has instituted programs to prompt the implementation of the residential Model Conservation Standards (MCS) issued by the Northwest Power Planning Council (Council) in 1983. These standards provide alternative methods for designing and constructing homes to cost effectively reduce residential energy consumption. Authority exists to apply them only to new, electrically heated homes. Because they apply to electrically heated homes, concerns have arisen about how the standards might affect buyers' decisions to purchase a new home, in particular, their choice of a heating fuel. Early data suggested that electricity started losing market share in Tacoma about when the MCS went into effect in 1984, and recent data have shown that about half of electricity's share of the new home market has shifted to natural gas. This decline in electric heating was consistent with concerns about the possible detrimental effect of the cost of MCS on sales of electrically heated homes. A desire to understand the causes of the perceived decline in electricity's market share was part of the impetus for this study. Multiple techniques and data sources are used in this study to examine the relationship between residential energy-efficiency and fuel choice in the major metropolitan areas in Washington: Spokane, Clark, Pierce, and King Counties. Recent regional surveys have shown that electricity is the predominant space heating fuel in the Pacific Northwest, but it appears to be losing its dominance in some markets such as Tacoma.

Lee, A.D.; Englin, J.E.; Bruneau, C.L.

1990-12-01T23:59:59.000Z

259

Energy Efficient Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Efficient Technologies Energy Efficient Technologies Energy efficient technologies are available now! Many of the vehicles currently on display in dealer showrooms boast new performance-enhancing, fuel-saving technologies that can save you money. Engine Technologies Transmission Technologies All Engine Technology Average Efficiency Increase Variable Valve Timing & Lift improve engine efficiency by optimizing the flow of fuel & air into the engine for various engine speeds. 5% Cylinder Deactivation saves fuel by deactivating cylinders when they are not needed. 7.5% Turbochargers & Superchargers increase engine power, allowing manufacturers to downsize engines without sacrificing performance or to increase performance without lowering fuel economy. 7.5% Integrated Starter/Generator (ISG) Systems automatically turn the engine on/off when the vehicle is stopped to reduce fuel consumed during idling. 8%

260

High Efficiency Generation of Hydrogen Fuels using Nuclear Power Annual Report August, 2000 - July 2001  

SciTech Connect (OSTI)

OAK B188 High Efficiency Generation of Hydrogen Fuels using Nuclear Power Annual Report August 2000 - July 2001. Currently no large scale, cost-effective, environmentally attractive hydrogen production process is available for commercialization nor has such a process been identified. Hydrogen is a promising energy carrier, which potentially could replace the fossil fuels used in the transportation sector of our economy. Carbon dioxide emissions from fossil fuel combustion are thought to be responsible for global warming. The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high temperature heat from an advanced nuclear power station. The benefits of this work will include the generation of a low-polluting transportable energy feedstock in an efficient method that has little or no implication for greenhouse gas emissions from a primary energy source whose availability and sources are domestically controlled. This will help to ensure energy for a future transportation/energy infrastructure that is not influenced/controlled by foreign governments. This report describes work accomplished during the second year (Phase 2) of a three year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first year (Phase 1) was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water, in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most, three) for further detailed consideration. Phase 1 met its goals and did select one process, the sulfur-iodine process, for investigation in Phases 2 and 3. The combined goals of Phases 2 and 3 were to select the advanced nuclear reactor best suited to driving the selected thermochemical process and to define the selected reactor and process to the point that capital costs, operating costs and the resultant cost of hydrogen can be estimated. During original contract negotiation, it was necessary to reduce work scope to meet funding limits. As a result, the reactor interface and process will not be iterated to the point that only hydrogen is produced. Rather, hydrogen and electricity will be co-generated and the hydrogen cost will be stated as a function of the electricity sales price.

Brown, L.C.

2002-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "increase fuel efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Novel Heat Exchanger Increases Cascade Cycle Efficiency for Natural Gas Liquefaction  

Science Journals Connector (OSTI)

Liquefaction of natural gas in large scale production facilities has become an accepted, competitive method for supplying fuel to energy-short areas within the past ten years. To reach attractive laid-down cos...

P. S. O’Neill; C. F. Gottzmann; J. W. Terbot

1972-01-01T23:59:59.000Z

262

Two-Stage Variable Compression Ratio (VCR) System to Increase Efficiency in Gasoline Powertrains  

Broader source: Energy.gov [DOE]

Presents two-stage variable compression ratio mechanism realized by varying the connecting rod length, description of the system layout, working principle and expected fuel savings benefits when used in current and future gasoline engine concepts

263

Effects of SO2/SO2 on the efficiency with which MgO inhibits vanadic corrosion in residual fuel fired gas turbines  

Science Journals Connector (OSTI)

The use of MgO as a fuel additive to combat vanadic corrosion is widely accepted practice for boilers and turbines operating on residual or low grade fuels. MgO has the ability to form high melting stable vanadates but the presence of SO2/SO2 can react with the magnesium and reduce its effectiveness. This paper aims to quantify the effectiveness of MgO as an inhibitor in the presence of increasing amounts of SOx. A method of determining permissible levels of \\{SOx\\} to satisfy predetermined corrosion rates or additive efficiencies is described. Examples of the loss of additive efficiency with volume of \\{SOx\\} at temperatures of 750 and 850°C are given for both nickel and cobalt base alloys.

T.N. Rhys-Jones; J.R. Nicholls; P. Hancock

1983-01-01T23:59:59.000Z

264

Case Study: Fuel Cells Increase Reliability at First National Bank of Omaha  

Broader source: Energy.gov [DOE]

First National Bank of Omaha installed a fuel cell system in 1999 to provide primary power to its data center in Omaha, Nebraska. In more than 89,000 hours of operation through October 2009, the system is estimated to have reduced heating bills by more than $1 million.

265

Small Businesses Save Big: A Borrower's Guide To Increase the Bottom Line Using Energy Efficiency (Fact Sheet)  

SciTech Connect (OSTI)

Dollars saved through energy efficiency can directly impact your bottom line. Whether you are planning for a major renovation or upgrading individual pieces of building equipment, these improvements can help reduce operating costs, save on utility bills, and boost profits. This fact sheet provides a guide for small businesses to find the resources to increase the energy efficiency of their buildings.

Not Available

2015-01-01T23:59:59.000Z

266

E-Print Network 3.0 - analyzing fuel efficiency Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Advanced Technology (CFAT) is a project of the NC Solar... Quality, and State Energy Office with support from the Triangle Clean Cities, Centralina Clean Fuels......

267

Fan-shape optimisation using CFD and genetic algorithms for increasing the efficiency of electric motors  

Science Journals Connector (OSTI)

The electric motor efficiency represents the effectiveness with which the motor converts electrical energy into mechanical energy. As the energy losses are converted into heat, which is dissipated by the motor frame aided by internal and external fans, a better cooling system adds up to better efficiency. In recent years, improvements in motor efficiency have been achieved but at higher costs. By using Genetic Algorithms (GAs), changes are introduced to the fan shape looking for a better aerodynamic performance. The evaluation of the achieved fan efficiency with the modified shapes is performed with Computational Fluid Dynamics (CFD) simulation software.

Noel Leon-Rovira; Eduardo Uresti; Waldo Arcos

2007-01-01T23:59:59.000Z

268

Alcoa: C-Suite Participation in Energy Efficiency Increases Accountability and Staff Engagement Throughout the Organization  

Broader source: Energy.gov [DOE]

This case study details how corporate leaders at Alcoa established energy efficiency as a priority throughout the organization and achieved plant-wide performance improvements as a result.

269

FBC (fluidized-bed combustors) engineering correlations for estimating the combustion efficiency of a range of fuels  

SciTech Connect (OSTI)

Simplified engineering correlations are presented for estimating the combustion efficiency of a wide range of fuel types in fluidized bed boilers. The correlations are presented in such a way that they can be applied to various boiler designs, including both bubbling and circulating beds. Major emphasis is placed on minimizing the boiler design and operating details required, thereby enhancing the usefulness of these methods as screening tools. The impact of fuel type is addressed by making use of the fuel characterization parameters measured by the Babcock and Wilcox Company for the Electric Power Research Institute. It is demonstrated that the methods described give combustion efficiency estimates that agree well with typical observations from some well-documented fluidized bed combustion test facilities. 16 refs., 9 figs., 1 tab.

Daw, C.S.; Chandran, R.R.; Duqum, J.N.; Perna, M.A.; Petrill, E.M.

1989-01-01T23:59:59.000Z

271

Conducting Successful Programs to Increase the Energy-Efficiency of Manufactured Housing  

E-Print Network [OSTI]

. In this region, the Bonneville Power Administration (Bonneville) has instituted several programs designed to promote energy-efficiency improvements in buildings. One of the latest targets of these programs is manufactured housing. Since 1985, Bonneville has...

Lee, A. D.; Riewer, S. M.; Volke, S. M.

1990-01-01T23:59:59.000Z

272

Thin fuel film reactor testing for characterization of diesel fuel deposit formation  

E-Print Network [OSTI]

The need for specialized diesel fuel injectors is growing with increased efficiency and emissions regulation. These specialized fuel injectors have nozzle diameters of 150-200[mu]m which are susceptible to clogging from ...

Welling, Orian (Orian Z.)

2009-01-01T23:59:59.000Z

273

Achieving Vehicle Fuel Efficiency: The CAFE Standards and Abstract: As a series of political objectives converge and call for enhanced domestic automobile  

E-Print Network [OSTI]

recommendations for the United States and China: rework minimum fuel efficiency standards, raise the gasoline tax situation in the United States is largely defined by the Energy Policy and Conservation Act, whichAchieving Vehicle Fuel Efficiency: The CAFE Standards and Beyond Abstract: As a series of political

Mauzerall, Denise

274

Power, Efficiency, and Emissions Optimization of a Single Cylinder Direct-Injected Diesel Engine for Testing of Alternative Fuels through Heat Release Modeling  

E-Print Network [OSTI]

Power, Efficiency, and Emissions Optimization of a Single Cylinder Direct-Injected Diesel Engine for Testing of Alternative Fuels through Heat Release Modeling BY Jonathan Michael Stearns Mattson Submitted to the graduate degree program..., Efficiency, and Emissions Optimization of a Single Cylinder Direct-Injected Diesel Engine for Testing of Alternative Fuels through Heat Release Modeling BY Jonathan Michael Stearns Mattson...

Mattson, Jonathan Michael Stearns

2013-08-31T23:59:59.000Z

275

The sucrose fuel cell: Efficient biomass conversion using a microbial catalyst  

Science Journals Connector (OSTI)

Sucrose was used as a fuel in a thionine-mediated microbial fuel cell containingProteus vulgaris serving as the biocatalyst in the anode compartment. The measured yields show that under suitable conditions the su...

H. P. Bennetto; G. M. Delaney; J. R. Mason; S. D. Roller…

1985-10-01T23:59:59.000Z

276

Demonstration of a high-efficiency steam reformer for fuel cell power plant applications  

SciTech Connect (OSTI)

Full-scale tests of a new modular steam reformer confirm its suitability for a wide range of fuel cell power plant applications. This new fuel processor offers interested utilities excellent performance, operating flexibility, reliability, and maintainability.

Udengaard, N.R.; Christiansen, L.J.; Summers, W.A.

1987-08-01T23:59:59.000Z

277

Vehicle Technologies Office Merit Review 2014: A Materials Approach to Fuel-Efficient Tires  

Broader source: Energy.gov [DOE]

Presentation given by PPG Industries at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about a materials approach to fuel...

278

Efficiency Improvement Opportunities for Light-Duty Natural-Gas-Fueled Vehicles  

SciTech Connect (OSTI)

The purpose of this report is to evaluate and make recommendations concerning technologies that promise to improve the efilciency of compressed natural gas (CNG) light-duty vehicles. Technical targets for CNG automotive technology given in the March 1998 OffIce of Advanced Automotive Technologies research and development plan were used as guidance for this effort. The technical target that necessitates this current study is to validate technologies that enable CNG light vehicles to have at least 10% greater - fuel economy (on a miles per gallon equivalent basis) than equivalent gasoline vehicles by 2006. Other tar- gets important to natural gas (NG) automotive technology and this study are to: (1) increase CNG vehicle range to 380 miles, (2) reduce the incremental vehicle cost (CNG vs gasoline) to $1500, and (3) meet the California ultra low-emission vehicle (ULEV) and Federal Tier 2 emission standards expected to be in effect in 2004.

Staunton, R.H.; Thomas, J.F.

1998-12-01T23:59:59.000Z

279

Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

280

Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

Note: This page contains sample records for the topic "increase fuel efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Fuel Effects on Mixing-Controlled Combustion Strategies for High-Efficiency Clean-Combustion Engines  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

282

Emissions and efficiency of agricultural diesels using low-proof ethanol as supplement fuel. [Tractor engines  

SciTech Connect (OSTI)

Experimental investigations were made to evaluate the potential of using low-proof ethanol to supplement diesel fuel in agricultural engines. Fumigation, mechanical emulsification, and chemical emulsifiers were used to introduce a significant amount of alcohol with diesel fuel for engine operation. A total of five diesel tractor engines were tested using each of the fuel systems. Exhaust products and fuel usage were determined at various engine speed/load conditions. 5 references, 12 figures, 14 tables.

Allsup, J.R.; Clingenpeel, J.M.

1984-01-01T23:59:59.000Z

283

A MultiAir / MultiFuel Approach to Enhancing Engine System Efficiency  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

284

Development and Demonstration of a Fuel-Efficient Class 8 Highway Vehicle  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

285

Supertruck- Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

286

Supertruck- Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

287

SuperTruck ? Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

288

SuperTruck ? Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

289

SuperTruck ? Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

290

Supertruck- Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

291

Combustion, Efficiency, and Fuel Effects in a Spark-Assisted HCCI Gasoline Engine  

Broader source: Energy.gov [DOE]

2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Oak Ridge National Laboratory, Fuel, Engines, and Emissions Research Center

292

Development and Demonstration of a Fuel-Efficient Class 8 Highway Vehicle  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

293

Increased network efficiency for variable rate video streams in an Integrated Services Packet Network environment  

E-Print Network [OSTI]

utilization as high as 108. 8% over current techniques used for sending variable bit-rate over resource reservations are shown. To my family: Elizabeth, Dad, Mom, and Kristen ACKNOWLEDGMENTS First, I would like to thank my advisor, Dr. Pierce E. Cantrell... Lovr Movement CafeMocha Scene . High Movement CafeMocha Scene 74 75 25 Reservation Efficiency as a Function of s 77 26 27 Fraction of Packets Over Reservation Rate as a Function of c Reservation Efficiency/Over as a Function of e . 78 78 28...

Schroeder, Charles Grant

2012-06-07T23:59:59.000Z

294

Fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Goals > Fuels Goals > Fuels XMAT for nuclear fuels XMAT is ideally suited to explore all of the radiation processes experienced by nuclear fuels.The high energy, heavy ion accleration capability (e.g., 250 MeV U) can produce bulk damage deep in the sample, achieving neutron type depths (~10 microns), beyond the range of surface sputtering effects. The APS X-rays are well matched to the ion beams, and are able to probe individual grains at similar penetrations depths. Damage rates to 25 displacements per atom per hour (DPA/hr), and doses >2500 DPA can be achieved. MORE» Fuels in LWRs are subjected to ~1 DPA per day High burn-up fuel can experience >2000 DPA. Traditional reactor tests by neutron irradiation require 3 years in a reactor and 1 year cool down. Conventional accelerators (>1 MeV/ion) are limited to <200-400 DPAs, and

295

Game theory analysis of aircraft manufacturer innovation strategies in the face of increasing airline fuel costs  

E-Print Network [OSTI]

The air transportation system is a vital infrastructure that enables economic growth and provides significant social benefits. Future increases and volatility in crude oil prices, as well as environmental charges, are ...

Morrison, James K. D. (James Kelley Douglas)

2011-01-01T23:59:59.000Z

296

Role of Hydrogen Peroxide in a Selected Emulsified Fuel Ratio and Comparing It to Diesel Fuel  

Science Journals Connector (OSTI)

(9) At higher load conditions, the brake thermal efficiency slightly increases for the hydrogen-peroxide-added emulsified fuel than for the remaining two fuels. ... Reduction of NOx, smoke, BSFC, and maximum combustion pressure by low compression ratios in a diesel engine fueled by emulsified fuel. ...

M. P. Ashok; C. G. Saravanan

2008-05-03T23:59:59.000Z

297

Augmented air supply for fuel cell power plant during transient load increases  

SciTech Connect (OSTI)

In a fuel cell power plant, a system for supplying air to an oxygen side of the cells in the plant is described comprising: (a) conduit means for feeding air to the oxygen side of the plant; (b) a constant speed blower connected to the conduit means for blowing an air stream into the conduit means at a constant velocity; (c) a motorized control valve in the conduit means between the blower and the oxygen side, the control valve being adjustable to vary the amount of air flowing to the oxygen side; (d) branch conduit means opening into the conduit means for providing an air flow path from the blower to the oxygen side which bypasses the control valve; (e) fast acting valve means in the branch conduit means, the fast acting valve means being relatively instantly transformable from a closed condition to an open condition and return, and the fast acting valve means being normally in the closed condition; (f) flow meter means in the conduit means for measuring amounts of oxygen flowing from the control valve from the control valve and the fast acting valve means to the oxygen side; (g) current monitoring means connected to a loaf line from the power plant for monitoring load changes imposed upon the cells in the power plant; and (h) microprocessor means for controlling operation of the system, the microprocessor means being operably connected to the current monitoring means, to the flow meter means, to the fast acting valve means and to the control valve.

Beal, D.W.; Scheffer, G.W.

1988-03-08T23:59:59.000Z

298

DIESEL FUEL LUBRICATION  

SciTech Connect (OSTI)

The diesel fuel injector and pump systems contain many sliding interfaces that rely for lubrication upon the fuels. The combination of the poor fuel lubricity and extremely tight geometric clearance between the plunger and bore makes the diesel fuel injector vulnerable to scuffing damage that severely limits the engine life. In order to meet the upcoming stricter diesel emission regulations and higher engine efficiency requirements, further fuel refinements that will result in even lower fuel lubricity due to the removal of essential lubricating compounds, more stringent operation conditions, and tighter geometric clearances are needed. These are expected to increase the scuffing and wear vulnerability of the diesel fuel injection and pump systems. In this chapter, two approaches are discussed to address this issue: (1) increasing fuel lubricity by introducing effective lubricity additives or alternative fuels, such as biodiesel, and (2) improving the fuel injector scuffing-resistance by using advanced materials and/or surface engineering processes. The developing status of the fuel modification approach is reviewed to cover topics including fuel lubricity origins, lubricity improvers, alternative fuels, and standard fuel lubricity tests. The discussion of the materials approach is focused on the methodology development for detection of the onset of scuffing and evaluation of the material scuffing characteristics.

Qu, Jun [ORNL

2012-01-01T23:59:59.000Z

299

Clean Cities Guide to Alternative Fuel Commercial Lawn Equipment (Brochure), Energy Efficiency & Renewable Energy (EERE)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Guide to Guide to Alternative Fuel Commercial Lawn Equipment Contents Introduction........................... 4 Compressed Natural Gas ........................ 6 Biodiesel ................................. 6 Electricity ............................... 7 Propane .................................. 8 Incentives ............................... 14 Special Considerations ...... 14 Resources............................... 15 A single commercial lawnmower can annually use as much gaso- line or diesel fuel as a commercial work truck. Powering commercial lawn service equipment with alternative fuels is an effective way to reduce petroleum use. Alternative fuels can also reduce pollutant emissions compared with conventional fuels. Nu- merous biodiesel, compressed natural gas, electric, and propane

300

Mitigation of atmospheric carbon emissions through increased energy efficiency versus increased non-carbon energy sources: A trade study using a simplified {open_quotes}market-free{close_quotes} exogenously driven model  

SciTech Connect (OSTI)

A simplified model of global, long-term energy use is described and used to make a `top-level` comparison of two generic approaches for mitigating atmospheric carbon emissions: (a) those based on increased energy efficiency; and (b) those based on increased use of reduced- or non-carbon fuels. As approximate as is the model, first-order estimates of and trade offs between increasing non-carbon generation capacities (e.g., supply-side solutions) versus energy-use efficiency (e.g., demand-side solutions) to stem atmospheric carbon accumulations can be useful in guiding more elaborate models. At the level of this analysis, both the costs of abatement and the costs of damage can be large, with the formation of benefit-to-cost ratios as a means of assessment being limited by uncertainties associated with relating given climatic responses to greenhouse warming to aggregate damage cost, as well as uncertainties associated with procedures used for multi-generation discounting of both abatement and damage costs. In view of uncertainties associated with both supply-side and demand-side approaches, as well as the estimation of greenhouse-warming responses per se, a combination of solutions seems prudent. Key findings are: (a) the relative insensitivity of the benefit-to-cost ratio adopted in this study to supply-side versus demand-side approaches to abating atmospheric carbon-dioxide emissions; (b) the extreme sensitivity of damage costs, abatement costs, and the related benefit-to-cost ratios to the combination of discounting procedure and the (time) concavity of the function used to relate global temperature rise to damage costs; and (c) no matter the discounting procedure and/or functional relationship between average temperature rise and a damage cost, a goal of increased per-capita gross world product at minimum damage suggests action now rather than delay.

Krakowski, R.A.

1997-08-24T23:59:59.000Z

Note: This page contains sample records for the topic "increase fuel efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Very High Fuel Economy, Heavy Duty, Constant Speed, Truck Engine Optimized Via Unique Energy Recovery Turbines and Facilitated High Efficiency Continuously Variable Drivetrain  

SciTech Connect (OSTI)

The project began under a corporative agreement between Mack Trucks, Inc and the Department of Energy starting from September 1, 2005. The major objective of the four year project is to demonstrate a 10% efficiency gain by operating a Volvo 13 Litre heavy-duty diesel engine at a constant or narrow speed and coupled to a continuously variable transmission. The simulation work on the Constant Speed Engine started on October 1st. The initial simulations are aimed to give a basic engine model for the VTEC vehicle simulations. Compressor and turbine maps are based upon existing maps and/or qualified, realistic estimations. The reference engine is a MD 13 US07 475 Hp. Phase I was completed in May 2006 which determined that an increase in fuel efficiency for the engine of 10.5% over the OICA cycle, and 8.2% over a road cycle was possible. The net increase in fuel efficiency would be 5% when coupled to a CVT and operated over simulated highway conditions. In Phase II an economic analysis was performed on the engine with turbocompound (TC) and a Continuously Variable Transmission (CVT). The system was analyzed to determine the payback time needed for the added cost of the TC and CVT system. The analysis was performed by considering two different production scenarios of 10,000 and 60,000 units annually. The cost estimate includes the turbocharger, the turbocompound unit, the interstage duct diffuser and installation details, the modifications necessary on the engine and the CVT. Even with the cheapest fuel and the lowest improvement, the pay back time is only slightly more than 12 months. A gear train is necessary between the engine crankshaft and turbocompound unit. This is considered to be relatively straight forward with no design problems.

Bahman Habibzadeh

2010-01-31T23:59:59.000Z

302

DOI 10.1007/s00382-014-2277-3 The increasing efficiency of tornado days in the United States  

E-Print Network [OSTI]

- tive available potential energy (CAPE) and convective inhi- bition (CIN) within the near1 3 DOI 10.1007/s00382-014-2277-3 Clim Dyn The increasing efficiency of tornado days in the United large year-to-year variation in tornado fre- quency, but a consensus report on extreme storms and cli

Elsner, James B.

303

INCREASED CELL EFFICIENCY IN InGaAs THIN FILM SOLAR CELLS WITH DIELECTRIC AND METAL BACK REFLECTORS  

E-Print Network [OSTI]

INCREASED CELL EFFICIENCY IN InGaAs THIN FILM SOLAR CELLS WITH DIELECTRIC AND METAL BACK REFLECTORS solar cells using back reflectors. We studied absorption enhancement in InGaAs and InGaAsP thin film and metal, on InGaAs thin film solar cell performance by device modeling and nu- merical simulations. DEVICE

Atwater, Harry

304

Energy Department Issues Green Building Certification System Final Rule to Support Increased Energy Measurement and Efficient Building Design  

Office of Energy Efficiency and Renewable Energy (EERE)

Supporting the Obama Administration’s goal to reduce carbon emissions and protect the environment, the Energy Department is pursuing a suite of initiatives to strengthen federal energy management through increased focus on measurement of energy use in federal buildings and energy efficient building design.

305

2009 Fuel Cell Market Report, November 2010, Energy Efficiency & Renewable Energy (EERE)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2009 FUEL CELL 2009 FUEL CELL MARKET REPORT NOVEMBER 2010 Authors This report was written primarily by Bill Vincent of the Breakthrough Technologies Institute in Washington, DC, with significant assistance from Jennifer Gangi, Sandra Curtin, and Elizabeth Delmont. Acknowledgement This report was the result of hard work and valuable contributions from government staff and the fuel cell industry. The authors especially wish to thank Sunita Satyapal, Nancy Garland and the staff of the U.S. Department of Energy's Fuel Cell Technologies Program for their support and guidance in the preparation of this report. The authors also wish to thank Robert Rose and Robert Wichert of the U.S. Fuel Cell Council, Lisa Callaghan-Jerram of Fuel Cell Today Consulting, Rachel Gelman of the National

306

Increasing innovation in home energy efficiency: Monte Carlo simulation of potential improvements  

Science Journals Connector (OSTI)

Despite the enormous potential for savings, there is little penetration of market-based solutions in the residential energy efficiency market. We hypothesize that there is a failure in the residential efficiency improvement market: due to lack of customer knowledge and capital to invest in improvements, there is unrecovered savings. In this paper, we model a means of extracting profit from those unrecovered energy savings with a market-based residential energy services company, or RESCO. We use a Monte Carlo simulation of the cost and performance of various improvements along with a hypothetical business model to derive general information about the financial viability of these companies. Despite the large amount of energy savings potential, we find that an average contract length with residential customers needs to be nearly 35 years to recoup the cost of the improvements. However, our modeling of an installer knowledge parameter indicates that experience plays a large part in minimizing the time to profitability for each home. Large numbers of inexperienced workers driven by government investment in this area could result in the installation of improvements with long payback periods, whereas a free market might eliminate companies making poor decisions.

Kullapa Soratana; Joe Marriott

2010-01-01T23:59:59.000Z

307

DOEs Effort to Improve Heavy Vehicle Fuel Efficiency through...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

* Freight Wing Inc. and ATDynamics * Frito-Lay, Spirit, and Safeway * Michelin * Praxair Lawrence Livermore National Laboratory LLNL-PRES-653197 3 15% reduction in fuel use ...

308

Survey Results and Analysis of the Cost and Efficiency of Various Operating Hydrogen Fueling Stations  

SciTech Connect (OSTI)

Existing Hydrogen Fueling Stations were surveyed to determine capital and operational costs. Recommendations for cost reduction in future stations and for research were developed.

Cornish, John

2011-03-05T23:59:59.000Z

309

Electrostatic Precipitator Collection Efficiency and Trace Element Emissions from Co-Combustion of Biomass and Recovered Fuel in Fluidized-Bed Combustion  

Science Journals Connector (OSTI)

Electrostatic Precipitator Collection Efficiency and Trace Element Emissions from Co-Combustion of Biomass and Recovered Fuel in Fluidized-Bed Combustion ... In this investigation, electrostatic precipitator fractional collection efficiency and trace metal emissions were determined experimentally at a 66 MW biomass-fueled bubbling fluidized-bed combustion plant. ... The solid fuel combustion-generated particle emissions typically consist of two types of particles:? fine particles approximately 0.1?1 ?m in diameter that are formed from the ash-forming species that are volatilized during combustion and residual ash particles larger than 1 ?m in diameter that are formed from mineral impurities in the fuels (4). ...

Terttaliisa Lind; Jouni Hokkinen; Jorma K. Jokiniemi; Sanna Saarikoski; Risto Hillamo

2003-05-08T23:59:59.000Z

310

Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in Process Heating Systems  

Broader source: Energy.gov [DOE]

Process heating plays a key role in producing steel, aluminum, and glass and in manufacturing products made from these materials. Faced with regulatory and competitive pressures to control emissions and reduce operating costs, metal and glass manufacturers are considering a variety of options for reducing overall energy consumption. As 38% of the energy used in U.S. industrial plants is consumed for process heating applications, metal and glass manufacturers are discovering that process heating technologies provide significant opportunities for improving industrial productivity, energy efficiency, and global competitiveness. This fact sheet is the first in a series to describe such opportunities that can be realized in industrial systems by conducting plant-wide assessments (PWA).

311

Joint System Prognostics For Increased Efficiency And Risk Mitigation In Advanced Nuclear Reactor Instrumentation and Control  

SciTech Connect (OSTI)

The science of prognostics is analogous to a doctor who, based on a set of symptoms and patient tests, assesses a probable cause, the risk to the patient, and a course of action for recovery. While traditional prognostics research has focused on the aspect of hydraulic and mechanical systems and associated failures, this project will take a joint view in focusing not only on the digital I&C aspect of reliability and risk, but also on the risks associated with the human element. Model development will not only include an approximation of the control system physical degradation but also on human performance degradation. Thus the goal of the prognostic system is to evaluate control room operation; to identify and potentially take action when performance degradation reduces plant efficiency, reliability or safety.

Donald D. Dudenhoeffer; Tuan Q. Tran; Ronald L. Boring; Bruce P. Hallbert

2006-08-01T23:59:59.000Z

312

Potential Impact of Interfacial Bonding Efficiency on High-Burnup Spent Nuclear Fuel Vibration Integrity during Normal Transportation  

SciTech Connect (OSTI)

Finite element analysis (FEA) was used to investigate the impacts of interfacial bonding efficiency at pellet pellet and pellet clad interfaces on spent nuclear fuel (SNF) vibration integrity. The FEA simulation results were also validated and benchmarked with reverse bending fatigue test results on surrogate rods consisting of stainless steel (SS) tubes with alumina-pellet inserts. Bending moments (M) are applied to the FEA models to evaluate the system responses of the surrogate rods. From the induced curvature, , the flexural rigidity EI can be estimated as EI=M/ . The impacts of interfacial bonding efficiency on SNF vibration integrity include the moment carrying capacity distribution between pellets and clad and the impact of cohesion on the flexural rigidity of the surrogate rod system. The result also indicates that the immediate consequences of interfacial de-bonding are a load carrying capacity shift from the fuel pellets to the clad and a reduction of the composite rod flexural rigidity. Therefore, the flexural rigidity of the surrogate rod and the bending moment bearing capacity between the clad and fuel pellets are strongly dependent on the efficiency of interfacial bonding at the pellet pellet and pellet clad interfaces. The above-noted phenomenon was calibrated and validated by reverse bending fatigue testing using a surrogate rod system.

Jiang, Hao [ORNL] [ORNL; Wang, Jy-An John [ORNL] [ORNL; Wang, Hong [ORNL] [ORNL

2014-01-01T23:59:59.000Z

313

Increased enzyme binding to substrate is not necessary for more efficient cellulose hydrolysis  

Science Journals Connector (OSTI)

...desorption, despite high xylan solubilization, which...inactive enzymes from the surface of cellulose is competitive...the increased fibril surface hydrophilicity as confirmed...enzyme binding, cellulose surface chain extraction, and...substrates and chemical treatment methods used are provided in SI...

Dahai Gao; Shishir P. S. Chundawat; Anurag Sethi; Venkatesh Balan; S. Gnanakaran; Bruce E. Dale

2013-01-01T23:59:59.000Z

314

Increasing Water Use Efficiency Through Improved Orifice Design and Operational Procedures for Subirrigation Systems  

E-Print Network [OSTI]

of emitters by particulate materials decreased as the cross-sectional area of the emitter opening was increased. Less than 0.06 atm (1 psig) vacuum had little effect on the flow of emitters tested. Higher vacuum amounts caused the reopening of plugged orifice...

Wilke, O. C.; Hiler, E. A.

315

Install Waste Heat Recovery Systems for Fuel-Fired Furnaces  

Broader source: Energy.gov [DOE]

This tip sheet recommends installing waste heat recovery systems for fuel-fired furnaces to increase the energy efficiency of process heating systems.

316

Road to Fuel Savings: Ford, Magna Partnership Help Vehicles Shed...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

to use extensively. That is until recently. As automakers look for ways to increase vehicle efficiency and lower emissions to meet new fuel economy standards -- all while...

317

NREL Works to Increase Electric Vehicle Efficiency Through Enhanced Thermal Management (Fact Sheet)  

SciTech Connect (OSTI)

Researchers at NREL are providing new insight into how heating and cooling systems affect the distance that electric vehicles can travel on a single charge. Electric vehicle range can be reduced by as much as 68% per charge because of climate-control demands. NREL engineers are investigating opportunities to change this dynamic and increase driving range by improving vehicle thermal management. NREL experts are collaborating with automotive industry partners to investigate promising thermal management technologies and strategies, including zone-based cabin temperature controls, advanced heating and air conditioning controls, seat-based climate controls, vehicle thermal preconditioning, and thermal load reduction technologies.

Not Available

2014-06-01T23:59:59.000Z

318

Impact of Policy on Fuels RD&D (Presentation)  

SciTech Connect (OSTI)

This presentation provides an overview of fuel economy and emissions policy and its relationship with fuel research, development, and deployment (RD&D). Solutions explored include biofuels and increased engine efficiency.

Gearhart, C.

2013-12-01T23:59:59.000Z

319

Fuel Cell Technologies Researcher Lightens Green Fuel Production  

Office of Energy Efficiency and Renewable Energy (EERE)

Research funded by EERE’s Fuel Cell Technologies Office has dramatically increased the efficiency of biofuel production by changing certain genes in algae to make them pale green.

320

Fuel Conservation and Applied Research  

Science Journals Connector (OSTI)

...the use ofbet-ter engines, better transmissions...1. Effect on energy consumption of specific improvements...Total automotive fuel consumption equals 19 percent ofnational...reduction 3 Adiabatic diesel engine Efficiency increase...

Jerry Grey; George W. Sutton; Martin Zlotnick

1978-04-14T23:59:59.000Z

Note: This page contains sample records for the topic "increase fuel efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Consumer’s Surplus with a Racial Apology? Black Relative to Non-Black Inequality in the Welfare Gains of Fuel-Efficient Cars and Trucks  

Science Journals Connector (OSTI)

This paper considers whether race conditions the welfare gains associated with the purchase of cars and trucks that comply with National Highway Traffic Safety Administration Corporate Average Fuel Efficiency Sta...

Juliet U. Elu; Gregory N. Price

2014-07-01T23:59:59.000Z

322

2010 Fuel Cell Technologies Market Report, June 2011, Energy Efficiency & Renewable Energy (EERE)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FUEL CELL TECHNOLOGIES FUEL CELL TECHNOLOGIES MARKET REPORT JUNE 2011 i Authors This report was a collaborative effort by staff of the Breakthrough Technologies Institute, Inc., in Washington, DC. Acknowledgement The authors relied upon the hard work and valuable contributions of many men and women in government and in the fuel cell industry. The authors especially wish to thank Sunita Satyapal, Nancy Garland and the staff of the U.S. Department of Energy's Fuel Cell Technologies Program for their support and guidance in the preparation of this report. The authors also wish to thank Lisa Callaghan- Jerram of Pike Research and Rachel Gelman of the National Renewable Energy Laboratory, and the many others who made this report possible. ii Contents List of Figures ............................................................................................................................................... iv

323

Fuel Cell Engineering: Toward the Design of Efficient Electrochemical Power Plants  

Science Journals Connector (OSTI)

However, because of the fact that, similar to that observed with hydrogen, all these substances are not readily available as pure species in today’s fuel distribution networks, many research activities were started for converting conventional fuels (natural gas, gasoline, diesel, kerosene, coal) into hydrogen-rich gas mixtures for the operation of fuel cells. ... As illustrated in Figure 5, apart from the more exotic field of implantable devices, fuel cells can be used as electrical energy sources for portable systems in consumer electronics and military applications (with power outputs of 1?50 Wel), as auxiliary power units, e.g., for onboard electricity generation in cars, trucks, or aircrafts (with power outputs of 1?10 kWel), for traction of vehicles, buses, and submarines (with power outputs of cell units with a multi-stacked structure successfully operate a radio-controlled car (16.5 g), which demonstrates the potential of biofuel cells in practical applications. ...

Kai Sundmacher

2010-10-12T23:59:59.000Z

324

Improving operational efficiency of fuel oil facilities used at gas-and-oil-fired power stations  

Science Journals Connector (OSTI)

Results obtained from experimental investigations of energy consumption are described, and ways for considerably reducing it are proposed taking as an example the fuel oil facility at the 2400-MW Lukoml District ...

A. K. Vnukov; F. A. Rozanova; A. A. Bazylenko; V. L. Zhurbilo…

2009-09-01T23:59:59.000Z

325

More efficiency in fuel consumption using gearbox optimization based on Taguchi method  

Science Journals Connector (OSTI)

Automotive emission is becoming a critical threat to today’s human health. Many researchers are studying engine designs leading to less fuel consumption. Gearbox selection plays a key role in an engine design. In...

Masoud Goharimanesh; Aliakbar Akbari…

2014-05-01T23:59:59.000Z

326

A New Hybrid Proton-Exchange-Membrane Fuel Cells-Battery Power System with Efficiencies Considered  

Science Journals Connector (OSTI)

Hybrid systems, based on lead-acid or lithium-ion batteries and proton-exchange-membrane fuel cells (PEMFCs), give the possibility of ... results show that the combination of lead-acid batteries or lithium-ion batteries

Chung-Hsing Chao; Jenn-Jong Shieh

2013-01-01T23:59:59.000Z

327

Potential of Thermoelectrics forOccupant Comfort and Fuel Efficiency Gains in Vehicle Applications  

Broader source: Energy.gov [DOE]

Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

328

A MultiAir / MultiFuel Approach to Enhancing Engine System Efficiency  

Broader source: Energy.gov (indexed) [DOE]

Overview 2 Budget * Total: 29,992,676 - Partner Cost Share: 15,534,104 - DOE Cost Share: 14,458,572 Barriers * Downsized engines offer higher fuel economy, but the...

329

2013 Federal Energy and Water Management Award Winner 22nd Operations Group Fuel Efficiency Office  

Broader source: Energy.gov (indexed) [DOE]

E ciency O ce E ciency O ce U.S. Air Force McConnell Air Force Base, Kansas During FY 2012, the 22nd Operations Group Fuel E ciency O ce (FEO) designed and implemented multiple measures, including a focus on institutional culture change, to reduce ine ciency in fuel management of the KC-135 aircraft and save the Air Force $4.3 million during a 42 percent rise in local sorties (the deployment of aircraft for missions of national defense or aircrew proficiency). These e orts included reducing KC-135 landing fuel by 5000 lb per sortie to save 1.94 million gallons per year; changing the KC-135 standard landing configuration to save 50 lb of fuel per approach; and implementing a new training configuration to reduce aircraft basic weight by 1,600 lb. The FEO also incorporated Mission Index Flying

330

Easing the natural gas crisis: Reducing natural gas prices through increased deployment of renewable energy and energy efficiency  

SciTech Connect (OSTI)

Heightened natural gas prices have emerged as a key energy-policy challenge for at least the early part of the 21st century. With the recent run-up in gas prices and the expected continuation of volatile and high prices in the near future, a growing number of voices are calling for increased diversification of energy supplies. Proponents of renewable energy and energy efficiency identify these clean energy sources as an important part of the solution. Increased deployment of renewable energy (RE) and energy efficiency (EE) can hedge natural gas price risk in more than one way, but this paper touches on just one potential benefit: displacement of gas-fired electricity generation, which reduces natural gas demand and thus puts downward pressure on gas prices. Many recent modeling studies of increased RE and EE deployment have demonstrated that this ''secondary'' effect of lowering natural gas prices could be significant; as a result, this effect is increasingly cited as justification for policies promoting RE and EE. This paper summarizes recent studies that have evaluated the gas-price-reduction effect of RE and EE deployment, analyzes the results of these studies in light of economic theory and other research, reviews the reasonableness of the effect as portrayed in modeling studies, and develops a simple tool that can be used to evaluate the impact of RE and EE on gas prices without relying on a complex national energy model. Key findings are summarized.

Wiser, Ryan; Bolinger, Mark; St. Clair, Matt

2004-12-21T23:59:59.000Z

331

Fuel pin  

DOE Patents [OSTI]

A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

1987-11-24T23:59:59.000Z

332

Fuel Efficient Stoves for Darfur Camps of Internally DisplacedPersons - Report of Field Trip to North and South Darfur, Nov. 16 -Dec.17, 2005  

SciTech Connect (OSTI)

Approximately 2.2 million internally displaced persons (''IDPs'') in Darfur are living in dense camps scattered in arid areas with low fuelwood productivity. Unsustainable harvesting of fuelwood by the IDPs has created ever increasing zones of denudation, that now (in November 2005) have reached several kilometers from the camp boundaries. Leaving the safety of the camps to fetch fuelwood from farther and farther away imposes great risk and hardship on the IDP women. Three different metal fuel efficient stove (''FES'') designs were tested in Darfur IDP camps for their suitability to substantially reduce the fuelwood needs of IDPs. The mud-and-dung ''ITDG'' stoves being promoted under the current FES program were also examined and tested. A modified design of the ITDG mud-and-dung stove, ''Avi'', was developed, built and tested. Systematic informal surveys of IDP households were undertaken in North and South Darfur to understand the household parameters related to family size, food, fuel, cooking habits, cooking pots, expenditure on fuel, and preferences related to alternative ways to spend time/money if fuel could be saved. Surveys found that a significant fraction of families are missing meals for lack of fuel (50% in South Darfur, and 90% in the North Darfur camps visited by the mission). About 60% of women in South Darfur, and about 90% of women in North Darfur camps purchase fuelwood. Selling some of the food rations to purchase fuel to cook meals was significant (40%) in South Darfur and has become common (80%) in North Darfur. The LBNL mission found that two of the metal stoves and the mud-and-dung Avi can significantly reduce fuelwood consumption using the same fuel, pot, cooking methods, and food ingredients used by Darfur IDPs. The most suitable design for Darfur conditions would be a modified ''Tara'' stove. With training of the cooks in tending the fire, this stove can save 50% fuel for the IDPs. The stove costs less than $10 (US) to produce in Darfur, and saves fuelwood worth $160 annually at local market prices. For programmatic and administrative reasons, the LBNL mission do not recommend a mud-and-dung stove, for which control of quality and dimensional accuracy is expensive and cumbersome to administer, particularly in a rapid large rollout effort. A light metal stove, on the other hand, can be rapidly produced in large numbers locally in Darfur, with good quality control exercised on the material and dimensions of the stoves right at the workshop where it is produced. LBNL mission also recommends immediate trials of 50 Tara stoves in a pilot technical rollout, 500 Tara stoves in a pilot social rollout, in parallel with a technical effort to modify the Tara design to make it better suited for Darfur camp conditions. The mission also recommends a program for manufacturing, disseminating the metal stoves, and educating the IDPs in fuel-efficient cooking practices. Monitoring of the stove quality, dissemination effort and training should be an integral part of the program, with systematic summaries planned with 10,000, 50,000 and 100,000 stoves have been disseminated. In the above pilot rollouts as well as in the final implementation, it is important to continue to pay attention to training of the cooks in tending the cooking fire in the stoves, and offer continued social reinforcement to this training (e.g., through periodic competitions to cook normal meals with the least fuelwood use.)

Galitsky, Christina; Gadgil, Ashok; Jacobs, Mark; Lee, Yoo-Mi

2006-02-01T23:59:59.000Z

333

Analysis of design variables for an efficient natural gas steam reforming process comprised in a small scale hydrogen fueling station  

Science Journals Connector (OSTI)

Natural gas steam reforming process comprised in a small scale H2-fueling station for on-site hydrogen production was simulated and analyzed. The effects of process variables on the process efficiency of hydrogen production were investigated, and their optimum set point values were suggested to minimize the sizes of the process sub-units and to secure a stable operability of the reforming process. Steam to carbon (S/C) ratio of the reforming reactants was found to be a crucial parameter mostly governing both the hydrogen production efficiency and the stable operability of the process. In this study, a process run was assumed stable if feed water (WR) as a reforming reactant could have been completely evaporated into dry steam through a heat recovery steam generator (HRSG). The optimum S/C ratio was 3.0 where the process efficiency of hydrogen production was maximized and the stable operability of the process was secured. The optimum feed rates of natural gas (NGR) and WR as reforming reactants and of natural gas (NGB) as a burner fuel were also determined for a target rate of hydrogen production, 27 Nm3/h. Set point temperatures of the combustion flue gas (CFG) and the reformed gas (RFG) from the reformer had no effects on the hydrogen production efficiency, however, they were important parameters affecting the stable operability of the process. The effect of the set point temperatures of the RFG from cooler and the CFG from HRSG on the hydrogen production efficiency was not much significant as compared to the S/C ratio, but needed to be adjusted because of their considerable effects on the stable operability of the process and the required heat transfer areas in cooler and HRSG.

Deuk Ki Lee; Kee Young Koo; Dong Joo Seo; Wang Lai Yoon

2012-01-01T23:59:59.000Z

334

Endurance testing of a high-efficiency steam reformer for fuel cell power plants: Final report  

SciTech Connect (OSTI)

This final report documents the results from demonstration and endurance tests, conducted in 1987 and 1988, of the Haldor Topsoe Heat Exchange Reformer. The primary objectives of this EPRI project were to develop, test and verify fuel processing components suitable for use in a Westinghouse Electric Corporation 7.5-MW phosphoric acid fuel cell power plant. EPRI's project is part of a larger national program sponsored by the Department of Energy to develop the technology and systems which are technically and economically viable for electric utility power generation applications. 26 figs., 11 tabs.

Udengaard, N.R.; Christiansen, L.J.; Summers, W.A.

1988-10-01T23:59:59.000Z

335

Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle...  

Energy Savers [EERE]

Maximizing Alternative Fuel Vehicle Efficiency Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency Besides their energy security and environmental benefits,...

336

Evaluation and selection of an efficient fuel/air initiation strategy for pulse detonation engines .  

E-Print Network [OSTI]

??Rapid and efficient initiation of hydrocarbon/air mixtures has been identified as one of the critical and enabling technologies for Pulse Detonation Engines (PDEs). Although the… (more)

Channell, Brent T.

2005-01-01T23:59:59.000Z

337

HD Truck and Engine Fuel Efficiency Opportunities and Challenges Post EPA2010  

Broader source: Energy.gov [DOE]

The key to successful commercialization of clean and efficient ICEs is technology integration to meet customer expectations at cost, quality, timing, and reliability

338

Development and Demonstration of a Fuel-Efficient Class 8 Highway...  

Energy Savers [EERE]

- Technology Roadmap SuperTruck New Engine Advanced Trans. Smart Air Compr. Waste Heat Recovery Improved Accessories Hotel Mode ESS Efficient HVAC Advanced EATS Complete...

339

Impact of Liquefied Natural Gas usage and payload size on Hybrid Wing Body aircraft fuel efficiency  

E-Print Network [OSTI]

This work assessed Hybrid Wing Body (HWB) aircraft in the context of Liquefied Natural Gas (LNG) fuel usage and payload/range scalability at three scales: H1 (B737), H2 (B787) and H3 (B777). The aircraft were optimized for ...

Mody, Pritesh (Pritesh Chetan)

2010-01-01T23:59:59.000Z

340

GreenGPS: A Participatory Sensing Fuel-Efficient Maps Application  

E-Print Network [OSTI]

-points. The service exploits measurements of vehicular fuel con- sumption sensors, available via the OBD-II interface-Board Diagnostic (OBD-II) interface, standardized in all vehicles that have been sold in the United States after of measured parameters can be obtained from standard spec- ifications as well as manufacturers of OBD

Shihada, Basem

Note: This page contains sample records for the topic "increase fuel efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

High Fuel Costs Spark Increased Use of Wood for Home Heating by Brian Handwerk for National Geographic News  

E-Print Network [OSTI]

families reducing their costly household oil or gas dependence by turning to a traditional fuel is typically delivered to homes in tanks, and is almost as expensive as heating oil. Berry manages the EIA Hampshire. Just last week, Erik said, he had a discussion with his fuel-oil supplier about how little oil

South Bohemia, University of

342

Experimental Investigation of the Effects of Fuel Characteristics on High Efficiency Clean Combustion (HECC) in a Light-Duty Diesel Engine  

SciTech Connect (OSTI)

An experimental study was performed to understand fuel property effects on low temperature combustion (LTC) processes in a light-duty diesel engine. These types of combustion modes are often collectively referred to as high efficiency clean combustion (HECC). A statistically designed set of research fuels, the Fuels for Advanced Combustion Engines (FACE), were used for this study. Engine conditions consistent with low speed cruise (1500 rpm, 2.6 bar BMEP) were chosen for investigating fuel property effects on HECC operation in a GM 1.9-L common rail diesel engine. The FACE fuel matrix includes nine combinations of fuel properties including cetane number (30 to 55), aromatic contents (20 to 45 %), and 90 % distillation temperature (270 to 340 C). HECC operation was achieved with high levels of EGR and adjusting injection parameters, e.g. higher fuel rail pressure and single injection event, which is also known as Premixed Charge Compression Ignition (PCCI) combustion. Engine performance, pollutant emissions, and details of the combustion process are discussed in this paper. Cetane number was found to significantly affect the combustion process with variations in the start of injection (SOI) timing, which revealed that the ranges of SOI timing for HECC operation and the PM emission levels were distinctively different between high cetane number (55) and low cetane number fuels (30). Low cetane number fuels showed comparable levels of regulated gas emissions with high cetane number fuels and had an advantage in PM emissions.

Cho, Kukwon [ORNL; Han, Manbae [ORNL; Wagner, Robert M [ORNL; Sluder, Scott [ORNL

2009-01-01T23:59:59.000Z

343

DOE/BES Workshop on Clean and Efficient Combustion of 21st Century Transportation Fuels  

Broader source: Energy.gov [DOE]

Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

344

Turbocharged engine operations using knock resistant fuel blends for engine efficiency improvements  

E-Print Network [OSTI]

Engine downsizing with a turbocharger has become popular these days in automotive industries. Downsizing the engine lets the engine operate in a more efficient region, and the engine boosting compensates for the power loss ...

Jo, Young Suk

2013-01-01T23:59:59.000Z

345

Ultra Efficient Combined Heat, Hydrogen, and Power System- Presentation by FuelCell Energy, June 2011  

Broader source: Energy.gov [DOE]

Presentation on Ultra Efficient Combined Heat, Hydrogen, and Power System, given by Pinakin Patel at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011.

346

Injection Timing Effects on Brake Fuel Conversion Efficiency and Engine System's Respones  

E-Print Network [OSTI]

timing effects on the combustion processes, engine efficiency, and the engine system's responses. The engine in the study is a medium duty diesel engine (capable of meeting US EPA Tier III off road emission standards) equipped with common rail direct...

McLean, James Elliott

2011-10-21T23:59:59.000Z

347

Renewable Fuels and Lubricants (ReFUEL) Laboratory (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes the Renewable Fuels and Lubricants (ReFUEL) Laboratory at the U.S. Department of Energy National Renewable Energy Laboratory (NREL) is a state-of-the-art research and testing facility for advanced fuels and vehicles. Research and development aims to improve vehicle efficiency and overcome barriers to the increased use of renewable diesel and other nonpetroleum-based fuels, such as biodiesel and synthetic diesel derived from biomass. The ReFUEL Laboratory features a chassis dynamometer for vehicle performance and emissions research, two engine dynamometer test cells for advanced fuels research, and precise emissions analysis equipment. As a complement to these capabilities, detailed studies of fuel properties, with a focus on ignition quality, are performed at NREL's Fuel Chemistry Laboratory.

Not Available

2012-03-01T23:59:59.000Z

348

National Renewable Energy Laboratory (NREL) Reports Increase in Durability and Reliability for Current Generation Fuel Cell Buses (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes NREL's accomplishments in evaluating the durability and reliability of fuel cell buses being demonstrated in transit service. Work was performed by the Hydrogen Technology Validation team in the Hydrogen Technologies and Systems Center.

Not Available

2010-11-01T23:59:59.000Z

349

Vehicle Technologies Office: Fuels and Lubricants Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuels and Lubricants Research Fuels and Lubricants Research As transportation accounts for two-thirds of the nearly $1 billion the U.S. spends daily on foreign oil, it is vital to increase our use of alternative fuels. Increasing the fuels available to drivers reduces price volatility, supports domestic industries, and increases environmental sustainability. The DOE's Alternative Fuels Data Center provides basic information on alternative fuels, including Biodiesel, Ethanol, Natural Gas, Propane, and Hydrogen. The Vehicle Technologies Office (VTO) supports research to improve how vehicles use these many of these fuels in the future, as well as activities to increase their availability today. It also researches how new petroleum-based fuels affect advanced combustion systems and how lubricants can improve the efficiency of vehicles currently on the road.

350

Supramolecular Interactions of Chenodeoxycholic Acid Increase the Efficiency of Dye-Sensitized Solar Cells Based on a Cobalt Electrolyte  

Science Journals Connector (OSTI)

Upon photoexcitation of the chemisorbed dye, charge separation occurs at the dye-sensitized semiconductor interface, and electrons are injected into the oxide conduction band (CB); the generated charges travel across the TiO2 nanoparticle network and can be collected at the transparent conducting glass back contact. ... (19, 22-26) Fully organic sensitizers have also been developed because of their increased molar extinction coefficient, as compared to Ru(II)-dyes, spectral tunability, and reduced environmental impact,(27, 28) and showed very high photovoltaic efficiencies, exceeding 10%. ... The advantage of this new generation of solar cells is that they can be produced at low cost, i.e., potentially <1 U S. $/peak watt. ...

Paolo Salvatori; Gabriele Marotta; Antonio Cinti; Chiara Anselmi; Edoardo Mosconi; Filippo De Angelis

2013-02-06T23:59:59.000Z

351

Composites for Aerospace and Transportation As the fuel costs and environment concerns continue to increase, so does the demand for composite  

E-Print Network [OSTI]

Composites for Aerospace and Transportation As the fuel costs and environment concerns continue to increase, so does the demand for composite materials for aerospace and transportation applications. Polymer composites are inherited lighter than their metallic counterparts resulting in significant weight reduction

Li, Mo

352

Efficient Oxygen Evolution Reaction Catalysts for Cell Reversal and Start/Stop Tolerance in Fuel Cells  

SciTech Connect (OSTI)

Minute amounts of ruthenium and iridium on platinum nanostructured thin films have been evaluated in an effort to reduce carbon corrosion and Pt dissolution during transient conditions in proton exchange membrane fuel cells. Electrochemical tests showed the catalysts had a remarkable oxygen evolution reaction (OER) activity, even greater than that of bulk, metallic thin films. Stability tests within a fuel cell environment showed that rapid Ru dissolution could be managed with the addition of Ir. Membrane electrode assemblies containing a Ru to Ir atomic ratio of 1:9 were evaluated under startup/shutdown and cell reversal conditions for OER catalyst loadings ranging from 1 to 10 g/cm2. These tests affirmed that electrode potentials can be controlled through the addition of OER catalysts without impacting the oxygen reduction reaction on the cathode or the hydrogen oxidation reaction on the anode. The morphology and chemical structure of the thin OER layers were characterized by scanning transmission electron microscopy and X-ray photoelectron spectroscopy in an effort to establish a correlation between interfacial properties and electrochemical behavior.

Atanasoski, Radoslav [3M Industrial Mineral Products; Atanasoska, Liliana [3M Industrial Mineral Products; Cullen, David A [ORNL

2013-01-01T23:59:59.000Z

353

DOE Fuel Cell Technologies Office  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE Fuel Cell Technologies Office Fuel Cell Seminar & Energy Exposition Columbus, Ohio Dr. Sunita Satyapal Director Fuel Cell Technologies Office Energy Efficiency and Renewable...

354

DOE Announces Webinars on Hydrogen Fueling Infrastructure Technology, Energy Efficiency and Conservation Loan Program, and More  

Office of Energy Efficiency and Renewable Energy (EERE)

EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies, to training for the clean energy workforce. Webinars are free; however, advanced registration is typically required. You can also watch archived webinars and browse previously aired videos, slides, and transcripts.

355

Fuzzy Logic-based energy efficiency Life Cycle Assessment with a case study of corn-based fuel ethanol in China  

Science Journals Connector (OSTI)

A fuzzy logic based method of energy efficiency assessment of Biomass-based Fuel Ethanol (BFE) production is introduced in this paper. Energy relevant inventory variables are defined and described by fuzzy sets representing the differences in energy inventory data between the BFE system and its reference. A fuzzy reasoning process is developed to derive the energy efficiency from the fuzzificated inventory data. This method distinguishes itself by simple calculation, lower requirements of data accuracy and capability of processing subjectivity. A case study of corn-based fuel ethanol from Northeast China is conducted to demonstrate the application of the proposed method.

Suiran Yu; Jing Tao

2009-01-01T23:59:59.000Z

356

Enhanced Efficiency of Internal Combustion Engines By Employing Spinning Gas  

SciTech Connect (OSTI)

The efficiency of the internal combustion engine might be enhanced by employing spinning gas. A gas spinning at near sonic velocities has an effectively higher heat capacity, which allows practical fuel cycles, which are far from the Carnot efficiency, to approach more closely the Carnot efficiency. A gain in fuel efficiency of several percent is shown to be theoretically possible for the Otto and Diesel cycles. The use of a flywheel, in principle, could produce even greater increases in the efficiency.

Geyko, Vasily; Fisch, Nathaniel

2014-02-27T23:59:59.000Z

357

Alternative Fuels Data Center: Illinois Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Illinois Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Illinois Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Illinois Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Illinois Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Illinois Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Illinois Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

358

Alternative Fuels Data Center: Arkansas Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Arkansas Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Arkansas Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Arkansas Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Arkansas Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Arkansas Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Arkansas Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

359

Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section...

360

Alternative Fuels Data Center: Virginia Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Virginia Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Virginia Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Virginia Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Virginia Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Virginia Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Virginia Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

Note: This page contains sample records for the topic "increase fuel efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Alternative Fuels Data Center: Delaware Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

362

Alternative Fuels Data Center: Washington Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Washington Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Washington Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Washington Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Washington Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Washington Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Washington Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal

363

Alternative Fuels Data Center: Connecticut Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Connecticut Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Connecticut Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Connecticut Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Connecticut Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section...

364

Alternative Fuels Data Center: California Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: California Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: California Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: California Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: California Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: California Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: California Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal

365

Alternative Fuels Data Center: Mississippi Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Mississippi Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Mississippi Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Mississippi Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Mississippi Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Mississippi Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Mississippi Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section...

366

Alternative Fuels Data Center: Louisiana Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Louisiana Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Louisiana Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Louisiana Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Louisiana Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State

367

Aviation fuel demand development in China  

Science Journals Connector (OSTI)

Abstract This paper analyzes the core factors and the impact path of aviation fuel demand in China and conducts a structural decomposition analysis of the aviation fuel cost changes and increase of the main aviation enterprises’ business profits. Through the establishment of an integrated forecast model for China’s aviation fuel demand, this paper confirms that the significant rise in China’s aviation fuel demand because of increasing air services demand is more than offset by higher aviation fuel efficiency. There are few studies which use a predictive method to decompose, estimate and analyze future aviation fuel demand. Based on a structural decomposition with indirect prediction, aviation fuel demand is decomposed into efficiency and total amount (aviation fuel efficiency and air transport total turnover). The core influencing factors for these two indexes are selected using path analysis. Then, univariate and multivariate models (ETS/ARIMA model and Bayesian multivariate regression) are used to analyze and predict both aviation fuel efficiency and air transport total turnover. At last, by integrating results, future aviation fuel demand is forecast. The results show that the aviation fuel efficiency goes up by 0.8% as the passenger load factor increases 1%; the air transport total turnover goes up by 3.8% and 0.4% as the urbanization rate and the per capita GDP increase 1%, respectively. By the end of 2015, China’s aviation fuel demand will have increased to 28 million tonnes, and is expected to be 50 million tonnes by 2020. With this in mind, increases in the main aviation enterprises’ business profits must be achieved through the further promotion of air transport.

Jian Chai; Zhong-Yu Zhang; Shou-Yang Wang; Kin Keung Lai; John Liu

2014-01-01T23:59:59.000Z

368

High Efficiency Generation of Hydrogen Fuels Using Solar Thermochemical Splitting of Water  

SciTech Connect (OSTI)

The objective of this work is to identify economically feasible concepts for the production of hydrogen from water using solar energy. The ultimate project objective was to select one or more competitive concepts for pilot-scale demonstration using concentrated solar energy. Results of pilot scale plant performance would be used as foundation for seeking public and private resources for full-scale plant development and testing. Economical success in this venture would afford the public with a renewable and limitless source of energy carrier for use in electric power load-leveling and as a carbon-free transportation fuel. The Solar Hydrogen Generation Research (SHGR) project embraces technologies relevant to hydrogen research under the Office of Hydrogen Fuel Cells and Infrastructure Technology (HFCIT) as well as concentrated solar power under the Office of Solar Energy Technologies (SET). Although the photoelectrochemical work is aligned with HFCIT, some of the technologies in this effort are also consistent with the skills and technologies found in concentrated solar power and photovoltaic technology under the Office of Solar Energy Technologies (SET). Hydrogen production by thermo-chemical water-splitting is a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or a combination of heat and electrolysis instead of pure electrolysis and meets the goals for hydrogen production using only water and renewable solar energy as feed-stocks. Photoelectrochemical hydrogen production also meets these goals by implementing photo-electrolysis at the surface of a semiconductor in contact with an electrolyte with bias provided by a photovoltaic source. Here, water splitting is a photo-electrolytic process in which hydrogen is produced using only solar photons and water as feed-stocks. The thermochemical hydrogen task engendered formal collaborations among two universities, three national laboratories and two private sector entities. The photoelectrochemical hydrogen task included formal collaborations with three universities and one national laboratory. The formal participants in these two tasks are listed above. Informal collaborations in both projects included one additional university (the University of Nevada, Reno) and two additional national laboratories (Lawrence Livermore National Laboratory and Lawrence Berkeley National Laboratory).

Heske, Clemens; Moujaes, Samir; Weimer, Alan; Wong, Bunsen; Siegal, Nathan; McFarland, Eric; Miller, Eric; Lewis, Michele; Bingham, Carl; Roth, Kurth; Sabacky, Bruce; Steinfeld, Aldo

2011-09-29T23:59:59.000Z

369

Glass and glass-derivative seals for use in energy-efficient fuel cells and lamps  

SciTech Connect (OSTI)

For solid oxide fuel cells (SOFC), a series of 18 sealing glasses have been prepared and characterized. From the whole design space, several glasses were ''downselected'' and studied in detail to describe their behaviors in simulated fuel cell environments. One of the glasses was found to outperform all others, including the well-known G18 sealant developed at Pacific Northwest National Laboratory. The new glass composition showed lower bulk electrical conductivity, excellent sealing and wetting behavior when sealing under applied load, and qualitatively superior performance when exposed to wet hydrogen for 800 hours. Traditional melting was used to prepare all of the glasses that were studied in detail. The sol-gel approach was used to synthesize several compositions, but it was found that the glasses crystallized very rapidly during heating, precluding sealing. The glass characterization included measurements of the viscosity and thermal expansion of the glasses, as well as the thermal expansion of the partly crystalline glass ceramics. In addition, the wetting and sintering behavior of all glasses has been measured, as well as the crystallization behavior. The time and temperature at which crystalline phases form from the glasses has been determined for all of the glasses. Each glass ceramic contains at least two crystalline phases, and most of the crystalline phases have been positively identified. The body of fundamental data provides a platform for future developments for high temperature sealants, and the newly-developed glass compositions appear promising for large-scale testing. The second component of the work, focused on seals for higher-temperature discharge lighting, has focused on determining the phase relations in the yttria-alumina-silica system at various silica levels. Functional testing of one of the candidate sealants demonstrated that it performs well in current HID lighting applications. Further testing is required to evaluate its performance in next-generation lamps that operate at higher temperatures, but the baseline phase equilibria and crystallization behavior has been established for additional development. Again, traditional melting and sol-gel synthesis have been employed, and the sol-gel method was successful for preparing new phases that were discovered during the work. Four new phases have been identified and synthesized in pure form, from which full structure solutions were obtained as well as the anisotropic thermal expansion for each phase.

Scott Misture; Arun Varshineya; Matthew Hall; Sylvia DeCarr; Steve Bancheri

2005-07-28T23:59:59.000Z

370

Fuel Cell Technologies Program Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cell Technologies Fuel Cell Technologies Program Overview Program Overview Richard Farmer Richard Farmer Acting Acting Program Program Manager Manager Acting Acting Program Program Manager Manager 2010 Annual Merit Review and Peer Evaluation Meeting 2010 Annual Merit Review and Peer Evaluation Meeting (7 June 2010) (7 June 2010) The Administration's Clean Energy Goals 9 9 Double Renewable Double Renewable Energy Capacity by 2012 9 Invest $150 billion over ten years i in energy R&D to transition to a clean energy economy clean energy economy 9 Reduce GHG emissions 83% by 2050 2 t t Æ Æ F l ll ff hi hl ffi i di f l d Fuel Cells Address Our Key Energy Challenges Increasing Energy Increasing Energy Ef ficiency and Resource Diversity Efficiency and Resource Diversity Æ Æ Fuel cells offer a highly efficient way to use diverse fuels and energy sources.

371

EIA Energy Efficiency-Table 1b. Fuel Consumption for Selected Industries,  

Gasoline and Diesel Fuel Update (EIA)

b b Page Last Modified: May 2010 Table 1b. End Uses of Fuel Consumption (Site Energy) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) MECS Survey Years NAICS Subsector and Industry 1998 2002 2006 311 Food 1,044 1,116 1,186 312 Beverage and Tobacco Products 108 104 109 313 Textile Mills 254 205 178 314 Textile Product Mills 49 60 72 315 Apparel 48 30 14 316 Leather and Allied Products 8 7 3 321 Wood Products 504 375 445 322 Paper 2,744 2,361 2,354 323 Printing and Related Support 98 98 85 324 Petroleum and Coal Products 3,622 3,202 3,396 325 Chemicals 3,704 3,769 3,195 326 Plastics and Rubber Products 327 348 336 327 Nonmetallic Mineral Products 969 1,052 1,105 331 Primary Metals 2,576 2,123 1,744 332 Fabricated Metal Products 441 387 397

372

EIA Energy Efficiency-Table 2b. Primary Fuel Consumption for Selected  

Gasoline and Diesel Fuel Update (EIA)

b b Page Last Modified: May 2010 Table 2b. End Uses of Fuel Consumption (Primary 1 Energy) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) MECS Survey Years NAICS Subsector and Industry 1998 2002 2006 311 Food 1,468 1,572 1,665 312 Beverage and Tobacco Products 156 156 166 313 Textile Mills 457 375 304 314 Textile Product Mills 85 94 110 315 Apparel 84 54 27 316 Leather and Allied Products 14 11 5 321 Wood Products 647 518 619 322 Paper 3,221 2,803 2,833 323 Printing and Related Support 199 197 171 324 Petroleum and Coal Products 3,873 3,454 3,657 325 Chemicals 4,851 4,803 4,181 326 Plastics and Rubber Products 691 707 683 327 Nonmetallic Mineral Products 1,235 1,331 1,385 331 Primary Metals 3,660 3,100 2,617 332 Fabricated Metal Products 791 706 670 333 Machinery 404 341 416 334 Computer and Electronic Products

373

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

fuel, fuel-efficient, or low emission vehicles, unless such a purchase compromises health, safety, or law enforcement needs. Additionally, the state must develop procedures for...

374

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Regulations User Type Jurisdiction Biodiesel Ethanol Natural Gas Propane (LPG) Hydrogen Fuel Cells EVs HEVs or PHEVs NEVs Aftermarket Conversions Fuel Economy or Efficiency Idle...

375

Fuel Cell Technologies Overview  

Broader source: Energy.gov (indexed) [DOE]

Cells Key Benefits Very High Efficiency Reduced CO 2 Emissions Reduced Oil Use Reduced Air Pollution Fuel Flexibility * 40 - 60% (electrical) * > 70% (electrical, hybrid fuel...

376

Ris Energy Report 3 Interest in the hydrogen economy and in fuel cells has  

E-Print Network [OSTI]

2 Risø Energy Report 3 Interest in the hydrogen economy and in fuel cells has increased used for natural gas. Existing fuel cells can convert hydrogen efficiently into electric power. Emerging fuel cell technologies can do the same for other hydrogen-rich fuels, while generating little

377

Solid Fuel - Oxygen Fired Combustion for Production of Nodular Reduced Iron to Reduce CO2 Emissions and Improve Energy Efficiencies  

SciTech Connect (OSTI)

The current trend in the steel industry is an increase in iron and steel produced in electric arc furnaces (EAF) and a gradual decline in conventional steelmaking from taconite pellets in blast furnaces. In order to expand the opportunities for the existing iron ore mines beyond their blast furnace customer base, a new material is needed to satisfy the market demands of the emerging steel industry while utilizing the existing infrastructure and materials handling capabilities. This demand creates opportunity to convert iron ore or other iron bearing materials to Nodular Reduced Iron (NRI) in a recently designed Linear Hearth Furnace (LHF). NRI is a metallized iron product containing 98.5 to 96.0% iron and 2.5 to 4% C. It is essentially a scrap substitute with little impurity that can be utilized in a variety of steelmaking processes, especially the electric arc furnace. The objective of this project was to focus on reducing the greenhouse gas emissions (GHG) through reducing the energy intensity using specialized combustion systems, increasing production and the use of biomass derived carbon sources in this process. This research examined the use of a solid fuel-oxygen fired combustion system and compared the results from this system with both oxygen-fuel and air-fuel combustion systems. The solid pulverized fuels tested included various coals and a bio-coal produced from woody biomass in a specially constructed pilot scale torrefaction reactor at the Coleraine Minerals Research Laboratory (CMRL). In addition to combustion, the application of bio-coal was also tested as a means to produce a reducing atmosphere during key points in the fusion process, and as a reducing agent for ore conversion to metallic iron to capture the advantage of its inherent reduced carbon footprint. The results from this study indicate that the approaches taken can reduce both greenhouse gas emissions and the associated energy intensity with the Linear Hearth Furnace process for converting iron ore to metallic iron nodules. Various types of coals including a bio-coal produced though torrefaction can result in production of NRI at reduced GHG levels. The process results coupled with earlier already reported developments indicate that this process technique should be evaluated at the next level in order to develop parameter information for full scale process design. Implementation of the process to full commercialization will require a full cost production analysis and comparison to other reduction technologies and iron production alternatives. The technical results verify that high quality NRI can be produced under various operating conditions at the pilot level.

Donald R. Fosnacht; Richard F. Kiesel; David W. Hendrickson; David J. Englund; Iwao Iwasaki; Rodney L. Bleifuss; Mathew A. Mlinar

2011-12-22T23:59:59.000Z

378

Efficient chemical regeneration of LiBH4NH3 spent fuel for hydrogen storage  

Science Journals Connector (OSTI)

Abstract The absence of an efficient method for the regeneration of ammine metal borohydrides (M(BH4)nxNH3, AMBs) from their dehydrogenated products has hindered their potential application as hydrogen storage materials. In this paper, we demonstrate a high-yield chemical regeneration of LiBH4NH3 based on a three step process (digestion (H+ addition), reduction (H? addition), and ammonia complexation) at ambient temperature. Our results demonstrated that Li–B–N polymer was digested by methanol to form LiB(OCH3)4, which can be converted into LiBH4 by using LiAlH4 in the reduction process. The generation of LiBH4NH3 in ammonia complexion step was achieved by exposing the obtained LiBH4 in an ammonia atmosphere.

Yingbin Tan; Xiaowei Chen; Guanglin Xia; Xuebin Yu

2014-01-01T23:59:59.000Z

379

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Maine Incentives and Laws Maine Incentives and Laws The following is a list of expired, repealed, and archived incentives, laws, regulations, funding opportunities, or other initiatives related to alternative fuels and vehicles, advanced technologies, or air quality. Transportation Efficiency Fund Repealed: 07/01/2013 The following was repealed by Public Law 2011, Chapter 652: The Transportation Efficiency Fund is a non-lapsing fund managed by the Maine Department of Transportation to increase energy efficiency and reduce reliance on fossil fuels within the state's transportation system. Funding may be used for zero emission vehicles, biofuel and other alternative fuel vehicles, congestion mitigation and air quality initiatives, rail, public transit, and car or van pooling. (Reference Maine Revised Statutes Title

380

Work demonstrates that smaller can be better: quantum confinement can lead to increased PV efficiency and could  

E-Print Network [OSTI]

the first all-quantum-dot photovoltaic cell, which was based on lead sulfide and demonstrated reasonable% post consumer waste. NREL Certifies First All-Quantum-Dot Photovoltaic Cell; Demonstrates Stability efficiency and could lead to a doubling of third-generation solar cell efficiencies. Tiny quantum dots

Note: This page contains sample records for the topic "increase fuel efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Alternative Fuels Data Center: Fuel Prices  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Vehicles Vehicles Printable Version Share this resource Send a link to Alternative Fuels Data Center: Fuel Prices to someone by E-mail Share Alternative Fuels Data Center: Fuel Prices on Facebook Tweet about Alternative Fuels Data Center: Fuel Prices on Twitter Bookmark Alternative Fuels Data Center: Fuel Prices on Google Bookmark Alternative Fuels Data Center: Fuel Prices on Delicious Rank Alternative Fuels Data Center: Fuel Prices on Digg Find More places to share Alternative Fuels Data Center: Fuel Prices on AddThis.com... Fuel Prices As gasoline prices increase, alternative fuels appeal more to vehicle fleet managers and consumers. Like gasoline, alternative fuel prices can fluctuate based on location, time of year, and political climate. Alternative Fuel Price Report

382

Economic evaluation of the efficiency of technologies for the manufacture of gas and briquetted fuel from coals  

Science Journals Connector (OSTI)

The technical feasibility of the production of new types of fuel from coal, which most fully meet the requirements of ... influence of the new types of fuel from coals on the economic indices of the production of...

I. P. Krapchin; T. I. Kuz’mina

2012-02-01T23:59:59.000Z

383

Energy Efficiency & Renewable Energy  

E-Print Network [OSTI]

efficiency · Double renewable energy · One million plug-in hybrid cars generation by 2012Presidentialon sustainable biofuels and infrastructure · Increase fuel economy standards Environmental · Implement an economy infrastructure · creating high-skilled jobs in emerging technical fields Th k bj ti i t k f l ll titi ithThe key

384

Avoiding 100 new power plants by increasing efficiency of room air conditioners in India: opportunities and challenges  

SciTech Connect (OSTI)

Electricity demand for room ACs is growing very rapidly in emerging economies such as India. We estimate the electricity demand from room ACs in 2030 in India considering factors such as weather and income growth using market data on penetration of ACs in different income classes and climatic regions. We discuss the status of the current standards, labels, and incentive programs to improve the efficiency of room ACs in these markets and assess the potential for further large improvements in efficiency and find that efficiency can be improved by over 40% cost effectively. The total potential energy savings from Room AC efficiency improvement in India using the best available technology will reach over 118 TWh in 2030; potential peak demand saving is found to be 60 GW by 2030. This is equivalent to avoiding 120 new coal fired power plants of 500 MW each. We discuss policy options to complement, expand and improve the ongoing programs to capture this large potential.

Phadke, Amol; Abhyankar, Nikit; Shah, Nihar; [Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technology Division

2013-10-15T23:59:59.000Z

385

Avoiding 100 New Power Plants by Increasing Efficiency of Room Air Conditioners in India: Opportunities and Challenges  

SciTech Connect (OSTI)

Electricity demand for room ACs is growing very rapidly in emerging economies such as India. We estimate the electricity demand from room ACs in 2030 in India considering factors such as weather and income growth using market data on penetration of ACs in different income classes and climatic regions. We discuss the status of the current standards, labels, and incentive programs to improve the efficiency of room ACs in these markets and assess the potential for further large improvements in efficiency and find that efficiency can be improved by over 40percent cost effectively. The total potential energy savings from Room AC efficiency improvement in India using the best available technology will reach over 118 TWh in 2030; potential peak demand saving is found to be 60 GW by 2030. This is equivalent to avoiding 120 new coal fired power plants of 500 MW each. We discuss policy options to complement, expand and improve the ongoing programs to capture this large potential.

Phadke, Amol; Abhyankar, Nikit; Shah, Nihar

2014-06-19T23:59:59.000Z

386

NREL: Vehicles and Fuels Research - ReFUEL Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Research Search More Search Options Site Map NREL's Renewable Fuels and Lubricants (ReFUEL) Laboratory is a state-of-the-art research and testing facility for advanced fuels and vehicles. Research and development focuses on overcoming barriers to the increased use of renewable diesel and other nonpetroleum-based fuels, such as biodiesel and synthetic diesel derived from biomass, and improving vehicle efficiency. Using biofuels and improving vehicle efficiency reduces our dependence on imported petroleum and enhances our national energy security. The ReFUEL Laboratory houses the following specialized equipment: Heavy-duty chassis dynamometer with a simulation capability of 8,000 to 80,000 lbs for vehicle performance and emissions research Heavy-duty (up to 600 hp) and light-duty (up to 75 hp) engine

387

Fuel Processing [and Discussion  

Science Journals Connector (OSTI)

28 June 1990 research-article Fuel Processing [and Discussion] R. H. Allardice R. S...efficiently, reliably and economically through the reactor and fuel cycle facilities. Thus the fuel cycle is an integral and essential part of the system...

1990-01-01T23:59:59.000Z

388

Development of decision support system to select the best fuel blend in IC engines to enhance the energy efficiency  

Science Journals Connector (OSTI)

This paper describes an application of hybrid MCDM technique for the selection of optimum blend in fish oil biodiesel among the six alternative fuel blends diesel, B20, B40, B60, B80 and B100 which is prepared by varying the amount of diesel with biodiesel. Brake thermal efficiency (BTE), exhaust gas temperature (EGT), oxides of nitrogen (NOx), smoke, hydrocarbon (HC), carbon monoxide (CO), carbon dioxide (CO2), ignition delay (ID), combustion duration (CD) and maximum rate of pressure rise (MRPR) are considered as evaluation criteria. A single cylinder, constant speed and direct injection diesel engine with a rated output of 4.4 kW was used for exploratory analysis of evaluation criteria at different load conditions. The proposed model, fuzzy analytical hierarchy process (FAHP) is integrated with elimination et and choice translating reality (ELECTRE) to evaluate the optimum blend. Here the FAHP is used to determine the relative weights of the criteria, whereas ELECTRE is used for obtaining the final ranking of alternative blends.

G. Sakthivel; M. Ilangkumaran

2013-01-01T23:59:59.000Z

389

NETL: News Release - GE Sets Benchmarks for Fuel Cell Performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

August 8, 2005 August 8, 2005 GE Sets Benchmarks for Fuel Cell Performance Achievements Move Efficient, Clean SOFC Technology Closer to Mainstream Energy Markets TORRANCE, CA - In the race to speed solid oxide fuel cell (SOFC) technology out of niche markets and into widespread commercial use, GE Hybrid Power Generation Systems has kicked fuel cell performance into high gear. Recent advancements have dramatically improved baseline cell performance and accelerate GE's prospects for achieving the system efficiency and cost objectives of DOE's Solid State Energy Alliance (SECA) program. Packing more power into smaller volumes is one of the breakthroughs needed to reduce the cost and expand the use of efficient, environmentally friendly fuel cells. But increasing power density isn't the only goal; as power density increases, fuel cells must continue to efficiently and reliably convert fuel to electric power.

390

Avoiding 100 New Power Plants by Increasing Efficiency of Room Air Conditioners in India: Opportunities and Challenges  

E-Print Network [OSTI]

imported LNG. Imported coal prices have been increasing inabove the domestic coal prices in India [16]. The following

Phadke, Amol

2014-01-01T23:59:59.000Z

391

Eco-efficient approaches to land management: a case for increased integration of crop and animal production systems  

Science Journals Connector (OSTI)

...eco-efficiency is related to both and...pesticides and energy and the minimization of greenhouse gas emissions are all key...processes, reducing greenhouse...equivalents and the energy required...fertilizer then related to the energy cost for...

2008-01-01T23:59:59.000Z

392

Alternative Fuels Data Center: Renewable Fuel Standard  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Renewable Fuel Renewable Fuel Standard to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Standard on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Standard on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Standard on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Standard At least 2% of all diesel fuel sold in Washington must be biodiesel or renewable diesel. This requirement will increase to 5% 180 days after the

393

Renewable Fuels and Lubricants Laboratory (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes the Renewable Fuels and Lubricants (ReFUEL) Laboratory at the U.S. Department of Energy National Renewable Energy Laboratory (NREL) is a state-of-the-art research and testing facility for advanced fuels and vehicles. Research and development aims to improve vehicle efficiency and overcome barriers to the increased use of renewable diesel and other nonpetroleum-based fuels, such as biodiesel and synthetic diesel derived from biomass. The ReFUEL Laboratory features a chassis dynamometer for vehicle performance and emissions research, two engine dynamometer test cells for advanced fuels research, and precise emissions analysis equipment. As a complement to these capabilities, detailed studies of fuel properties, with a focus on ignition quality, are performed at NREL's Fuel Chemistry Laboratory.

Not Available

2014-08-01T23:59:59.000Z

394

Vehicle Technologies Office Merit Review 2014: Development and Demonstration of a Fuel-Efficient Class 8 Highway Vehicle  

Broader source: Energy.gov [DOE]

Presentation given by Volvo Trucks at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the development and...

395

Voluntary Agreements for Increasing Energy-Efficiency in Industry: Case Study of a Pilot Project with the Steel Industry in Shandong Province, China  

SciTech Connect (OSTI)

This paper describes international experience with the use of Voluntary Agreements for increasing industrial sector energy-efficiency, drawing lessons learned regarding the essential elements of the more successful programs. The paper focuses on a pilot project for implementation of a Voluntary Agreement with two steel mills in Shandong Province that was developed through international collaboration with experts in China, the Netherlands, and the U.S. Designing the pilot project involved development of approaches for energy-efficiency potential assessments for the steel mills, target-setting to establish the Voluntary Agreement energy-efficiency goals, preparing energy-efficiency plans for implementation of energy-saving technologies and measures, and monitoring and evaluating the project's energy savings.

Price, Lynn; Worrell, Ernst; Sinton, Jonathan; Yun, Jiang

2003-03-01T23:59:59.000Z

396

Distributed/Stationary Fuel Cell Systems | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DistributedStationary Fuel Cell Systems DistributedStationary Fuel Cell Systems Photo of stationary fuel cell The Department of Energy (DOE) is developing high-efficiency fuel...

397

Combined heat and power has the potential to significantly increase energy production efficiency and thus reduce greenhouse gas emissions, however current market penetration  

E-Print Network [OSTI]

1 Combined heat and power has the potential to significantly increase energy production efficiency that California will not reach the targets for combined heat and power set for it by the Air Resources Board (ARB of combined heat and power into the new ARB Emissions Cap and Trade scheme. This potential failure would

Kammen, Daniel M.

398

Microfluidic Microbial Fuel Cells for Microstructure Interrogations  

E-Print Network [OSTI]

Model of hydrogen fuel cell kinetic losses includingschematic of typical hydrogen fuel cell performancephase factors on hydrogen fuel cell theoretical efficiency,

Parra, Erika Andrea

2010-01-01T23:59:59.000Z

399

The interrelationship between environmental goals, productivity improvement, and increased energy efficiency in integrated paper and steel plants  

SciTech Connect (OSTI)

This report presents the results of an investigation into the interrelationships between plant-level productivity, energy efficiency, and environmental improvements for integrated pulp and paper mills and integrated steel mills in the US. Integrated paper and steel plants are defined as those facilities that use some form of onsite raw material to produce final products (for example, paper and paperboard or finished steel). Fully integrated pulp and paper mills produce onsite the pulp used to manufacture paper from virgin wood fiber, secondary fiber, or nonwood fiber. Fully integrated steel mills process steel from coal, iron ore, and scrap inputs and have onsite coke oven facilities.

NONE

1997-06-01T23:59:59.000Z

400

Fuel Cell Demonstration Program  

SciTech Connect (OSTI)

In an effort to promote clean energy projects and aid in the commercialization of new fuel cell technologies the Long Island Power Authority (LIPA) initiated a Fuel Cell Demonstration Program in 1999 with six month deployments of Proton Exchange Membrane (PEM) non-commercial Beta model systems at partnering sites throughout Long Island. These projects facilitated significant developments in the technology, providing operating experience that allowed the manufacturer to produce fuel cells that were half the size of the Beta units and suitable for outdoor installations. In 2001, LIPA embarked on a large-scale effort to identify and develop measures that could improve the reliability and performance of future fuel cell technologies for electric utility applications and the concept to establish a fuel cell farm (Farm) of 75 units was developed. By the end of October of 2001, 75 Lorax 2.0 fuel cells had been installed at the West Babylon substation on Long Island, making it the first fuel cell demonstration of its kind and size anywhere in the world at the time. Designed to help LIPA study the feasibility of using fuel cells to operate in parallel with LIPA's electric grid system, the Farm operated 120 fuel cells over its lifetime of over 3 years including 3 generations of Plug Power fuel cells (Lorax 2.0, Lorax 3.0, Lorax 4.5). Of these 120 fuel cells, 20 Lorax 3.0 units operated under this Award from June 2002 to September 2004. In parallel with the operation of the Farm, LIPA recruited government and commercial/industrial customers to demonstrate fuel cells as on-site distributed generation. From December 2002 to February 2005, 17 fuel cells were tested and monitored at various customer sites throughout Long Island. The 37 fuel cells operated under this Award produced a total of 712,635 kWh. As fuel cell technology became more mature, performance improvements included a 1% increase in system efficiency. Including equipment, design, fuel, maintenance, installation, and decommissioning the total project budget was approximately $3.7 million.

Gerald Brun

2006-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "increase fuel efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cells Fuel Cells The Solid State Energy Conversion Alliance (SECA) program is responsible for coordinating Federal efforts to facilitate development of a commercially relevant and robust solid oxide fuel cell (SOFC) system. Specific objectives include achieving an efficiency of greater than 60 percent, meeting a stack cost target of $175 per kW, and demonstrating lifetime performance degradation of less than 0.2 percent per

402

Transportation Efficiency Strategies  

Gasoline and Diesel Fuel Update (EIA)

fuel efficiency through conventional engine hybrid and other technologies Reducing air pollution with conventional engine technology Hybrid and internal...

403

The 2014 Fuel Economy Guide Can Help You Choose Your Next Fuel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The 2014 Fuel Economy Guide Can Help You Choose Your Next Fuel-Efficient Vehicle The 2014 Fuel Economy Guide Can Help You Choose Your Next Fuel-Efficient Vehicle January 8, 2014 -...

404

Fuel comsumption of heavy-duty trucks : potential effect of future technologies for improving energy efficiency and emission.  

SciTech Connect (OSTI)

The results of an analysis of heavy-duty truck (Classes 2b through 8) technologies conducted to support the Energy Information Administration's long-term projections for energy use are summarized. Several technology options that have the potential to improve the fuel economy and emissions characteristics of heavy-duty trucks are included in the analysis. The technologies are grouped as those that enhance fuel economy and those that improve emissions. Each technology's potential impact on the fuel economy of heavy-duty trucks is estimated. A rough cost projection is also presented. The extent of technology penetration is estimated on the basis of truck data analyses and technical judgment.

Saricks, C. L.; Vyas, A. D.; Stodolsky, F.; Maples, J. D.; Energy Systems; USDOE

2003-01-01T23:59:59.000Z

405

Enabling High Efficiency Clean Combustion with Micro-Variable Circular-Orifice (MVCO) Fuel Injector and Adaptive PCCI  

Broader source: Energy.gov [DOE]

Key characteristics of variable orifice fuel injector are described that will extend the operation maps of early PCCI combustion and enable dual-mode combustion over full operating maps.

406

Vehicle Technologies Office Merit Review 2014: DOE’s Effort to Improve Heavy Vehicle Fuel Efficiency through Improved Aerodynamics  

Broader source: Energy.gov [DOE]

Presentation given by Lawrence Livermore National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about DOE’s...

407

Vehicle Technologies Office Merit Review 2014: Low Temperature Emission Control to Enable Fuel-Efficient Engine Commercialization  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about low temperature...

408

Vehicle Technologies Office Merit Review 2014: A MultiAir / MultiFuel Approach to Enhancing Engine System Efficiency  

Broader source: Energy.gov [DOE]

Presentation given by Chrysler at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about a multiair/multifuel approach to...

409

Glioblastoma Treatment: Bypassing the Toxicity of Platinum Compounds by Using Liposomal Formulation and Increasing Treatment Efficiency With Concomitant Radiotherapy  

SciTech Connect (OSTI)

Purpose: Treatments of glioblastoma with cisplatin or oxaliplatin only marginally improve the overall survival of patients and cause important side effects. To prevent adverse effects, improve delivery, and optimize the tumor response to treatment in combination with radiotherapy, a potential approach consists of incorporating the platinum agent in a liposome. Methods and Materials: In this study, cisplatin, oxaliplatin, carboplatin, Lipoplatin (the liposomal formulation of cisplatin), and Lipoxal (the liposomal formulation of oxaliplatin) were tested on F98 glioma orthotopically implanted in Fischer rats. The platinum compounds were administered by intracarotid infusion and were assessed for the ability to reduce toxicity, improve cancer cell uptake, and increase survival of animals when combined or not combined with radiotherapy. Results: The tumor uptake was 2.4-fold more important for Lipoxal than the liposome-free oxaliplatin. Lipoxal also improved the specificity of oxaliplatin as shown by a higher ratio of tumor to right hemisphere uptake. Surprisingly, Lipoplatin led to lower tumor uptake compared with cisplatin. However, Lipoplatin had the advantage of largely reducing the toxicity of cisplatin and allowed us to capitalize on the anticancer activity of this agent. Conclusion: Among the five platinum compounds tested, carboplatin showed the best increase in survival when combined with radiation for treatment of glioma implanted in Fischer rats.

Charest, Gabriel; Sanche, Leon [Center for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Universite de Sherbrooke, Sherbrooke, Quebec (Canada)] [Center for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Universite de Sherbrooke, Sherbrooke, Quebec (Canada); Fortin, David; Mathieu, David [Department of Surgery, Division of Neurosurgery, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec (Canada)] [Department of Surgery, Division of Neurosurgery, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec (Canada); Paquette, Benoit, E-mail: Benoit.Paquette@USherbrooke.ca [Center for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Universite de Sherbrooke, Sherbrooke, Quebec (Canada)] [Center for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Universite de Sherbrooke, Sherbrooke, Quebec (Canada)

2012-09-01T23:59:59.000Z

410

Proton Conductor based Solid Oxide Fuel Cells Ceramatec, Inc., Salt Lake City, UT 84119  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

based Solid Oxide Fuel Cells based Solid Oxide Fuel Cells Ceramatec, Inc., Salt Lake City, UT 84119 S. (Elango) Elangovan, Joseph Hartvigsen, Insoo Bay, and Feng Zhao High efficiency operation is one of the primary attractions to use solid oxide fuel cells as the energy conversion device. High efficiency requires maximizing of the product of operating voltage and fuel utilization. The maximum possible operating voltage however is limited by the Nernst potential near the fuel exhaust. In oxygen conducting electrolyte based fuel cells (O-SOFC) as the fuel utilization increases, the Nernst potential continues to decrease with the dilution of fuel by the reaction products. In contrast, in a proton conducting electrolyte based fuel cell (P-SOFC) the reaction product is formed on the cathode side allowing for high operating voltage at high fuel

411

Fueling South Carolina's Clean Energy Economy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fueling South Carolina's Clean Energy Economy Fueling South Carolina's Clean Energy Economy Fueling South Carolina's Clean Energy Economy June 6, 2012 - 4:15pm Addthis Pure Power, LLC makes products that allow truck engines to reduce emissions and improve fuel economy. The company has increased their energy efficiency and hired new employees. | Photo courtesy of Flickr user ClatieK. Pure Power, LLC makes products that allow truck engines to reduce emissions and improve fuel economy. The company has increased their energy efficiency and hired new employees. | Photo courtesy of Flickr user ClatieK. Julie McAlpin Communications Liaison, State Energy Program What does this mean for me? Pure Power increased energy efficiency while expanding plant

412

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Compressed Natural Gas (CNG) Fueling Infrastructure Development The Oklahoma Legislature intends to increase the amount of CNG fueling infrastructure in the state, with the overall...

413

Ordered Hierarchical Nanostructured Carbon as a Highly Efficient Cathode Catalyst Support in Proton Exchange Membrane Fuel Cell  

Science Journals Connector (OSTI)

Ordered hierarchical nanostructured carbon (OHNC) has been fabricated through inverse replication of silica template and explored for the first time to support high loading of Pt nanoparticles as cathode catalyst in proton exchange membrane fuel cells (PEMFC). ... Ordered porous carbon materials with three-dimensionally interconnected pore structures and highly developed porosity have a variety of potential applications such as catalyst supports in low temperature fuel cells,(1, 2) electrode materials for electric double-layer capacitors(3, 4) and for lithium ion batteries,(5) adsorbents, and hydrogen storage materials. ... Carbon black Vulcan XC-72 (VC) is widely used as an electrocatalyst support in the PEMFCs due to its relatively large surface area and excellent chemical stability in the fuel cell environment. ...

Baizeng Fang; Jung Ho Kim; Minsik Kim; Jong-Sung Yu

2009-02-04T23:59:59.000Z

414

Renewable Fuels and Lubricants (ReFUEL) Laboratory (Fact Sheet), NREL (National Renewable Energy Laboratory)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. The Renewable Fuels and Lubricants (ReFUEL) Laboratory at the U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) is a state-of-the-art research and testing facility for advanced fuels and vehicles. Research and development aims to improve vehicle efficiency and overcome barriers to the increased use of renewable diesel and other nonpetroleum-based fuels, such as biodiesel and synthetic diesel derived from biomass. The ReFUEL Laboratory features a chassis dynamometer for vehicle performance and emissions research, two engine dynamometer test cells for advanced fuels research, and precise emissions analysis equipment. As a complement to

415

A proportional method for calculating the efficiency and specific consumption of fuel at gas-turbine cogeneration stations  

Science Journals Connector (OSTI)

A new proportional method for calculating the indicators characterizing the energy efficiency of gas-turbine cogeneration stations is presented. The data obtained are compared...

G. P. Chitashvili

2006-12-01T23:59:59.000Z

416

Mathematical modeling of solid oxide fuel cells using hydrocarbon fuels  

E-Print Network [OSTI]

Solid oxide fuel cells (SOFCs) are high efficiency conversion devices that use hydrogen or light hydrocarbon (HC) fuels in stationary applications to produce quiet and clean power. While successful, HC-fueled SOFCs face ...

Lee, Won Yong, Ph. D. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

417

Designing Alternatives to State Motor Fuel Taxes  

E-Print Network [OSTI]

Designing Alternatives to State Motor Fuel Taxes All states rely on gasoline taxes as one source efficiency and alternative fuel vehicles reduce both the equity of the revenue source and its growth over, leading to higher fuel efficiency, wide variations in fuel efficiency, and alternative- fuel vehicles

Bertini, Robert L.

418

Alternative Fuels Data Center: Utah Laws and Incentives for Fuel Economy /  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Utah Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Utah Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Utah Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Utah Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

419

Alternative Fuels Data Center: Federal Laws and Incentives for Fuel Economy  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Federal Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Federal Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Federal Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Federal Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

420

Alternative Fuels Data Center: Rhode Island Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section...

Note: This page contains sample records for the topic "increase fuel efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Alternative Fuels Data Center: Alaska Laws and Incentives for Fuel Economy  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Alaska Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Alaska Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Alaska Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Alaska Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

422

Alternative Fuels Data Center: Maine Laws and Incentives for Fuel Economy /  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

423

Alternative Fuels Data Center: Indiana Laws and Incentives for Fuel Economy  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Indiana Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Indiana Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Indiana Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Indiana Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

424

Alternative Fuels Data Center: Idaho Laws and Incentives for Fuel Economy /  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Idaho Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Idaho Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Idaho Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Idaho Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Idaho Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Idaho Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

425

Alternative Fuels Data Center: New Jersey Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: New Jersey Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: New Jersey Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: New Jersey Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: New Jersey Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: New Jersey Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: New Jersey Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal

426

Alternative Fuels Data Center: New Hampshire Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: New Hampshire Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: New Hampshire Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: New Hampshire Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: New Hampshire Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: New Hampshire Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: New Hampshire Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section...

427

Alternative Fuels Data Center: Florida Laws and Incentives for Fuel Economy  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Florida Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Florida Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Florida Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Florida Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

428

Alternative Fuels Data Center: Vermont Laws and Incentives for Fuel Economy  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

429

Alternative Fuels Data Center: Oregon Laws and Incentives for Fuel Economy  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Oregon Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Oregon Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Oregon Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Oregon Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Oregon Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Oregon Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

430

Alternative Fuels Data Center: Georgia Laws and Incentives for Fuel Economy  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Georgia Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Georgia Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Georgia Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Georgia Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

431

Alternative Fuels Data Center: New Mexico Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: New Mexico Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: New Mexico Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: New Mexico Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: New Mexico Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: New Mexico Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: New Mexico Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal

432

Alternative Fuels Data Center: New York Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: New York Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: New York Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: New York Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: New York Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: New York Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: New York Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

433

Alternative Fuels Data Center: Hawaii Laws and Incentives for Fuel Economy  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Hawaii Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Hawaii Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Hawaii Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Hawaii Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

434

Alternative Fuels Data Center: North Carolina Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: North Carolina Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: North Carolina Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: North Carolina Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: North Carolina Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: North Carolina Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: North Carolina Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section...

435

Alternative Fuels Data Center: Montana Laws and Incentives for Fuel Economy  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Montana Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Montana Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Montana Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Montana Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Montana Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Montana Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

436

Simultaneous Efficiency, NOx, and Smoke Improvements through Diesel/Gasoline Dual-Fuel Operation in a Diesel Engine  

E-Print Network [OSTI]

or liquefied petroleum gas, natural gas, biogas, hydrogen, and alcohols such as methanol, ethanol, iso-propanol, and n-butanol), and fuel additives (MTBE or methyl tertiary-butyl ether, H2O2 or hydrogen peroxide, 2-EHN or ethylhexyl nitrate and DTBP or di...

Sun, Jiafeng

2014-08-05T23:59:59.000Z

437

Dual fueling of a Caterpillar 3406 diesel engine  

SciTech Connect (OSTI)

A Caterpillar 3406 turbocharged diesel engine was converted to operate in a dual-fuel mode and was evaluated for performance and emission characteristics for both diesel and natural gas operation. Full load power was achieved with dual fueling without knock. Similar fuel efficiencies were obtained with dual fueling a high loads, but efficiencies were lower for low loads. Bosch smoke numbers were reduced by over 50% with dual fueling for all cases investigated. NO{sub x} emissions were found to be lower at low loads and at high speeds under high load. CO emissions were significantly increased for dual fueling while CO{sub 2} concentrations in the exhaust were reduced for dual fueling.

Bell, S.R.; Midkiff, K.C.; Doughty, G.; Brett, C.E. [Univ. of Alabama, Tuscaloosa, AL (United States)

1996-05-01T23:59:59.000Z

438

Multi-criteria comparison of fuel policies: Renewable fuel mandate, fuel emission-standards, and fuel carbon tax  

E-Print Network [OSTI]

biofuels. Let p denote the fuel price, q denote the quantitya carbon tax, domestic fuel price increases, and domesticbiofuel mandate on domestic fuel price, fuel, h dq t d ? dp

Rajagopal, Deepak; Hochman, G.; Zilberman, D.

2012-01-01T23:59:59.000Z

439

Hydrogen Infrastructure Strategies to Enable Fuel Cell Vehicles  

E-Print Network [OSTI]

Hydrogen Infrastructure Strategies to Enable Fuel Cell Vehicles Prof. Joan Ogden University Most important insight from STEPS research: A portfolio approach combining efficiency, alt fuels, but fall with increased scale to $3-4/kg (~$2-3/gal gasoline) Hydrogen Cost in Selected Cities 0.06 0.08 0

California at Davis, University of

440

Molecular Fuel Tanks  

Science Journals Connector (OSTI)

...University of Florida. The Energy Efficiency and Renewable Energy (EERE) Web site of the U.S. Department of Energy (DOE) offers...Numbered Hypernotes Alternative fuel technologies. DOE's EERE Web site offers an introduction to alternative fuels. The DOE's...

Michael D. Ward

2003-05-16T23:59:59.000Z

Note: This page contains sample records for the topic "increase fuel efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Vehicle Technologies Office Merit Review 2014: The Application of High Energy Ignition and Boosting/Mixing Technology to Increase Fuel Economy in Spark Ignition Gasoline Engines by Increasing EGR Dilution Capability  

Broader source: Energy.gov [DOE]

Presentation given by General Motors LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the application of high...

442

Research Strategies for Development of an Efficient and Effective Electrocatalyst for Polymer Electrolyte Membrane Fuel Cells and Progress Summary  

SciTech Connect (OSTI)

The current electrocatalyst formulation for the polymer electrolyte membrane fuel cell (PEMFC), platinum supported on carbon (Pt/C), is known to be an effective promoter of redox reactions in fuel cells. However, the cost of Pt (currently ~$2,000/troy ounce) hinders its use as a practical catalyst in commercial fuel cell-powered vehicles at current platinum loading. Another issue with respect to adoption of any electrocatalyst for vehicle applications is durability, especially in light of transportation drive cycle operation with start/stop, start-up/shut-down, and transient requirements. Thus, a robust alternative to current Pt/C technology is needed as the PEMFC electrocatalyst for the oxygen reduction reaction (ORR) on the cathode. The U.S. Department of Energy is funding cathode catalyst research on low-platinum group metal (PGM) catalysts, including alloys and core-shell systems, and on non-PGM catalysts. This paper provides an overview of the issues, approaches, and status of the research.

Payne, Terry L [ORNL; Benjamin, Tom [Argonne National Laboratory (ANL); Garland, Nancy [U.S. Department of Energy; Kopasz, John [Argonne National Laboratory (ANL)

2008-01-01T23:59:59.000Z

443

Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel Engines using Model-Based Transient Calibration  

Broader source: Energy.gov [DOE]

Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

444

Efficient recovery of nano-sized iron oxide particles from synthetic acid-mine drainage (AMD) water using fuel cell  

E-Print Network [OSTI]

Efficient recovery of nano-sized iron oxide particles from synthetic acid-mine drainage (AMD) water electricity. Here we show that this approach can also be used as a technique to generate spherical nano

445

Moving Forward With Fuel Economy Standards  

E-Print Network [OSTI]

fuel supply cut-off. Fuel prices had jumped, and fuelWhen CAFE was passed, the fuel price increases of 1973 hadof pressure from higher fuel prices. The mpg of new trucks

Schipper, Lee

2009-01-01T23:59:59.000Z

446

Reaction Profiles during Exhaust-Assisted Reforming of Diesel Engine Fuels  

Science Journals Connector (OSTI)

Reaction Profiles during Exhaust-Assisted Reforming of Diesel Engine Fuels ... The reforming efficiency was dependent on the fuel type and followed the general trend of bioethanol > rapeseed methyl ester > low-sulfur diesel fuel. ... The use of exhaust gas recirculation (EGR) in diesel engines reduces nitrogen oxide (NOx) emissions but results in an increased release of smoke and particulate matter (PM), as well as higher fuel consumption. ...

A. Tsolakis; A. Megaritis; S. E. Golunski

2005-03-10T23:59:59.000Z

447

Analysis of Fuel Cell Vehicle Hybridization and Implications for Energy Storage Devices: June 2004  

SciTech Connect (OSTI)

This paper addresses the impact of fuel efficiency characteristics on vehicle system efficiency, fuel economy from downsizing different fuel cells, as well as the energy storage system.

Zolot, M.; Markel, T.; Pesaran, A.

2007-01-01T23:59:59.000Z

448

Combustion Phasing Model for Control of a Gasoline-Ethanol Fueled SI Engine with Variable Valve Timing  

E-Print Network [OSTI]

Combustion Phasing Model for Control of a Gasoline-Ethanol Fueled SI Engine with Variable Valve engine efficiency. Fuel-flexible engines permit the increased use of ethanol-gasoline blends. Ethanol points across the engine operating range for four blends of gasoline and ethanol. I. INTRODUCTION Fuel

449

Fuel Flexible, Low Emission Catalytic Combustor for Opportunity Fuel Applications  

SciTech Connect (OSTI)

Limited fuel resources, increasing energy demand and stringent emission regulations are drivers to evaluate process off-gases or process waste streams as fuels for power generation. Often these process waste streams have low energy content and/or highly reactive components. Operability of low energy content fuels in gas turbines leads to issues such as unstable and incomplete combustion. On the other hand, fuels containing higher-order hydrocarbons lead to flashback and auto-ignition issues. Due to above reasons, these fuels cannot be used directly without modifications or efficiency penalties in gas turbine engines. To enable the use of these wide variety of fuels in gas turbine engines a rich catalytic lean burn (RCL®) combustion system was developed and tested in a subscale high pressure (10 atm.) rig. The RCL® injector provided stability and extended turndown to low Btu fuels due to catalytic pre-reaction. Previous work has shown promise with fuels such as blast furnace gas (BFG) with LHV of 85 Btu/ft3 successfully combusted. This program extends on this work by further modifying the combustor to achieve greater catalytic stability enhancement. Fuels containing low energy content such as weak natural gas with a Lower Heating Value (LHV) of 6.5 MJ/m3 (180 Btu/ft3 to natural gas fuels containing higher hydrocarbon (e.g ethane) with LHV of 37.6 MJ/m3 (1010 Btu/ft3) were demonstrated with improved combustion stability; an extended turndown (defined as the difference between catalytic and non-catalytic lean blow out) of greater than 250oF was achieved with CO and NOx emissions lower than 5 ppm corrected to 15% O2. In addition, for highly reactive fuels the catalytic region preferentially pre-reacted the higher order hydrocarbons with no events of flashback or auto-ignition allowing a stable and safe operation with low NOx and CO emissions.

Eteman, Shahrokh

2013-06-30T23:59:59.000Z

450

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Illinois Department of Education will reimburse any qualifying school district for the cost of converting gasoline buses to more fuel-efficient engines or to engines using...

451

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Department of Transportation and Public Facilities (Department) must evaluate the cost, efficiency, and commercial availability of alternative fuels for automotive purposes...

452

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

improve fuel efficiency. Eligible projects include installation of idle reduction or aerodynamic technology and diesel vehicle replacement. Funding is not available for this...

453

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

100 million for an alternative fuel or gasification facility that uses coal, oil shale, or tar sands as the primary feedstock; 25 million for an energy-efficient...

454

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Environmental Protection Agency, a program allowing federally certified low emission, energy-efficient, and alternative fuel vehicles to operate in HOV lanes regardless of the...

455

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Unified School District with developing bid specifications and identifying grants for energy efficient, alternative fuel, or best emissions control technology school buses. For...

456

Hydrogen Fuel Cells  

Fuel Cell Technologies Publication and Product Library (EERE)

The fuel cell — an energy conversion device that can efficiently capture and use the power of hydrogen — is the key to making it happen.

457

Fuel control system  

SciTech Connect (OSTI)

A fuel control system is described comprising: a fuel rack movable in opposite fuel-increasing and fuel-decreasing directions; a rack control member movable in opposite fuel-increasing and fuel-decreasing directions; servo system means for moving the fuel rack in response to movement of the rack control member an electrically energizable member movable in opposite fuel-increasing and fuel-decreasing directions, the electrically energizable member being urged to move in its fuel-decreasing direction when energized; first coupling means for connecting the electrically energizable member to the rack control member to move the rack control member in its fuel-decreasing direction in response to movement of the electrically energizable member in its fuel-decreasing direction; a mechanical governor control having a member movable in opposite fuel-increasing and fuel-decreasing directions; second coupling means for connecting the mechanical governor to the rack control member to move the rack control member in its fuel-decreasing direction in response to movement of the mechanical governor member in its fuel-decreasing direction; bias means for biasing the rack control member to move in its fuel-increasing direction.

Staniak, W.A.; Samuelson, R.E.; Moncelle, M.E.

1986-10-14T23:59:59.000Z

458

Fuel quality issues in stationary fuel cell systems.  

SciTech Connect (OSTI)

Fuel cell systems are being deployed in stationary applications for the generation of electricity, heat, and hydrogen. These systems use a variety of fuel cell types, ranging from the low temperature polymer electrolyte fuel cell (PEFC) to the high temperature solid oxide fuel cell (SOFC). Depending on the application and location, these systems are being designed to operate on reformate or syngas produced from various fuels that include natural gas, biogas, coal gas, etc. All of these fuels contain species that can potentially damage the fuel cell anode or other unit operations and processes that precede the fuel cell stack. These detrimental effects include loss in performance or durability, and attenuating these effects requires additional components to reduce the impurity concentrations to tolerable levels, if not eliminate the impurity entirely. These impurity management components increase the complexity of the fuel cell system, and they add to the system's capital and operating costs (such as regeneration, replacement and disposal of spent material and maintenance). This project reviewed the public domain information available on the impurities encountered in stationary fuel cell systems, and the effects of the impurities on the fuel cells. A database has been set up that classifies the impurities, especially in renewable fuels, such as landfill gas and anaerobic digester gas. It documents the known deleterious effects on fuel cells, and the maximum allowable concentrations of select impurities suggested by manufacturers and researchers. The literature review helped to identify the impurity removal strategies that are available, and their effectiveness, capacity, and cost. A generic model of a stationary fuel-cell based power plant operating on digester and landfill gas has been developed; it includes a gas processing unit, followed by a fuel cell system. The model includes the key impurity removal steps to enable predictions of impurity breakthrough, component sizing, and utility needs. These data, along with process efficiency results from the model, were subsequently used to calculate the cost of electricity. Sensitivity analyses were conducted to correlate the concentrations of key impurities in the fuel gas feedstock to the cost of electricity.

Papadias, D.; Ahmed, S.; Kumar, R. (Chemical Sciences and Engineering Division)

2012-02-07T23:59:59.000Z

459

On-Board Fuel Processing for a Fuel Cell?Heat Engine Hybrid System  

Science Journals Connector (OSTI)

(9) Because they have used the same fuel, gasoline having an established infrastructure, to constrain the same well to tank (WTT) efficiency for the compared systems, the TTW efficiency of the hybrid FCHEV is unexpectedly low, because the gasoline processing to hydrogen with subsequent use of the latter in the FC had an efficiency of only 35% in their calculation. ... to increase by up to 15% by hybridizing it with an energy storage system. ...

Osman Sinan Süslü; ?pek Becerik

2009-03-24T23:59:59.000Z

460

Alternative Fuels Data Center: Colorado Leads in Alternative Fuel Use and  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Colorado Leads in Colorado Leads in Alternative Fuel Use and Public Transit Efficiency to someone by E-mail Share Alternative Fuels Data Center: Colorado Leads in Alternative Fuel Use and Public Transit Efficiency on Facebook Tweet about Alternative Fuels Data Center: Colorado Leads in Alternative Fuel Use and Public Transit Efficiency on Twitter Bookmark Alternative Fuels Data Center: Colorado Leads in Alternative Fuel Use and Public Transit Efficiency on Google Bookmark Alternative Fuels Data Center: Colorado Leads in Alternative Fuel Use and Public Transit Efficiency on Delicious Rank Alternative Fuels Data Center: Colorado Leads in Alternative Fuel Use and Public Transit Efficiency on Digg Find More places to share Alternative Fuels Data Center: Colorado Leads in Alternative Fuel Use and Public Transit Efficiency on

Note: This page contains sample records for the topic "increase fuel efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

IRRADIATION PERFORMANCE OF U-Mo MONOLITHIC FUEL  

SciTech Connect (OSTI)

High-performance research reactors require fuel that operates at high specific power to high fission density, but at relatively low temperatures. Research reactor fuels are designed for efficient heat rejection, and are composed of assemblies of thin-plates clad in aluminum alloy. The development of low-enriched fuels to replace high-enriched fuels for these reactors requires a substantially increased uranium density in the fuel to offset the decrease in enrichment. Very few fuel phases have been identified that have the required combination of very-high uranium density and stable fuel behavior at high burnup. UMo alloys represent the best known tradeoff in these properties. Testing of aluminum matrix U-Mo aluminum matrix dispersion fuel revealed a pattern of breakaway swelling behavior at intermediate burnup, related to the formation of a molybdenum stabilized high aluminum intermetallic phase that forms during irradiation. In the case of monolithic fuel, this issue was addressed by eliminating, as much as possible, the interfacial area between U-Mo and aluminum. Based on scoping irradiation test data, a fuel plate system composed of solid U-10Mo fuel meat, a zirconium diffusion barrier, and Al6061 cladding was selected for development. Developmental testing of this fuel system indicates that it meets core criteria for fuel qualification, including stable and predictable swelling behavior, mechanical integrity to high burnup, and geometric stability. In addition, the fuel exhibits robust behavior during power-cooling mismatch events under irradiation at high power.

M.K. Meyer; J. Gan; J.-F. Jue; D.D. Keiser; E. Perez; A. Robinson; D.M. Wachs; N. Woolstenhulme; G.L. Hofman; Y.-S. Kim

2014-04-01T23:59:59.000Z

462

Diesel fuel qualities  

SciTech Connect (OSTI)

As a result of rising fuel costs, many ship operators are turning to less expensive, heavier grade fuels for their diesel engines. Use of these lower quality fuels without adequate preparation can cause increased engine wear and damage to fuel systems. The oil properties which affect pretreatment and cleaning requirements, specifications that should be used when purchasing these fuels, and procedures for confirming that bought fuels meet purchase specifications are discussed. (LCL)

Blenkey, N.

1981-02-01T23:59:59.000Z

463

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC AFDC Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Alternative Fuels Data Center: Page Not Found Skip to Content Eere_header_logo U.S. Department of Energy Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Alternative Fuels Data Center Search Search Help Alternative Fuels Data Center Fuels & Vehicles Biodiesel | Diesel Vehicles

464

Complete Fuel Combustion for Diesel Engines Resulting in Greatly...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Complete Fuel Combustion for Diesel Engines Resulting in Greatly Reduced Emissions and Improved Fuel Efficiency Complete Fuel Combustion for Diesel Engines Resulting in Greatly...

465

Vehicle Technologies Office: 2012 Fuel and Lubricant Technologies...  

Energy Savers [EERE]

2008-2009 Fuels Technologies R&D Progress Report Vehicles Home About Vehicle Technologies Office Plug-in Electric Vehicles & Batteries Fuel Efficiency & Emissions Alternative Fuels...

466

Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles  

E-Print Network [OSTI]

simulation tool for hydrogen fuel cell vehicles, Journal ofeconomies of the direct hydrogen fuel cell vehicle withoutMaximizing Direct-Hydrogen Pem Fuel Cell Vehicle Efficiency-

Zhao, Hengbing; Burke, Andy

2009-01-01T23:59:59.000Z

467

Vehicle Technologies Office Merit Review 2014: Fuel Properties...  

Broader source: Energy.gov (indexed) [DOE]

Fuels and Combustion Strategies for High-Efficiency Clean-Combustion Engines Optical-Engine and Surrogate-Fuels Research for an Improved Understanding of Fuel Effects on...

468

Hydrogen and Fuel Cells Success Stories | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hydrogen and Fuel Cells Success Stories Hydrogen and Fuel Cells Success Stories RSS The Office of Energy Efficiency and Renewable Energy's (EERE) successes in advanced fuel cell...

469

Electric charging of flowing fuels by a corona discharge  

E-Print Network [OSTI]

over other techniques utilized for the same purpose Therefore, it is reasonable to assume that this technique, once applied to combustion processes will provide large increase in the efficiency of such processes iv ACKNONL EDGNENT S I wish... new technique which has been designed to increase the levels of efficiency of these processes The problem of the efficiency in combustion processes has been treated mainly under two aspects~ first the air-to-fuel ratio and then the air...

Santos, Ricardo Joaquin

2012-06-07T23:59:59.000Z

470

FUEL CELLS – SOLID OXIDE FUEL CELLS | Internal and External Reformation  

Science Journals Connector (OSTI)

Three basic concepts of solid oxide fuel cell (SOFC) systems operating on hydrocarbon fuels, with external, internal, and partial prereforming, respectively, are presented and discussed. Internal reforming of methane is advantageously used for additional cooling of the SOFC stack, thus increasing system efficiency. Basic thermodynamics, catalysis, and kinetics of the methane steam reforming process are presented. Examples of SOFC stacks operating on internal reforming of methane and simulated partial prereforming of mine gas and natural gas are discussed. The latter is used to illustrate the effect of internal methane reforming on heat management in SOFC stacks.

L.G.J. de Haart; R. Peters

2009-01-01T23:59:59.000Z

471

Natural gas fueling of a Catepillar 3406 diesel engine  

SciTech Connect (OSTI)

This paper reports on a Caterpillar 3406 turbocharged diesel engine which was converted to operate in a natural gas with diesel pilot ignition mode and was evaluated for performance and emission characteristics for both diesel and natural gas operation. Full-load power was achieved with natural gas fueling without knock. Similar fuel efficiencies were obtained with natural gas fueling at high loads, but efficiencies were lower for low loads. Bosch smoke numbers were reduced by over 50 percent with natural gas fueling for all cases investigated. NO[sub x] emissions were found to be lower at low loads and at high speeds under high load. CO emissions were significantly increased for natural gas fueling while CO[sub 2] concentrations in the exhaust were reduced for natural gas fueling.

Doughty, G.E.; Bell, S.R.; Midkiff, K.C. (Dept. of Mechanical Engineering, Univ. of Alabama, Tuscaloosa, AL (United States))

1992-07-01T23:59:59.000Z

472

Fuel Effects on Mixing-Controlled Combustion Strategies for High...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Effects on Mixing-Controlled Combustion Strategies for High-Efficiency Clean-Combustion Engines Fuel Effects on Mixing-Controlled Combustion Strategies for High-Efficiency...

473

Why is fuel Economy Important?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Why Is Fuel Economy Important? Why Is Fuel Economy Important? Saves You Money Save as much as $1,700 in fuel costs each year by choosing the most efficient vehicle that meets your needs. See how much you can save! Photo of gasoline receipt on top of money Reduces Climate Change Carbon dioxide (CO2) from burning gasoline and diesel contributes to global climate change. You can do your part to reduce climate change by reducing your carbon footprint! Photo of Earth from space Reduces Oil Dependence Costs Our dependence on oil makes us vulnerable to oil market manipulation and price shocks. Find out how oil dependence hurts our economy! Chart showing annual cost of oil imports increasing from $21 billion per year in 1975 to approximately $330 billion in 2011 Increases Energy Sustainability

474

Alternative Fuels Data Center: Vehicle Maintenance to Conserve Fuel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Vehicle Maintenance to Vehicle Maintenance to Conserve Fuel to someone by E-mail Share Alternative Fuels Data Center: Vehicle Maintenance to Conserve Fuel on Facebook Tweet about Alternative Fuels Data Center: Vehicle Maintenance to Conserve Fuel on Twitter Bookmark Alternative Fuels Data Center: Vehicle Maintenance to Conserve Fuel on Google Bookmark Alternative Fuels Data Center: Vehicle Maintenance to Conserve Fuel on Delicious Rank Alternative Fuels Data Center: Vehicle Maintenance to Conserve Fuel on Digg Find More places to share Alternative Fuels Data Center: Vehicle Maintenance to Conserve Fuel on AddThis.com... More in this section... Idle Reduction Parts & Equipment Maintenance Driving Behavior Fleet Rightsizing System Efficiency Vehicle Maintenance to Conserve Fuel A comprehensive vehicle maintenance strategy can help fleet managers and

475

Co-Firing Oil Shale with Coal and Other Fuels for Improved Efficiency and Multi-Pollutant Control  

SciTech Connect (OSTI)

Oil shale is an abundant, undeveloped natural resource which has natural sorbent properties, and its ash has natural cementitious properties. Oil shale may be blended with coal, biomass, municipal wastes, waste tires, or other waste feedstock materials to provide the joint benefit of adding energy content while adsorbing and removing sulfur, halides, and volatile metal pollutants, and while also reducing nitrogen oxide pollutants. Oil shale depolymerization-pyrolysis-devolatilization and sorption scoping studies indicate oil shale particle sorption rates and sorption capacity can be comparable to limestone sorbents for capture of SO2 and SO3. Additionally, kerogen released from the shale was shown to have the potential to reduce NOx emissions through the well established “reburning” chemistry similar to natural gas, fuel oil, and micronized coal. Productive mercury adsorption is also possible by the oil shale particles as a result of residual fixed-carbon and other observed mercury capture sorbent properties. Sorption properties were found to be a function particle heating rate, peak particle temperature, residence time, and gas-phase stoichmetry. High surface area sorbents with high calcium reactivity and with some adsorbent fixed/activated carbon can be produced in the corresponding reaction zones that exist in a standard pulverized-coal or in a fluidized-bed combustor.

Robert A. Carrington; William C. Hecker; Reed Clayson

2008-06-01T23:59:59.000Z

476

Alternative Fueling Station Locator | Department of Energy  

Energy Savers [EERE]

your browser to a new version. U.S. Department of Energy Energy Efficiency and Renewable Energy Source: Alternative Fuels Data Center Find alternative fueling stations near an...

477

Sandia National Laboratories: fuel cell membrane  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

membrane ECIS-Automotive Fuel Cell Corporation: Hydrocarbon Membrane Fuels the Success of Future Generation Vehicles On February 14, 2013, in CRF, Energy, Energy Efficiency,...

478

Hydrogen and Fuel Cells | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Transportation Hydrogen and Fuel Cells Hydrogen and Fuel Cells EERE leads U.S. researchers and other partners in making transportation cleaner and more efficient through...

479

National Fuel Cell and Hydrogen Energy Overview  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cells Key Benefits Very High Efficiency Reduced CO 2 Emissions Reduced Oil Use Reduced Air Pollution Fuel Flexibility * > 60% (electrical) * > 70% (electrical, hybrid fuel cell...

480

Catalyst for Improving the Combustion Efficiency of Petroleum...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for Improving the Combustion Efficiency of Petroleum Fuels in Diesel Engines Catalyst for Improving the Combustion Efficiency of Petroleum Fuels in Diesel Engines 2005 Diesel...

Note: This page contains sample records for the topic "increase fuel efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

FUEL CELL/MICRO-TURBINE COMBINED CYCLE  

SciTech Connect (OSTI)

A wide variety of conceptual design studies have been conducted that describe ultra-high efficiency fossil power plant cycles. The most promising of these ultra-high efficiency cycles incorporate high temperature fuel cells with a gas turbine. Combining fuel cells with a gas turbine increases overall cycle efficiency while reducing per kilowatt emissions. This study has demonstrated that the unique approach taken to combining a fuel cell and gas turbine has both technical and economic merit. The approach used in this study eliminates most of the gas turbine integration problems associated with hybrid fuel cell turbine systems. By using a micro-turbine, and a non-pressurized fuel cell the total system size (kW) and complexity has been reduced substantially from those presented in other studies, while maintaining over 70% efficiency. The reduced system size can be particularly attractive in the deregulated electrical generation/distribution environment where the market may not demand multi-megawatt central stations systems. The small size also opens up the niche markets to this high efficiency, low emission electrical generation option.

Larry J. Chaney; Mike R. Tharp; Tom W. Wolf; Tim A. Fuller; Joe J. Hartvigson

1999-12-01T23:59:59.000Z

482

NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC Fuel Cell Tri-Generation System Case  

E-Print Network [OSTI]

the grid and heat from a furnace or boiler ­ More efficient; Heat from the facility is used for space · Delivered heat · Delivered hydrogen · Fuel used · Used grid electricity · Sales to grid grid Syngas of potential combined heat and power/hydrogen production scenarios Approach: Rely on the H2A discounted cash

483

FUEL CELLS – MOLTEN CARBONATE FUEL CELLS | Overview  

Science Journals Connector (OSTI)

The molten carbonate fuel cell (MCFC) emerged during the twentieth century as one of the key fuel cell types. It uses an electrolyte of alkali metal carbonates, operates typically at 650 °C, and is best suited to hydrocarbon fuels such as natural gas, coal gas, or biogas. The high operating temperature enables such fuels to be fed directly to the MCFC stacks, leading to conversion efficiencies greater than 50%. Molten carbonate fuel cell systems are ideally suited to applications that need continuous base load power. The first commercial systems, at the 300 kW scale, are therefore being used in applications such as hospitals and hotels.

A.L. Dicks

2009-01-01T23:59:59.000Z

484

Method and apparatus for fuel gas moisturization and heating  

DOE Patents [OSTI]

Fuel gas is saturated with water heated with a heat recovery steam generator heat source. The heat source is preferably a water heating section downstream of the lower pressure evaporator to provide better temperature matching between the hot and cold heat exchange streams in that portion of the heat recovery steam generator. The increased gas mass flow due to the addition of moisture results in increased power output from the gas and steam turbines. Fuel gas saturation is followed by superheating the fuel, preferably with bottom cycle heat sources, resulting in a larger thermal efficiency gain compared to current fuel heating methods. There is a gain in power output compared to no fuel heating, even when heating the fuel to above the LP steam temperature.

Ranasinghe, Jatila (Niskayuna, NY); Smith, Raub Warfield (Ballston Lake, NY)

2002-01-01T23:59:59.000Z

485

RECIPIENT:EnerFuel  

Broader source: Energy.gov (indexed) [DOE]

EnerFuel EnerFuel u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DFTFRlIllNATION PROJECT TITLE: Hydrogen Technology Electric Vehicle Charging Station Page 1 of2 STATE : FL Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number em Number DE-FC36-04G014255 DE FC36-04G014225 GFO-04-221d G014225 Based on my review offhe information concerning tbe proposed action, as NEPA Compliance Offi(cr (authorized under DOE On::ler 451 .1A), I have made the (0110 wing determination: ex, EA, EIS APPENDIX AND NUMBER: Description: 85.1 Actions to conserve energy, demonstrate potential energy conservation, and promote energy-efficiency that do not Increase the Indoor concentrations of potentially harmful substances. These actions may involve financial and technical

486

An empirical analysis on the adoption of alternative fuel vehicles:The case of natural gas vehicles  

E-Print Network [OSTI]

US DOE, 2005. Alternative Fuel Price Report Energy Ef?ciencyGSL vehicle efficiency Fuel price difference Gasoline priceprice of $3/gallon, 15% fuel price difference, vehicle fuel

Yeh, Sonia

2007-01-01T23:59:59.000Z

487

A hedonic test of the effects of the Alternative Motor Fuels Act  

Science Journals Connector (OSTI)

Under the Alternative Motor Fuels Act (AMFA), vehicles that run on ethanol, methanol, or natural gas get extra credits in the calculation of Corporate Average Fuel Economy (CAFE). This paper uses hedonic techniques to examine the effect of production of alternative-fuel vehicles (AFVs) on the implicit price of fuel economy. This study finds that, after \\{AFVs\\} came to market, the marginal value of fuel economy from companies producing them decreased. This finding suggests that manufacturers who produced \\{AFVs\\} were willing to offer a lower price for fuel economy, because automakers had an additional way to achieve fuel economy standards beyond improving the fuel efficiency of conventional cars. These findings bolster the argument that a major role of the AMFA credit for \\{AFVs\\} is to allow automakers to increase their production of fuel-inefficient vehicles.

Yimin Liu; Gloria E. Helfand

2012-01-01T23:59:59.000Z

488

Influence of Biodiesel Addition to Fischer?Tropsch Fuel on Diesel Engine Performance and Exhaust Emissions  

Science Journals Connector (OSTI)

Zhu, R.; Wang, X.; Miao, H.; Huang, Z.; Gao, J.; Jiang, D.Performance and Emission Characteristics of Diesel Engines Fueled with Diesel-Dimethoxymethane (DMM) Blends Energy Fuels 2009, 23, 286– 293 ... Results showed that, without changing the fuel supply system and the combustion system of a diesel engine, when using blended fuel with increased DMM percentage, break-specific fuel consumption (BSFC) is higher for a smaller lower heating value of DMM, while thermal efficiency increases a little. ... To investigate influences of fuel design on regulated and non-regulated emissions of heavy-duty diesel engines, a Mercedes-Benz OM 906 Euro 3 engine was run with common diesel fuel (DF), first- and second-generation alternative fuels (Gas-to-liq. ...

Md. Nurun Nabi; Johan Einar Hustad

2010-04-14T23:59:59.000Z

489

Alternative Fuels Data Center: Renewable Fuel Standard (RFS) Program  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Renewable Fuel Renewable Fuel Standard (RFS) Program to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Standard (RFS) Program on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Standard (RFS) Program on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Standard (RFS) Program on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Standard (RFS) Program on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Standard (RFS) Program on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Standard (RFS) Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Standard (RFS) Program The national RFS Program was developed to increase the volume of renewable

490

Energy Efficiency & Renewable Energy  

E-Print Network [OSTI]

.S. Energy Consumption U.S. Primary Energy Consumption by Source and Sector Share of Energy Consumed byEnergy Efficiency & Renewable Energy 2010 Fuel Cell Project Kick-off Dr. Dimitrios Papageorgopoulos Fuel Cells Team Leader U.S. Department of Energy gy Fuel Cell Technologies Program September 28

491

Coal based fuels, fuel systems and alternative fuels  

SciTech Connect (OSTI)

The introduction of coal based fuel systems such as coal/air and coal water mixtures was an attempt to minimize the use of heavy fuel oils in large scale power generation processes. This need was based on forecasts of fuel reserves and future pricing of fuel oils, therefore economic considerations predominated over environmental benefits, if any, which could result from widespread use of these fuels. Coal continued as the major fuel used in the power generation industry and combustion systems were developed to minimize gaseous emissions, such as NOx. Increasing availability of natural gas led to consideration of its use in combination with coal in fuel systems involving combined cycle or topping cycle operations. Dual fuel coal natural gas operations also offered the possibility of improved performance in comparison to 100% coal based fuel systems. Economic considerations have more recently looked at emulsification of heavy residual liquid fuels for consumption in power generation boiler and Orimulsion has emerged as a prime example of this alternative fuel technology. The paper will discuss some aspects of the burner technology related to the application of these various coal based fuels, fuel systems and alternative fuels in the power generation industry.

Allen, J.W.; Beal, P.R.

1998-07-01T23:59:59.000Z

492

Coal based fuels, fuel systems and alternative fuels  

SciTech Connect (OSTI)

The introduction of coal based fuel systems such as coal/air and coal water mixtures was an attempt to minimise the use of heavy fuel oils in large scale power generation processes. This need was based on forecasts of fuel reserves and future pricing of fuel oils, therefore economic considerations predominated over environmental benefits, if any, which could result from widespread use of these fuels. Coal continued as the major fuel used in the power generation industry and combustion systems were developed to minimise gaseous emissions, such as NO{sub x}. Increasing availability of natural gas led to consideration of its use in combination with coal in fuel systems involving combined cycle or topping cycle op