National Library of Energy BETA

Sample records for increase electricity demand

  1. High Temperatures & Electricity Demand

    E-Print Network [OSTI]

    High Temperatures & Electricity Demand An Assessment of Supply Adequacy in California Trends.......................................................................................................1 HIGH TEMPERATURES AND ELECTRICITY DEMAND.....................................................................................................................7 SECTION I: HIGH TEMPERATURES AND ELECTRICITY DEMAND ..........................9 BACKGROUND

  2. Managing Increased Charging Demand

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Managing Increased Charging Demand Carrie Giles ICF International, Supporting the Workplace Charging Challenge Workplace Charging Challenge Do you already own an EV? Are you...

  3. Electrical Demand Management 

    E-Print Network [OSTI]

    Fetters, J. L.; Teets, S. J.

    1983-01-01

    The Demand Management Plan set forth in this paper has proven to be a viable action to reduce a 3 million per year electric bill at the Columbus Works location of Western Electric. Measures are outlined which have reduced the peak demand 5% below...

  4. Effects of the drought on California electricity supply and demand

    E-Print Network [OSTI]

    Benenson, P.

    2010-01-01

    Acknowledgments SUMMARY Electricity Demand ElectricityAdverse Impacts ELECTRICITY DEMAND . . . .Demand forElectricity Sales Electricity Demand by Major Utility

  5. Effects of the drought on California electricity supply and demand

    E-Print Network [OSTI]

    Benenson, P.

    2010-01-01

    state hydro- electric generation decreased more energy wasSUPPLY Steam electric generation forms the bulk of energyenergy demand placed upon generation potential, requiring increased steam-electric

  6. Electricity Demand and Energy Consumption Management System

    E-Print Network [OSTI]

    Sarmiento, Juan Ojeda

    2008-01-01

    This project describes the electricity demand and energy consumption management system and its application to the Smelter Plant of Southern Peru. It is composted of an hourly demand-forecasting module and of a simulation component for a plant electrical system. The first module was done using dynamic neural networks, with backpropagation training algorithm; it is used to predict the electric power demanded every hour, with an error percentage below of 1%. This information allows management the peak demand before this happen, distributing the raise of electric load to other hours or improving those equipments that increase the demand. The simulation module is based in advanced estimation techniques, such as: parametric estimation, neural network modeling, statistic regression and previously developed models, which simulates the electric behavior of the smelter plant. These modules allow the proper planning because it allows knowing the behavior of the hourly demand and the consumption patterns of the plant, in...

  7. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01

    fuel efficiency and electricity demand assumptions used into added vehicle electricity demand in the BAU (no IGCC)to added vehicle electricity demand in the Mixed technology

  8. Electrical Demand Control 

    E-Print Network [OSTI]

    Eppelheimer, D. M.

    1984-01-01

    Almost every building owner or manager is interested in controlling electrical costs. Since the HVAC system is a large user of electricity, this article will discuss what can be done in the HVAC system to influence parts of the utility bill....

  9. Effects of the drought on California electricity supply and demand

    E-Print Network [OSTI]

    Benenson, P.

    2010-01-01

    DEMAND . . . .Demand for Electricity and Power PeakDemand . . • . . ELECTRICITY REQUIREMENTS FOR AGRICULTUREResults . . Coriclusions ELECTRICITY SUPPLY Hydroelectric

  10. Projecting Electricity Demand in 2050

    SciTech Connect (OSTI)

    Hostick, Donna J.; Belzer, David B.; Hadley, Stanton W.; Markel, Tony; Marnay, Chris; Kintner-Meyer, Michael CW

    2014-07-01

    This paper describes the development of end-use electricity projections and load curves that were developed for the Renewable Electricity (RE) Futures Study (hereafter RE Futures), which explored the prospect of higher percentages (30% ? 90%) of total electricity generation that could be supplied by renewable sources in the United States. As input to RE Futures, two projections of electricity demand were produced representing reasonable upper and lower bounds of electricity demand out to 2050. The electric sector models used in RE Futures required underlying load profiles, so RE Futures also produced load profile data in two formats: 8760 hourly data for the year 2050 for the GridView model, and in 2-year increments for 17 time slices as input to the Regional Energy Deployment System (ReEDS) model. The process for developing demand projections and load profiles involved three steps: discussion regarding the scenario approach and general assumptions, literature reviews to determine readily available data, and development of the demand curves and load profiles.

  11. SUMMER 2007 ELECTRICITY SUPPLY AND DEMAND OUTLOOK

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION SUMMER 2007 ELECTRICITY SUPPLY AND DEMAND OUTLOOK DRAFTSTAFFREPORT May ELECTRICITY ANALYSIS OFFICE Sylvia Bender Acting Deputy Director ELECTRICITY SUPPLY ANALYSIS DIVISION B. B assessment of the capability of the physical electricity system to provide power to meet electricity demand

  12. Climate, extreme heat, and electricity demand in California

    E-Print Network [OSTI]

    Miller, N.L.

    2008-01-01

    warming and electricity demand: A study of California.Extreme Heat, and Electricity Demand in California Norman L.high temperature and electricity demand for air-conditioned

  13. Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?

    E-Print Network [OSTI]

    Letschert, Virginie

    2010-01-01

    with Residential Electricity Demand in India's Future - How2008). The Boom of Electricity Demand in the residential2005). Forecasting Electricity Demand in Developing

  14. Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?

    E-Print Network [OSTI]

    Letschert, Virginie

    2010-01-01

    2007). Coping with Residential Electricity Demand in India'sResidential Electricity Demand in China –Can EfficiencyBoom of Electricity Demand in the residential sector in the

  15. Demand response in adjustment markets for electricity

    E-Print Network [OSTI]

    : electricity consumption, adjustment market, demand response, information asymmetry JEL codes: D11, D21, Q41 in the consumption of electric energy by retail customers from their expected consumption inDemand response in adjustment markets for electricity Claude Crampes and Thomas-Olivier Léautier

  16. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01

    solar generation can reduce costs and emissions associated with supplying vehicle electricity demand dramatically. Sensitivity Analysis of Long-term

  17. The Economics of Energy (and Electricity) Demand

    E-Print Network [OSTI]

    Platchkov, Laura M.; Pollitt, Michael G.

    25 3.3.2 Electrification of personal transport New sources of electricity demand may emerge which substantially change the total demand for electricity and the way electricity is consumed by the household. The Tesla Roadster12 stores 53 k... substantial battery storage capacity to the electricity grid, both when stationary at home and when at work. They may thus be very useful in providing short term back-up at system demand peaks or for dumping electricity to the batteries when supply is at a...

  18. Demand Response and Electric Grid Reliability 

    E-Print Network [OSTI]

    Wattles, P.

    2012-01-01

    and Regional Transmission Organizations are the ?air traffic controllers? of the bulk electric power grids 4 Power supply (generation) must match load (demand) CATEE Conference October 10, 2012 ? The fundamental concept behind ERCOT operations... changes or incentives.? (FERC) ? ?Changes in electric use by demand-side resources from their normal consumption patterns in response to changes in the price of electricity, or to incentive payments designed to induce lower electricity use at times...

  19. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01

    Designing Markets for Electricity, Wiley-IEEE Press. CEC (in Major Drivers in U.S. Electricity Markets, NREL/CP-620-and fuel efficiency and electricity demand assumptions used

  20. Electric Utility Demand-Side Evaluation Methodologies 

    E-Print Network [OSTI]

    Treadway, N.

    1986-01-01

    UTILITY DEMAND-SIDE EVALUATION METHODOLOGIES* Nat Treadway Public Utility Commission of Texas Austin, Texas ABSTRACT The electric. util ity industry's demand-side management programs can be analyzed ?from various points of view using a standard... cost and certification proceedings. A s~andard benefit-cost methodology analyzes demand-slde management programs from various ~oints of view. The benefit-cost methodology now ln use by several electric utilities and the * The views presented...

  1. Electrical ship demand modeling for future generation warships

    E-Print Network [OSTI]

    Sievenpiper, Bartholomew J. (Bartholomew Jay)

    2013-01-01

    The design of future warships will require increased reliance on accurate prediction of electrical demand as the shipboard consumption continues to rise. Current US Navy policy, codified in design standards, dictates methods ...

  2. Essays on exchange rates and electricity demand

    E-Print Network [OSTI]

    Li, Xiangming, 1966-

    1999-01-01

    This thesis examines two important issues in economic development: exchange rates and electricity demand and addresses methodological issues of using time series and panel data analysis to investigate important policy ...

  3. Climate, extreme heat, and electricity demand in California

    E-Print Network [OSTI]

    Miller, N.L.

    2008-01-01

    Peirson. 1998. Residential energy demand and the interactionresponse of residential cooling energy demand to climaterise in residential and commercial electricity demand can be

  4. Demand Response in U.S. Electricity Markets: Empirical Evidence

    E-Print Network [OSTI]

    Cappers, Peter

    2009-01-01

    Reliability Corporation. Demand response data task force:Energy. Benefits of demand response in electricity marketsAssessment of demand response & advanced metering, staff

  5. Tool Improves Electricity Demand Predictions to Make More Room...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tool Improves Electricity Demand Predictions to Make More Room for Renewables Tool Improves Electricity Demand Predictions to Make More Room for Renewables October 3, 2011 -...

  6. Utility Sector Impacts of Reduced Electricity Demand

    SciTech Connect (OSTI)

    Coughlin, Katie

    2014-12-01

    This report presents a new approach to estimating the marginal utility sector impacts associated with electricity demand reductions. The method uses publicly available data and provides results in the form of time series of impact factors. The input data are taken from the Energy Information Agency's Annual Energy Outlook (AEO) projections of how the electric system might evolve in the reference case, and in a number of side cases that incorporate different effciency and other policy assumptions. The data published with the AEO are used to define quantitative relationships between demand-side electricity reductions by end use and supply-side changes to capacity by plant type, generation by fuel type and emissions of CO2, Hg, NOx and SO2. The impact factors define the change in each of these quantities per unit reduction in site electricity demand. We find that the relative variation in these impacts by end use is small, but the time variation can be significant.

  7. Demand for Electric Vehicles in Hybrid Households: An Exploratory Analysis

    E-Print Network [OSTI]

    Kurani, Kenneth S.; Turrentine, Tom; Sperling, Daniel

    1994-01-01

    stated they wouldlikely add an electric and vehicle to theirhouseholdsand the demand electric vehicles", Transportation1983) "A Critical Reviewof Electric Vehicle MarketStudies",

  8. Sixth Northwest Conservation and Electric Power Plan Appendix C: Demand Forecast

    E-Print Network [OSTI]

    Sixth Northwest Conservation and Electric Power Plan Appendix C: Demand Forecast Energy Demand .............................................................. 23 Electricity Demand Growth in the West............................................................................................................................... 28 Estimating Electricity Demand in Data Centers

  9. What is a High Electric Demand Day?

    Broader source: Energy.gov [DOE]

    This presentation by T. McNevin of the New Jersey Bureau of Air Quality Planning was part of the July 2008 Webcast sponsored by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Weatherization and Intergovernmental Program Clean Energy and Air Quality Integration Initiative that was titled Role of Energy Efficiency and Renewable Energy in Improving Air Quality and Addressing Greenhouse Gas Reduction Goals on High Electric Demand Days.

  10. Equity Effects of Increasing-Block Electricity Pricing

    E-Print Network [OSTI]

    Borenstein, Severin

    2008-01-01

    Evidence from Residential Electricity Demand,” Review ofLester D. “The Demand for Electricity: A Survey,” The BellResidential Demand for Electricity under Inverted Block

  11. Benefits of Demand Response in Electricity Markets and Recommendations...

    Office of Environmental Management (EM)

    incentive payments designed to induce lower electricity use at times of high market prices or when grid reliability is jeopardized. Benefits of Demand Response in Electricity...

  12. Hawaiian Electric Company Demand Response Roadmap Project

    E-Print Network [OSTI]

    Levy, Roger

    2014-01-01

    Like HECO actual utility demand response implementations canindustry-wide utility demand response applications tend toobjective. Figure 4. Demand Response Objectives 17  

  13. Social Welfare implications of demand response programs in competitiv e electricity markets

    E-Print Network [OSTI]

    Boisvert, Richard N.; Neenan, Bernard F.

    2003-01-01

    Customer Electricity Demand Under Fixed Tariffs vs. Marketto re-emphasize that these electricity demands are the ones2. Customer Electricity Demand Under Fixed Tariffs vs.

  14. The role of building technologies in reducing and controlling peak electricity demand

    E-Print Network [OSTI]

    Koomey, Jonathan; Brown, Richard E.

    2002-01-01

    AND CONTROLLING PEAK ELECTRICITY DEMAND Jonathan Koomey* andData to Improve Electricity Demand Forecasts–Final Report.further research. Electricity demand varies constantly. At

  15. Price Responsive Demand in New York Wholesale Electricity Market using OpenADR

    E-Print Network [OSTI]

    Kim, Joyce Jihyun

    2013-01-01

    months when buildings' electricity demand is also high dueoptimize buildings' electricity demand according to hourlymonths when buildings' electricity demand is also high due

  16. Modeling the Capacity and Emissions Impacts of Reduced Electricity Demand. Part 1. Methodology and Preliminary Results.

    E-Print Network [OSTI]

    Coughlin, Katie

    2013-01-01

    Impacts of Reduced Electricity Demand. Part 1. MethodologyImpacts of Reduced Electricity Demand. Part 1. MethodologyFigure 3: Commercial electricity demand with and without the

  17. Climate, extreme heat, and electricity demand in California

    E-Print Network [OSTI]

    Miller, N.L.

    2008-01-01

    1992. Global warming and electricity demand: A study ofValuing the Time-Varying Electricity Production of SolarCEC). 2002. 2002-2012 Electricity Outlook Report, P700- 01-

  18. Equity Effects of Increasing-Block Electricity Pricing

    E-Print Network [OSTI]

    Borenstein, Severin

    2008-01-01

    Kuester King. “ Residential Demand for Electricity underEvidence from Residential Electricity Demand,” Review ofChoice Approach to Residential Water Demand under Block Rate

  19. Electricity Markets Meet the Home through Demand Response Lazaros Gkatzikis

    E-Print Network [OSTI]

    Electricity Markets Meet the Home through Demand Response Lazaros Gkatzikis CERTH, University Hegde, Laurent Massouli´e Technicolor Paris Research Lab Paris, France Abstract-- Demand response (DR the alternative option of dynamic demand adaptation. In this direction, demand response (DR) programs provide

  20. Electric Demand Cost Versus Labor Cost: A Case Study 

    E-Print Network [OSTI]

    Agrawal, S.; Jensen, R.

    1998-01-01

    Electric Utility companies charge industrial clients for two things: demand and usage. Depending on type of business and hours operation, demand cost could be very high. Most of the operations scheduling in a plant is achieved considering labor cost...

  1. ArizonaArizona''s Electricity Future:s Electricity Future: The Demand for WaterThe Demand for Water

    E-Print Network [OSTI]

    Keller, Arturo A.

    ArizonaArizona''s Electricity Future:s Electricity Future: The Demand for WaterThe Demand for Water'' projected energy demandprojected energy demand 317 1,281 257 511 5,506 1,989 0 1,000 2,000 3,000 4,000 5

  2. Control Mechanisms for Residential Electricity Demand in SmartGrids

    E-Print Network [OSTI]

    Snyder, Larry

    Email: lvs2@lehigh.edu Abstract--We consider mechanisms to optimize electricity consumption both within subscription plan. Such methods for controlling electricity consumption are part of demand response, whichControl Mechanisms for Residential Electricity Demand in SmartGrids Shalinee Kishore Department

  3. U.S. Electric Utility Demand-Side Management

    Reports and Publications (EIA)

    2002-01-01

    Final issue of this report. - Presents comprehensive information on electric power industry demand side management (DSM) activities in the United States at the national, regional, and utility levels.

  4. Drivers for the Value of Demand Response under Increased Levels of Wind and Solar Power; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Hale, Elaine

    2015-07-30

    Demand response may be a valuable flexible resource for low-carbon electric power grids. However, there are as many types of possible demand response as there are ways to use electricity, making demand response difficult to study at scale in realistic settings. This talk reviews our state of knowledge regarding the potential value of demand response in several example systems as a function of increasing levels of wind and solar power, sometimes drawing on the analogy between demand response and storage. Overall, we find demand response to be promising, but its potential value is very system dependent. Furthermore, demand response, like storage, can easily saturate ancillary service markets.

  5. Sixth Northwest Conservation and Electric Power Plan Chapter 3: Electricity Demand Forecast

    E-Print Network [OSTI]

    Sixth Northwest Conservation and Electric Power Plan Chapter 3: Electricity Demand Forecast Summary.............................................................................................. 11 Demand From Plug-in Hybrid Electric Vehicles (PHEV megawatt-hours of electricity in 2007. That demand is expected to grow to 25,000 average megawatts by 2030

  6. Benefits of Demand Response in Electricity Markets and Recommendations...

    Broader source: Energy.gov (indexed) [DOE]

    bear little relation to the true production costs of electricity as they vary over time. Demand response is a tariff or program established to motivate changes in electric use by...

  7. Electricity pricing as a demand-side management strategy: Western lessons for developing countries

    SciTech Connect (OSTI)

    Hill, L.J.

    1990-12-01

    Electric utilities in the Western world have increasingly realized that load commitments can be met not only by constructing new generating plants but also by influencing electricity demand. This demand-side management (DSM) process requires that electric utilities promote measures on the customer's side of the meter to directly or indirectly influence electricity consumption to meet desired load objectives. An important demand-side option to achieve these load objectives is innovative electricity pricing, both by itself and as a financial incentive for other demand-site measures. This study explores electricity pricing as a DSM strategy, addressing four questions in the process: What is the Western experience with DSM in general and electricity pricing in particular Do innovative pricing strategies alter the amount and pattern of electricity consumption Do the benefits of these pricing strategies outweigh the costs of implementation What are future directions in electricity pricing Although DSM can be used to promote increases in electricity consumption for electric utilities with excess capacity as well as to slow demand growth for capacity-short utilities, emphasis here is placed on the latter. The discussion should be especially useful for electric utilities in developing countries that are exploring alternatives to capacity expansion to meet current and future electric power demand.

  8. Price Responsive Demand in New York Wholesale Electricity Market using OpenADR

    E-Print Network [OSTI]

    Kim, Joyce Jihyun

    2013-01-01

    Advanced Metering, and Demand Response in Electricity2006. Benefits of Demand Response in Electricity Markets and2010. Open Automated Demand Response Technologies for

  9. Investigation of structural changes in residential electricity demand

    SciTech Connect (OSTI)

    Chern, W.S.; Bouis, H.E.

    1982-09-23

    The purpose of this study was to investigate the stability of aggregate national residential electricity demand coefficients over time. The hypothesis is maintained that the aggregate residential demand is the sum of various end-use demand components. Since the end-use composition changes over time, the demand relationship may change as well. Since the end-use composition differs among regions, the results obtained from this study can be used for making inferences about regional differences in electricity demand relationships. There are two additional sources for a possible structural change. One is that consumers may react differently to declining and rising prices, secondly, the impact of the 1973 oil embargo may have shifted demand preferences. The electricity demand model used for this study is presented. A moving regression method was employed to investigate changes in residential electricity demand over time. The statistical results show a strikingly consistent pattern of change for most of the structural variables. The most important finding of this study is that the estimated structure of residential electricity demand changes systematically over time as a result of changes in the characteristics (both durability and saturation level) of the stock of appliances. Furthermore, there is not strong evidence that the structural changes in demand occurred due to either the reversal of the declining trend of electricity prices or the impact of the 1973 oil embarge. (LCL)

  10. Electricity Demand Evolution Driven by Storm Motivated Population Movement

    SciTech Connect (OSTI)

    Allen, Melissa R; Fernandez, Steven J; Fu, Joshua S; Walker, Kimberly A

    2014-01-01

    Managing the risks posed by climate change to energy production and delivery is a challenge for communities worldwide. Sea Level rise and increased frequency and intensity of natural disasters due to sea surface temperature rise force populations to move locations, resulting in changing patterns of demand for infrastructure services. Thus, Infrastructures will evolve to accommodate new load centers while some parts of the network are underused, and these changes will create emerging vulnerabilities. Combining climate predictions and agent based population movement models shows promise for exploring the universe of these future population distributions and changes in coastal infrastructure configurations. In this work, we created a prototype agent based population distribution model and developed a methodology to establish utility functions that provide insight about new infrastructure vulnerabilities that might result from these patterns. Combining climate and weather data, engineering algorithms and social theory, we use the new Department of Energy (DOE) Connected Infrastructure Dynamics Models (CIDM) to examine electricity demand response to increased temperatures, population relocation in response to extreme cyclonic events, consequent net population changes and new regional patterns in electricity demand. This work suggests that the importance of established evacuation routes that move large populations repeatedly through convergence points as an indicator may be under recognized.

  11. Hawaiian Electric Company Demand Response Roadmap Project

    E-Print Network [OSTI]

    Levy, Roger

    2014-01-01

    Demand  Response  Roadmap  Project   Final  Report  39   5.   Developing a Roadmap Actionproject was to develop a “roadmap” to guide the Hawaiian

  12. Price Responsive Demand in New York Wholesale Electricity Market using OpenADR

    E-Print Network [OSTI]

    Kim, Joyce Jihyun

    2013-01-01

    and Demand Response in Electricity Markets." University ofDemand Response in Electricity Markets and Recommendationsof Wholesale Electricity Markets for NYC in Summer

  13. Hawaiian Electric Company Demand Response Roadmap Project

    E-Print Network [OSTI]

    Levy, Roger

    2014-01-01

    and technology options should have general application across systems. However, MECO has unprecedented levels of wind energywind, solar, and clean energy initiatives have introduced many changes and created uncertainties that complicate utility demand response technology

  14. Reducing Electricity Demand Charge for Data Centers with Partial Execution

    E-Print Network [OSTI]

    Li, Baochun

    Reducing Electricity Demand Charge for Data Centers with Partial Execution Hong Xu Department Department of Electrical and Computer Engineering University of Toronto Toronto, ON, Canada bli@eecg.toronto.edu ABSTRACT Data centers consume a large amount of energy and incur substantial electricity cost

  15. Irrigation and the demand for electricity. Progress report

    SciTech Connect (OSTI)

    Maddigan, R. J.; Chern, W. S.; Gallagher, C. A.

    1980-03-01

    In order to anticipate the need for generating capacity, utility planners must estimate the future growth in electricity demand. The need for demand forecasts is no less important for the nation's Rural Electric Cooperatives (RECs) than it is for the investor-owned utilities. The RECs serve an historically agrarian region; therefore, the irrigation sector accounts for a significant portion of the western RECs' total demand. A model is developed of the RECs' demand for electricity used in irrigation. The model is a simultaneous equation system which focuses on both the short-run utilization of electricity in irrigation and the long-run determination of the number of irrigators using electricity. Irrigation demand is described by a set of equations in which the quantity of electricity demanded, the average electricity price, the number of irrigation customers, and the ratio of electricity to total energy used for irrigation are endogenous. The structural equations are estimated using pooled state-level data for the period 1961-1977. In light of the model's results, the impact of changes in relative energy prices on irrigation can be examined.

  16. Analysis of recent projections of electric power demand

    SciTech Connect (OSTI)

    Hudson, D.V. Jr.

    1993-08-01

    This report reviews the changes and potential changes in the outlook for electric power demand since the publication of Review and Analysis of Electricity Supply Market Projections (B. Swezey, SERI/MR-360-3322, National Renewable Energy Laboratory). Forecasts of the following organizations were reviewed: DOE/Energy Information Administration, DOE/Policy Office, DRI/McGraw-Hill, North American Electric Reliability Council, and Gas Research Institute. Supply uncertainty was briefly reviewed to place the uncertainties of the demand outlook in perspective. Also discussed were opportunities for modular technologies, such as renewable energy technologies, to fill a potential gap in energy demand and supply.

  17. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01

    CEC (2009) Statewide Electricity Rates by Utility, Class andrates if the marginal electricity rate from the LCFS isestimated marginal electricity emissions rate in California’

  18. Hawaiian Electric Company Demand Response Roadmap Project

    E-Print Network [OSTI]

    Levy, Roger

    2014-01-01

    for solar water heaters – Solar water heaters requireCD1)  Part  VII,  Solar  Water  Heater  System,  Section  with solar system backup electric resistance water heaters.

  19. U.S. electric utility demand-side management 1995

    SciTech Connect (OSTI)

    NONE

    1997-01-01

    The US Electric Utility Demand-Side Management report is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternative Fuels; Energy Information Administration (EIA); US Department of Energy. The report presents comprehensive information on electric power industry demand-side management (DSM) activities in the US at the national, regional, and utility levels. The objective of the publication is to provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it relates to the US electric power industry. The first chapter, ``Profile: US Electric Utility Demand-Side Management``, presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions and costs attributable to DSM. 9 figs., 24 tabs.

  20. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01

    CA-N demand Variable cost Generation/Demand (MW) CA-SSnapshots of capacity, costs, generation, and GHG emissionsand provide low-cost generation for California. When they

  1. The Impact of Climate Change on Electricity Demand in Thailand 

    E-Print Network [OSTI]

    Parkpoom, Suchao Jake

    2008-01-01

    Climate change is expected to lead to changes in ambient temperature, wind speed, humidity, precipitation and cloud cover. As electricity demand is closely influenced by these climatic variables, there is likely to be ...

  2. Innovative and Progressive Electric Utility Demand-Side Management Strategies 

    E-Print Network [OSTI]

    Epstein, G. J.; Fuller, W. H.

    1989-01-01

    to as Demand-Side Management (DSM) and are extremely rigorous in scope. Electric utilities have pursued many different DSM policies and strategies during the past decade. These programs have addressed various technologies and have included rebates for efficient...

  3. The residential demand for electricity in New England,

    E-Print Network [OSTI]

    Levy, Paul F.

    1973-01-01

    The residential demand for electricity, studied on the national level for many years, is here investigated on the regional level. A survey of the literature is first presented outlining past econometric work in the field ...

  4. U.S. electric utility demand-side management 1993

    SciTech Connect (OSTI)

    1995-07-01

    This report presents comprehensive information on electric power industry demand-side management activities in the United States at the national, regional, and utility levels. Data is included for energy savings, peakload reductions, and costs.

  5. Smart Metering and Electricity Demand: Technology, Economics and International Experience

    E-Print Network [OSTI]

    Brophy Haney, A.; Jamasb, Tooraj; Pollitt, Michael G.

    in the context of investing in demand-side participation. Innovative forms of metering allow for more detailed information to be collected on electricity consumption; communications technology facilitates greater interaction between the end-user and the rest... of the electricity supply chain; and both information and interaction allow for end-users to become more actively involved in the electricity market by, for example, responding to price signals and information on consumption patterns. 2 Smaller electricity users...

  6. Automated Demand Response: The Missing Link in the Electricity Value Chain

    E-Print Network [OSTI]

    McKane, Aimee

    2010-01-01

    promise in reducing the electricity demand of the industrialchanges the time of electricity demand to off-peak hours.Load shedding curtails electricity demand during a DR event.

  7. 25TechTransfer Success Stories 2012 Increasing demand for power creates

    E-Print Network [OSTI]

    available high voltage SiC- based power device. Targeted research applications include grid-tied solar25TechTransfer Success Stories · 2012 Problem Increasing demand for power creates numerous challenges for ensuring reliable power for consumers. Because the current electricity grid is aging, updating

  8. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01

    of Plug-in Hybrid Electric Vehicles on Regional PowerTransmission Area, in Electric Vehicle Symposium, Anaheim,of Plug-in Hybrid Electric Vehicles, ANL/ESD/09-2, Argonne

  9. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01

    of gasoline, electricity, and hydrogen fuel carbonhybrid, electric and hydrogen fuel cell vehicles, Journal of2005) Switching to a U.S. hydrogen fuel cell vehicle fleet:

  10. Modeling the Capacity and Emissions Impacts of Reduced Electricity Demand. Part 1. Methodology and Preliminary Results.

    E-Print Network [OSTI]

    Coughlin, Katie

    2013-01-01

    pdf. ———. 2011b. Residential Demand Module of the Nationaland the Commercial and Residential Demand Modules (DOE EIAcommercial and residential electricity demand projections

  11. Thermal Energy Storage for Electricity Peak-demand Mitigation: A Solution in Developing and Developed World Alike

    E-Print Network [OSTI]

    DeForest, Nicholas

    2014-01-01

    driver of summer peak electricity demand. In the developingin reducing peak electricity demand. Additionally, annualwill drive total electricity demand significantly above

  12. US electric utility demand-side management, 1994

    SciTech Connect (OSTI)

    NONE

    1995-12-26

    The report presents comprehensive information on electric power industry demand-side management (DSM) activities in US at the national, regional, and utility levels. Objective is provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it relates to the US electric power industry. The first chapter, ``Profile: US Electric Utility Demand-Side Management,`` presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions, and costs attributable to DSM.

  13. Statewide Electricity and Demand Capacity Savings from the Implementation of IECC Code in Texas: Analysis for Single-Family Residences 

    E-Print Network [OSTI]

    Kim, H.; Baltazar, J.C.; Haberl, J.

    2011-01-01

    This paper presents estimates of the statewide electricity and electric demand savings achieved from the adoption of the International Energy Conservation Code (IECC) for single-family residences in Texas and includes the corresponding increase...

  14. Statewide Emissions Reduction, Electricity and Demand Savings from the Implementation of Building-Energy-Codes in Texas 

    E-Print Network [OSTI]

    Yazdani, B.; Haberl, J.; Kim, H.; Baltazar, J.C.; Zilbershtein, G.

    2012-01-01

    This paper focuses on the estimate of electricity reduction and electric demand savings from the adoption energy codes for single-family residences in Texas, 2002-2009, corresponding increase in cnstruction costs and estimates of the statewide...

  15. Design for implementation : fully integrated charging & docking infrastructure used in Mobility-on-Demand electric vehicle fleets

    E-Print Network [OSTI]

    Martin, Jean Mario Nations

    2012-01-01

    As the technology used in electric vehicles continues to advance, there is an increased demand for urban-appropriate electric charging stations emphasizing a modern user interface, robust design, and reliable functionality. ...

  16. U.S. electric utility demand-side management 1996

    SciTech Connect (OSTI)

    1997-12-01

    The US Electric Utility Demand-Side Management report presents comprehensive information on electric power industry demand-side management (DSM) activities in the US at the national, regional, and utility levels. The objective of the publication is to provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it related to the US electric power industry. The first chapter, ``Profile: U.S. Electric Utility Demand-Side Management,`` presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions and costs attributable to DSM. 9 figs., 24 tabs.

  17. Turkey opens electricity markets as demand grows

    SciTech Connect (OSTI)

    McKeigue, J.; Da Cunha, A.; Severino, D. [Global Business Reports (United States)

    2009-06-15

    Turkey's growing power market has attracted investors and project developers for over a decade, yet their plans have been dashed by unexpected political or financial crises or, worse, obstructed by a lengthy bureaucratic approval process. Now, with a more transparent retail electricity market, government regulators and investors are bullish on Turkey. Is Turkey ready to turn the power on? This report closely examine Turkey's plans to create a power infrastructure capable of providing the reliable electricity supplies necessary for sustained economic growth. It was compiled with on-the-ground research and extensive interview with key industrial and political figures. Today, hard coal and lignite account for 21% of Turkey's electricity generation and gas-fired plants account for 50%. The Alfin Elbistan-B lignite-fired plant has attracted criticism for its lack of desulfurization units and ash dam facilities that have tarnished the industry's image. A 1,100 MW hard-coal fired plant using supercritical technology is under construction. 9 figs., 1 tab.

  18. Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices

    SciTech Connect (OSTI)

    Chassin, David P.; Donnelly, Matthew K.; Dagle, Jeffery E.

    2011-12-06

    Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

  19. Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices

    DOE Patents [OSTI]

    Chassin, David P. (Pasco, WA); Donnelly, Matthew K. (Kennewick, WA); Dagle, Jeffery E. (Richland, WA)

    2006-12-12

    Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

  20. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01

    hourly distribution of hydro energy does change with demand,drawn down, non-baseload hydro energy is assumed to be load-the spread of annual hydro energy has varied by more than a

  1. Draft Fourth Northwest Conservation and Electric Power Plan, Appendix D ECONOMIC AND DEMAND FORECASTS

    E-Print Network [OSTI]

    , and high) based on different assumptions about the key determinants of electricity demand. Much economy is the dominant determinant of electricity demand both now and in the future. The demand of alternative energy forms, such as natural gas, are also important determinants of electricity demand. Demand

  2. Sixth Northwest Conservation and Electric Power Plan Appendix H: Demand Response

    E-Print Network [OSTI]

    Sixth Northwest Conservation and Electric Power Plan Appendix H: Demand Response Introduction consumers' levels of service unchanged, demand response is a change in use of electricity at particular..................................................................................................................................... 1 Demand Response in the Council's Fifth Power Plan

  3. Industrial-Load-Shaping: The Practice of and Prospects for Utility/Industry Cooperation to Manage Peak Electricity Demand 

    E-Print Network [OSTI]

    Bules, D. J.; Rubin, D. E.; Maniates, M. F.

    1986-01-01

    -LOAD-SHAPI1IG: TIlE PRACTICE OF AND PROSPECTS FOR UTILITY/INDUSTRY COOPERATION TO MAUGE PEAK ELECTRICITY DEMAND Donald J. BuIes and David E. Rubin Consultants, Pacific Gas and Electric Company San Francisco, California Michael F. Maniates Energy... and Resources Group, University of California Berkeley, California ABSTRACT Load-management programs designed to reduce demand for electricity during peak periods are becoming increasingly important to electric utilities. For a gf'owing number...

  4. Improving the Power Grid with Superconducting Technology New superconducting technology will help America reduce the demand for additional electric power

    E-Print Network [OSTI]

    Pennycook, Steve

    will help America reduce the demand for additional electric power generation and increased delivery because they have virtually no resistance to electric current, offering the possibility of new electric@ornl.gov #12;Working with Industry to Develop Electric Power Applications Superconducting technologies

  5. Testing Electric Vehicle Demand in "Hybrid Households" Using a Reflexive Survey

    E-Print Network [OSTI]

    Kurani, Kenneth S.; Turrentine, Thomas; Sperling, Daniel

    2001-01-01

    the demand electric vehicles’, TransportationResearchA,1994) ~tive NewsCalifornia Electric Vehicle ConsumerStudy.1995) Forecasting Electric Vehicle Ownership Use in the

  6. Greater fuel diversity needed to meet growing US electricity demand

    SciTech Connect (OSTI)

    Burt, B.; Mullins, S.

    2008-01-15

    Electricity demand is growing in the USA. One way to manage the uncertainty is to diversity fuel sources. Fuel sources include coal, natural gas, nuclear and renewable energy sources. Tables show actual and planned generation projects by fuel types. 1 fig., 2 tabs.

  7. Electric Power Research Institute Cooperation to Increase Energy...

    Energy Savers [EERE]

    by improving energy efficiency and promoting the widespread adoption of electric energy demand response programs in an effort to curtail energy use during peak periods. Electric...

  8. THE ROLE OF BUILDING TECHNOLOGIES IN REDUCING AND CONTROLLING PEAK ELECTRICITY DEMAND

    E-Print Network [OSTI]

    LBNL-49947 THE ROLE OF BUILDING TECHNOLOGIES IN REDUCING AND CONTROLLING PEAK ELECTRICITY DEMAND? ..................................... 8 What are the seasonal aspects of electric peak demand?............................ 9 What because of the California electricity crisis (Borenstein 2001). Uncertainties surrounding the reliability

  9. Testing Electric Vehicle Demand in `Hybrid Households' Using a Reflexive Survey

    E-Print Network [OSTI]

    Kurani, Kenneth; Turrentine, Thomas; Sperling, Daniel

    1996-01-01

    and the demand for electric vehicles. Transpn Res. 14A, 380-C A . pp. 51-55. Testing electric vehicle demand in 'hybridNews California Electric Vehicle Conswner Study. Glendale,

  10. Stackelberg Game based Demand Response for At-Home Electric Vehicle Charging

    E-Print Network [OSTI]

    Bahk, Saewoong

    1 Stackelberg Game based Demand Response for At-Home Electric Vehicle Charging Sung-Guk Yoon Member, which is called demand response. Under demand response, retailers determine their electricity prices and customers respond accordingly with their electricity consumption levels. In particular, the demands

  11. Stackelberg Game based Demand Response for At-Home Electric Vehicle Charging

    E-Print Network [OSTI]

    Bahk, Saewoong

    1 Stackelberg Game based Demand Response for At-Home Electric Vehicle Charging Sung-Guk Yoon Member, which is called demand response. Under demand response, retailers determine their electricity prices cost solution and the result of the equal- charging scheme. Index Terms--demand response, electric

  12. Intelligent Office Lighting: Demand-Responsive Conditioning and Increased User Satisfaction

    E-Print Network [OSTI]

    Agogino, Alice M.

    Intelligent Office Lighting: Demand-Responsive Conditioning and Increased User Satisfaction Jessica diagram decision framework is used to optimize demand responsive actuation decisions, resulting with retrofitting. Keywords: Daylighting, energy efficiency, influence diagrams, intelligence, demand response, user

  13. Renewable Electricity Futures Study Volume 3: End-Use Electricity Demand

    Broader source: Energy.gov [DOE]

    This volume details the end-use electricity demand and efficiency assumptions. The projection of electricity demand is an important consideration in determining the extent to which a predominantly renewable electricity future is feasible. Any scenario regarding future electricity use must consider many factors, including technological, sociological, demographic, political, and economic changes (e.g., the introduction of new energy-using devices; gains in energy efficiency and process improvements; changes in energy prices, income, and user behavior; population growth; and the potential for carbon mitigation).

  14. Trends in Regional Electricity Demands 1995-2012

    E-Print Network [OSTI]

    Trends in Regional Electricity Demands 1995-2012 January 29, 2014 #12;In Today's Conversation Average Megawatts y = 98.985x + 18714 R² = 0.7287 0 5,000 10,000 15,000 20,000 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Actual Load Net of DSI (MWA) 1995

  15. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01

    Economics, I. (2007) Wind Resources, Cost, and Performance (to higher generation costs than the Wind-heavy profile. The20% RPS, or Wind-heavy renewable profiles – cost increases

  16. Natural Gas Infrastructure Implications of Increased Demand from...

    Broader source: Energy.gov (indexed) [DOE]

    examines the potential infrastructure needs of the U.S. interstate natural gas pipeline transmission system across a range of future natural gas demand scenarios that drive...

  17. Impact of Rate Design Alternatives on Residential Solar Customer Bills. Increased Fixed Charges, Minimum Bills and Demand-based Rates

    SciTech Connect (OSTI)

    Bird, Lori; Davidson, Carolyn; McLaren, Joyce; Miller, John

    2015-09-01

    With rapid growth in energy efficiency and distributed generation, electric utilities are anticipating stagnant or decreasing electricity sales, particularly in the residential sector. Utilities are increasingly considering alternative rates structures that are designed to recover fixed costs from residential solar photovoltaic (PV) customers with low net electricity consumption. Proposed structures have included fixed charge increases, minimum bills, and increasingly, demand rates - for net metered customers and all customers. This study examines the electricity bill implications of various residential rate alternatives for multiple locations within the United States. For the locations analyzed, the results suggest that residential PV customers offset, on average, between 60% and 99% of their annual load. However, roughly 65% of a typical customer's electricity demand is non-coincidental with PV generation, so the typical PV customer is generally highly reliant on the grid for pooling services.

  18. Sixth Northwest Conservation and Electric Power Plan Chapter 5: Demand Response

    E-Print Network [OSTI]

    Sixth Northwest Conservation and Electric Power Plan Chapter 5: Demand Response Summary of Key.............................................................................................................. 1 Demand Response in the Fifth Power Plan........................................................................................... 3 Demand Response in the Sixth Power Plan

  19. Influence of Air Conditioner Operation on Electricity Use and Peak Demand 

    E-Print Network [OSTI]

    McGarity, A. E.; Feuermann, D.; Kempton, W.; Norford, L. K.

    1987-01-01

    Electricity demand due to occupant controlled room air conditioners in a large mater-metered apartment building is analyzed. Hourly data on the electric demand of the building and of individual air conditioners are used in analyses of annual...

  20. Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?

    SciTech Connect (OSTI)

    Letschert, Virginie; McNeil, Michael A.; Zhou, Nan

    2009-05-18

    The time when energy-related carbon emissions come overwhelmingly from developed countries is coming to a close. China has already overtaken the United States as the world's leading emitter of greenhouse gas emissions. The economic growth that China has experienced is not expected to slow down significantly in the long term, which implies continued massive growth in energy demand. This paper draws on the extensive expertise from the China Energy Group at LBNL on forecasting energy consumption in China, but adds to it by exploring the dynamics of demand growth for electricity in the residential sector -- and the realistic potential for coping with it through efficiency. This paper forecasts ownership growth of each product using econometric modeling, in combination with historical trends in China. The products considered (refrigerators, air conditioners, fans, washing machines, lighting, standby power, space heaters, and water heating) account for 90percent of household electricity consumption in China. Using this method, we determine the trend and dynamics of demandgrowth and its dependence on macroeconomic drivers at a level of detail not accessible by models of a more aggregate nature. In addition, we present scenarios for reducing residential consumption through efficiency measures defined at the product level. The research takes advantage of an analytical framework developed by LBNL (BUENAS) which integrates end use technology parameters into demand forecasting and stock accounting to produce detailed efficiency scenarios, thus allowing for a technologically realistic assessment of efficiency opportunities specifically in the Chinese context.

  1. Electric Water Heater Modeling and Control Strategies for Demand Response

    SciTech Connect (OSTI)

    Diao, Ruisheng; Lu, Shuai; Elizondo, Marcelo A.; Mayhorn, Ebony T.; Zhang, Yu; Samaan, Nader A.

    2012-07-22

    Abstract— Demand response (DR) has a great potential to provide balancing services at normal operating conditions and emergency support when a power system is subject to disturbances. Effective control strategies can significantly relieve the balancing burden of conventional generators and reduce investment on generation and transmission expansion. This paper is aimed at modeling electric water heaters (EWH) in households and tests their response to control strategies to implement DR. The open-loop response of EWH to a centralized signal is studied by adjusting temperature settings to provide regulation services; and two types of decentralized controllers are tested to provide frequency support following generator trips. EWH models are included in a simulation platform in DIgSILENT to perform electromechanical simulation, which contains 147 households in a distribution feeder. Simulation results show the dependence of EWH response on water heater usage . These results provide insight suggestions on the need of control strategies to achieve better performance for demand response implementation. Index Terms— Centralized control, decentralized control, demand response, electrical water heater, smart grid

  2. Distributed Load Demand Scheduling in Smart Grid to Minimize Electricity Generation Cost

    E-Print Network [OSTI]

    Pedram, Massoud

    Distributed Load Demand Scheduling in Smart Grid to Minimize Electricity Generation Cost Siyu Yue of electricity consumers is an effective way to alleviate the peak power demand on the elec- tricity grid- ple users cooperate to perform load demand scheduling in order to minimize the electricity generation

  3. Electric Power Research Institute Cooperation to Increase Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    March 6, 2008 Memorandum of Understanding on Electric Utility Energy Efficiency, Demand Response, and the Smart Grid.pdf More Documents & Publications Microsoft Word -...

  4. Automated Demand Response: The Missing Link in the Electricity Value Chain

    SciTech Connect (OSTI)

    McKane, Aimee; Rhyne, Ivin; Lekov, Alex; Thompson, Lisa; Piette, MaryAnn

    2009-08-01

    In 2006, the Public Interest Energy Research Program (PIER) Demand Response Research Center (DRRC) at Lawrence Berkeley National Laboratory initiated research into Automated Demand Response (OpenADR) applications in California industry. The goal is to improve electric grid reliability and lower electricity use during periods of peak demand. The purpose of this research is to begin to define the relationship among a portfolio of actions that industrial facilities can undertake relative to their electricity use. This ?electricity value chain? defines energy management and demand response (DR) at six levels of service, distinguished by the magnitude, type, and rapidity of response. One element in the electricity supply chain is OpenADR, an open-standards based communications system to send signals to customers to allow them to manage their electric demand in response to supply conditions, such as prices or reliability, through a set of standard, open communications. Initial DRRC research suggests that industrial facilities that have undertaken energy efficiency measures are probably more, not less, likely to initiate other actions within this value chain such as daily load management and demand response. Moreover, OpenADR appears to afford some facilities the opportunity to develop the supporting control structure and to"demo" potential reductions in energy use that can later be applied to either more effective load management or a permanent reduction in use via energy efficiency. Under the right conditions, some types of industrial facilities can shift or shed loads, without any, or minimal disruption to operations, to protect their energy supply reliability and to take advantage of financial incentives.1 In 2007 and 2008, 35 industrial facilities agreed to implement OpenADR, representing a total capacity of nearly 40 MW. This paper describes how integrated or centralized demand management and system-level network controls are linked to OpenADR systems. Case studies of refrigerated warehouses and wastewater treatment facilities are used to illustrate OpenADR load reduction potential. Typical shed and shift strategies include: turning off or operating compressors, aerator blowers and pumps at reduced capacity, increasing temperature set-points or pre-cooling cold storage areas and over-oxygenating stored wastewater prior to a DR event. This study concludes that understanding industrial end-use processes and control capabilities is a key to support reduced service during DR events and these capabilities, if DR enabled, hold significant promise in reducing the electricity demand of the industrial sector during utility peak periods.

  5. Automated Demand Response: The Missing Link in the Electricity Value Chain

    SciTech Connect (OSTI)

    McKane, Aimee; Rhyne, Ivin; Piette, Mary Ann; Thompson, Lisa; Lekov, Alex

    2008-08-01

    In 2006, the Public Interest Energy Research Program (PIER) Demand Response Research Center (DRRC) at Lawrence Berkeley National Laboratory initiated research into Automated Demand Response (OpenADR) applications in California industry. The goal is to improve electric grid reliability and lower electricity use during periods of peak demand. The purpose of this research is to begin to define the relationship among a portfolio of actions that industrial facilities can undertake relative to their electricity use. This 'electricity value chain' defines energy management and demand response (DR) at six levels of service, distinguished by the magnitude, type, and rapidity of response. One element in the electricity supply chain is OpenADR, an open-standards based communications system to send signals to customers to allow them to manage their electric demand in response to supply conditions, such as prices or reliability, through a set of standard, open communications. Initial DRRC research suggests that industrial facilities that have undertaken energy efficiency measures are probably more, not less, likely to initiate other actions within this value chain such as daily load management and demand response. Moreover, OpenADR appears to afford some facilities the opportunity to develop the supporting control structure and to 'demo' potential reductions in energy use that can later be applied to either more effective load management or a permanent reduction in use via energy efficiency. Under the right conditions, some types of industrial facilities can shift or shed loads, without any, or minimal disruption to operations, to protect their energy supply reliability and to take advantage of financial incentives. In 2007 and 2008, 35 industrial facilities agreed to implement OpenADR, representing a total capacity of nearly 40 MW. This paper describes how integrated or centralized demand management and system-level network controls are linked to OpenADR systems. Case studies of refrigerated warehouses and wastewater treatment facilities are used to illustrate OpenADR load reduction potential. Typical shed and shift strategies include: turning off or operating compressors, aerator blowers and pumps at reduced capacity, increasing temperature set-points or pre-cooling cold storage areas and over-oxygenating stored wastewater prior to a DR event. This study concludes that understanding industrial end-use processes and control capabilities is a key to support reduced service during DR events and these capabilities, if DR enabled, hold significant promise in reducing the electricity demand of the industrial sector during utility peak periods.

  6. How Increased Crude Oil Demand by China and India Affects the International Market

    E-Print Network [OSTI]

    1 How Increased Crude Oil Demand by China and India Affects the International Market. Abstract The global crude oil market is characterised by complex interactions between demand and supply. The question that we address in this paper is how increased demand for crude oil by China and India affects

  7. A Fresh Look at Weather Impact on Peak Electricity Demand and Energy Use of Buildings Using 30-Year Actual Weather Data

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01

    reduction of peak electricity demand, and percentage savingsvariables and monthly electricity demand. Applied Energychanges of peak electricity demand. (a) large office, 90.1-

  8. Testing Electric Vehicle Demand in `Hybrid Households' Using a Reflexive Survey

    E-Print Network [OSTI]

    Kurani, Kenneth; Turrentine, Thomas; Sperling, Daniel

    1996-01-01

    o f Batteries for Electric Vehicles: A Report of the BatteryR. (1993) Report of the Electric Vehicle At-Home Refueling1994) Demand for Electric Vehicles in Hybrid Households: A n

  9. The Influence of Residential Solar Water Heating on Electric Utility Demand 

    E-Print Network [OSTI]

    Vliet, G. C.; Askey, J. L.

    1984-01-01

    Similar sets of residences in Austin, Texas with electric water heaters and solar water heaters with electric back-up were monitored during 1982 to determine their instantaneous electric demands, the purpose being to ...

  10. Price Responsive Demand in New York Wholesale Electricity Market using OpenADR

    E-Print Network [OSTI]

    Kim, Joyce Jihyun

    2013-01-01

    and Demand Response in Electricity Markets." University ofRates and Tariffs /Schedule for Electricity Service, P.S.C.no. 10- Electricity/Rules 24 (Riders)/Leaf No. 177-327."

  11. Renewable Electricity Futures Study. Volume 3. End-Use Electricity Demand

    SciTech Connect (OSTI)

    Hostick, Donna; Belzer, David B.; Hadley, Stanton W.; Markel, Tony; Marnay, Chris; Kintner-Meyer, Michael

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  12. Renewable Electricity Futures Study. Volume 3: End-Use Electricity Demand

    SciTech Connect (OSTI)

    Hostick, D.; Belzer, D.B.; Hadley, S.W.; Markel, T.; Marnay, C.; Kintner-Meyer, M.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  13. Climate, extreme heat, and electricity demand in California

    E-Print Network [OSTI]

    Miller, N.L.

    2008-01-01

    and blackouts. Electricity transmission lines and relatedhave resulted. Electricity generation and transmissioncapacity, and electricity line transmission system have not

  14. Equity Effects of Increasing-Block Electricity Pricing

    E-Print Network [OSTI]

    Borenstein, Severin

    2008-01-01

    of increasing-block electricity rate schedules in the Unitedfrom the analysis of electricity rates, this approach toBlock Residential Electricity Rates in California The

  15. Demand Response in U.S. Electricity Markets: Empirical Evidence

    SciTech Connect (OSTI)

    Cappers, Peter; Goldman, Charles; Kathan, David

    2009-06-01

    Empirical evidence concerning demand response (DR) resources is needed in order to establish baseline conditions, develop standardized methods to assess DR availability and performance, and to build confidence among policymakers, utilities, system operators, and stakeholders that DR resources do offer a viable, cost-effective alternative to supply-side investments. This paper summarizes the existing contribution of DR resources in U.S. electric power markets. In 2008, customers enrolled in existing wholesale and retail DR programs were capable of providing ~;;38,000 MW of potential peak load reductions in the United States. Participants in organized wholesale market DR programs, though, have historically overestimated their likely performance during declared curtailments events, but appear to be getting better as they and their agents gain experience. In places with less developed organized wholesale market DR programs, utilities are learning how to create more flexible DR resources by adapting legacy load management programs to fit into existing wholesale market constructs. Overall, the development of open and organized wholesale markets coupled with direct policy support by the Federal Energy Regulatory Commission has facilitated new entry by curtailment service providers, which has likely expanded the demand response industry and led to product and service innovation.

  16. Using Wind and Solar to Reliably Meet Electricity Demand, Greening...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and wind generation technologies. A variety of approaches can be deployed, including demand response, which can be used to shift demand to periods of greater renewable output,...

  17. A demand responsive bidding mechanism with price elasticity matrix in wholesale electricity pools

    E-Print Network [OSTI]

    Wang, Jiankang, Ph. D. Massachusetts Institute of Technology

    2009-01-01

    In the past several decades, many demand-side participation features have been applied in the electricity power systems. These features, such as distributed generation, on-site storage and demand response, add uncertainties ...

  18. THE CHALLENGES AND OPPORTUNITIES TO MEET THE WORKFORCE DEMAND IN THE ELECTRIC POWER AND ENERGY PROFESSION

    E-Print Network [OSTI]

    1 THE CHALLENGES AND OPPORTUNITIES TO MEET THE WORKFORCE DEMAND IN THE ELECTRIC POWER AND ENERGY to be about 25%. The demand for U.S. electrical engineers in construction will be up from 150,000 today to 175 PROFESSION Wanda Reder, S & C Electric Company, 6601 North Ridge Blvd., Chicago, IL 60626- 3997, USA Vahid

  19. A Dynamic Supply-Demand Model for Electricity Prices Manuela Buzoianu

    E-Print Network [OSTI]

    A Dynamic Supply-Demand Model for Electricity Prices Manuela Buzoianu , Anthony E. Brockwell to as a dynamic supply-demand model, to simultaneously capture electricity price and usage time series. This model, and Duane J. Seppi Abstract We introduce a new model for electricity prices, based on the principle

  20. On Coordinating Electricity Markets: Smart Power Scheduling for Demand Side Management and Economic Dispatch

    E-Print Network [OSTI]

    Chen, Yiling

    On Coordinating Electricity Markets: Smart Power Scheduling for Demand Side Management and Economic;On Coordinating Electricity Markets: Smart Power Scheduling for Demand Side Management and Economic Dispatch Abstract Information asymmetry in retail electricity markets is one of the largest sources of inef

  1. Protecting the Electric Grid from Increasingly Severe Weather...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Protecting the Electric Grid from Increasingly Severe Weather Due to Climate Change Protecting the Electric Grid from Increasingly Severe Weather Due to Climate Change August 12,...

  2. Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?

    E-Print Network [OSTI]

    Letschert, Virginie

    2010-01-01

    for 90% of household electricity consumption in China. Usinggives an annual electricity consumption of 12kWh assumingto look at is electricity consumption at the household

  3. Effects of the drought on California electricity supply and demand

    E-Print Network [OSTI]

    Benenson, P.

    2010-01-01

    ELECTRICITY SUPPLY Hydroelectric Energy Supply Thermal-Electric Energy Supply LOSS OF LOAD PROBABILITY FOR PG&E,irrigated agri- electrical energy supply has been done for

  4. Price-elastic demand in deregulated electricity markets

    E-Print Network [OSTI]

    Siddiqui, Afzal S.

    2003-01-01

    in Competitive Electricity Markets," Ph. D. thesis, IEORrms trading in the electricity markets and their degree ofThe Trouble With Electricity Markets and Califor- nia's

  5. An integrated assessment of global and regional water demands for electricity generation to 2095

    SciTech Connect (OSTI)

    Davies, Evan; Kyle, G. Page; Edmonds, James A.

    2013-02-01

    Electric power plants currently account for approximately one-half of the global industrial water withdrawal. While continued expansion of the electric sector seems likely into the future, the consequent water demands are quite uncertain, and will depend on highly variable water intensities by electricity technologies, at present and in the future. Using GCAM, an integrated assessment model of energy, agriculture, and climate change, we first establish lower-bound, median, and upper-bound estimates for present-day electric sector water withdrawals and consumption by individual electric generation technologies in each of 14 geopolitical regions, and compare them with available estimates of regional industrial or electric sector water use. We then explore the evolution of global and regional electric sector water use over the next century, focusing on uncertainties related to withdrawal and consumption intensities for a variety of electric generation technologies, rates of change of power plant cooling system types, and rates of adoption of a suite of water-saving technologies. Results reveal that the water withdrawal intensity of electricity generation is likely to decrease in the near term with capital stock turnover, as wet towers replace once-through flow cooling systems and advanced electricity generation technologies replace conventional ones. An increase in consumptive use accompanies the decrease in water withdrawal rates; however, a suite of water conservation technologies currently under development could compensate for this increase in consumption. Finally, at a regional scale, water use characteristics vary significantly based on characteristics of the existing capital stock and the selection of electricity generation technologies into the future.

  6. Thermal Energy Storage for Electricity Peak-demand Mitigation: A Solution in Developing and Developed World Alike

    E-Print Network [OSTI]

    DeForest, Nicholas

    2014-01-01

    Effect of Heat and Electricity Storage and Reliability onThermal Energy Storage for Electricity Peak- demandemployer. Thermal Energy Storage for Electricity Peak-demand

  7. Resource demand growth and sustainability due to increased world consumption

    SciTech Connect (OSTI)

    Balatsky, Alexander V.; Balatsky, Galina I.; Borysov, Stanislav S.

    2015-03-20

    The paper aims at continuing the discussion on sustainability and attempts to forecast the impossibility of the expanding consumption worldwide due to the planet’s limited resources. As the population of China, India and other developing countries continue to increase, they would also require more natural and financial resources to sustain their growth. We coarsely estimate the volumes of these resources (energy, food, freshwater) and the gross domestic product (GDP) that would need to be achieved to bring the population of India and China to the current levels of consumption in the United States. We also provide estimations for potentially needed immediate growth of the world resource consumption to meet this equality requirement. Given the tight historical correlation between GDP and energy consumption, the needed increase of GDP per capita in the developing world to the levels of the U.S. would deplete explored fossil fuel reserves in less than two decades. These estimates predict that the world economy would need to find a development model where growth would be achieved without heavy dependence on fossil fuels.

  8. Resource demand growth and sustainability due to increased world consumption

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Balatsky, Alexander V.; Balatsky, Galina I.; Borysov, Stanislav S.

    2015-03-20

    The paper aims at continuing the discussion on sustainability and attempts to forecast the impossibility of the expanding consumption worldwide due to the planet’s limited resources. As the population of China, India and other developing countries continue to increase, they would also require more natural and financial resources to sustain their growth. We coarsely estimate the volumes of these resources (energy, food, freshwater) and the gross domestic product (GDP) that would need to be achieved to bring the population of India and China to the current levels of consumption in the United States. We also provide estimations for potentially neededmore »immediate growth of the world resource consumption to meet this equality requirement. Given the tight historical correlation between GDP and energy consumption, the needed increase of GDP per capita in the developing world to the levels of the U.S. would deplete explored fossil fuel reserves in less than two decades. These estimates predict that the world economy would need to find a development model where growth would be achieved without heavy dependence on fossil fuels.« less

  9. A Fresh Look at Weather Impact on Peak Electricity Demand and

    E-Print Network [OSTI]

    LBNL-6280E A Fresh Look at Weather Impact on Peak Electricity Demand and Energy Use of Buildings at Weather Impact on Peak Electricity Demand and Energy Use of Buildings Using 30-Year Actual Weather Data Road, Berkeley, CA 94720, USA 2 Green Energy and Environment Research Laboratories, Industrial

  10. ZONAL PRICING AND DEMAND-SIDE BIDDING IN THE NORWEGIAN ELECTRICITY MARKET

    E-Print Network [OSTI]

    California at Berkeley. University of

    .3 Retail Markets 9 2.4 Generating Plants 10 2.5 Storage, Generation, Price and Trade Patterns 14 3. SupplyPWP-063 ZONAL PRICING AND DEMAND-SIDE BIDDING IN THE NORWEGIAN ELECTRICITY MARKET Tor Arnt Johnsen.ucei.berkeley.edu/ucei #12;ZONAL PRICING AND DEMAND-SIDE BIDDING IN THE NORWEGIAN ELECTRICITY MARKET Tor Arnt Johnsen, Shashi

  11. Electricity Demand Forecasting using Gaussian Processes Manuel Blum and Martin Riedmiller

    E-Print Network [OSTI]

    Teschner, Matthias

    that are normally much less attractive than the prices in the wholesale market. The electricity demand is mainlyElectricity Demand Forecasting using Gaussian Processes Manuel Blum and Martin Riedmiller University of Freiburg, Department of Computer Science Georges-Koehler Allee 079 79110 Freiburg, Germany

  12. Climate, extreme heat, and electricity demand in California

    E-Print Network [OSTI]

    Miller, N.L.

    2008-01-01

    markets, suppliers, and consumers. The nation’s energy infrastructure, its refinery capacity, and electricity

  13. Report: Natural Gas Infrastructure Implications of Increased...

    Energy Savers [EERE]

    Natural Gas Infrastructure Implications of Increased Demand from the Electric Power Sector Report: Natural Gas Infrastructure Implications of Increased Demand from the Electric...

  14. Statewide Electrical Energy Cost Savings and Peak Demand Reduction from the IECC Code-Compliant, Single-Family Residences in Texas (2002-2009) 

    E-Print Network [OSTI]

    Kim, H; Baltazar, J.C.; Haberl, J.

    2011-01-01

    -02-01 STATEWIDE ELECTRICITY AND DEMAND CAPACITY SAVINGS FROM THE INTERNATIONAL ENERGY CONSERVATION CODE (IECC) ADOPTION FOR SINGLE-FAMILY RESIDENCES IN TEXAS (2002-2009) Hyojin Kim Juan-Carlos Baltazar, Ph.D. Jeff Haberl, Ph.D., P... SUMMARY Statewide electricity and electric demand savings achieved from the adoption of the different International Energy Conservation Code (IECC) versions for single-family residences in Texas and the corresponding construction cost increases over...

  15. Modeling demand for electric vehicles: the effect of car users' attitudes and perceptions

    E-Print Network [OSTI]

    Bierlaire, Michel

    Modeling demand for electric vehicles: the effect of car users' attitudes and perceptions Aur Abstract The near arrival of electric vehicles on the car market generates a need for new models in order electric cars and petrol-driven ones and in particular which include the respondents' own cars

  16. Reducing Residential Peak Electricity Demand with Mechanical Pre-Cooling of Building Thermal Mass

    SciTech Connect (OSTI)

    Turner, Will; Walker, Iain; Roux, Jordan

    2014-08-01

    This study uses an advanced airflow, energy and humidity modelling tool to evaluate the potential for residential mechanical pre-cooling of building thermal mass to shift electricity loads away from the peak electricity demand period. The focus of this study is residential buildings with low thermal mass, such as timber-frame houses typical to the US. Simulations were performed for homes in 12 US DOE climate zones. The results show that the effectiveness of mechanical pre-cooling is highly dependent on climate zone and the selected pre-cooling strategy. The expected energy trade-off between cooling peak energy savings and increased off-peak energy use is also shown.

  17. Electricity demand as frequency controlled reserves, ForskEL...

    Open Energy Info (EERE)

    controlled reserve (DFR) implementation, a system that automatically stops or starts electricity consumption in response to system frequency variations. References "EU...

  18. Electricity demand as frequency controlled reserves, ENS (Smart...

    Open Energy Info (EERE)

    implementation, data analyses, etc., a technology will be developed in which the electricity consumption will be used as a frequencycontrolled reserve (DFR). References...

  19. Demand Response in U.S. Electricity Markets: Empirical Evidence

    E-Print Network [OSTI]

    Cappers, Peter

    2009-01-01

    U.S. electric power markets (i.e. , retail and wholesale),power markets. In 2008, customers enrolled in existing wholesale and retail

  20. Effects of the drought on California electricity supply and demand

    E-Print Network [OSTI]

    Benenson, P.

    2010-01-01

    ELECTRICITY SUPPLY Hydroelectric Energy Supply Thermal-question. Data on PG&E's hydroelectric resources and Pacific27 Table 28 Table 29 Hydroelectric Supply in California Fuel

  1. Quantifying Changes in Building Electricity Use, with Application to Demand Response

    SciTech Connect (OSTI)

    Mathieu, Johanna L.; Price, Phillip N.; Kiliccote, Sila; Piette, Mary Ann

    2010-11-17

    We present methods for analyzing commercial and industrial facility 15-minute-interval electric load data. These methods allow building managers to better understand their facility's electricity consumption over time and to compare it to other buildings, helping them to ask the right questions to discover opportunities for demand response, energy efficiency, electricity waste elimination, and peak load management. We primarily focus on demand response. Methods discussed include graphical representations of electric load data, a regression-based electricity load model that uses a time-of-week indicator variable and a piecewise linear and continuous outdoor air temperature dependence, and the definition of various parameters that characterize facility electricity loads and demand response behavior. In the future, these methods could be translated into easy-to-use tools for building managers.

  2. High ozone concentrations on hot days: The role of electric power demand and NOx1 , Linda Hembeck1

    E-Print Network [OSTI]

    Dickerson, Russell R.

    1 High ozone concentrations on hot days: The role of electric power demand and NOx1 emissions2 3;2 hot summer days due to high electricity demand. Between 1997 and 2011, power23 plant emissions of NOx greater59 electricity demand for air conditioning. Singh and Sloan [2005] reported that60

  3. The role of building technologies in reducing and controlling peak electricity demand

    SciTech Connect (OSTI)

    Koomey, Jonathan; Brown, Richard E.

    2002-09-01

    Peak power demand issues have come to the fore recently because of the California electricity crisis. Uncertainties surrounding the reliability of electric power systems in restructured markets as well as security worries are the latest reasons for such concerns, but the issues surrounding peak demand are as old as the electric utility system itself. The long lead times associated with building new capacity, the lack of price response in the face of time-varying costs, the large difference between peak demand and average demand, and the necessity for real-time delivery of electricity all make the connection between system peak demand and system reliability an important driver of public policy in the electric utility sector. This exploratory option paper was written at the request of Jerry Dion at the U.S.Department of Energy (DOE). It is one of several white papers commissioned in 2002 exploring key issues of relevance to DOE. This paper explores policy-relevant issues surrounding peak demand, to help guide DOE's research efforts in this area. The findings of this paper are as follows. In the short run, DOE funding of deployment activities on peak demand can help society achieve a more economically efficient balance between investments in supply and demand-side technologies. DOE policies can promote implementation of key technologies to ameliorate peak demand, through government purchasing, technology demonstrations, and improvements in test procedures, efficiency standards, and labeling programs. In the long run, R&D is probably the most important single leverage point for DOE to influence the peak demand issue. Technologies for time-varying price response hold great potential for radically altering the way people use electricity in buildings, but are decades away from widespread use, so DOE R&D and expertise can make a real difference here.

  4. Export demand response in the Ontario electricity market

    SciTech Connect (OSTI)

    Peerbocus, Nash; Melino, Angelo

    2007-11-15

    Export responses to unanticipated price shocks can be a key contributing factor to the rapid mean reversion of electricity prices. The authors use event analysis - a technique more familiar from financial applications - to demonstrate how hourly export transactions respond to negative supply shocks in the Ontario electricity market. (author)

  5. Electrical Energy Conservation and Peak Demand Reduction Potential for Buildings in Texas: Preliminary Results 

    E-Print Network [OSTI]

    Hunn, B. D.; Baughman, M. L.; Silver, S. C.; Rosenfeld, A. H.; Akbari, H.

    1985-01-01

    This paper presents preliminary results of a study of electrical energy conservation and peak demand reduction potential for the building sector in Texas. Starting from 1980 building stocks and energy use characteristics, technical conservation...

  6. High Electric Demand Days: Clean Energy Strategies for Improving Air Quality

    Office of Energy Efficiency and Renewable Energy (EERE)

    This presentation, presented in July 2008, addressed greenhouse gas reduction goals on high electric demand days. Presenter was Art Diem of the State and Local Capacity Building Branch at the U.S. Environmental Protection Agency.

  7. The Impacts of Utility-Sponsored Demand-Side Management Programs on Industrial Electricity Consumers 

    E-Print Network [OSTI]

    Rosenblum, J. I.

    1994-01-01

    One of the most pressing issues in electric utility regulation today is the extent to which demand-side management (DSM) programs should be promoted by utilities. DSM refers to energy-efficiency or conservation measures, ...

  8. Electric power supply and demand for the contiguous United States, 1980-1989

    SciTech Connect (OSTI)

    1980-06-01

    A limited review is presented of the outlook for the electric power supply and demand during the period 1980 to 1989. Only the adequacy and reliability aspects of bulk electric power supply in the contiguous US are considered. The economic, financial and environmental aspects of electric power system planning and the distribution of electricity (below the transmission level) are topics of prime importance, but they are outside the scope of this report.

  9. The Impact of Residential Air Conditioner Charging and Sizing on Peak Electrical Demand 

    E-Print Network [OSTI]

    Neal, L.; O'Neal, D. L.

    1992-01-01

    of Residential Air Conditioner Charging and Sizing on Peak Electrical Demand Leon Neal North Carolina Alternate Energy Corporation Research Triangle Park, N.C. ABSTRACT Electric utilities have had a number of air conditioner rebate and maintenance... of the equipment), system sizing, and efficiency on the steady-state, coincident peak utility demand of a residential central air conditioning system. The study is based on the results of laboratory tests of a three-ton, capillary tube expansion, split...

  10. California's Summer 2004 Electricity Supply and Demand Outlook

    E-Print Network [OSTI]

    to be 750 megawatts (MW) lower because of ongoing repairs to the Pacific Northwest DC transmission line, 2, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness transmission or system-wide electricity failures will occur; and, · No significant gaming (manipulation

  11. Price Responsive Demand in New York Wholesale Electricity Market using OpenADR

    SciTech Connect (OSTI)

    Kim, Joyce Jihyun; Kiliccote, Sila

    2012-06-01

    In New York State, the default electricity pricing for large customers is Mandatory Hourly Pricing (MHP), which is charged based on zonal day-ahead market price for energy. With MHP, retail customers can adjust their building load to an economically optimal level according to hourly electricity prices. Yet, many customers seek alternative pricing options such as fixed rates through retail access for their electricity supply. Open Automated Demand Response (OpenADR) is an XML (eXtensible Markup Language) based information exchange model that communicates price and reliability information. It allows customers to evaluate hourly prices and provide demand response in an automated fashion to minimize electricity costs. This document shows how OpenADR can support MHP and facilitate price responsive demand for large commercial customers in New York City.

  12. Effects of the drought on California electricity supply and demand

    E-Print Network [OSTI]

    Benenson, P.

    2010-01-01

    natural gas combustion would completely offset pollutant emissions and reduce the air qualitynatural gas have contribured to the increased use of oil. Due to increased degradation in air quality

  13. public health sciences To help meet the increasing demand for health care

    E-Print Network [OSTI]

    public health sciences To help meet the increasing demand for health care professionals, WSU's College of Health Professions offers undergraduate degrees in Health Science (HS) and Health Services Management and Community Development (HSMCD). Graduates will be well prepared for a variety of health

  14. Water demands for electricity generation in the U.S.: Modeling different scenarios for the water–energy nexus

    SciTech Connect (OSTI)

    Liu, Lu; Hejazi, Mohamad I.; Patel, Pralit L.; Kyle, G. Page; Davies, Evan; Zhou, Yuyu; Clarke, Leon E.; Edmonds, James A.

    2015-05-01

    Water withdrawal for electricity generation in the United States accounts for approximately half the total freshwater withdrawal. With steadily growing electricity demands, a changing climate, and limited water supplies in many water-scarce states, meeting future energy and water demands poses a significant socio-economic challenge. Employing an integrated modeling approach that can capture the energy-water interactions at regional and national scales is essential to improve our understanding of the key drivers that govern those interactions and the role of national policies. In this study, the Global Change Assessment Model (GCAM), a technologically-detailed integrated model of the economy, energy, agriculture and land use, water, and climate systems, was extended to model the electricity and water systems at the state level in the U.S. (GCAM-USA). GCAM-USA was employed to estimate future state-level electricity generation and consumption, and their associated water withdrawals and consumption under a set of six scenarios with extensive details on the generation fuel portfolio, cooling technology mix, and their associated water use intensities. Six scenarios of future water demands of the U.S. electric-sector were explored to investigate the implications of socioeconomics development and growing electricity demands, climate mitigation policy, the transition of cooling systems, electricity trade, and water saving technologies. Our findings include: 1) decreasing water withdrawals and substantially increasing water consumption from both climate mitigation and the conversion from open-loop to closed-loop cooling systems; 2) open trading of electricity benefiting energy scarce yet demand intensive states; 3) within state variability under different driving forces while across state homogeneity under certain driving force ; 4) a clear trade-off between water consumption and withdrawal for the electricity sector in the U.S. The paper discusses this withdrawal-consumption trade-off in the context of current national policies and regulations that favor decreasing withdrawals (increasing consumptive use), and the role of water saving technologies. The highly-resolved nature of this study both geographically and technologically provides a useful platform to address scientific and policy relevant and emerging issues at the heart of the water-energy nexus in the U.S.

  15. Maximizing the Productive Uses of Electricity to Increase the...

    Open Energy Info (EERE)

    Maximizing the Productive Uses of Electricity to Increase the Impact of Rural Electrification Programs Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Maximizing the...

  16. Table 11.1 Electricity: Components of Net Demand, 2010;

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With LivermoreSustainableDEPARTMENT0AJ01):1.1 Electricity: Components

  17. Electricity Demand-Side Management for an Energy Efficient Future in China: Technology Options and Policy Priorities

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Neufville Professor of Engineering Systems Chair, ESD Education Committee #12;2 #12;3 Electricity DemandElectricity Demand-Side Management for an Energy Efficient Future in China: Technology Options: ______________________________________________________________ : Stephen R. Connors Director, Analysis Group for Regional Electricity Alternatives Thesis Supervisor

  18. Statewide Electricity and Demand Capacity Savings from the Implementation of IECC Code in Texas: Analysis for Single-Family Residences 

    E-Print Network [OSTI]

    Kim, H.; Baltazar, J.C.; Haberl, J.; Lewis, C.; Yazdani, B.

    2011-01-01

    ELECTRICITY AND DEMAND CAPACITY SAVINGS FROM THE IMPLEMENTATION OF IECC CODE IN TEXAS: ANALYSIS FOR SINGLE?FAMILY RESIDENCES 11th International Conference for Enhanced Building Operations New York City, October 18 ? 20, 2011 Hyojin Kim Research... Statewide Electricity and Demand Savings from the IECC Code in TX 11th ICEBO Conference Oct. 18 ? 20, 2011 2 Outline Introduction Methodology Base?Case Building Results Summary Statewide Electricity and Demand Savings from the IECC Code in TX 11th...

  19. What explains the increased utilization of Powder River Basin coal in electric power generation?

    SciTech Connect (OSTI)

    Gerking, S.; Hamilton, S.F. [University of Central Florida, Orlando, FL (United States)

    2008-11-15

    This article examines possible explanations for increased utilization of Powder River Basin (PRB) coal in electric power generation that occurred over the last two decades. Did more stringent environmental policy motivate electric power plants to switch to less polluting fuels? Or, did greater use of PRB coal occur because relative price changes altered input markets in favor of this fuel. A key finding is that factors other than environmental policy such as the decline in railroad freight rates together with elastic demand by power plants were major contributors to the increased utilization of this fuel.

  20. Demand Reduction

    Office of Energy Efficiency and Renewable Energy (EERE)

    Grantees may use funds to coordinate with electricity supply companies and utilities to reduce energy demands on their power systems. These demand reduction programs are usually coordinated through...

  1. NECESIDAD RECURSOS HDRICOS DE CALIDAD Figura 1: Global Trends in Population, Energy Demand and Water Use. (http://electrical

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    #12;NECESIDAD RECURSOS HÍDRICOS DE CALIDAD Figura 1: Global Trends in Population, Energy Demand and Water Use. (http://electrical engineeringportal.com/technologyinnovationiseverybodysbusiness) #12

  2. Duct Leakage Impacts on Airtightness, Infiltration, and Peak Electrical Demand in Florida Homes 

    E-Print Network [OSTI]

    Cummings, J. B.; Tooley, J. J.; Moyer, N.

    1990-01-01

    (ACHSO). When the duct registers were sealed, ACHSO decreased to 11.04, indicating that 12.2% of the house leaks were in the duct system. Duct leaks have a dramatic impact upon peak electrical demand. Based on theoretical analysis, a fifteen percent...

  3. Testing The Effects Of Price Responsive Demand On Uniform Price And Soft-Cap Electricity Auctions

    E-Print Network [OSTI]

    Testing The Effects Of Price Responsive Demand On Uniform Price And Soft-Cap Electricity Auctions R describes a framework for testing the efficacy of a price-responsive load on a uniform price last accepted offer and a soft-cap market. Experimental evidence to date based on uniform price market testing has

  4. California Energy Demand Scenario Projections to 2050

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01

    fraction of residential and commercial demands, leading16 Residential electricity demand endspecific residential electricity demands into electricity

  5. Managing Variable Energy Resources to Increase Renewable Electricity's

    E-Print Network [OSTI]

    Managing Variable Energy Resources to Increase Renewable Electricity's Contribution to the Grid P o Contribution of Renewable Energy to Total Electricity Generation? 15 ManaGInG VaRIablE EnERGy REsouRCEs 16 What to Better Respond to Variability? 19 How Can the Siting of Renewable Energy Projects Be Improved? 20 What

  6. Evaluating Policies to Increase Electricity Generation from Renewable Energy

    E-Print Network [OSTI]

    Schmalensee, Richard

    Building on a review of experience in the United States and the European Union, this article advances four main propositions concerning policies aimed at increasing electricity generation from renewable energy. First, who ...

  7. Demand-response (DR) programs, in which facilities reduce their electric loads in response to a utility signal, represent a

    E-Print Network [OSTI]

    The Issue Demand-response (DR) programs, in which facilities reduce their electric loads (Figure 1). The testing covered four Lighting the Way to Demand ResponseLighting the Way to Demand Response California Energy Commission's Public Interest Energy Research Program Technical Brief PIER

  8. Use of electric field to increase nuclear emulsion sensitivity

    SciTech Connect (OSTI)

    Didenko, A.Y.; Lemeshko, B.D.; Moroz, I.N.

    1985-11-01

    The possibility of increasing the sensitivity of type-R nuclear emulsion by means of an electric field of 4X10/sup 6/ V/cm is investigated. In model experiments, an emulsion (10 micrometers thick on a Dacron base 50 micrometers thick) is irradiated by a pulsed light source with an illumination duration of 10/sup -6/ sec. Application of 10/sup 3/ electric pulses to the emulsion does not change fogging. The memory time of the nuclear emulsion was determined by increasing the delay of the electric field relative to the light flash.

  9. The Impact of Energy Efficiency and Demand Response Programs on the U.S. Electricity Market

    SciTech Connect (OSTI)

    Baek, Young Sun; Hadley, Stanton W

    2012-01-01

    This study analyzes the impact of the energy efficiency (EE) and demand response (DR) programs on the grid and the consequent level of production. Changes in demand caused by EE and DR programs affect not only the dispatch of existing plants and new generation technologies, the retirements of old plants, and the finances of the market. To find the new equilibrium in the market, we use the Oak Ridge Competitive Electricity Dispatch Model (ORCED) developed to simulate the operations and costs of regional power markets depending on various factors including fuel prices, initial mix of generation capacity, and customer response to electricity prices. In ORCED, over 19,000 plant units in the nation are aggregated into up to 200 plant groups per region. Then, ORCED dispatches the power plant groups in each region to meet the electricity demands for a given year up to 2035. In our analysis, we show various demand, supply, and dispatch patterns affected by EE and DR programs across regions.

  10. NREL Works to Increase Electric Vehicle Efficiency Through Enhanced Thermal Management (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-06-01

    Researchers at NREL are providing new insight into how heating and cooling systems affect the distance that electric vehicles can travel on a single charge. Electric vehicle range can be reduced by as much as 68% per charge because of climate-control demands. NREL engineers are investigating opportunities to change this dynamic and increase driving range by improving vehicle thermal management. NREL experts are collaborating with automotive industry partners to investigate promising thermal management technologies and strategies, including zone-based cabin temperature controls, advanced heating and air conditioning controls, seat-based climate controls, vehicle thermal preconditioning, and thermal load reduction technologies.

  11. The behavioral response to voluntary provision of an environmental public good: Evidence from residential electricity demand

    E-Print Network [OSTI]

    Kotchen, Matthew J.

    and nonpartici- pants in a green-electricity program in Memphis, Tennessee. High-consumption house- holds, households participating above the minimum threshold level do not change electricity consumption, but those participating at the minimum threshold increase electricity consumption 2.5 percent after enrolling

  12. Thermal Energy Storage for Electricity Peak-demand Mitigation: A Solution in Developing and Developed World Alike

    SciTech Connect (OSTI)

    DeForest, Nicholas; Mendes, Goncalo; Stadler, Michael; Feng, Wei; Lai, Judy; Marnay, Chris

    2013-06-02

    In much of the developed world, air-conditioning in buildings is the dominant driver of summer peak electricity demand. In the developing world a steadily increasing utilization of air-conditioning places additional strain on already-congested grids. This common thread represents a large and growing threat to the reliable delivery of electricity around the world, requiring capital-intensive expansion of capacity and draining available investment resources. Thermal energy storage (TES), in the form of ice or chilled water, may be one of the few technologies currently capable of mitigating this problem cost effectively and at scale. The installation of TES capacity allows a building to meet its on-peak air conditioning load without interruption using electricity purchased off-peak and operating with improved thermodynamic efficiency. In this way, TES has the potential to fundamentally alter consumption dynamics and reduce impacts of air conditioning. This investigation presents a simulation study of a large office building in four distinct geographical contexts: Miami, Lisbon, Shanghai, and Mumbai. The optimization tool DER-CAM (Distributed Energy Resources Customer Adoption Model) is applied to optimally size TES systems for each location. Summer load profiles are investigated to assess the effectiveness and consistency in reducing peak electricity demand. Additionally, annual energy requirements are used to determine system cost feasibility, payback periods and customer savings under local utility tariffs.

  13. Estimated winter 1980-1981 electric demand and supply, contiguous United States. Staff report

    SciTech Connect (OSTI)

    None

    1980-12-01

    This report summarizes the most recent data available concerning projected electrical peak demands and available power resouces for the 1980-1981 winter peak period, as reported by electric utilities in the contiguous United States. The data, grouped by Regional Reliability Council areas and by Electrical Regions within the Council areas, was obtained from the Form 12E-2 reports filed by utilities with the Department of Energy on October 15, 1980 (data as of September 30). In some instances the data were revised or verified by telephone. Considerations affecting reliability, arising from Nuclear Regulatory Commission actions based on lessons learned from the forced outage of Three Mile Island Nuclear Unit No. 2, were factored into the report. No widespread large-scale reliability problems are foreseen for electric power supply this winter, on the basis of the supply and demand projections furnished by the electric utilities. Reserve margins could drop in some electric regions to levels considered inadequate for reliable service, if historical forced-outage magnitudes recur.

  14. Study of long-range electrical demand planning in Maryland. Final report

    SciTech Connect (OSTI)

    Jensen, K.A.; Doane, M.J.; Hartman, R.S.

    1987-01-01

    Arthur D. Little, Inc. was commissioned by the Maryland Power Plant Research Program to undertake a study to perform a critique of current PPSP electricity sales and peak-demand forecasting methodologies; identify a possible set of alternative forecasting methods and models that could provide improved forecasting accuracy; and to recommend to the PPSP methodological improvements that would assist the PPSP in achieving its goals. The report summarizes the study.

  15. Some electric myths Larry Hughes

    E-Print Network [OSTI]

    Hughes, Larry

    industrial demand (460 GWh), there has also been a significant increase in residential electricity demand in residential electricity demand is the result of the increased use of electricity for space heating since and Nova Scotia's demand for electricity, both of which are based, in part, upon the arguments made when

  16. Electrical Energy and Demand Savings from a Geothermal Heat Pump ESPC at Fort Polk, LA

    SciTech Connect (OSTI)

    Shonder, John A; Hughes, Patrick

    1997-06-01

    At Fort Polk, Louisiana, the space-conditioning systems of an entire city (4,003 military family housing units) have been converted to geothermal heat pumps (GHPs) under an energy savings performance contract. At the same time, other efficiency measures, such as compact fluorescent lights, low-flow hot water outlets, and attic insulation, were installed. Pre- and post-retrofit data were taken at 15-minute intervals on energy flows through the electrical distribution feeders that serve the family housing areas of the post. Fifteen-minute interval data were also taken on energy use from a sample of the residences. The analysis presented in this paper shows that for a typical meteorological year, the retrofits result in an electrical energy savings of approximately 25.6 million kWh, or 32.4% of the pre-retrofit electrical use in family housing. Peak electrical demand has also been reduced by about 6.8 MW, which is 40% of pre-retrofit peak demand. In addition, the retrofits save about 260,000 therms per year of natural gas. It should be noted that the energy savings presented in this document are the 'apparent' energy savings observed in the monitored data and are not to be mistaken for the 'contracted' energy savings used as the basis for payments. To determine the 'contracted' energy savings, the 'apparent' energy savings may require adjustments for such things as changes in indoor temperature performance criteri, addition of ceiling fans, and other factors.

  17. Dynamic Control of Electricity Cost with Power Demand Smoothing and Peak Shaving for Distributed Internet Data Centers

    E-Print Network [OSTI]

    Rahman, A.K.M. Ashikur

    Dynamic Control of Electricity Cost with Power Demand Smoothing and Peak Shaving for Distributed a major part of their running costs. Modern electric power grid provides a feasible way to dynamically and efficiently manage the electricity cost of distributed IDCs based on the Locational Marginal Pricing (LMP

  18. Managing Variable Energy Resources to Increase Renewable Electricity's

    E-Print Network [OSTI]

    to Better Respond to Variability? 19 How Can the Siting of Renewable Energy Projects Be Improved? 20 WhatManaging Variable Energy Resources to Increase Renewable Electricity's Contribution to the Grid P o accurately assessing and preparing for the operational effects of renewable generation. DEVElopMEnt anD DIss

  19. Response Options Aimed at Increasing the ContributionResponse Options Aimed at Increasing the Contribution of Variable Energy Resources in the Electricity Supply

    E-Print Network [OSTI]

    of electricity or heat 4 ­ Storage of electricity or heat ­ New demand technologies (heat pumps, hybrid electric demand technologies available (heat pumps, hybrid electric cars) 7 · Interacts with storage ­ storage power and CHP can workp ­ CHP can only be flexible with heat storage and correct subsidy scheme for CHP

  20. SmartCap: Flattening Peak Electricity Demand in Smart Homes Sean Barker, Aditya Mishra, David Irwin, Prashant Shenoy, and Jeannie Albrecht

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    SmartCap: Flattening Peak Electricity Demand in Smart Homes Sean Barker, Aditya Mishra, David Irwin--Flattening household electricity demand reduces generation costs, since costs are disproportionately affected by peak demands. While the vast majority of household electrical loads are interactive and have little scheduling

  1. Near-Optimal Execution Policies for Demand-Response Contracts in Electricity Markets Vineet Goyal1, Garud Iyengar1 and Zhen Qiu1

    E-Print Network [OSTI]

    Goyal, Vineet

    Near-Optimal Execution Policies for Demand-Response Contracts in Electricity Markets Vineet Goyal1-time energy balance in today's electricity grid. Demand- response contracts, where an electric utility company-side participation including time of use pricing, real-time pricing for smart appliances and interruptible demand-response

  2. Integrating demand into the U.S. electric power system : technical, economic, and regulatory frameworks for responsive load

    E-Print Network [OSTI]

    Black, Jason W. (Jason Wayne)

    2005-01-01

    The electric power system in the US developed with the assumption of exogenous, inelastic demand. The resulting evolution of the power system reinforced this assumption as nearly all controls, monitors, and feedbacks were ...

  3. Electricity demand-side management for an energy efficient future in China : technology options and policy priorities

    E-Print Network [OSTI]

    Cheng, Chia-Chin

    2005-01-01

    The main objective of this research is to identify robust technology and policy options which achieve substantial reductions in electricity demand in China's Shandong Province. This research utilizes a scenario-based ...

  4. Load-side Demand Management in Buildings using Controlled Electric Springs

    E-Print Network [OSTI]

    Soni, Jayantika; Krishnanand, KR; Panda, Sanjib

    2014-01-01

    The concept of demand-side management for electricand simulation of demand-side management potential in urbanin smart grids, demand side management has been a keen topic

  5. Automated Demand Response: The Missing Link in the Electricity Value Chain

    E-Print Network [OSTI]

    McKane, Aimee

    2010-01-01

    and Open Automated Demand Response. In Grid Interop Forum.Berkeley National Laboratory. Demand Response ResearchCenter, Demand Response Research Center PIER Team Briefing,

  6. Automated Demand Response: The Missing Link in the Electricity Value Chain

    E-Print Network [OSTI]

    McKane, Aimee

    2010-01-01

    Laboratory. Berkeley. Demand Response Research Center,and Automated Demand Response in Wastewater TreatmentLaboratory. Berkeley. Demand Response Research Center,

  7. Modeling of Electric Water Heaters for Demand Response: A Baseline PDE Model

    SciTech Connect (OSTI)

    Xu, Zhijie; Diao, Ruisheng; Lu, Shuai; Lian, Jianming; Zhang, Yu

    2014-09-05

    Demand response (DR)control can effectively relieve balancing and frequency regulation burdens on conventional generators, facilitate integrating more renewable energy, and reduce generation and transmission investments needed to meet peak demands. Electric water heaters (EWHs) have a great potential in implementing DR control strategies because: (a) the EWH power consumption has a high correlation with daily load patterns; (b) they constitute a significant percentage of domestic electrical load; (c) the heating element is a resistor, without reactive power consumption; and (d) they can be used as energy storage devices when needed. Accurately modeling the dynamic behavior of EWHs is essential for designing DR controls. Various water heater models, simplified to different extents, were published in the literature; however, few of them were validated against field measurements, which may result in inaccuracy when implementing DR controls. In this paper, a partial differential equation physics-based model, developed to capture detailed temperature profiles at different tank locations, is validated against field test data for more than 10 days. The developed model shows very good performance in capturing water thermal dynamics for benchmark testing purposes

  8. Secure Demand Shaping for Smart Grid On constructing probabilistic demand response schemes

    E-Print Network [OSTI]

    Sastry, S. Shankar

    Secure Demand Shaping for Smart Grid On constructing probabilistic demand response schemes. Developing novel schemes for demand response in smart electric gird is an increasingly active research area/SCADA for demand response in smart infrastructures face the following dilemma: On one hand, in order to increase

  9. Statewide Electricity and Demand Capacity Savings from the International Energy Conservation Code (IECC) Adoption for Single-Family Residences in Texas (2002-2011) 

    E-Print Network [OSTI]

    Kim, H.; Baltazar, J. C.; Haberl, J. S.; Yazdani, B.

    2013-01-01

    This report is the continuation of the previous 2011 Statewide Electricity Savings report from code-compliant, single-family residences built between 2002 and 2009. Statewide electricity and electric demand savings achieved from the adoption...

  10. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01

    of integrating demand response and energy efficiencyand D. Kathan (2009), Demand Response in U.S. ElectricityFRAMEWORKS THAT PROMOTE DEMAND RESPONSE 3.1. Demand Response

  11. Load-side Demand Management in Buildings using Controlled Electric Springs

    E-Print Network [OSTI]

    Soni, Jayantika; Krishnanand, KR; Panda, Sanjib

    2014-01-01

    L. Goel, "Demand side load management of smart grids usingP. Shenoy, "Demand-side load management in smart homes," inLoad-side Demand Management in Buildings using Controlled

  12. oday the spotlight in the United States is on the increasing world demand for

    E-Print Network [OSTI]

    Mukhtar, Saqib

    , The Texas A&M University System. Manure to Energy: Understanding Processes, Principles and Jargon -- Saqib sources, such as bio fuels, forests, wind, solar and animal manure. While demand for hydrocarbon energy. Energy losses during the digestion process include the energy lost in manure (feces and urine), in gases

  13. Social Welfare implications of demand response programs in competitiv e electricity markets

    E-Print Network [OSTI]

    Boisvert, Richard N.; Neenan, Bernard F.

    2003-01-01

    in Wholesale Electricity Markets”. The Electricity Journal,in Competitive Electricity Markets with and without Time-in Competitive Electricity Markets Prepared by Richard N.

  14. Automated Demand Response: The Missing Link in the Electricity Value Chain

    E-Print Network [OSTI]

    McKane, Aimee

    2010-01-01

    chain such as daily load management and demand response.more effective load management or a permanent reduction inother actions such as load management and demand response (

  15. Abstract--Ever-increasing bandwidth demands and higher flexibility are the main challenges for the next generation optical

    E-Print Network [OSTI]

    Varvarigo, Emmanouel "Manos"

    to network cost, size, and power requirements. In opaque networks the signal is regenerated at every) and network related OpEx (power consumption, floor space, repair costs) considerations. To make it more1 Abstract--Ever-increasing bandwidth demands and higher flexibility are the main challenges

  16. The demand for high performance computing research has been significantly increasing over the past few years. Various

    E-Print Network [OSTI]

    Akhmedov, Azer

    The demand for high performance computing research has been significantly increasing over the past to promote the effective use of High Performance Computing in the research environment. In addition facility has enabled cutting-edge computations material research, "Having a high-performance computing

  17. Modeling the Capacity and Emissions Impacts of Reduced Electricity Demand. Part 1. Methodology and Preliminary Results.

    E-Print Network [OSTI]

    Coughlin, Katie

    2013-01-01

    is fraction of total electricity consumption for commercialy) ! calculate total electricity consumption for the end-useis fraction of total electricity consumption for residential

  18. Air-conditioning electricity savings and demand reductions from exterior masonry wall insulation applied to Arizona residences

    SciTech Connect (OSTI)

    Ternes, M.P.; Wilkes, K.E.

    1993-06-01

    A field test involving eight single-family houses was performed during the summer of 1991 in Scottsdale, Arizona to evaluate the potential of reducing air-conditioning electricity consumption and demand by insulating their exterior masonry walls. Total per house costs to perform the installations ranged from $3610 to $4550. The average annual savings was estimated to be 491 kWh, or 9% of pre-retrofit consumption. Peak demands without and with insulation on the hottest day of an average weather year for Phoenix were estimated to be 4.26 and 3.61 kill, for a demand reduction of 0.65 kill (15%). We conclude that exterior masonry wall insulation reduces air-conditioning electricity consumption and peak demand in hot, dry climates similar to that of Phoenix. Peak demand reductions are a primary benefit, making the retrofit worthy of consideration in electric utility conservation programs. Economics can be attractive from a consumer viewpoint if considered within a renovation or home improvement program.

  19. Air-conditioning electricity savings and demand reductions from exterior masonry wall insulation applied to Arizona residences

    SciTech Connect (OSTI)

    Ternes, M.P.; Wilkes, K.E.

    1993-01-01

    A field test involving eight single-family houses was performed during the summer of 1991 in Scottsdale, Arizona to evaluate the potential of reducing air-conditioning electricity consumption and demand by insulating their exterior masonry walls. Total per house costs to perform the installations ranged from $3610 to $4550. The average annual savings was estimated to be 491 kWh, or 9% of pre-retrofit consumption. Peak demands without and with insulation on the hottest day of an average weather year for Phoenix were estimated to be 4.26 and 3.61 kill, for a demand reduction of 0.65 kill (15%). We conclude that exterior masonry wall insulation reduces air-conditioning electricity consumption and peak demand in hot, dry climates similar to that of Phoenix. Peak demand reductions are a primary benefit, making the retrofit worthy of consideration in electric utility conservation programs. Economics can be attractive from a consumer viewpoint if considered within a renovation or home improvement program.

  20. Modeling the Capacity and Emissions Impacts of Reduced Electricity Demand. Part 1. Methodology and Preliminary Results.

    E-Print Network [OSTI]

    Coughlin, Katie

    2013-01-01

    refrigeration generation type coal nuclear ngcc renewableby fuel type. %TWh Reduction Commercial coal ngcc nuclearType and Technology : Electricity : Electric Power Electric Power Projections for EMM Region : Electricity : Emissions Quantity Liquid Fuels Natural Gas Steam Coal

  1. Some electric myths Larry Hughes

    E-Print Network [OSTI]

    Hughes, Larry

    in residential electricity demand (133 GWh). If these trends continue into the fourth quarter, Nova Scotia Power of the rise in residential electricity demand is the result of the increased use of electricity for space of coal and Nova Scotia's demand for electricity, both of which are based, in part, upon the arguments

  2. Progress towards Managing Residential Electricity Demand: Impacts of Standards and Labeling for Refrigerators and Air Conditioners in India

    SciTech Connect (OSTI)

    McNeil, Michael A.; Iyer, Maithili

    2009-05-30

    The development of Energy Efficiency Standards and Labeling (EES&L) began in earnest in India in 2001 with the Energy Conservation Act and the establishment of the Indian Bureau of Energy Efficiency (BEE). The first main residential appliance to be targeted was refrigerators, soon to be followed by room air conditioners. Both of these appliances are of critical importance to India's residential electricity demand. About 15percent of Indian households own a refrigerator, and sales total about 4 million per year, but are growing. At the same time, the Indian refrigerator market has seen a strong trend towards larger and more consumptive frost-free units. Room air conditioners in India have traditionally been sold to commercial sector customers, but an increasing number are going to the residential sector. Room air conditioner sales growth in India peaked in the last few years at 20percent per year. In this paper, we perform an engineering-based analysis using data specific to Indian appliances. We evaluate costs and benefits to residential and commercial sector consumers from increased equipment costs and utility bill savings. The analysis finds that, while the BEE scheme presents net benefits to consumers, there remain opportunities for efficiency improvement that would optimize consumer benefits, according to Life Cycle Cost analysis. Due to the large and growing market for refrigerators and air conditioners in India, we forecast large impacts from the standards and labeling program as scheduled. By 2030, this program, if fully implemented would reduce Indian residential electricity consumption by 55 TWh. Overall savings through 2030 totals 385 TWh. Finally, while efficiency levels have been set for several years for refrigerators, labels and MEPS for these products remain voluntary. We therefore consider the negative impact of this delay of implementation to energy and financial savings achievable by 2030.

  3. Linking supply and demand: increasing grower participation and customer attendance at local farmers' markets 

    E-Print Network [OSTI]

    Lillard, Patrick Terrell

    2009-05-15

    Farmers' markets in the United States have experienced a dramatic increase since the 1970's. In the past three decades the number of farmers' markets has increased from 340 in 1970 to 3,617 by 2006. This interest in farmers' markets has not been...

  4. Peak-Coincident Demand Savings from Behavior-Based Programs: Evidence from PPL Electric's Behavior and Education Program

    E-Print Network [OSTI]

    Stewart, James

    2013-01-01

    savings derived from air-conditioning efficiency measures.measures that increased air-conditioning efficiency, their electricity use and savings

  5. Price Responsive Demand in New York Wholesale Electricity Market using OpenADR

    E-Print Network [OSTI]

    Kim, Joyce Jihyun

    2013-01-01

    electricity markets by creating a link between wholesale and retail markets (electricity markets by creating a link between wholesale and retail markets (electricity supply (KEMA 2012). While such trend stimulates the growth of a competitive retail market,

  6. Automated Demand Response: The Missing Link in the Electricity Value Chain

    E-Print Network [OSTI]

    McKane, Aimee

    2010-01-01

    Missing Link in the Electricity Value Chain Aimee McKane*,Missing Link in the Electricity Value Chain Aimee McKane,grid reliability and lower electricity use during periods of

  7. Automated Demand Response: The Missing Link in the Electricity Value Chain

    E-Print Network [OSTI]

    McKane, Aimee

    2010-01-01

    Missing Link in the Electricity Value Chain Aimee McKane,Missing Link in the Electricity Value Chain Aimee McKane,grid reliability and lower electricity use during periods of

  8. Electrical energy and demand savings from a geothermal heat pump energy savings performance contract at Ft. Polk, LA

    SciTech Connect (OSTI)

    Shonder, J.A.; Hughes, P.J.

    1997-06-01

    At Fort Polk, LA the space conditioning systems of an entire city (4,003 military family housing units) have been converted to geothermal heat pumps (GHP) under an energy savings performance contract. At the same time, other efficiency measures such as compact fluorescent lights (CFLs), low-flow hot water outlets, and attic insulation were installed. Pre- and post-retrofit data were taken at 15-minute intervals on energy flows through the electrical distribution feeders that serve the family housing areas of the post. 15-minute interval data was also taken on energy use from a sample of the residences. This paper summarizes the electrical energy and demand savings observed in this data. Analysis of feeder-level data shows that for a typical year, the project will result in a 25.6 million kWh savings in electrical energy use, or 32.4% of the pre-retrofit electrical consumption in family housing. Results from analysis of building-level data compare well with this figure. Analysis of feeder-level data also shows that the project has resulted in a reduction of peak electrical demand of 6,541 kW, which is 39.6% of the pre-retrofit peak electrical demand. In addition to these electrical savings, the facility is also saving an estimated 260,000 therms per year of natural gas. It should be noted that the energy savings presented in this document are the apparent energy savings observed in the monitored data, and are not to be confused with the contracted energy savings used as the basis for payments. To determine the contracted energy savings, the apparent energy savings may require adjustments for such things as changes in indoor temperature performance criteria, additions of ceiling fans, and other factors.

  9. Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards "Top-Runner Approach"

    E-Print Network [OSTI]

    Komiyama, Ryoichi

    2008-01-01

    Total Energy Source Demand Coal, Oil, Gas, Heat, ElectricityEnergy Source Demand per Household Coal, Oil, Gas, Heat,ton of oil equivalent Considerable increases in demand for

  10. Automated Demand Response: The Missing Link in the Electricity Value Chain

    E-Print Network [OSTI]

    McKane, Aimee

    2010-01-01

    National Laboratory ABSTRACT In 2006, the Public Interest Energy ResearchEnergy Research Program Demand Response Research Center (DRRC) at Lawrence Berkeley National Laboratory

  11. As the demand for power increases in populated areas, so will the demand for water. Current power plant technology relies heavily on the Rankine cycle in coal, nuclear and even solar thermal

    E-Print Network [OSTI]

    plant technology relies heavily on the Rankine cycle in coal, nuclear and even solar thermal powerAs the demand for power increases in populated areas, so will the demand for water. Current power the cooling power from radiation were developed and run. The results showed a cooling power of 35 W/m2

  12. Domestic electricity consumption is con-tinuously increasing and now accounts

    E-Print Network [OSTI]

    Domestic electricity consumption is con- tinuously increasing and now accounts for about one third") enable detailed electricity consumption infor- mation to be captured, processed, and communicated electricity consumption infor- mation in real-time, enabling occupants to better understand their electricity

  13. Increasing Electricity Access in East Africa Solomon A. Asfaw, PhD

    E-Print Network [OSTI]

    Increasing Electricity Access in East Africa Solomon A. Asfaw, PhD The electricity consumption per of the population in Sub-Saharan countries without electricity access. However, in order to achieve development and educational services, expansion of efficient energy services, such as electricity, are expected to play

  14. Capacity Demand Power (GW)

    E-Print Network [OSTI]

    California at Davis, University of

    Capacity Demand Power (GW) Hour of the Day The "Dip" Electricity Demand in Electricity Demand Every weekday, Japan's electricity use dips about 6 GW at 12 but it also shows that: · Behavior affects naHonal electricity use in unexpected ways

  15. Electricity market design for generator revenue sufficiency with increased

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear ProfileMultiferroic 2015Program ElectricityElectricity

  16. Building America Top Innovations 2012: High-Performance with Solar Electric Reduced Peak Demand

    SciTech Connect (OSTI)

    none,

    2013-01-01

    This Building America Top Innovations profile describes Building America solar home research that has demonstrated the ability to reduce peak demand by 75%. Numerous field studies have monitored power production and system effectiveness.

  17. Solutions for Summer Electric Power Shortages: Demand Response and its Applications in Air Conditioning and Refrigerating Systems

    E-Print Network [OSTI]

    Han, Junqiao; Piette, Mary Ann

    2008-01-01

    for DR and demand side management, along with operationalresponse), DSM (demand side management), DR strategy, air

  18. Fact #874: May 25, 2015 Number of Electric Stations and Electric Charging Units Increasing

    Office of Energy Efficiency and Renewable Energy (EERE)

    There are more electric stations than any other alternative fuel (10,710 stations). The number of charging units is of particular importance for electric vehicles due to the length of time it takes...

  19. Examination of the Regional Supply and Demand Balance for Renewable Electricity in the United States through 2015: Projecting from 2009 through 2015 (Revised)

    SciTech Connect (OSTI)

    Bird, L.; Hurlbut, D.; Donohoo, P.; Cory, K.; Kreycik, C.

    2010-06-01

    This report examines the balance between the demand and supply of new renewable electricity in the United States on a regional basis through 2015. It expands on a 2007 NREL study that assessed the supply and demand balance on a national basis. As with the earlier study, this analysis relies on estimates of renewable energy supplies compared to demand for renewable energy generation needed to meet existing state renewable portfolio standard (RPS) policies in 28 states, as well as demand by consumers who voluntarily purchase renewable energy. However, it does not address demand by utilities that may procure cost-effective renewables through an integrated resource planning process or otherwise.

  20. Increasing Public Demand for NOAA's Climaterelated Data and Services Between 2009 and 2010 alone, NOAA experienced significant growth in demand for climaterelated data,

    E-Print Network [OSTI]

    the Nation's water supplies and hydroelectric facilities; energy companies planning for energy demand not include the Portal. The numbers on the portal would likely be dominated by the centers when added in events like hurricanes, heavy precipitation and heat waves; insurance companies updating their risk

  1. NREL Uses Fuel Cells to Increase the Range of Battery Electric Vehicles (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-01-01

    NREL analysis identifies potential cost-effective scenarios for using small fuel cell power units to increase the range of medium-duty battery electric vehicles.

  2. Load-side Demand Management in Buildings using Controlled Electric Springs

    E-Print Network [OSTI]

    Soni, Jayantika; Krishnanand, KR; Panda, Sanjib

    2014-01-01

    renewable energy powered microgrids. It is illustrated, inenergy source powered microgrids. Electric Spring, a smartproblem associated with such microgrids. In this paper, an

  3. The Boom of Electricity Demand in the Residential Sector in the Developing World and the Potential for Energy Efficiency

    SciTech Connect (OSTI)

    Letschert, Virginie; McNeil, Michael A.

    2008-05-13

    With the emergence of China as the world's largest energy consumer, the awareness of developing country energy consumption has risen. According to common economic scenarios, the rest of the developing world will probably see an economic expansion as well. With this growth will surely come continued rapid growth in energy demand. This paper explores the dynamics of that demand growth for electricity in the residential sector and the realistic potential for coping with it through efficiency. In 2000, only 66% of developing world households had access to electricity. Appliance ownership rates remain low, but with better access to electricity and a higher income one can expect that households will see their electricity consumption rise significantly. This paper forecasts developing country appliance growth using econometric modeling. Products considered explicitly - refrigerators, air conditioners, lighting, washing machines, fans, televisions, stand-by power, water heating and space heating - represent the bulk of household electricity consumption in developing countries. The resulting diffusion model determines the trend and dynamics of demand growth at a level of detail not accessible by models of a more aggregate nature. In addition, the paper presents scenarios for reducing residential consumption through cost-effective and/or best practice efficiency measures defined at the product level. The research takes advantage of an analytical framework developed by LBNL (BUENAS) which integrates end use technology parameters into demand forecasting and stock accounting to produce detailed efficiency scenarios, which allows for a realistic assessment of efficiency opportunities at the national or regional level. The past decades have seen some of the developing world moving towards a standard of living previously reserved for industrialized countries. Rapid economic development, combined with large populations has led to first China and now India to emerging as 'energy giants', a phenomenon that is expected to continue, accelerate and spread to other countries. This paper explores the potential for slowing energy consumption and greenhouse gas emissions in the residential sector in developing countries and evaluates the potential of energy savings and emissions mitigation through market transformation programs such as, but not limited to Energy Efficiency Standards and Labeling (EES&L). The bottom-up methodology used allows one to identify which end uses and regions have the greatest potential for savings.

  4. California Energy Demand Scenario Projections to 2050

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01

    annual per-capita electricity consumption by demand15 California electricity consumption projections by demandannual per-capita electricity consumption by demand

  5. Risk-based integrated production scheduling and electricity procurement for

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    good solutions. Keywords: Production scheduling, electricity procurement, demand response, stochastic in electricity demand and increasing penetration of intermittent renewable energy into the electricity supply mix, it is becoming increasingly difficult to match electricity demand and supply in the power grid (Hand et al., 2012

  6. Peak-Coincident Demand Savings from Behavior-Based Programs: Evidence from PPL Electric's Behavior and Education Program

    E-Print Network [OSTI]

    Stewart, James

    2013-01-01

    hours caused by residential demand for air conditioning. Airto those of other residential demand-response programs?11 Most residential demand response programs fall into one

  7. Solutions for Summer Electric Power Shortages: Demand Response and its Applications in Air Conditioning and Refrigerating Systems

    E-Print Network [OSTI]

    Han, Junqiao; Piette, Mary Ann

    2008-01-01

    Research Director, PIER Demand Response Research CenterAssessment of Demand Response & Advanced Metering, staffPower Shortages: Demand Response and its Applications in Air

  8. Electric Demand Reduction for the U.S. Navy Public Works Center San Diego, California

    SciTech Connect (OSTI)

    Kintner-Meyer, Michael CW

    2000-09-30

    Pacific Northwest National Laboratory investigated the profitability of operating a Navy ship's generators (in San Diego) during high electricity price periods rather than the ships hooking up to the Base electrical system for power. Profitability is predicated on the trade-off between the operating and maintenance cost incurred by the Navy for operating the ship generators and the net profit associated with the sale of the electric power on the spot market. In addition, PNNL assessed the use of the ship's generators as a means to achieve predicted load curtailments, which can then be marketed to the California Independent System Operator.

  9. Demand Forecast INTRODUCTION AND SUMMARY

    E-Print Network [OSTI]

    Demand Forecast INTRODUCTION AND SUMMARY A 20-year forecast of electricity demand is a required in electricity demand is, of course, crucial to determining the need for new electricity resources and helping of any forecast of electricity demand and developing ways to reduce the risk of planning errors

  10. California Baseline Energy Demands to 2050 for Advanced Energy Pathways

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01

    Figure 16 Annual peak electricity demand by sector. Tableincludes an hourly electricity demand (i.e. power) profileof aggregating sectoral electricity demands into a statewide

  11. Dynamic pricing and stabilization of supply and demand in modern electric power grids

    E-Print Network [OSTI]

    Roozbehani, Mardavij

    The paper proposes a mechanism for real-time pricing of electricity in smart power grids, with price stability as the primary concern. In previous publications the authors argued that relaying the real-time wholesale market ...

  12. Floating offshore wind farms : demand planning & logistical challenges of electricity generation

    E-Print Network [OSTI]

    Nnadili, Christopher Dozie, 1978-

    2009-01-01

    Floating offshore wind farms are likely to become the next paradigm in electricity generation from wind energy mainly because of the near constant high wind speeds in an offshore environment as opposed to the erratic wind ...

  13. Electricity Demand of PHEVs Operated by Private Households and Commercial Fleets: Effects of Driving and Charging Behavior

    SciTech Connect (OSTI)

    John Smart; Matthew Shirk; Ken Kurani; Casey Quinn; Jamie Davies

    2010-11-01

    Automotive and energy researchers have made considerable efforts to predict the impact of plug-in hybrid vehicle (PHEV) charging on the electrical grid. This work has been done primarily through computer modeling and simulation. The US Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA), in partnership with the University of California at Davis’s Institute for Transportation Stuides, have been collecting data from a diverse fleet of PHEVs. The AVTA is conducted by the Idaho National Laboratory for DOE’s Vehicle Technologies Program. This work provides the opportunity to quantify the petroleum displacement potential of early PHEV models, and also observe, rather than simulate, the charging behavior of vehicle users. This paper presents actual charging behavior and the resulting electricity demand from these PHEVs operating in undirected, real-world conditions. Charging patterns are examined for both commercial-use and personal-use vehicles. Underlying reasons for charging behavior in both groups are also presented.

  14. Electric power demand limit for variable speed heat pumps and integrated water heating heat pumps

    SciTech Connect (OSTI)

    Dudley, K.F.

    1992-03-17

    This patent describes a method of operating an integrated heat pump and hot water system that is capable of providing heating or cooling to an environmental comfort zone. The heat pump and hot water system including a variable speed compressor whose operating speed is substantially linearly related to the difference between outdoor air temperature and indoor air temperature in the comfort zone, and also including means to receive a utility peak demand limit signal to initiate automatic power limiting to reduce the power demand imposed by the heat pump and hot water system, the method comprising sensing the outdoor temperature T{sub OD}; sensing the indoor temperature T{sub ID} in the comfort zone; sensing the speed S{sub 1} of the variable speed compressor; and in response to receiving the utility peak demand limit signal DLS calculating a reference speed S{sub R} for the compressor as a function of the speed S{sub 1}, the outdoor temperature T{sub OD}, the indoor temperature T{sub ID}, and predetermined values that correspond to a reference indoor temperature T{sub ID} and a zero-load temperature difference {Delta}T{sub Z} that corresponds to the difference between the outdoor and indoor temperatures that result in a zero load requirement on the compressor; and during occurrence of the signal DLS operating the compressor at a reduced operating speed limited to a predetermined fraction, less than unity, times the reference speed S{sub R}.

  15. California Baseline Energy Demands to 2050 for Advanced Energy Pathways

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01

    demands. Residential and commercial demand has a significantDemand by Sector Residential Peak Demand (MW) Commercialwe convert residential electricity demand based upon climate

  16. G REEN FLASH PROJECT The electrical power demands of ultrascale computers threaten to limit the future

    E-Print Network [OSTI]

    Oliker, Leonid

    feasible within the next 15 years, but that they face signifi- cant challenges. One of the challenges (enough to power approximately 2,600 homes)is"perhapsachievable,"accordingtotheE3 findings led to supercomputers that consume egregious amounts of electrical power. Other performance metrics

  17. Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal

    2010-01-01

    follows: • EDemand t : electricity demand during day t (incost of reducing electricity demand (in $/MWh e ) • HRDCost:maximum fraction of electricity demand to be met by demand

  18. What China Can Learn from International Experiences in Developing a Demand Response Program

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01

    2012. Addressing Electricity Demand through Demand Response:has been driving up the electricity demand while widespreadexperiences in addressing electricity demand This section is

  19. Efforts to Harmonize Gas Pipeline Operations with the Demands of the Electricity Sector

    SciTech Connect (OSTI)

    Costello, Ken

    2006-12-15

    A possible future course of action is for pipelines to continue their efforts to provide new services with FERC approval. Over time, pipelines could satisfy power generators by giving them the flexibility and services they desire and for which they are willing to pay. Another possibility is that FERC will enact new rules governing regional electricity markets that would function similarly to nationwide business practices. (author)

  20. Evaluating Electric Vehicle Charging Impacts and Customer Charging...

    Office of Environmental Management (EM)

    in annual sales of plug-in electric vehicles by 2023, which may substantially increase electricity usage and peak demand in high adoption areas. Understanding customer charging...

  1. Now Available: Evaluating Electric Vehicle Charging Impacts and...

    Energy Savers [EERE]

    in annual sales of plug-in electric vehicles by 2023, which may substantially increase electricity usage and peak demand in high adoption areas. Understanding customer charging...

  2. An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data

    E-Print Network [OSTI]

    Recker, W. W.; Kang, J. E.

    2010-01-01

    14   4   Charging Scenarios and Electricity Demand17   4.2   Electricity Demand34   Electricity Demand

  3. The Boom of Electricity Demand in the Residential Sector in the Developing World and the Potential for Energy Efficiency

    E-Print Network [OSTI]

    Letschert, Virginie

    2010-01-01

    residential electricity in developing country regions. Thehousehold electricity consumption in developing countries.targeting electricity consumption in developing countries,

  4. Managing Wind-based Electricity Generation and Storage

    E-Print Network [OSTI]

    Sadeh, Norman M.

    , and to meet increasing electricity demand without harming the environment. Two of the most promising solutions batteries. Grid storage can also help match the supply and demand of an entire electricity market. In Chapter 3, I examine how electricity storage can be used to help match electricity supply and demand

  5. Impact of plug-in hybrid electric vehicles on power systems with demand response and wind power.

    SciTech Connect (OSTI)

    Wang, J.; Liu, C.; Ton, D.; Zhou, Y.; Kim, J.; Vyas, A. (Decision and Information Sciences); ( ES); (ED); (Kyungwon Univ.)

    2011-07-01

    This paper uses a new unit commitment model which can simulate the interactions among plug-in hybrid electric vehicles (PHEVs), wind power, and demand response (DR). Four PHEV charging scenarios are simulated for the Illinois power system: (1) unconstrained charging, (2) 3-hour delayed constrained charging, (3) smart charging, and (4) smart charging with DR. The PHEV charging is assumed to be optimally controlled by the system operator in the latter two scenarios, along with load shifting and shaving enabled by DR programs. The simulation results show that optimally dispatching the PHEV charging load can significantly reduce the total operating cost of the system. With DR programs in place, the operating cost can be further reduced.

  6. REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022

    E-Print Network [OSTI]

    relatively high economic/demographic growth, relatively low electricity and natural gas rates REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 1: Statewide Electricity Demand Bill Junker Manager DEMAND ANALYSIS OFFICE Sylvia Bender Deputy Director ELECTRICITY SUPPLY ANALYSIS

  7. CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST

    E-Print Network [OSTI]

    high economic/demographic growth, relatively low electricity and natural gas rates, and relatively low CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST Volume 2: Electricity Demand Manager DEMAND ANALYSIS OFFICE Sylvia Bender Deputy Director ELECTRICITY SUPPLY ANALYSIS DIVISION

  8. CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST

    E-Print Network [OSTI]

    relatively high economic/demographic growth, relatively low electricity and natural gas rates CALIFORNIA ENERGY DEMAND 2014­2024 FINAL FORECAST Volume 1: Statewide Electricity Demand Gough Office Manager DEMAND ANALYSIS OFFICE Sylvia Bender Deputy Director ELECTRICITY SUPPLY ANALYSIS

  9. Optimal Demand Response Libin Jiang

    E-Print Network [OSTI]

    Optimal Demand Response Libin Jiang Steven Low Computing + Math Sciences Electrical Engineering Caltech Oct 2011 #12;Outline Caltech smart grid research Optimal demand response #12;Global trends 1

  10. Evaluating the Long-term Impact of a Continuously Increasing Harmonic Load Demand on Feeder Level Voltage Distortion

    E-Print Network [OSTI]

    Simões, Marcelo Godoy

    this paper the authors analyze the long-term feeder level distortion possibilities based on a large number of nonlinear devices within residential households has led some electric utility companies to become more. With an expectation of higher penetrations of electric vehicle chargers and renewable energy devices

  11. Summary We examined the effects of increased transpira-tion demand on xylem hydraulic conductivity and vulnerabil-

    E-Print Network [OSTI]

    Maherali, Hafiz

    the leaf/sapwood area ratio (AL/AS) and more than twice the transpiration rate of trees growing in cool Transpiration depends on hydraulic conductivity and the con- tinuity of the water column through the tree. Xylem transpiration demands. The model, which integrates the pattern of aboveground biomass allocation and xylem

  12. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01

    and D. Kathan (2009). Demand Response in U.S. ElectricityEnergy Financial Group. Demand Response Research Center [2008). Assessment of Demand Response and Advanced Metering.

  13. Demand Response - Policy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coordination of Energy Efficiency and Demand Response Demand Response in U.S. Electricity Markets: Empirical Evidence 2009 Retail Demand Response in Southwest Power Pool (January...

  14. Abstract--This paper formulates and develops a peak demand control tool for electric systems within the framework of direct

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    techniques. Index Terms--Demand Side Management, direct load control, peak demand control, genetic algorithms in order to evaluate the suitability of the decision chosen. Demand Side Management (DSM) plans attempt of application has been developed in the field of demand management; however, the high energy consumption growth

  15. Consideration of the environmental impact of aircraft has become critical in commercial aviation. The continued growth of air traffic has caused increasing demands to reduce aircraft emissions,

    E-Print Network [OSTI]

    Papalambros, Panos

    aviation. The continued growth of air traffic has caused increasing demands to reduce aircraft emissions airframe, engine and mission. The environmental metrics considered in this investigation are CO2 emissions -- which are proportional to fuel burn -- and landing- takeoff NOx emissions. The results are compared

  16. The threat of running out of fossil fuels has increased demand for alternative fuel sources. Grain-based ethanol production is one such

    E-Print Network [OSTI]

    Rock, Chris

    The threat of running out of fossil fuels has increased demand for alternative fuel sources. Grain-based ethanol production is one such alternative fuel option, but it relies heavily on grains previously availability. With the growing legislative endorsement for alternative fuel sources, grain production

  17. Progress towards Managing Residential Electricity Demand: Impacts of Standards and Labeling for Refrigerators and Air Conditioners in India

    E-Print Network [OSTI]

    McNeil, Michael A.

    2010-01-01

    in use patterns and electricity rates between commercial andRates Residential electricity rates are much lower thanin India. Residential electricity rates are subsidized to a

  18. Electricity Grid: Impacts of Plug-In Electric Vehicle Charging

    E-Print Network [OSTI]

    Yang, Christopher; McCarthy, Ryan

    2009-01-01

    and timing of vehicle electricity demand. As the number ofcontinually changing electricity demands by using a suite ofif local patterns of electricity demand change significantly

  19. A Hierarchical Demand Response Framework for Data Center Power Cost Optimization Under Real-World Electricity Pricing

    E-Print Network [OSTI]

    Giles, C. Lee

    1 A Hierarchical Demand Response Framework for Data Center Power Cost Optimization Under Real bills. Our focus is on a subset of this work that carries out demand response (DR) by modulating

  20. A Hierarchical Demand Response Framework for Data Center Power Cost Optimization Under Real-World Electricity Pricing

    E-Print Network [OSTI]

    Urgaonkar, Bhuvan

    1 A Hierarchical Demand Response Framework for Data Center Power Cost Optimization Under Real for optimizing their utility bills. Our focus is on a subset of this work that carries out demand response (DR

  1. Increasing throughput of multiplexed electrical bus in pipe-lined architecture

    DOE Patents [OSTI]

    Asaad, Sameh; Brezzo, Bernard V; Kapur, Mohit

    2014-05-27

    Techniques are disclosed for increasing the throughput of a multiplexed electrical bus by exploiting available pipeline stages of a computer or other system. For example, a method for increasing a throughput of an electrical bus that connects at least two devices in a system comprises introducing at least one signal hold stage in a signal-receiving one of the two devices, such that a maximum frequency at which the two devices are operated is not limited by a number of cycles of an operating frequency of the electrical bus needed for a signal to propagate from a signal-transmitting one of the two devices to the signal-receiving one of the two devices. Preferably, the signal hold stage introduced in the signal-receiving one of the two devices is a pipeline stage re-allocated from the signal-transmitting one of the two devices.

  2. Analysis & Tools to Spur Increased Deployment of " Waste Heat...

    Open Energy Info (EERE)

    Texas, which are experiencing large increases in population and correspondingly, peak electricity demand. If only 0.1% of Texas,' Arizona's, New Mexico's and Nevada's nearly 15...

  3. Evolution of Wholesale Electricity Market Design with Increasing Levels of Renewable Generation

    SciTech Connect (OSTI)

    Ela, E.; Milligan, M.; Bloom, A.; Botterud, A.; Townsend, A.; Levin, T.

    2014-09-01

    Variable generation such as wind and photovoltaic solar power has increased substantially in recent years. Variable generation has unique characteristics compared to the traditional technologies that supply energy in the wholesale electricity markets. These characteristics create unique challenges in planning and operating the power system, and they can also influence the performance and outcomes from electricity markets. This report focuses on two particular issues related to market design: revenue sufficiency for long-term reliability and incentivizing flexibility in short-term operations. The report provides an overview of current design and some designs that have been proposed by industry or researchers.

  4. 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply; Executive Summary (Revised)

    SciTech Connect (OSTI)

    Not Available

    2008-12-01

    This document is a 21-page summary of the 200+ page analysis that explores one clearly defined scenario for providing 20% of our nation's electricity demand with wind energy by 2030 and contrasts it to a scenario of no new U.S. wind power capacity.

  5. Coordinating Interstate Electric Transmission Siting: An Introduction...

    Open Energy Info (EERE)

    experts have started drawing att ention to the need to improve the system that transmits electricity from power plants to demand centers. Congestion on existing lines, increased...

  6. Fast Automated Demand Response to Enable the Integration of Renewable Resources

    E-Print Network [OSTI]

    Watson, David S.

    2013-01-01

    Water Supply Related Electricity Demand in California. CECbuildings, heating electricity demand is not included incenter-related electricity demand, or 573.4 MW, corresponds

  7. Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards "Top-Runner Approach"

    E-Print Network [OSTI]

    Komiyama, Ryoichi

    2008-01-01

    Runs, Average Value) Electricity Demand Power/Electricitygrowth to 2030. Since electricity demand is projected toequipment. Since electricity demand, is projected to exhibit

  8. Scenarios for Deep Carbon Emission Reductions from Electricity by 2050 in Western North America Using the SWITCH Electric Power Sector Planning Model

    E-Print Network [OSTI]

    Nelson, James Henry

    2013-01-01

    power  cost  and  electricity  demand  by  investment  transmission,   and   electricity   demand   in   2030  transmission,   and   electricity   demand   in   2050  

  9. Configuring load as a resource for competitive electricity markets--Review of demand response programs in the U.S. and around the world

    SciTech Connect (OSTI)

    Heffner, Grayson C.

    2002-09-01

    The restructuring of regional and national electricity markets in the U.S. and around the world has been accompanied by numerous problems, including generation capacity shortages, transmission congestion, wholesale price volatility, and reduced system reliability. These problems have created new opportunities for technologies and business approaches that allow load serving entities and other aggregators to control and manage the load patterns of wholesale and retail end-users they serve. Demand Response Programs, once called Load Management, have re-emerged as an important element in the fine-tuning of newly restructured electricity markets. During the summers of 1999 and 2001 they played a vital role in stabilizing wholesale markets and providing a hedge against generation shortfalls throughout the U.S.A. Demand Response Programs include ''traditional'' capacity reservation and interruptible/curtailable rates programs as well as voluntary demand bidding programs offered by either Load Serving Entities (LSEs) or regional Independent System Operators (ISOs). The Lawrence Berkeley National Lab (LBNL) has been monitoring the development of new types of Demand Response Programs both in the U.S. and around the world. This paper provides a survey and overview of the technologies and program designs that make up these emerging and important new programs.

  10. The Potential Impact of Increased Renewable Energy Penetrations on Electricity Bill Savings from Residential Photovoltaic Systems

    E-Print Network [OSTI]

    Barbose, Galen

    2013-01-01

    1) Borenstein, S. , Electricity Rate Structures and thes underlying retail electricity rate through net metering.turn impact retail electricity rates, particularly as retail

  11. Hydrogen and electricity: Parallels, interactions,and convergence

    E-Print Network [OSTI]

    Yang, Christopher

    2008-01-01

    impacts of marginal electricity demand for CA hydrogensection looks at electricity demands for a hydrogen-basedto the point-of-use. Electricity demand The typical demand

  12. REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022

    E-Print Network [OSTI]

    relatively high economic/demographic growth, relatively low electricity and natural gas rates REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 2: Electricity Demand by Utility OFFICE Sylvia Bender Deputy Director ELECTRICITY SUPPLY ANALYSIS DIVISION Robert P

  13. CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST

    E-Print Network [OSTI]

    /demographic growth, relatively low electricity and natural gas rates, and relatively low efficiency program CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST Volume 1: Statewide Electricity Manager Bill Junker Manager DEMAND ANALYSIS OFFICE Sylvia Bender Deputy Director ELECTRICITY SUPPLY

  14. CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST

    E-Print Network [OSTI]

    incorporates relatively high economic/demographic growth, relatively low electricity and natural gas rates CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST Volume 2: Electricity Demand Sylvia Bender Deputy Director ELECTRICITY SUPPLY ANALYSIS DIVISION Robert P. Oglesby Executive

  15. CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST

    E-Print Network [OSTI]

    incorporates relatively high economic/demographic growth, relatively low electricity and natural gas rates CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST Volume 2: Electricity Demand OFFICE Sylvia Bender Deputy Director ELECTRICITY SUPPLY ANALYSIS DIVISION Robert P

  16. Progress towards Managing Residential Electricity Demand: Impacts of Standards and Labeling for Refrigerators and Air Conditioners in India

    E-Print Network [OSTI]

    McNeil, Michael A.

    2010-01-01

    and Cost of Conserved Energy Given estimates of retail price, UEC, marginal electricity prices and discount rates, calculation

  17. Measuring the capacity impacts of demand response

    SciTech Connect (OSTI)

    Earle, Robert; Kahn, Edward P.; Macan, Edo

    2009-07-15

    Critical peak pricing and peak time rebate programs offer benefits by increasing system reliability, and therefore, reducing capacity needs of the electric power system. These benefits, however, decrease substantially as the size of the programs grows relative to the system size. More flexible schemes for deployment of demand response can help address the decreasing returns to scale in capacity value, but more flexible demand response has decreasing returns to scale as well. (author)

  18. INCREASE

    ScienceCinema (OSTI)

    None

    2013-07-22

    The Interdisciplinary Consortium for Research and Educational Access in Science and Engineering (INCREASE), assists minority-serving institutions in gaining access to world-class research facilities.

  19. Risk Management and Combinatorial Optimization for Large-Scale Demand Response and Renewable Energy Integration

    E-Print Network [OSTI]

    Yang, Insoon

    2015-01-01

    results: demand response . . . . . . . . . . . . . . . . . .Institute. “Automated Demand Response Today”. In: (2012). [Energy. “Benefits of demand response in electricity markets

  20. Market and Policy Barriers for Demand Response Providing Ancillary Services in U.S. Markets

    E-Print Network [OSTI]

    Cappers, Peter

    2014-01-01

    Wholesale Electricity Demand Response Program Comparison,J. (2009) Open Automated Demand Response Communicationsin Demand Response for Wholesale Ancillary Services.

  1. Uranium 2009 resources, production and demand

    E-Print Network [OSTI]

    Organisation for Economic Cooperation and Development. Paris

    2010-01-01

    With several countries currently building nuclear power plants and planning the construction of more to meet long-term increases in electricity demand, uranium resources, production and demand remain topics of notable interest. In response to the projected growth in demand for uranium and declining inventories, the uranium industry – the first critical link in the fuel supply chain for nuclear reactors – is boosting production and developing plans for further increases in the near future. Strong market conditions will, however, be necessary to trigger the investments required to meet projected demand. The "Red Book", jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is a recognised world reference on uranium. It is based on information compiled in 40 countries, including those that are major producers and consumers of uranium. This 23rd edition provides a comprehensive review of world uranium supply and demand as of 1 January 2009, as well as data on global ur...

  2. Abstract--Electrical Distribution Systems (EDS) are facing ever-increasing complexity due to fast growing demand and large

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of challenges for technological research. Indeed, the EU long- term vision on future grids, European Smartgrids

  3. Modeling Electric Vehicle Benefits Connected to Smart Grids

    E-Print Network [OSTI]

    Stadler, Michael

    2012-01-01

    reflect the benefit of electricity demand displacement bystorage electricity supplied by EVs electricity demand fromthe building electricity demand from local storage

  4. Potential Electricity Impacts of a 1978 California Drought

    E-Print Network [OSTI]

    Sathaye, J.

    2011-01-01

    xiv INTRODUCTION. ELECTRICITY DEMAND. Electricity Use Duringyear. In our analysis, electricity demand and supply duringpresented viii Statewide electricity demand during 1977 did

  5. Thermal Energy Storage for Electricity Peak-demand Mitigation: A Solution in Developing and Developed World Alike

    E-Print Network [OSTI]

    DeForest, Nicholas

    2014-01-01

    N ATIONAL L ABORATORY Thermal Energy Storage for Electricity20, 2012. I. Dincer, On thermal energy storage systems andin research on cold thermal energy storage, International

  6. Solutions for Summer Electric Power Shortages: Demand Response and its Applications in Air Conditioning and Refrigerating Systems

    E-Print Network [OSTI]

    Han, Junqiao; Piette, Mary Ann

    2008-01-01

    LBNL-63806 Refrigeration, Air Conditioning, & Electric Powerand its Applications in Air Conditioning and Refrigeratingand its applications in Air Conditioning and refrigerating

  7. The Boom of Electricity Demand in the Residential Sector in the Developing World and the Potential for Energy Efficiency

    E-Print Network [OSTI]

    Letschert, Virginie

    2010-01-01

    SAS-PAS Electric Water Heating UEC (kWh) 13 Reference (Jannuzzi G. 2005) (SAS+PAS Other Average Efficiency Base Case Reference Voice Mag. (oct 2005) (

  8. The Potential Impact of Increased Renewable Energy Penetrations on Electricity Bill Savings from Residential Photovoltaic Systems

    E-Print Network [OSTI]

    Barbose, Galen

    2013-01-01

    pricing, high solar penetrations in the market could lead tosolar power (CSP), and wind penetrations in the electricity market.in wholesale market electricity prices. Under high solar

  9. Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation

    E-Print Network [OSTI]

    Komiyama, Ryoichi

    2010-01-01

    equivalent and its electricity demand at 19 Mtoe. If wastemeet water heating and electricity demand in the residentialJournal Vol.4, No.4 electricity demand, fuel requirements

  10. Hot Thermal Storage/Selective Energy System Reduces Electric Demand for Space Cooling As Well As Heating in Commercial Application 

    E-Print Network [OSTI]

    Meckler, G.

    1985-01-01

    energy and off-peak electric resistance heating. Estimated energy and first cost savings, as compared with an all-electric VAV HVAC system, are: 30 to 50% in ductwork size and cost; 30% in fan energy; 25% in air handling equipment; 20 to 40% in utility...

  11. Abstract--In this paper, we present a new approach for very short term electricity load demand forecasting. In particular,

    E-Print Network [OSTI]

    Koprinska, Irena

    . Electricity market operators and participants use load forecasting for many reasons such as to make unit of the national electricity market, as its market operator NEMMCO must issue every 5 minutes the production this information as the basis for any re-bids of the capacity they wish to bring to the market. In this paper, we

  12. Demand Dispatch-Intelligent

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    such as wind, solar, and electric vehicles as well as dispatchable loads and microgrids. Many of these resources will be "behind-the-meter" (i.e., demand resources) and...

  13. A Fresh Look at Weather Impact on Peak Electricity Demand and Energy Use of Buildings Using 30-Year Actual Weather Data

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01

    energy performance and demand response. Accurate estimationto assess accurately demand response strategies. 3.6 Weatherincluding HVAC design, demand response for smart grids, and

  14. Increased

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATION PLAN FOR THE SITE-218in a V2O5 BatteryIncreased confinement

  15. Coordinating Interstate ElectricTransmission Siting: An Introduction...

    Office of Environmental Management (EM)

    experts have started drawing att ention to the need to improve the system that transmits electricity from power plants to demand centers. Congestion on existing lines, increased...

  16. Battery Second Use Offsets Electric Vehicle Expenses, Improves...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    they increase the potential for widespread PEV adoption by eliminating end-of-life automotive service costs, in addition to helping utilities support peak electricity demands...

  17. Coordination of Energy Efficiency and Demand Response

    SciTech Connect (OSTI)

    Goldman, Charles; Reid, Michael; Levy, Roger; Silverstein, Alison

    2010-01-29

    This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025. Improving energy efficiency in our homes, businesses, schools, governments, and industries - which consume more than 70 percent of the nation's natural gas and electricity - is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that 'the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW' by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

  18. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01

    electricity. In this manner, demand side management is directly integrated into the wholesale capacity marketcapacity market U.S. Federal Energy Regulatory Commission Florida Reliability Coordinating Council incremental auctions independent electricity

  19. A Fresh Look at Weather Impact on Peak Electricity Demand and Energy Use of Buildings Using 30-Year Actual Weather Data

    SciTech Connect (OSTI)

    Hong, Tianzhen; Chang, Wen-Kuei; Lin, Hung-Wen

    2013-05-01

    Buildings consume more than one third of the world?s total primary energy. Weather plays a unique and significant role as it directly affects the thermal loads and thus energy performance of buildings. The traditional simulated energy performance using Typical Meteorological Year (TMY) weather data represents the building performance for a typical year, but not necessarily the average or typical long-term performance as buildings with different energy systems and designs respond differently to weather changes. Furthermore, the single-year TMY simulations do not provide a range of results that capture yearly variations due to changing weather, which is important for building energy management, and for performing risk assessments of energy efficiency investments. This paper employs large-scale building simulation (a total of 3162 runs) to study the weather impact on peak electricity demand and energy use with the 30-year (1980 to 2009) Actual Meteorological Year (AMY) weather data for three types of office buildings at two design efficiency levels, across all 17 ASHRAE climate zones. The simulated results using the AMY data are compared to those from the TMY3 data to determine and analyze the differences. Besides further demonstration, as done by other studies, that actual weather has a significant impact on both the peak electricity demand and energy use of buildings, the main findings from the current study include: 1) annual weather variation has a greater impact on the peak electricity demand than it does on energy use in buildings; 2) the simulated energy use using the TMY3 weather data is not necessarily representative of the average energy use over a long period, and the TMY3 results can be significantly higher or lower than those from the AMY data; 3) the weather impact is greater for buildings in colder climates than warmer climates; 4) the weather impact on the medium-sized office building was the greatest, followed by the large office and then the small office; and 5) simulated energy savings and peak demand reduction by energy conservation measures using the TMY3 weather data can be significantly underestimated or overestimated. It is crucial to run multi-decade simulations with AMY weather data to fully assess the impact of weather on the long-term performance of buildings, and to evaluate the energy savings potential of energy conservation measures for new and existing buildings from a life cycle perspective.

  20. 20% wind energy by 2030: Increasing wind energy's contribution to U.S. electricity supply

    SciTech Connect (OSTI)

    None, None

    2008-07-01

    Report on the requirements needed to generate twenty percent of the nation's electricity from wind energy by the year 2030.

  1. The Potential Impact of Increased Renewable Energy Penetrations on Electricity Bill Savings from Residential Photovoltaic Systems

    E-Print Network [OSTI]

    Barbose, Galen

    2013-01-01

    displaces higher marginal cost generation. The high periodrates Utility-owned generation Costs to run and maintainrenewable electricity generation costs. This proportion is

  2. Optimal Demand Response and Power Flow

    E-Print Network [OSTI]

    Willett, Rebecca

    Optimal Demand Response and Power Flow Steven Low Computing + Math Sciences Electrical Engineering #12;Outline Optimal demand response n With L. Chen, L. Jiang, N. Li Optimal power flow n With S. Bose;Optimal demand response Model Results n Uncorrelated demand: distributed alg n Correlated demand

  3. Demand Response This is the first of the Council's power plans to treat demand response as a resource.1

    E-Print Network [OSTI]

    . WHAT IS DEMAND RESPONSE? Demand response is a change in customers' demand for electricity corresponding. Demand response as defined here does not include involuntary curtailment imposed on electricity users to conditions in wholesale power markets, its electricity demand is not. This situation has a number of adverse

  4. The Potential Impact of Increased Renewable Energy Penetrations on Electricity Bill Savings from Residential Photovoltaic Systems

    E-Print Network [OSTI]

    Barbose, Galen

    2013-01-01

    ABORATORY The Potential Impact of Increased Renewable Energyemployer. THE POTENTIAL IMPACT OF INCREASED RENEWABLE ENERGY

  5. Configuring load as a resource for competitive electricity markets--Review of demand response programs in the U.S. and around the world

    E-Print Network [OSTI]

    Heffner, Grayson C.

    2002-01-01

    MARKETS – REVIEW OF DEMAND RESPONSE PROGRAMS IN THE U.S. ANDMARKETS – REVIEW OF DEMAND RESPONSE PROGRAMS IN THE U.S. ANDend-users they serve. Demand Response Programs, once called

  6. Theme: Infrastructure and Electrical (3); Sub Theme: Track Components Quantification of Concrete Sleeper and Elastic Fastening System Demands

    E-Print Network [OSTI]

    Barkan, Christopher P.L.

    through ever increasing freight tonnages and development of its high speed rail program, the design the world where the challenge of operating increasing freight tonnages and high speed rail programs tolerances necessary for high-speed passenger rail safety and rider comfort. Shared infrastructure operating

  7. Fact #717: March 5, 2012 Availability of Electric Charging Stations Has Increased Dramatically in Recent Years

    Broader source: Energy.gov [DOE]

    At the end of September 2009, there were just 465 electric vehicle charging stations nationwide. By the end of January 2012, the number of charging stations had grown to 6,033. California has...

  8. Estimated increases in the cost of electricity under three acid-rain control bills

    SciTech Connect (OSTI)

    Hillsman, E.L. (Oak Ridge National Lab., TN (United States)); Alvic, D.R. (Tennessee Univ., Knoxville, TN (United States))

    1991-01-01

    Several bills were introduced in the past two Congresses to reduce emissions of sulfur dioxide and nitrogen oxides from electric power plants. The effects of these bills on electricity costs depend on features of the bills, on the mix of generating capacity owned by different electric utilities, on the technologies available for complying with the legislation, and on the time horizon used to calculate the costs. A system of computer software has been developed to make utility-specific estimates of the effects of different legislation on electricity costs. This paper presents sample results from a larger analysis of six pieces of legislation. These results suggest that the emissions trading systems proposed in some legislation, and adopted in the Clean Air Act Amendments of 1991, may have less effect than expected on the cost of complying with the legislation. 5 refs., 2 figs., 2 tabs.

  9. DOE Provides up to $51.8 Million to Modernize the U.S. Electric...

    Energy Savers [EERE]

    high-temperature superconductors, which have the potential to alleviate congestion on an electricity grid that is experiencing increased demand from consumers. PDF icon DOE...

  10. Evaluating Policies to Increase the Generation of Electricity from Renewable Energy

    E-Print Network [OSTI]

    Schmalensee, Richard

    Focusing on the U.S. and the E.U., this essay seeks to advance four main propositions. First, the incidence of the short-run costs of programs to subsidize the generation of electricity from renewable sources varies with ...

  11. Configuring load as a resource for competitive electricity markets--Review of demand response programs in the U.S. and around the world

    E-Print Network [OSTI]

    Heffner, Grayson C.

    2002-01-01

    FOR COMPETITIVE ELECTRICITY MARKETS – REVIEW OF DEMANDFOR COMPETITIVE ELECTRICITY MARKETS – REVIEW OF DEMANDof regional and national electricity markets in the U.S. and

  12. Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program

    E-Print Network [OSTI]

    Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

    2009-01-01

    electricity and actual electricity demand to recharge PHEVs.the Project households, electricity demand to recharge theirAs with weekday electricity demand, most actual weekend

  13. Using Electric Vehicles to Mitigate Imbalance Requirements Associated with an Increased Penetration of Wind Generation

    SciTech Connect (OSTI)

    Tuffner, Francis K.; Kintner-Meyer, Michael CW

    2011-10-10

    The integration of variable renewable generation sources continues to be a significant area of focus for power system planning. Renewable portfolio standards and initiatives to reduce the dependency on foreign energy sources drive much of the deployment. Unfortunately, renewable energy generation sources like wind and solar tend to be highly variable in nature. To counter the energy imbalance caused by this variability, wind generation often requires additional balancing resources to compensate for the variability in the electricity production. With the expected electrification of transportation, electric vehicles may offer a new load resource for meeting all, or part, of the imbalance created by the renewable generation. This paper investigates a regulation-services-based battery charging method on a population of plug-in hybrid electric vehicles to meet the power imbalance requirements associated with the introduction of 11 GW of additional wind generation into the Northwest Power Pool. It quantifies the number of vehicles required to meet the imbalance requirements under various charging assumptions.

  14. Avoiding 100 New Power Plants by Increasing Efficiency of Room Air Conditioners in India: Opportunities and Challenges

    E-Print Network [OSTI]

    Phadke, Amol

    2014-01-01

    Current and future electricity demand from Room ACs andof ACs to the Peak Electricity Demand In this section, weseasonal variation in electricity demand in both sectors,

  15. The Potential Impact of Increased Renewable Energy Penetrations on Electricity Bill Savings from Residential Photovoltaic Systems

    E-Print Network [OSTI]

    Barbose, Galen

    2013-01-01

    San Francisco, CA, 2010 (6) National Renewable EnergyLaboratory (NREL), Renewable Resource Data Center, Website:Impact of Increased Renewable Energy Penetrations on

  16. Assessing the Control Systems Capacity for Demand Response in California Industries

    E-Print Network [OSTI]

    Ghatikar, Girish

    2013-01-01

    5: Periods of Elevated Electricity Demand 8am-12pm 12pm-2pmC-8: Diurnal Variations in Electricity Demand Figure C-9:Variations in Electricity Demand Figure C-10: Seasonal

  17. Regional versus global? -- Will strategies for reduction of sulfur dioxide emissions from electric utilities increase carbon dioxide emissions?

    SciTech Connect (OSTI)

    Randolph, J.C.; Dolsak, N.

    1996-12-31

    Electric utilities, which are dependent on high-sulfur coal are expected to reduce their SO{sub 2} emissions. The strategies for reduction of SO{sub 2} emissions may result in increased CO{sub 2} emissions. Thereby decrease of regional pollution may cause increase of global pollution. Environmental, political, moral, and economic consequences of the two types of pollution differ significantly. Midwestern electric utilities, USA, which are dependent on high-sulfur coal, are analyzed in the paper. However, the same problem is relevant for some European coal fueled power plants. Strategies for reduction of SO{sub 2} emissions, employed by Midwestern electric utilities to comply with the clean Air Act amendments (CAAA) of 1990 and their possible affects on CO{sub 2} emissions, are presented. The paper focuses on two general strategies for reduction of SO{sub 2} emissions. First is coal-switching or blending with a low-sulfur coal. Second is construction and use of flue-gas desulfurization devices (scrubbers). A combination of both strategies is also a viable option. Switching to low-sulfur coal may result in larger CO{sub 2} emissions because that coal has different characteristics and has to be transported much greater distances. Scrubbers require significant amounts of energy for their operation which requires burning more coal. This increases the level of CO{sub 2} emissions.

  18. Industrial Equipment Demand and Duty Factors 

    E-Print Network [OSTI]

    Dooley, E. S.; Heffington, W. M.

    1998-01-01

    Demand and duty factors have been measured for selected equipment (air compressors, electric furnaces, injection molding machines, centrifugal loads, and others) in industrial plants. Demand factors for heavily loaded air ...

  19. An R & D Agenda to enhance electricity system reliability by increasing customer participation in emerging competitive markets

    E-Print Network [OSTI]

    2000-01-01

    view participation in electricity markets as their primaryin competitive electricity markets will require much morethe competitive electricity market place. Pioneer Promising

  20. Demand response enabling technology development

    E-Print Network [OSTI]

    2006-01-01

    Monitoring in an Agent-Based Smart Home, Proceedings of theConference on Smart Homes and Health Telematics, September,Smart Meter Motion sensors Figure 1: Schematic of the Demand Response Electrical Appliance Manager in a Home.

  1. California's future `Smart Grid' system will integrate solar, wind, and other renewable electricity generation with energy storage to meet our electricity demands and to support electric transportation. The Sustainable Integrated Grid

    E-Print Network [OSTI]

    California at Riverside, University of

    California's future `Smart Grid' system will integrate solar, wind, and other renewable electricity. The Sustainable Integrated Grid Initiative at UCR combines these elements so that researchers, utility personnel and wind are intermittent in nature and may not be available when needed. Electrical energy stored

  2. Estimating Demand Response Market Potential Among Large Commercial and Industrial Customers: A Scoping Study

    E-Print Network [OSTI]

    Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan, Bernie; Cappers, Peter

    2007-01-01

    2001. “Electricity Demand Side Management Study: Review ofEpping/North Ryde Demand Side Management Scoping Study:Energy Agency Demand Side Management (IEA DSM) Programme:

  3. Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings

    E-Print Network [OSTI]

    Piette, Mary Ann; Kiliccote, Sila

    2006-01-01

    Energy. “Benefits of Demand Response in Electricity MarketsEnergy Efficiency and Demand Response?7 3.1.Demand Response in Commercial

  4. Cooperative Demand Response Using Repeated Game for Price-Anticipating Buildings in Smart Grid

    E-Print Network [OSTI]

    Ma, Kai; Hu, Guoqiang; Spanos, Costas J

    2014-01-01

    E. El-Saadany, “A summary of demand response in electricityYang, and X. Guan, “Optimal demand response scheduling withwith application to demand response,” IEEE Transactions on

  5. California DREAMing: the design of residential demand responsive technology with people in mind

    E-Print Network [OSTI]

    Peffer, Therese E.

    2009-01-01

    Advanced Metering and Demand Response in ElectricityChen, X. (2008). Demand Response-enabled Autonomous Controlfor Thermal Comfort, Demand Response, and Reduced Annual

  6. Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies

    E-Print Network [OSTI]

    Stadler, Michael

    2008-01-01

    that growth in electricity demand in developed countriesof displacement of electricity demand by heat- activatedmeets all of its electricity demand via utility purchases

  7. Eliminating Electricity Deficit through Energy Efficiency in India: An Evaluation of Aggregate Economic and Carbon Benefits

    E-Print Network [OSTI]

    Sathaye, Jayant

    2010-01-01

    Business as Usual (BAU) Scenario 1 – Electricity Demand andEnergy Efficiency (SEE) Scenario 2– Electricity Demand andCA 94720 Abstract Electricity demand has consistently

  8. Assessing Strategies for Fuel and Electricity Production in a California Hydrogen Economy

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01

    for hydrogen and electricity demand and supply in Californiademands from hydrogen, electricity demand is projected to0.2% annually. Electricity demands ( excluding hydrogen

  9. Interactions between Electric-drive Vehicles and the Power Sector in California

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2009-01-01

    transportation electricity demand and power supply. Ryancompared for different electricity demand profiles. And thewith CED based on an electricity demand curve from the EPA

  10. DSM Electricity Savings Potential in the Buildings Sector in APP Countries

    E-Print Network [OSTI]

    McNeil, MIchael

    2011-01-01

    Developments in Electricity Demand Management – Lessons24 Table 4. Electricity Demand Projections, Energy and3. APP Base Case Electricity Demand Forecast –Residential

  11. Discharge-driven electric oxygen-iodine laser superlinear enhancement via increasing g0L

    E-Print Network [OSTI]

    Carroll, David L.

    length, g0L. A factor of 4.4 increase in laser power output on the 1315 nm atomic iodine transition geometry, discharge power to O2 flow ratio, He diluent ratio, atomic oxygen control (quenching mechanisms-frequency discharges. Continuous wave (CW) average total laser power of 481 W was extracted with g0L 0.042. © 2012

  12. Estimating Demand Response Market Potential Among Large Commercialand Industrial Customers:A Scoping Study

    SciTech Connect (OSTI)

    Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan,Bernie; Cappers, Peter

    2007-01-01

    Demand response is increasingly recognized as an essentialingredient to well functioning electricity markets. This growingconsensus was formalized in the Energy Policy Act of 2005 (EPACT), whichestablished demand response as an official policy of the U.S. government,and directed states (and their electric utilities) to considerimplementing demand response, with a particular focus on "price-based"mechanisms. The resulting deliberations, along with a variety of stateand regional demand response initiatives, are raising important policyquestions: for example, How much demand response is enough? How much isavailable? From what sources? At what cost? The purpose of this scopingstudy is to examine analytical techniques and data sources to supportdemand response market assessments that can, in turn, answer the secondand third of these questions. We focus on demand response for large(>350 kW), commercial and industrial (C&I) customers, althoughmany of the concepts could equally be applied to similar programs andtariffs for small commercial and residential customers.

  13. Demand Control Utilizing Energy Management Systems - Report of Field Tests 

    E-Print Network [OSTI]

    Russell, B. D.; Heller, R. P.; Perry, L. W.

    1984-01-01

    Energy Management systems and particularly demand controllers are becoming more popular as commercial and light industrial operations attempt to reduce their electrical usage and demand. Numerous techniques are used to control energy use and demand...

  14. Emerging Technologies for Industrial Demand-Side Management 

    E-Print Network [OSTI]

    Neely, J. E.; Kasprowicz, L. M.

    1993-01-01

    Demand-side management (DSM) is a set of actions taken by an electric utility to influence the electricity usage by a customer. Typical DSM activities include rebates for higher efficiency appliances and discounted electric rates for electric...

  15. Energy Demands and Efficiency Strategies in Data Center Buildings

    E-Print Network [OSTI]

    Shehabi, Arman

    2010-01-01

    DX Cooling Total Annual Energy Usage Peak Electric DemandDX Cooling Total Annual Energy Usage Scenario Supply/ ReturnDX Cooling Total Annual Energy Usage Peak Electric Demand

  16. Retail Demand Response in Southwest Power Pool

    E-Print Network [OSTI]

    Bharvirkar, Ranjit

    2009-01-01

    and Retails Electricity Markets in SPP The Southwest Powerand Retails Electricity Markets in SPP.3 2.1 Wholesale Markets in the Southwest PowerRetail Demand Response in SPP Wholesale Markets in the Southwest Power

  17. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01

    unit water requirement of coal-fired electricity generationin electricity demand. Coal-fired power generation accounted12, the absolute amount of coal-fired capacity grew at an

  18. Analysis of Residential Demand Response and Double-Auction Markets

    SciTech Connect (OSTI)

    Fuller, Jason C.; Schneider, Kevin P.; Chassin, David P.

    2011-10-10

    Demand response and dynamic pricing programs are expected to play increasing roles in the modern Smart Grid environment. While direct load control of end-use loads has existed for decades, price driven response programs are only beginning to be explored at the distribution level. These programs utilize a price signal as a means to control demand. Active markets allow customers to respond to fluctuations in wholesale electrical costs, but may not allow the utility to control demand. Transactive markets, utilizing distributed controllers and a centralized auction can be used to create an interactive system which can limit demand at key times on a distribution system, decreasing congestion. With the current proliferation of computing and communication resources, the ability now exists to create transactive demand response programs at the residential level. With the combination of automated bidding and response strategies coupled with education programs and customer response, emerging demand response programs have the ability to reduce utility demand and congestion in a more controlled manner. This paper will explore the effects of a residential double-auction market, utilizing transactive controllers, on the operation of an electric power distribution system.

  19. Field Demonstration of Automated Demand Response for Both Winter and Summer Events in Large Buildings in the Pacific Northwest

    SciTech Connect (OSTI)

    Piette, Mary Ann; Kiliccote, Sila; Dudley, Junqiao H.

    2011-11-11

    There are growing strains on the electric grid as cooling peaks grow and equipment ages. Increased penetration of renewables on the grid is also straining electricity supply systems and the need for flexible demand is growing. This paper summarizes results of a series of field test of automated demand response systems in large buildings in the Pacific Northwest. The objective of the research was two fold. One objective was to evaluate the use demand response automation technologies. A second objective was to evaluate control strategies that could change the electric load shape in both winter and summer conditions. Winter conditions focused on cold winter mornings, a time when the electric grid is often stressed. The summer test evaluated DR strategies in the afternoon. We found that we could automate both winter and summer control strategies with the open automated demand response communication standard. The buildings were able to provide significant demand response in both winter and summer events.

  20. InDemandInDemandInDemand Energize Your Career

    E-Print Network [OSTI]

    Wolberg, George

    InDemandInDemandInDemand Energize Your Career You can join the next generation of workers who in Energy #12;#12;In Demand | 1 No, this isn't a quiz...but if you answered yes to any or all and Training Administration wants you to have this publication, In Demand: Careers in Energy. It will let you

  1. Electrical Load Modeling and Simulation

    SciTech Connect (OSTI)

    Chassin, David P.

    2013-01-01

    Electricity consumer demand response and load control are playing an increasingly important role in the development of a smart grid. Smart grid load management technologies such as Grid FriendlyTM controls and real-time pricing are making their way into the conventional model of grid planning and operations. However, the behavior of load both affects, and is affected by load control strategies that are designed to support electric grid planning and operations. This chapter discussed the natural behavior of electric loads, how it interacts with various load control and demand response strategies, what the consequences are for new grid operation concepts and the computing issues these new technologies raise.

  2. Feasibility of Wholesale Electricity Competition in a Developing Country: Insights from Simulating a Market in Maharashtra State, India

    E-Print Network [OSTI]

    Phadke, Amol

    2007-01-01

    Large Quantities of Electricity Demand for AgriculturalLarge Size of the Market Electricity demand for agriculturalconstraints, and electricity demand in MH state to simulate

  3. APPLICATION-FORM DEMANDED'ADMISSION

    E-Print Network [OSTI]

    Opportunities and Challenges for Data Center Demand Response Adam Wierman Zhenhua Liu Iris Liu of renewable energy into the grid as well as electric power peak-load shaving: data center demand response. Data center demand response sits at the intersection of two growing fields: energy efficient data

  4. VideoonDemandVideoonDemandVideoonDemand Video on Demand Testbed

    E-Print Network [OSTI]

    Eleftheriadis, Alexandros

    VideoonDemandVideoonDemandVideoonDemand Columbia's Video on Demand Testbed and Interoperability Experiment Columbia's Video on Demand Testbed and Interoperability Experiment S.-F. Chang and A Columbia UniversityColumbia University www.www.ctrctr..columbiacolumbia..eduedu/advent/advent #12;VideoonDemandVideoonDemandVideoonDemand

  5. VideoonDemandVideoonDemandVideoonDemand Video on Demand Testbed

    E-Print Network [OSTI]

    Eleftheriadis, Alexandros

    #12;VideoonDemandVideoonDemandVideoonDemand Columbia's Video on Demand Testbed and Interoperability Experiment Columbia's Video on Demand Testbed and Interoperability Experiment H.H. KalvaKalva, A.www.eeee..columbiacolumbia..eduedu/advent/advent #12;VideoonDemandVideoonDemandVideoonDemand VoD Testbed ArchitectureVoD Testbed Architecture Video

  6. Allocation, incentives and distortions: the impact of EU ETS emissions allowance allocations to the electricity sector

    E-Print Network [OSTI]

    Neuhoff, Karsten; Keats, Kim; Sato, Misato

    -intensive technologies (e.g. coal). Moreover, if the demand for electricity is price elastic, any resulting drop in electricity prices (Harrison and Radov 2002) could trigger higher electricity consumption, production, further increasing CO2 emissions... externality into the electricity prices limits investment in energy efficiency and results in higher electricity consumption. Thus electricity production and national CO2 emissions increase. If all European countries implement such policies the suggested...

  7. The Case for Electric Vehicles

    E-Print Network [OSTI]

    Sperling, Daniel

    2001-01-01

    land Press, 1995 TESTING ELECTRIC VEHICLE DEMAND IN " HYBRIDThe Case for Electric Vehicles DanieI Sperlmg Reprint UCTCor The Case for Electric Vehicles Darnel Sperling Institute

  8. Sixth Northwest Conservation and Electric Power Plan Chapter 1: Introduction

    E-Print Network [OSTI]

    ............................................................................................................................ 7 Electricity Demand electricity needs. The Act recognizes that the demand for electricity is derived from the need for services designates efficiency improvements as the highest-priority resource for meeting electricity demands and gives

  9. Demand Response and Open Automated Demand Response

    E-Print Network [OSTI]

    LBNL-3047E Demand Response and Open Automated Demand Response Opportunities for Data Centers G described in this report was coordinated by the Demand Response Research Center and funded by the California. Demand Response and Open Automated Demand Response Opportunities for Data Centers. California Energy

  10. Demand Response Spinning Reserve Demonstration

    SciTech Connect (OSTI)

    Eto, Joseph H.; Nelson-Hoffman, Janine; Torres, Carlos; Hirth,Scott; Yinger, Bob; Kueck, John; Kirby, Brendan; Bernier, Clark; Wright,Roger; Barat, A.; Watson, David S.

    2007-05-01

    The Demand Response Spinning Reserve project is a pioneeringdemonstration of how existing utility load-management assets can providean important electricity system reliability resource known as spinningreserve. Using aggregated demand-side resources to provide spinningreserve will give grid operators at the California Independent SystemOperator (CAISO) and Southern California Edison (SCE) a powerful, newtool to improve system reliability, prevent rolling blackouts, and lowersystem operating costs.

  11. Puget Sound Area Electric Reliability Plan : Final Environmental Impact Statement.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1992-04-01

    A specific need exists in the Puget Sound area for balance between east-west transmission capacity and the increasing demand to import power generated east of the Cascades. At certain times of the year, and during certain conditions, there is more demand for power in the Puget Sound area than the transmission system and existing generation can reliably supply. This high demand, called peak demand occurs during the winter months when unusually cold weather increases electricity use for heating. The existing power system can supply enough power if no emergencies occur. However, during emergencies the system will not operate properly. As demand grows, the system becomes more strained. To meet demand, the rate of growth of demand must be reduced or the ability to serve the demand must be increased, or both.

  12. Assessment of Demand Response and Advanced Metering

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    #12;#12;2008 Assessment of Demand Response and Advanced Metering Staff Report Federal Energy metering penetration and potential peak load reduction from demand response have increased since 2006. Significant activity to promote demand response or to remove barriers to demand response occurred at the state

  13. Daylighting, dimming, and the electricity crisis in California

    E-Print Network [OSTI]

    Rubinstein, Francis; Neils, Danielle; Colak, Nesrin

    2001-01-01

    and California Electricity Crisis Rubinstein, Neils & Colak daylighting system is saving energy when it is most critical, because electricity costsCalifornia’s energy crisis and the consequent increases in electricity rates, is daylighting now a cost-California and then investigate the potential of daylight-linked controls to reduce peak demand and lower energy costs

  14. Reliability implications of price responsive demand : a study of New England's power system

    E-Print Network [OSTI]

    Whitaker, Andrew C. (Andrew Craig)

    2011-01-01

    With restructuring of the traditional, vertically integrated electricity industry come new opportunities for electricity demand to actively participate in electricity markets. Traditional definitions of power system ...

  15. Draft for Public Comment Appendix A. Demand Forecast

    E-Print Network [OSTI]

    in the forecast of electricity consumption for those years has been less than one half of a percent. Figure A-1 forecast of electricity demand is a required component of the Council's Northwest Regional Conservation and Electric Power Plan.1 Understanding growth in electricity demand is, of course, crucial to determining

  16. Sixth Northwest Conservation and Electric Power Plan Chapter 2: Key Assumptions

    E-Print Network [OSTI]

    's power plan to include a forecast of electricity demand for the next 20 years. Demand, to a large extent, is....................................................................................................................................... 16 Forecast of Retail Electricity Prices................................................................................................................... 17 SUMMARY OF KEY FINDINGS Pacific Northwest population and energy costs are expected to increase

  17. Increasing computational demands in data centers require facilities to operate at higher ambient temperatures and at higher power densities. Conventionally, data centers are cooled with electrically-

    E-Print Network [OSTI]

    to an absorption chiller. This dissertation performs a detailed analysis of the exergy of a processor and determines the maximum amount of energy utilizable for work. Exergy as a source of realizable work is separated into its two contributing constituents: thermal exergy and informational exergy. The informational

  18. The alchemy of demand response: turning demand into supply

    SciTech Connect (OSTI)

    Rochlin, Cliff

    2009-11-15

    Paying customers to refrain from purchasing products they want seems to run counter to the normal operation of markets. Demand response should be interpreted not as a supply-side resource but as a secondary market that attempts to correct the misallocation of electricity among electric users caused by regulated average rate tariffs. In a world with costless metering, the DR solution results in inefficiency as measured by deadweight losses. (author)

  19. SCENARIOS FOR MEETING CALIFORNIA'S 2050 CLIMATE GOALS California's Carbon Challenge Phase II Volume I: Non-Electricity Sectors and Overall Scenario Results

    E-Print Network [OSTI]

    Wei, Max

    2014-01-01

    Volume 1: Statewide Electricity Demand and Methods, End?UserRelative to 1990 Level] Electricity Demand ElectrificationEfficiency Base Electricity Demand = Technical potential

  20. ELECTRIC

    Office of Legacy Management (LM)

    you nay give us will be greatly uppreckted. VPry truly your23, 9. IX. Sin0j3, Mtinager lclectronics and Nuclear Physics Dept. omh , WESTINGHOUSE-THE NAT KING IN ELECTRICITY...

  1. PRELIMINARY CALIFORNIA ENERGY DEMAND FORECAST 2012-2022

    E-Print Network [OSTI]

    low electricity and natural gas rates, and relatively low efficiency program and self Deputy Director ELECTRICITY SUPPLY ANALYSIS DIVISION Robert Oglesby Executive Director DISCLAIMER Staff for electric vehicles. #12;ii #12;iii ABSTRACT The Preliminary California Energy Demand Forecast 2012

  2. Demand Responsive Lighting: A Scoping Study

    SciTech Connect (OSTI)

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-03

    The objective of this scoping study is: (1) to identify current market drivers and technology trends that can improve the demand responsiveness of commercial building lighting systems and (2) to quantify the energy, demand and environmental benefits of implementing lighting demand response and energy-saving controls strategies Statewide. Lighting systems in California commercial buildings consume 30 GWh. Lighting systems in commercial buildings often waste energy and unnecessarily stress the electrical grid because lighting controls, especially dimming, are not widely used. But dimmable lighting equipment, especially the dimming ballast, costs more than non-dimming lighting and is expensive to retrofit into existing buildings because of the cost of adding control wiring. Advances in lighting industry capabilities coupled with the pervasiveness of the Internet and wireless technologies have led to new opportunities to realize significant energy saving and reliable demand reduction using intelligent lighting controls. Manufacturers are starting to produce electronic equipment--lighting-application specific controllers (LAS controllers)--that are wirelessly accessible and can control dimmable or multilevel lighting systems obeying different industry-accepted protocols. Some companies make controllers that are inexpensive to install in existing buildings and allow the power consumed by bi-level lighting circuits to be selectively reduced during demand response curtailments. By intelligently limiting the demand from bi-level lighting in California commercial buildings, the utilities would now have an enormous 1 GW demand shed capability at hand. By adding occupancy and light sensors to the remotely controllable lighting circuits, automatic controls could harvest an additional 1 BkWh/yr savings above and beyond the savings that have already been achieved. The lighting industry's adoption of DALI as the principal wired digital control protocol for dimming ballasts and increased awareness of the need to standardize on emerging wireless technologies are evidence of this transformation. In addition to increased standardization of digital control protocols controller capabilities, the lighting industry has improved the performance of dimming lighting systems over the last two years. The system efficacy of today's current dimming ballasts is approaching that of non-dimming program start ballasts. The study finds that the benefits of applying digital controls technologies to California's unique commercial buildings market are enormous. If California were to embark on an concerted 20 year program to improve the demand responsiveness and energy efficiency of commercial building lighting systems, the State could avoid adding generation capacity, improve the elasticity of the grid, save Californians billion of dollars in avoided energy charges and significantly reduce greenhouse gas emissions.

  3. Towards a systematic characterization of the potential of demand side management

    E-Print Network [OSTI]

    Kleinhans, David

    2014-01-01

    With an increasing share of electric energy produced from non-dispatchable renewable sources both energy storage and demand side management might gain tremendously in importance. While there has been significant progress in general properties and technologies of energy storage, the systematic characterization of features particular to demand side management such as its intermittent, time-dependent potential seems to be lagging behind. As a consequence, the development of efficient and sustainable strategies for demand side management and its integration into large-scale energy system models are impeded. This work introduces a novel framework for a systematic time-resolved characterization of the potential for demand side management. It is based on the specification of individual devices both with respect to their scheduled demand and their potential of load shifting. On larger scales sector-specific profiles can straightforwardly be taken into account. The potential for demand side management is then specifie...

  4. Reduce Demand Rather than Increase Supply

    E-Print Network [OSTI]

    Shoup, Donald C.

    2006-01-01

    Assumptions Conservative Optimistic 1. In-lieu parking fee ($/parking space) (Mountain View) 2.Parking requirement (Palo Alto) (Mountain View) (

  5. Advanced Demand Responsive Lighting

    E-Print Network [OSTI]

    Advanced Demand Responsive Lighting Host: Francis Rubinstein Demand Response Research Center demand responsive lighting systems ­ Importance of dimming ­ New wireless controls technologies · Advanced Demand Responsive Lighting (commenced March 2007) #12;Objectives · Provide up-to-date information

  6. Manuscript submitted to Electricity Journal 6/2/2006 Steven Letendre Richard Perez

    E-Print Network [OSTI]

    Perez, Richard R.

    Manuscript submitted to Electricity Journal 6/2/2006 Steven Letendre Richard Perez The Prometheus of the U.S. electric grid has become increasingly complex as it has been called upon to accommodate growth in total electricity consumption of 75%, accompanied by an increase in non-coincident peak demand in excess

  7. Daylighting, dimming, and the electricity crisis in California

    SciTech Connect (OSTI)

    Rubinstein, Francis; Neils, Danielle; Colak, Nesrin

    2001-09-17

    Dimming controls for electric lighting have been one of the mainstays of the effort to use daylighting to reduce annual lighting energy consumption. The coincidence of daylighting with electric utility peak demand makes daylighting controls an effective strategy for reducing commercial building peak electric loads. During times of energy shortage, there is a greatly increased need to reduce electricity use during peak periods, both to ease the burden on electricity providers and to control the operating costs of buildings. The paper presents a typical commercial building electric demand profile during summer, and shows how daylighting-linked lighting controls and load shedding techniques can reduce lighting at precisely those times when electricity is most expensive. We look at the importance of dimming for increasing the reliability of the electricity grid in California and other states, as well as examine the potential cost-effectiveness of widespread use of daylighting to save energy and reduce monthly electricity bills.

  8. Increases in electric rates in rural areas. Hearing before the Committee on Agriculture, House of Representatives, Ninety-Sixth Congress, Second Session, June 4, 1980

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    Seven witnesses representing rural electric utilities and cooperatives spoke at a June 4, 1980 hearing to discuss which inflationary factors are increasing rural electric rates. The Committee recognized that the problem is not unique to rural systems. In their testimony, the witnesses noted increasing urbanization of rural areas; the cost of generating plant construction, fuel, and operating expenses; general economic factors of inflation and high interest rates; and regulations as major contributing factors to utility requests for rate increases. The hearing record includes their testimony, additional material submitted for the record, and responses to questions from the subcommittee. (DCK)

  9. 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply (Executive Summary)

    SciTech Connect (OSTI)

    None, None

    2008-12-01

    Executive summary of a report on the requirements needed to generate twenty percent of the nation's electricity from wind energy by the year 2030.

  10. The Potential Impact of Increased Renewable Energy Penetration Levels on Electricity Bill Savings From Residential Photovoltaic Systems

    E-Print Network [OSTI]

    Barbose, Galen

    2014-01-01

    ABORATORY The Potential Impact of Increased Renewable Energyemployer. The Potential Impact of Increased Renewable Energy

  11. CALIFORNIA ENERGY DEMAND 2014-2024 PRELIMINARY

    E-Print Network [OSTI]

    electricity and natural gas rates, and relatively low efficiency program and self: Electricity Demand by Utility Planning Area MAY 2013 CEC-200-2013-004-SD-V2 Sylvia Bender Deputy Director ELECTRICITY SUPPLY ANALYSIS DIVISION Robert P. Oglesby Executive

  12. Addressing Energy Demand through Demand Response. International Experiences and Practices

    SciTech Connect (OSTI)

    Shen, Bo; Ghatikar, Girish; Ni, Chun Chun; Dudley, Junqiao; Martin, Phil; Wikler, Greg

    2012-06-01

    Demand response (DR) is a load management tool which provides a cost-effective alternative to traditional supply-side solutions to address the growing demand during times of peak electrical load. According to the US Department of Energy (DOE), demand response reflects “changes in electric usage by end-use customers from their normal consumption patterns in response to changes in the price of electricity over time, or to incentive payments designed to induce lower electricity use at times of high wholesale market prices or when system reliability is jeopardized.” 1 The California Energy Commission (CEC) defines DR as “a reduction in customers’ electricity consumption over a given time interval relative to what would otherwise occur in response to a price signal, other financial incentives, or a reliability signal.” 2 This latter definition is perhaps most reflective of how DR is understood and implemented today in countries such as the US, Canada, and Australia where DR is primarily a dispatchable resource responding to signals from utilities, grid operators, and/or load aggregators (or DR providers).

  13. Marketing Demand-Side Management 

    E-Print Network [OSTI]

    O'Neill, M. L.

    1988-01-01

    Demand-Side Management is an organizational tool that has proven successful in various realms of the ever changing business world in the past few years. It combines the multi-faceted desires of the customers with the increasingly important...

  14. New coal plant technologies will demand more water

    SciTech Connect (OSTI)

    Peltier, R.; Shuster, E.; McNemar, A.; Stiegel, G.J.; Murphy, J.

    2008-04-15

    Population shifts, growing electricity demand, and greater competition for water resources have heightened interest in the link between energy and water. The US Energy Information Administration projects a 22% increase in US installed generating capacity by 2030. Of the 259 GE of new capacity expected to have come on-line by then, more than 192 GW will be thermoelectric and thus require some water for cooling. Our challenge will become balancing people's needs for power and for water. 1 ref., 7 figs.

  15. Enhancing Electrical Supply by Pumped Storage in Tidal Lagoons

    E-Print Network [OSTI]

    MacKay, David J.C.

    to demand into high­value demand­following power; and second, it can simultaneously serve as a tidal powerEnhancing Electrical Supply by Pumped Storage in Tidal Lagoons David J.C. MacKay Cavendish/3/07 Summary The principle that the net energy delivered by a tidal pool can be increased by pumping extra

  16. Reduces electric energy consumption

    E-Print Network [OSTI]

    BENEFITS · Reduces electric energy consumption · Reduces peak electric demand · Reduces natural gas consumption · Reduces nonhazardous solid waste and wastewater generation · Potential annual savings products for the automotive industry, electrical equipment, and miscellaneous other uses nationwide. ALCOA

  17. ASSESSMENT OF VARIABLE EFFECTS OF SYSTEMS WITH DEMAND RESPONSE RESOURCES

    E-Print Network [OSTI]

    Gross, George

    ASSESSMENT OF VARIABLE EFFECTS OF SYSTEMS WITH DEMAND RESPONSE RESOURCES BY ANUPAMA SUNIL KOWLI B of consumers - called demand response resources (DRRs) - whose role has become increasingly important

  18. Quantifying the Variable Effects of Systems with Demand Response Resources

    E-Print Network [OSTI]

    Gross, George

    Quantifying the Variable Effects of Systems with Demand Response Resources Anupama Kowli and George in the electricity industry. In particular, there is a new class of consumers, called demand response resources (DRRs

  19. Home Network Technologies and Automating Demand Response

    SciTech Connect (OSTI)

    McParland, Charles

    2009-12-01

    Over the past several years, interest in large-scale control of peak energy demand and total consumption has increased. While motivated by a number of factors, this interest has primarily been spurred on the demand side by the increasing cost of energy and, on the supply side by the limited ability of utilities to build sufficient electricity generation capacity to meet unrestrained future demand. To address peak electricity use Demand Response (DR) systems are being proposed to motivate reductions in electricity use through the use of price incentives. DR systems are also be design to shift or curtail energy demand at critical times when the generation, transmission, and distribution systems (i.e. the 'grid') are threatened with instabilities. To be effectively deployed on a large-scale, these proposed DR systems need to be automated. Automation will require robust and efficient data communications infrastructures across geographically dispersed markets. The present availability of widespread Internet connectivity and inexpensive, reliable computing hardware combined with the growing confidence in the capabilities of distributed, application-level communications protocols suggests that now is the time for designing and deploying practical systems. Centralized computer systems that are capable of providing continuous signals to automate customers reduction of power demand, are known as Demand Response Automation Servers (DRAS). The deployment of prototype DRAS systems has already begun - with most initial deployments targeting large commercial and industrial (C & I) customers. An examination of the current overall energy consumption by economic sector shows that the C & I market is responsible for roughly half of all energy consumption in the US. On a per customer basis, large C & I customers clearly have the most to offer - and to gain - by participating in DR programs to reduce peak demand. And, by concentrating on a small number of relatively sophisticated energy consumers, it has been possible to improve the DR 'state of the art' with a manageable commitment of technical resources on both the utility and consumer side. Although numerous C & I DR applications of a DRAS infrastructure are still in either prototype or early production phases, these early attempts at automating DR have been notably successful for both utilities and C & I customers. Several factors have strongly contributed to this success and will be discussed below. These successes have motivated utilities and regulators to look closely at how DR programs can be expanded to encompass the remaining (roughly) half of the state's energy load - the light commercial and, in numerical terms, the more important residential customer market. This survey examines technical issues facing the implementation of automated DR in the residential environment. In particular, we will look at the potential role of home automation networks in implementing wide-scale DR systems that communicate directly to individual residences.

  20. Demand Response and Energy Storage Integration Study

    Broader source: Energy.gov [DOE]

    This study is a multi-national laboratory effort to assess the potential value of demand response and energy storage to electricity systems with different penetration levels of variable renewable...

  1. Value of Demand Response -Introduction Klaus Skytte

    E-Print Network [OSTI]

    -of-supply and DR 15 minutes DaysHoursSeconds Adjustments of planned production Prognosis errors Excess capacity in demand to prices. Similar to Least-cost planning and demand-side management. DR differs by using prices: Curtailment of load, Direct load control, e.g. central control of electric comfort heating. Reservation prices

  2. The Potential Impact of Increased Renewable Energy Penetration Levels on Electricity Bill Savings From Residential Photovoltaic Systems

    E-Print Network [OSTI]

    Darghouth, Naim

    2014-01-01

    Impact of Increased Renewable Energy Penetration Levels onof Energy Efficiency and Renewable Energy (Solar EnergyImpact of Increased Renewable Energy Penetration Levels on

  3. ELECTRIC

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and Myers CoMadison -T: Designation ofSEPE.ELECTRIC

  4. Airline Pilot Demand Projections What this is-

    E-Print Network [OSTI]

    Bustamante, Fabián E.

    60 Mobile applications constantly demand additional memory, and traditional designs increase but also e-mail, Internet access, digital camera features, and video on demand. With feature expansion demanding additional storage and memory in all com- puting devices, DRAM and flash memory densities

  5. Precision On Demand: An Improvement in Probabilistic

    E-Print Network [OSTI]

    Precision On Demand: An Improvement in Probabilistic Hashing Igor Melatti, Robert Palmer approach Precision on Demand or POD). #12;This paper provides a scientific evaluation of the pros and cons time likely to increase by a factor of 1.8 or less. #12;Precision On Demand: An Improvement

  6. Precision On Demand: An Improvement in Probabilistic

    E-Print Network [OSTI]

    Precision On Demand: An Improvement in Probabilistic Hashing Igor Melatti, Robert Palmer approach Precision on Demand or POD). #12; This paper provides a scientific evaluation of the pros and cons time likely to increase by a factor of 1.8 or less. #12; Precision On Demand: An Improvement

  7. Abstract--The penetration of plug-in electric vehicles and renewable distributed generation is expected to increase over the

    E-Print Network [OSTI]

    Perreault, Dave

    1 Abstract--The penetration of plug-in electric vehicles and renewable distributed generation, power grids I. INTRODUCTION ROWING concern for climate change and energy security has renewed interest legislative effort to mandate, or incentivize, large scale integration of renewable energy resources

  8. Electricity pricing for conservation and load shifting

    SciTech Connect (OSTI)

    Orans, Ren; Woo, C.K.; Horii, Brian; Chait, Michele; DeBenedictis, Andrew

    2010-04-15

    The electricity industry is facing the challenge of increasing costs of reliably meeting demand growth and fully complying with legislative renewable portfolio standards and greenhouse gas reduction targets. However, an electric utility's existing tariffs often don't have rates that increase with consumption volume or vary by time of use, thus not fully exploiting the potential benefits from customer conservation and load shifting. (author)

  9. Near Optimal Demand-Side Energy Management Under Real-time Demand-Response Pricing

    E-Print Network [OSTI]

    Boutaba, Raouf

    1999 when abnormal hot weather combined with electricity generation shortage resulted in unheard management and is a major con- tributor of electric grid faults. Although peak demand happens very infrastructure (Figure 1): technology upgrade of the electric grid system, all-digital management infrastructure

  10. Modular machinery arrangement and its impact in early-stage naval electric ship design

    E-Print Network [OSTI]

    Jurkiewicz, David J. (David James)

    2012-01-01

    Electrical power demands for naval surface combatants are projected to rise with the development of increasingly complex and power intensive combat systems. This trend also coincides with the need of achieving maximum fuel ...

  11. Smart (In-home) Power Scheduling for Demand Response on the Smart Grid

    E-Print Network [OSTI]

    Yener, Aylin

    1 Smart (In-home) Power Scheduling for Demand Response on the Smart Grid Gang Xiong, Chen Chen consumption are part of demand response, which relies on varying price of electricity to reduce peak demand

  12. Development and Demonstration of the Open Automated Demand Response Standard for the Residential Sector

    E-Print Network [OSTI]

    Herter, Karen

    2014-01-01

    of the Open Automated Demand Response Standard for theOpen Automated Demand Response (OpenADR) Price Schedule Time3.3.2. General Electric Demand Response Module Figure 7. GE’

  13. Demand Response Valuation Frameworks Paper

    E-Print Network [OSTI]

    Heffner, Grayson

    2010-01-01

    benefits of Demand Side Management (DSM) are insufficient toefficiency, demand side management (DSM) cost effectivenessResearch Center Demand Side Management Demand Side Resources

  14. Optimization Based Data Mining Approah for Forecasting Real-Time Energy Demand

    SciTech Connect (OSTI)

    Omitaomu, Olufemi A; Li, Xueping; Zhou, Shengchao

    2015-01-01

    The worldwide concern over environmental degradation, increasing pressure on electric utility companies to meet peak energy demand, and the requirement to avoid purchasing power from the real-time energy market are motivating the utility companies to explore new approaches for forecasting energy demand. Until now, most approaches for forecasting energy demand rely on monthly electrical consumption data. The emergence of smart meters data is changing the data space for electric utility companies, and creating opportunities for utility companies to collect and analyze energy consumption data at a much finer temporal resolution of at least 15-minutes interval. While the data granularity provided by smart meters is important, there are still other challenges in forecasting energy demand; these challenges include lack of information about appliances usage and occupants behavior. Consequently, in this paper, we develop an optimization based data mining approach for forecasting real-time energy demand using smart meters data. The objective of our approach is to develop a robust estimation of energy demand without access to these other building and behavior data. Specifically, the forecasting problem is formulated as a quadratic programming problem and solved using the so-called support vector machine (SVM) technique in an online setting. The parameters of the SVM technique are optimized using simulated annealing approach. The proposed approach is applied to hourly smart meters data for several residential customers over several days.

  15. Climate control : smart thermostats, demand response, and energy efficiency in Austin, Texas

    E-Print Network [OSTI]

    Bowen, Brian (Brian Richard)

    2015-01-01

    Energy efficiency and demand response are critical resources for the transition to a cleaner electricity grid. Demand-side management programs can reduce electricity use during peak times when power is scarce and expensive, ...

  16. Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01

    home January and July weekday electricity and total heat (space + water heating) demand source:home January and July weekday electricity 7 and total heat (space + water heating) 8 demand source:

  17. Smoothing the Energy Consumption: Peak Demand Reduction in Smart Grid

    E-Print Network [OSTI]

    Li, Xiang-Yang

    % of the nation's total electricity consumption. Unfortunately, due to inefficient energy consumption patternSmoothing the Energy Consumption: Peak Demand Reduction in Smart Grid Shaojie Tang , Qiuyuan Huang of Software, TNLIST, Tsinghua University Department of Electrical & Computer Engineering, University

  18. AMI Communication Requirements to Implement Demand-Response: Applicability of Hybrid Spread Spectrum Wireless

    SciTech Connect (OSTI)

    Hadley, Mark D.; Clements, Samuel L.; Carroll, Thomas E.

    2011-09-30

    While holistically defining the smart grid is a challenge, one area of interest is demand-response. In 2009, the Department of Energy announced over $4 billion in grant and project funding for the Smart Grid. A significant amount of this funding was allotted to utilities for cost sharing projects to deploy Smart Grid technologies, many of whom have deployed and are deploying advanced metering infrastructure (AMI). AMI is an enabler to increase the efficiency of utilities and the bulk power grid. The bulk electrical system is unique in that it produces electricity as it is consumed. Most other industries have a delay between generation and consumption. This aspect of the power grid means that there must be enough generation capacity to meet the highest demand whereas other industries could over produce during off-peak times. This requires significant investment in generation capacity to cover the few days a year of peak consumption. Since bulk electrical storage doesn't yet exist at scale another way to curb the need for new peak period generation is through demand-response; that is to incentivize consumers (demand) to curtail (respond) electrical usage during peak periods. Of the various methods proposed for enabling demand-response, this paper will focus on the communication requirements for creating an energy market using transactional controls. More specifically, the paper will focus on the communication requirements needed to send the peak period notices and receive the response back from the consumers.

  19. Residential Demand Sector Data, Commercial Demand Sector Data, Industrial Demand Sector Data - Annual Energy Outlook 2006

    SciTech Connect (OSTI)

    2009-01-18

    Tables describing consumption and prices by sector and census division for 2006 - includes residential demand, commercial demand, and industrial demand

  20. Providing Reliability Services through Demand Response: A Prelimnary Evaluation of the Demand Response Capabilities of Alcoa Inc.

    SciTech Connect (OSTI)

    Starke, Michael R; Kirby, Brendan J; Kueck, John D; Todd, Duane; Caulfield, Michael; Helms, Brian

    2009-02-01

    Demand response is the largest underutilized reliability resource in North America. Historic demand response programs have focused on reducing overall electricity consumption (increasing efficiency) and shaving peaks but have not typically been used for immediate reliability response. Many of these programs have been successful but demand response remains a limited resource. The Federal Energy Regulatory Commission (FERC) report, 'Assessment of Demand Response and Advanced Metering' (FERC 2006) found that only five percent of customers are on some form of demand response program. Collectively they represent an estimated 37,000 MW of response potential. These programs reduce overall energy consumption, lower green house gas emissions by allowing fossil fuel generators to operate at increased efficiency and reduce stress on the power system during periods of peak loading. As the country continues to restructure energy markets with sophisticated marginal cost models that attempt to minimize total energy costs, the ability of demand response to create meaningful shifts in the supply and demand equations is critical to creating a sustainable and balanced economic response to energy issues. Restructured energy market prices are set by the cost of the next incremental unit of energy, so that as additional generation is brought into the market, the cost for the entire market increases. The benefit of demand response is that it reduces overall demand and shifts the entire market to a lower pricing level. This can be very effective in mitigating price volatility or scarcity pricing as the power system responds to changing demand schedules, loss of large generators, or loss of transmission. As a global producer of alumina, primary aluminum, and fabricated aluminum products, Alcoa Inc., has the capability to provide demand response services through its manufacturing facilities and uniquely through its aluminum smelting facilities. For a typical aluminum smelter, electric power accounts for 30% to 40% of the factory cost of producing primary aluminum. In the continental United States, Alcoa Inc. currently owns and/or operates ten aluminum smelters and many associated fabricating facilities with a combined average load of over 2,600 MW. This presents Alcoa Inc. with a significant opportunity to respond in areas where economic opportunities exist to help mitigate rising energy costs by supplying demand response services into the energy system. This report is organized into seven chapters. The first chapter is the introduction and discusses the intention of this report. The second chapter contains the background. In this chapter, topics include: the motivation for Alcoa to provide demand response; ancillary service definitions; the basics behind aluminum smelting; and a discussion of suggested ancillary services that would be particularly useful for Alcoa to supply. Chapter 3 is concerned with the independent system operator, the Midwest ISO. Here the discussion examines the evolving Midwest ISO market structure including specific definitions, requirements, and necessary components to provide ancillary services. This section is followed by information concerning the Midwest ISO's classifications of demand response parties. Chapter 4 investigates the available opportunities at Alcoa's Warrick facility. Chapter 5 involves an in-depth discussion of the regulation service that Alcoa's Warrick facility can provide and the current interactions with Midwest ISO. Chapter 6 reviews future plans and expectations for Alcoa providing ancillary services into the market. Last, chapter 7, details the conclusion and recommendations of this paper.

  1. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest

    E-Print Network [OSTI]

    Wiser, Ryan H

    2008-01-01

    value of re- newable electricity; and customer surveys ofCalifornia or Northwestern electricity demand. This may bebetween wind speed and electricity demand," Solar Energy,

  2. Feasible Café Standard Increases Using Emerging Diesel and Hybrid-Electric Technologies for Light-Duty Vehicles in the United States

    E-Print Network [OSTI]

    Burke, Andy; Abeles, Ethan

    2004-01-01

    USING EMERGING DIESEL AND HYBRID-ELECTRIC TECHNOLOGIES FORusing Emerging Diesel and Hybrid- Electric Technologies forusing Emerging Diesel and Hybrid- Electric Technologies for

  3. Feasible CAFE Standard Increases Using Emerging Diesel and Hybrid-Electric Technologies for Light-Duty Vehicles in the United States

    E-Print Network [OSTI]

    Burke, Andy; Abeles, Ethan C.

    2004-01-01

    USING EMERGING DIESEL AND HYBRID-ELECTRIC TECHNOLOGIES FORusing Emerging Diesel and Hybrid- Electric Technologies forusing Emerging Diesel and Hybrid- Electric Technologies for

  4. National Electric Transmission Congestion Studies | Department...

    Office of Environmental Management (EM)

    congestion where it is significant enough to merit remediation. These are: 1), reduce electricity demand in the congested area through energy efficiency and demand management...

  5. A First Look at the Impact of Electric Vehicle Charging on the Electric Grid in the EV Project

    SciTech Connect (OSTI)

    Stephen L. Schey; John G. Smart; Don R. Scoffield

    2012-05-01

    ECOtality was awarded a grant from the U.S. Department of Energy to lead a large-scale electric vehicle charging infrastructure demonstration, called The EV Project. ECOtality has partnered with Nissan North America, General Motors, the Idaho National Laboratory, and others to deploy and collect data from over 5,000 Nissan LEAFsTM and Chevrolet Volts and over 10,000 charging systems in 18 regions across the United States. This paper summarizes usage of residential charging units in The EV Project, based on data collected through the end of 2011. This information is provided to help analysts assess the impact on the electric grid of early adopter charging of grid-connected electric drive vehicles. A method of data aggregation was developed to summarize charging unit usage by the means of two metrics: charging availability and charging demand. Charging availability is plotted to show the percentage of charging units connected to a vehicle over time. Charging demand is plotted to show charging demand on the electric gird over time. Charging availability for residential charging units is similar in each EV Project region. It is low during the day, steadily increases in evening, and remains high at night. Charging demand, however, varies by region. Two EV Project regions were examined to identify regional differences. In Nashville, where EV Project participants do not have time-of-use electricity rates, demand increases each evening as charging availability increases, starting at about 16:00. Demand peaks in the 20:00 hour on weekdays. In San Francisco, where the majority of EV Project participants have the option of choosing a time-of-use rate plan from their electric utility, demand spikes at 00:00. This coincides with the beginning of the off-peak electricity rate period. Demand peaks at 01:00.

  6. Automated Demand Response Opportunities in Wastewater Treatment Facilities

    SciTech Connect (OSTI)

    Thompson, Lisa; Song, Katherine; Lekov, Alex; McKane, Aimee

    2008-11-19

    Wastewater treatment is an energy intensive process which, together with water treatment, comprises about three percent of U.S. annual energy use. Yet, since wastewater treatment facilities are often peripheral to major electricity-using industries, they are frequently an overlooked area for automated demand response opportunities. Demand response is a set of actions taken to reduce electric loads when contingencies, such as emergencies or congestion, occur that threaten supply-demand balance, and/or market conditions occur that raise electric supply costs. Demand response programs are designed to improve the reliability of the electric grid and to lower the use of electricity during peak times to reduce the total system costs. Open automated demand response is a set of continuous, open communication signals and systems provided over the Internet to allow facilities to automate their demand response activities without the need for manual actions. Automated demand response strategies can be implemented as an enhanced use of upgraded equipment and facility control strategies installed as energy efficiency measures. Conversely, installation of controls to support automated demand response may result in improved energy efficiency through real-time access to operational data. This paper argues that the implementation of energy efficiency opportunities in wastewater treatment facilities creates a base for achieving successful demand reductions. This paper characterizes energy use and the state of demand response readiness in wastewater treatment facilities and outlines automated demand response opportunities.

  7. Adaptive Demand Response: Online Learning of Restless and Controlled Bandits

    E-Print Network [OSTI]

    Liu, Mingyan

    Adaptive Demand Response: Online Learning of Restless and Controlled Bandits Qingsi Wang, Mingyan realized curtailment, not the curtailment of each load. We develop an adaptive demand response learning like UCB1. I. INTRODUCTION Electric loads participating in demand response programs provide a variety

  8. Opportunities and Challenges for Data Center Demand Response

    E-Print Network [OSTI]

    Low, Steven H.

    Opportunities and Challenges for Data Center Demand Response Adam Wierman Zhenhua Liu Iris Liu of renewable energy into the grid as well as electric power peak-load shaving: data center demand response. Data center demand response sits at the intersection of two growing fields: energy efficient data

  9. A Successful Implementation with the Smart Grid: Demand Response Resources

    E-Print Network [OSTI]

    Gross, George

    1 A Successful Implementation with the Smart Grid: Demand Response Resources Contribution of intelligent line switching, demand response resources (DRRs), FACTS devices and PMUs is key in the smart grid events as a result of voluntary load curtailments. Index Terms--Electricity Markets, Demand Response re

  10. Demand Response Providing Ancillary A Comparison of Opportunities and

    E-Print Network [OSTI]

    LBNL-5958E Demand Response Providing Ancillary Services A Comparison of Opportunities Government or any agency thereof or The Regents of the University of California. #12;Demand Response System Reliability, Demand Response (DR), Electricity Markets, Smart Grid Abstract Interest in using

  11. An Integrated Architecture for Demand Response Communications and Control

    E-Print Network [OSTI]

    Gross, George

    An Integrated Architecture for Demand Response Communications and Control Michael LeMay, Rajesh for the MGA and ZigBee wireless communications. Index Terms Demand Response, Advanced Meter Infrastructure. In principle this can be done with demand response techniques in which electricity users take measures

  12. Towards Continuous Policy-driven Demand Response in Data Centers

    E-Print Network [OSTI]

    Shenoy, Prashant

    Towards Continuous Policy-driven Demand Response in Data Centers David Irwin, Navin Sharma, and Prashant Shenoy University of Massachusetts, Amherst {irwin,nksharma,shenoy}@cs.umass.edu ABSTRACT Demand response (DR) is a technique for balancing electricity sup- ply and demand by regulating power consumption

  13. Management of Power Demand through Operations of Building Systems 

    E-Print Network [OSTI]

    ElSherbini, A. I.; Maheshwari, G.; Al-Naqib, D.; Al-Mulla, A.

    2009-01-01

    In hot summers, the demand for electrical power is dominated by the requirements of the air-conditioning and lighting systems. Such systems account for more than 80% of the peak electrical demand in Kuwait. A study was conducted to explore...

  14. Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation

    E-Print Network [OSTI]

    Komiyama, Ryoichi

    2010-01-01

    In the residential and commercial sectors, oil demand willthe residential and commercial sectors, electricity demandwater heating demand in the residential sector. At present,

  15. DEMAND INTERPROCEDURAL PROGRAM ANALYSIS

    E-Print Network [OSTI]

    Reps, Thomas W.

    1 DEMAND INTERPROCEDURAL PROGRAM ANALYSIS USING LOGIC DATABASES Thomas W. Reps Computer Sciences@cs.wisc.edu ABSTRACT This paper describes how algorithms for demand versions of inerprocedural program­ analysis for all elements of the program. This paper concerns the solution of demand versions of interprocedural

  16. Demand Response Assessment INTRODUCTION

    E-Print Network [OSTI]

    Demand Response Assessment INTRODUCTION This appendix provides more detail on some of the topics raised in Chapter 4, "Demand Response" of the body of the Plan. These topics include 1. The features, advantages and disadvantages of the main options for stimulating demand response (price mechanisms

  17. Behavioral Aspects in Simulating the Future US Building Energy Demand

    E-Print Network [OSTI]

    Stadler, Michael

    2011-01-01

    increase to parameter Natural gas price Electricity priceparameter GDP Population Natural gas price Electricity pricethe elasticities of Natural gas price this Electricity price

  18. Demand Controlled Ventilation and Classroom Ventilation

    E-Print Network [OSTI]

    Fisk, William J.

    2014-01-01

    columns indicate the energy and cost savings for  demand class size.   (The energy costs  of classroom ventilation $6.2 M in increased energy costs.   Further VR  increases 

  19. Opportunities for Automated Demand Response in Wastewater Treatment Facilities in California - Southeast Water Pollution Control Plant Case Study

    SciTech Connect (OSTI)

    Olsen, Daniel; Goli, Sasank; Faulkner, David; McKane, Aimee

    2012-12-20

    This report details a study into the demand response potential of a large wastewater treatment facility in San Francisco. Previous research had identified wastewater treatment facilities as good candidates for demand response and automated demand response, and this study was conducted to investigate facility attributes that are conducive to demand response or which hinder its implementation. One years' worth of operational data were collected from the facility's control system, submetered process equipment, utility electricity demand records, and governmental weather stations. These data were analyzed to determine factors which affected facility power demand and demand response capabilities The average baseline demand at the Southeast facility was approximately 4 MW. During the rainy season (October-March) the facility treated 40% more wastewater than the dry season, but demand only increased by 4%. Submetering of the facility's lift pumps and centrifuges predicted load shifts capabilities of 154 kW and 86 kW, respectively, with large lift pump shifts in the rainy season. Analysis of demand data during maintenance events confirmed the magnitude of these possible load shifts, and indicated other areas of the facility with demand response potential. Load sheds were seen to be possible by shutting down a portion of the facility's aeration trains (average shed of 132 kW). Load shifts were seen to be possible by shifting operation of centrifuges, the gravity belt thickener, lift pumps, and external pump stations These load shifts were made possible by the storage capabilities of the facility and of the city's sewer system. Large load reductions (an average of 2,065 kW) were seen from operating the cogeneration unit, but normal practice is continuous operation, precluding its use for demand response. The study also identified potential demand response opportunities that warrant further study: modulating variable-demand aeration loads, shifting operation of sludge-processing equipment besides centrifuges, and utilizing schedulable self-generation.

  20. Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards"Top-Runner Approach"

    SciTech Connect (OSTI)

    Lacommare, Kristina S H; Komiyama, Ryoichi; Marnay, Chris

    2008-05-15

    As one of the measures to achieve the reduction in greenhouse gas emissions agreed to in the"Kyoto Protocol," an institutional scheme for determining energy efficiency standards for energy-consuming appliances, called the"Top-Runner Approach," was developed by the Japanese government. Its goal is to strengthen the legal underpinnings of various energy conservation measures. Particularly in Japan's residential sector, where energy demand has grown vigorously so far, this efficiency standard is expected to play a key role in mitigating both energy demand growth and the associated CO2 emissions. This paper presents an outlook of Japan's residential energy demand, developed by a stochastic econometric model for the purpose of analyzing the impacts of the Japan's energy efficiency standards, as well as the future stochastic behavior of income growth, demography, energy prices, and climate on the future energy demand growth to 2030. In this analysis, we attempt to explicitly take into consideration more than 30 kinds of electricity uses, heating, cooling and hot water appliances in order to comprehensively capture the progress of energy efficiency in residential energy end-use equipment. Since electricity demand, is projected to exhibit astonishing growth in Japan's residential sector due to universal increasing ownership of electric and other appliances, it is important to implement an elaborate efficiency standards policy for these appliances.

  1. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01

    DECC aggregator managed portfolio automated demand responseaggregator designs their own programs, and offers demand responseaggregator is responsible for designing and implementing their own demand response

  2. Northwest Open Automated Demand Response Technology Demonstration Project

    SciTech Connect (OSTI)

    Kiliccote, Sila; Piette, Mary Ann; Dudley, Junqiao

    2010-03-17

    The Lawrence Berkeley National Laboratory (LBNL) Demand Response Research Center (DRRC) demonstrated and evaluated open automated demand response (OpenADR) communication infrastructure to reduce winter morning and summer afternoon peak electricity demand in commercial buildings the Seattle area. LBNL performed this demonstration for the Bonneville Power Administration (BPA) in the Seattle City Light (SCL) service territory at five sites: Seattle Municipal Tower, Seattle University, McKinstry, and two Target stores. This report describes the process and results of the demonstration. OpenADR is an information exchange model that uses a client-server architecture to automate demand-response (DR) programs. These field tests evaluated the feasibility of deploying fully automated DR during both winter and summer peak periods. DR savings were evaluated for several building systems and control strategies. This project studied DR during hot summer afternoons and cold winter mornings, both periods when electricity demand is typically high. This is the DRRC project team's first experience using automation for year-round DR resources and evaluating the flexibility of commercial buildings end-use loads to participate in DR in dual-peaking climates. The lessons learned contribute to understanding end-use loads that are suitable for dispatch at different times of the year. The project was funded by BPA and SCL. BPA is a U.S. Department of Energy agency headquartered in Portland, Oregon and serving the Pacific Northwest. BPA operates an electricity transmission system and markets wholesale electrical power at cost from federal dams, one non-federal nuclear plant, and other non-federal hydroelectric and wind energy generation facilities. Created by the citizens of Seattle in 1902, SCL is the second-largest municipal utility in America. SCL purchases approximately 40% of its electricity and the majority of its transmission from BPA through a preference contract. SCL also provides ancillary services within its own balancing authority. The relationship between BPA and SCL creates a unique opportunity to create DR programs that address both BPA's and SCL's markets simultaneously. Although simultaneously addressing both market could significantly increase the value of DR programs for BPA, SCL, and the end user, establishing program parameters that maximize this value is challenging because of complex contractual arrangements and the absence of a central Independent System Operator or Regional Transmission Organization in the northwest.

  3. Adaptive Caching for Demand Prepaging Scott F. Kaplan

    E-Print Network [OSTI]

    Kaplan, Scott

    Bottleneck Links, Variable Demand, and the Tragedy of the Commons Richard Cole£ Yevgeniy DodisÝ Tim demand to resources whose performance degrades with increasing congestion. While fundamental of a resource and the demand for that resource. This coupling motivates allowing demand to vary with congestion

  4. Bottleneck Links, Variable Demand, and the Tragedy of the Commons

    E-Print Network [OSTI]

    Dodis, Yevgeniy

    Bottleneck Links, Variable Demand, and the Tragedy of the Commons Richard Cole #3; Yevgeniy Dodis y a fixed demand to resources whose performance degrades with increasing congestion. While fundamental of a resource and the demand for that resource. This coupling motivates allowing demand to vary with congestion

  5. A Simulation Study of Demand Responsive Transit System Design

    E-Print Network [OSTI]

    Dessouky, Maged

    A Simulation Study of Demand Responsive Transit System Design Luca Quadrifoglio, Maged M. Dessouky changed the landscape for demand responsive transit systems. First, the demand for this type of transit experiencing increased usage for demand responsive transit systems. The National Transit Summaries and Trends

  6. Hawaiian Electric Company Demand Response Roadmap Project

    E-Print Network [OSTI]

    Levy, Roger

    2014-01-01

    in support of the Hawaii Clean Energy Initiative (HCEI) 70%and integrate HECO, Hawaii Clean Energy Initiative (HCEI),2008 the Hawaii Clean Energy Initiative (HCEI) established a

  7. SUMMER 2006 ELECTRICITY SUPPLY AND DEMAND OUTLOOK

    E-Print Network [OSTI]

    (Average Forced and Planned)............................................ 15 Line 11: Zonal Transmission ............................................................................. 16 Line 14: High Zonal Transmission Limitation ................................................... 16, contractors, and subcontractors make no warrant, express or implied, and assume no legal liability

  8. Hawaiian Electric Company Demand Response Roadmap Project

    E-Print Network [OSTI]

    Levy, Roger

    2014-01-01

    potential as-available renewable over generation issues,examining many of the roadmap renewable integration options.integration of significant renewable resources into the HECO

  9. Hawaiian Electric Company Demand Response Roadmap Project

    E-Print Network [OSTI]

    Levy, Roger

    2014-01-01

    target residential water heaters and air conditioners usingStrategies for Water Heaters and Air Conditioners Voluntaryor snapback of load. Water heaters and air conditioners have

  10. Implications of Low Electricity Demand Growth

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets See full Hydrocarbon Gas2Implications

  11. Turkey's energy demand and supply

    SciTech Connect (OSTI)

    Balat, M. [Sila Science, Trabzon (Turkey)

    2009-07-01

    The aim of the present article is to investigate Turkey's energy demand and the contribution of domestic energy sources to energy consumption. Turkey, the 17th largest economy in the world, is an emerging country with a buoyant economy challenged by a growing demand for energy. Turkey's energy consumption has grown and will continue to grow along with its economy. Turkey's energy consumption is high, but its domestic primary energy sources are oil and natural gas reserves and their production is low. Total primary energy production met about 27% of the total primary energy demand in 2005. Oil has the biggest share in total primary energy consumption. Lignite has the biggest share in Turkey's primary energy production at 45%. Domestic production should be to be nearly doubled by 2010, mainly in coal (lignite), which, at present, accounts for almost half of the total energy production. The hydropower should also increase two-fold over the same period.

  12. Modeling Framework and Validation of a Smart Grid and Demand Response System for Wind Power Integration

    SciTech Connect (OSTI)

    Broeer, Torsten; Fuller, Jason C.; Tuffner, Francis K.; Chassin, David P.; Djilali, Ned

    2014-01-31

    Electricity generation from wind power and other renewable energy sources is increasing, and their variability introduces new challenges to the power system. The emergence of smart grid technologies in recent years has seen a paradigm shift in redefining the electrical system of the future, in which controlled response of the demand side is used to balance fluctuations and intermittencies from the generation side. This paper presents a modeling framework for an integrated electricity system where loads become an additional resource. The agent-based model represents a smart grid power system integrating generators, transmission, distribution, loads and market. The model incorporates generator and load controllers, allowing suppliers and demanders to bid into a Real-Time Pricing (RTP) electricity market. The modeling framework is applied to represent a physical demonstration project conducted on the Olympic Peninsula, Washington, USA, and validation simulations are performed using actual dynamic data. Wind power is then introduced into the power generation mix illustrating the potential of demand response to mitigate the impact of wind power variability, primarily through thermostatically controlled loads. The results also indicate that effective implementation of Demand Response (DR) to assist integration of variable renewable energy resources requires a diversity of loads to ensure functionality of the overall system.

  13. Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Heffner, Reid R.; Kurani, Ken; Turrentine, Tom

    2005-01-01

    of Vehicle Image in Gasoline-Hybrid Electric Vehicles Reidof Vehicle Image in Gasoline-Hybrid Electric Vehicles Reidhigh demand for gasoline-hybrid electric vehicles (HEVs)?

  14. Hydrogen and electricity: Parallels, interactions,and convergence

    E-Print Network [OSTI]

    Yang, Christopher

    2008-01-01

    impacts of marginal electricity demand for CA hydrogenUS DOE, 2007. EIA. Electricity data. [cited 2007 March 2,F. Decarbonized hydrogen and electricity from natural gas.

  15. Renewable Electricity Futures Study

    E-Print Network [OSTI]

    Renewable Electricity Futures Study End-use Electricity Demand Volume 3 of 4 Volume 2 PDF Volume 3;Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Energy Laboratory Baldwin, S. U Sandor, D. National Renewable Energy Laboratory Suggested Citations Renewable Electricity Futures Study

  16. Automated Demand Response and Commissioning

    E-Print Network [OSTI]

    Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

    2005-01-01

    Fully-Automated Demand Response Test in Large Facilities14in DR systems. Demand Response using HVAC in Commercialof Fully Automated Demand Response in Large Facilities”

  17. Demand Response Spinning Reserve Demonstration

    E-Print Network [OSTI]

    2007-01-01

    F) Enhanced ACP Date RAA ACP Demand Response – SpinningReserve Demonstration Demand Response – Spinning Reservesupply spinning reserve. Demand Response – Spinning Reserve

  18. Demand Response Programs for Oregon

    E-Print Network [OSTI]

    Demand Response Programs for Oregon Utilities Public Utility Commission May 2003 Public Utility ....................................................................................................................... 1 Types of Demand Response Programs............................................................................ 3 Demand Response Programs in Oregon

  19. Cogeneration System Size Optimization Constant Capacity and Constant Demand Models 

    E-Print Network [OSTI]

    Wong-Kcomt, J. B.; Turner, W. C.

    1993-01-01

    is made up by auxiliary boilers. 2. Isolated Operation, Thermal Load Following: the system is sized to match or exceed the maximum thermal load. Any electrical load deficit is made up by auxiliary generator. 3. Electrically Baseloaded, the system... is sized to meet - or slightly exceed the minimum electrical demand. 4. Thermally Baseloaded, the system is sized to meet - or slightly exceed the minimum thermal demand. 5. Maximum Legal System Size, as determined by the Public Utilities...

  20. Electricity Bill Savings from Residential Photovoltaic Systems: Sensitivities to Changes in Future Electricity Market Conditions

    E-Print Network [OSTI]

    Darghouth, Naim

    2014-01-01

    Mix High Storage Demand Response Increased CSP / decreased2011. Mass Market Demand Response and Variable GenerationMix With Short-Term Demand Response and Wind Penetration.

  1. Dynamics of Electricity Markets with Unknown Utility Functions: An Extremum Seeking Control Approach

    E-Print Network [OSTI]

    Ma, Kai; Hu, Guoqiang; Spanos, Costas J

    2014-01-01

    of demand response in electricity markets,” Electric Powerthe dynamics of electricity markets with unknown utilityvolatility in the electricity markets and consider more

  2. Energy Department - Electric Power Research Institute Cooperation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    response, and smart grid technologies aimed at helping meet the nation's rapidly growing demand for electricity," Kevin M. Kolevar, DOE's Assistant Secretary for Electricity...

  3. Puget Sound area electric reliability plan. Draft environmental impact statement

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    The Puget Sound Area Electric Reliability Plan Draft Environmental Impact Statement (DEIS) identifies the alternatives for solving a power system problem in the Puget Sound area. This Plan is undertaken by Bonneville Power Administration (BPA), Puget Sound Power & Light, Seattle City Light, Snohomish Public Utility District No. 1 (PUD), and Tacoma Public Utilities. The Plan consists of potential actions in Puget Sound and other areas in the State of Washington. A specific need exists in the Puget Sound area for balance between east-west transmission capacity and the increasing demand to import power generated east of the Cascades. At certain times of the year, there is more demand for power than the electric system can supply in the Puget Sound area. This high demand, called peak demand, occurs during the winter months when unusually cold weather increases electricity use for heating. The existing power system can supply enough power if no emergencies occur. However, during emergencies, the system will not operate properly. As demand grows, the system becomes more strained. To meet demand, the rate of growth of demand must be reduced or the ability to serve the demand must be increased, or both. The plan to balance Puget Sound`s power demand and supply has these purposes: The plan should define a set of actions that would accommodate ten years of load growth (1994--2003). Federal and State environmental quality requirements should be met. The plan should be consistent with the plans of the Northwest Power Planning Council. The plan should serve as a consensus guideline for coordinated utility action. The plan should be flexible to accommodate uncertainties and differing utility needs. The plan should balance environmental impacts and economic costs. The plan should provide electric system reliability consistent with customer expectations. 29 figs., 24 tabs.

  4. Puget Sound Area Electric Reliability Plan : Draft Environmental Impact State.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1991-09-01

    The Puget Sound Area Electric Reliability Plan Draft Environmental Impact Statement (DEIS) identifies the alternatives for solving a power system problem in the Puget Sound area. This Plan is undertaken by Bonneville Power Administration (BPA), Puget Sound Power Light, Seattle City Light, Snohomish Public Utility District No. 1 (PUD), and Tacoma Public Utilities. The Plan consists of potential actions in Puget Sound and other areas in the State of Washington. A specific need exists in the Puget Sound area for balance between east-west transmission capacity and the increasing demand to import power generated east of the Cascades. At certain times of the year, there is more demand for power than the electric system can supply in the Puget Sound area. This high demand, called peak demand, occurs during the winter months when unusually cold weather increases electricity use for heating. The existing power system can supply enough power if no emergencies occur. However, during emergencies, the system will not operate properly. As demand grows, the system becomes more strained. To meet demand, the rate of growth of demand must be reduced or the ability to serve the demand must be increased, or both. The plan to balance Puget Sound's power demand and supply has these purposes: The plan should define a set of actions that would accommodate ten years of load growth (1994--2003). Federal and State environmental quality requirements should be met. The plan should be consistent with the plans of the Northwest Power Planning Council. The plan should serve as a consensus guideline for coordinated utility action. The plan should be flexible to accommodate uncertainties and differing utility needs. The plan should balance environmental impacts and economic costs. The plan should provide electric system reliability consistent with customer expectations. 29 figs., 24 tabs.

  5. Exponential Demand Simulation Tool

    E-Print Network [OSTI]

    Reed, Derek D.

    2015-05-15

    Operant behavioral economics investigates the relation between environmental constraint and reinforcer consumption. The standard approach to quantifying this relation is through the use of behavioral economic demand curves. ...

  6. Electrical power systems (Guatemala). Electric power generation and distribution equipment, March 1991. Export trade information

    SciTech Connect (OSTI)

    Not Available

    1991-03-01

    The article analyzes the electrical power generation and distribution equipment market in Guatemala and contains the following subtopics: market assessment, competitive situation, market access, trade promotion opportunities, best sales prospects, and statistical data. The total market demand of electrical power generation and distribution equipment and materials in Guatemala increased from US $19.0 million in 1987 to $24.8 million in 1988 (30.5 percent).

  7. Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California

    SciTech Connect (OSTI)

    Lekov, Alex; Thompson, Lisa; McKane, Aimee; Rockoff, Alexandra; Piette, Mary Ann

    2009-05-11

    This report summarizes the Lawrence Berkeley National Laboratory's research to date in characterizing energy efficiency and open automated demand response opportunities for industrial refrigerated warehouses in California. The report describes refrigerated warehouses characteristics, energy use and demand, and control systems. It also discusses energy efficiency and open automated demand response opportunities and provides analysis results from three demand response studies. In addition, several energy efficiency, load management, and demand response case studies are provided for refrigerated warehouses. This study shows that refrigerated warehouses can be excellent candidates for open automated demand response and that facilities which have implemented energy efficiency measures and have centralized control systems are well-suited to shift or shed electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. Control technologies installed for energy efficiency and load management purposes can often be adapted for open automated demand response (OpenADR) at little additional cost. These improved controls may prepare facilities to be more receptive to OpenADR due to both increased confidence in the opportunities for controlling energy cost/use and access to the real-time data.

  8. Energy and Demand Savings from Implementation Costs in Industrial Facilities 

    E-Print Network [OSTI]

    Razinha, J. A.; Heffington, W. M.

    2000-01-01

    Electrical Fees EF Electricity E1 Natural Gas E2 L.P.G. E3 #1 Fuel Oil E4 #2 Fuel Oil E5 #4 Fuel Oil E6 #6 Fuel Oil E7 Coal E8 Wood E9 Paper E10 Other Gas E11 Other Energy E12 ESL-IE-00-04-17 Proceedings from the Twenty-second National..., electrical consumption, demand and fees were tracked separately. The remaining data include only one energy stream (e.g., natural gas) in each code [6]. Table 1. Energy Streams STREAM CODE Electrical Consumption EC Electrical Demand ED Other...

  9. Electrical and Production Load Factors 

    E-Print Network [OSTI]

    Sen, Tapajyoti

    2010-07-14

    Load factors are an important simplification of electrical energy use data and depend on the ratio of average demand to peak demand. Based on operating hours of a facility they serve as an important benchmarking tool for the industrial sector...

  10. Progress toward Producing Demand-Response-Ready Appliances

    SciTech Connect (OSTI)

    Hammerstrom, Donald J.; Sastry, Chellury

    2009-12-01

    This report summarizes several historical and ongoing efforts to make small electrical demand-side devices like home appliances more responsive to the dynamic needs of electric power grids. Whereas the utility community often reserves the word demand response for infrequent 2 to 6 hour curtailments that reduce total electrical system peak load, other beneficial responses and ancillary services that may be provided by responsive electrical demand are of interest. Historically, demand responses from the demand side have been obtained by applying external, retrofitted, controlled switches to existing electrical demand. This report is directed instead toward those manufactured products, including appliances, that are able to provide demand responses as soon as they are purchased and that require few, or no, after-market modifications to make them responsive to needs of power grids. Efforts to be summarized include Open Automated Demand Response, the Association of Home Appliance Manufacturer standard CHA 1, a simple interface being developed by the U-SNAP Alliance, various emerging autonomous responses, and the recent PinBus interface that was developed at Pacific Northwest National Laboratory.

  11. Supplementary Information Potential for Electricity Generation from Renewable Resources and Levelized Cost of Electricity (LCOE)

    E-Print Network [OSTI]

    Suo, Zhigang

    Supplementary Information Potential for Electricity Generation from Renewable Resources and Levelized Cost of Electricity (LCOE) Electrical energy can be generated from renewable resources the potential to meet the worldwide demand of electricity and they contribute to the total generation

  12. Recouping Energy Costs from Cloud Tenants: Tenant Demand Response Aware Pricing Design

    E-Print Network [OSTI]

    Giles, C. Lee

    Recouping Energy Costs from Cloud Tenants: Tenant Demand Response Aware Pricing Design Cheng Wang. The poor predictability of real-world tenants' demand and demand responses (DRs) make such pricing design Cloud Tenant; Pricing Design; Game; Demand Response 1. INTRODUCTION The electric utility bills of data

  13. An MILP Formulation for Load-Side Demand Control Zhonghui Luo, Ratnesh Kumar*

    E-Print Network [OSTI]

    Kumar, Ratnesh

    their operations prone to high demand charges. In fact, demand control has been used in residential power systemsAn MILP Formulation for Load-Side Demand Control Zhonghui Luo, Ratnesh Kumar* , Joseph Sottile linear programming formulation for load-side control of electrical energy demand. The formulation

  14. A Truthful Incentive Mechanism for Emergency Demand Response in Colocation Data Centers

    E-Print Network [OSTI]

    Li, Zongpeng

    A Truthful Incentive Mechanism for Emergency Demand Response in Colocation Data Centers Linquan--Data centers are key participants in demand re- sponse programs, including emergency demand response (EDR grids, demand response programs are adopted in many countries for exploiting flexibility of electricity

  15. POWERTECH 2009, JUNE 28 -JULY 2, 2009, BUCHAREST, ROMANIA 1 Incorporation of Demand Response Resources in

    E-Print Network [OSTI]

    Gross, George

    POWERTECH 2009, JUNE 28 - JULY 2, 2009, BUCHAREST, ROMANIA 1 Incorporation of Demand Response, IEEE, Abstract--The use of demand-side resources, in general, and demand response resources (DRRs concerns. Integration of demand response resources in the competitive electricity markets impacts resource

  16. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01

    the month of August. Hourly generation from a Vestas 47 660and follow fixed hourly generation profiles that arein Section 3.2.7. Hourly generation from must-run plants,

  17. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01

    Biomass Geothermal Small Hydro Solar Wind Statewide CA-N CA-with a relatively small hydro resource require additionaldairy Photovoltaic Parabolic Small hydro Wind Hydro 1 Steam

  18. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01

    lower costs than technology available today, a “smart grid”smart grid,” lead consumers to recharge their vehicles when generating costs

  19. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01

    Photovoltaic Parabolic Small hydro Wind Hydro 1 Steam turbine and conventional hydro costs estimated from [144] Natural gas price

  20. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01

    turbine NGST Natural gas steam turbine NWPP Northwest Powerfrom natural gas steam turbine (NGST) and natural gasNGST = Natural gas steam turbine; NWPP = Northwest Power

  1. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01

    2007) Concentrating Solar Power (CSP) Resources, Cost, andfraction of solar generation have higher costs, since theconsidered here. The costs of additional solar capacity, and

  2. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01

    and neighboring states. Hydro power facilities may operatecapacity of nuclear and hydro power is likely to be more awhere low-cost coal and hydro power supply a majority of

  3. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01

    generator in California Power Plant Generating Costsplants in California and 1195 power plants collectively inbe banned in California, and they those power plants are not

  4. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01

    gas turbine versus steam turbine, for example), and whether the facility is a combined heat and power plant (

  5. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01

    103 Figure 52. Relative solar thermal generation foris obscured. Future solar thermal power plants may have theThe SEGS facility is a solar thermal facility that can be

  6. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01

    California, 2006. Resource Type Coal Large Hydro Natural GasSW SW SW SW SW SW SW Plant type Coal Hydro Nuclear Coal Coalaccording to power plant type. Coal-fired power plants

  7. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01

    Wind Energy Systems, Environmental Science & Technology, 39(Wind and Solar Resources on Transmission Reliability, CEC-500-2007-081-APA, California Energy Commission, PIER Renewable Energy Technologies

  8. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01

    wind energy: modeling the competition between gas turbinesunit of energy were supplied by new wind turbines, biomass,A Wind turbine rotor-swept area (m 2 ) AEO Annual Energy

  9. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01

    24. Renewable and nuclear power plant cost characteristics25. Assumed capacity factors of renewable and nuclear power2003) The Future of Nuclear Power: An Interdisciplinary MIT

  10. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01

    IGCC Integrated gasification combined cycle IID ImperialCorporation NGCC Natural gas combined-cycle NGCT Natural gas79% from natural gas combined cycle (NGCC) power plants, and

  11. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01

    outlaws new conventional coal-fired power plants fromutilities from utilizing coal-fired generation from existingpathway, rather than coal- fired power plants. This partly

  12. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01

    those from the average coal power plant illustrated in thenew, conventional coal power plants from serving Californiawhen nuclear and coal power plants retire after 2020 and

  13. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01

    109 Figure 57. Assumed natural gas and coal prices in LEDGE-in Figure 57. The coal price stays relatively constantAssumed natural gas and coal prices in LEDGE-CA [152]. It

  14. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01

    competition between gas turbines and compressed air energyby fuel type, prime mover (gas turbine versus steam turbine,cycle NGCT Natural gas combustion turbine NGST Natural gas

  15. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01

    natural gas price .Figure 84. Effects of natural gas prices on screening curvesICE Month Ahead Natural Gas Price Report, Intercontinental

  16. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01

    How do alternative vehicle emissions compare on a well-to-1970s it established vehicle emissions and building energyplatforms. Well-to-wheels vehicle emissions rates (gCO 2 /

  17. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01

    Among the heavy-renewable cases, Solar-heavy requires theExcept for with Wind/Solar renewable mix, all new fossilheavy, or Wind/Solar renewable cases. Despite contributing

  18. Summary of Second AEO 2014 Electricity Working Group Meeting

    U.S. Energy Information Administration (EIA) Indexed Site

    a single release that year. 6. A participant wanted to know if the 1% annual growth in electricity demand throughout the forecast incorporated demand response. Staff responded...

  19. Utility rebates for efficient motors -- The outlook for demand-side management

    SciTech Connect (OSTI)

    Nailen, R.L.

    1997-01-01

    Since 1987, many electric utilities throughout North America have been actively promoting demand-side management (DSM), the attempt to conserve fuels and postpone costly generating capacity increases by encouraging customers to use more efficient electrical equipment, including motors. One popular DSM program has been utility payment of cash rebates to purchasers of more efficient motors. Today, such payments face extinction in a rapidly changing utility economic climate based on deregulation. How rebates originated, the basis for such payments, how successful rebate programs have been, and what the future holds for them are the subjects of this paper.

  20. Utility rebates for efficient motors -- The outlook for demand-side management

    SciTech Connect (OSTI)

    Nailen, R.L.

    1995-12-31

    Since 1987, many electric utilities throughout North America have been actively promoting DSM--demand-side management, the attempt to conserve fuels and postpone costly generating capacity increases by encouraging customers to use more efficient electrical equipment, including motors. One popular DSM program has been utility payment of cash rebates to purchasers of more efficient motors. Today, such payments face extinction in a rapidly changing utility economic climate based on deregulation. How rebates originated, the basis for such payments, how successful rebate programs have been, and what the future holds for them--these are the subjects of this paper.

  1. Demand and Price Uncertainty: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2013-01-01

    World crude oil and natural gas: a demand and supply model.analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.

  2. Demand and Price Volatility: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2011-01-01

    World crude oil and natural gas: a demand and supply model.analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.

  3. Demand and Price Volatility: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2011-01-01

    H. , and James M. Gri¢ n. 1983. Gasoline demand in the OECDof dynamic demand for gasoline. Journal of Econometrics 77(An empirical analysis of gasoline demand in Denmark using

  4. Demand and Price Volatility: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2011-01-01

    shift in the short-run price elasticity of gasoline demand.A meta-analysis of the price elasticity of gasoline demand.2007. Consumer demand un- der price uncertainty: Empirical

  5. Demand Side Dispatching, Part 2: An Industrial Application 

    E-Print Network [OSTI]

    Nath, R.; Cerget, D. A.; Henderson, E. T.

    1993-01-01

    As part of their Demand Side Management programs, electric utility companies often offer Time of Use (TOU) or other incentive rates to large industrial clients. Such rates offer potential money saving opportunities to industrial clients...

  6. Satisfiability of Elastic Demand in the Smart Grid

    E-Print Network [OSTI]

    Tomozei, Dan-Cristian

    2010-01-01

    We study a stochastic model of electricity production and consumption where appliances are adaptive and adjust their consumption to the available production, by delaying their demand and possibly using batteries. The model incorporates production volatility due to renewables, ramp-up time, uncertainty about actual demand versus planned production, delayed and evaporated demand due to adaptation to insufficient supply. We study whether threshold policies stabilize the system. The proofs use Markov chain theory on general state space.

  7. Demand Response Opportunities in Industrial Refrigerated Warehouses in California

    SciTech Connect (OSTI)

    Goli, Sasank; McKane, Aimee; Olsen, Daniel

    2011-06-14

    Industrial refrigerated warehouses that implemented energy efficiency measures and have centralized control systems can be excellent candidates for Automated Demand Response (Auto-DR) due to equipment synergies, and receptivity of facility managers to strategies that control energy costs without disrupting facility operations. Auto-DR utilizes OpenADR protocol for continuous and open communication signals over internet, allowing facilities to automate their Demand Response (DR). Refrigerated warehouses were selected for research because: They have significant power demand especially during utility peak periods; most processes are not sensitive to short-term (2-4 hours) lower power and DR activities are often not disruptive to facility operations; the number of processes is limited and well understood; and past experience with some DR strategies successful in commercial buildings may apply to refrigerated warehouses. This paper presents an overview of the potential for load sheds and shifts from baseline electricity use in response to DR events, along with physical configurations and operating characteristics of refrigerated warehouses. Analysis of data from two case studies and nine facilities in Pacific Gas and Electric territory, confirmed the DR abilities inherent to refrigerated warehouses but showed significant variation across facilities. Further, while load from California's refrigerated warehouses in 2008 was 360 MW with estimated DR potential of 45-90 MW, actual achieved was much less due to low participation. Efforts to overcome barriers to increased participation may include, improved marketing and recruitment of potential DR sites, better alignment and emphasis on financial benefits of participation, and use of Auto-DR to increase consistency of participation.

  8. Interoperability of Demand Response Resources Demonstration in NY

    SciTech Connect (OSTI)

    Wellington, Andre

    2014-03-31

    The Interoperability of Demand Response Resources Demonstration in NY (Interoperability Project) was awarded to Con Edison in 2009. The objective of the project was to develop and demonstrate methodologies to enhance the ability of customer sited Demand Response resources to integrate more effectively with electric delivery companies and regional transmission organizations.

  9. Demand and Price Uncertainty: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2013-01-01

    Sterner. 1991. Analysing gasoline demand elasticities: A2011. Measuring global gasoline and diesel price and incomeMutairi. 1995. Demand for gasoline in Kuwait: An empirical

  10. Climate policy implications for agricultural water demand

    SciTech Connect (OSTI)

    Chaturvedi, Vaibhav; Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Wise, Marshall A.; Calvin, Katherine V.

    2013-03-28

    Energy, water and land are scarce resources, critical to humans. Developments in each affect the availability and cost of the others, and consequently human prosperity. Measures to limit greenhouse gas concentrations will inevitably exact dramatic changes on energy and land systems and in turn alter the character, magnitude and geographic distribution of human claims on water resources. We employ the Global Change Assessment Model (GCAM), an integrated assessment model to explore the interactions of energy, land and water systems in the context of alternative policies to limit climate change to three alternative levels: 2.5 Wm-2 (445 ppm CO2-e), 3.5 Wm-2 (535 ppm CO2-e) and 4.5 Wm-2 (645 ppm CO2-e). We explore the effects of two alternative land-use emissions mitigation policy options—one which taxes terrestrial carbon emissions equally with fossil fuel and industrial emissions, and an alternative which only taxes fossil fuel and industrial emissions but places no penalty on land-use change emissions. We find that increasing populations and economic growth could be anticipated to almost triple demand for water for agricultural systems across the century even in the absence of climate policy. In general policies to mitigate climate change increase agricultural demands for water still further, though the largest changes occur in the second half of the century, under both policy regimes. The two policies examined profoundly affected both the sources and magnitudes of the increase in irrigation water demands. The largest increases in agricultural irrigation water demand occurred in scenarios where only fossil fuel emissions were priced (but not land-use change emission) and were primarily driven by rapid expansion in bioenergy production. In these scenarios water demands were large relative to present-day total available water, calling into question whether it would be physically possible to produce the associated biomass energy. We explored the potential of improved water delivery and irrigation system efficiencies. These could potentially reduce demands substantially. However, overall demands remained high under our fossil-fuel-only tax policy. In contrast, when all carbon was priced, increases in agricultural water demands were smaller than under the fossil-fuel-only policy and were driven primarily by increased demands for water by non-biomass crops such as rice. Finally we estimate the geospatial pattern of water demands and find that regions such as China, India and other countries in south and east Asia might be expected to experience greatest increases in water demands.?

  11. Demand Response Valuation Frameworks Paper

    E-Print Network [OSTI]

    Heffner, Grayson

    2010-01-01

    benefits to all electricity market participants, includingin resource procurement, electricity markets, and system andstakeholders – electricity market participants, including

  12. Demand Response Valuation Frameworks Paper

    E-Print Network [OSTI]

    Heffner, Grayson

    2010-01-01

    No. ER06-615-000 CAISO Demand Response Resource User Guide -8 2.1. Demand Response Provides a Range of Benefits to8 2.2. Demand Response Benefits can be Quantified in Several

  13. Measurement and evaluation techniques for automated demand response demonstration

    SciTech Connect (OSTI)

    Motegi, Naoya; Piette, Mary Ann; Watson, David S.; Sezgen, Osman; ten Hope, Laurie

    2004-08-01

    The recent electricity crisis in California and elsewhere has prompted new research to evaluate demand response strategies in large facilities. This paper describes an evaluation of fully automated demand response technologies (Auto-DR) in five large facilities. Auto-DR does not involve human intervention, but is initiated at a facility through receipt of an external communications signal. This paper summarizes the measurement and evaluation of the performance of demand response technologies and strategies in five large facilities. All the sites have data trending systems such as energy management and control systems (EMCS) and/or energy information systems (EIS). Additional sub-metering was applied where necessary to evaluate the facility's demand response performance. This paper reviews the control responses during the test period, and analyzes demand savings achieved at each site. Occupant comfort issues are investigated where data are available. This paper discusses methods to estimate demand savings and results from demand response strategies at five large facilities.

  14. A Study of Adaptive and Optimizing Behavior for Electric Vehicles Based on Interactive Simulation Games and Revealed Behavior of Electric Vehicle Owners

    E-Print Network [OSTI]

    Turrentine, Thomas; Lee-Gosselin, Martin; Kurani, Kenneth; Sperling, Daniel

    1992-01-01

    the Demand Electric Vehicles. In Transportation Research-1990. and L. Shipper, Electric Vehicles in a BroaderContext:of The Urban Electric Vehicle conference, Stockholm,

  15. A Study of Adaptive and Optimizing Behavior for Electric Vehicles Based on Interactive Simulation Games and Revealed Behavior of Electric Vehicle Owners

    E-Print Network [OSTI]

    Turrentine, Thomas; Lee-Gosselin, Martin; Kurani, Kenneth; Sperling, Daniel

    1992-01-01

    1990. and L. Shipper, Electric Vehicles in a BroaderContext:of The Urban Electric Vehicle conference, Stockholm,the Demand Electric Vehicles. In Transportation Research-

  16. Mean-Risk Optimization of Electricity Portfolios Using Multiperiod Polyhedral Risk Measures

    E-Print Network [OSTI]

    Römisch, Werner

    to satisfy a stochastic electricity demand: electricity spot market, two different types of supply contracts. Stochasticity enters the model via uncertain electricity demand, heat demand, spot prices, and future prices to the requirements of a typical Germnan municipal power utility, which has to serve an electricity demand and a heat

  17. Modeling and Computing Two-settlement Oligopolistic Equilibrium in a Congested Electricity Network

    E-Print Network [OSTI]

    Yao, Jian; Adler, Ilan; Oren, Shmuel S

    2006-01-01

    electricity, the lack of demand elasticity, high market concentration and limited transmission capacities.

  18. Dynamics of Electricity Markets with Unknown Utility Functions: An Extremum Seeking Control Approach

    E-Print Network [OSTI]

    Ma, Kai; Hu, Guoqiang; Spanos, Costas J

    2014-01-01

    E. El-Saadany, “A summary of demand response in electricityS. H. Low, “Optimal demand response: Problem formulation anda year. Recently, demand response is proposed to control the

  19. DSM Electricity Savings Potential in the Buildings Sector in APP Countries

    E-Print Network [OSTI]

    McNeil, MIchael

    2011-01-01

    the electricity demand forecast, and the energy and CO 2Base Case Scenario Energy demand through 2030 is forecast byforecast of electricity demand in the buildings sector developed by LBNL, called the Bottom-up Energy

  20. ENERGY DEMAND FORECAST METHODS REPORT

    E-Print Network [OSTI]

    ....................................................................................................1-16 Energy Consumption Data...............................................1-15 Data Sources for Energy Demand Forecasting ModelsCALIFORNIA ENERGY COMMISSION ENERGY DEMAND FORECAST METHODS REPORT Companion Report