National Library of Energy BETA

Sample records for including wind power

  1. Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power As the accompanying map of New Mexico shows, the best wind power generation potential near WIPP is along the Delaware Mountain ridge line of the southern Guadalupe Mountains, about 50-60 miles southwest. The numeric grid values indicate wind potential, with a range from 1 (poor) to 7 (superb). Just inside Texas in the southern Guadalupe Mountains, the Delaware Mountain Wind Power Facility in Culbertson County, Texas currently generates over 30 MW, and could be expanded to a 250 MW

  2. Wind Power Outlook 2004

    SciTech Connect (OSTI)

    anon.

    2004-01-01

    The brochure, expected to be updated annually, provides the American Wind Energy Association's (AWAE's) up-to-date assessment of the wind industry. It provides a summary of the state of wind power in the U.S., including the challenges and opportunities facing the industry. It provides summary information on the growth of the industry, policy-related factors such as the federal wind energy production tax credit status, comparisons with natural gas, and public views on wind energy.

  3. WINDExchange: Selling Wind Power

    Wind Powering America (EERE)

    Market Sectors Printable Version Bookmark and Share Utility-Scale Wind Distributed Wind Motivations for Buying Wind Power Buying Wind Power Selling Wind Power Selling Wind Power Owners of wind turbines interconnected directly to the transmission or distribution grid, or that produce more power than the host consumes, can sell wind power as well as other generation attributes. Wind-Generated Electricity Electricity generated by wind turbines can be used to cover on-site energy needs

  4. Offshore Wind Power USA

    Broader source: Energy.gov [DOE]

    The Offshore Wind Power USA conference provides the latest offshore wind market updates and forecasts.

  5. Wind Power Forecasting Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations Call 2012 Retrospective Reports 2012 Retrospective Reports 2011 Smart Grid Wind Integration Wind Integration Initiatives Wind Power Forecasting Wind Projects Email...

  6. Wyoming Wind Power Project (generation/wind)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power > Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Wyoming Wind Power Project (Foote Creek Rim I and II) Thumbnail image of wind...

  7. Wind Power: Options for Industry

    SciTech Connect (OSTI)

    Not Available

    2003-03-01

    This six-page brochure outlines ways for industry to integrate wind power, including assessing wind power, building wind farms, using a developer, capitalizing on technology, enhancing the corporate image, and preparing RFPs. Company examples and information resources are also provided.

  8. Wind Power Today

    SciTech Connect (OSTI)

    Not Available

    2006-05-01

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  9. Wind Power Today

    SciTech Connect (OSTI)

    Not Available

    2007-05-01

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  10. WINDExchange: Buying Wind Power

    Wind Powering America (EERE)

    Buying Wind Power Individuals, communities, businesses, and government entities may decide that buying wind power to supply their energy needs is the right fit. There are several ways to purchase wind power. Green Power Marketing Green power marketing refers to green power being offered by multiple suppliers in a competitive marketplace. In states that have established retail competition, customers may be able to purchase green power from a competitive supplier. Learn more about green power

  11. Wind Vision: A New Era for Wind Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Highlights Wind Vision: A New Era for Wind Power in the United States Wind Vision Objectives The U.S. Department of Energy's (DOE's) Wind and Water Power Technologies Office has conducted a comprehensive analysis to evaluate future pathways for the wind industry. Through a broad-based collaborative effort, the Wind Vision analysis includes four principal objectives: 1. Documentation of the current state of wind power in the United States and identification of key technological and societal

  12. Wethersfield Wind Power Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wethersfield Wind Power Wind Farm Jump to: navigation, search Name Wethersfield Wind Power Wind Farm Facility Wethersfield Wind Power Sector Wind energy Facility Type Commercial...

  13. Dynamic Models for Wind Turbines and Wind Power Plants

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Each of these models includes representations of general turbine aerodynamics, the ... 9 1.1.2 Wind power integration and wind turbine modeling ......

  14. Wind Power (pbl/generation)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Wind Power (Updated June 16, 2014) Project Descriptions Foote Creek I Wind Project (Carbon...

  15. Wind power soars

    SciTech Connect (OSTI)

    Flavin, C.

    1996-12-31

    Opinions on the world market for wind power are presented in this paper. Some data for global wind power generating capacity are provided. European and other markets are discussed individually. Estimated potential for wind power is given for a number of countries. 3 figs.

  16. EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI EA-1726: Final Environmental ...

  17. Wind & Water Power Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Water Power Newsletter - Sandia Energy Energy Search Icon Sandia Home Locations Contact ... Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ...

  18. Wind Power Partners '94 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    4 Wind Farm Jump to: navigation, search Name Wind Power Partners '94 Wind Farm Facility Wind Power Partners '94 Sector Wind energy Facility Type Commercial Scale Wind Facility...

  19. 2008 Wind Energy Projects, Wind Powering America (Poster)

    SciTech Connect (OSTI)

    Not Available

    2009-01-01

    The Wind Powering America program produces a poster at the end of every calendar year that depicts new U.S. wind energy projects. The 2008 poster includes the following projects: Stetson Wind Farm in Maine; Dutch Hill Wind Farm in New York; Grand Ridge Wind Energy Center in Illinois; Hooper Bay, Alaska; Forestburg, South Dakota; Elbow Creek Wind Project in Texas; Glacier Wind Farm in Montana; Wray, Colorado; Smoky Hills Wind Farm in Kansas; Forbes Park Wind Project in Massachusetts; Spanish Fork, Utah; Goodland Wind Farm in Indiana; and the Tatanka Wind Energy Project on the border of North Dakota and South Dakota.

  20. Wind Power Career Chat

    SciTech Connect (OSTI)

    L. Flowers

    2011-01-01

    This document will teach students about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Wind power careers will require educated people from a variety of areas. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. The nation will also need skilled researchers, scientists, and engineers to plan and develop the next generation of wind energy technologies.

  1. Enabling Wind Power Nationwide

    SciTech Connect (OSTI)

    Jose, Zayas; Michael, Derby; Patrick, Gilman; Ananthan, Shreyas; Lantz, Eric; Cotrell, Jason; Beck, Fredic; Tusing, Richard

    2015-05-01

    Leveraging this experience, the U.S. Department of Energy’s (DOE’s) Wind and Water Power Technologies Office has evaluated the potential for wind power to generate electricity in all 50 states. This report analyzes and quantifies the geographic expansion that could be enabled by accessing higher above ground heights for wind turbines and considers the means by which this new potential could be responsibly developed.

  2. Shiloh Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Project Jump to: navigation, search Name Shiloh Wind Power Project Facility Shiloh Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  3. Fenton Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Project Jump to: navigation, search Name Fenton Wind Power Project Facility Fenton Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  4. Madison Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Project Jump to: navigation, search Name Madison Wind Power Project Facility Madison Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  5. Somerset Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Project Jump to: navigation, search Name Somerset Wind Power Project Facility Somerset Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  6. Desert Wind Power | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Jump to: navigation, search Name Desert Wind Power Facility Desert Wind Power Sector Wind energy Facility Type Commercial Scale Wind Facility Status Proposed Developer...

  7. Moraine Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Project Jump to: navigation, search Name Moraine Wind Power Project Facility Moraine Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  8. Fenner Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Project Jump to: navigation, search Name Fenner Wind Power Project Facility Fenner Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  9. Renaissance for wind power

    SciTech Connect (OSTI)

    Flavin, C.

    1981-10-01

    Wind research and development during the 1970s and recent studies showing wind to be a feasible source of both electrical and mechanical power are behind the rapid expansion of wind energy. Improved technology should make wind energy economical in most countries having sufficient wind and appropriate needs. A form of solar energy, winds form a large pattern of global air circulation because the earth's rotation causes differences in pressure and oceans cause differences in temperature. New development in the ancient art of windmill making date to the 1973 oil embargo, but wind availability must be determined at local sites to determine feasibility. Whether design features of the new technology and the concept of large wind farms will be incorporated in national energy policies will depend on changing attitudes, acceptance by utilities, and the speed with which new information is developed and disseminated. 44 references, 6 figures. (DCK)

  10. Wind Power Today, 2010, Wind and Water Power Program (WWPP)

    SciTech Connect (OSTI)

    Not Available

    2010-05-01

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Water Power Program.

  11. Wind for Schools: A Wind Powering America Project (Alaska) (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-02-01

    This brochure provides an overview of Wind Powering America's Wind for Schools Project, including a description of the project, the participants, funding sources, the basic configurations, and how interested parties can become involved.

  12. Wind for Schools: A Wind Powering America Project (Brochure)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2009-08-01

    This brochure provides an overview of Wind Powering America's Wind for Schools Project, including a description of the project, the participants, funding sources, the basic configurations, and how interested parties can become involved.

  13. WINDExchange: Where Is Wind Power?

    Wind Powering America (EERE)

    Where Is Wind Power? WINDExchange offers maps to help you visualize the wind resource at a local level and to show how much wind power has been installed in the United States. How much wind power is on my land? Go to the wind resource maps. Go to the wind resource maps. Go to the wind resource maps. If you want to know how much wind power is in a particular area, these wind resource maps can give you a visual indication of the average wind speeds to a local level such as a neighborhood. These

  14. 2015 Iowa Wind Power Conference and Iowa Wind Energy Association...

    Office of Environmental Management (EM)

    2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional Energy Job Fair 2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional...

  15. Crownbutte Wind Power LLC | Open Energy Information

    Open Energy Info (EERE)

    Crownbutte Wind Power LLC Jump to: navigation, search Name: Crownbutte Wind Power LLC Place: Mandan, North Dakota Zip: 58554 Sector: Wind energy Product: North Dakota wind power...

  16. Hardscrabble Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Hardscrabble Wind Power Project Jump to: navigation, search Name Hardscrabble Wind Power Project Facility Hardscrabble Wind Power Project Sector Wind energy Facility Type...

  17. Wind Power Career Chat, Wind And Water Power Program (WWPP)

    Wind Powering America (EERE)

    WIND AND WATER POWER PROGRAM Wind Power Career Chat Overview Students will learn about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. In

  18. Gansu Xinhui Wind Power | Open Energy Information

    Open Energy Info (EERE)

    Xinhui Wind Power Jump to: navigation, search Name: Gansu Xinhui Wind Power Place: China Sector: Wind energy Product: China-based joint venture engaged in developing wind projects....

  19. Northwestern Wind Power | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Jump to: navigation, search Name: Northwestern Wind Power Place: Wasco, Oregon Zip: OR 97065 Sector: Wind energy Product: US-based wind project developer. Coordinates:...

  20. Daqing Longjiang Wind Power | Open Energy Information

    Open Energy Info (EERE)

    Longjiang Wind Power Jump to: navigation, search Name: Daqing Longjiang Wind Power Place: Daqing, Heilongjiang Province, China Zip: 163316 Sector: Wind energy Product: Local wind...

  1. Laizhou Luneng Wind Power | Open Energy Information

    Open Energy Info (EERE)

    Laizhou Luneng Wind Power Jump to: navigation, search Name: Laizhou Luneng Wind Power Place: Laizhou, Shandong Province, China Sector: Wind energy Product: A wind project...

  2. Clear Wind Renewable Power | Open Energy Information

    Open Energy Info (EERE)

    Wind Renewable Power Jump to: navigation, search Name: Clear Wind Renewable Power Place: Minneapolis, Minnesota Zip: 55416 Sector: Wind energy Product: Clear Wind focuses its...

  3. Padoma Wind Power LLC | Open Energy Information

    Open Energy Info (EERE)

    Padoma Wind Power LLC Jump to: navigation, search Name: Padoma Wind Power LLC Place: La Jolla, California Zip: 92037 Sector: Wind energy Product: A wind energy consulting and...

  4. Evergreen Wind Power LLC | Open Energy Information

    Open Energy Info (EERE)

    Wind Power LLC Jump to: navigation, search Name: Evergreen Wind Power LLC Place: Bangor, Maine Zip: 4401 Sector: Wind energy Product: Formed to develop wind projects in Maine....

  5. Heilongjiang Lishu Wind Power | Open Energy Information

    Open Energy Info (EERE)

    Lishu Wind Power Jump to: navigation, search Name: Heilongjiang Lishu Wind Power Place: Heilongjiang Province, China Sector: Wind energy Product: China-based wind project developer...

  6. TS Wind Power Developers | Open Energy Information

    Open Energy Info (EERE)

    TS Wind Power Developers Jump to: navigation, search Name: TS Wind Power Developers Place: Satara, Maharashtra, India Sector: Wind energy Product: Setting up 30MW wind farm in...

  7. Green Power Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Green Power Wind Farm Facility Green Power Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  8. WINDExchange: What Is Wind Power?

    Wind Powering America (EERE)

    What Is Wind Power? A three-bladed wind turbine with the internal components visible. Six turbines in a row are electrically connected to the power grid. Wind Power Animation This aerial view of a wind turbine plant shows how a group of wind turbines can make electricity for the utility grid. The electricity is sent through transmission and distribution lines to homes, businesses, schools, and so on. View the wind turbine animation to see how a wind turbine works or take a look inside. Wind

  9. WATER POWER SOLAR POWER WIND POWER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    get curren WATER POWER SOLAR POWER WIND POWER Be part of the Clean Energy Generation! YOUR HOUSE BIOMASS ENERGY GEOTHERMAL ENERGY Clean energy can come from the sun. 2 The energy in wind can make electricity. We can make energy with moving water. Bioenergy comes from plants we can turn into fuel. Logs Wood Chips Straw Corn Switchgrass We can use energy from the earth to heat and cool our homes. Check out these cool websites to learn more about clean energy! Energy Information Administration

  10. Sinomatech Wind Power Blade aka Sinoma Science Technology Wind...

    Open Energy Info (EERE)

    Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Blade Co Ltd Jump to: navigation, search Name: Sinomatech Wind Power Blade (aka Sinoma Science & Technology...

  11. NREL: Wind Research - Wind and Water Power Fact Sheets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind and Water Power Fact Sheets The capabilities for research at the National Wind Technology Center (NWTC) are numerous. Below you will find fact sheets about the many facilities and capabilities at the NWTC, including field testing research, modeling and simulation, and the Wind-Wildlife Impacts Literature Database. Fact Sheet Cover 35 Years of Innovation: Leading the Way to a Clean Energy Future Fact Sheet Cover Wind-Wildlife Impacts Literature Database (WILD) Fact Sheet Cover NREL Software

  12. Wind to Power Systems | Open Energy Information

    Open Energy Info (EERE)

    Power Systems Jump to: navigation, search Name: Wind to Power Systems Place: Madrid, Spain Zip: 28108 Sector: Wind energy Product: Wind to Power Systems designs, supplies and...

  13. Berkshire Wind Power Cooperative | Open Energy Information

    Open Energy Info (EERE)

    Power Cooperative Jump to: navigation, search Name: Berkshire Wind Power Cooperative Place: Holyoke, Massachusetts Sector: Wind energy Product: The Berkshire Wind Power Cooperative...

  14. Enabling Wind Power Nationwide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Power Nationwide May 2015 This report is being disseminated by the U.S. Department of Energy (DOE). As such, this document was prepared in compliance with Section 515 of the Treasury and General Government Appropriations Act for fiscal year 2001 (Public Law 106-554) and information quality guidelines issued by DOE. Though this report does not constitute "influential" information, as that term is defined in DOE's information quality guidelines or the Office of Management and

  15. Wind Powering America Webinar Series (Postcard), Wind Powering America (WPA)

    SciTech Connect (OSTI)

    Not Available

    2012-02-01

    Wind Powering America offers a free monthly webinar series that provides expert information on today?s key wind energy topics. This postcard is an outreach tool that provides a brief description of the webinars as well as the URL.

  16. Wind Powering America Podcasts, Wind Powering America (WPA)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    Wind Powering America and the National Association of Farm Broadcasters produce a series of radio interviews featuring experts discussing wind energy topics. The interviews are aimed at a rural stakeholder audience and are available as podcasts. On the Wind Powering America website, you can access past interviews on topics such as: Keys to Local Wind Energy Development Success, What to Know about Installing a Wind Energy System on Your Farm, and Wind Energy Development Can Revitalize Rural America. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to this online resource for podcast episodes.

  17. Active Power Controls from Wind Power: Bridging the Gaps

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report evaluates how wind power can support power system reliability, and do so economically. The study includes a number of different power system simulations, control simulations, and actual field tests using turbines at the National Renewable Energy Laboratory's (NREL’s) National Wind Technology Center (NWTC).

  18. Marquiss Wind Power | Open Energy Information

    Open Energy Info (EERE)

    Marquiss Wind Power Jump to: navigation, search Name: Marquiss Wind Power Place: Folsom, California Zip: 95630 Sector: Wind energy Product: US-based manufacturer of patented ducted...

  19. CECIC Wind Power Zhangbei | Open Energy Information

    Open Energy Info (EERE)

    CECIC Wind Power Zhangbei Jump to: navigation, search Name: CECIC Wind Power (Zhangbei) Place: Zhangbei, Hebei Province, China Sector: Wind energy Product: A joint venture of CECIC...

  20. Guohua Hulunbeier Wind Power | Open Energy Information

    Open Energy Info (EERE)

    Hulunbeier Wind Power Jump to: navigation, search Name: Guohua (Hulunbeier) Wind Power Place: Hulunbeier, Inner Mongolia Autonomous Region, China Zip: 21300 Sector: Wind energy...

  1. Guohua Qiqihaer Wind Power | Open Energy Information

    Open Energy Info (EERE)

    Qiqihaer Wind Power Jump to: navigation, search Name: Guohua (Qiqihaer) Wind Power Place: Qiqihaer, Heilongjiang Province, China Zip: 161005 Sector: Wind energy Product: Guohua...

  2. Wind Power Associates LLC | Open Energy Information

    Open Energy Info (EERE)

    Power Associates LLC Jump to: navigation, search Name: Wind Power Associates LLC Place: Goldendale, Washington State Sector: Wind energy Product: Wind farm developer and operater....

  3. Infinity Wind Power Inc | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Inc Jump to: navigation, search Name: Infinity Wind Power, Inc. Place: Santa Barbara, California Zip: 93105 Sector: Renewable Energy, Wind energy Product:...

  4. Peel Wind Power | Open Energy Information

    Open Energy Info (EERE)

    Peel Wind Power Jump to: navigation, search Name: Peel Wind Power Place: United Kingdom Product: Clean energy subsidiary of property company Peel Holdings. References: Peel Wind...

  5. Cielo Wind Power | Open Energy Information

    Open Energy Info (EERE)

    Cielo Wind Power Jump to: navigation, search Name: Cielo Wind Power Address: 823 Congress Avenue Place: Austin, Texas Zip: 78701 Region: Texas Area Sector: Wind energy Product:...

  6. EERE 2014 Wind Technologies Market Report Finds Wind Power at...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 Wind Technologies Market Report Finds Wind Power at Record Low Prices EERE 2014 Wind Technologies Market Report Finds Wind Power at Record Low Prices August 10, 2015 - 11:00am ...

  7. WINDExchange: Motivations for Buying Wind Power

    Wind Powering America (EERE)

    Photo of a wind turbine taken looking through a field of grains. Motivations for Buying Wind Power Electricity consumers may have a variety of motivations for buying wind power, including helping the environment, capturing long-term price stability, securing lower-cost energy, improving public relations, and reducing the need for imported fuels in remote communities. In general, however, the decision is usually based on the following three motivations. Voluntary Purchases Voluntary renewable

  8. Solar and wind power advancing

    U.S. Energy Information Administration (EIA) Indexed Site

    Solar and wind power advancing U.S. electricity generation from wind and solar energy show no signs of slowing down. In its new monthly forecast, the U.S. Energy Information Administration expects wind-powered generation to grow by 19 percent this year and rise another 8 percent in 2014. Congress's extension in January of a tax credit for electricity producers that use renewables is behind the wind power boost. Solar generation in the electric power sector is expected to grow even more, rising

  9. Southwest Wind Power | Open Energy Information

    Open Energy Info (EERE)

    Power Jump to: navigation, search Name: Southwest Wind Power Place: Flagstaff, AZ Website: www.windenergy.com References: Southwest Wind Power1 Information About Partnership...

  10. DOE Wind and Water Power Technologies Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind and Water Power Technologies Office - Sandia Energy Energy Search Icon Sandia Home ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ...

  11. Active Power Controls from Wind Power: Bridging the Gaps

    SciTech Connect (OSTI)

    Ela, E.; Gevorgian, V.; Fleming, P.; Zhang, Y. C.; Singh, M.; Muljadi, E.; Scholbrook, A.; Aho, J.; Buckspan, A.; Pao, L.; Singhvi, V.; Tuohy, A.; Pourbeik, P.; Brooks, D.; Bhatt, N.

    2014-01-01

    This paper details a comprehensive study undertaken by the National Renewable Energy Laboratory, Electric Power Research Institute, and the University of Colorado to understand how the contribution of wind power providing active power control (APC) can benefit the total power system economics, increase revenue streams, improve the reliability and security of the power system, and provide superior and efficient response while reducing any structural and loading impacts that may reduce the life of the wind turbine or its components. The study includes power system simulations, control simulations, and actual field tests using turbines at NREL's National Wind Technology Center (NWTC). The study focuses on synthetic inertial control, primary frequency control, and automatic generation control, and analyzes timeframes ranging from milliseconds to minutes to the lifetime of wind turbines, locational scope ranging from components of turbines to large wind plants to entire synchronous interconnections, and additional topics ranging from economics to power system engineering to control design.

  12. Active Power Control from Wind Power (Presentation)

    SciTech Connect (OSTI)

    Ela, E.; Brooks, D.

    2011-04-01

    In order to keep the electricity grid stable and the lights on, the power system relies on certain responses from its generating fleet. This presentation evaluates the potential for wind turbines and wind power plants to provide these services and assist the grid during critical times.

  13. PBS: Wind Power for Educators

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PBS: Wind Power for Educators Grades: 5-8, 9-12 Topic: Wind Energy Owner: PBS This educational material is brought to you by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy. Click here to find out more! NOW with Bill Moyers. For Educators. Wind Power | PBS Page 1 of 5 Support for PBS.org provided by: What's this? Wind Power More on This Lesson: Select One Lesson Plan This lesson is designed for physical science, earth science, or environmental science classrooms,

  14. Wild Horse Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Project Jump to: navigation, search Name Wild Horse Wind Power Project Facility Wild Horse Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind...

  15. Mill Run Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Run Wind Power Project Jump to: navigation, search Name Mill Run Wind Power Project Facility Mill Run Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind...

  16. Devon Wind Power Ltd | Open Energy Information

    Open Energy Info (EERE)

    Devon Wind Power Ltd Jump to: navigation, search Name: Devon Wind Power Ltd Place: Exeter, United Kingdom Zip: EX1 1TL Sector: Wind energy Product: Wind project developer - has...

  17. Wind power outlook 2006

    SciTech Connect (OSTI)

    anon.

    2006-04-15

    This annual brochure provides the American Wind Energy Association's up-to-date assessment of the wind industry in the United States. This 2006 general assessment shows positive signs of growth, use and acceptance of wind energy as a vital component of the U.S. energy mix.

  18. Wind Power Energia | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Energia Place: Fortaleza, Ceara, Brazil Zip: 60160-230 Sector: Wind energy Product: Brazil-based small scale wind turbine manufacturer. Coordinates: -3.718404,...

  19. Wind Powering America's Wind for Schools Team Honored with Wirth...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Powering America's Wind for Schools Team Honored with Wirth Chair Award Wind Powering America's Wind for Schools Team Honored with Wirth Chair Award May 1, 2012 - 2:46pm Addthis ...

  20. Wind for Schools Project Power System Brief, Wind Powering America Fact Sheet Series

    Wind Powering America (EERE)

    Wind Powering America Fact Sheet Series Energy Efficiency & Renewable Energy Wind for Schools Project Power System Brief Wind for Schools Project Power System Brief Wind for Schools Project Power System Brief This fact sheet provides an overview of the system components of a Wind Powering America Wind for Schools project. Wind Powering America's (WPA's) Wind for Schools project uses a basic system configuration for each school project. The system incorporates a single SkyStream(tm) wind

  1. Wind Power Today, 2010, Wind and Water Power Program (WWPP) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Wind Power Today, 2010, Wind and Water Power Program (WWPP) Wind Power Today, 2010, Wind and Water Power Program (WWPP) Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Water Power Program. 47531.pdf (6.07 MB) More Documents & Publications Federal Interagency Wind Turbine Radar Interference Mitigation Strategy Wind Program Accomplishments Final Report DE-EE0005380 - Assessment of

  2. Wind Power Forecasting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    data Presentations BPA Super Forecast Methodology Related Links Near Real-time Wind Animation Meteorological Data Customer Supplied Generation Imbalance Dynamic Transfer Limits...

  3. Cielo Wind Power LLC | Open Energy Information

    Open Energy Info (EERE)

    Power LLC Jump to: navigation, search Name: Cielo Wind Power LLC Place: Austin, Texas Zip: 78701 2459 Sector: Wind energy Product: Currently the largest wind power developer in the...

  4. US DOE Wind Powering America | Open Energy Information

    Open Energy Info (EERE)

    US DOE Wind Powering America (Redirected from Wind Powering America) Jump to: navigation, search Logo: Wind Powering America Name Wind Powering America AgencyCompany Organization...

  5. Enabling Wind Power Nationwide | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enabling Wind Power Nationwide Enabling Wind Power Nationwide The cover of the 2015 report Enabling Wind Power Nationwide with a wind turbine on the right side, surrounded by trees. This report shows how the United States can unlock the vast potential for wind energy deployment in all 50 states-made possible through the next-generation of larger wind turbines. It highlights wind energy's potential to generate electricity even in states with no utility-scale wind energy development today. Through

  6. Boulder Wind Power | Open Energy Information

    Open Energy Info (EERE)

    Power Jump to: navigation, search Name: Boulder Wind Power Address: 2845 Wilderness Place Suite 201 Place: Boulder, CO Zip: 80301 Sector: Wind energy Website: www.boulderwindpower....

  7. India Wind Power Ltd | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Ltd Place: Ahmedabad, Gujarat, India Zip: 380054 Product: Ahmedabad-based turbine manufacturer and project developer. References: India Wind Power Ltd1 This article is...

  8. Wind power: executive summary on research on network wind power over the Pacific Northwest. Progress report, October 1979-September 1980

    SciTech Connect (OSTI)

    Baker, R.W.; Hewson, E.W.

    1980-10-01

    This research in FY80 is composed of six primary tasks. These tasks include data collection and analysis, wind flow studies around an operational wind turbine generator (WTG), kite anemometer calibration, wind flow analysis and prediction, the Klickitat County small wind energy conversion system (SWECS) program, and network wind power analysis. The data collection and analysis task consists of four sections, three of which deal with wind flow site surveys and the fourth with collecting and analyzing wind data from existing data stations.

  9. 1,"Kingdom Community Wind","Wind","Green Mountain Power Corp...

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Kingdom Community Wind","Wind","Green Mountain Power Corp",65 2,"J C ...

  10. Dynamic Models for Wind Turbines and Wind Power Plants

    SciTech Connect (OSTI)

    Singh, M.; Santoso, S.

    2011-10-01

    The primary objective of this report was to develop universal manufacturer-independent wind turbine and wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Manufacturer-specific models of wind turbines are favored for use in wind power interconnection studies. While they are detailed and accurate, their usages are limited to the terms of the non-disclosure agreement, thus stifling model sharing. The primary objective of the work proposed is to develop universal manufacturer-independent wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Each of these models includes representations of general turbine aerodynamics, the mechanical drive-train, and the electrical characteristics of the generator and converter, as well as the control systems typically used. To determine how realistic model performance is, the performance of one of the models (doubly-fed induction generator model) has been validated using real-world wind power plant data. This work also documents selected applications of these models.

  11. Wind Powering America Hosts Fifth Annual Wind for Schools Summit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fifth Annual Wind for Schools Summit Wind Powering America Hosts Fifth Annual Wind for Schools Summit February 24, 2012 - 10:46am Addthis This is an excerpt from the First Quarter ...

  12. Wind Power Ltd | Open Energy Information

    Open Energy Info (EERE)

    Conducting research into alternative, large scale wind turbine design. References: Wind Power Ltd1 This article is a stub. You can help OpenEI by expanding it. Wind Power...

  13. Tianjin Jinneng Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Co Ltd Jump to: navigation, search Name: Tianjin Jinneng Wind Power Co Ltd Place: Tianjin Municipality, China Sector: Wind energy Product: Tianjin-based wind power...

  14. White Creek Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Creek Wind Power Project Jump to: navigation, search Name White Creek Wind Power Project Facility White Creek Wind Power Project Sector Wind energy Facility Type Commercial Scale...

  15. Kittitas Valley Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Valley Wind Power Project Jump to: navigation, search Name Kittitas Valley Wind Power Project Facility Kittitas Valley Wind Power Project Sector Wind energy Facility Type...

  16. Guodian Linghai Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Linghai Wind Power Co Ltd Jump to: navigation, search Name: Guodian Linghai Wind Power Co Ltd Place: China Sector: Wind energy Product: Wind power project developer. References:...

  17. Oasis Power Partners Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Oasis Power Partners Wind Farm Jump to: navigation, search Name Oasis Power Partners Wind Farm Facility Oasis Power Partners Sector Wind energy Facility Type Commercial Scale Wind...

  18. Buffalo Ridge II Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    II Wind Power Project Jump to: navigation, search Name Buffalo Ridge II Wind Power Project Facility Buffalo Ridge II Wind Power Project Sector Wind energy Facility Type Commercial...

  19. 20% Wind Energy by 2030 - Chapter 6: Wind Power Markets Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6: Wind Power Markets Summary Slides 20% Wind Energy by 2030 - Chapter 6: Wind Power Markets Summary Slides Summary slides overviewing wind power markets, growth, applications, and ...

  20. Active Power Controls from Wind Power: Bridging the Gaps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Demand response, energy storage, and improved wind power forecasting techniques have often ... parties by reducing total production costs, increasing wind power revenue streams, ...

  1. EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy 6: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI May 3, 2010 EA-1726: Final Environmental Assessment Loan Guarantee to Kahuku Wind Power, LLC for Construction of the Kahuku Wind Power Facility in Kahuku, O'ahu, Hawai'i May 13, 2010 Kahuku Wind Power Biological Opinion Kahuku Wind Power, LLC, Construction of the Kahuku Wind Power Facility in Kahuku, O'ahu, Hawaii May 27, 2010

  2. WIND POWER PROGRAM WIND PROGRAM ACCOMPLISHMENTS U.S. Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    December 2013, the U.S. wind industry totaled more than 60,000 MW of installed power capacity, over 20% of the 300,000 MW needed to achieve 20% by 2030. Wind power is expanding ...

  3. Long-Term Wind Power Variability

    SciTech Connect (OSTI)

    Wan, Y. H.

    2012-01-01

    The National Renewable Energy Laboratory started collecting wind power data from large commercial wind power plants (WPPs) in southwest Minnesota with dedicated dataloggers and communication links in the spring of 2000. Over the years, additional WPPs in other areas were added to and removed from the data collection effort. The longest data stream of actual wind plant output is more than 10 years. The resulting data have been used to analyze wind power fluctuations, frequency distribution of changes, the effects of spatial diversity, and wind power ancillary services. This report uses the multi-year wind power data to examine long-term wind power variability.

  4. Introduction to Small-Scale Wind Energy Systems (Including RETScreen...

    Open Energy Info (EERE)

    Case Study) (Webinar) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Introduction to Small-Scale Wind Energy Systems (Including RETScreen Case Study) (Webinar) Focus...

  5. Validation of Power Output for the WIND Toolkit

    SciTech Connect (OSTI)

    King, J.; Clifton, A.; Hodge, B. M.

    2014-09-01

    Renewable energy integration studies require wind data sets of high quality with realistic representations of the variability, ramping characteristics, and forecast performance for current wind power plants. The Wind Integration National Data Set (WIND) Toolkit is meant to be an update for and expansion of the original data sets created for the weather years from 2004 through 2006 during the Western Wind and Solar Integration Study and the Eastern Wind Integration Study. The WIND Toolkit expands these data sets to include the entire continental United States, increasing the total number of sites represented, and it includes the weather years from 2007 through 2012. In addition, the WIND Toolkit has a finer resolution for both the temporal and geographic dimensions. Three separate data sets will be created: a meteorological data set, a wind power data set, and a forecast data set. This report describes the validation of the wind power data set.

  6. Wind Powering America FY09 Activities Summary

    SciTech Connect (OSTI)

    none,

    2010-03-22

    The report reflects the accomplishments of state Wind Working Groups, Wind Powering America programs at the National Renewable Energy Laboratory, and partner organizations.

  7. Wind and Power | Open Energy Information

    Open Energy Info (EERE)

    search Name: Wind and Power Place: Warszawa, Poland Zip: 04-320 Sector: Solar, Wind energy Product: The firm offers small-scale PV panels, inverters, accumulators, solar...

  8. Scotrenewables Wind Power and Marine Power Ltd | Open Energy...

    Open Energy Info (EERE)

    Wind Power and Marine Power Ltd Jump to: navigation, search Name: Scotrenewables Wind Power and Marine Power Ltd Place: Orkey, Scotland, United Kingdom Zip: KW16 3AW Sector:...

  9. Oak Creek Wind Power Phase 2 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Phase 2 Wind Farm Jump to: navigation, search Name Oak Creek Wind Power Phase 2 Wind Farm Facility Oak Creek Wind Power Phase 2 Sector Wind energy Facility Type...

  10. Tianyuan Juneng Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Tianyuan Juneng Wind Power Co Ltd Jump to: navigation, search Name: Tianyuan Juneng Wind Power Co Ltd Place: Shuangliao, Jilin Province, China Sector: Wind energy Product: Wind...

  11. Lanco Wind Power Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Pvt Ltd Jump to: navigation, search Name: Lanco Wind Power Pvt. Ltd. Place: Hyderabad, Andhra Pradesh, India Sector: Wind energy Product: Hyderabad-based wind division...

  12. Nordex Baoding Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Baoding Wind Power Co Ltd Jump to: navigation, search Name: Nordex (Baoding) Wind Power Co. Ltd. Place: Baoding, Hebei Province, China Sector: Wind energy Product: Chinese wind...

  13. Harbin Wind Power Equipment Company | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Equipment Company Jump to: navigation, search Name: Harbin Wind Power Equipment Company Place: Harbin, Heilongjiang Province, China Sector: Wind energy Product: A wind...

  14. Liaoning Kangping Jinshan Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Kangping Jinshan Wind Power Co Ltd Jump to: navigation, search Name: Liaoning Kangping Jinshan Wind Power Co Ltd Place: Liaoning Province, China Sector: Wind energy Product: Wind...

  15. Liaoning Zhangwu Jinshan Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Zhangwu Jinshan Wind Power Co Ltd Jump to: navigation, search Name: Liaoning Zhangwu Jinshan Wind Power Co Ltd Place: Liaoning Province, China Sector: Wind energy Product: Wind...

  16. China Longyuan Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Co Ltd Jump to: navigation, search Name: China Longyuan Wind Power Co Ltd Place: China Sector: Wind energy Product: Wind farm development subsidiary of Longyuan...

  17. Wind Power Renewables | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Renewables Place: Norfolk, United Kingdom Zip: NR29 5BG Sector: Wind energy Product: Wind project developer Coordinates: 36.846825, -76.285069 Show Map Loading...

  18. Offshore Wind Power | Open Energy Information

    Open Energy Info (EERE)

    Offshore Wind Power Place: St Albans, United Kingdom Zip: AL1 3AW Sector: Wind energy Product: Formed to develop offshore wind farms around the coast of Great Britain. References:...

  19. Wind Powering America Initiative (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-01-01

    The U.S. Department of Energy's Wind Powering America initiative engages in technology market acceptance, barrier reduction, and technology deployment support activities. This fact sheet outlines ways in which the Wind Powering America team works to reduce barriers to appropriate wind energy deployment, primarily by focusing on six program areas: workforce development, communications and outreach, stakeholder analysis and resource assessment, wind technology technical support, wind power for Native Americans, and federal sector support and collaboration.

  20. wind powering america | OpenEI Community

    Open Energy Info (EERE)

    wind powering america Home Graham7781's picture Submitted by Graham7781(2017) Super contributor 30 January, 2013 - 10:55 Wind Powering America Guidebook officially launched on...

  1. Success Stories (Postcard), Wind Powering America (WPA)

    SciTech Connect (OSTI)

    Not Available

    2012-02-01

    Wind Powering America shares best practices and lessons learned on the Wind Powering America website. This postcard is an outreach tool that provides a brief description of the success stories as well as the URL.

  2. Loranger Power Generation Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Loranger Power Generation Wind Farm Jump to: navigation, search Name Loranger Power Generation Wind Farm Facility Loranger Power Generation Sector Wind energy Facility Type...

  3. Datang Jilin Wind Power Stockholding Co Ltd Formerly Jilin Noble...

    Open Energy Info (EERE)

    Wind Power Stockholding Co Ltd Formerly Jilin Noble Wind Power Stockholding Co Ltd Jump to: navigation, search Name: Datang Jilin Wind Power Stockholding Co Ltd(Formerly Jilin...

  4. Shaokatan Power Partners Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Power Partners Wind Farm Jump to: navigation, search Name Shaokatan Power Partners Wind Farm Facility Shaokatan Power Partners Sector Wind energy Facility Type Commercial Scale...

  5. Federal Incentives for Wind Power Deployment | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Incentives for Wind Power Deployment Federal Incentives for Wind Power Deployment Document that lists some of the major federal incentives for wind power deployment. ...

  6. Minnkota Power Cooperative Wind Turbine (Petersburg) | Open Energy...

    Open Energy Info (EERE)

    Minnkota Power Cooperative Wind Turbine (Petersburg) Jump to: navigation, search Name Minnkota Power Cooperative Wind Turbine (Petersburg) Facility Minnkota Power Cooperative Wind...

  7. Traverse City Light & Power Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    City Light & Power Wind Farm Jump to: navigation, search Name Traverse City Light & Power Wind Farm Facility Traverse City Light & Power Sector Wind energy Facility Type Community...

  8. Wind Power Partners '90-'92 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    0-'92 Wind Farm Jump to: navigation, search Name Wind Power Partners '90-'92 Wind Farm Facility Wind Power Partners '90-'92 Sector Wind energy Facility Type Commercial Scale Wind...

  9. Wind Powering America Program Overview (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-04-01

    This fact sheet provides an overview of the U.S. Department of Energy's Wind Powering America Program.

  10. Systems and methods for an integrated electrical sub-system powered by wind energy

    DOE Patents [OSTI]

    Liu, Yan; Garces, Luis Jose

    2008-06-24

    Various embodiments relate to systems and methods related to an integrated electrically-powered sub-system and wind power system including a wind power source, an electrically-powered sub-system coupled to and at least partially powered by the wind power source, the electrically-powered sub-system being coupled to the wind power source through power converters, and a supervisory controller coupled to the wind power source and the electrically-powered sub-system to monitor and manage the integrated electrically-powered sub-system and wind power system.

  11. Electric power monthly, September 1990. [Glossary included

    SciTech Connect (OSTI)

    Not Available

    1990-12-17

    The purpose of this report is to provide energy decision makers with accurate and timely information that may be used in forming various perspectives on electric issues. The power plants considered include coal, petroleum, natural gas, hydroelectric, and nuclear power plants. Data are presented for power generation, fuel consumption, fuel receipts and cost, sales of electricity, and unusual occurrences at power plants. Data are compared at the national, Census division, and state levels. 4 figs., 52 tabs. (CK)

  12. Engineering innovation to reduce wind power COE

    SciTech Connect (OSTI)

    Ammerman, Curtt Nelson

    2011-01-10

    There are enough wind resources in the US to provide 10 times the electric power we currently use, however wind power only accounts for 2% of our total electricity production. One of the main limitations to wind use is cost. Wind power currently costs 5-to-8 cents per kilowatt-hour, which is more than twice the cost of electricity generated by burning coal. Our Intelligent Wind Turbine LDRD Project is applying LANL's leading-edge engineering expertise in modeling and simulation, experimental validation, and advanced sensing technologies to challenges faced in the design and operation of modern wind turbines.

  13. WIND POWER PROGRAM WIND PROGRAM ACCOMPLISHMENTS U.S. Department of Energy's Wind

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PROGRAM WIND PROGRAM ACCOMPLISHMENTS U.S. Department of Energy's Wind Program-Lasting Impressions State of the Industry Wind power has the potential to provide vast amounts electricity for the nation with more than 66,000 MW of installed power capacity delivering clean energy to homes and businesses. Wind power is expanding across the United States with utility-scale turbines deployed in 39 states and territories. Texas alone has more installed wind power than all but five countries around the

  14. Gansu China Power Jiuquan Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    China Power Jiuquan Wind Power Co Ltd Jump to: navigation, search Name: Gansu China Power Jiuquan Wind Power Co Ltd Place: Gansu Province, China Sector: Wind energy Product:...

  15. Wind and Water Power Program - Wind Power Opens Door To Diverse Opportunities (Green Jobs)

    SciTech Connect (OSTI)

    2010-04-01

    The strong projected growth of wind power will require a stream of trained and qualified workers to manufacture, construct, operate, and maintain the wind energy facilities.

  16. Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power Program (WWPP)

    Office of Energy Efficiency and Renewable Energy (EERE)

    This fact sheet outlines the top 10 benefits of wind energy, including cost, water savings, job creation, indigenous resource, and low operating costs.

  17. Mountain View Power Partners II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name Mountain View Power Partners II Wind Farm Facility Mountain View Power Partners II Sector Wind energy Facility Type Commercial Scale...

  18. Heilongjiang Fulong Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Fulong Wind Power Co Ltd Jump to: navigation, search Name: Heilongjiang Fulong Wind Power Co., Ltd. Place: Fujin, Heilongjiang Province, China Zip: 156100 Sector: Wind energy...

  19. Ningxia Tianjing Shenzhou Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Tianjing Shenzhou Wind Power Co Ltd Jump to: navigation, search Name: Ningxia Tianjing Shenzhou Wind Power Co Ltd Place: Ningxia Autonomous Region, China Zip: 750002 Sector: Wind...

  20. Zhangjiakou Kunyuan Wind Power Equipment Co | Open Energy Information

    Open Energy Info (EERE)

    Kunyuan Wind Power Equipment Co Jump to: navigation, search Name: Zhangjiakou Kunyuan Wind Power Equipment Co Place: Zhangjiakou, Hebei Province, China Sector: Wind energy Product:...

  1. Miracle Wind Power Components Manufacture Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Wind Power Components Manufacture Co Ltd Jump to: navigation, search Name: Miracle Wind Power Components Manufacture Co Ltd Place: Wuxi, Jiangsu Province, China Sector: Wind energy...

  2. Guohua Dongtai Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Dongtai Wind Power Co Ltd Jump to: navigation, search Name: Guohua (Dongtai) Wind Power Co Ltd Place: Dongtai, Jiangsu Province, China Zip: 224200 Sector: Wind energy Product:...

  3. Jiangsu Longyuan Wind Power Co | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Co Jump to: navigation, search Name: Jiangsu Longyuan Wind Power Co. Place: Jiangsu Province, China Sector: Wind energy Product: A joint-venture established for the...

  4. Zhongshan Yixiong Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Yixiong Wind Power Co Ltd Jump to: navigation, search Name: Zhongshan Yixiong Wind Power Co Ltd Place: Zhongshan, Guangdong Province, China Sector: Wind energy Product: A producer...

  5. Baicheng Fuyu Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Baicheng Fuyu Wind Power Co Ltd Jump to: navigation, search Name: Baicheng Fuyu Wind Power Co. Ltd. Place: Baicheng City, Jiangsu Province, China Zip: 137000 Sector: Wind energy...

  6. Qingdao Hengfeng Wind Power Generator Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hengfeng Wind Power Generator Co Ltd Jump to: navigation, search Name: Qingdao Hengfeng Wind Power Generator Co Ltd Place: Jiaonan, Shandong Province, China Sector: Wind energy...

  7. Inner Mongolia Damo Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Damo Wind Power Co Ltd Jump to: navigation, search Name: Inner Mongolia Damo Wind Power Co Ltd Place: Inner Mongolia Autonomous Region, China Sector: Wind energy Product:...

  8. Baoding Huide Wind Power Engineering Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Huide Wind Power Engineering Co Ltd Jump to: navigation, search Name: Baoding Huide Wind Power Engineering Co Ltd Place: Baoding, Hebei Province, China Sector: Wind energy Product:...

  9. Jilin Tianhe Wind Power Equipment Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Equipment Co Ltd Jump to: navigation, search Name: Jilin Tianhe Wind Power Equipment Co Ltd Place: Baicheng, Jilin Province, China Sector: Wind energy Product:...

  10. Zhejiang Wind Power Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Development Co Ltd Jump to: navigation, search Name: Zhejiang Wind Power Development Co Ltd Place: Hangzhou, Zhejiang Province, China Zip: 31005 Sector: Wind energy...

  11. Huaneng Shantou Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Shantou Wind Power Co Ltd Jump to: navigation, search Name: Huaneng Shantou Wind Power Co Ltd Place: Guangzhou, Guangdong Province, China Zip: 510630 Sector: Wind energy Product:...

  12. Zhejiang Xingxing Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Xingxing Wind Power Co Ltd Jump to: navigation, search Name: Zhejiang Xingxing Wind Power Co Ltd Place: Taizhou, Zhejiang Province, China Sector: Wind energy Product: Taizhou-based...

  13. Foshan Dongxing Fengying Wind Power Equipment Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Dongxing Fengying Wind Power Equipment Co Ltd Jump to: navigation, search Name: Foshan Dongxing Fengying Wind Power Equipment Co Ltd Place: Foshan, China Zip: 528000 Sector: Wind...

  14. Jilin Longyuan Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Longyuan Wind Power Co Ltd Jump to: navigation, search Name: Jilin Longyuan Wind Power Co Ltd Place: Changchun, Jilin Province, China Zip: 130061 Sector: Wind energy Product: Joint...

  15. Ningxia Yinyi Wind Power Generation Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Yinyi Wind Power Generation Co Ltd Jump to: navigation, search Name: Ningxia Yinyi Wind Power Generation Co Ltd Place: Ningxia Autonomous Region, China Sector: Wind energy Product:...

  16. Xinjiang Tianfeng Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Tianfeng Wind Power Co Ltd Jump to: navigation, search Name: Xinjiang Tianfeng Wind Power Co Ltd Place: Urumuqi, Xinjiang Autonomous Region, China Zip: 830002 Sector: Wind energy...

  17. Inner Mongolia Wind Power Corporation | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Corporation Jump to: navigation, search Name: Inner Mongolia Wind Power Corporation Place: Inner Mongolia Autonomous Region, China Sector: Wind energy Product: A company...

  18. Jiangsu Guoshen Wind Power Equipment Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Guoshen Wind Power Equipment Co Ltd Jump to: navigation, search Name: Jiangsu Guoshen Wind Power Equipment Co Ltd Place: Yancheng, Jiangsu Province, China Sector: Wind energy...

  19. Yongsheng National Energy Wind Power Co | Open Energy Information

    Open Energy Info (EERE)

    Yongsheng National Energy Wind Power Co Jump to: navigation, search Name: Yongsheng National Energy Wind Power Co Place: Inner Mongolia Autonomous Region, China Sector: Wind energy...

  20. Dongbai Mountain Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Dongbai Mountain Wind Power Co Ltd Jump to: navigation, search Name: Dongbai Mountain Wind Power Co Ltd Place: Zhejiang Province, China Sector: Wind energy Product: Dongyang-based...

  1. Changdao Liankai Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Changdao Liankai Wind Power Co Ltd Jump to: navigation, search Name: Changdao Liankai Wind Power Co Ltd Place: Yantai City, Shandong Province, China Zip: 265800 Sector: Wind energy...

  2. Yantai Tianfeng Wind Power Development Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Tianfeng Wind Power Development Co Ltd Jump to: navigation, search Name: Yantai Tianfeng Wind Power Development Co Ltd Place: Shandong Province, China Sector: Wind energy Product:...

  3. Nantong Kailian Wind Power Company | Open Energy Information

    Open Energy Info (EERE)

    Kailian Wind Power Company Jump to: navigation, search Name: Nantong Kailian Wind Power Company Place: Nantong, Jiangsu Province, China Zip: 226009 Sector: Wind energy Product:...

  4. Jilin Wind Power Stockholding Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Stockholding Co Ltd Jump to: navigation, search Name: Jilin Wind Power Stockholding Co Ltd Place: Changchun, Jilin Province, China Zip: 130021 Sector: Hydro, Wind energy...

  5. Lianyungang Zhongneng United Wind Power Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Zhongneng United Wind Power Co Ltd Jump to: navigation, search Name: Lianyungang Zhongneng United Wind Power Co Ltd Place: Lianyungang, Jiangsu Province, China Sector: Wind energy...

  6. Hangtian Longyuan Benxi Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hangtian Longyuan Benxi Wind Power Co Ltd Jump to: navigation, search Name: Hangtian Longyuan (Benxi) Wind Power Co Ltd Place: Liaoning Province, China Sector: Wind energy Product:...

  7. Jilin Taihe Wind Power Limited | Open Energy Information

    Open Energy Info (EERE)

    Taihe Wind Power Limited Jump to: navigation, search Name: Jilin Taihe Wind Power Limited Place: Zhenlai, Jilin Province, China Sector: Wind energy Product: Top Well and Tianjin DH...

  8. Xilinguole Guotai Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Xilinguole Guotai Wind Power Co Ltd Jump to: navigation, search Name: Xilinguole Guotai Wind Power Co Ltd Place: China Sector: Wind energy Product: Hong Kong-based project...

  9. GWPS Global Wind Power Systems | Open Energy Information

    Open Energy Info (EERE)

    GWPS Global Wind Power Systems Jump to: navigation, search Name: GWPS (Global Wind Power Systems) Place: Hamburg, Germany Zip: 20095 Sector: Wind energy Product: Company...

  10. Zhangbei Guotou Wind Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Zhangbei Guotou Wind Power Plant Jump to: navigation, search Name: Zhangbei Guotou Wind Power Plant Place: Beijing Municipality, China Zip: 100037 Sector: Wind energy Product: A...

  11. Datang Zhangzhou Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Datang Zhangzhou Wind Power Co Ltd Jump to: navigation, search Name: Datang Zhangzhou Wind Power Co Ltd Place: Zhangzhou, Fujian Province, China Sector: Wind energy Product:...

  12. Inner Mongolia Sansheng Wind Power | Open Energy Information

    Open Energy Info (EERE)

    Sansheng Wind Power Jump to: navigation, search Name: Inner Mongolia Sansheng Wind Power Place: Inner Mongolia Autonomous Region, China Sector: Wind energy Product: China-based...

  13. Tongliao Taihe Wind Power Limited | Open Energy Information

    Open Energy Info (EERE)

    Taihe Wind Power Limited Jump to: navigation, search Name: Tongliao Taihe Wind Power Limited Place: Tongliao City, Inner Mongolia Autonomous Region, China Sector: Wind energy...

  14. Guodian Hefeng Wind Power Development Company | Open Energy Informatio...

    Open Energy Info (EERE)

    Hefeng Wind Power Development Company Jump to: navigation, search Name: Guodian Hefeng Wind Power Development Company Place: Huludao, Liaoning Province, China Sector: Wind energy...

  15. The CECIC Wind Power Xinjiang Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    CECIC Wind Power Xinjiang Co Ltd Jump to: navigation, search Name: The CECIC Wind Power (Xinjiang) Co Ltd Place: Beijing, Beijing Municipality, China Zip: 100037 Sector: Wind...

  16. Beijing Wende Xingye Wind Power Technology Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Wende Xingye Wind Power Technology Co Ltd Jump to: navigation, search Name: Beijing Wende Xingye Wind Power Technology Co Ltd Place: Beijing, China Sector: Wind energy Product:...

  17. Huaneng Shouguang Wind Power Company Limited | Open Energy Information

    Open Energy Info (EERE)

    Huaneng Shouguang Wind Power Company Limited Jump to: navigation, search Name: Huaneng Shouguang Wind Power Company Limited Place: Shouguang, Shandong Province, China Sector: Wind...

  18. Yichun Xinganling Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Yichun Xinganling Wind Power Co Ltd Jump to: navigation, search Name: Yichun Xinganling Wind Power Co Ltd Place: Suihua, Heilongjiang Province, China Zip: 152061 Sector: Wind...

  19. Changtu Liaoneng Xiexin Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Changtu Liaoneng Xiexin Wind Power Co Ltd Jump to: navigation, search Name: Changtu Liaoneng Xiexin Wind Power Co Ltd Place: Liaoning Province, China Sector: Wind energy Product:...

  20. Guohua AES Huanghua Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Huanghua Wind Power Co Ltd Jump to: navigation, search Name: Guohua AES (Huanghua) Wind Power Co Ltd Place: Huanghua, Hebei Province, China Sector: Wind energy Product: The...

  1. LM Wind Power formerly LM Glasfiber AS | Open Energy Information

    Open Energy Info (EERE)

    Wind Power formerly LM Glasfiber AS Jump to: navigation, search Name: LM Wind Power (formerly LM Glasfiber AS) Place: Kolding, Denmark Zip: 6000 Sector: Wind energy Product:...

  2. Yantai Dongyuan Wind Power Group Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Yantai Dongyuan Wind Power Group Co Ltd Jump to: navigation, search Name: Yantai Dongyuan Wind Power Group Co Ltd Place: Yantai, Shandong Province, China Zip: 265000 Sector: Wind...

  3. Jiuquan Xinmao Science and Technology Wind Power | Open Energy...

    Open Energy Info (EERE)

    Science and Technology Wind Power Jump to: navigation, search Name: Jiuquan Xinmao Science and Technology Wind Power Place: Gansu Province, China Sector: Wind energy Product: Gansu...

  4. Green Ridge Power Wind Farm II | Open Energy Information

    Open Energy Info (EERE)

    II Jump to: navigation, search Name Green Ridge Power Wind Farm II Facility Green Ridge Power Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  5. Mountain View Power Partners III Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    III Wind Farm Jump to: navigation, search Name Mountain View Power Partners III Wind Farm Facility Mountain View Power Partners III Sector Wind energy Facility Type Commercial...

  6. Minnkota Power Cooperative Wind Turbine (Valley City) | Open...

    Open Energy Info (EERE)

    Valley City) Jump to: navigation, search Name Minnkota Power Cooperative Wind Turbine (Valley City) Facility Minnkota Power Cooperative Wind Turbine (Valley City) Sector Wind...

  7. Liaoning Shenhua Xiehe Wind Power Investment Limited | Open Energy...

    Open Energy Info (EERE)

    Shenhua Xiehe Wind Power Investment Limited Jump to: navigation, search Name: Liaoning Shenhua Xiehe Wind Power Investment Limited Place: Liaoning Province, China Sector: Wind...

  8. Inner Mongolia Lianhe Wind Power Investment | Open Energy Information

    Open Energy Info (EERE)

    Lianhe Wind Power Investment Jump to: navigation, search Name: Inner Mongolia Lianhe Wind Power Investment Place: Inner Mongolia Autonomous Region, China Sector: Wind energy...

  9. Century Concord Wind Power Investment Ltd | Open Energy Information

    Open Energy Info (EERE)

    Concord Wind Power Investment Ltd Jump to: navigation, search Name: Century Concord Wind Power Investment Ltd Place: Beijing, Beijing Municipality, China Sector: Wind energy...

  10. Longxing Wind Power Investment Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Longxing Wind Power Investment Co Ltd Jump to: navigation, search Name: Longxing Wind Power Investment Co Ltd Place: Mudanjiang, Heilongjiang Province, China Sector: Wind energy...

  11. POWER4 Amstel Wind Energy | Open Energy Information

    Open Energy Info (EERE)

    POWER4 Amstel Wind Energy Jump to: navigation, search Name: POWER4 Amstel Wind Energy Place: Bangalore, Karnataka, India Zip: 560034 Sector: Wind energy Product: Bangalore-based...

  12. 20% Wind Energy by 2030 - Chapter 5: Wind Power Siting and Environment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5: Wind Power Siting and Environmental Effects Summary Slides 20% Wind Energy by 2030 - Chapter 5: Wind Power Siting and Environmental Effects Summary Slides Environment and siting ...

  13. WINDExchange: How Do I Get Wind Power?

    Wind Powering America (EERE)

    How do I get Wind Power? Learn how you can own, partner with, host, and support wind power. Construct A Wind Project On Your Own Land There are wind turbines designed for everyone from residential homeowners to utilities, and from private to corporate use. Small wind turbines can be bought with cash, and commercial-scale projects can be financed. To learn more about small projects, such as those for a home or ranch or business that are less than or equal to 100 kilowatts (kW), see the small wind

  14. Electric Power Monthly, August 1990. [Glossary included

    SciTech Connect (OSTI)

    Not Available

    1990-11-29

    The Electric Power Monthly (EPM) presents monthly summaries of electric utility statistics at the national, Census division, and State level. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data includes generation by energy source (coal, oil, gas, hydroelectric, and nuclear); generation by region; consumption of fossil fuels for power generation; sales of electric power, cost data; and unusual occurrences. A glossary is included.

  15. Gansu Xin an Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Xin an Wind Power Co Ltd Jump to: navigation, search Name: Gansu Xin'an Wind Power Co Ltd Place: Gansu Province, China Sector: Wind energy Product: A wind power project developer....

  16. Cangnan Gelin Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Cangnan Gelin Wind Power Co Ltd Jump to: navigation, search Name: Cangnan Gelin Wind Power Co Ltd Place: Wenzhou, Zhejiang Province, China Sector: Wind energy Product: A wind power...

  17. Sky WindPower Corp | Open Energy Information

    Open Energy Info (EERE)

    WindPower Corp Jump to: navigation, search Name: Sky WindPower Corp Place: Ramona, California Zip: 92065 Sector: Wind energy Product: Sky WindPower is working on turbines that...

  18. PowerWind GmbH | Open Energy Information

    Open Energy Info (EERE)

    PowerWind GmbH Jump to: navigation, search Name: PowerWind GmbH Place: Hamburg, Germany Zip: 20457 Sector: Wind energy Product: PowerWind GmbH is a German manufacturer and service...

  19. DOE Science Showcase - Wind Power

    Office of Scientific and Technical Information (OSTI)

    Profiling General Compression: A River of Wind, ScienceCinema, multimedia Solar and Wind Energy Resource Assessment (SWERA) Data from the National Renewable Energy Library and ...

  20. Wind Power | Open Energy Information

    Open Energy Info (EERE)

    Economic development & impacts Federal, state, & local policies Markets Wind Energy Technologies The U.S. Department of Energy defines the scale of wind turbine...

  1. Sandia Energy - Wind Vision 2015: A New Era for Wind Power in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Wind Power in the United States Home Stationary Power Energy Conversion Efficiency Wind Energy Special Programs Wind Vision 2015: A New Era for Wind Power in the United...

  2. Power generation method including membrane separation

    DOE Patents [OSTI]

    Lokhandwala, Kaaeid A.

    2000-01-01

    A method for generating electric power, such as at, or close to, natural gas fields. The method includes conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas by means of a membrane separation step. This step creates a leaner, sweeter, drier gas, which is then used as combustion fuel to run a turbine, which is in turn used for power generation.

  3. A survey on wind power ramp forecasting.

    SciTech Connect (OSTI)

    Ferreira, C.; Gama, J.; Matias, L.; Botterud, A.; Wang, J.

    2011-02-23

    The increasing use of wind power as a source of electricity poses new challenges with regard to both power production and load balance in the electricity grid. This new source of energy is volatile and highly variable. The only way to integrate such power into the grid is to develop reliable and accurate wind power forecasting systems. Electricity generated from wind power can be highly variable at several different timescales: sub-hourly, hourly, daily, and seasonally. Wind energy, like other electricity sources, must be scheduled. Although wind power forecasting methods are used, the ability to predict wind plant output remains relatively low for short-term operation. Because instantaneous electrical generation and consumption must remain in balance to maintain grid stability, wind power's variability can present substantial challenges when large amounts of wind power are incorporated into a grid system. A critical issue is ramp events, which are sudden and large changes (increases or decreases) in wind power. This report presents an overview of current ramp definitions and state-of-the-art approaches in ramp event forecasting.

  4. WIND AND WATER POWER TECHNOLOGIES OFFICE

    Broader source: Energy.gov (indexed) [DOE]

    available annual report summarizing key trends in the U.S. wind power market, with a ... 3 Report Contents * Installation trends * Industry trends * Technology trends * ...

  5. Wind Farm Power System Model Development: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Butterfield, C. P.

    2004-07-01

    In some areas, wind power has reached a level where it begins to impact grid operation and the stability of local utilities. In this paper, the model development for a large wind farm will be presented. Wind farm dynamic behavior and contribution to stability during transmission system faults will be examined.

  6. Wind Powering America's Wind for Schools Project: Summary Report

    SciTech Connect (OSTI)

    Baring-Gould, I.; Newcomb, C.

    2012-06-01

    This report provides an overview of the U.S. Department of Energy, Wind Powering America, Wind for Schools project. It outlines teacher-training activities and curriculum development; discusses the affiliate program that allows school districts and states to replicate the program; and contains reports that provide an update on activities and progress in the 11 states in which the Wind for Schools project operates.

  7. Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-04-01

    This fact sheet outlines the top 10 benefits of wind energy, including cost, water savings, job creation, indigenous resource, and low operating costs.

  8. Electricity for road transport, flexible power systems and wind...

    Open Energy Info (EERE)

    systems and wind power (Smart Grid Project) Jump to: navigation, search Project Name Electricity for road transport, flexible power systems and wind power Country Denmark...

  9. Modeling the Benefits of Storage Technologies to Wind Power

    SciTech Connect (OSTI)

    Sullivan, P.; Short, W.; Blair, N.

    2008-06-01

    Rapid expansion of wind power in the electricity sector is raising questions about how wind resource variability might affect the capacity value of wind farms at high levels of penetration. Electricity storage, with the capability to shift wind energy from periods of low demand to peak times and to smooth fluctuations in output, may have a role in bolstering the value of wind power at levels of penetration envisioned by a new Department of Energy report ('20% Wind by 2030, Increasing Wind Energy's Contribution to U.S. Electricity Supply'). This paper quantifies the value storage can add to wind. The analysis was done employing the Regional Energy Deployment System (ReEDS) model, formerly known as the Wind Deployment System (WinDS) model. ReEDS was used to estimate the cost and development path associated with 20% penetration of wind in the report. ReEDS differs from the WinDS model primarily in that the model has been modified to include the capability to build and use three storage technologies: pumped-hydroelectric storage (PHS), compressed-air energy storage (CAES), and batteries. To assess the value of these storage technologies, two pairs of scenarios were run: business-as-usual, with and without storage; 20% wind energy by 2030, with and without storage. This paper presents the results from those model runs.

  10. Impact of Increasing Distributed Wind Power and Wind Turbine Siting on Rural Distribution Feeder Voltage Profiles: Preprint

    SciTech Connect (OSTI)

    Allen, A.; Zhang, Y. C.; Hodge, B. M.

    2013-09-01

    Many favorable wind energy resources in North America are located in remote locations without direct access to the transmission grid. Building transmission lines to connect remotely-located wind power plants to large load centers has become a barrier to increasing wind power penetration in North America. By connecting utility-sized megawatt-scale wind turbines to the distribution system, wind power supplied to consumers could be increased greatly. However, the impact of including megawatt-scale wind turbines on distribution feeders needs to be studied. The work presented here examined the impact that siting and power output of megawatt-scale wind turbines have on distribution feeder voltage. This is the start of work to present a general guide to megawatt-scale wind turbine impact on the distribution feeder and finding the amount of wind power that can be added without adversely impacting the distribution feeder operation, reliability, and power quality.

  11. Harmonics in a Wind Power Plant: Preprint

    SciTech Connect (OSTI)

    Preciado, V.; Madrigal, M.; Muljadi, E.; Gevorgian, V.

    2015-04-02

    Wind power generation has been growing at a very fast pace for the past decade, and its influence and impact on the electric power grid is significant. As in a conventional power plant, a wind power plant (WPP) must ensure that the quality of the power being delivered to the grid is excellent. At the same time, the wind turbine should be able to operate immune to small disturbances coming from the grid. Harmonics are one of the more common power quality issues presented by large WPPs because of the high switching frequency of the power converters and the possible nonlinear behavior from electric machines (generator, transformer, reactors) within a power plant. This paper presents a summary of the most important issues related to harmonics in WPPs and discusses practical experiences with actual Type 1 and Type 3 wind turbines in two WPPs.

  12. Langford Wind Power LLC | Open Energy Information

    Open Energy Info (EERE)

    Power LLC Jump to: navigation, search Name: Langford Wind Power LLC Place: Texas Phone Number: 512-691-6261 or 512-585-0450 Website: www.puc.texas.govindustryele Outage Hotline:...

  13. Value of Wind Power Forecasting

    SciTech Connect (OSTI)

    Lew, D.; Milligan, M.; Jordan, G.; Piwko, R.

    2011-04-01

    This study, building on the extensive models developed for the Western Wind and Solar Integration Study (WWSIS), uses these WECC models to evaluate the operating cost impacts of improved day-ahead wind forecasts.

  14. BeWind Power Ltd | Open Energy Information

    Open Energy Info (EERE)

    BeWind Power Ltd Jump to: navigation, search Name: BeWind Power Ltd Place: India Sector: Wind energy Product: Wind turbine manufacturer, jointly owned by Indowind and EU Energy...

  15. FCG Putian Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    FCG Putian Wind Power Co Ltd Jump to: navigation, search Name: FCG (Putian) Wind Power Co Ltd Place: Fuzhou, Fujian Province, China Zip: 320001 Sector: Wind energy Product: Wind...

  16. Changchun Woer Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Woer Wind Power Co Ltd Jump to: navigation, search Name: Changchun Woer Wind Power Co Ltd Place: Changchun, Jilin Province, China Sector: Wind energy Product: China-based wind...

  17. Hebei Hong Song Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hong Song Wind Power Co Ltd Jump to: navigation, search Name: Hebei Hong-Song Wind Power Co Ltd Place: Chengde, Hebei Province, China Zip: 67000 Sector: Wind energy Product: A wind...

  18. M N Wind Power Ltd | Open Energy Information

    Open Energy Info (EERE)

    N Wind Power Ltd Jump to: navigation, search Name: M&N Wind Power Ltd Place: Penzance, United Kingdom Zip: TR20 8HX Sector: Wind energy Product: Wind farm developers in conjunction...

  19. Chahar Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Chahar Wind Power Co Ltd Jump to: navigation, search Name: Chahar Wind Power Co Ltd Place: China Sector: Wind energy Product: Inner Mongolia, Shangyi-based wind project developer...

  20. Gansu Jieyuan Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Jieyuan Wind Power Co Ltd Jump to: navigation, search Name: Gansu Jieyuan Wind Power Co Ltd Place: Lanzhou, Gansu Province, China Zip: 730050 Sector: Wind energy Product: Wind farm...

  1. Om Sakthi Wind Power Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Sakthi Wind Power Pvt Ltd Jump to: navigation, search Name: Om Sakthi Wind Power Pvt. Ltd. Place: Chennai, Tamil Nadu, India Sector: Wind energy Product: Chennai-based wind project...

  2. Mountain View Power Partners I Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    I Wind Farm Jump to: navigation, search Name Mountain View Power Partners I Wind Farm Facility Mountain View Power Partners I Sector Wind energy Facility Type Commercial Scale Wind...

  3. Wind Powering America Webinar: Wind Power Economics: Past, Present...

    Broader source: Energy.gov (indexed) [DOE]

    Wind turbine prices in the United States have declined, on average, by nearly one-third ... while other design improvements have also boosted turbine energy production. ...

  4. Xi an Nordex Wind Turbine Co Ltd aka Xi an Weide Wind Power Equipment...

    Open Energy Info (EERE)

    Nordex Wind Turbine Co Ltd aka Xi an Weide Wind Power Equipment Co Ltd Jump to: navigation, search Name: Xi'an Nordex Wind Turbine Co Ltd (aka Xi'an Weide Wind Power Equipment Co...

  5. Shanghai Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Shanghai Wind Power Co Ltd Place: Shanghai Municipality, China Zip: 200437 Sector: Wind energy Product: Engaged in the design and manufacturing of wind turbine generators and...

  6. Baoding Tianwei Wind Power Blade Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Blade Co Ltd Jump to: navigation, search Name: Baoding Tianwei Wind Power Blade Co Ltd Place: Hebei Province, China Sector: Wind energy Product: Wind turbine blade maker....

  7. WindPower Innovations Inc | Open Energy Information

    Open Energy Info (EERE)

    Arizona Zip: 85142 Sector: Wind energy Product: Arizona-based company focused on refurbishment and repair of wind turbine gearboxes. References: WindPower Innovations Inc1...

  8. Colorado Green Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Colorado Green Wind Power Project Facility Colorado Green Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  9. Jeevandhara Wind Power Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Pvt.Ltd. Place: Satara, Maharashtra, India Zip: 415001 Sector: Solar, Wind energy Product: Satara-based wind and solar project developer. Coordinates: 17.68731,...

  10. COE projection for the modular WARP{trademark} wind power system for wind farms and electric utility power transmission

    SciTech Connect (OSTI)

    Weisbrich, A.L.; Ostrow, S.L.; Padalino, J.

    1995-09-01

    Wind power has emerged as an attractive alternative source of electricity for utilities. Turbine operating experience from wind farms has provided corroborating data of wind power potential for electric utility application. Now, a patented modular wind power technology, the Toroidal Accelerator Rotor Platform (TARP{trademark}) Windframe{trademark}, forms the basis for next generation megawatt scale wind farm and/or distributed wind power plants. When arranged in tall vertically clustered TARP{trademark} module stacks, such power plant units are designated Wind Amplified Rotor Platform (WARP{trademark}) Systems. While heavily building on proven technology, these systems are projected to surpass current technology windmills in terms of performance, user-friendly operation and ease of maintenance. In its unique generation and transmission configuration, the WARP{trademark}-GT System combines both electricity generation through wind energy conversion and electric power transmission. Furthermore, environmental benefits include dramatically less land requirement, architectural appearance, lower noise and EMI/TV interference, and virtual elimination of bird mortality potential. Cost-of-energy (COE) is projected to be from under $0.02/kWh to less than $0.05/kWh in good to moderate wind resource sites.

  11. Wind Power Price Trends in the United States

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2009-07-15

    For the fourth year in a row, the United States led the world in adding new wind power capacity in 2008, and also surpassed Germany to take the lead in terms of cumulative installed wind capacity. The rapid growth of wind power in the U.S. over the past decade (Figure 1) has been driven by a combination of increasingly supportive policies (including the Federal production tax credit (PTC) and a growing number of state renewables portfolio standards), uncertainty over the future fuel costs and environmental liabilities of natural gas and coal-fired power plants, and wind's competitive position among generation resources. This article focuses on just the last of these drivers - i.e., trends in U.S. wind power prices - over the period of strong capacity growth since 1998.

  12. Silicon Valley Power and Oklahoma Municipal Power Authority Win 2014 Public Power Wind Awards

    Broader source: Energy.gov [DOE]

    The Energy Department and the American Public Power Association named Oklahoma Municipal Power Authority and Silicon Valley Power as the winners of the 2014 Public Power Wind Awards.

  13. Network Wind Power Over the Pacific Northwest. Progress Report, October 1979-September 1980.

    SciTech Connect (OSTI)

    Baker, Robert W.; Hewson, E. Wendell

    1980-10-01

    The research in FY80 is composed of six primary tasks. These tasks include data collection and analysis, wind flow studies around an operational wind turbine generator (WTG), kite anemometer calibration, wind flow analysis and prediction, the Klickitat County small wind energy conversion system (SWECS) program, and network wind power analysis. The data collection and analysis task consists of four sections, three of which deal with wind flow site surveys and the fourth with collecting and analyzing wind data from existing data stations. This report also includes an appendix which contains mean monthly wind speed data summaries, wind spectrum summaries, time series analysis plots, and high wind summaries.

  14. Wind Power America Final Report

    SciTech Connect (OSTI)

    Spangler, Brian; Montgomery, Kathi; Cartwright, Paul

    2012-01-30

    The objective of this grant was to further the development of Montana’s vast wind resources for small, medium and large scale benefits to Montana and the nation. This was accomplished through collaborative work with wind industry representatives, state and local governments, the agricultural community and interested citizens. Through these efforts DEQ was able to identify development barriers, educate and inform citizens as well as participate in regional and national dialogue that will spur the development of wind resources

  15. Impact of Wind Power Plants on Voltage and Transient Stability of Power Systems

    SciTech Connect (OSTI)

    Muljadi, E.; Nguyen, Tony B.; Pai, M. A.

    2008-09-30

    A standard three-machine, nine-bus wind power system is studied and augmented by a radially connected wind power plant that contains 22 wind turbine generators.

  16. Wind Turbine Generator System Power Quality Test Report for the Gaia Wind 11-kW Wind Turbine

    SciTech Connect (OSTI)

    Curtis, A.; Gevorgian, V.

    2011-07-01

    This report details the power quality test on the Gaia Wind 11-kW Wind Turbine as part of the U.S. Department of Energy's Independent Testing Project. In total five turbines are being tested as part of the project. Power quality testing is one of up to five test that may be performed on the turbines including power performance, safety and function, noise, and duration tests. The results of the testing provide manufacturers with reports that may be used for small wind turbine certification.

  17. Category:Wind power in China | Open Energy Information

    Open Energy Info (EERE)

    Wind power in China Jump to: navigation, search Category: Wind Power in China Pages in category "Wind power in China" The following 2 pages are in this category, out of 2 total. C...

  18. ARGUS-PRIMA: Wind Power Prediction | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARGUS-PRIMA: Wind Power Prediction ARGUS-PRIMA: Wind Power Prediction ARGUS-PRIMA is a software platform for testing statistical algorithms for short-term wind power forecasting. ...

  19. DOEs Wind & Water Power Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE's Wind & Water Power Program Overview Jose Zayas Program Manager Wind and Water Power Program June 28, 2012 2 | Wind and Water Power Program eere.energy.gov Administration & ...

  20. Final Scientific Report - Wind Powering America State Outreach Project

    SciTech Connect (OSTI)

    Sinclair, Mark; Margolis, Anne

    2012-02-01

    The goal of the Wind Powering America State Outreach Project was to facilitate the adoption of effective state legislation, policy, finance programs, and siting best practices to accelerate public acceptance and development of wind energy. This was accomplished by Clean Energy States Alliance (CESA) through provision of informational tools including reports and webinars as well as the provision of technical assistance to state leaders on wind siting, policy, and finance best practices, identification of strategic federal-state partnership activities for both onshore and offshore wind, and participation in regional wind development collaboratives. The Final Scientific Report - Wind Powering America State Outreach Project provides a summary of the objectives, activities, and outcomes of this project as accomplished by CESA over the period 12/1/2009 - 11/30/2011.

  1. Wind Power Reliability: Breaking Down a Barrier

    Broader source: Energy.gov [DOE]

    The steady increase of wind power on the grid presents new challenges for power system operators charged with making sure the grid stays up and running. "We need to ensure that we are going down a path that will lead to better reliability [with wind power]," said Bob Zavadil, an executive vice president at EnerNex Corporation in Knoxville, Tenn., a firm specializing in renewable energy grid interconnection and integration. "If this piece isn't done, there will be problems." EnerNex has spent the last decade perfecting wind turbine and plant models that test a wind plant's influence on the grid and its ability to provide grid support. In its latest effort, the company is using American Recovery and Reinvestment Act funds worth $750,000 to develop documentation and validations of computer wind turbine models.

  2. Study Shows Active Power Controls from Wind May Increase Revenues...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Shows Active Power Controls from Wind May Increase Revenues and Improve System Reliability Study Shows Active Power Controls from Wind May Increase Revenues and Improve System ...

  3. Wind and Water Power Technologies Office Position Available:...

    Energy Savers [EERE]

    Wind and Water Power Technologies Office Position Available: Marine and Hydrokinetic General Engineer Wind and Water Power Technologies Office Position Available: Marine and ...

  4. Huadian Inner Mongolia Kailu Wind Power Company Limited | Open...

    Open Energy Info (EERE)

    Inner Mongolia Kailu Wind Power Company Limited Jump to: navigation, search Name: Huadian Inner Mongolia Kailu Wind Power Company Limited Place: Jinan, Inner Mongolia Autonomous...

  5. Fujian Putian Nanridao Houshanzai Wind Power Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Putian Nanridao Houshanzai Wind Power Co Ltd Jump to: navigation, search Name: Fujian Putian Nanridao Houshanzai Wind Power Co Ltd Place: Putian, Fujian Province, China Sector:...

  6. Inner Mongolia North Longyuan Wind Power Co Ltd | Open Energy...

    Open Energy Info (EERE)

    North Longyuan Wind Power Co Ltd Jump to: navigation, search Name: Inner Mongolia North Longyuan Wind Power Co Ltd Place: Hohhot, Inner Mongolia Autonomous Region, China Zip: 10020...

  7. Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd | Open...

    Open Energy Info (EERE)

    Yeelong Wind Power Equipment Manufacturing Co Ltd Jump to: navigation, search Name: Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd Place: Hebei Province, China Sector:...

  8. Nordex Yinchuan Wind Power Equipment Manufacturing Co Ltd | Open...

    Open Energy Info (EERE)

    Yinchuan Wind Power Equipment Manufacturing Co Ltd Jump to: navigation, search Name: Nordex (Yinchuan) Wind Power Equipment Manufacturing Co. Ltd Place: Yinchuan, Ningxia...

  9. Nordex Dongying Wind Power Equipment Manufacturing Co Ltd | Open...

    Open Energy Info (EERE)

    Dongying Wind Power Equipment Manufacturing Co Ltd Jump to: navigation, search Name: Nordex (Dongying) Wind Power Equipment Manufacturing Co. Ltd. Place: Dongying, Shandong...

  10. DOE Releases Comprehensive Report on Offshore Wind Power in the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Releases Comprehensive Report on Offshore Wind Power in the United States DOE Releases Comprehensive Report on Offshore Wind Power in the United States October 7, 2010 -...

  11. Huade County Daditaihong Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Huade County Daditaihong Wind Power Co Ltd Jump to: navigation, search Name: Huade County Daditaihong Wind Power Co Ltd Place: Huade, Inner Mongolia Autonomous Region, China...

  12. Tongliao Changxing Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Tongliao Changxing Wind Power Co Ltd Jump to: navigation, search Name: Tongliao Changxing Wind Power Co Ltd Place: Tongliao City, Inner Mongolia Autonomous Region, China Sector:...

  13. Indian Wind Power Association IWPA | Open Energy Information

    Open Energy Info (EERE)

    Power Association IWPA Jump to: navigation, search Name: Indian Wind Power Association (IWPA) Place: Chennai, Tamil Nadu, India Zip: 600 020 Sector: Wind energy Product:...

  14. Harbin Hafei Winwind Wind Power Equipment Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Hafei Winwind Wind Power Equipment Co Ltd Jump to: navigation, search Name: Harbin Hafei-Winwind Wind Power Equipment Co Ltd Place: Harbin, Heilongjiang Province, China Zip: 150060...

  15. Baoding Hengyi Wind Power Equipment Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Baoding Hengyi Wind Power Equipment Co Ltd Jump to: navigation, search Name: Baoding Hengyi Wind Power Equipment Co Ltd Place: Baoding, Hebei Province, China Product: Baoding-based...

  16. Dongshan Aozaishan Wind Power Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Dongshan Aozaishan Wind Power Development Co Ltd Jump to: navigation, search Name: Dongshan Aozaishan Wind Power Development Co Ltd Place: Zhangzhou, Fujian Province, China Sector:...

  17. Datang Chifeng Saihanba Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Saihanba Wind Power Co Ltd Jump to: navigation, search Name: Datang Chifeng Saihanba Wind Power Co Ltd Place: Chifeng, Inner Mongolia Autonomous Region, China Zip: 24000 Sector:...

  18. Fujian Pingtan Changjiangao Wind Power Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Fujian Pingtan Changjiangao Wind Power Co Ltd Jump to: navigation, search Name: Fujian Pingtan Changjiangao Wind Power Co Ltd Place: Pingtan, Fujian Province, China Zip: 350400...

  19. Erlianhot Changfeng Xiehe Wind Power Development Co Ltd | Open...

    Open Energy Info (EERE)

    Erlianhot Changfeng Xiehe Wind Power Development Co Ltd Jump to: navigation, search Name: Erlianhot Changfeng Xiehe Wind Power Development Co Ltd Place: Inner Mongolia Autonomous...

  20. Mass Megawatts Wind Power Inc | Open Energy Information

    Open Energy Info (EERE)

    Megawatts Wind Power Inc Jump to: navigation, search Name: Mass Megawatts Wind Power Inc Address: 95 Prescott Street Place: Worcester, Massachusetts Zip: 01605 Region: Greater...

  1. Guangdong Mingyang Wind Power Technology Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Mingyang Wind Power Technology Co Ltd Jump to: navigation, search Name: Guangdong Mingyang Wind Power Technology Co Ltd Place: Zhongshan City, Guangdong Province, China Sector:...

  2. Qixia Rulin Wind Power Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Qixia Rulin Wind Power Development Co Ltd Jump to: navigation, search Name: Qixia Rulin Wind Power Development Co. Ltd. Place: Qixia City, Shandong Province, China Zip: 265300...

  3. Shenyang Huaren Wind Power Technology Development Co Ltd | Open...

    Open Energy Info (EERE)

    Huaren Wind Power Technology Development Co Ltd Jump to: navigation, search Name: Shenyang Huaren Wind Power Technology Development Co Ltd Place: Shenyang, Liaoning Province, China...

  4. National Renewable Energy Laboratory Wind and Water Power Small...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Renewable Energy Laboratory Wind and Water Power Small Business Voucher Open House National Renewable Energy Laboratory Wind and Water Power Small Business Voucher Open...

  5. Environmental Impacts of Wind Power Development on the Population...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impacts of Wind Power Development on the Population Biology of Greater Prairie-Chickens Environmental Impacts of Wind Power Development on the Population Biology of Greater ...

  6. Southern Minnesota Municipal Power Agency (SMMPA) Wind Farm I...

    Open Energy Info (EERE)

    I Jump to: navigation, search Name Southern Minnesota Municipal Power Agency (SMMPA) Wind Farm I Facility Southern Minnesota Municipal Power Agency (SMMPA) Sector Wind energy...

  7. Southern Minnesota Municipal Power Agency (SMMPA) Wind Farm Ii...

    Open Energy Info (EERE)

    Ii Jump to: navigation, search Name Southern Minnesota Municipal Power Agency (SMMPA) Wind Farm Ii Facility Southern Minnesota Municipal Power Agency (SMMPA) Sector Wind energy...

  8. Analysis of Wind Power Ramping Behavior in ERCOT

    SciTech Connect (OSTI)

    Wan, Y. H.

    2011-03-01

    This report analyzes the wind power ramping behavior using 10-minute and hourly average wind power data from ERCOT and presents statistical properties of the large ramp events.

  9. Conventional Hydropower Technologies, Wind And Water Power Program...

    Energy Savers [EERE]

    Conventional Hydropower Technologies, Wind And Water Power Program (WWPP) (Fact Sheet) Conventional Hydropower Technologies, Wind And Water Power Program (WWPP) (Fact Sheet) The US ...

  10. China Resources Wind Power Development Co Ltd Hua Run | Open...

    Open Energy Info (EERE)

    Resources Wind Power Development Co Ltd Hua Run Jump to: navigation, search Name: China Resources Wind Power Development Co Ltd (Hua Run) Place: Shantou, Guangdong Province, China...

  11. China Wind Systems formerly Green Power Malex | Open Energy Informatio...

    Open Energy Info (EERE)

    formerly Green Power Malex Jump to: navigation, search Name: China Wind Systems (formerly Green PowerMalex) Place: Wuxi, Jiangsu Province, China Sector: Wind energy Product:...

  12. Jilin CWP Milestone Wind Power Investment Limited | Open Energy...

    Open Energy Info (EERE)

    Jilin CWP Milestone Wind Power Investment Limited Jump to: navigation, search Name: Jilin CWP-Milestone Wind Power Investment Limited Place: Baicheng, Jilin Province, China Sector:...

  13. Clean Energy Investment in Developing Countries: Wind Power in...

    Open Energy Info (EERE)

    Countries: Wind Power in Egypt Jump to: navigation, search Name Clean Energy Investment in Developing Countries: Wind Power in Egypt AgencyCompany Organization...

  14. Inner Mongolia Shenhua Xiehe Wind Power Investment Co Ltd | Open...

    Open Energy Info (EERE)

    Shenhua Xiehe Wind Power Investment Co Ltd Jump to: navigation, search Name: Inner Mongolia Shenhua Xiehe Wind Power Investment Co Ltd Place: Xilinguole, Inner Mongolia Autonomous...

  15. Characterizing wind power resource reliability in southern Africa...

    Office of Scientific and Technical Information (OSTI)

    DOE PAGES Search Results Published Article: Characterizing wind power resource reliability in southern Africa Title: Characterizing wind power resource reliability in southern...

  16. Explore Careers in Wind Power | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Power Explore Careers in Wind Power The DOE Wind program funds research and development to enable the rapid expansion of clean, affordable, reliable, domestic wind power to promote national security, economic vitality, and environmental quality. The DOE Wind program funds research and development to enable the rapid expansion of clean, affordable, reliable, domestic wind power to promote national security, economic vitality, and environmental quality. Wind Turbine Technicians Some desired

  17. Harmonics in a Wind Power Plant: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... At the same time, the wind turbine should be able to operate immune to small disturbances coming from the grid. Harmonics are one of the more common power quality issues presented ...

  18. Free Consumer Workshops On Solar & Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Golden, Colo., Dec. 9, 1997 -- The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) will host three free consumer workshops on solar and wind power for the ...

  19. Wind Power in China | Open Energy Information

    Open Energy Info (EERE)

    Wind Power in China Jump to: navigation, search This article is a stub. You can help OpenEI by expanding it. Contents 1 Summary 2 Estimate Potential 3 Current Projects 4 China...

  20. PBS: Wind Power for Educators

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    This lesson on wind energy is designed for physical science, earth science, and environmental science classrooms for grades 9-12, but may also be appropriate for some middle school science classes.

  1. Wind Power Forecasting Error Frequency Analyses for Operational Power System Studies: Preprint

    SciTech Connect (OSTI)

    Florita, A.; Hodge, B. M.; Milligan, M.

    2012-08-01

    The examination of wind power forecasting errors is crucial for optimal unit commitment and economic dispatch of power systems with significant wind power penetrations. This scheduling process includes both renewable and nonrenewable generators, and the incorporation of wind power forecasts will become increasingly important as wind fleets constitute a larger portion of generation portfolios. This research considers the Western Wind and Solar Integration Study database of wind power forecasts and numerical actualizations. This database comprises more than 30,000 locations spread over the western United States, with a total wind power capacity of 960 GW. Error analyses for individual sites and for specific balancing areas are performed using the database, quantifying the fit to theoretical distributions through goodness-of-fit metrics. Insights into wind-power forecasting error distributions are established for various levels of temporal and spatial resolution, contrasts made among the frequency distribution alternatives, and recommendations put forth for harnessing the results. Empirical data are used to produce more realistic site-level forecasts than previously employed, such that higher resolution operational studies are possible. This research feeds into a larger work of renewable integration through the links wind power forecasting has with various operational issues, such as stochastic unit commitment and flexible reserve level determination.

  2. Kahuku Wind Power Biological Opinion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kahuku Wind Power Biological Opinion Kahuku Wind Power Biological Opinion Kahuku Wind Power, LLC, Construction of the Kahuku Wind Power Facility in Kahuku, O'ahu, Hawaii Kahuku Wind Power Biological Opinion (4.75 MB) More Documents & Publications EA-1726: Final Environmental Assessment EA-1374: Final Environmental Assessment Wind Turbine Interactions with Birds, Bats, and their Habitats: A Summary of Research Results and Priority Questions

  3. NedPower Mount Storm Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Shell Wind EnergyDominion Energy Developer NedPowerShell Wind EnergyDominion Energy...

  4. Wind Powering America FY06 Activities Summary

    SciTech Connect (OSTI)

    Not Available

    2007-02-01

    The Wind Powering America FY06 Activities Summary reflects the accomplishments of our state wind working groups, our programs at the National Renewable Energy Laboratory, and our partner organizations. The national WPA team remains a leading force for moving wind energy forward in the United States. WPA continues to work with its national, regional, and state partners to communicate the opportunities and benefits of wind energy to a diverse set of stakeholders. WPA now has 29 state wind working groups (welcoming New Jersey, Indiana, Illinois, and Missouri in 2006) that form strategic alliances to communicate wind's benefits to the state stakeholders. More than 120 members of national and state public and private sector organizations from 34 states attended the 5th Annual WPA All-States Summit in Pittsburgh in June.

  5. Final Technical Report - Kotzebue Wind Power Project - Volume II

    SciTech Connect (OSTI)

    Rana Zucchi, Global Energy Concepts, LLC; Brad Reeve, Kotzebue Electric Association; DOE Project Officer - Doug Hooker

    2007-10-31

    The Kotzebue Wind Power Project is a joint undertaking of the U.S. Department of Energy (DOE); Kotzebue Electric Association (KEA); and the Alaska Energy Authority (AEA). The goal of the project is to develop, construct, and operate a wind power plant interconnected to a small isolated utility grid in an arctic climate in Northwest Alaska. The primary objective of KEA’s wind energy program is to bring more affordable electricity and jobs to remote Alaskan communities. DOE funding has allowed KEA to develop a multi-faceted approach to meet these objectives that includes wind project planning and development, technology transfer, and community outreach. The first wind turbines were installed in the summer of 1997 and the newest turbines were installed in the spring of 2007. The total installed capacity of the KEA wind power project is 1.16 MW with a total of 17 turbines rated between 65 kW and 100 kW. The operation of the wind power plant has resulted in a wind penetration on the utility system in excess of 35% during periods of low loads. This document and referenced attachments are presented as the final technical report for the U.S. Department of Energy (DOE) grant agreement DE-FG36-97GO10199. Interim deliverables previously submitted are also referenced within this document and where reasonable to do so, specific sections are incorporated in the report or attached as appendices.

  6. Wind power. 1977-1978 (citations from the NTIS data base). Report for 1977-78

    SciTech Connect (OSTI)

    Hundemann, A.S.

    1980-06-01

    The feasibility, use, and engineering aspects of wind power and windmills are discussed in these citations of Federally-funded research reports. Abstracts primarily cover the use of wind power for electric power generation and wind turbine design and performance. General studies dealing with comparative analyses of wind power and alternative energy sources are included, as are energy storage devices which can be used in these systems. (This updated bibliography contains 253 abstracts, none of which are new entries to the previous edition.)

  7. Wind power. 1979-May 1980 (citations from the NTIS data base). Report for 1979-May 1980

    SciTech Connect (OSTI)

    Hundemann, A.S.

    1980-06-01

    The feasibility, use, and engineering aspects of wind power and windmills are discussed in these citations of Federally-funded research reports. Abstracts primarily cover the use of wind power for electric power generation and wind turbine design and performance. General studies dealing with comparative analyses of wind power and alternative energy sources are included, as are energy storage devices which can be used in these systems. (This updated bibliography contains 135 abstracts, 112 of which are new entries to the previous edition.)

  8. Wind power. 1979-October, 1981 (citations from the NTIS Data Base). Report for 1979-Oct 81

    SciTech Connect (OSTI)

    Not Available

    1981-11-01

    The feasibility, use, and engineering aspects of wind power and windmills are discussed in these citations of Federally-funded research reports. Abstracts primarily cover the use of wind power for electric power generation and wind turbine design and performance. General studies dealing with comparative analyses of wind power and alternative energy sources are included, as are energy storage devices which can be used in these systems. (This updated bibliography contains 317 citations, 182 of which are new entries to the previous edition.)

  9. Wind for Schools Project Power System Brief, Wind Powering America Fact Sheet Series

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2009-05-01

    Wind Powering America's (WPA's) Wind for Schools project uses a basic system configuration for each school project. The system incorporates a single SkyStream wind turbine, a 70-ft guyed tower, disconnect boxes at the base of the turbine and at the school, and an interconnection to the school's electrical system. This document provides a detailed description of each system component.

  10. CECIC HKC Wind Power Company Ltd | Open Energy Information

    Open Energy Info (EERE)

    HKC Wind Power Company Ltd Jump to: navigation, search Name: CECIC HKC Wind Power Company Ltd Place: China Sector: Wind energy Product: HKC are in a joint venture with China Energy...

  11. Fuxin Huashun Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Fuxin Huashun Wind Power Co Ltd Jump to: navigation, search Name: Fuxin Huashun Wind Power Co Ltd Place: Fuxin, Liaoning Province, China Sector: Wind energy Product: Fuxin-based JV...

  12. Gansu Datang Yumen Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Datang Yumen Wind Power Co Ltd Jump to: navigation, search Name: Gansu Datang Yumen Wind Power Co Ltd Place: Lanzhou, Gansu Province, China Zip: 730050 Sector: Wind energy Product:...

  13. Maoming Zhong ao Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Maoming Zhong ao Wind Power Co Ltd Jump to: navigation, search Name: Maoming Zhong'ao Wind Power Co Ltd Place: Guangdong Province, China Sector: Wind energy Product: Maoming-based...

  14. Jilin Tongli Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Tongli Wind Power Co Ltd Jump to: navigation, search Name: Jilin Tongli Wind Power Co Ltd Place: Baicheng, Jilin Province, China Sector: Wind energy Product: Jilin-based company...

  15. Shantou Dan Nan Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Shantou Dan Nan Wind Power Co Ltd Jump to: navigation, search Name: Shantou Dan Nan Wind Power Co Ltd Place: Shantou, Guangdong Province, China Zip: 515041 Sector: Wind energy...

  16. Jilin Licheng Xiehe Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Licheng Xiehe Wind Power Co Ltd Jump to: navigation, search Name: Jilin Licheng Xiehe Wind Power Co Ltd Place: Jilin Province, China Sector: Wind energy Product: Baicheng-based JV...

  17. Green Ridge Power Wind Farm I | Open Energy Information

    Open Energy Info (EERE)

    I Jump to: navigation, search Name Green Ridge Power Wind Farm I Facility Green Ridge Power Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  18. U.S. Department of Energy Wind and Water Power Program Funding...

    Energy Savers [EERE]

    OFFSHORE WIND PROJECTS Fiscal Years 2006 - 2015 WIND AND WATER POWER TECHNOLOGIES OFFICE WIND AND WATER POWER TECHNOLOGIES OFFICE WIND AND WATER POWER TECHNOLOGIES OFFICE 1 ...

  19. U.S. Department of Energy Wind and Water Power Program Funding...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OFFSHORE WIND PROJECTS Fiscal Years 2006 - 2016 WIND AND WATER POWER TECHNOLOGIES OFFICE WIND AND WATER POWER TECHNOLOGIES OFFICE WIND AND WATER POWER TECHNOLOGIES OFFICE 1 ...

  20. U.S. Department of Energy Wind and Water Power Program Funding...

    Broader source: Energy.gov (indexed) [DOE]

    OFFSHORE WIND PROJECTS Fiscal Years 2006 - 2015 WIND AND WATER POWER TECHNOLOGIES OFFICE WIND AND WATER POWER TECHNOLOGIES OFFICE WIND AND WATER POWER TECHNOLOGIES OFFICE 1...

  1. Wind Powering America Webinar: Wind Power Economics: Past, Present, and

    Broader source: Energy.gov (indexed) [DOE]

    Future Trends | Department of Energy Wind turbine prices in the United States have declined, on average, by nearly one-third since 2008, after doubling from 2002 through 2008. Over this entire period, the average nameplate capacity rating, hub height, and rotor swept area of turbines installed in the United States have increased significantly, while other design improvements have also boosted turbine energy production. In combination, these various trends have had a significant-and sometimes

  2. China WindPower Jilin Power Share JV | Open Energy Information

    Open Energy Info (EERE)

    WindPower Jilin Power Share JV Jump to: navigation, search Name: China WindPower & Jilin Power Share JV Place: Jilin Province, China Sector: Wind energy Product: China-based...

  3. Distribution of Wind Power Forecasting Errors from Operational Systems (Presentation)

    SciTech Connect (OSTI)

    Hodge, B. M.; Ela, E.; Milligan, M.

    2011-10-01

    This presentation offers new data and statistical analysis of wind power forecasting errors in operational systems.

  4. Analysis of wind power ancillary services characteristics with German 250-MW wind data

    SciTech Connect (OSTI)

    Ernst, B.

    1999-12-09

    With the increasing availability of wind power worldwide, power fluctuations have become a concern for some utilities. Under electric industry restructuring in the US, the impact of these fluctuations will be evaluated by examining provisions and costs of ancillary services for wind power. This paper analyzes wind power in the context of ancillary services, using data from a German 250 Megawatt Wind project.

  5. New England Wind Forum: A Wind Powering America Project Volume 1, Issue 4 -- May 2008

    SciTech Connect (OSTI)

    2009-02-26

    Newsletter featuring the latest developments throughout New England in wind power policy, project development, and markets.

  6. New England Wind Forum: A Wind Powering America Project, Volume 1, Issue 1 -- January 2006

    SciTech Connect (OSTI)

    2009-02-26

    Newsletter featuring the latest developments throughout New England in wind power policy, project development, and markets.

  7. New England Wind Forum: A Wind Powering America Project, Volume 1, Issue 2 -- December 2006

    SciTech Connect (OSTI)

    2009-02-26

    Newsletter featuring the latest developments throughout New England in wind power policy, project development, and markets.

  8. New England Wind Forum: A Wind Powering America Project Volume 1, Issue 3 -- October 2007

    SciTech Connect (OSTI)

    2009-02-26

    Newsletter featuring the latest developments throughout New England in wind power policy, project development, and markets.

  9. Testing Active Power Control from Wind Power at the National Wind Technology Center (NWTC) (Presentation)

    SciTech Connect (OSTI)

    Ela, E.

    2011-05-01

    In order to keep the electricity grid stable and the lights on, the power system relies on certain responses from its generating fleet. This presentation evaluates the potential for wind turbines and wind power plants to provide these services and assist the grid during critical times.

  10. Northern Cheyenne Tribe - Wind Power Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Northern Cheyenne Tribe Wind Power Project Program Review 2006 Ingrid Gardner Project Overview * Project began in 2002 * Sole decision maker and final authority » NORTHERN CHEYENNE TRIBE * Technical Participant » Distributed Generation Systems, Inc. * Tribal Participant » TRIBAL EDA COMMITTEE » TRIBAL EDA PLANNER Project Design * Development Phase Approach - Long Term Wind Data Collected »RAWS SITE »AIR QUALITY SITES »ON-SITE MET TOWERS 50 meter tower 20 meter tower Project Design Cont. *

  11. Wind Powering America FY07 Activities Summary

    SciTech Connect (OSTI)

    Not Available

    2008-02-01

    The Wind Powering America FY07 Activities Summary reflects the accomplishments of our state wind working groups, our programs at the National Renewable Energy Laboratory, and our partner organizations. The national WPA team remains a leading force for moving wind energy forward in the United States. WPA continues to work with its national, regional, and state partners to communicate the opportunities and benefits of wind energy to a diverse set of stakeholders. WPA now has 30 state wind working groups (welcoming Georgia and Wisconsin in 2007) that form strategic alliances to communicate wind's benefits to the state stakeholders. More than 140 members of national and state public and private sector organizations from 39 U.S. states and Canada attended the 6th Annual WPA All-States Summit in Los Angeles in June. WPA's emphasis remains on the rural agricultural sector, which stands to reap the significant economic development benefits of wind energy development. Additionally, WPA continues its program of outreach, education, and technical assistance to Native American communities, public power entities, and regulatory and legislative bodies.

  12. Wind Turbine Generator System Duration Test Report for the Mariah Power Windspire Wind Turbine

    SciTech Connect (OSTI)

    Huskey, A.; Bowen, A.; Jager, D.

    2010-05-01

    This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Wind Technology Center (NWTC) as a part of the first round of this project. Duration testing is one of up to five tests that may be performed on the turbines. Other tests include power performance, safety and function, noise, and power quality tests. NWTC testing results provide manufacturers with reports that may be used to meet part of small wind turbine certification requirements. This duration test report focuses on the Mariah Power Windspire wind turbine.

  13. Integration of Wind Energy Systems into Power Engineering Education Program at UW-Madison

    SciTech Connect (OSTI)

    Venkataramanan, Giri; Lesieutre, Bernard; Jahns, Thomas; Desai, Ankur R

    2012-09-01

    This project has developed an integrated curriculum focused on the power engineering aspects of wind energy systems that builds upon a well-established graduate educational program at UW- Madison. Five new courses have been developed and delivered to students. Some of the courses have been offered on multiple occasions. The courses include: Control of electric drives for Wind Power applications, Utility Applications of Power Electronics (Wind Power), Practicum in Small Wind Turbines, Utility Integration of Wind Power, and Wind and Weather for Scientists and Engineers. Utility Applications of Power Electronics (Wind Power) has been provided for distance education as well as on-campus education. Several industrial internships for students have been organized. Numerous campus seminars that provide discussion on emerging issues related to wind power development have been delivered in conjunction with other campus events. Annual student conferences have been initiated, that extend beyond wind power to include sustainable energy topics to draw a large group of stakeholders. Energy policy electives for engineering students have been identified for students to participate through a certificate program. Wind turbines build by students have been installed at a UW-Madison facility, as a test-bed. A Master of Engineering program in Sustainable Systems Engineering has been initiated that incorporates specializations that include in wind energy curricula. The project has enabled UW-Madison to establish leadership at graduate level higher education in the field of wind power integration with the electric grid.

  14. Wind Powering America FY08 Activities Summary (Book)

    SciTech Connect (OSTI)

    Not Available

    2009-02-01

    The Wind Powering America FY08 Activities Summary reflects the accomplishments of state Wind Working Groups, WPA programs at the National Renewable Energy Laboratory, and partner organizations.

  15. Baoding Tianwei Wind Power Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Co Ltd Jump to: navigation, search Name: Baoding Tianwei Wind Power Technology Co Ltd Place: Baoding, Hebei Province, China Zip: 71051 Sector: Wind energy Product: A subsidary...

  16. Shanghai Wind Power Company SWPC | Open Energy Information

    Open Energy Info (EERE)

    SWPC Jump to: navigation, search Name: Shanghai Wind Power Company (SWPC) Place: Shanghai, Shanghai Municipality, China Sector: Wind energy Product: It is set up for running the...

  17. Wind Powering America: FY09 Activities Summary (Book)

    SciTech Connect (OSTI)

    Not Available

    2010-03-01

    The Wind Powering America FY09 Activities Summary reflects the accomplishments of state Wind Working Groups, WPA programs at the National Renewable Energy Laboratory, and partner organizations.

  18. CECIC Wind Power Investment Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Investment Co Ltd Jump to: navigation, search Name: CECIC Wind Power Investment Co Ltd Place: Beijing Municipality, China Zip: 100037 Sector: Wind energy Product: A subsidiary of...

  19. Power House Solar and Wind | Open Energy Information

    Open Energy Info (EERE)

    Solar and Wind Jump to: navigation, search Name: Power House Solar and Wind Address: 1504 Woodlawn Ave Place: Canon City, Colorado Zip: 81212 Region: Rockies Area Sector: Solar...

  20. Excise Tax Exemption for Solar or Wind Powered Systems

    Broader source: Energy.gov [DOE]

    Massachusetts law exempts any "solar or wind powered climatic control unit and any solar or wind powered water heating unit or any other type unit or system powered thereby," that qualifies for the...

  1. Wind Power Plant Voltage Stability Evaluation: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Zhang, Y. C.

    2014-09-01

    Voltage stability refers to the ability of a power system to maintain steady voltages at all buses in the system after being subjected to a disturbance from a given initial operating condition. Voltage stability depends on a power system's ability to maintain and/or restore equilibrium between load demand and supply. Instability that may result occurs in the form of a progressive fall or rise of voltages of some buses. Possible outcomes of voltage instability are the loss of load in an area or tripped transmission lines and other elements by their protective systems, which may lead to cascading outages. The loss of synchronism of some generators may result from these outages or from operating conditions that violate a synchronous generator's field current limit, or in the case of variable speed wind turbine generator, the current limits of power switches. This paper investigates the impact of wind power plants on power system voltage stability by using synchrophasor measurements.

  2. Federal Incentives for Wind Power (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-05-01

    This fact sheet describes the federal incentives available as of April 2013 that encourage increased development and deployment of wind energy technologies, including research grants, tax incentives, and loan programs.

  3. Wind Program: A New Vision for U.S. Wind Power

    SciTech Connect (OSTI)

    2013-05-07

    A link to the New Vision for U.S. Wind Power Web page, which enables stakeholders to provide input on the direction of the wind industry.

  4. Factors driving wind power development in the United States

    SciTech Connect (OSTI)

    Bird, Lori A.; Parsons, Brian; Gagliano, Troy; Brown, Matthew H.; Wiser, Ryan H.; Bolinger, Mark

    2003-05-15

    In the United States, there has been substantial recent growth in wind energy generating capacity, with growth averaging 24 percent annually during the past five years. About 1,700 MW of wind energy capacity was installed in 2001, while another 410 MW became operational in 2002. This year (2003) shows promise of significant growth with more than 1,500 MW planned. With this growth, an increasing number of states are experiencing investment in wind energy projects. Wind installations currently exist in about half of all U.S. states. This paper explores the key factors at play in the states that have achieved a substantial amount of wind energy investment. Some of the factors that are examined include policy drivers, such as renewable portfolio standards (RPS), federal and state financial incentives, and integrated resource planning; as well as market drivers, such as consumer demand for green power, natural gas price volatility, and wholesale market rules.

  5. Wind Power Today: Building a New Energy Future, Wind and Hydropower Technologies Program 2009 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-04-01

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  6. Federal Incentives for Wind Power Deployment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Incentives for Wind Power Deployment Federal Incentives for Wind Power Deployment This factsheet lists some of the major federal incentives for wind power deployment as of September 2014. Federal Incentives for Wind Power Deployment.pdf (150.34 KB) More Documents & Publications Federal Incentives for Water Power Aggregating QECB Allocations and Using QECBs to Support the Private Sector: A Case Study on Massachusetts Qualified Energy Conservation Bond (QECB) Update: New Guidance from

  7. Wind Vision: A New Era for Wind Power in the United States | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Vision: A New Era for Wind Power in the United States Wind Vision: A New Era for Wind Power in the United States Wind Vision: A New Era for Wind Power in the United States With more than 4.5% of the nation's electricity supplied by wind energy today, the Department of Energy has collaborated with industry, environmental organizations, academic institutions, and national laboratories to develop a renewed Wind Vision, documenting the contributions of wind to date and envisioning a

  8. 20% Wind Energy by 2030 - Chapter 6: Wind Power Markets Summary Slides |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 6: Wind Power Markets Summary Slides 20% Wind Energy by 2030 - Chapter 6: Wind Power Markets Summary Slides Summary slides overviewing wind power markets, growth, applications, and market features 20percent_summary_chap6.pdf (249.2 KB) More Documents & Publications 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology Summary Slides 20% Wind Energy by 2030 - Chapter 4: Transmission and Integration into the U.S. Electric System Summary Slides 20% Wind Energy by

  9. Wind Power Plant Prediction by Using Neural Networks: Preprint

    SciTech Connect (OSTI)

    Liu, Z.; Gao, W.; Wan, Y. H.; Muljadi, E.

    2012-08-01

    This paper introduces a method of short-term wind power prediction for a wind power plant by training neural networks based on historical data of wind speed and wind direction. The model proposed is shown to achieve a high accuracy with respect to the measured data.

  10. Probability density function characterization for aggregated large-scale wind power based on Weibull mixtures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gomez-Lazaro, Emilio; Bueso, Maria C.; Kessler, Mathieu; Martin-Martinez, Sergio; Zhang, Jie; Hodge, Bri -Mathias; Molina-Garcia, Angel

    2016-02-02

    Here, the Weibull probability distribution has been widely applied to characterize wind speeds for wind energy resources. Wind power generation modeling is different, however, due in particular to power curve limitations, wind turbine control methods, and transmission system operation requirements. These differences are even greater for aggregated wind power generation in power systems with high wind penetration. Consequently, models based on one-Weibull component can provide poor characterizations for aggregated wind power generation. With this aim, the present paper focuses on discussing Weibull mixtures to characterize the probability density function (PDF) for aggregated wind power generation. PDFs of wind power datamore » are firstly classified attending to hourly and seasonal patterns. The selection of the number of components in the mixture is analyzed through two well-known different criteria: the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Finally, the optimal number of Weibull components for maximum likelihood is explored for the defined patterns, including the estimated weight, scale, and shape parameters. Results show that multi-Weibull models are more suitable to characterize aggregated wind power data due to the impact of distributed generation, variety of wind speed values and wind power curtailment.« less

  11. 2014 WIND POWER PROGRAM PEER REVIEW-DISTRIBUTED WIND

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Wind March 24-27, 2014 Wind Energy Technologies PR-5000-62152 2 Contents Distributed Wind Annual Market Report on Wind Technologies in Distributed Applications & Distributed Wind Policy Comparison Tool-Alice Orrell, Pacific Northwest National Laboratory Government, Industry, International Partnerships-Karin Sinclair, National Renewable Energy Laboratory Certifying Distributed Wind Turbines-Brent Summerville, Small Wind Certification Council Loads Analysis and Standards

  12. Synchrophasor Applications for Wind Power Generation

    SciTech Connect (OSTI)

    Muljadi, E.; Zhang, Y. C.; Allen, A.; Singh, M.; Gevorgian, V.; Wan, Y. H.

    2014-02-01

    The U.S. power industry is undertaking several initiatives that will improve the operations of the electric power grid. One of those is the implementation of wide-area measurements using phasor measurement units to dynamically monitor the operations and status of the network and provide advanced situational awareness and stability assessment. The overviews of synchrophasors and stability analyses in this report are intended to present the potential future applications of synchrophasors for power system operations under high penetrations of wind and other renewable energy sources.

  13. Wind and Water Power Program Realignment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Water Power Program Realignment Wind and Water Power Program Realignment February 24, 2012 - 10:38am Addthis This is an excerpt from the First Quarter 2012 edition of the Wind ...

  14. New Wind Power Partnerships to Benefit Industry and Nation -...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Wind Power Partnerships to Benefit Industry and Nation June 3, 2008 The U.S. ... the nation's ability to realize the full potential of wind power across the United States. ...

  15. Microsoft Word - Mid South and Southeast Wind Power Purchase...

    Broader source: Energy.gov (indexed) [DOE]

    Mid-South and Southeast Wind Power Purchase Agreements Utility Purchaser Power (MW) Wind Project Name Location (State) TVA 300 Cayuga Ridge Iowa TVA 198 Pioneer Prairie Iowa TVA ...

  16. 2014 WIND POWER PROGRAM PEER REVIEW-RESOURCE CHARACTERIZATION

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    303-384-7081 March 24, 2014 2 | Wind and Water Power Technologies Office eere.energy.gov ... Total Cost-Share 1 :0.150M 3 | Wind and Water Power Technologies Office eere.energy.gov ...

  17. U.S. Department of Energy Wind and Water Power Program Funding...

    Broader source: Energy.gov (indexed) [DOE]

    MARINE AND HYDROKINETIC ENERGY PROJECTS Fiscal Years 2008 - 2015 WIND AND WATER POWER TECHNOLOGIES OFFICE WIND AND WATER POWER TECHNOLOGIES OFFICE 2 WIND AND WATER POWER ...

  18. Wind Power Forecasting Error Distributions over Multiple Timescales (Presentation)

    SciTech Connect (OSTI)

    Hodge, B. M.; Milligan, M.

    2011-07-01

    This presentation presents some statistical analysis of wind power forecast errors and error distributions, with examples using ERCOT data.

  19. LLNL Predicts Wind Power with Greater Accuracy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LLNL Predicts Wind Power with Greater Accuracy LLNL Predicts Wind Power with Greater Accuracy May 18, 2015 - 5:05pm Addthis A multicolored scatter plot that curves from left to right, bottom to top to show the wind power capacity factor and wind speed meters per second. The colors relate atmospheric stability conditions to reported power-output observations with black, dark blue, and lighter blue representing stable conditions; light blue, green and light green representing neutral conditions;

  20. NREL Small Wind Turbine Test Project: Mariah Power's Windspire Wind Turbine Test Chronology

    SciTech Connect (OSTI)

    Huskey, A.; Forsyth, T.

    2009-06-01

    This report presents a chronology of tests conducted at NREL's National Wind Technology Center on Mariah Power's Windspire 1.2-kW wind turbine and a letter of response from Mariah Power.

  1. Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP)

    Office of Energy Efficiency and Renewable Energy (EERE)

    This fact sheet provides an overview of the Department of Energy's Wind and Water Power Program's water power research activities.

  2. Students Learn about Wind Power First-Hand through Wind for Schools Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Learn about Wind Power First-Hand through Wind for Schools Program Students Learn about Wind Power First-Hand through Wind for Schools Program February 18, 2011 - 3:48pm Addthis JMU student Greg Miller shows Northumberland students how the blades of a wind turbine work | courtesy of Virginia Center for Wind Energy JMU student Greg Miller shows Northumberland students how the blades of a wind turbine work | courtesy of Virginia Center for Wind Energy April Saylor April

  3. Austin Energy Wins DOE Wind Power Award | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Wins DOE Wind Power Award Austin Energy Wins DOE Wind Power Award October 25, 2005 - 12:30pm Addthis WASHINGTON, DC-The U.S. Department of Energy (DOE) today announced that Austin Energy, the city-owned utility of Austin, Texas, is receiving the 2005 Wind Power Pioneer Award. The utility was cited for its leadership, demonstrated success and innovation in its wind power program. The award, sponsored by DOE's Wind Powering America program, was presented today at the American Public Power

  4. DOE Wind Energy R&D is Linked to Innovations Within and Outside Wind Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry, Study Finds | Department of Energy Wind Energy R&D is Linked to Innovations Within and Outside Wind Power Industry, Study Finds DOE Wind Energy R&D is Linked to Innovations Within and Outside Wind Power Industry, Study Finds DOE Wind Energy R&D is Linked to Innovations Within and Outside Wind Power Industry, Study Finds, an EERE Retrospective Study Brief, September 2009. Advances in today's commercial wind energy generation are extensively linked to the Department of

  5. 20% Wind Energy by 2030 - Chapter 5: Wind Power Siting and Environmental

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Effects Summary Slides | Department of Energy 5: Wind Power Siting and Environmental Effects Summary Slides 20% Wind Energy by 2030 - Chapter 5: Wind Power Siting and Environmental Effects Summary Slides Environment and siting overview summary slides for chapter 5 of 20% Wind Energy by 2030 20percent_summary_chap5.pdf (1.61 MB) More Documents & Publications 20% Wind Energy by 2030 - Chapter 1: Executive Summary and Overview Summary Slides 20% Wind Energy by 2030 - Chapter 5: Wind Power

  6. Conventional Hydropower Technologies, Wind And Water Power Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP) Environmental Impacts of Increased Hydroelectric Development at Existing Dams Hydropower ...

  7. Concurrent Wind Cooling in Power Transmission Lines

    SciTech Connect (OSTI)

    Jake P Gentle

    2012-08-01

    Idaho National Laboratory and the Idaho Power Company, with collaboration from Idaho State University, have been working on a project to monitor wind and other environmental data parameters along certain electrical transmission corridors. The combination of both real-time historical weather and environmental data is being used to model, validate, and recommend possibilities for dynamic operations of the transmission lines for power and energy carrying capacity. The planned results can also be used to influence decisions about proposed design criteria for or upgrades to certain sections of the transmission lines.

  8. New England Wind Forum: A Wind Powering America Project - Newsletter #6 - September 2010, (NEWF)

    SciTech Connect (OSTI)

    Grace, R.; Gifford, J.; Leeds, T.; Bauer, S.

    2010-09-01

    Wind Powering America program launched the New England Wind Forum (NEWF) in 2005 to provide a single comprehensive source of up-to-date, Web-based information on a broad array of wind energy issues pertaining to New England. The NEWF newsletter provides New England stakeholders with updates on wind energy development in the region.

  9. Development and testing of improved statistical wind power forecasting methods.

    SciTech Connect (OSTI)

    Mendes, J.; Bessa, R.J.; Keko, H.; Sumaili, J.; Miranda, V.; Ferreira, C.; Gama, J.; Botterud, A.; Zhou, Z.; Wang, J.

    2011-12-06

    (with spatial and/or temporal dependence). Statistical approaches to uncertainty forecasting basically consist of estimating the uncertainty based on observed forecasting errors. Quantile regression (QR) is currently a commonly used approach in uncertainty forecasting. In Chapter 3, we propose new statistical approaches to the uncertainty estimation problem by employing kernel density forecast (KDF) methods. We use two estimators in both offline and time-adaptive modes, namely, the Nadaraya-Watson (NW) and Quantilecopula (QC) estimators. We conduct detailed tests of the new approaches using QR as a benchmark. One of the major issues in wind power generation are sudden and large changes of wind power output over a short period of time, namely ramping events. In Chapter 4, we perform a comparative study of existing definitions and methodologies for ramp forecasting. We also introduce a new probabilistic method for ramp event detection. The method starts with a stochastic algorithm that generates wind power scenarios, which are passed through a high-pass filter for ramp detection and estimation of the likelihood of ramp events to happen. The report is organized as follows: Chapter 2 presents the results of the application of ITL training criteria to deterministic WPF; Chapter 3 reports the study on probabilistic WPF, including new contributions to wind power uncertainty forecasting; Chapter 4 presents a new method to predict and visualize ramp events, comparing it with state-of-the-art methodologies; Chapter 5 briefly summarizes the main findings and contributions of this report.

  10. New Report Evaluates Impacts of DOE's Wind Powering America Initiative |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Evaluates Impacts of DOE's Wind Powering America Initiative New Report Evaluates Impacts of DOE's Wind Powering America Initiative August 1, 2013 - 2:59pm Addthis This is an excerpt from the Second Quarter 2013 edition of the Wind Program R&D Newsletter. The goal of the Wind Powering America (WPA) initiative, established by the U.S. Department of Energy (DOE) in 1999, was to facilitate a rapid increase in U.S. wind power capacity by engaging in activities that

  11. Test Cases for Wind Power Plant Dynamic Models on Real-Time Digital Simulator: Preprint

    SciTech Connect (OSTI)

    Singh, M.; Muljadi, E.; Gevorgian, V.

    2012-06-01

    The objective of this paper is to present test cases for wind turbine generator and wind power plant models commonly used during commissioning of wind power plants to ensure grid integration compatibility. In this paper, different types of wind power plant models based on the Western Electricity Coordinating Council Wind Generator Modeling Group's standardization efforts are implemented on a real-time digital simulator, and different test cases are used to gauge their grid integration capability. The low-voltage ride through and reactive power support capability and limitations of wind turbine generators under different grid conditions are explored. Several types of transient events (e.g., symmetrical and unsymmetrical faults, frequency dips) are included in the test cases. The differences in responses from different types of wind turbine are discussed in detail.

  12. Shanghai Shenhua Wind Power New Energy Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Shenhua Wind Power New Energy Co Ltd Jump to: navigation, search Name: Shanghai Shenhua Wind Power New Energy Co Ltd Place: Shanghai, Shanghai Municipality, China Sector: Wind...

  13. New Report Evaluates Impacts of DOE's Wind Powering America Initiative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Source: NREL Award-winning research takes a fresh look at Geothermal Energy New Approach to Determine the Need for Operating Reserves in Electricity Markets with Wind Power Wind ...

  14. Global Wind Power Ltd GWP | Open Energy Information

    Open Energy Info (EERE)

    Ltd GWP Jump to: navigation, search Name: Global Wind Power Ltd. (GWP) Place: Mumbai, Maharashtra, India Zip: 400 059 Sector: Wind energy Product: Mumbai-based firm involved in...

  15. Development of an Equivalent Wind Plant Power-Curve: Preprint

    SciTech Connect (OSTI)

    Wan, Y. H.; Ela, E.; Orwig, K.

    2010-06-01

    Development of an equivalent wind plant power-curve becomes highly desirable and useful in predicting plant output for a given wind forecast. Such a development is described and summarized in this paper.

  16. Category:Wind Power in China | Open Energy Information

    Open Energy Info (EERE)

    "Wind Power in China" The following 2 pages are in this category, out of 2 total. G Guangdong Baolihua New Energy Corporation S Sinovel Wind Group Co. Retrieved from...

  17. New England Wind Forum: A Wind Powering America Project, Newsletter #5 -- January 2010, Wind and Hydropower Technologies Program (WHTP)

    SciTech Connect (OSTI)

    Grace, R. C.; Gifford, J.

    2010-01-01

    Wind Powering America program launched the New England Wind Forum (NEWF) in 2005 to provide a single comprehensive source of up-to-date, Web-based information on a broad array of wind energy issues pertaining to New England. The NEWF newsletter provides New England stakeholders with updates on wind energy development in the region. In addition to regional updates, Issue #5 offers an interview with Angus King, former governor of Maine and co-founder of Independence Wind.

  18. Environmental Impacts of Wind Power Development on the Population Biology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Greater Prairie-Chickens | Department of Energy Environmental Impacts of Wind Power Development on the Population Biology of Greater Prairie-Chickens Environmental Impacts of Wind Power Development on the Population Biology of Greater Prairie-Chickens This report summarizes the results of a seven-year, DOE-funded research project, conducted by researchers from Kansas State University and the National Wind Coordinating Collaborative, to assess the effects of wind energy development in

  19. University of Minnesota Boosts Studies with Wind Power | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Minnesota Boosts Studies with Wind Power University of Minnesota Boosts Studies with Wind Power October 27, 2011 - 10:53am Addthis Time-lapse of the University of Minnesota's wind turbine construction, from September 6 - 23, 2011. | Courtesy of the University of Minnesota College of Science and Engineering Eric Escudero Eric Escudero Senior Public Affairs Specialist & Contractor, Golden Field Office What does this project do? The American-made Clipper Liberty wind turbine and a

  20. Wind Turbine Generator System Power Performance Test Report for the Entegrity EW50 Wind Turbine

    SciTech Connect (OSTI)

    Smith, J.; Huskey, A.; Jager, D.; Hur, J.

    2011-05-01

    Report on the results of the power performance test that the National Renewable Energy Laboratory (NREL) conducted on Entegrity Wind System Inc.'s EW50 small wind turbine.

  1. Wind Power: How Much, How Soon, and At What Cost?

    SciTech Connect (OSTI)

    Wiser, Ryan H; Hand, Maureen

    2010-01-01

    The global wind power market has been growing at a phenomenal pace, driven by favorable policies towards renewable energy and the improving economics of wind projects. On a going forward basis, utility-scale wind power offers the potential for significant reductions in the carbon footprint of the electricity sector. Specifically, the global wind resource is vast and, though accessing this potential is not costless or lacking in barriers, wind power can be developed at scale in the near to medium term at what promises to be an acceptable cost.

  2. DOE Explores Potential of Wind Power to Stabilize Electric Grids |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Explores Potential of Wind Power to Stabilize Electric Grids DOE Explores Potential of Wind Power to Stabilize Electric Grids March 28, 2016 - 10:31am Addthis DOE’s 1.5-MW wind turbine at the National Wind Technology Center is being used to demonstrate that wind farms can provide the frequency-responsive back-up or “ancillary services” currently supplied to the electrical grid by conventional power plants. (Photo by Dennis Schroeder/National Renewable

  3. Use of wind power forecasting in operational decisions.

    SciTech Connect (OSTI)

    Botterud, A.; Zhi, Z.; Wang, J.; Bessa, R.J.; Keko, H.; Mendes, J.; Sumaili, J.; Miranda, V.

    2011-11-29

    The rapid expansion of wind power gives rise to a number of challenges for power system operators and electricity market participants. The key operational challenge is to efficiently handle the uncertainty and variability of wind power when balancing supply and demand in ths system. In this report, we analyze how wind power forecasting can serve as an efficient tool toward this end. We discuss the current status of wind power forecasting in U.S. electricity markets and develop several methodologies and modeling tools for the use of wind power forecasting in operational decisions, from the perspectives of the system operator as well as the wind power producer. In particular, we focus on the use of probabilistic forecasts in operational decisions. Driven by increasing prices for fossil fuels and concerns about greenhouse gas (GHG) emissions, wind power, as a renewable and clean source of energy, is rapidly being introduced into the existing electricity supply portfolio in many parts of the world. The U.S. Department of Energy (DOE) has analyzed a scenario in which wind power meets 20% of the U.S. electricity demand by 2030, which means that the U.S. wind power capacity would have to reach more than 300 gigawatts (GW). The European Union is pursuing a target of 20/20/20, which aims to reduce greenhouse gas (GHG) emissions by 20%, increase the amount of renewable energy to 20% of the energy supply, and improve energy efficiency by 20% by 2020 as compared to 1990. Meanwhile, China is the leading country in terms of installed wind capacity, and had 45 GW of installed wind power capacity out of about 200 GW on a global level at the end of 2010. The rapid increase in the penetration of wind power into power systems introduces more variability and uncertainty in the electricity generation portfolio, and these factors are the key challenges when it comes to integrating wind power into the electric power grid. Wind power forecasting (WPF) is an important tool to help

  4. Wind and Water Power Technologies Office Position Available: Marine and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrokinetic General Engineer | Department of Energy Wind and Water Power Technologies Office Position Available: Marine and Hydrokinetic General Engineer Wind and Water Power Technologies Office Position Available: Marine and Hydrokinetic General Engineer April 7, 2016 - 5:07pm Addthis The Wind and Water Power Technologies Office is seeking applicants for a new position available within the office. See below for more information. Job title: General Engineer-Marine and Hydrokinetic (MHK)

  5. US DOE Wind Powering America | Open Energy Information

    Open Energy Info (EERE)

    for American farmers, Native Americans, and other rural landowners, and meet the growing demand for clean sources of electricity. "Wind Powering America is a commitment to...

  6. 2011 Grants for Offshore Wind Power | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Web Policies Home Social Media Article Guidance History Offices 2011 Grants for Offshore Wind Power View All Maps Addthis Careers & Internships Contact Us link to facebook link to...

  7. Small Town Using Wind Power to Offset Electricity Costs

    Broader source: Energy.gov [DOE]

    Wind turbines will be used to supply electricity for the town hall, maintenance building, library and help power the town's water system.

  8. Baotou Wind Power Gearbox Works | Open Energy Information

    Open Energy Info (EERE)

    Gearbox Works Jump to: navigation, search Name: Baotou Wind Power Gearbox Works Place: Inner Mongolia Autonomous Region, China Product: Baotou-based gearbox producer. References:...

  9. Roth Rock Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Wind North America Developer Synergics Energy Purchaser Delmarva Power Location South of Red House MD Coordinates 39.30105, -79.458032 Show Map Loading map......

  10. DOE Announces Webinars on the Distributed Wind Power Market,...

    Office of Environmental Management (EM)

    Lighting Retrofits Financial Analysis Tool, and More DOE Announces Webinars on the Distributed Wind Power Market, Lighting Retrofits Financial Analysis Tool, and More August 16, ...

  11. SeaWest WindPower Inc | Open Energy Information

    Open Energy Info (EERE)

    planning & permitting, project finance, construction managment, operation & maintenance etc. References: SeaWest WindPower Inc1 This article is a stub. You can help...

  12. WIND AND WATER POWER TECHNOLOGIES OFFICE Pacific Northwest National...

    Office of Environmental Management (EM)

    For more information, visit: water.energy.gov DOEEE-1166 * January 2015 WIND AND WATER POWER TECHNOLOGIES OFFICE Pacific Northwest National Laboratory's Tethys: A Knowledge ...

  13. Operating Reserves and Wind Power Integration; An International...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... As shown in Fig. 5 wind power forecasting errors can increase the cost associated to the operation of deviation management and the tertiary reserve. D. The Netherlands The ...

  14. Smith River Rancheria - Wind and Biomass Power Generation Facility...

    Broader source: Energy.gov (indexed) [DOE]

    Greg Retzlaff Strategic Energy Solutions, Inc. Wind & Biomass Power Generation Smith River Rancheria 2 Smith River Rancheria * Coastal Community of 600 in Northern California and ...

  15. Smith River Rancheria - Wind and Biomass Power Generation Feasibility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Greg Retzlaff Strategic Energy Solutions, Inc. Wind & Biomass Power Generation Smith River Rancheria 2 Smith River Rancheria * Coastal Community of 600 * Members Living in Oregon * ...

  16. Power Performance Test Report for the SWIFT Wind Turbine

    SciTech Connect (OSTI)

    Mendoza, I.; Hur, J.

    2012-12-01

    This report summarizes the results of a power performance test that NREL conducted on the SWIFT wind turbine. This test was conducted in accordance with the International Electrotechnical Commission's (IEC) standard, Wind Turbine Generator Systems Part 12: Power Performance Measurements of Electricity Producing Wind Turbines, IEC 61400-12-1 Ed.1.0, 2005-12. However, because the SWIFT is a small turbine as defined by IEC, NREL also followed Annex H that applies to small wind turbines. In these summary results, wind speed is normalized to sea-level air density.

  17. National-Scale Wind Resource Assessment for Power Generation (Presentation)

    SciTech Connect (OSTI)

    Baring-Gould, E. I.

    2013-08-01

    This presentation describes the current standards for conducting a national-scale wind resource assessment for power generation, along with the risk/benefit considerations to be considered when beginning a wind resource assessment. The presentation describes changes in turbine technology and viable wind deployment due to more modern turbine technology and taller towers and shows how the Philippines national wind resource assessment evolved over time to reflect changes that arise from updated technologies and taller towers.

  18. Wind Powering America's Wind for Schools Team Honored with Wirth Chair

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Award | Department of Energy Powering America's Wind for Schools Team Honored with Wirth Chair Award Wind Powering America's Wind for Schools Team Honored with Wirth Chair Award May 1, 2012 - 2:46pm Addthis This is an excerpt from the Second Quarter 2012 edition of the Wind Program R&D Newsletter. The University of Colorado at Denver and the Wirth Chair awarded the Energy Department's National Renewable Energy Laboratory (NREL) a Wirth Chair Sustainability Award for its work on the Wind

  19. Wind Turbine Generator System Power Performance Test Report for the ARE442 Wind Turbine

    SciTech Connect (OSTI)

    van Dam, J.; Jager, D.

    2010-02-01

    This report summarizes the results of a power performance test that NREL conducted on the ARE 442 wind turbine. This test was conducted in accordance with the International Electrotechnical Commission's (IEC) standard, Wind Turbine Generator Systems Part 12: Power Performance Measurements of Electricity Producing Wind Turbines, IEC 61400-12-1 Ed.1.0, 2005-12. However, because the ARE 442 is a small turbine as defined by IEC, NREL also followed Annex H that applies to small wind turbines. In these summary results, wind speed is normalized to sea-level air density.

  20. Wind Power Forecasting Error Distributions: An International Comparison; Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Lew, D.; Milligan, M.; Holttinen, H.; Sillanpaa, S.; Gomez-Lazaro, E.; Scharff, R.; Soder, L.; Larsen, X. G.; Giebel, G.; Flynn, D.; Dobschinski, J.

    2012-09-01

    Wind power forecasting is expected to be an important enabler for greater penetration of wind power into electricity systems. Because no wind forecasting system is perfect, a thorough understanding of the errors that do occur can be critical to system operation functions, such as the setting of operating reserve levels. This paper provides an international comparison of the distribution of wind power forecasting errors from operational systems, based on real forecast data. The paper concludes with an assessment of similarities and differences between the errors observed in different locations.

  1. American Wind Power Hydrogen LLC | Open Energy Information

    Open Energy Info (EERE)

    Power Hydrogen LLC Jump to: navigation, search Name: American Wind Power & Hydrogen LLC Place: New York, New York Zip: 10022 Sector: Hydro, Hydrogen, Vehicles Product: AWP&H is a...

  2. NREL's Wind Powering America Team Helps Indiana Develop Wind Resources (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-10-01

    How does a state advance, in just five years, from having no installed wind capacity to having more than 1000 megawatts (MW) of installed capacity? The Wind Powering America (WPA) initiative, based at the National Renewable Energy Laboratory (NREL), employs a state-focused approach that has helped accelerate wind energy deployment in many states. One such state is Indiana, which is now home to the largest wind plant east of the Mississippi.

  3. System-wide emissions implications of increased wind power penetration.

    SciTech Connect (OSTI)

    Valentino, L.; Valenzuela, V.; Botterud, A.; Zhou, Z.; Conzelmann, G.

    2012-01-01

    This paper discusses the environmental effects of incorporating wind energy into the electric power system. We present a detailed emissions analysis based on comprehensive modeling of power system operations with unit commitment and economic dispatch for different wind penetration levels. First, by minimizing cost, the unit commitment model decides which thermal power plants will be utilized based on a wind power forecast, and then, the economic dispatch model dictates the level of production for each unit as a function of the realized wind power generation. Finally, knowing the power production from each power plant, the emissions are calculated. The emissions model incorporates the effects of both cycling and start-ups of thermal power plants in analyzing emissions from an electric power system with increasing levels of wind power. Our results for the power system in the state of Illinois show significant emissions effects from increased cycling and particularly start-ups of thermal power plants. However, we conclude that as the wind power penetration increases, pollutant emissions decrease overall due to the replacement of fossil fuels.

  4. WINDExchange: Calendar of Wind Power-Related Events

    Wind Powering America (EERE)

    Events Printable Version Bookmark and Share Calendar of Wind Power-Related Events This page provides a list of wind power-related events. WINDExchange also makes its calendar available through an RSS Feed WINDExchange events RSS feed . Learn about RSS Feeds. View Events by State Go to the text version of states with events. Upcoming Webinars City and Utility Partnerships: Minneapolis Case Study September 20, 2016 Energy Department's Wind Industry Update: A WINDExchange Webinar September 21, 2016

  5. Wind Power Technologies Program At-A-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TECHNOLOGIES WIND POWER TECHNOLOGIES FY 2017 BUDGET AT-A-GLANCE The Wind Program accelerates U.S. deployment of clean, affordable, and reliable domestic wind power through research, development, and demonstration activities. These advanced technology investments directly contribute to the goals for the United States to generate 80% of the nation's electricity from clean, carbon-free energy sources by 2035; reduce carbon emissions 26%-28% below 2005 levels by 2025; and reduce carbon emissions 80%

  6. NREL: Energy Analysis - Wind Power Results - Life Cycle Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Harmonization Wind LCA Harmonization (Fact Sheet) Cover of the LWind LCA Harmonization Fact Sheet Download the Fact Sheet Wind Power Results - Life Cycle Assessment Harmonization To better understand the state of knowledge of greenhouse gas (GHG) emissions from utility-scale wind power systems, NREL developed and applied a systematic approach to review life cycle assessment literature, identify sources of variability and, where possible, reduce variability in GHG emissions estimates through

  7. AG Wind Power Ltd | Open Energy Information

    Open Energy Info (EERE)

    Sector: Wind energy Product: UK-based company focused on wind turbine erection and maintenance. Coordinates: 53.38311, -1.464544 Show Map Loading map... "minzoom":false,"map...

  8. Cherokee Nation - Wind Power Generation Feasibility Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wyatt, CNE 24 October 2006 - Tribal Energy Program Denver, Colorado Presented by: Carol Wyatt, CNE 24 October 2006 - Tribal Energy Program Denver, Colorado Cherokee Wind Project Synopsis Cherokee Wind Project Synopsis Financially Feasible Wind Resource Electrical Load for all Cherokee Entities is $8 million 100 megawatt (40 Wind Turbines) Offset Entire $8 million Tribal Electrical costs Recover Initial Project Investment in 5 Years Gross $198,764,490.00 in Years 6 - 20 Other Commercial,

  9. Wind Power Program Contacts and Organization

    SciTech Connect (OSTI)

    2012-01-05

    The organizational chart shows the management of the wind team and cross-cutting functions in the program.

  10. Wind Simulation

    Energy Science and Technology Software Center (OSTI)

    2008-12-31

    The Software consists of a spreadsheet written in Microsoft Excel that provides an hourly simulation of a wind energy system, which includes a calculation of wind turbine output as a power-curve fit of wind speed.

  11. A Letter from Patrick Gilman: Wind Powering America Is Now Stakeholder Engagement and Outreach

    Broader source: Energy.gov [DOE]

    Patrick Gilman, Wind Energy Deployment manager, explains why Wind Powering America's name is in the process of being changed.

  12. EA-1992: Funding for Principle Power, Inc., for the WindFloat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pacific Offshore Wind Demonstration Project, offshore of Coos Bay, Oregon EA-1992: Funding for Principle Power, Inc., for the WindFloat Pacific Offshore Wind Demonstration ...

  13. The Great Plains Wind Power Test Facility

    SciTech Connect (OSTI)

    Schroeder, John

    2014-01-31

    This multi-year, multi-faceted project was focused on the continued development of a nationally-recognized facility for the testing, characterization, and improvement of grid-connected wind turbines, integrated wind-water desalination systems, and related educational and outreach topics. The project involved numerous faculty and graduate students from various engineering departments, as well as others from the departments of Geosciences (in particular the Atmospheric Science Group) and Economics. It was organized through the National Wind Institute (NWI), which serves as an intellectual hub for interdisciplinary and transdisciplinary research, commercialization and education related to wind science, wind energy, wind engineering and wind hazard mitigation at Texas Tech University (TTU). Largely executed by an academic based team, the project resulted in approximately 38 peer-reviewed publications, 99 conference presentations, the development/expansion of several experimental facilities, and two provisional patents.

  14. Operating Reserves and Wind Power Integration: An International Comparison

    SciTech Connect (OSTI)

    Milligan, M.; Donohoo, P.; Lew, D.; Ela, E.; Kirby, B.; Holttinen, H.; Lannoye, E.; Flynn, D.; O'Malley, M.; Miller, N.; Ericksen, P. B.; Gottig, A.; Rawn, B.; Frunt, J.; Kling, W. L.; Gibescu, M.; Gomez-Lazaro, E.; Robitaille, A.; Kamwa, I.

    2010-01-01

    The determination of additional operating reserves in power systems with high wind penetration is attracting a significant amount of attention and research. Wind integration analysis over the past several years has shown that the level of operating reserve that is induced by wind is not a constant function of the installed capacity. Observations and analysis of actual wind plant operating data has shown that wind does not change its output fast enough to be considered as a contingency event. However, the variability that wind adds to the system does require the activation or deactivation of additional operating reserves. This paper provides a high-level international comparison of methods and key results from both operating practice and integration analysis, based on the work in International Energy Agency IEA WIND Task 25 on Large-scale Wind Integration. The paper concludes with an assessment of the common themes and important differences, along with recent emerging trends.

  15. Control voltage and power fluctuations when connecting wind farms

    SciTech Connect (OSTI)

    Berinde, Ioan Bălan, Horia Oros, Teodora Susana

    2015-12-23

    Voltage, frequency, active power and reactive power are very important parameters in terms of power quality. These parameters are followed when connecting any power plant, the more the connection of wind farms. Connecting wind farms to the electricity system must not cause interference outside the limits set by regulations. Modern solutions for fast and automatic voltage control and power fluctuations using electronic control systems of reactive power flows. FACTS (Flexible Alternating Current Transmision System) systems, established on the basis of power electronic circuits ensure control of electrical status quantities to achieve the necessary transfer of power to the power grid. FACTS devices can quickly control parameters and sizes of state power lines, such as impedance line voltages and phase angles of the voltages of the two ends of the line. Their use can lead to improvement in power system operation by increasing the transmission capacity of power lines, power flow control lines, improved static and transient stability reserve.

  16. Comparison of Wind Power and Load Forecasting Error Distributions: Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Florita, A.; Orwig, K.; Lew, D.; Milligan, M.

    2012-07-01

    The introduction of large amounts of variable and uncertain power sources, such as wind power, into the electricity grid presents a number of challenges for system operations. One issue involves the uncertainty associated with scheduling power that wind will supply in future timeframes. However, this is not an entirely new challenge; load is also variable and uncertain, and is strongly influenced by weather patterns. In this work we make a comparison between the day-ahead forecasting errors encountered in wind power forecasting and load forecasting. The study examines the distribution of errors from operational forecasting systems in two different Independent System Operator (ISO) regions for both wind power and load forecasts at the day-ahead timeframe. The day-ahead timescale is critical in power system operations because it serves the unit commitment function for slow-starting conventional generators.

  17. NREL Study: Active Power Control of Wind Turbines Can Improve Power Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reliability - News Releases | NREL Study: Active Power Control of Wind Turbines Can Improve Power Grid Reliability January 20, 2014 The Energy Department's National Renewable Energy Laboratory (NREL), along with partners from the Electric Power Research Institute and the University of Colorado have completed a comprehensive study to understand how wind power technology can assist the power grid by controlling the active power output being placed onto the system. The rest of the power

  18. WPA Omnibus Award MT Wind Power Outreach

    SciTech Connect (OSTI)

    Brian Spangler, Manager Energy Planning and Renewables

    2012-01-30

    The objective of this grant was to further the development of Montana’s vast wind resources for small, medium, and large scale benefits to Montana and the nation. This was accomplished through collaborative work with wind industry representatives, state and local governments, the agricultural community, and interested citizens. Through these efforts MT Dept Environmental Quality (DEQ) was able to identify development barriers, educate and inform citizens, as well as to participate in regional and national dialogue that will spur the development of wind resources. The scope of DEQ’s wind outreach effort evolved over the course of this agreement from the development of the Montana Wind Working Group and traditional outreach efforts, to the current focus on working with the state’s university system to deliver a workforce trained to enter the wind industry.

  19. Conventional Hydropower Technologies, Wind And Water Power Program (WWPP)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Fact Sheet) | Department of Energy Conventional Hydropower Technologies, Wind And Water Power Program (WWPP) (Fact Sheet) Conventional Hydropower Technologies, Wind And Water Power Program (WWPP) (Fact Sheet) The US Department of Energy conducts research on conventional hydropower technologies to increase generation and improve existing means of generating hydroelectricity. Conventional Hydropower Technologies (511.99 KB) More Documents & Publications Water Power for a Clean Energy

  20. Optimal site selection and sizing of distributed utility-scale wind power plants

    SciTech Connect (OSTI)

    Milligan, M.R.; Artig, R.

    1998-04-01

    As electric market product unbundling occurs, sellers in the wholesale market for electricity will find it to their advantage to be able to specify the quantity of electricity available and the time of availability. Since wind power plants are driven by the stochastic nature of the wind itself, this can present difficulties. To the extent that an accurate wind forecast is available, contract deviations, and therefore penalties, can be significantly reduced. Even though one might have the ability to accurately forecast the availability of wind power, it might not be available during enough of the peak period to provide sufficient value. However, if the wind power plant is developed over geographically disperse locations, the timing and availability of wind power from these multiple sources could provide a better match with the utility`s peak load than a single site. There are several wind plants in various stages of planning or development in the US. Although some of these are small-scale demonstration projects, significant wind capacity has been developed in Minnesota, with additional developments planned in Wyoming and Iowa. As these and other projects are planned and developed, there is a need to perform analysis of the value of geographically diverse sites on the efficiency of the overall wind plant. In this paper, the authors use hourly wind-speed data from six geographically diverse sites to provide some insight into the potential benefits of disperse wind plant development. They provide hourly wind power from each of these sites to an electric reliability simulation model. This model uses generating plant characteristics of the generators within the state of Minnesota to calculate various reliability indices. Since they lack data on wholesale power transactions, they do not include them in the analysis, and they reduce the hourly load data accordingly. The authors present and compare results of their methods and suggest some areas of future research.

  1. Kumeyaay Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    energy Facility Type Commercial Scale Wind Facility Status In Service Owner Babcock & Brown Developer Superior Renewable Energy Energy Purchaser San Diego Gas & Electric Location...

  2. Fuxin Union Wind Power Co Ltd formerly known as Liaoning Zhangwu...

    Open Energy Info (EERE)

    Wind Power Co Ltd formerly known as Liaoning Zhangwu Xiehe Wind Power Co Ltd Jump to: navigation, search Name: Fuxin Union Wind Power Co Ltd (formerly known as Liaoning Zhangwu...

  3. Yinhe Avantis Wind Power Co Ltd formerly known as Avantis Yinhe...

    Open Energy Info (EERE)

    Yinhe Avantis Wind Power Co Ltd formerly known as Avantis Yinhe Wind Power Co Ltd Jump to: navigation, search Name: Yinhe Avantis Wind Power Co Ltd (formerly known as Avantis Yinhe...

  4. Variable-Speed Wind Power Plant Operating With Reserve Power Capability: Preprint

    SciTech Connect (OSTI)

    Singh, M.; Gevorgian, V.; Muljadi, E.; Ela, E.

    2013-10-01

    As the level of wind penetration increases, wind turbine technology must move from merely generating power from wind to taking a role in supporting the bulk power system. Wind turbines should have the capability to provide inertial response and primary frequency (governor) response. Wind turbine generators with this capability can support the frequency stability of the grid. To provide governorresponse, wind turbines should be able to generate less power than the available wind power and hold the rest in reserves, ready to be accessed as needed. In this paper, we explore several ways to control wind turbine output to enable reserve-holding capability. The focus of this paper is on doubly-fed induction generator (also known as Type 3) and full-converter (also known as Type 4) windturbines.

  5. Remote sensing for wind power potential: a prospector's handbook

    SciTech Connect (OSTI)

    Wade, J.E.; Maule, P.A.; Bodvarsson, G.; Rosenfeld, C.L.; Woolley, S.G.; McClenahan, M.R.

    1983-02-01

    Remote sensing can aid in identifying and locating indicators of wind power potential from the terrestrial, marine, and atmospheric environments (i.e.: wind-deformed trees, white caps, and areas of thermal flux). It is not considered as a tool for determining wind power potential. A wide variety of remotely sensed evidence is described in terms of the scale at which evidence of wind power can be identified, and the appropriate remote sensors for finding such evidence. Remote sensing can be used for regional area prospecting using small-scale imagery. The information from such small-scale imagery is most often qualitative, and if it is transitory, examination of a number of images to verify presistence of the feature may be required. However, this evidence will allow rapid screening of a large area. Medium-scale imagery provides a better picture of the evidence obtained from small-scale imagery. At this level it is best to use existing imagery. Criteria relating to land use, accessibility, and proximity of candidate sites to nearby transmission lines can also be effectively evaluated from medium-scale imagery. Large-scale imagery provides the most quantitative evidence of the strength of wind. Wind-deformed trees can be identified at a large number of sites using only a few hours in locally chartered aircraft. A handheld 35mm camera can adequately document any evidence of wind. Three case studies that employ remote sensing prospecting techniques are described. Based on remotely sensed evidence, the wind power potential in three geographically and climatically diverse areas of the United States is estimated, and the estimates are compared to actual wind data in those regions. In addition, the cost of each survey is discussed. The results indicate that remote sensing for wind power potential is a quick, cost effective, and fairly reliable method for screening large areas for wind power potential.

  6. Wind speed power spectrum analysis for Bushland, Texas

    SciTech Connect (OSTI)

    Eggleston, E.D.

    1996-12-31

    Numerous papers and publications on wind turbulence have referenced the wind speed spectrum presented by Isaac Van der Hoven in his article entitled Power Spectrum of Horizontal Wind Speed Spectrum in the Frequency Range from 0.0007 to 900 Cycles per Hour. Van der Hoven used data measured at different heights between 91 and 125 meters above the ground, and represented the high frequency end of the spectrum with data from the peak hour of hurricane Connie. These facts suggest we should question the use of his power spectrum in the wind industry. During the USDA - Agricultural Research Service`s investigation of wind/diesel system power storage, using the appropriate wind speed power spectrum became a significant issue. We developed a power spectrum from 13 years of hourly average data, 1 year of 5 minute average data, and 2 particularly gusty day`s 1 second average data all collected at a height of 10 meters. While the general shape is similar to the Van der Hoven spectrum, few of his peaks were found in the Bushland spectrum. While higher average wind speeds tend to suggest higher amplitudes in the high frequency end of the spectrum, this is not always true. Also, the high frequency end of the spectrum is not accurately described by simple wind statistics such as standard deviation and turbulence intensity. 2 refs., 5 figs., 1 tab.

  7. Site insolation and wind power characteristics. Summary report

    SciTech Connect (OSTI)

    Bray, R E

    1980-08-01

    Design and operation of either large or small scale solar and wind energy conversion systems should be based, in part, on knowledge of expected solar and wind power trends. For this purpose, historic solar and wind data available at 101 National Weather Service stations were processed statistically. Preliminary planning data are provided for selected daily average solar and wind power conditions occurring and persisting for time periods of interest. Solar data are global radiation incident on a horizontal surface, and wind data represent wind power normal to the air flow. Empirical probabilities were constructed from the historic data to provide a reasonable inference of the chance of similar climatological conditions occurring at any given time in the future. (Diurnal wind power variations were also considered.) Ratios were also generated at each station to relate the global radiation data to insolation on a south-facing surface inclined at various angles. In addition, joint probability distributions were derived to show the proportion of days with solar and wind power within selected intervals.

  8. Wind power manufacturing and supply chain summit USA.

    SciTech Connect (OSTI)

    Hill, Roger Ray

    2010-12-01

    The area of wind turbine component manufacturing represents a business opportunity in the wind energy industry. Modern wind turbines can provide large amounts of electricity, cleanly and reliably, at prices competitive with any other new electricity source. Over the next twenty years, the US market for wind power is expected to continue to grow, as is the domestic content of installed turbines, driving demand for American-made components. Between 2005 and 2009, components manufactured domestically grew eight-fold to reach 50 percent of the value of new wind turbines installed in the U.S. in 2009. While that growth is impressive, the industry expects domestic content to continue to grow, creating new opportunities for suppliers. In addition, ever-growing wind power markets around the world provide opportunities for new export markets.

  9. 2014 WIND POWER PROGRAM PEER REVIEW-OFFSHORE DEMOS

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offshore Demos March 24, 2014 Wind Energy Technologies PR-5000-62152 2 Contents GOWind Demonstration Project-Ian Hatton, Baryonyx Corporation Fishermen's Atlantic City Windfarm: Birthplace of Offshore Wind in the Americas-Stanley M. White, Fishermen's Atlantic City Windfarm, LLC Project Icebreaker-Lorry Wagner, Lake Erie Energy Development Corporation WindFloat Pacific OSW Demo Project-Alla Weinstein, Principle Power, Inc. Hywind Maine-Trine Ingebjørg Ulla, Statoil New England Aqua Ventus

  10. Wind Vision | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Vision Introduction U.S. Wind Power Impacts Roadmap Download Wind Vision: A New Era ... Back to top Chapter 4: The Wind Vision Roadmap The Wind Vision includes a detailed roadmap ...

  11. Chapter 4: Advancing Clean Electric Power Technologies | Wind Power Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Wind Power Chapter 4: Technology Assessments NOTE: The 2015 U.S. Department of Energy

  12. DOE Science Showcase - Wind Power | OSTI, US Dept of Energy Office...

    Office of Scientific and Technical Information (OSTI)

    Science Showcase - Wind Power Wind Powering America is a nationwide initiative of the U.S. ... Center, National Renewable Energy Laboratory Visit the Science Showcase homepage.

  13. U.S. Department of Energy Wind and Water Power Program Funding...

    Broader source: Energy.gov (indexed) [DOE]

    Technologies Office Funding in the United States: HYDROPOWER PROJECTS Fiscal Years 2008 - 2015 WIND AND WATER POWER TECHNOLOGIES OFFICE WIND AND WATER POWER TECHNOLOGIES OFFICE ...

  14. Building a New Energy Future with Wind Power (Revised) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-01-01

    This fact sheet provides an overview of the U.S. Department of Energy's Wind and Water Power Program's wind power research activities.

  15. U.S. Department of Energy Wind and Water Power Program Funding...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Office Funding in the United States: HYDROPOWER PROJECTS Fiscal Years 2008 - 2014 WIND AND WATER POWER TECHNOLOGIES OFFICE WIND AND WATER POWER TECHNOLOGIES OFFICE ...

  16. Wind Vision Chapter 2: Wind Power in the United States

    Broader source: Energy.gov (indexed) [DOE]

    ... development costs and power purchase agreement (PPA) terms. ... been rela- tively slow to enter the U.S. market features. ... http:www.ercot.comsearch results?...

  17. 20% Wind Energy by 2030 - Chapter 6: Wind Power Markets Summary Slides

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6: Wind Power Markets Summary Slides California: 20% by 2017 State renewable energy incentives Illinois: 15% by 2012 New York: 25% by 2013 Renewable portfolio standards (RPS) * 25 states and the District of Columbia * Current RPS = 55 GW of new renewable energy capacity by 2020 Growth slowed during years when the production tax credit expired Wind power applications Utility-scale * Represents 90% of all wind power generated in the U.S. Community-owned * Typically 500 kW or greater * Strengthens

  18. 20% Wind Energy by 2030 - Chapter 5: Wind Power Siting and Environmental Effects Summary Slides

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5: Wind Power Siting and Environmental Effects Summary Slides Environment and siting overview 10-25% of proposed wind energy projects are delayed or not built due to environmental concerns Most facilities pose only minor risks to human and environmental sectors when sited properly Uncertainties regarding wildlife and habitat remain Effective siting approaches must be developed to gain public trust Significant environmental benefits of wind need to be quantified Total area required: 15 million

  19. Electrical Collection and Transmission Systems for Offshore Wind Power: Preprint

    SciTech Connect (OSTI)

    Green, J.; Bowen, A.; Fingersh, L.J.; Wan, Y.

    2007-03-01

    The electrical systems needed for offshore wind farms to collect power from wind turbines--and transmit it to shore--will be a significant cost element of these systems. This paper describes the development of a simplified model of the cost and performance of such systems.

  20. Understanding Inertial and Frequency Response of Wind Power Plants: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Gevorgian, V.; Singh, M.; Santoso, S.

    2012-07-01

    The objective of this paper is to analyze and quantify the inertia and frequency responses of wind power plants with different wind turbine technologies (particularly those of fixed speed, variable slip with rotor-resistance controls, and variable speed with vector controls).

  1. Wind Power Curve Modeling in Simple and Complex Terrain

    SciTech Connect (OSTI)

    Bulaevskaya, V.; Wharton, S.; Irons, Z.; Qualley, G.

    2015-02-09

    Our previous work on wind power curve modeling using statistical models focused on a location with a moderately complex terrain in the Altamont Pass region in northern California (CA). The work described here is the follow-up to that work, but at a location with a simple terrain in northern Oklahoma (OK). The goal of the present analysis was to determine the gain in predictive ability afforded by adding information beyond the hub-height wind speed, such as wind speeds at other heights, as well as other atmospheric variables, to the power prediction model at this new location and compare the results to those obtained at the CA site in the previous study. While we reach some of the same conclusions at both sites, many results reported for the CA site do not hold at the OK site. In particular, using the entire vertical profile of wind speeds improves the accuracy of wind power prediction relative to using the hub-height wind speed alone at both sites. However, in contrast to the CA site, the rotor equivalent wind speed (REWS) performs almost as well as the entire profile at the OK site. Another difference is that at the CA site, adding wind veer as a predictor significantly improved the power prediction accuracy. The same was true for that site when air density was added to the model separately instead of using the standard air density adjustment. At the OK site, these additional variables result in no significant benefit for the prediction accuracy.

  2. Windmills and wind power: a bibliography. [514 references

    SciTech Connect (OSTI)

    Vance, M.

    1981-01-01

    This bibliography contains 125 periodical references to windmills, 7 to wind power, and 382 in an architectural series, all arranged alphabetically by author. These are followed by a Title Index and a Keyword-in-Title Index. (DCK)

  3. QER- Comment of Oceti Sakowin Sioux Wind Power Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    Dear Secretariat: Attached please find the Comments of the Oceti Sakowin Sioux Wind Power Project, for inclusion in the record of the QER. If any questions, please direct to the undersigned.

  4. Wind power on BPA system sets another new record

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RELEASE Tuesday, March 20, 2012 CONTACT: Mike Hansen, BPA 503-230-4328 or 503-230-5131 Wind power on BPA system sets another new record The renewable resource passes 4,000...

  5. Permanent Magnet Synchronous Condenser for Wind Power Plant Grid...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Wind Power Plant Grid Connection Support Preprint P. Hsu San Jose State University E. Muljadi National Renewable Energy Laboratory To be presented at the IEEE 2015 9 th ...

  6. Excise Tax Deduction for Solar or Wind Powered Systems

    Broader source: Energy.gov [DOE]

    In Massachusetts, businesses may deduct from net income, for state excise tax purposes, expenditures paid or incurred from the installation of any "solar or wind powered climatic control unit and...

  7. An Optimized Swinging Door Algorithm for Wind Power Ramp Event...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... An applica- tion of the optimized SDA is provided to ascertain the op- timal parameter of the original SDA. Measured wind power data from the Electric Reliability Council of Texas ...

  8. Value of Improved Short-Term Wind Power Forecasting

    SciTech Connect (OSTI)

    Hodge, B. M.; Florita, A.; Sharp, J.; Margulis, M.; Mcreavy, D.

    2015-02-01

    This report summarizes an assessment of improved short-term wind power forecasting in the California Independent System Operator (CAISO) market and provides a quantification of its potential value.

  9. Offshore Wind and Vehicle to Grid Power | Princeton Plasma Physics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 11, 2013, 4:30pm to 6:00pm Princeton University Computer Science Auditorium 104 Offshore Wind and Vehicle to Grid Power Professor Willett Kempton University of Delaware ...

  10. The Value of Wind Power Forecasting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... day-ahead wind generation forecasts yields an average of 195M savings in annual operating costs. Figure 6 shows how operating cost savings vary with improvements in forecasting. ...

  11. REAP Islanded Grid Wind Power Conference

    Broader source: Energy.gov [DOE]

    Hosted by Renewable Energy Alaska Project, this three-day conference will show attendees how to learn, network, and share information on wind systems in island and islanded grid environments through expert panel discussions, stakeholder dialogue, and training.

  12. REAP Islanded Grid Wind Power Conference

    Office of Energy Efficiency and Renewable Energy (EERE)

    Hosted by Renewable Energy Alaska Project, this three-day conference will show attendees how to learn, network, and share information on wind systems in island and islanded grid environments...

  13. An Analysis of Wind Power Development in the Town of Hull, MA

    SciTech Connect (OSTI)

    Adams, Christopher

    2013-06-30

    Over the past three decades the Town of Hull, MA has solidified its place in U.S. wind energy history through its leadership in community-based generation. This is illustrated by its commissioning of the first commercial-scale wind turbine on the Atlantic coastline, the first suburban-sited turbine in the continental United States, pursuit of community-based offshore wind, and its push toward creating an energy independent community. The town's history and demographics are briefly outlined, followed by experience in projects to provide wind power, including pre-construction and feasibility efforts, financial aspects, and market/industry factors.

  14. DOE Announces Webinars on the Distributed Wind Power Market, Lighting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retrofits Financial Analysis Tool, and More | Department of Energy the Distributed Wind Power Market, Lighting Retrofits Financial Analysis Tool, and More DOE Announces Webinars on the Distributed Wind Power Market, Lighting Retrofits Financial Analysis Tool, and More August 16, 2013 - 12:00pm Addthis EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies to training for the clean energy workforce. Webinars are

  15. Wind power forecasting in U.S. electricity markets.

    SciTech Connect (OSTI)

    Botterud, A.; Wang, J.; Miranda, V.; Bessa, R. J.; Decision and Information Sciences; INESC Porto

    2010-04-01

    Wind power forecasting is becoming an important tool in electricity markets, but the use of these forecasts in market operations and among market participants is still at an early stage. The authors discuss the current use of wind power forecasting in U.S. ISO/RTO markets, and offer recommendations for how to make efficient use of the information in state-of-the-art forecasts.

  16. Wind power forecasting in U.S. Electricity markets

    SciTech Connect (OSTI)

    Botterud, Audun; Wang, Jianhui; Miranda, Vladimiro; Bessa, Ricardo J.

    2010-04-15

    Wind power forecasting is becoming an important tool in electricity markets, but the use of these forecasts in market operations and among market participants is still at an early stage. The authors discuss the current use of wind power forecasting in U.S. ISO/RTO markets, and offer recommendations for how to make efficient use of the information in state-of-the-art forecasts. (author)

  17. NedPower Mount Storm II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Shell Wind EnergyDominion Energy Developer NedPowerShell Wind EnergyDominion Energy...

  18. Wind Powering America: A Key Influence on U.S. Wind Market (Fact Sheet)

    SciTech Connect (OSTI)

    O'Dell, K.

    2013-09-01

    This fact sheet summarizes an evaluation of the effectiveness of the Wind Powering America initiative conducted by an independent consultant funded by the U.S. Department of Energy.

  19. Lithium-Ion Ultracapacitors integrated with Wind Turbines Power Conversion Systems to Extend Operating Life and Improve Output Power Quality

    SciTech Connect (OSTI)

    Adel Nasiri

    2012-05-23

    In this project we designed and modeled a system for a full conversion wind turbine and built a scaled down model which utilizes Lithium-Ion Capacitors on the DC bus. One of the objectives is to reduce the mechanical stress on the gearbox and drivetrain of the wind turbine by adjusting the torque on generator side according to incoming wind power. Another objective is to provide short-term support for wind energy to be more “grid friendly” in order to ultimately increase wind energy penetration. These supports include power smoothing, power ramp rate limitation, low voltage ride through, and frequency (inertia) support. This research shows how energy storage in small scale and in an economical fashion can make a significant impact on performance of wind turbines. Gearbox and drivetrain premature failures are among high cost maintenance items for wind turbines. Since the capacitors are directly applied on the turbine DC bus and their integration does not require addition hardware, the cost of the additional system can be reasonable for the wind turbine manufacturers and utility companies.

  20. Quadrennial Technology Review 2015: Technology Assessments--Wind Power

    SciTech Connect (OSTI)

    none,

    2015-10-07

    Wind power has become a mainstream power source in the U.S. electricity portfolio, supplying 4.9% of the nation’s electricity demand in 2014. With more than 65 GW installed across 39 states at the end of 2014, utility-scale wind power is a cost-effective source of low-emissions power generation throughout much of the nation. The United States has significant sustainable land-based and offshore wind resource potential, greater than 10 times current total U.S. electricity consumption. A technical wind resource assessment conducted by the Department of Energy (DOE) in 2009 estimated that the land-based wind energy potential for the contiguous United States is equivalent to 10,500 GW capacity at 80 meters (m) hub and 12,000 GW capacity at 100 meters (m) hub heights, assuming a capacity factor of at least 30%. A subsequent 2010 DOE report estimated the technical offshore wind energy potential to be 4,150 GW. The estimate was calculated from the total offshore area within 50 nautical miles of shore in areas where average annual wind speeds are at least 7 m per second at a hub height of 90 m.

  1. ANL Study Shows Wind Power Decreases Power Sector Emissions ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    increases, pollutant emissions decrease overall due to the replacement of fossil fuels. "Our study clearly shows that using wind to generate electricity has a discernible ...

  2. DOE Science Showcase - Wind Power | OSTI, US Dept of Energy Office of

    Office of Scientific and Technical Information (OSTI)

    Scientific and Technical Information DOE Science Showcase - Wind Power Wind Powering America is a nationwide initiative of the U.S. Department of Energy's Wind Program designed to educate, engage, and enable critical stakeholders to make informed decisions about how wind energy contributes to the U.S. electricity supply. Wind Power Research Results in DOE Databases IEA Wind Task 26: The Past and Future Cost of Wind Energy, Work Package 2, Energy Citations Database NREL Triples Previous

  3. Technical Progress Report, Phase II Inventory of Wind Green Pricing report Fact Sheets Liability Insurance for Small Wind Energy Systems Zoning Issues for Small Wind Systems Small Wind System Slideshow Small Wind State by State Information Wind Power and Electric transmission Policy: Constructs, Constraints and Critical Path

    SciTech Connect (OSTI)

    Swisher, Randall Holt, Edward Wooley, David

    2002-05-08

    Status report on Green power Factsheets and product database. Small wind turbines as a distributed power

  4. Wind Powering Americas Wind for Schools Project: Summary Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Powering America's Wind for Schools Project Summary Report I. Baring-Gould and C. Newcomb Management Report NREL/MP-7A20-51180 June 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Wind Powering America's Wind for Schools Project

  5. Inner Mongolia Bayannao er Fuhui Wind Power Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Bayannao er Fuhui Wind Power Co Ltd Jump to: navigation, search Name: Inner Mongolia Bayannao'er Fuhui Wind Power Co Ltd Place: Inner Mongolia Autonomous Region, China Sector: Wind...

  6. Status of Centralized Wind Power Forecasting in North America: May 2009-May 2010

    SciTech Connect (OSTI)

    Porter, K.; Rogers, J.

    2010-04-01

    Report surveys grid wind power forecasts for all wind generators, which are administered by utilities or regional transmission organizations (RTOs), typically with the assistance of one or more wind power forecasting companies.

  7. Examining the Variability of Wind Power Output in the Regulation Time Frame: Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Shedd, S.; Florita, A.

    2012-08-01

    This work examines the distribution of changes in wind power for different time scales in the regulation time frame as well as the correlation of changes in power output for individual wind turbines in a wind plant.

  8. Variability of Load and Net Load in Case of Large Scale Distributed Wind Power

    SciTech Connect (OSTI)

    Holttinen, H.; Kiviluoma, J.; Estanqueiro, A.; Gomez-Lazaro, E.; Rawn, B.; Dobschinski, J.; Meibom, P.; Lannoye, E.; Aigner, T.; Wan, Y. H.; Milligan, M.

    2011-01-01

    Large scale wind power production and its variability is one of the major inputs to wind integration studies. This paper analyses measured data from large scale wind power production. Comparisons of variability are made across several variables: time scale (10-60 minute ramp rates), number of wind farms, and simulated vs. modeled data. Ramp rates for Wind power production, Load (total system load) and Net load (load minus wind power production) demonstrate how wind power increases the net load variability. Wind power will also change the timing of daily ramps.

  9. Wind power forecasting : state-of-the-art 2009.

    SciTech Connect (OSTI)

    Monteiro, C.; Bessa, R.; Miranda, V.; Botterud, A.; Wang, J.; Conzelmann, G.; Decision and Information Sciences; INESC Porto

    2009-11-20

    Many countries and regions are introducing policies aimed at reducing the environmental footprint from the energy sector and increasing the use of renewable energy. In the United States, a number of initiatives have been taken at the state level, from renewable portfolio standards (RPSs) and renewable energy certificates (RECs), to regional greenhouse gas emission control schemes. Within the U.S. Federal government, new energy and environmental policies and goals are also being crafted, and these are likely to increase the use of renewable energy substantially. The European Union is pursuing implementation of its ambitious 20/20/20 targets, which aim (by 2020) to reduce greenhouse gas emissions by 20% (as compared to 1990), increase the amount of renewable energy to 20% of the energy supply, and reduce the overall energy consumption by 20% through energy efficiency. With the current focus on energy and the environment, efficient integration of renewable energy into the electric power system is becoming increasingly important. In a recent report, the U.S. Department of Energy (DOE) describes a model-based scenario, in which wind energy provides 20% of the U.S. electricity demand in 2030. The report discusses a set of technical and economic challenges that have to be overcome for this scenario to unfold. In Europe, several countries already have a high penetration of wind power (i.e., in the range of 7 to 20% of electricity consumption in countries such as Germany, Spain, Portugal, and Denmark). The rapid growth in installed wind power capacity is expected to continue in the United States as well as in Europe. A large-scale introduction of wind power causes a number of challenges for electricity market and power system operators who will have to deal with the variability and uncertainty in wind power generation when making their scheduling and dispatch decisions. Wind power forecasting (WPF) is frequently identified as an important tool to address the variability and

  10. EA-1801: Granite Reliable Power Wind Park Project in Coos County, NH |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 01: Granite Reliable Power Wind Park Project in Coos County, NH EA-1801: Granite Reliable Power Wind Park Project in Coos County, NH June 25, 2010 EA-1801: Final Environmental Impact Granite Reliable Power Wind Project, Coos County, New Hampshire July 23, 2010 EA-1801: Finding of No Significant Impact Granite Reliable Power Wind Project, Coos County, New Hampshire

  11. Oscillation Damping: A Comparison of Wind and Photovoltaic Power Plant Capabilities: Preprint

    SciTech Connect (OSTI)

    Singh, M.; Allen, A.; Muljadi, E.; Gevorgian, V.

    2014-07-01

    This work compares and contrasts strategies for providing oscillation damping services from wind power plants and photovoltaic power plants.

  12. EA-1992: Funding for Principle Power, Inc., for the WindFloat Pacific Offshore Wind Demonstration Project, offshore of Coos Bay, Oregon

    Broader source: Energy.gov [DOE]

    Funding for Principle Power, Inc., for the WindFloat Pacific Offshore Wind Demonstration Project, offshore of Coos Bay, Oregon

  13. WARP: A modular wind power system for distributed electric utility application

    SciTech Connect (OSTI)

    Weisbrich, A.L.; Ostrow, S.L.; Padalino, J.P.

    1996-07-01

    Steady development of wind turbine technology, and the accumulation of wind farm operating experience, have resulted in the emergence of wind power as a potentially attractive source of electricity for utilities. Since wind turbines are inherently modular, with medium-sized units typically in the range of a few hundred kilowatts each, they lend themselves well to distributed generation service. A patented wind power technology, the Toroidal Accelerator Rotor Platform (TARP) Windframe, forms the basis for a proposed network-distributed, wind power plant combining electric generation and transmission. While heavily building on proven wind turbine technology, this system is projected to surpass traditional configuration windmills through a unique distribution/transmission combination, superior performance, user-friendly operation and maintenance, and high availability and reliability. Furthermore, its environmental benefits include little new land requirements, relatively attractive appearance, lower noise and EMI/TV interference, and reduced avian (bird) mortality potential. Its cost of energy is projected to be very competitive, in the range of from approximately 2{cents}/kWh to 5{cents}/kWh, depending on the wind resource.

  14. WARP{trademark}: A modular wind power system for distributed electric utility application

    SciTech Connect (OSTI)

    Weisbrich, A.L.; Ostrow, S.L.; Padalino, J.

    1995-12-31

    Steady development of wind turbine technology, and the accumulation of wind farm operating experience, have resulted in the emergence of wind power as a potentially attractive source of electricity for utilities. Since wind turbines are inherently modular, with medium-sized units typically in the range of a few hundred kW each, they lend themselves well to distributed generation service. A patented wind power technology, the Toroidal Accelerator Rotor Platform (TARP{trademark}) Windframe{trademark}, forms the basis for a proposed network-distributed, wind power plant combining electric generation and transmission. While heavily building on proven wind turbine technology, this system is projected to surpass traditional configuration windmills through a unique distribution/transmission combination, superior performance, user friendly operation and maintenance, and high availability and reliability. Furthermore, its environmental benefits include little new land requirements, relatively attractive appearance, lower noise and EMI/TV interference, and reduced avian (bird) mortality potential. Its cost of energy is projected to be very competitive, in the range of from approximately 2{cents}/kWh to 5{cents}/ kWh, depending on the wind resource.

  15. Wind Powering America: Goals, Approach, Perspectives, and Prospects; Preprint

    SciTech Connect (OSTI)

    Flowers, L. T.; Dougherty, P. J.

    2002-03-01

    While wind development activity in the United States has dramatically increased over the last 3 years, it has been mainly driven by policy mandates in the investor owned utility community. Also, while significant wind development has and is now occurring in the Northwest, the Great Plains, the Rocky Mountains, Texas, and several eastern states, there remain a number of states that have excellent resources that are essentially undeveloped. Additionally, the U.S. federal agencies represent the largest institutional load in the world, and thus are a potential large market for green (wind) energy. Rural America is economically stressed and traditional agricultural incomes are seriously threatened; wind development in these windy regions offers one of the most promising''crops'' of the 21st century. Public power serves these communities, and local development of wind with low-cost financing appears to be competitive with new conventional fossil energy sources.

  16. Control Strategies for Distributed Energy Resources to Maximize the Use of Wind Power in Rural Microgrids

    SciTech Connect (OSTI)

    Lu, Shuai; Elizondo, Marcelo A.; Samaan, Nader A.; Kalsi, Karanjit; Mayhorn, Ebony T.; Diao, Ruisheng; Jin, Chunlian; Zhang, Yu

    2011-10-10

    The focus of this paper is to design control strategies for distributed energy resources (DERs) to maximize the use of wind power in a rural microgrid. In such a system, it may be economical to harness wind power to reduce the consumption of fossil fuels for electricity production. In this work, we develop control strategies for DERs, including diesel generators, energy storage and demand response, to achieve high penetration of wind energy in a rural microgrid. Combinations of centralized (direct control) and decentralized (autonomous response) control strategies are investigated. Detailed dynamic models for a rural microgrid are built to conduct simulations. The system response to large disturbances and frequency regulation are tested. It is shown that optimal control coordination of DERs can be achieved to maintain system frequency while maximizing wind power usage and reducing the wear and tear on fossil fueled generators.

  17. Investigating wind power`s effective capacity: A case study in the Caribbean Island of La Martinique

    SciTech Connect (OSTI)

    Perez, R.; Germa, J.M.; Bailey, B.

    1996-12-31

    In this paper, we report on the experimental determination of the effective capacity of wind and photovoltaic (PV) power generation with respect to the utility load requirements of the Island of La Martinique. La Martinique is a French Overseas Department in the Caribbean Sea. The case study spans two years, 1990 and 1991. We consider wind generation at three locations in different wind regimes, and PV generation for fixed and tracking flat plate systems. The results presented include: (1) An overview of typical solar and wind power output at each considered site, presented in contrast to the Island`s electric load requirements; and (2) Effective capacities quantified for each resource as a function of penetration in the utility generation mix. 7 refs., 6 figs.

  18. C -parameter distribution at N 3 LL ' including power corrections

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hoang, André H.; Kolodrubetz, Daniel W.; Mateu, Vicent; Stewart, Iain W.

    2015-05-15

    We compute the e⁺e⁻ C-parameter distribution using the soft-collinear effective theory with a resummation to next-to-next-to-next-to-leading-log prime accuracy of the most singular partonic terms. This includes the known fixed-order QCD results up to O(α3s), a numerical determination of the two-loop nonlogarithmic term of the soft function, and all logarithmic terms in the jet and soft functions up to three loops. Our result holds for C in the peak, tail, and far tail regions. Additionally, we treat hadronization effects using a field theoretic nonperturbative soft function, with moments Ωn. To eliminate an O(ΛQCD) renormalon ambiguity in the soft function, we switchmore » from the MS¯ to a short distance “Rgap” scheme to define the leading power correction parameter Ω1. We show how to simultaneously account for running effects in Ω1 due to renormalon subtractions and hadron-mass effects, enabling power correction universality between C-parameter and thrust to be tested in our setup. We discuss in detail the impact of resummation and renormalon subtractions on the convergence. In the relevant fit region for αs(mZ) and Ω1, the perturbative uncertainty in our cross section is ≅ 2.5% at Q=mZ.« less

  19. Wind Vision: A New Era for Wind Power in the United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This page is intentionally left blank Wind Vision: A New Era for Wind Power in the United States Executive Summary ii This page is intentionally left blank iii This report is being disseminated by the Department of Energy. As such, the document was prepared in compli- ance with Section 515 of the Treasury and General Government Appropriations Act for Fiscal Year 2001 (Public Law 106-554) and information quality guidelines issued by the Department of Energy. Though this report does not constitute

  20. WINDExchange: Wind Energy Market Sectors

    Wind Powering America (EERE)

    Market Sectors Printable Version Bookmark and Share Utility-Scale Wind Distributed Wind Motivations for Buying Wind Power Buying Wind Power Selling Wind Power Wind Energy Market Sectors U.S. power plants generate electricity for homes, factories, and businesses from a variety of resources, including coal, hydro, natural gas, nuclear, petroleum, and (non-hydro) renewable resources such as wind and solar energy. This power generation mix varies significantly across the country depending on

  1. Wind and Water Power Technologies FY'14 Budget At-a-Glance |...

    Office of Environmental Management (EM)

    and Water Power Technologies FY'14 Budget At-a-Glance Wind and Water Power Technologies FY'14 Budget At-a-Glance Wind and Water Power Technologies FY'14 Budget At-a-Glance, a ...

  2. Energy Department Releases Report, Evaluates Potential for Wind Power in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    All 50 States | Department of Energy Releases Report, Evaluates Potential for Wind Power in All 50 States Energy Department Releases Report, Evaluates Potential for Wind Power in All 50 States May 19, 2015 - 11:38am Addthis NEWS MEDIA CONTACT (202) 586-4940 DOENews@hq.doe.gov Larger turbines will open up an additional one-fifth of the land area of the United States WASHINGTON, D.C. - In support of the President's all-of-the above energy strategy, Energy Secretary Ernest Moniz today announced

  3. Unit commitment with wind power generation: integrating wind forecast uncertainty and stochastic programming.

    SciTech Connect (OSTI)

    Constantinescu, E. M.; Zavala, V. M.; Rocklin, M.; Lee, S.; Anitescu, M.

    2009-10-09

    We present a computational framework for integrating the state-of-the-art Weather Research and Forecasting (WRF) model in stochastic unit commitment/energy dispatch formulations that account for wind power uncertainty. We first enhance the WRF model with adjoint sensitivity analysis capabilities and a sampling technique implemented in a distributed-memory parallel computing architecture. We use these capabilities through an ensemble approach to model the uncertainty of the forecast errors. The wind power realizations are exploited through a closed-loop stochastic unit commitment/energy dispatch formulation. We discuss computational issues arising in the implementation of the framework. In addition, we validate the framework using real wind speed data obtained from a set of meteorological stations. We also build a simulated power system to demonstrate the developments.

  4. Updated Eastern Interconnect Wind Power Output and Forecasts for ERGIS: July 2012

    SciTech Connect (OSTI)

    Pennock, K.

    2012-10-01

    AWS Truepower, LLC (AWST) was retained by the National Renewable Energy Laboratory (NREL) to update wind resource, plant output, and wind power forecasts originally produced by the Eastern Wind Integration and Transmission Study (EWITS). The new data set was to incorporate AWST's updated 200-m wind speed map, additional tall towers that were not included in the original study, and new turbine power curves. Additionally, a primary objective of this new study was to employ new data synthesis techniques developed for the PJM Renewable Integration Study (PRIS) to eliminate diurnal discontinuities resulting from the assimilation of observations into mesoscale model runs. The updated data set covers the same geographic area, 10-minute time resolution, and 2004?2006 study period for the same onshore and offshore (Great Lakes and Atlantic coast) sites as the original EWITS data set.

  5. Worldwide wind/diesel hybrid power system study: Potential applications and technical issues

    SciTech Connect (OSTI)

    King, W.R.; Johnson, B.L. III )

    1991-04-01

    The world market potential for wind/diesel hybrid technology is a function of the need for electric power, the availability of sufficient wind resource to support wind/diesel power, and the existence of buyers with the financial means to invest in the technology. This study includes data related to each of these three factors. This study does not address market penetration, which would require analysis of application specific wind/diesel economics. Buyer purchase criteria, which are vital to assessing market penetration, are discussed only generally. Countries were screened for a country-specific market analysis based on indicators of need and wind resource. Both developed countries and less developed countries'' (LDCs) were screened for wind/diesel market potential. Based on the results of the screening, ten countries showing high market potential were selected for more extensive market analyses. These analyses provide country-specific market data to guide wind/diesel technology developers in making design decisions that will lead to a competitive product. Section 4 presents the country-specific data developed for these analyses, including more extensive wind resource characterization, application-specific market opportunities, business conditions, and energy market characterizations. An attempt was made to identify the potential buyers with ability to pay for wind/diesel technology required to meet the application-specific market opportunities identified for each country. Additionally, the country-specific data are extended to corollary opportunities in countries not covered by the study. Section 2 gives recommendations for wind/diesel research based on the findings of the study. 86 refs.

  6. Examination of Capacity and Ramping Impacts of Wind Energy on Power Systems

    SciTech Connect (OSTI)

    Kirby, B.; Milligan, M.

    2008-07-01

    When wind plants serve load within the balancing area, no additional capacity required to integrate wind power into the system. We present some thought experiments to illustrate some implications for wind integration studies.

  7. DOE: Integrating Southwest Power Pool Wind Energy into Southeast Electricity Markets

    SciTech Connect (OSTI)

    Brooks, Daniel, EPRI; Tuohy, Aidan, EPRI; Deb, Sidart, LCG Consulting; Jampani, Srinivas, LCG Consulting; Kirby, Brendan, Consultant; King, Jack, Consultant

    2011-11-29

    Wind power development in the United States is outpacing previous estimates for many regions, particularly those with good wind resources. The pace of wind power deployment may soon outstrip regional capabilities to provide transmission and integration services to achieve the most economic power system operation. Conversely, regions such as the Southeastern United States do not have good wind resources and will have difficulty meeting proposed federal Renewable Portfolio Standards with local supply. There is a growing need to explore innovative solutions for collaborating between regions to achieve the least cost solution for meeting such a renewable energy mandate. The DOE-funded project 'Integrating Southwest Power Pool Wind Energy into Southeast Electricity Markets' aims to evaluate the benefits of coordination of scheduling and balancing for Southwest Power Pool (SPP) wind transfers to Southeastern Electric Reliability Council (SERC) Balancing Authorities (BAs). The primary objective of this project is to analyze the benefits of different balancing approaches with increasing levels of inter-regional cooperation. Scenarios were defined, modeled and investigated to address production variability and uncertainty and the associated balancing of large quantities of wind power in SPP and delivery to energy markets in the southern regions of the SERC. The primary analysis of the project is based on unit commitment (UC) and economic dispatch (ED) simulations of the SPP-SERC regions as modeled for the year 2022. The UC/ED models utilized for the project were developed through extensive consultation with the project utility partners, to ensure the various regions and operational practices are represented as accurately as possible realizing that all such future scenario models are quite uncertain. SPP, Entergy, Oglethorpe Power Company (OPC), Southern Company, and the Tennessee Valley Authority (TVA) actively participated in the project providing input data for the models

  8. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Maine

    SciTech Connect (OSTI)

    2008-10-01

    Analysis of the expected impacts of 1000 MW of wind power in Maine, including economic benefits, CO2 emissions reductions, and water conservation.

  9. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Arizona

    SciTech Connect (OSTI)

    2008-10-01

    Analysis of the expected impacts of 1000 MW of wind power in Arizona, including economic benefits, CO2 emissions reductions, and water conservation.

  10. Quantifying the Effect of Lidar Turbulence Error on Wind Power Prediction

    SciTech Connect (OSTI)

    Newman, Jennifer F.; Clifton, Andrew

    2016-01-01

    Currently, cup anemometers on meteorological towers are used to measure wind speeds and turbulence intensity to make decisions about wind turbine class and site suitability; however, as modern turbine hub heights increase and wind energy expands to complex and remote sites, it becomes more difficult and costly to install meteorological towers at potential sites. As a result, remote-sensing devices (e.g., lidars) are now commonly used by wind farm managers and researchers to estimate the flow field at heights spanned by a turbine. Although lidars can accurately estimate mean wind speeds and wind directions, there is still a large amount of uncertainty surrounding the measurement of turbulence using these devices. Errors in lidar turbulence estimates are caused by a variety of factors, including instrument noise, volume averaging, and variance contamination, in which the magnitude of these factors is highly dependent on measurement height and atmospheric stability. As turbulence has a large impact on wind power production, errors in turbulence measurements will translate into errors in wind power prediction. The impact of using lidars rather than cup anemometers for wind power prediction must be understood if lidars are to be considered a viable alternative to cup anemometers.In this poster, the sensitivity of power prediction error to typical lidar turbulence measurement errors is assessed. Turbulence estimates from a vertically profiling WINDCUBE v2 lidar are compared to high-resolution sonic anemometer measurements at field sites in Oklahoma and Colorado to determine the degree of lidar turbulence error that can be expected under different atmospheric conditions. These errors are then incorporated into a power prediction model to estimate the sensitivity of power prediction error to turbulence measurement error. Power prediction models, including the standard binning method and a random forest method, were developed using data from the aeroelastic simulator FAST

  11. Wind Power Project Repowering: History, Economics, and Demand (Presentation)

    SciTech Connect (OSTI)

    Lantz, E.

    2015-01-01

    This presentation summarizes a related NREL technical report and seeks to capture the current status of wind power project repowering in the U.S. and globally, analyze the economic and financial decision drivers that surround repowering, and to quantify the level and timing of demand for new turbine equipment to supply the repowering market.

  12. Evolution of Operating Reserve Determination in Wind Power Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evolution of Operating Reserve Determination in Wind Power Integration Studies Erik Ela and Michael Milligan National Renewable Energy Laboratory Brendan Kirby Private Consultant Eamonn Lannoye, Damian Flynn, and Mark O'Malley University College Dublin Bob Zavadil EnerNex Presented at the 2010 IEEE Power & Energy Society General Meeting Minneapolis, Minnesota July 25-29, 2010 Conference Paper NREL/CP-5500-49100 March 2011 NOTICE The submitted manuscript has been offered by an employee of the

  13. Wind Farm Monitoring at Storm Lake I Wind Power Project -- Equipment Only: Cooperative Research and Development Final Report, CRADA Number CRD-10-369

    SciTech Connect (OSTI)

    Gevorgian, Vahan

    2015-07-09

    Long-term, high-resolution wind turbine and wind power plant output data are important to assess the impact of wind power on grid operations and to derive meaningful statistics for better understanding of the variability of wind power. These data are used for many research and analysis activities consistent with the Wind Program mission.

  14. Confederated Tribes of Warm Springs - Wind Energy Power Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Springs Power and Water Enterprise Use of DOE Grant DE-PS36-06GO96037 For Engineering Cost Assessment For Wind Energy Power Development On The Warm Springs Indian Reservation of Oregon. Prepared by: Warm Springs Power & Water Enterprises The Confederated Tribes of Warm Springs * Home of the Warm Springs, Wasco, and Paiute tribes, the Warm Springs Reservation is inhabited by nearly 4,500 tribal members, most of whom live in or around the town of Warm Springs. * Within the community, the

  15. Primus Power Corporation Wind Firming EnergyFarm

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Primus Power Corporation Wind Firming EnergyFarm (tm) Project Description Primus Power is deploying a 25MW/75MWh EnergyFarm(tm) in the Modesto Irrigation District (MID) in California' central valley that consists of an array of 250kW EnergyPods(tm); plug-and-play zinc-flow battery modules and power electronics systems housed inside ISO shipping containers. The modular design and operation will be field tested at Pacific Gas & Electric with support from Sandia National Laboratories and the

  16. Effective Ancillary Services Market Designs on High Wind Power Penetration Systems: Preprint

    SciTech Connect (OSTI)

    Ela, E.; Kirby, B.; Navid, N.; Smith, J. C.

    2011-12-01

    This paper focuses on how the ancillary service market designs are implemented and how they may require changes on systems with greater penetrations of variable renewable energy suppliers, in particular wind power. Ancillary services markets have been developed in many of the restructured power system regions throughout the world. Ancillary services include the services that support the provision of energy to support power system reliability. The ancillary services markets are tied tightly to the design of the energy market and to the physics of the system and therefore careful consideration of power system economics and engineering must be considered in their design. This paper focuses on how the ancillary service market designs are implemented and how they may require changes on systems with greater penetrations of variable renewable energy suppliers, in particular wind power.

  17. Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2007 (Revised)

    SciTech Connect (OSTI)

    Wiser, R.; Bolinger, M.

    2008-05-01

    This report focuses on key trends in the U.S. wind power market, with an emphasis on the latest year, and presents a wealth of data, some of which has not historically been mined by wind power analysts.

  18. Siemens PG Wind Power Division formerly Bonus Energy A S | Open...

    Open Energy Info (EERE)

    PG Wind Power Division formerly Bonus Energy A S Jump to: navigation, search Name: Siemens PG Wind Power Division (formerly Bonus Energy AS) Place: Brande, Denmark Zip: DK-7330...

  19. Henan Mingdu Wind Power Co Ltd aka He Nan Ming Du Feng Dian Limited...

    Open Energy Info (EERE)

    Mingdu Wind Power Co Ltd aka He Nan Ming Du Feng Dian Limited Company Jump to: navigation, search Name: Henan Mingdu Wind Power Co Ltd (aka He Nan Ming Du Feng Dian Limited...

  20. Wind Power Opportunities in St. Thomas, USVI: A Site-Specific...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Power Opportunities in St. Thomas, USVI: A Site-Specific Evaluation and Analysis Wind Power Opportunities in St. Thomas, USVI: A Site-Specific Evaluation and Analysis Utilizes ...

  1. New DOE Report Finds Wind Power Can Serve as Cost-Effective Long...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Finds Wind Power Can Serve as Cost-Effective Long-Term Hedge Against Natural Gas Price Increases New DOE Report Finds Wind Power Can Serve as Cost-Effective Long-Term Hedge Against ...

  2. Top 10 Things You Didn't Know About Distributed Wind Power |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Top 10 Things You Didn't Know About Distributed Wind Power August 10, 2015 - 8:20am Addthis Small-Scale Distributed Wind: Northern Power Systems 100 kW turbine at the top of Burke ...

  3. Wind Power Technologies FY 2017 Budget At-A-Glance () | SciTech...

    Office of Scientific and Technical Information (OSTI)

    : Wind Power Technologies FY 2017 Budget At-A-Glance Citation Details In-Document Search Title: Wind Power Technologies FY 2017 Budget At-A-Glance You are accessing a document ...

  4. In the OSTI Collections: Wind Power | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    Wind Power People have been using the wind as an almost-free source of power to drive electric generators since the late 1800s, and have sought to improve the technology since then ...

  5. File:China Yinchuan 50m Wind Power.pdf | Open Energy Information

    Open Energy Info (EERE)

    Yinchuan 50m Wind Power.pdf Jump to: navigation, search File File history File usage China Yinchuan 50m Wind Power Size of this preview: 463 599 pixels. Other resolution: 464 ...

  6. File:China Qingdao 50m Wind Power.pdf | Open Energy Information

    Open Energy Info (EERE)

    Qingdao 50m Wind Power.pdf Jump to: navigation, search File File history File usage China Qingdao 50m Wind Power Size of this preview: 463 599 pixels. Other resolution: 464 ...

  7. File:China Hangzhou 50m Wind Power.pdf | Open Energy Information

    Open Energy Info (EERE)

    50m Wind Power.pdf Jump to: navigation, search File File history File usage China Hangzhou 50m Wind Power Size of this preview: 463 599 pixels. Other resolution: 464 600...

  8. File:China Haikou 50m Wind Power.pdf | Open Energy Information

    Open Energy Info (EERE)

    Haikou 50m Wind Power.pdf Jump to: navigation, search File File history File usage China Haikou 50m Wind Power Size of this preview: 463 599 pixels. Other resolution: 464 600...

  9. File:China Chifeng 50m Wind Power.pdf | Open Energy Information

    Open Energy Info (EERE)

    Chifeng 50m Wind Power.pdf Jump to: navigation, search File File history File usage China Chifeng 50m Wind Power Size of this preview: 463 599 pixels. Other resolution: 464 ...

  10. File:China Tianjin 50m Wind Power.pdf | Open Energy Information

    Open Energy Info (EERE)

    Tianjin 50m Wind Power.pdf Jump to: navigation, search File File history File usage China Tianjin 50m Wind Power Size of this preview: 463 599 pixels. Other resolution: 464 ...

  11. File:China Qiqihar 50m Wind Power.pdf | Open Energy Information

    Open Energy Info (EERE)

    Qiqihar 50m Wind Power.pdf Jump to: navigation, search File File history File usage China Qiqihar 50m Wind Power Size of this preview: 463 599 pixels. Other resolution: 464 ...

  12. File:China Nanchang 50m Wind Power.pdf | Open Energy Information

    Open Energy Info (EERE)

    Nanchang 50m Wind Power.pdf Jump to: navigation, search File File history File usage China Nanchang 50m Wind Power Size of this preview: 463 599 pixels. Other resolution: 464 ...

  13. File:China Shenyang 50m Wind Power.pdf | Open Energy Information

    Open Energy Info (EERE)

    Shenyang 50m Wind Power.pdf Jump to: navigation, search File File history File usage China Shenyang 50m Wind Power Size of this preview: 463 599 pixels. Other resolution: 464 ...

  14. File:China Manzhouli 50m Wind Power.pdf | Open Energy Information

    Open Energy Info (EERE)

    Manzhouli 50m Wind Power.pdf Jump to: navigation, search File File history File usage China Manzhouli 50m Wind Power Size of this preview: 463 599 pixels. Other resolution: 464...

  15. File:China Hohhot 50m Wind Power.pdf | Open Energy Information

    Open Energy Info (EERE)

    Hohhot 50m Wind Power.pdf Jump to: navigation, search File File history File usage China Hohhot 50m Wind Power Size of this preview: 463 599 pixels. Other resolution: 464 600...

  16. File:China Guangzhou 50m Wind Power.pdf | Open Energy Information

    Open Energy Info (EERE)

    Guangzhou 50m Wind Power.pdf Jump to: navigation, search File File history File usage China Guangzhou 50m Wind Power Size of this preview: 463 599 pixels. Other resolution: 464...

  17. File:China Fuzhou 50m Wind Power.pdf | Open Energy Information

    Open Energy Info (EERE)

    Fuzhou 50m Wind Power.pdf Jump to: navigation, search File File history File usage China Fuzhou 50m Wind Power Size of this preview: 463 599 pixels. Other resolution: 464 600...

  18. File:China Enshi 50m Wind Power.pdf | Open Energy Information

    Open Energy Info (EERE)

    Enshi 50m Wind Power.pdf Jump to: navigation, search File File history File usage China Enshi 50m Wind Power Size of this preview: 463 599 pixels. Other resolution: 464 600...

  19. File:China Jiamusi 50m Wind Power.pdf | Open Energy Information

    Open Energy Info (EERE)

    Jiamusi 50m Wind Power.pdf Jump to: navigation, search File File history File usage China Jiamusi 50m Wind Power Size of this preview: 463 599 pixels. Other resolution: 464 ...

  20. EA-1857: Wind Turbine Power Generation Complex at Idaho National Laboratory

    Broader source: Energy.gov [DOE]

    This EA would evaluate the environmental impacts of the proposed wind turbine power generation complex at Idaho National Laboratory, Idaho.