National Library of Energy BETA

Sample records for including vehicle fuel

  1. Energy Department Announces Advanced Fuel-Efficient Vehicle Technologies Funding Opportunity, Includes Alternative Fuels Workplace Safety Programs

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy Secretary Ernest Moniz announced more than $55 million in funding for vehicle technology advancements while touring the newest vehicle technologies at the Washington Auto Show last week. One specific topic is focused on the development of alternative fuel vehicle workplace safety programs.

  2. Natural Gas Delivered to Consumers in Minnesota (Including Vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Minnesota (Including Vehicle Fuel) (Million Cubic Feet) Natural Gas Delivered to Consumers in Minnesota (Including Vehicle Fuel) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun ...

  3. Natural Gas Delivered to Consumers in California (Including Vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    California (Including Vehicle Fuel) (Million Cubic Feet) Natural Gas Delivered to Consumers in California (Including Vehicle Fuel) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun ...

  4. Vehicle Technologies Office Merit Review 2015: Developing Kinetic Mechanisms for New Fuels and Biofuels, Including CFD Modeling

    Broader source: Energy.gov [DOE]

    Presentation given by Lawrence Livermore National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and vehicle technologies office annual merit review and peer evaluation meeting about...

  5. Fact Sheet: Accelerating the Development and Deployment of Advanced Technology Vehicles, including Battery Electric and Fuel Cell Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    Fact sheet describing President Obama's proposed changes to advanced vehicle tax credits as part of the Administration's Fiscal Year 2016 Revenue Proposals.

  6. Alternative Fuels Data Center: Flexible Fuel Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Flexible Fuel Vehicles to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicles on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicles on Twitter Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Google Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Delicious Rank Alternative Fuels Data Center: Flexible Fuel Vehicles on Digg

  7. Natural Gas Delivered to Consumers in New Mexico (Including Vehicle...

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico (Including Vehicle Fuel) (Million Cubic Feet) Natural Gas Delivered to Consumers in New Mexico (Including Vehicle Fuel) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul ...

  8. Vehicle and Fuel Use

    Broader source: Energy.gov [DOE]

    The team evaluates and incorporates the requirements for vehicle and fuel use, as deemed appropriate for LM operations and approved by LM, as defined in:

  9. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Program (VTP) (Fact Sheet) | Department of Energy Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) Flexible Fuel vehicles are able to operate using more than one type of fuel. FFVs can be fueled with unleaded gasoline, E85, or any combination of the two. Today more than 7 million vehicles on U.S. highways are

  10. Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vehicles have a 27 percent lower fuel economy running on E85. Fortunately, designing flexible fuel vehicles to run specifically on E85 rather than gasoline can help close that gap. ...

  11. Vehicle fuel system

    DOE Patents [OSTI]

    Risse, John T.; Taggart, James C.

    1976-01-01

    A vehicle fuel system comprising a plurality of tanks, each tank having a feed and a return conduit extending into a lower portion thereof, the several feed conduits joined to form one supply conduit feeding fuel to a supply pump and using means, unused fuel being returned via a return conduit which branches off to the several return conduits.

  12. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    California (Million Cubic Feet) Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in California (Million Cubic Feet) Year Jan Feb Mar Apr May Jun ...

  13. Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Maximizing Alternative Fuel Vehicle Efficiency Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency Besides their energy security and environmental benefits, many alternative fuels such as biodiesel, ethanol, and natural gas have unique chemical properties that offer advantages to drivers. These properties can include higher octane ratings and cetane numbers than conventional petroleum-based fuels, which can help an engine run more smoothly.

  14. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    than one type of fuel. FFVs can be fueled with unleaded gasoline, E85, or any combination of the two. Like conventional gasoline vehicles, FFVs have a single fuel tank, fuel ...

  15. Alternative Fuel Vehicle

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle & Fueling Infrastructure Deployment Barriers & the Potential Role of Private Sector Financial Solutions April 2014 ACKNOWLEDGEMENTS The Center for Climate and Energy Solutions (C2ES) and the National Association of State Energy Officials (NASEO) would like to thank the U.S. Department of Energy for providing financial support for this report. C2ES would also like to thank the following for their substantial input: Jay Albert, Ken Berlin, Ken Brown, David Charron,

  16. NREL: Learning - Advanced Vehicles and Fuels Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Vehicles and Fuels Basics We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. And we can help to reduce our nation's growing reliance on imported oil by running our vehicles on renewable and alternative fuels. Advanced vehicles and fuels can also put the brakes on air pollution and improve our environment. At least 250 million vehicles are in use in the United States today. They include all kinds of passenger

  17. Energy Department Announces Advanced Fuel-Efficient Vehicle Technologi...

    Energy Savers [EERE]

    Announces Advanced Fuel-Efficient Vehicle Technologies Funding Opportunity, Includes Alternative Fuels Workplace Safety Programs Energy Department Announces Advanced Fuel-Efficient ...

  18. Gasoline Ultra Fuel Efficient Vehicle

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  19. Gasoline Ultra Fuel Efficient Vehicle

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  20. Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality Breakout Session 2: Frontiers and Horizons Session 2-B: ...

  1. NREL: Hydrogen and Fuel Cells Research - Fuel Cell Electric Vehicle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluations Fuel Cell Electric Vehicle Evaluations NREL's technology validation team analyzes hydrogen fuel cell electric vehicles (FCEVs) operating in a real-world setting to identify the current status of the technology, compare it to Department of Energy (DOE) performance and durability targets, and evaluate progress between multiple generations of technology, some of which will include commercial FCEVs for the first time. Current fuel cell electric vehicle evaluations build on the

  2. Natural Gas Delivered to Consumers in Ohio (Including Vehicle...

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Delivered to Consumers in Ohio (Including Vehicle Fuel) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 136,340 110,078 102,451 66,525 ...

  3. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico (Million Cubic Feet) Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in New Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul ...

  4. Alternative Fuels Data Center: Fuel Cell Electric Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Fuel Cell Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Fuel

  5. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Advanced Vehicles Data Center (AFDC) Web site at www.afdc.energy.gov. ... Fuel Converters on its Web site at www.epa.govotaqcertdearmfr cisd0602.pdf. ...

  6. Emissions from ethanol and LPG fueled vehicles

    SciTech Connect (OSTI)

    Pitstick, M.E.

    1992-01-01

    This paper addresses the environmental concerns of using neat ethanol and liquified petroleum gas (LPG) as transportation fuels in the US Low-level blends of ethanol (10%) with gasoline have been used as fuels in the US for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the US, but its use has been limited primarily to converted fleet vehicles. Increasing US interest in alternative fuels has raised the possibility of introducing neat ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles and increased production and consumption of fuel ethanol and LPG will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural emissions from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG compared to other transportation fuels. The environmental concerns are reviewed and summarized, but the only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat ethanol fueled vehicles or the increase in LPG fueled vehicles.

  7. Emissions from ethanol and LPG fueled vehicles

    SciTech Connect (OSTI)

    Pitstick, M.E.

    1992-12-31

    This paper addresses the environmental concerns of using neat ethanol and liquified petroleum gas (LPG) as transportation fuels in the US Low-level blends of ethanol (10%) with gasoline have been used as fuels in the US for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the US, but its use has been limited primarily to converted fleet vehicles. Increasing US interest in alternative fuels has raised the possibility of introducing neat ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles and increased production and consumption of fuel ethanol and LPG will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural emissions from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG compared to other transportation fuels. The environmental concerns are reviewed and summarized, but the only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat ethanol fueled vehicles or the increase in LPG fueled vehicles.

  8. economic hydrogen fuel cell vehicles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    economic hydrogen fuel cell vehicles - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future ...

  9. Alternative Fuels Data Center: CNG Vehicle Fueling Animation

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center: CNG Vehicle Fueling Animation to someone by E-mail Share Alternative Fuels Data Center: CNG Vehicle Fueling Animation on Facebook Tweet about Alternative Fuels Data Center: CNG Vehicle Fueling Animation on Twitter Bookmark Alternative Fuels Data Center: CNG Vehicle Fueling Animation on Google Bookmark Alternative Fuels Data Center: CNG Vehicle Fueling Animation on Delicious Rank Alternative Fuels Data

  10. Alternative Fuels Data Center: Flexible Fuel Vehicle Conversions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Conversions to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Flexible Fuel Vehicle Conversions on Digg Find More places to share Alternative Fuels

  11. Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Flexible Fuel Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Ethanol Flexible Fuel

  12. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice (Revised)

    SciTech Connect (OSTI)

    Not Available

    2008-06-01

    Clean Cities fact sheet describing aspects of flexible fuel vehicles such as use of E85, special features, benefits of use, costs, and fueling locations. It includes discussion on performance and how to identify these vehicles as well as listing additional resources.

  13. List of Other Alternative Fuel Vehicles Incentives | Open Energy...

    Open Energy Info (EERE)

    Fuels Renewable Fuel Vehicles Other Alternative Fuel Vehicles Refueling Stations Ethanol Methanol Biodiesel No Alternative Vehicle Conversion Credits - Corporate (Louisiana)...

  14. Alternative Fuels Data Center: Vehicle Search

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools » Vehicle Search Printable Version Share this resource Send a link to Alternative Fuels Data Center: Vehicle Search to someone by E-mail Share Alternative Fuels Data Center: Vehicle Search on Facebook Tweet about Alternative Fuels Data Center: Vehicle Search on Twitter Bookmark Alternative Fuels Data Center: Vehicle Search on Google Bookmark Alternative Fuels Data Center: Vehicle Search on Delicious Rank Alternative Fuels Data Center: Vehicle Search on Digg Find More places to share

  15. Alternative Fuels Data Center: Vehicle Search

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC » Tools » Vehicle Search Printable Version Share this resource Send a link to Alternative Fuels Data Center: Vehicle Search to someone by E-mail Share Alternative Fuels Data Center: Vehicle Search on Facebook Tweet about Alternative Fuels Data Center: Vehicle Search on Twitter Bookmark Alternative Fuels Data Center: Vehicle Search on Google Bookmark Alternative Fuels Data Center: Vehicle Search on Delicious Rank Alternative Fuels Data Center: Vehicle Search on Digg Find More places to

  16. Alternative Fuels Data Center: Vehicle Conversion Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicle Conversion Basics to someone by E-mail Share Alternative Fuels Data Center: Vehicle Conversion Basics on Facebook Tweet about Alternative Fuels Data Center: Vehicle Conversion Basics on Twitter Bookmark Alternative Fuels Data Center: Vehicle Conversion Basics on Google Bookmark Alternative Fuels Data Center: Vehicle Conversion Basics on Delicious Rank Alternative Fuels Data Center: Vehicle Conversion Basics on Digg Find More places to share Alternative Fuels Data Center: Vehicle

  17. Alternative Fuels Data Center: Alternative Fuels and Advanced Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles Printable Version Share this resource Send a link to Alternative Fuels Data Center: Alternative Fuels and Advanced Vehicles to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels and Advanced Vehicles on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels and Advanced Vehicles on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels and Advanced Vehicles on Google Bookmark Alternative Fuels Data Center: Alternative Fuels and Advanced

  18. Alternative Fuels Data Center: Flexible Fuel Vehicle Availability

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Availability to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicle Availability on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicle Availability on Twitter Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicle Availability on Google Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicle Availability on Delicious Rank Alternative Fuels Data Center: Flexible Fuel Vehicle Availability on Digg Find More places to share Alternative

  19. Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Google Bookmark Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on

  20. Alternative Fuels Data Center: Boulder Commits to Alternative Fuel Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Boulder Commits to Alternative Fuel Vehicles to someone by E-mail Share Alternative Fuels Data Center: Boulder Commits to Alternative Fuel Vehicles on Facebook Tweet about Alternative Fuels Data Center: Boulder Commits to Alternative Fuel Vehicles on Twitter Bookmark Alternative Fuels Data Center: Boulder Commits to Alternative Fuel Vehicles on Google Bookmark Alternative Fuels Data Center: Boulder Commits to Alternative Fuel Vehicles on Delicious Rank Alternative Fuels Data Center: Boulder

  1. Market penetration scenarios for fuel cell vehicles

    SciTech Connect (OSTI)

    Thomas, C.E.; James, B.D.; Lomax, F.D. Jr.

    1997-12-31

    Fuel cell vehicles may create the first mass market for hydrogen as an energy carrier. Directed Technologies, Inc., working with the US Department of Energy hydrogen systems analysis team, has developed a time-dependent computer market penetration model. This model estimates the number of fuel cell vehicles that would be purchased over time as a function of their cost and the cost of hydrogen relative to the costs of competing vehicles and fuels. The model then calculates the return on investment for fuel cell vehicle manufacturers and hydrogen fuel suppliers. The model also projects the benefit/cost ratio for government--the ratio of societal benefits such as reduced oil consumption, reduced urban air pollution and reduced greenhouse gas emissions to the government cost for assisting the development of hydrogen energy and fuel cell vehicle technologies. The purpose of this model is to assist industry and government in choosing the best investment strategies to achieve significant return on investment and to maximize benefit/cost ratios. The model can illustrate trends and highlight the sensitivity of market penetration to various parameters such as fuel cell efficiency, cost, weight, and hydrogen cost. It can also illustrate the potential benefits of successful R and D and early demonstration projects. Results will be shown comparing the market penetration and return on investment estimates for direct hydrogen fuel cell vehicles compared to fuel cell vehicles with onboard fuel processors including methanol steam reformers and gasoline partial oxidation systems. Other alternative fueled vehicles including natural gas hybrids, direct injection diesels and hydrogen-powered internal combustion hybrid vehicles will also be analyzed.

  2. Alternative Fuels Data Center: CNG Vehicle Fueling Animation Text Version

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center: CNG Vehicle Fueling Animation Text Version to someone by E-mail Share Alternative Fuels Data Center: CNG Vehicle Fueling Animation Text Version on Facebook Tweet about Alternative Fuels Data Center: CNG Vehicle Fueling Animation Text Version on Twitter Bookmark Alternative Fuels Data Center: CNG Vehicle Fueling Animation Text Version on Google Bookmark Alternative Fuels Data Center: CNG Vehicle

  3. Alternative Fuels Data Center: Utah's Clean Fuels and Vehicle Technology

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Loan Program Utah's Clean Fuels and Vehicle Technology Loan Program to someone by E-mail Share Alternative Fuels Data Center: Utah's Clean Fuels and Vehicle Technology Loan Program on Facebook Tweet about Alternative Fuels Data Center: Utah's Clean Fuels and Vehicle Technology Loan Program on Twitter Bookmark Alternative Fuels Data Center: Utah's Clean Fuels and Vehicle Technology Loan Program on Google Bookmark Alternative Fuels Data Center: Utah's Clean Fuels and Vehicle Technology Loan

  4. Alternative Fuels Data Center: Alternative Fuel Vehicles Lower Emissions in

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Columbus, Ohio Alternative Fuel Vehicles Lower Emissions in Columbus, Ohio to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicles Lower Emissions in Columbus, Ohio on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicles Lower Emissions in Columbus, Ohio on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicles Lower Emissions in Columbus, Ohio on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicles

  5. Alternative Fuels Data Center: Natural Gas Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center: Natural Gas Vehicles to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicles on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicles on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Vehicles on Google Bookmark Alternative Fuels Data Center: Natural Gas Vehicles on Delicious Rank Alternative Fuels Data Center: Natural Gas Vehicles on Digg Find

  6. Alternative Fuels Data Center: Propane Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane Vehicles to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicles on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicles on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicles on Google Bookmark Alternative Fuels Data Center: Propane Vehicles on Delicious Rank Alternative Fuels Data Center: Propane Vehicles on Digg Find More places to share

  7. Alternative Fuels Data Center: Vehicle Cost Calculator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center: Vehicle Cost Calculator to someone by E-mail Share Alternative Fuels Data Center: Vehicle Cost Calculator on Facebook Tweet about Alternative Fuels Data Center: Vehicle Cost Calculator on Twitter Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator on Google Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator on Delicious Rank Alternative Fuels Data Center: Vehicle Cost Calculator on

  8. Alternative Fuels Data Center: Biodiesel Vehicle Emissions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biodiesel Vehicle Emissions to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Vehicle Emissions on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Vehicle Emissions on Google Bookmark Alternative Fuels Data Center: Biodiesel Vehicle Emissions on Delicious Rank Alternative Fuels Data Center: Biodiesel Vehicle Emissions on Digg Find More places to share Alternative Fuels Data Center:

  9. Alternative Fuels Data Center: Diesel Vehicle Availability

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Diesel Vehicle Availability to someone by E-mail Share Alternative Fuels Data Center: Diesel Vehicle Availability on Facebook Tweet about Alternative Fuels Data Center: Diesel Vehicle Availability on Twitter Bookmark Alternative Fuels Data Center: Diesel Vehicle Availability on Google Bookmark Alternative Fuels Data Center: Diesel Vehicle Availability on Delicious Rank Alternative Fuels Data Center: Diesel Vehicle Availability on Digg Find More places to share Alternative Fuels Data Center:

  10. Alternative Fuels Data Center: Propane Vehicle Conversions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Conversions to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Propane Vehicle

  11. Alternative Fuels Data Center: Propane Vehicle Emissions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Emissions to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Emissions on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Emissions on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Emissions on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Emissions on Digg Find More places to share Alternative Fuels Data Center: Propane Vehicle Emissions on

  12. Alternative Fuels Data Center: Vehicle Conversions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Conversions Printable Version Share this resource Send a link to Alternative Fuels Data Center: Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Vehicle Conversions on Digg Find More

  13. ,"Minnesota Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Minnesota Natural Gas Vehicle Fuel Consumption ... 7:09:42 AM" "Back to Contents","Data 1: Minnesota Natural Gas Vehicle Fuel Consumption ...

  14. ,"Virginia Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Virginia Natural Gas Vehicle Fuel Consumption ... 12:00:27 PM" "Back to Contents","Data 1: Virginia Natural Gas Vehicle Fuel Consumption ...

  15. Fuel Cell Vehicle Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles & Fuels » Vehicles » Fuel Cell Vehicle Basics Fuel Cell Vehicle Basics August 20, 2013 - 9:11am Addthis Photo of a blue car with 'The Road to Hydrogen' written on it, filling up at a hydrogen fueling station. Fuel cell vehicles, powered by hydrogen, could greatly improve the sustainability of our transportation sector. Although electricity production may contribute to air pollution, they are more efficient than conventional internal combustion engine vehicles and produce no

  16. Alternative Fuels Data Center: Propane Vehicle Availability

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Availability to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Availability on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Availability on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Availability on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Availability on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Availability on Digg Find More places to share Alternative Fuels Data Center: Propane

  17. Renewable Fuels and Vehicles Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Fuels & Vehicles Overview Dale Gardner Associate Director, Renewable Fuels S&T 12 August 2008 State Energy Advisory Board to 2 National Renewable Energy Laboratory Innovation for Our Energy DOE Programs Supported 3 National Renewable Energy Laboratory Innovation for Our Energy Advanced Energy Initiative * Develop advanced battery technologies that allow plug-in hybrid electric vehicles to have a 40 mile range operating solely on battery charge. * Accelerate progress towards the

  18. Vehicle Technologies Office Merit Review 2014: Improving Vehicle Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Through Tire Design, Materials, and Reduced Weight | Department of Energy Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight Vehicle Technologies Office Merit Review 2014: Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight Presentation given by Cooper Tire at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about improving vehicle fuel

  19. Moving toward a commercial market for hydrogen fuel cell vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Moving toward a commercial market for hydrogen fuel cell vehicles Moving toward a commercial market for hydrogen fuel cell vehicles Fuel cell vehicles and fueling stations PDF icon ...

  20. Water Emissions from Fuel Cell Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells Water Emissions from Fuel Cell Vehicles Water Emissions from Fuel Cell Vehicles Hydrogen fuel cell vehicles (FCVs) emit approximately the same amount of water per ...

  1. Emission control cost-effectiveness of alternative-fuel vehicles

    SciTech Connect (OSTI)

    Wang, Q.; Sperling, D.; Olmstead, J.

    1993-06-14

    Although various legislation and regulations have been adopted to promote the use of alternative-fuel vehicles for curbing urban air pollution problems, there is a lack of systematic comparisons of emission control cost-effectiveness among various alternative-fuel vehicle types. In this paper, life-cycle emission reductions and life-cycle costs were estimated for passenger cars fueled with methanol, ethanol, liquefied petroleum gas, compressed natural gas, and electricity. Vehicle emission estimates included both exhaust and evaporative emissions for air pollutants of hydrocarbon, carbon monoxide, nitrogen oxides, and air-toxic pollutants of benzene, formaldehyde, 1,3-butadiene, and acetaldehyde. Vehicle life-cycle cost estimates accounted for vehicle purchase prices, vehicle life, fuel costs, and vehicle maintenance costs. Emission control cost-effectiveness presented in dollars per ton of emission reduction was calculated for each alternative-fuel vehicle types from the estimated vehicle life-cycle emission reductions and costs. Among various alternative-fuel vehicle types, compressed natural gas vehicles are the most cost-effective vehicle type in controlling vehicle emissions. Dedicated methanol vehicles are the next most cost-effective vehicle type. The cost-effectiveness of electric vehicles depends on improvements in electric vehicle battery technology. With low-cost, high-performance batteries, electric vehicles are more cost-effective than methanol, ethanol, and liquified petroleum gas vehicles.

  2. Alternative Fuel Vehicle Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Find alternative fuel vehicle resources. Alternative Fuels Data Center FuelEconomy.gov-Gas Mileage, Emissions, Air Pollution Ratings, and Safety Data National Renewable Energy ...

  3. Motor vehicle fuel analyzer

    DOE Patents [OSTI]

    Hoffheins, B.S.; Lauf, R.J.

    1997-08-05

    A gas detecting system is described for classifying the type of liquid fuel in a container or tank. The system includes a plurality of semiconductor gas sensors, each of which differs from the other in its response to various organic vapors. The system includes a means of processing the responses of the plurality of sensors such that the responses to any particular organic substance or mixture is sufficiently distinctive to constitute a recognizable ``signature``. The signature of known substances are collected and divided into two classes based on some other known characteristic of the substances. A pattern recognition system classifies the signature of an unknown substance with reference to the two user-defined classes, thereby classifying the unknown substance with regard to the characteristic of interest, such as its suitability for a particular use. 14 figs.

  4. Motor vehicle fuel analyzer

    DOE Patents [OSTI]

    Hoffheins, Barbara S. (Knoxville, TN); Lauf, Robert J. (Oak Ridge, TN)

    1997-01-01

    A gas detecting system for classifying the type of liquid fuel in a container or tank. The system includes a plurality of semiconductor gas sensors, each of which differs from the other in its response to various organic vapors. The system includes a means of processing the responses of the plurality of sensors such that the responses to any particular organic substance or mixture is sufficiently distinctive to constitute a recognizable "signature". The signature of known substances are collected and divided into two classes based on some other known characteristic of the substances. A pattern recognition system classifies the signature of an unknown substance with reference to the two user-defined classes, thereby classifying the unknown substance with regard to the characteristic of interest, such as its suitability for a particular use.

  5. Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (FCEVs) | Department of Energy for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs) Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs) Download presentation slides from the DOE Fuel Cell Technologies Office webinar "Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs)" held on June 24, 2014. PDF icon Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs) Webinar Slides More Documents

  6. Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Electric

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Availability Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Electric Availability to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Electric Availability on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Electric Availability on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Electric Availability on Google Bookmark Alternative

  7. Flexible Fuel Vehicle Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles & Fuels » Vehicles » Flexible Fuel Vehicle Basics Flexible Fuel Vehicle Basics August 20, 2013 - 9:05am Addthis Photo of a gray van with 'E85 Ethanol' written on the side. Flexible fuel vehicles (FFVs) have an internal combustion engine and are capable of operating on gasoline, E85 (a high-level blend of gasoline and ethanol), or a mixture of both. There are more than 10.6 million flexible fuel vehicles on U.S. roads today. However, many flexible fuel vehicle owners don't realize

  8. Alternative Fuels Data Center: Alternative Fuel Vehicles Beat the Heat,

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fight the Freeze, and Conquer the Mountains Alternative Fuel Vehicles Beat the Heat, Fight the Freeze, and Conquer the Mountains to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicles Beat the Heat, Fight the Freeze, and Conquer the Mountains on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicles Beat the Heat, Fight the Freeze, and Conquer the Mountains on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicles Beat

  9. Vehicle Mass Impact on Vehicle Losses and Fuel Economy

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  10. Vehicle Mass Impact on Vehicle Losses and Fuel Economy

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  11. Water Emissions from Fuel Cell Vehicles

    Broader source: Energy.gov [DOE]

    Hydrogen fuel cell vehicles (FCVs) emit approximately the same amount of water per mile as vehicles using gasoline-powered internal combustion engines (ICEs).

  12. Other Alternative Fuel Vehicles | Open Energy Information

    Open Energy Info (EERE)

    Vehicles Jump to: navigation, search TODO: Add description List of Other Alternative Fuel Vehicles Incentives Retrieved from "http:en.openei.orgwindex.php?titleOtherAlternati...

  13. NREL: Technology Deployment - Fuels, Vehicles, and Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deployment Fuels, Vehicles, and Transportation Deployment Photo of a hand holding a Blackberry phone with the Alternative Fueling Station Locator on the screen. A ChargePoint electric vehicle charging station is in the background. NREL works with vehicle fleets, fuel providers, policymakers, and other transportation stakeholders to deploy alternative and renewable fuels, advanced vehicles, fuel economy improvements, and fleet-level efficiencies that reduce U.S. reliance on petroleum-based

  14. Minnesota Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Minnesota Natural Gas Vehicle Fuel ... Referring Pages: Natural Gas Vehicle Fuel Price Minnesota Natural Gas Prices Natural Gas ...

  15. California Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) California Natural Gas Vehicle Fuel ... Referring Pages: Natural Gas Vehicle Fuel Price California Natural Gas Prices Natural Gas ...

  16. Alternative Fuels Data Center: State Alternative Fuel and Advanced Vehicle

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Laws and Incentives: 2013 Year in Review Alternative Fuel and Advanced Vehicle Laws and Incentives: 2013 Year in Review to someone by E-mail Share Alternative Fuels Data Center: State Alternative Fuel and Advanced Vehicle Laws and Incentives: 2013 Year in Review on Facebook Tweet about Alternative Fuels Data Center: State Alternative Fuel and Advanced Vehicle Laws and Incentives: 2013 Year in Review on Twitter Bookmark Alternative Fuels Data Center: State Alternative Fuel and Advanced

  17. Alternative Fuels Data Center: State Alternative Fuel and Advanced Vehicle

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Laws and Incentives: 2014 Year in Review State Alternative Fuel and Advanced Vehicle Laws and Incentives: 2014 Year in Review to someone by E-mail Share Alternative Fuels Data Center: State Alternative Fuel and Advanced Vehicle Laws and Incentives: 2014 Year in Review on Facebook Tweet about Alternative Fuels Data Center: State Alternative Fuel and Advanced Vehicle Laws and Incentives: 2014 Year in Review on Twitter Bookmark Alternative Fuels Data Center: State Alternative Fuel and Advanced

  18. Alternative Fuels Data Center: State Alternative Fuel and Advanced Vehicle

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Laws and Incentives: 2015 Year in Review State Alternative Fuel and Advanced Vehicle Laws and Incentives: 2015 Year in Review to someone by E-mail Share Alternative Fuels Data Center: State Alternative Fuel and Advanced Vehicle Laws and Incentives: 2015 Year in Review on Facebook Tweet about Alternative Fuels Data Center: State Alternative Fuel and Advanced Vehicle Laws and Incentives: 2015 Year in Review on Twitter Bookmark Alternative Fuels Data Center: State Alternative Fuel and Advanced

  19. Vehicle Fuel Economy Improvement through Thermoelectric Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Economy Improvement through Thermoelectric Waste Heat Recovery Vehicle Fuel Economy Improvement through Thermoelectric Waste Heat Recovery 2005 Diesel Engine Emissions ...

  20. Co-Optimization of Fuels and Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimization of Fuels and Vehicles Jim Anderson, Ford Motor Company Bioenergy 2015 June ... LDV Pathways Source: DOE Hydrogen and Fuel Cells Program Record 14006, http:...

  1. Alternative Fuels Vehicle Group | Open Energy Information

    Open Energy Info (EERE)

    Vehicle Group Jump to: navigation, search Name: Alternative Fuels Vehicle Group Place: New York, New York Zip: 28 West 25th Street Sector: Vehicles Product: Focussed on news and...

  2. Fuel Savings from Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Bennion, K.; Thornton, M.

    2009-03-01

    NREL's study shows that hybrid electric vehicles can significantly reduce oil imports for use in light-duty vehicles, particularly if drivers switch to smaller, more fuel-efficient vehicles overall.

  3. Sensor system for fuel transport vehicle

    DOE Patents [OSTI]

    Earl, Dennis Duncan; McIntyre, Timothy J.; West, David L.

    2016-03-22

    An exemplary sensor system for a fuel transport vehicle can comprise a fuel marker sensor positioned between a fuel storage chamber of the vehicle and an access valve for the fuel storage chamber of the vehicle. The fuel marker sensor can be configured to measure one or more characteristics of one or more fuel markers present in the fuel adjacent the sensor, such as when the marked fuel is unloaded at a retail station. The one or more characteristics can comprise concentration and/or identity of the one or more fuel markers in the fuel. Based on the measured characteristics of the one or more fuel markers, the sensor system can identify the fuel and/or can determine whether the fuel has been adulterated after the marked fuel was last measured, such as when the marked fuel was loaded into the vehicle.

  4. Vehicle Mass and Fuel Efficiency Impact Testing

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  5. Hydrogen as a fuel for fuel cell vehicles: A technical and economic comparison

    SciTech Connect (OSTI)

    Ogden, J.; Steinbugler, M.; Kreutz, T.

    1997-12-31

    All fuel cells currently being developed for near term use in vehicles require hydrogen as a fuel. Hydrogen can be stored directly or produced onboard the vehicle by reforming methanol, ethanol or hydrocarbon fuels derived from crude oil (e.g., Diesel, gasoline or middle distillates). The vehicle design is simpler with direct hydrogen storage, but requires developing a more complex refueling infrastructure. In this paper, the authors compare three leading options for fuel storage onboard fuel cell vehicles: compressed gas hydrogen storage; onboard steam reforming of methanol; onboard partial oxidation (POX) of hydrocarbon fuels derived from crude oil. Equilibrium, kinetic and heat integrated system (ASPEN) models have been developed to estimate the performance of onboard steam reforming and POX fuel processors. These results have been incorporated into a fuel cell vehicle model, allowing us to compare the vehicle performance, fuel economy, weight, and cost for various fuel storage choices and driving cycles. A range of technical and economic parameters were considered. The infrastructure requirements are also compared for gaseous hydrogen, methanol and hydrocarbon fuels from crude oil, including the added costs of fuel production, storage, distribution and refueling stations. Considering both vehicle and infrastructure issues, the authors compare hydrogen to other fuel cell vehicle fuels. Technical and economic goals for fuel cell vehicle and hydrogen technologies are discussed. Potential roles for hydrogen in the commercialization of fuel cell vehicles are sketched.

  6. List of Renewable Fuel Vehicles Incentives | Open Energy Information

    Open Energy Info (EERE)

    Fuels Renewable Fuel Vehicles Other Alternative Fuel Vehicles Refueling Stations Ethanol Methanol Biodiesel No Alternative Fuels Loan Program (Kansas) State Loan Program Kansas...

  7. Vehicle Technology and Alternative Fuel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technology and Alternative Fuel Basics Vehicle Technology and Alternative Fuel Basics Photo of an electric car plugged in and charging. Learn about exciting technologies and ongoing research in advanced technology vehicles and alternative fuel vehicles that run on fuels other than traditional petroleum.. ADVANCED TECHNOLOGY AND ALTERNATIVE FUEL VEHICLES There are a variety of alternative fuel vehicles and advanced technology vehicles available. Learn about: Flexible Fuel Vehicles Fuel

  8. Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality Breakout Session 2: Frontiers and Horizons Session 2-B: End Use and Fuel Certification Paul Machiele, Center Director for Fuel Programs, Office of Transportation & Air Quality, U.S. Environmental Protection Agency PDF icon b13_machiele_2-b.pdf More Documents & Publications High Octane Fuels Can Make Better Use of Renewable Transportation Fuels The

  9. Alternative Fuel Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alternative Fuel Vehicles Alternative Fuel Vehicles Check out our <a href="http://www.afdc.energy.gov/">Alternative Fuels Data Center</a> for information, maps, and tools related to all types of advanced vehicles. Check out our Alternative Fuels Data Center for information, maps, and tools related to all types of advanced vehicles. From electric cars and propane vehicles to natural gas-powered buses and trucks that run on biodiesel, today's options for alternative fuel

  10. Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Introduction to SAE Hydrogen Fueling Standardization Developing SAE Safety Standards for Hydrogen and Fuel Cell Vehicles (FCVs) International Hydrogen ...

  11. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-03-01

    Flexible Fuel vehicles are able to operate using more than one type of fuel. FFVs can be fueled with unleaded gasoline, E85, or any combination of the two. Today more than 7 million vehicles on U.S. highways are flexible fuel vehicles. The fact sheet discusses how E85 affects vehicle performance, the costs and benefits of using E85, and how to find E85 station locations.

  12. NREL: Learning - Fuel Cell Vehicle Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell Vehicle Basics Photo showing a silver four-door sedan being driven on a roadway and containing the words "hydrogen fuel cell electric" across the front and rear doors. This prototype hydrogen fuel cell electric vehicle was displayed at a recent conference of the National Hydrogen Association. Credit: Keith Wipke Researchers are developing fuel cells that can be used in vehicles to provide electricity for propulsion as well as for a car's electric and electronic equipment.

  13. Shanghai Fuel Cell Vehicle Powertrain Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Fuel Cell Vehicle Powertrain Co Ltd Jump to: navigation, search Name: Shanghai Fuel Cell Vehicle Powertrain Co Ltd Place: Shanghai Municipality, China Sector: Vehicles Product: A...

  14. Fact #591: October 5, 2009 Consumer Reports Tests Vehicle Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5, 2009 Consumer Reports Tests Vehicle Fuel Economy by Speed Fact 591: October 5, 2009 Consumer Reports Tests Vehicle Fuel Economy by Speed Seven vehicles were tested by ...

  15. Fuel Consumption and Cost Benefits of DOE Vehicle Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost Benefits of DOE Vehicle Technologies Program Fuel Consumption and Cost Benefits of DOE Vehicle Technologies Program 2012 DOE Hydrogen and Fuel Cells Program and Vehicle ...

  16. Alternative Fuels Data Center: Rightsizing Your Vehicle Fleet to Conserve

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Rightsizing Your Vehicle Fleet to Conserve Fuel to someone by E-mail Share Alternative Fuels Data Center: Rightsizing Your Vehicle Fleet to Conserve Fuel on Facebook Tweet about Alternative Fuels Data Center: Rightsizing Your Vehicle Fleet to Conserve Fuel on Twitter Bookmark Alternative Fuels Data Center: Rightsizing Your Vehicle Fleet to Conserve Fuel on Google Bookmark Alternative Fuels Data Center: Rightsizing Your Vehicle Fleet to Conserve Fuel on Delicious Rank Alternative Fuels

  17. Hydrogen-Fueled Vehicle Safety Systems Animation | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen-Fueled Vehicle Safety Systems Animation Hydrogen-Fueled Vehicle Safety Systems Animation This animation demonstrates the multiple safety systems in hydrogen-fueled ...

  18. Emissions from ethanol- and LPG-fueled vehicles

    SciTech Connect (OSTI)

    Pitstick, M.E.

    1995-06-01

    This paper addresses the environmental concerns of using neat ethanol and liquefied petroleum gas (LPG) as transportation fuels in the United States. Low-level blends of ethanol (10%) with gasoline have been used as fuels in the United States for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the United States, but its use has been limited primarily to converted fleet vehicles. Increasing U.S. interest in alternative fuels has raised the possibility of introducing neat-ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles, and increased production and consumption of fuel ethanol and LPG, will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat-ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural impacts from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG as compared with other transportation fuels. The environmental concerns are reviewed and summarized, but only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat-ethanol-fueled vehicles or the increase in LPG-fueled vehicles.

  19. ,"Maine Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maine Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Annual",2014 ,"Release Date:","930...

  20. ,"Washington Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Washington Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Annual",2014 ,"Release Date:","930...

  1. ,"Hawaii Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Hawaii Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Annual",2014 ,"Release Date:","930...

  2. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon fry.pdf More Documents & Publications HYDROGEN TO THE HIGHWAYS NREL Alt Fuel Lessons Learned: Hydrogen Infrastructure Safety Analysis of Type 4 Tanks in CNG Vehicles

  3. ,"Texas Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Annual",2014 ,"Release Date:","930...

  4. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from the DOE sponsored Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen workshop to understand how lessons from past experiences can...

  5. Alternative Fuels Data Center: Ethanol Vehicle Emissions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ... Case Studies Idaho County Employs FFVs and Idle Reduction Alternative Fuel Vehicles Beat the Heat, Fight the Freeze, and Conquer the Mountains California Ramps Up Biofuels ...

  6. Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations This document establishes the California ...

  7. New York State-wide Alternative Fuel Vehicle Program for Vehicles and Fueling Stations

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  8. New York State-wide Alternative Fuel Vehicle Program for Vehicles and Fueling Stations

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  9. Fuel Cell Electric Vehicle (FCEV) Performance Composite Data Products: Fall 2015

    SciTech Connect (OSTI)

    Kurtz, Jennifer; Sprik, Sam; Ainscough, Chris; Saur, Genevieve; Peters, Mike

    2015-11-01

    This publication includes 53 composite data products (CDPs) produced in Fall 2015 for fuel cell electric vehicle performance.

  10. Costs Associated With Propane Vehicle Fueling Infrastructure

    SciTech Connect (OSTI)

    Smith, M.; Gonzales, J.

    2014-08-05

    This document is designed to help fleets understand the cost factors associated with propane vehicle fueling infrastructure. It provides an overview of the equipment and processes necessary to develop a propane fueling station and offers estimated cost ranges.

  11. Costs Associated With Propane Vehicle Fueling Infrastructure

    SciTech Connect (OSTI)

    Smith, M.; Gonzales, J.

    2014-08-01

    This document is designed to help fleets understand the cost factors associated with propane vehicle fueling infrastructure. It provides an overview of the equipment and processes necessary to develop a propane fueling station and offers estimated cost ranges.

  12. Washington Auto Show Spotlight: How Fuel Cell Electric Vehicles Work |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Washington Auto Show Spotlight: How Fuel Cell Electric Vehicles Work Washington Auto Show Spotlight: How Fuel Cell Electric Vehicles Work January 27, 2015 - 12:57pm Addthis The Hyundai Tucson FCEV is currently available for lease in Southern California for less than $500 per month, including free hydrogen fuel. Hydrogen for FCEVs can be produced from a variety of resources all providing emission reductions. Hydrogen derived from natural gas reduces emissions by half and

  13. Advanced Technology and Alternative Fuel Vehicle Basics | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Advanced Technology and Alternative Fuel Vehicle Basics Advanced Technology and Alternative Fuel Vehicle Basics August 20, 2013 - 9:00am Addthis Photo of a large blue truck with 'PG&amp;E Cleanair' written on the side. There are a variety of alternative fuel and advanced technology vehicles that run on fuels other than traditional petroleum. Learn about the following types of vehicles: Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid and Plug-In Electric Vehicles Natural Gas

  14. Alternative Fuels Data Center: Deploying Alternative Fuel Vehicles in

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Rochester, New York, Through the Congestion Mitigation and Air Quality Improvement Program Deploying Alternative Fuel Vehicles in Rochester, New York, Through the Congestion Mitigation and Air Quality Improvement Program to someone by E-mail Share Alternative Fuels Data Center: Deploying Alternative Fuel Vehicles in Rochester, New York, Through the Congestion Mitigation and Air Quality Improvement Program on Facebook Tweet about Alternative Fuels Data Center: Deploying Alternative Fuel

  15. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice

    SciTech Connect (OSTI)

    Clean Cities

    2010-03-01

    Flexible fuel vehicles can operate on either gasoline or E85, a mixture of 85% ethanol and 15% gasoline. The fact sheet discusses the costs, benefits, and vehicle performance of using E85.

  16. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications: Conceptual vehicle design report pure fuel cell powertrain vehicle

    SciTech Connect (OSTI)

    Oei, D.; Kinnelly, A.; Sims, R.; Sulek, M.; Wernette, D.

    1997-02-01

    In partial fulfillment of the Department of Energy (DOE) Contract No. DE-AC02-94CE50389, {open_quotes}Direct-Hydrogen-Fueled Proton-Exchange-Membrane (PEM) Fuel Cell for Transportation Applications{close_quotes}, this preliminary report addresses the conceptual design and packaging of a fuel cell-only powered vehicle. Three classes of vehicles are considered in this design and packaging exercise, the Aspire representing the small vehicle class, the Taurus or Aluminum Intensive Vehicle (AIV) Sable representing the mid-size vehicle and the E-150 Econoline representing the van-size class. A fuel cell system spreadsheet model and Ford`s Corporate Vehicle Simulation Program (CVSP) were utilized to determine the size and the weight of the fuel cell required to power a particular size vehicle. The fuel cell power system must meet the required performance criteria for each vehicle. In this vehicle design and packaging exercise, the following assumptions were made: fuel cell power system density of 0.33 kW/kg and 0.33 kg/liter, platinum catalyst loading less than or equal to 0.25 mg/cm{sup 2} total and hydrogen tanks containing gaseous hydrogen under 340 atm (5000 psia) pressure. The fuel cell power system includes gas conditioning, thermal management, humidity control, and blowers or compressors, where appropriate. This conceptual design of a fuel cell-only powered vehicle will help in the determination of the propulsion system requirements for a vehicle powered by a PEMFC engine in lieu of the internal combustion (IC) engine. Only basic performance level requirements are considered for the three classes of vehicles in this report. Each vehicle will contain one or more hydrogen storage tanks and hydrogen fuel for 560 km (350 mi) driving range. Under these circumstances, the packaging of a fuel cell-only powered vehicle is increasingly difficult as the vehicle size diminishes.

  17. Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Flexible Fuel Vehicle Conversions Updated July 29, 2011 Rising gasoline prices and concerns about climate change have greatly increased public interest in ethanol use, ...

  18. Municipal waste to vehicle fuel

    SciTech Connect (OSTI)

    Henrich, R.A.

    1981-01-01

    The use of water as a scrubbing agent for biogas from wastewater treatment plants and landfills is described. The purified gas containing 98% CH/sub 4/ is a viable and potentially cost-effective fuel for traction. A biogas-purification process (the Binax system), delivery of the gas, quality and economics of the purified gas, the Binax design specifications, and a vehicle-conversion system to operate on gasoline or CH/sub 4/ are discussed. Biogas manufacture from wastewater-treatment plants is generally approximately 0.25 -3 cubic ft/capita-day depending on digester design and operating efficiency, solid removal efficiency (primary treatment vs. secondary treatment), and on the amount of industrial and agricultural waste flowing into the facilities. A treatment facility serving a population of 100,000 might produce 50,000-300,000 cubic ft digester gas/day.

  19. Alternative Fuels Data Center: Vehicle Parts and Equipment to Conserve Fuel

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicle Parts and Equipment to Conserve Fuel to someone by E-mail Share Alternative Fuels Data Center: Vehicle Parts and Equipment to Conserve Fuel on Facebook Tweet about Alternative Fuels Data Center: Vehicle Parts and Equipment to Conserve Fuel on Twitter Bookmark Alternative Fuels Data Center: Vehicle Parts and Equipment to Conserve Fuel on Google Bookmark Alternative Fuels Data Center: Vehicle Parts and Equipment to Conserve Fuel on Delicious Rank Alternative Fuels Data Center: Vehicle

  20. Alternative Fuels Data Center: Natural Gas Vehicle Emissions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Vehicle Emissions to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicle Emissions on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Vehicle Emissions on Google Bookmark Alternative Fuels Data Center: Natural Gas Vehicle Emissions on Delicious Rank Alternative Fuels Data Center: Natural Gas Vehicle Emissions on Digg Find More places to share Alternative Fuels Data

  1. Fuel Cell and Battery Electric Vehicles Compared | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Battery Electric Vehicles Compared Fuel Cell and Battery Electric Vehicles Compared Presented by Sandy Thomas at the National Hydrogen Assocation Conference and Hydrogen Expo PDF icon thomas_fcev_vs_battery_evs.pdf More Documents & Publications An Energy Evolution:Alternative Fueled Vehicle Comparisons Fuel Cell and Battery Electric Vehicles Compared INFOGRAPHIC: The Fuel Cell Electric Vehicle Asia/ITS

  2. Alternative Fuels Data Center: Connecticut Utility Fleet Operates Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    on Alternative Fuels Connecticut Utility Fleet Operates Vehicles on Alternative Fuels to someone by E-mail Share Alternative Fuels Data Center: Connecticut Utility Fleet Operates Vehicles on Alternative Fuels on Facebook Tweet about Alternative Fuels Data Center: Connecticut Utility Fleet Operates Vehicles on Alternative Fuels on Twitter Bookmark Alternative Fuels Data Center: Connecticut Utility Fleet Operates Vehicles on Alternative Fuels on Google Bookmark Alternative Fuels Data Center:

  3. Flexible Fuel Vehicles: Powered by a Renewable U.S. Fuel

    SciTech Connect (OSTI)

    Not Available

    2007-03-01

    Clean Cities fact sheet describing aspects of flexible fuel vehicles such as use of E85, special features, benefits of use, costs, and fueling locations. It includes discussion on performance and how to identify these vehicles as well as listing additional resources.

  4. Fact #706: December 19, 2011 Vocational Vehicle Fuel Consumption Standards

    Broader source: Energy.gov [DOE]

    The National Highway Traffic Safety Administration recently published final fuel consumption standards for heavy vehicles called "vocational" vehicles. A vocational vehicle is generally a single...

  5. Pressure Relief Devices for Compressed Hydrogen Vehicle Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pressure Relief Devices for Compressed Hydrogen Vehicle Fuel Containers Pressure Relief Devices for Compressed Hydrogen Vehicle Fuel Containers These slides were presented at the...

  6. National Fuel Cell Electric Vehicle Learning Demonstration Final...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Electric Vehicle Learning Demonstration Final Report National Fuel Cell Electric Vehicle Learning Demonstration Final Report This report discusses key analysis results ...

  7. VISION Model for Vehicle Technologies and Alternative Fuels ...

    Open Energy Info (EERE)

    VISION Model for Vehicle Technologies and Alternative Fuels Jump to: navigation, search Tool Summary LAUNCH TOOL Name: VISION Model for Vehicle Technologies and Alternative Fuels...

  8. ,"West Virginia Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","West Virginia Natural Gas Vehicle Fuel Consumption ... PM" "Back to Contents","Data 1: West Virginia Natural Gas Vehicle Fuel Consumption ...

  9. Fact #659: January 24, 2011 Fuel Economy Ratings for Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9: January 24, 2011 Fuel Economy Ratings for Vehicles Operating on Electricity Fact 659: January 24, 2011 Fuel Economy Ratings for Vehicles Operating on Electricity The ...

  10. Hyundai Tucson Fuel Cell Electric Vehicle visits Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hyundai Tucson Fuel Cell Electric Vehicle visits Department of Energy Hyundai Tucson Fuel Cell Electric Vehicle visits Department of Energy September 26, 2014 - 3:34pm Addthis ...

  11. Fact #633: July 26, 2010 Alternative Fuel Vehicles | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3: July 26, 2010 Alternative Fuel Vehicles Fact 633: July 26, 2010 Alternative Fuel Vehicles The Energy Information Administration publishes estimates of the number of alternative ...

  12. DOE Vehicle Technologies Program 2009 Merit Review Report - Fuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuels and Lubricants DOE Vehicle Technologies Program 2009 Merit Review Report - Fuels and Lubricants Merit review of DOE Vehicle Technologies Program research efforts...

  13. Co-Optimization of Fuels and Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Co-Optimization of Fuels and Vehicles Co-Optimization of Fuels and Vehicles Plenary IV: Fuels of the Future: Accelerating the Co-Optimization of Fuels and Engines Co-Optimization of Fuels and Vehicles James E. Anderson, Technical Expert, Ford Motor Company PDF icon anderson_bioenergy_2015.pdf More Documents & Publications A Vehicle Manufacturer's Perspective on Higher-Octane Fuels Co-Optima Stakeholder Listening Day Summary Report Co-Optimization of Fuels and Vehicles Chapter 8 - Advancing

  14. Alternative Fuels Data Center: Salt Lake City Fuels Vehicles With Natural

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Gas Salt Lake City Fuels Vehicles With Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Salt Lake City Fuels Vehicles With Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Salt Lake City Fuels Vehicles With Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Salt Lake City Fuels Vehicles With Natural Gas on Google Bookmark Alternative Fuels Data Center: Salt Lake City Fuels Vehicles With Natural Gas on Delicious Rank Alternative Fuels Data

  15. Compressed natural gas fueled vehicles: The Houston experience

    SciTech Connect (OSTI)

    Not Available

    1993-12-31

    The report describes the experience of the City of Houston in defining the compressed natural gas fueled vehicle research scope and issues. It details the ways in which the project met initial expectations, and how the project scope, focus, and duration were adjusted in response to unanticipated results. It provides examples of real world successes and failures in efforts to commercialize basic research in adapting a proven technology (natural gas) to a noncommercially proven application (vehicles). Phase one of the demonstration study investigates, develops, documents, and disseminates information regarding the economic, operational, and environmental implications of utilizing compressed natural gas (CNG) in various truck fueling applications. The four (4) truck classes investigated are light duty gasoline trucks, medium duty gasoline trucks, medium duty diesel trucks and heavy duty diesel trucks. The project researches aftermarket CNG conversions for the first three vehicle classes and original equipment manufactured (OEM) CNG vehicles for light duty gasoline and heavy duty diesel classes. In phase two of the demonstration project, critical issues are identified and assessed with respect to implementing use of CNG fueled vehicles in a large vehicle fleet. These issues include defining changes in local, state, and industry CNG fueled vehicle related codes and standards; addressing vehicle fuel storage limitations; using standardized vehicle emission testing procedures and results; and resolving CNG refueling infrastructure implementation issues and related cost factors. The report identifies which CNG vehicle fueling options were tried and failed and which were tried and succeeded, with and without modifications. The conclusions include a caution regarding overly optimistic assessments of CNG vehicle technology at the initiation of the project.

  16. Electric and Gasoline Vehicle Fuel Efficiency Analysis

    Energy Science and Technology Software Center (OSTI)

    1995-05-24

    EAGLES1.1 is PC-based interactive software for analyzing performance (e.g., maximum range) of electric vehicles (EVs) or fuel economy (e.g., miles/gallon) of gasoline vehicles (GVs). The EV model provides a second by second simulation of battery voltage and current for any specified vehicle velocity/time or power/time profile. It takes into account the effects of battery depth-of-discharge (DOD) and regenerative braking. The GV fuel economy model which relates fuel economy, vehicle parameters, and driving cycle characteristics, canmore » be used to investigate the effects of changes in vehicle parameters and driving patterns on fuel economy. For both types of vehicles, effects of heating/cooling loads on vehicle performance can be studied. Alternatively, the software can be used to determine the size of battery needed to satisfy given vehicle mission requirements (e.g., maximum range and driving patterns). Options are available to estimate the time necessary for a vehicle to reach a certain speed with the application of a specified constant power and to compute the fraction of time and/or distance in a drivng cycle for speeds exceeding a given value.« less

  17. Alternative Fuels Data Center: Electric Vehicle Charging Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric Vehicle Charging Stations to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Charging Stations on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Charging Stations on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Stations on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Stations on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Charging Stations on Digg Find More places to

  18. Alternative Fuels Data Center: Natural Gas Vehicle Maintenance and Safety

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicle Maintenance and Safety to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicle Maintenance and Safety on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicle Maintenance and Safety on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Vehicle Maintenance and Safety on Google Bookmark Alternative Fuels Data Center: Natural Gas Vehicle Maintenance and Safety on Delicious Rank Alternative Fuels Data Center: Natural Gas Vehicle Maintenance

  19. Alternative Fuels Data Center: Electric Vehicle Charging Station Locations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric Vehicle Charging Station Locations to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Delicious Rank Alternative Fuels Data Center: Electric Vehicle

  20. Alternative Fuels Data Center: Deploying Alternative Fuel Vehicles and

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Infrastructure in Chicago, Illinois, Through the Congestion Mitigation and Air Quality Improvement Program Deploying Alternative Fuel Vehicles and Infrastructure in Chicago, Illinois, Through the Congestion Mitigation and Air Quality Improvement Program to someone by E-mail Share Alternative Fuels Data Center: Deploying Alternative Fuel Vehicles and Infrastructure in Chicago, Illinois, Through the Congestion Mitigation and Air Quality Improvement Program on Facebook Tweet about Alternative

  1. INFOGRAPHIC: The Fuel Cell Electric Vehicle | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INFOGRAPHIC: The Fuel Cell Electric Vehicle INFOGRAPHIC: The Fuel Cell Electric Vehicle INFOGRAPHIC: The Fuel Cell Electric Vehicle This infographic shows how fuel cell electric vehicles (FCEVs) work and some of the benefits of FCEVs, such as how they reduce greenhouse gas emissions, emit only water, and operate efficiently. PDF icon INFOGRAPHIC: The Fuel Cell Electric Vehicle (FCEV) More Documents & Publications Amped Up! Volume 1, No. 4: The Transportation Issue Fuel Cell Technologies

  2. Alternative Fuels Data Center: Natural Gas Vehicle Availability

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Availability to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicle Availability on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicle Availability on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Vehicle Availability on Google Bookmark Alternative Fuels Data Center: Natural Gas Vehicle Availability on Delicious Rank Alternative Fuels Data Center: Natural Gas Vehicle Availability on Digg Find More places to share Alternative Fuels Data

  3. Alternative Fuels Data Center: Natural Gas Vehicle Conversions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Conversions to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Natural Gas Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Natural Gas Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center:

  4. Fuel-based motor vehicle emission inventory

    SciTech Connect (OSTI)

    Singer, B.C.; Harley, R.A.

    1996-06-01

    A fuel-based methodology for calculating motor vehicle emission inventories is presented. In the fuel-based method, emission factors are normalized to fuel consumption and expressed as grams of pollutant emitted per gallon of gasoline burned. Fleet-average emission factors are calculated from the measured on-road emissions of a large, random sample of vehicles. Using this method, a fuel-based motor vehicle CO inventory was calculated for the South Coast Air Basin in California for summer 1991. Emission factors were calculated from remote sensing measurements of more than 70,000 in-use vehicles. Results of the study are presented and a conclusion is provided. 40 refs., 4 figs., 6 tabs.

  5. Alternative Fuels Data Center: Innovations Improve Electric Vehicle

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Charging Infrastructure Innovations Improve Electric Vehicle Charging Infrastructure to someone by E-mail Share Alternative Fuels Data Center: Innovations Improve Electric Vehicle Charging Infrastructure on Facebook Tweet about Alternative Fuels Data Center: Innovations Improve Electric Vehicle Charging Infrastructure on Twitter Bookmark Alternative Fuels Data Center: Innovations Improve Electric Vehicle Charging Infrastructure on Google Bookmark Alternative Fuels Data Center: Innovations

  6. Breakthrough Vehicle Development - Fuel Cells

    Fuel Cell Technologies Publication and Product Library (EERE)

    Document describing research and development program for fuel cell power systems for transportation applications.

  7. Moving toward a commercial market for hydrogen fuel cell vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Moving toward a commercial market for hydrogen fuel cell vehicles Moving toward a commercial market for hydrogen fuel cell vehicles Fuel cell vehicles and fueling stations PDF icon 20080910_state_regional_vision.pdf More Documents & Publications Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations Innovation and Coordination at the Callifornia Fuel Cell Partnership FCEVs and Hydrogen in California

  8. Vehicle Education Efforts Fuel Our Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Education Efforts Fuel Our Future Vehicle Education Efforts Fuel Our Future May 4, 2012 - 3:42pm Addthis In addition to hosting the vehicles education exhibit at the White ...

  9. Vehicle Technologies Office: 2010 Fuel Technologies R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: 2010 Fuel Technologies R&D Annual Progress Report The Fuels Technologies subprogram supports fuels and lubricants research and development (R&D)...

  10. Vehicle Technologies Office AVTA: Light Duty Alternative Fuel and Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Data | Department of Energy Office AVTA: Light Duty Alternative Fuel and Advanced Vehicle Data Vehicle Technologies Office AVTA: Light Duty Alternative Fuel and Advanced Vehicle Data The Vehicle Technologies Office (VTO) supports testing and data collection on a wide range of advanced and alternative fuel vehicles and technologies through the Advanced Vehicle Testing Activity (AVTA) . The following table has downloadable performance, reliability, and driver behavior data for selected

  11. Vehicles and Fuels Technologies - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Marketing Summaries Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Marketing Summaries (136) Success Stories (2) Wind Energy Partners (27) Visual Patent Search Success Stories Browse

  12. Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biodiesel Printable Version Share this resource Send a link to Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel to someone by E-mail Share Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel on Facebook Tweet about Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel on Twitter Bookmark Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel on Google Bookmark Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel on Delicious Rank Alternative

  13. Alternative Fuels Data Center: Medium-Duty Vehicle Idle Reduction

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Strategies Medium-Duty Vehicle Idle Reduction Strategies to someone by E-mail Share Alternative Fuels Data Center: Medium-Duty Vehicle Idle Reduction Strategies on Facebook Tweet about Alternative Fuels Data Center: Medium-Duty Vehicle Idle Reduction Strategies on Twitter Bookmark Alternative Fuels Data Center: Medium-Duty Vehicle Idle Reduction Strategies on Google Bookmark Alternative Fuels Data Center: Medium-Duty Vehicle Idle Reduction Strategies on Delicious Rank Alternative Fuels Data

  14. Alternative Fuels Data Center: Dallas Police Department Reduces Vehicle

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Idling Dallas Police Department Reduces Vehicle Idling to someone by E-mail Share Alternative Fuels Data Center: Dallas Police Department Reduces Vehicle Idling on Facebook Tweet about Alternative Fuels Data Center: Dallas Police Department Reduces Vehicle Idling on Twitter Bookmark Alternative Fuels Data Center: Dallas Police Department Reduces Vehicle Idling on Google Bookmark Alternative Fuels Data Center: Dallas Police Department Reduces Vehicle Idling on Delicious Rank Alternative Fuels

  15. Alternative Fuels Data Center: Sacramento Powers up with Electric Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Powers up with Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Sacramento Powers up with Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Sacramento Powers up with Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Sacramento Powers up with Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Sacramento Powers up with Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Sacramento Powers up with

  16. Alternative Fuels Data Center: All-Electric Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    All-Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: All-Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: All-Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: All-Electric Vehicles on Google Bookmark Alternative Fuels Data Center: All-Electric Vehicles on Delicious Rank Alternative Fuels Data Center: All-Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: All-Electric Vehicles on AddThis.com...

  17. Analysis of vehicle fuel release resulting in waste tank fire

    SciTech Connect (OSTI)

    STEPHENS, L.S.

    2003-03-21

    This document reevaluates several aspects of the in-tank vehicle fuel fire/deflagration accident formally documented as an independent accident (representative accident [rep acc] 2). This reevaluation includes frequencies for the accidents and incorporates the behavior of gasoline and diesel fuel in more detail than previous analysis. This reevaluation uses data from RPP-13121, ''Historical Summary of Occurrences from the Tank Farm Safety Analysis Report'', Table B-1, ''Tank Farm Events, Off-Normal and Critiques,'' and B-2, ''Summary of Occurrences,'' and from the River Protection Project--Occurrence Reporting & Processing System (ORPS) reports as a basis for changing some of the conclusions formally reported in HNF-SD-WM-CN-037, ''Frequency Analysis of Vehicle Fuel Releases Resulting in Waste Tank Fire''. This calculation note will demonstrate that the in-tank vehicle fuel fire/deflagration accident event may be relocated to other, more bounding accidents.

  18. NREL: Transportation Research - Alternative Fuel Fleet Vehicle Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alternative Fuel Fleet Vehicle Testing Photo of medium- and heavy-duty United Parcel Service vehicles. NREL evaluates the performance of alternative fuels in fleet vehicles in real-world delivery, transit, and freight service. Photo by Dennis Schroeder, NREL In partnership with industry, NREL evaluates the in-use performance of alternative fuels in delivery, transit, and freight vehicles. Although biodiesel is the most commonly used alternative fuel in medium- and heavy-duty diesel vehicles,

  19. Alternative Fuels Data Center: Michigan Converts Vehicles to Propane,

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Reducing Emissions Michigan Converts Vehicles to Propane, Reducing Emissions to someone by E-mail Share Alternative Fuels Data Center: Michigan Converts Vehicles to Propane, Reducing Emissions on Facebook Tweet about Alternative Fuels Data Center: Michigan Converts Vehicles to Propane, Reducing Emissions on Twitter Bookmark Alternative Fuels Data Center: Michigan Converts Vehicles to Propane, Reducing Emissions on Google Bookmark Alternative Fuels Data Center: Michigan Converts Vehicles to

  20. Alternative Fuels Data Center: Ryder Opens Natural Gas Vehicle Maintenance

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Facility Ryder Opens Natural Gas Vehicle Maintenance Facility to someone by E-mail Share Alternative Fuels Data Center: Ryder Opens Natural Gas Vehicle Maintenance Facility on Facebook Tweet about Alternative Fuels Data Center: Ryder Opens Natural Gas Vehicle Maintenance Facility on Twitter Bookmark Alternative Fuels Data Center: Ryder Opens Natural Gas Vehicle Maintenance Facility on Google Bookmark Alternative Fuels Data Center: Ryder Opens Natural Gas Vehicle Maintenance Facility on

  1. Alternative Fuels Data Center: Students Reduce Vehicle Idling in San

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Antonio, Texas Students Reduce Vehicle Idling in San Antonio, Texas to someone by E-mail Share Alternative Fuels Data Center: Students Reduce Vehicle Idling in San Antonio, Texas on Facebook Tweet about Alternative Fuels Data Center: Students Reduce Vehicle Idling in San Antonio, Texas on Twitter Bookmark Alternative Fuels Data Center: Students Reduce Vehicle Idling in San Antonio, Texas on Google Bookmark Alternative Fuels Data Center: Students Reduce Vehicle Idling in San Antonio, Texas on

  2. Vehicle Technologies Office: Alternative Fuels Research and Deployment...

    Office of Environmental Management (EM)

    ... on light-duty vehicles 21st Century Truck Partnership, an industry partnership to dramatically increase heavy-duty vehicle fuel economy while continuing emissions reduction. ...

  3. Effect of Premixed Charge Compression Ignition on Vehicle Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Effect of Premixed Charge Compression Ignition on Vehicle Fuel Economy and Emissions Reduction over Transient Driving Cycles In conventional vehicles, most engine operating points ...

  4. A Vehicle Manufacturer's Perspective on Higher-Octane Fuels | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy A Vehicle Manufacturer's Perspective on Higher-Octane Fuels A Vehicle Manufacturer's Perspective on Higher-Octane Fuels Breakout Session 1C-Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels A Vehicle Manufacturer's Perspective on Higher-Octane Fuels Tom Leone, Technical Expert, Powertrain Evaluation and Analysis, Ford Motor Company PDF icon leone_biomass_2014.pdf More Documents & Publications Co-Optimization of Fuels and Vehicles A

  5. Clean Cities' Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-09-01

    Guide describes the alternative fuel and advanced medium- and heavy-duty vehicles available on the market, including buses, vans, refuse haulers, and more.

  6. Alternative Fuels Data Center: Vehicle Search

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    27 hybrid systems Search small New Search | Download | Print Spinner Filter by: Fuel/Technology: All | Manufacturer: Your search returned no results. You can modify your search using the filters on the right or start a new search. Select up to 5 items to compare compare Spinner These hybrid propulsion systems have been developed for installation in various vehicles. Check with the manufacturer's website for availability and application. Hybrid Propulsion Systems Fuel Type Compare (up to 5) About

  7. Vehicle Data for Alternative Fuel Vehicles (AFVs) and Hybrid Fuel Vehicles (HEVs) from the Alternative Fuels and Advanced Vehicles Data Center (AFCD)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The AFDC provides search capabilities for many different models of both light-duty and heavy-duty vehicles. Engine and transmission type, fuel and class, fuel economy and emission certification are some of the facts available. The search will also help users locate dealers in their areas and do cost analyses. Information on alternative fuel vehicles and on advanced technology vehicles, along with calculators, resale and conversion information, links to incentives and programs such as Clean Cities, and dozens of fact sheets and publications make this section of the AFDC a valuable resource for car buyers.

  8. Vehicle Technologies Office: Fuel Effects on Advanced Combustion |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Fuel Efficiency & Emissions » Vehicle Technologies Office: Fuel Effects on Advanced Combustion Vehicle Technologies Office: Fuel Effects on Advanced Combustion More than 90 percent of transportation relies on petroleum-based fuels: gasoline and diesel. While alternative fuels and plug-in electric vehicles offer great promise to reduce America's petroleum consumption, petroleum-based fuels are likely to play a substantial role for years to come. However, the sources

  9. Leveraging Intelligent Vehicle Technologies to Maximize Fuel Economy (Presentation)

    SciTech Connect (OSTI)

    Gonder, J.

    2011-11-01

    Advancements in vehicle electronics, along with communication and sensing technologies, have led to a growing number of intelligent vehicle applications. Example systems include those for advanced driver information, route planning and prediction, driver assistance, and crash avoidance. The National Renewable Energy Laboratory is exploring ways to leverage intelligent vehicle systems to achieve fuel savings. This presentation discusses several potential applications, such as providing intelligent feedback to drivers on specific ways to improve their driving efficiency, and using information about upcoming driving to optimize electrified vehicle control strategies for maximum energy efficiency and battery life. The talk also covers the potential of Advanced Driver Assistance Systems (ADAS) and related technologies to deliver significant fuel savings in addition to providing safety and convenience benefits.

  10. Hydrogen Fuel Cell Electric Vehicles (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    As nations around the world pursue a variety of sustainable transportation solutions, the hydrogen fuel cell electric vehicle (FCEV) presents a promising opportunity for American consumers and automakers. FCEVs offer a sustainable transportation option, provide a cost-competitive alternative for drivers, reduce dependence on imported oil, and enable global economic leadership and job growth.

  11. Alcohol-fueled vehicles: An alternative fuels vehicle, emissions, and refueling infrastructure technology assessment

    SciTech Connect (OSTI)

    McCoy, G.A.; Kerstetter, J.; Lyons, J.K.

    1993-06-01

    Interest in alternative motor vehicle fuels has grown tremendously over the last few years. The 1990 Clean Air Act Amendments, the National Energy Policy Act of 1992 and the California Clean Air Act are primarily responsible for this resurgence and have spurred both the motor fuels and vehicle manufacturing industries into action. For the first time, all three U.S. auto manufacturers are offering alternative fuel vehicles to the motoring public. At the same time, a small but growing alternative fuels refueling infrastructure is beginning to develop across the country. Although the recent growth in alternative motor fuels use is impressive, their market niche is still being defined. Environmental regulations, a key driver behind alternative fuel use, is forcing both car makers and the petroleum industry to clean up their products. As a result, alternative fuels no longer have a lock on the clean air market and will have to compete with conventional vehicles in meeting stringent future vehicle emission standards. The development of cleaner burning gasoline powered vehicles has signaled a shift in the marketing of alternative fuels. While they will continue to play a major part in the clean vehicle market, alternative fuels are increasingly recognized as a means to reduce oil imports. This new role is clearly defined in the National Energy Policy Act of 1992. The Act identifies alternative fuels as a key strategy for reducing imports of foreign oil and mandates their use for federal and state fleets, while reserving the right to require private and municipal fleet use as well.

  12. EO 13031: Federal Alternative Fueled Vehicle Leadership | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EO 13031: Federal Alternative Fueled Vehicle Leadership The purpose of this order is to ensure that the Federal Government exercise leadership in the use of alternative fueled ...

  13. Hydrogen Fuel Cells for Small Unmanned Air Vehicles Webinar

    Broader source: Energy.gov [DOE]

    Download the presentation slides from the Fuel Cell Technologies Office webinar "Hydrogen Fuel Cells for Small Unmanned Air Vehicles" held on May 26, 2016.

  14. Vehicle Technologies Office Merit Review 2015: Hydrogen and Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cells Program Overview Vehicle Technologies Office Merit Review 2015: Hydrogen and Fuel Cells Program Overview Presentation given by U.S. Department of Energy at ...

  15. Vehicle Technologies Office: 2013 Fuel and Lubricant Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel and Lubricant Technologies R&D Annual Progress Report Vehicle Technologies Office: 2013 Fuel and Lubricant Technologies R&D Annual Progress Report This report describes the ...

  16. Vehicle Technologies Office Merit Review 2014: Advanced Combustion and Fuels

    Broader source: Energy.gov [DOE]

    Presentation given by NREL at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced combustion and fuels.

  17. Vehicle Technologies Office Merit Review 2015: Alternative Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Station Locator Vehicle Technologies Office Merit Review 2015: Alternative Fuel Station Locator Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen ...

  18. Vehicle Technologies Office Merit Review 2015: Alternative Fuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Merit Review 2015: Alternative Fuels Data Center and API Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells ...

  19. 2010 DOE EERE Vehicle Technologies Program Merit Review - Fuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications 2011 Annual Merit Review Results Report - Fuels & Lubricants 2011 Annual Merit Review Results Report - Fuels & Lubricants DOE Vehicle...

  20. Vehicle Technologies Office: 2012 Fuel and Lubricant Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    R&D Annual Progress Report The Fuel & Lubricant Technologies subprogram supports fuels and lubricants research and development (R&D) to provide vehicle users with...

  1. Maine Natural Gas Vehicle Fuel Consumption (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (Million Cubic Feet) Maine Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  2. Dispensing Hydrogen Fuel to Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Delivery » Dispensing Hydrogen Fuel to Vehicles Dispensing Hydrogen Fuel to Vehicles Photo of a person dispensing hydrogen into a vehicle fuel tank The technology used for storing hydrogen onboard vehicles directly affects the design and selection of the delivery system and infrastructure. In the near term, 700 bar gaseous onboard storage has been chosen by the original equipment manufacturers for the first vehicles to be released commercially, and 350 bar is the chosen pressure for

  3. An Energy Evolution:Alternative Fueled Vehicle Comparisons | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy An Energy Evolution:Alternative Fueled Vehicle Comparisons An Energy Evolution:Alternative Fueled Vehicle Comparisons Presented at the U.S. Department of Energy Light Duty Vehicle Workshop in Washington, D.C. on July 26, 2010. PDF icon evolution_alternative_vehicle.pdf More Documents & Publications Fuel Cell and Battery Electric Vehicles Compared Low-Cost Hydrogen-from-Ethanol: A Distributed Production System Asia/ITS

  4. alternative fuel light-duty vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Light-Duty Vehicles T O F E N E R G Y D E P A R T M E N U E N I T E D S T A T S O F A E R I C A M SUMMARY OF RESULTS FROM THE NATIONAL RENEWABLE ENERGY LABORATORY'S VEHICLE EVALUATION DATA COLLECTION EFFORTS Alternative Fuel Light-Duty Vehicles SUMMARY OF RESULTS FROM THE NATIONAL RENEWABLE ENERGY LABORATORY'S VEHICLE EVALUATION DATA COLLECTION EFFORTS PEG WHALEN KENNETH KELLY ROB MOTTA JOHN BRODERICK MAY 1996 N T Y A U E O F E N E R G D E P A R T M E N I T E D S T A T S O F A E R I C M Summary

  5. February 23, 2007: Alternative Fuel Vehicle Demonstration at White House |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 3, 2007: Alternative Fuel Vehicle Demonstration at White House February 23, 2007: Alternative Fuel Vehicle Demonstration at White House February 23, 2007: Alternative Fuel Vehicle Demonstration at White House February 23, 2007 President Bush and Secretary Bodman participate in a demonstration of alternative fuel vehicles (AFVs) on the South Lawn of the White House. "I firmly believe that the goal I laid out, that Americans will use 20 percent less gasoline over the

  6. Refueliing Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen

    Broader source: Energy.gov [DOE]

    Agenda for Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California

  7. Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Methodology Assumptions and Methodology to someone by E-mail Share Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and Methodology on Facebook Tweet about Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and Methodology on Twitter Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and Methodology on Google Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and Methodology on Delicious Rank Alternative

  8. Alternative Fuels Data Center: Vehicle Cost Calculator Widget Assumptions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    and Methodology Widget Assumptions and Methodology to someone by E-mail Share Alternative Fuels Data Center: Vehicle Cost Calculator Widget Assumptions and Methodology on Facebook Tweet about Alternative Fuels Data Center: Vehicle Cost Calculator Widget Assumptions and Methodology on Twitter Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator Widget Assumptions and Methodology on Google Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator Widget Assumptions and

  9. Alternative Fuels Data Center: Kentucky Trucking Company Adds CNG Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    to Its Fleet Kentucky Trucking Company Adds CNG Vehicles to Its Fleet to someone by E-mail Share Alternative Fuels Data Center: Kentucky Trucking Company Adds CNG Vehicles to Its Fleet on Facebook Tweet about Alternative Fuels Data Center: Kentucky Trucking Company Adds CNG Vehicles to Its Fleet on Twitter Bookmark Alternative Fuels Data Center: Kentucky Trucking Company Adds CNG Vehicles to Its Fleet on Google Bookmark Alternative Fuels Data Center: Kentucky Trucking Company Adds CNG

  10. Alternative Fuels Data Center: States Enact Natural Gas Vehicle and

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Infrastructure Incentives States Enact Natural Gas Vehicle and Infrastructure Incentives to someone by E-mail Share Alternative Fuels Data Center: States Enact Natural Gas Vehicle and Infrastructure Incentives on Facebook Tweet about Alternative Fuels Data Center: States Enact Natural Gas Vehicle and Infrastructure Incentives on Twitter Bookmark Alternative Fuels Data Center: States Enact Natural Gas Vehicle and Infrastructure Incentives on Google Bookmark Alternative Fuels Data Center:

  11. Alternative Fuels Data Center: Virginia Converts Vehicles to Propane in

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Spotsylvania County Virginia Converts Vehicles to Propane in Spotsylvania County to someone by E-mail Share Alternative Fuels Data Center: Virginia Converts Vehicles to Propane in Spotsylvania County on Facebook Tweet about Alternative Fuels Data Center: Virginia Converts Vehicles to Propane in Spotsylvania County on Twitter Bookmark Alternative Fuels Data Center: Virginia Converts Vehicles to Propane in Spotsylvania County on Google Bookmark Alternative Fuels Data Center: Virginia Converts

  12. Alternative Fuels Data Center: Yellowstone Park Recycles Vehicle Batteries

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    for Solar Power Yellowstone Park Recycles Vehicle Batteries for Solar Power to someone by E-mail Share Alternative Fuels Data Center: Yellowstone Park Recycles Vehicle Batteries for Solar Power on Facebook Tweet about Alternative Fuels Data Center: Yellowstone Park Recycles Vehicle Batteries for Solar Power on Twitter Bookmark Alternative Fuels Data Center: Yellowstone Park Recycles Vehicle Batteries for Solar Power on Google Bookmark Alternative Fuels Data Center: Yellowstone Park Recycles

  13. EO 13031: Federal Alternative Fueled Vehicle Leadership (1996) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 31: Federal Alternative Fueled Vehicle Leadership (1996) EO 13031: Federal Alternative Fueled Vehicle Leadership (1996) The purpose of this order is to ensure that the Federal Government exercise leadership in the use of alternative fueled vehicles (AFVs). PDF icon Executive Order 13031-Federal Alternative Fueled Vehicle Leadership More Documents & Publications EO 12969: Federal Acquisition and Community Right-To-Know (1995) EO 13089 -- Coral Reef Protection NATIONAL DEFENSE

  14. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presented at Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California

  15. Advanced Vehicle Testing Activity: Hydrogen-Fueled Mercedes Sprinter Van -- Operating Summary

    SciTech Connect (OSTI)

    Karner, D.; Francfort, James Edward

    2003-01-01

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure- hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of testing conducted over 6,864 kilometers (4,265 miles) of operation using the pure-hydrogen-fueled Mercedes Sprinter van.

  16. Advanced Vehicle Testing Activity: Hydrogen-Fueled Mercedes Sprinter Van Operating Summary - January 2003

    SciTech Connect (OSTI)

    Karner, D.; Francfort, J.E.

    2003-01-22

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of testing conducted over 6,864 kilometers (4,265 miles) of operation using the pure-hydrogen-fueled Mercedes Sprinter van.

  17. Heel and toe driving on fuel cell vehicle

    DOE Patents [OSTI]

    Choi, Tayoung; Chen, Dongmei

    2012-12-11

    A system and method for providing nearly instantaneous power in a fuel cell vehicle. The method includes monitoring the brake pedal angle and the accelerator pedal angle of the vehicle, and if the vehicle driver is pressing both the brake pedal and the accelerator pedal at the same time and the vehicle is in a drive gear, activating a heel and toe mode. When the heel and toe mode is activated, the speed of a cathode compressor is increased to a predetermined speed set-point, which is higher than the normal compressor speed for the pedal position. Thus, when the vehicle brake is removed, the compressor speed is high enough to provide enough air to the cathode, so that the stack can generate nearly immediate power.

  18. Gasoline Ultra Fuel Efficient Vehicle | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ace064_confer_2012_o.pdf More Documents & Publications Gasoline Ultra Fuel Efficient Vehicle Program Update Gasoline Ultra Fuel Efficient Vehicle

  19. Table 5.1. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel...

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 5.1. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel Consumption and Expenditures, 1994 (Continued) 1993 Household and 1994 Vehicle Characteristics RSE Column Factor:...

  20. Table 5.1. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel...

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Information AdministrationHousehold Vehicles Energy Consumption 1994 43 Table 5.1. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel Consumption and Expenditures, 1994...

  1. First Commercially Available Fuel Cell Electric Vehicles Hit the Street |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy First Commercially Available Fuel Cell Electric Vehicles Hit the Street First Commercially Available Fuel Cell Electric Vehicles Hit the Street December 10, 2014 - 12:25pm Addthis A fuel cell electric vehicle (FCEV) at a fueling station in California. New Energy Department reports signal rapid growth in America’s fuel cell and hydrogen industry as FCEVs are introduced to the market. | Energy Department photo A fuel cell electric vehicle (FCEV) at a fueling station

  2. Composite armor, armor system and vehicle including armor system

    DOE Patents [OSTI]

    Chu, Henry S.; Jones, Warren F.; Lacy, Jeffrey M.; Thinnes, Gary L.

    2013-01-01

    Composite armor panels are disclosed. Each panel comprises a plurality of functional layers comprising at least an outermost layer, an intermediate layer and a base layer. An armor system incorporating armor panels is also disclosed. Armor panels are mounted on carriages movably secured to adjacent rails of a rail system. Each panel may be moved on its associated rail and into partially overlapping relationship with another panel on an adjacent rail for protection against incoming ordnance from various directions. The rail system may be configured as at least a part of a ring, and be disposed about a hatch on a vehicle. Vehicles including an armor system are also disclosed.

  3. City in Colorado Fueling Vehicles with Gas Produced from Wastewater

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Treatment Facility | Department of Energy in Colorado Fueling Vehicles with Gas Produced from Wastewater Treatment Facility City in Colorado Fueling Vehicles with Gas Produced from Wastewater Treatment Facility April 29, 2015 - 6:05pm Addthis Grand Junction's CNG station fuels the city's fleets and county buses and is available to fuel public vehicles as well. Pictured above, a Grand Valley Transit bus is preparing to refuel. Grand Junction's CNG station fuels the city's fleets and county

  4. Alternative Fuels Data Center: MedCorp Fuels Emergency Vehicles With

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Propane in Ohio MedCorp Fuels Emergency Vehicles With Propane in Ohio to someone by E-mail Share Alternative Fuels Data Center: MedCorp Fuels Emergency Vehicles With Propane in Ohio on Facebook Tweet about Alternative Fuels Data Center: MedCorp Fuels Emergency Vehicles With Propane in Ohio on Twitter Bookmark Alternative Fuels Data Center: MedCorp Fuels Emergency Vehicles With Propane in Ohio on Google Bookmark Alternative Fuels Data Center: MedCorp Fuels Emergency Vehicles With Propane in

  5. Alternative Fuels Data Center: Vehicle Search

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    526 vehicles Search small New Search | Download | Print Spinner Filter by: Fuel/Technology: All | Class/Type: All | Manufacturer: All View: Matrix List Your search returned no results. You can modify your search using the filters on the right or start a new search. Acura RLX Hybrid (2016) 2016 acura rlx Hybrid Electric Sedan/Wagon Fuel Economy: 28 mpg city / 32 mpg hwy Emission Certification: LEV III SULEV30, Tier 2 Bin 3 Engine: 3.5L V6 Transmission: Auto Find a Dealer Audi A3 Sportback e-tron

  6. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    What is an FFV? An FFV, as its name implies, has the flex- ibility of running on more than one type of fuel. FFVs can be fueled with unleaded gasoline, E85, or any combination of the two. Like conventional gasoline vehicles, FFVs have a single fuel tank, fuel system, and engine. And they are available in a wide range of models such as sedans, pickups, and minivans. Light-duty FFVs are designed to operate with at least 15% gasoline in the fuel, mainly to ensure they start in cold weather. FFVs

  7. Technical comparison between Hythane, GNG and gasoline fueled vehicles

    SciTech Connect (OSTI)

    Not Available

    1992-05-01

    This interim report documents progress on this 2-year Alternative Fuel project, scheduled to end early 1993. Hythane is 85 vol% compressed natural gas (CNG) and 15 vol% hydrogen; it has the potential to meet or exceed the California Ultra-Low Emission Vehicle (ULEV) standard. Three USA trucks (3/4 ton pickup) were operated on single fuel (unleaded gasoline, CNG, Hythane) in Denver. The report includes emission testing, fueling facility, hazard and operability study, and a framework for a national hythane strategy.

  8. Well-to-wheels analysis of fuel-cell vehicle/fuel systems.

    SciTech Connect (OSTI)

    Wang, M.

    2002-01-22

    Major automobile companies worldwide are undertaking vigorous research and development efforts aimed at developing fuel-cell vehicles (FCVs). Proton membrane exchange (PEM)-based FCVs require hydrogen (H{sub 2}) as the fuel-cell (FC) fuel. Because production and distribution infrastructure for H{sub 2} off board FCVs as a transportation fuel does not exist yet, researchers are developing FCVs that can use hydrocarbon fuels, such as methanol (MeOH) and gasoline, for onboard production of H{sub 2} via fuel processors. Direct H{sub 2} FCVs have no vehicular emissions, while FCVs powered by hydrocarbon fuels have near-zero emissions of criteria pollutants and some carbon dioxide (CO{sub 2}) emissions. However, production of H{sub 2} can generate a large amount of emissions and suffer significant energy losses. A complete evaluation of the energy and emission impacts of FCVs requires an analysis of energy use and emissions during all stages, from energy feedstock wells to vehicle wheels--a so-called ''well-to-wheels'' (WTW) analysis. This paper focuses on FCVs powered by several transportation fuels. Gasoline vehicles (GVs) equipped with internal combustion engines (ICEs) are the baseline technology to which FCVs are compared. Table 1 lists the 13 fuel pathways included in this study. Petroleum-to-gasoline (with 30-ppm sulfur [S] content) is the baseline fuel pathway for GVs.

  9. Alternative Fuels Data Center: College Students Engineer Efficient Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    in EcoCAR 2 Competition College Students Engineer Efficient Vehicles in EcoCAR 2 Competition to someone by E-mail Share Alternative Fuels Data Center: College Students Engineer Efficient Vehicles in EcoCAR 2 Competition on Facebook Tweet about Alternative Fuels Data Center: College Students Engineer Efficient Vehicles in EcoCAR 2 Competition on Twitter Bookmark Alternative Fuels Data Center: College Students Engineer Efficient Vehicles in EcoCAR 2 Competition on Google Bookmark Alternative

  10. Vehicle Technologies Office: Fuel Efficiency and Emissions | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Vehicle Technologies Office: Fuel Efficiency and Emissions Vehicle Technologies Office: Fuel Efficiency and Emissions Substantially improving vehicle efficiency has the potential to drastically increase the United States' economic, energy, and environmental security. On-road vehicles account for nearly 60 percent of total U.S. oil consumption and more than a quarter of the country's greenhouse gas emissions, the major contributor to climate change. The Vehicle Technologies Office is

  11. Fuel Economy and Emissions of a Vehicle Equipped with an Aftermarket Flexible-Fuel Conversion Kit

    SciTech Connect (OSTI)

    Thomas, John F; Huff, Shean P; West, Brian H

    2012-04-01

    The U.S. Environmental Protection Agency (EPA) grants Certificates of Conformity for alternative fuel conversion systems and also offers other forms of premarket registration of conversion kits for use in vehicles more than two model years old. Use of alternative fuels such as ethanol, natural gas, and propane are encouraged by the Energy Policy Act of 1992. Several original equipment manufacturers (OEMs) produce emissions-certified vehicles capable of using alternative fuels, and several alternative fuel conversion system manufacturers produce EPA-approved conversion systems for a variety of alternative fuels and vehicle types. To date, only one manufacturer (Flex Fuel U.S.) has received EPA certifications for ethanol fuel (E85) conversion kits. This report details an independent evaluation of a vehicle with a legal installation of a Flex Fuel U.S. conversion kit. A 2006 Dodge Charger was baseline tested with ethanol-free certification gasoline (E0) and E20 (gasoline with 20 vol % ethanol), converted to flex-fuel operation via installation of a Flex Box Smart Kit from Flex Fuel U.S., and retested with E0, E20, E50, and E81. Test cycles included the Federal Test Procedure (FTP or city cycle), the highway fuel economy test (HFET), and the US06 test (aggressive driving test). Averaged test results show that the vehicle was emissions compliant on E0 in the OEM condition (before conversion) and compliant on all test fuels after conversion. Average nitrogen oxide (NOx) emissions exceeded the Tier 2/Bin 5 intermediate life NO{sub X} standard with E20 fuel in the OEM condition due to two of three test results exceeding this standard [note that E20 is not a legal fuel for non-flexible-fuel vehicles (non-FFVs)]. In addition, one E0 test result before conversion and one E20 test result after conversion exceeded the NOX standard, although the average result in these two cases was below the standard. Emissions of ethanol and acetaldehyde increased with increasing ethanol, while nonmethane organic gas and CO emissions remained relatively unchanged for all fuels and cycles. Higher fraction ethanol blends appeared to decrease NO{sub X} emissions on the FTP and HFET (after conversion). As expected, fuel economy (miles per gallon) decreased with increasing ethanol content in all cases.

  12. Hydrogen Fuel Pilot Plant and Hydrogen ICE Vehicle Testing

    SciTech Connect (OSTI)

    J. Francfort

    2005-03-01

    The U.S. Department Energy's Advanced Vehicle Testing Activity (AVTA) teamed with Electric Transportation Applications (ETA) and Arizona Public Service (APS) to develop the APS Alternative Fuel (Hydrogen) Pilot Plant that produces and compresses hydrogen on site through an electrolysis process by operating a PEM fuel cell in reverse; natural gas is also compressed onsite. The Pilot Plant dispenses 100% hydrogen, 15 to 50% blends of hydrogen and compressed natural gas (H/CNG), and 100% CNG via a credit card billing system at pressures up to 5,000 psi. Thirty internal combustion engine (ICE) vehicles (including Daimler Chrysler, Ford and General Motors vehicles) are operating on 100% hydrogen and 15 to 50% H/CNG blends. Since the Pilot Plant started operating in June 2002, they hydrogen and H/CNG ICE vehicels have accumulated 250,000 test miles.

  13. Highlighting Hydrogen: Hawaii's Success with Fuel Cell Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offers Opportunity Nationwide | Department of Energy Highlighting Hydrogen: Hawaii's Success with Fuel Cell Electric Vehicles Offers Opportunity Nationwide Highlighting Hydrogen: Hawaii's Success with Fuel Cell Electric Vehicles Offers Opportunity Nationwide September 11, 2014 - 2:38pm Addthis A fuel cell electric vehicle (FCEV) in Hawaii. Engineers from Idaho National Laboratory and National Renewable Energy Laboratory identified a new way to launch economically viable hydrogen fueling

  14. Hickam Air Force Base Fuel Cell Vehicles: Early Implementation Experience |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Hickam Air Force Base Fuel Cell Vehicles: Early Implementation Experience Hickam Air Force Base Fuel Cell Vehicles: Early Implementation Experience This report sumarizes early implementation experience from an evaluation of two prototype fuel cell vehicles operating at Hickam Air Force Base in Honolulu, Hawaii. PDF icon 42233.pdf More Documents & Publications Renewable Hydrogen Production at Hickam Air Force Base Hydrogen and Fuel Cell Transit Bus Evaluations: Joint

  15. 2016 Fuel Economy Guide Highlights Fuel-Efficient Vehicles | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 2016 Fuel Economy Guide Highlights Fuel-Efficient Vehicles 2016 Fuel Economy Guide Highlights Fuel-Efficient Vehicles November 5, 2015 - 1:07am Addthis Photo by Kristy Keel-Blackmon of East Tennessee Clean Fuels Photo by Kristy Keel-Blackmon of East Tennessee Clean Fuels Shannon Brescher Shea Communications Manager, Clean Cities Program The 2016 Fuel Economy Guide is now available. It provides fuel economy, greenhouse gas emission, and projected fuel cost information on model year

  16. Fuel Properties Database from the Alternative Fuels and Advanced Vehicles Data Center (AFDC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    This database contains information on advanced petroleum and non-petroleum based fuels, as well as key data on advanced compression ignition fuels. Included are data on physical, chemical, operational, environmental, safety, and health properties. These data result from tests conducted according to standard methods (mostly American Society for Testing and Materials (ASTM). The source and test methods for each fuel data set are provided with the information. The database can be searched in various ways and can output numbers or explanatory text. Heavy vehicle chassis emission data are also available for some fuels.

  17. Vehicle Technologies Office Merit Review 2015: Hydrogen and Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Overview | Department of Energy Hydrogen and Fuel Cells Program Overview Vehicle Technologies Office Merit Review 2015: Hydrogen and Fuel Cells Program Overview Presentation given by U.S. Department of Energy at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation meeting about Hydrogen and Fuel Cells Program overview. PDF icon 01_satyapal_plenary_2015_amr.pdf More Documents & Publications Hydrogen and Fuel Cells Program

  18. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen

    Broader source: Energy.gov [DOE]

    Proceedings from the DOE sponsored Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen workshop to understand how lessons from past experiences can inform future efforts to commercialize hydrogen vehicles.

  19. Webinar: Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs)

    Broader source: Energy.gov [DOE]

    Recording and text version of the webinar titled "Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs)," originally presented on June 24, 2014.

  20. Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Most importantly, fuel cell vehicles are family-friendly, full-function vehicles that will ... These retail-like stations should provide easy access and customer-friendly fueling to any ...

  1. Vehicle Technologies Office: Alternative Fuels Research and Deployment |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Vehicle Technologies Office: Alternative Fuels Research and Deployment Vehicle Technologies Office: Alternative Fuels Research and Deployment Refuse trucks in Oyster Bay, Long Island, filling up at a natural gas station. These trucks were part of a project supported by the Vehicle Technologies Office through Clean Cities. Refuse trucks in Oyster Bay, Long Island, filling up at a natural gas station. These trucks were part of a project supported by the Vehicle

  2. Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Issues | Department of Energy Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues This presentation by Bill Elrick of the California Fuel Cell Partnership was given at the DOE Hydrogen Compression, Storage, and Dispensing Workshop on March 19, 2013. PDF icon csd_workshop_2_elrick.pdf More Documents & Publications FCEVs and Hydrogen in California Vision for Rollout of Fuel Cell Vehicles and

  3. New Methodology for Estimating Fuel Economy by Vehicle Class

    SciTech Connect (OSTI)

    Chin, Shih-Miao; Dabbs, Kathryn; Hwang, Ho-Ling

    2011-01-01

    Office of Highway Policy Information to develop a new methodology to generate annual estimates of average fuel efficiency and number of motor vehicles registered by vehicle class for Table VM-1 of the Highway Statistics annual publication. This paper describes the new methodology developed under this effort and compares the results of the existing manual method and the new systematic approach. The methodology developed under this study takes a two-step approach. First, the preliminary fuel efficiency rates are estimated based on vehicle stock models for different classes of vehicles. Then, a reconciliation model is used to adjust the initial fuel consumption rates from the vehicle stock models and match the VMT information for each vehicle class and the reported total fuel consumption. This reconciliation model utilizes a systematic approach that produces documentable and reproducible results. The basic framework utilizes a mathematical programming formulation to minimize the deviations between the fuel economy estimates published in the previous year s Highway Statistics and the results from the vehicle stock models, subject to the constraint that fuel consumptions for different vehicle classes must sum to the total fuel consumption estimate published in Table MF-21 of the current year Highway Statistics. The results generated from this new approach provide a smoother time series for the fuel economies by vehicle class. It also utilizes the most up-to-date and best available data with sound econometric models to generate MPG estimates by vehicle class.

  4. Fuel Cell Vehicles Enhance NREL Hydrogen Research Capabilities (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    * www.nrel.gov Printed with a renewable-source ink on paper containing at least 50% wastepaper, including 10% post consumer waste. Expanded research, development, and testing activities will help advance fuel cell electric vehicle technology. The National Renewable Energy Laboratory (NREL) has acquired four Fuel Cell Hybrid Vehicle-Advanced (FCHV-adv) sport utility vehicles on loan from Toyota. Over the next two years the lab will use the FCHVs, also known as fuel cell electric vehicles or

  5. Impact of Solar Control PVB Glass on Vehicle Interior Temperatures, Air-Conditioning Capacity, Fuel Consumption, and Vehicle Range

    SciTech Connect (OSTI)

    Rugh, J.; Chaney, L.; Venson, T.; Ramroth, L.; Rose, M.

    2013-04-01

    The objective of the study was to assess the impact of Saflex1 S-series Solar Control PVB (polyvinyl butyral) configurations on conventional vehicle fuel economy and electric vehicle (EV) range. The approach included outdoor vehicle thermal soak testing, RadTherm cool-down analysis, and vehicle simulations. Thermal soak tests were conducted at the National Renewable Energy Laboratory's Vehicle Testing and Integration Facility in Golden, Colorado. The test results quantified interior temperature reductions and were used to generate initial conditions for the RadTherm cool-down analysis. The RadTherm model determined the potential reduction in air-conditioning (A/C) capacity, which was used to calculate the A/C load for the vehicle simulations. The vehicle simulation tool identified the potential reduction in fuel consumption or improvement in EV range between a baseline and modified configurations for the city and highway drive cycles. The thermal analysis determined a potential 4.0% reduction in A/C power for the Saflex Solar PVB solar control configuration. The reduction in A/C power improved the vehicle range of EVs and fuel economy of conventional vehicles and plug-in hybrid electric vehicles.

  6. Hickam Air Force Base Fuel Cell Vehicles: Early Implementation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Report NRELTP-560-42233 October 2007 Hickam Air Force Base Fuel Cell Vehicles: Early Implementation Experience Leslie Eudy, National Renewable Energy Laboratory Kevin ...

  7. Alternative Fuels and Advanced Vehicles Data Center - Fleet Experience...

    Open Energy Info (EERE)

    Experiences Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternative Fuels and Advanced Vehicles Data Center - Fleet Experiences AgencyCompany Organization: US DOE...

  8. Alternative Fuels and Advanced Vehicles Data Center - Codes and...

    Open Energy Info (EERE)

    Codes and Standards Resources Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternative Fuels and Advanced Vehicles Data Center - Codes and Standards Resources...

  9. Alternative Fuels and Advanced Vehicles Data Center - Federal...

    Open Energy Info (EERE)

    Incentives and Laws Database Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternative Fuels and Advanced Vehicles Data Center - Federal and State Incentives and...

  10. Moving toward a commercial market for hydrogen fuel cell vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Promoting fuel cell vehicle commercialization as a means of moving towards a sustainable energy future, increasing energy efficiency and reducing or eliminating air pollution and ...

  11. Vehicle Technologies Office Merit Review 2015: Unconventional Hydrocarbon Fuels

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and vehicle technologies office annual merit review and peer evaluation meeting about...

  12. ,"New Mexico Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Annual",2014 ,"Release Date:","930...

  13. ,"New Mexico Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012...

  14. ,"Washington Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Washington Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  15. ,"Florida Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Florida Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  16. ,"Ohio Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  17. ,"Mississippi Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  18. ,"Massachusetts Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Massachusetts Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  19. ,"Pennsylvania Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  20. ,"Arkansas Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  1. ,"Utah Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  2. ,"Maryland Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  3. ,"Connecticut Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Connecticut Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  4. ,"Missouri Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Missouri Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  5. ,"Colorado Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  6. ,"Virginia Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  7. ,"Texas Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  8. ,"Nevada Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Nevada Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  9. ,"Delaware Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  10. ,"Georgia Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Georgia Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  11. ,"Kentucky Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  12. ,"Oklahoma Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  13. ,"Montana Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  14. ,"Alabama Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  15. ,"Louisiana Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  16. ,"Indiana Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  17. ,"Kansas Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  18. ,"Minnesota Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Minnesota Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  19. ,"Idaho Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Idaho Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  20. ,"Arizona Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Arizona Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  1. ,"Michigan Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  2. ,"California Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  3. ,"Nebraska Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  4. ,"Oregon Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  5. ,"Tennessee Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  6. Fuel Cell Vehicle Learning Demonstration: Spring 2008 Results (Presentation)

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Garbak, J.

    2008-04-02

    Presentation prepared for the 2008 National Hydrogen Association Conference that describes the spring 2008 results for DOE's Fuel Cell Vehicle Learning Demonstration.

  7. Vehicle Technologies Office Merit Review 2015: Alternative Fuel Station Locator

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  8. Vehicle Technologies Office Merit Review 2015: Advanced Combustion and Fuels

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and vehicle technologies office annual merit review and peer evaluation meeting about advanced...

  9. Petroleum Reduction Strategies to Improve Vehicle Fuel Efficiency

    Broader source: Energy.gov [DOE]

    For reducing greenhouse gas emissions, the table below describes petroleum reduction strategies to improve vehicle fuel efficiency, as well as guidance and best practices for each strategy.

  10. Reducing Light Duty Vehicle Fuel Consumption and Greenhouse Gas...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Greenhouse Gas Emissions: The Combined Potential of Hybrid Technology and Behavioral Adaptation Title Reducing Light Duty Vehicle Fuel Consumption and Greenhouse Gas...

  11. Alternative Fuel and Advanced Vehicle Tools (AFAVT), AFDC (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-01-01

    The Alternative Fuels and Advanced Vehicles Web site offers a collection of calculators, interactive maps, and informational tools to assist fleets, fuel providers, and others looking to reduce petroleum consumption in the transportation sector.

  12. A Vehicle Manufacturer's Perspective on Higher-Octane Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Manufacturer's Perspective on Higher-Octane Fuels Tom Leone, Ford Motor Company DOE "Biomass 2014" meeting Washington, D.C. July 29, 2014 2 Octane rating of fuel The ...

  13. Vehicle Technologies Office: 2014 Fuel and Lubricant Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Merit Review 2014: Ionic Liquids as Anti-Wear Additives for Next-Generation Low-Viscosity Fuel-Efficient Engine Lubricants Vehicle Technologies Office: 2012 Fuel and Lubricant ...

  14. City in Colorado Fueling Vehicles with Gas Produced from Wastewater...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    April 29, 2015 - 6:05pm Addthis Grand Junction's CNG station fuels the city's fleets and county buses and is available to fuel public vehicles as well. Pictured above, a Grand ...

  15. Describing Current & Potential Markets for Alternative-Fuel Vehicles

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy, and Safety Data" on alternative fuels and alternative-fuel vehicles. No specific projects are currently underway. Some related data may be developed as part of the EPACT...

  16. Hydrogen-Fueled Vehicle Safety Systems Animation (Text Version)

    Broader source: Energy.gov [DOE]

    Hydrogen fueled vehicles have multiple safety systems that detect and prevent the accidental release of hydrogen. There are sensors that detect leaks, a computer that monitors fuel flow, and an...

  17. Vehicle Technologies Office Merit Review 2014: Michigan Fuel Forward

    Broader source: Energy.gov [DOE]

    Presentation given by Clean Energy Coalition at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Michigan Fuel Forward.

  18. New York State-wide Alternative Fuel Vehicle Program for Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt053tibolton2011p...

  19. New York State-wide Alternative Fuel Vehicle Program for Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt053tibolton2012o...

  20. Vehicle Technologies Office Merit Review 2014: Unlocking Private Sector Financing for Alternative Fuel Vehicles and Fueling Infrastructure

    Broader source: Energy.gov [DOE]

    Presentation given by National Association of State Energy Officials at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting...

  1. Alternative Fuel Vehicle Data - Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    & Alternative Fuels - U.S. Energy Information Administration (EIA) U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue and prices, power plants, fuel use, stocks, generation, trade,

  2. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications. Hydrogen vehicle safety report

    SciTech Connect (OSTI)

    Thomas, C.E.

    1997-05-01

    This report reviews the safety characteristics of hydrogen as an energy carrier for a fuel cell vehicle (FCV), with emphasis on high pressure gaseous hydrogen onboard storage. The authors consider normal operation of the vehicle in addition to refueling, collisions, operation in tunnels, and storage in garages. They identify the most likely risks and failure modes leading to hazardous conditions, and provide potential countermeasures in the vehicle design to prevent or substantially reduce the consequences of each plausible failure mode. They then compare the risks of hydrogen with those of more common motor vehicle fuels including gasoline, propane, and natural gas.

  3. Vehicle Technologies Office: FY14 DE-FOA-0000951 Alternative Fuel Vehicle Deployment Initiatives Selection Table

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department announced $6 million for 11 projects aimed at improving potential buyers’ experiences with alternative fuel and plug-in electric vehicles, supporting training, and integrating alternative fuels into emergency planning.

  4. Alternative fuels for vehicles fleet demonstration program final report. Volume 1: Summary

    SciTech Connect (OSTI)

    1997-03-01

    The Alternative Fuels for Vehicles Fleet Demonstration Program (AFV-FDP) was a multiyear effort to collect technical data for use in determining the costs and benefits of alternative-fuel vehicles in typical applications in New York State. During 3 years of collecting data, 7.3 million miles of driving were accumulated, 1,003 chassis-dynamometer emissions tests were performed, 862,000 gallons of conventional fuel were saved, and unique information was developed about garage safety recommendations, vehicle performance, and other topics. Findings are organized by vehicle and fuel type. For light-duty compressed natural gas (CNG) vehicles, technology has evolved rapidly and closed-loop, electronically-controlled fuel systems provide performance and emissions advantages over open-loop, mechanical systems. The best CNG technology produces consistently low tailpipe emissions versus gasoline, and can eliminate evaporative emissions. Reduced driving range remains the largest physical drawback. Fuel cost is low ($/Btu) but capital costs are high, indicating that economics are best with vehicles that are used intensively. Propane produces impacts similar to CNG and is less expensive to implement, but fuel cost is higher than gasoline and safety codes limit use in urban areas. Light-duty methanol/ethanol vehicles provide performance and emissions benefits over gasoline with little impact on capital costs, but fuel costs are high. Heavy-duty CNG engines are evolving rapidly and provide large reductions in emissions versus diesel. Capital costs are high for CNG buses and fuel efficiency is reduced, but the fuel is less expensive and overall operating costs are about equal to those of diesel buses. Methanol buses provide performance and emissions benefits versus diesel, but fuel costs are high. Other emerging technologies were also evaluated, including electric vehicles, hybrid-electric vehicles, and fuel cells.

  5. EV Everywhere: Saving on Fuel and Vehicle Costs

    Broader source: Energy.gov [DOE]

    Plug-in electric vehicles (also known as electric cars or EVs) can save you money, with much lower fuel costs on average than conventional gasoline vehicles. Electricity prices are lower and more stable than gasoline prices. On a national average, it costs less than half as much to travel the same distance in an EV than a conventional vehicle.

  6. Liquid fuels perspective on ultra low carbon vehicles | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy Fuels challenges in the evolving global energy market PDF icon deer11_simnick.pdf More Documents & Publications Green Racing Initiative: Accelerating the Use of Advanced Technologies & Renewable Fuels Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Vehicle Technologies Office Merit Review 2014: VTO Analysis Portfolio

  7. Alternative fuels for vehicles fleet demonstration program. Final report, volume 2: Appendices

    SciTech Connect (OSTI)

    1997-06-01

    The Alternative Fuels for Vehicles Fleet Demonstration Program (AFV-FDP) was a multiyear effort to collect technical data for use in determining the costs and benefits of alternative-fuel vehicles (AFVs) in typical applications in New York State. This report, Volume 2, includes 13 appendices to Volume 1 that expand upon issues raised therein. Volume 1 provides: (1) Information about the purpose and scope of the AFV-FDP; (2) A summary of AFV-FDP findings organized on the basis of vehicle type and fuel type; (3) A short review of the status of AFV technology development, including examples of companies in the State that are active in developing AFVs and AFV components; and (4) A brief overview of the status of AFV deployment in the State. Volume 3 provides expanded reporting of AFV-FDP technical details, including the complete texts of the brochure Garage Guidelines for Alternative Fuels and the technical report Fleet Experience Survey Report, plus an extensive glossary of AFV terminology. The appendices cover a wide range of issues including: emissions regulations in New York State; production and health effects of ozone; vehicle emissions and control systems; emissions from heavy-duty engines; reformulated gasoline; greenhouse gases; production and characteristics of alternative fuels; the Energy Policy Act of 1992; the Clean Fuel Fleet Program; garage design guidelines for alternative fuels; surveys of fleet managers using alternative fuels; taxes on conventional and alternative fuels; and zero-emission vehicle technology.

  8. Fuel Economy of the Light-Duty Vehicle Fleet (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    The U.S. fleet of light-duty vehicles consists of cars and light trucks, including minivans, sport utility vehicles (SUVs) and trucks with gross vehicle weight less than 8,500 pounds. The fuel economy of light-duty vehicles is regulated by the (Corporate Average Fuel Economy) CAFE standards set by the National Highway Traffic Safety Administration. Currently, the CAFE standard is 27.5 miles per gallon (mpg) for cars and 20.7 mpg for light trucks. The most recent increase in the CAFE standard for cars was in 1990, and the most recent increase in the CAFE standard for light trucks was in 1996.

  9. New Vehicle Fuel Economy Standards Will Continue to Inspire Innovation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Vehicle Fuel Economy Standards Will Continue to Inspire Innovation New Vehicle Fuel Economy Standards Will Continue to Inspire Innovation July 29, 2011 - 1:48pm Addthis President Barack Obama delivers remarks on fuel efficiency standards for 2017-2025 model year cars and light-duty trucks during an event at the Washington Convention Center in Washington, D.C., July 29, 2011. Seated behind the President are at left are auto industry executives and Transportation Secretary

  10. NNSS Alternative Fuel Vehicle Management Program receives federal award |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration Alternative Fuel Vehicle Management Program receives federal award Wednesday, December 10, 2014 - 2:41pm The Nevada National Security Site (NNSS), Nevada Field Office recently earned the 2014 Federal Energy and Water Management Award for the Alternative Fuel Vehicle (AFV) Management Program-making it the only U.S. Department of Energy recipient of this distinguished award. The NNSS increased its renewable fuel use by 195 percent from its 2005

  11. Vehicles and Fuels Technologies Available for Licensing - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Vehicles and Fuels Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Marketing Summaries (136) Success Stories (2) Wind Energy Partners (27) Visual Patent Search Success Stories Browse

  12. Flex Fuel Vehicle Systems | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    ft_13_yilmaz.pdf More Documents & Publications Advanced Combustion Concepts - Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles Advanced Combustion Concepts - Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles Vehicle Technologies Office Merit Review 2014: Advanced Combustion Concepts - Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles

  13. 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Analysis 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure ...

  14. TransAtlas: A U.S. Map of Fuels and Vehicles Data from the Alternative Fuels and Advanced Vehicles (AFDC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Data stored in the Alternative Fuels and Advanced Vehicles Data Center (AFDC) can provide insight to policymakers, entrepreneurs, fuel users, and other parties interested in reducing petroleum consumption. The National Renewable Energy Laboratory analyzes transportation-related data and identifies trends related to alternative fuels and vehicles. These analyses are posted in the AFDC as technical reports and Excel spreadsheets that can be manipulated by outside users. To provide the most robust collection of information possible, this section also includes links to data analyses from outside the AFDC. These sources are noted in each file. There are also interactive map applications and some PDF documents.

  15. Motor vehicle fuel economy, the forgotten HC control stragegy?

    SciTech Connect (OSTI)

    Deluchi, M.; Wang, Quanlu; Greene, D.L.

    1992-06-01

    Emissions of hydrocarbons from motor vehicles are recognized as major contributors to ozone pollution in urban areas. Petroleum-based motor fuels contain volatile organic compounds (VOC) which, together with oxides of nitrogen, promote the formation of ozone in the troposphere via complex photochemical reactions. VOC emissions from the tailpipe and evaporation from the fuel and engine systems of highway vehicles are believed to account for about 40% of total VOC emissions in any region. But motor fuels also generate emissions throughout the fuel cycle, from crude oil production to refining, storage, transportation, and handling, that can make significant contributions to the total inventory of VOC emissions. Many of these sources of emissions are directly related to the quantity of fuel produced and handled throughout the fuel cycle. It is, therefore, reasonable to expect that a reduction in total fuel throughput might result in a reduction of VOC emissions. In particular, reducing vehicle fuel consumption by increasing vehicle fuel economy should reduce total fuel throughput, thereby cutting total emissions of VOCS. In this report we identify the sources of VOC emissions throughout the motor fuel cycle, quantify them to the extent possible, and describe their dependence on automobile and light truck fuel economy.

  16. United States National Hydrogen Fuel Cell Vehicle and Infrastructure Learning Demonstration - Status and Results (Presentation)

    SciTech Connect (OSTI)

    Wipke,K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Garbak, J.

    2009-03-06

    This presentation provides status and results for the United States National Hydrogen Fuel Cell Vehicle Learning Demonstration, including project objectives, partners, the National Renewable Energy Laboratory's role in the project and methodology, how to access complete results, and results of vehicle and infrastructure analysis.

  17. Legacy Vehicle Fuel System Testing with Intermediate Ethanol Blends

    SciTech Connect (OSTI)

    Davis, G. W.; Hoff, C. J.; Borton, Z.; Ratcliff, M. A.

    2012-03-01

    The effects of E10 and E17 on legacy fuel system components from three common mid-1990s vintage vehicle models (Ford, GM, and Toyota) were studied. The fuel systems comprised a fuel sending unit with pump, a fuel rail and integrated pressure regulator, and the fuel injectors. The fuel system components were characterized and then installed and tested in sample aging test rigs to simulate the exposure and operation of the fuel system components in an operating vehicle. The fuel injectors were cycled with varying pulse widths during pump operation. Operational performance, such as fuel flow and pressure, was monitored during the aging tests. Both of the Toyota fuel pumps demonstrated some degradation in performance during testing. Six injectors were tested in each aging rig. The Ford and GM injectors showed little change over the aging tests. Overall, based on the results of both the fuel pump testing and the fuel injector testing, no major failures were observed that could be attributed to E17 exposure. The unknown fuel component histories add a large uncertainty to the aging tests. Acquiring fuel system components from operational legacy vehicles would reduce the uncertainty.

  18. Vermont Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (Million Cubic Feet) Vermont Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0 0 0 2000's 0 1 1 1 1 0 W 1 1 2010's 1 3 3 3 3 3 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Delivered to Vehicle Fuel Consumers Vermont

  19. Maine Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (Million Cubic Feet) Maine Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0 100 0 2000's 0 0 0 0 0 0 0 0 1 2010's 1 1 1 1 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Delivered to Vehicle Fuel Consumers Maine Natural

  20. Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies.

    SciTech Connect (OSTI)

    Wang, M. Q.

    1998-12-16

    At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions.

  1. Technology Validation of Fuel Cell Vehicles and Their Hydrogen Infrastructure (Presentation)

    SciTech Connect (OSTI)

    Sprik, S.; Kurtz, J.; Wipke, K.; Saur, G.; Ainscough, C.

    2013-10-22

    This presentation summarizes NREL's analysis and validation of fuel cell electric vehicles and hydrogen fueling infrastructure technologies.

  2. Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations

    Broader source: Energy.gov [DOE]

    This document establishes the California Fuel Cell Partnership’s current consensus vision of next steps for vehicles and hydrogen stations in California.

  3. Effect of Intake Air Filter Condition on Vehicle Fuel Economy

    SciTech Connect (OSTI)

    Norman, Kevin M; Huff, Shean P; West, Brian H

    2009-02-01

    The U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy and the U.S. Environmental Protection Agency (EPA) jointly maintain a fuel economy website (www.fueleconomy.gov), which helps fulfill their responsibility under the Energy Policy Act of 1992 to provide accurate fuel economy information [in miles per gallon (mpg)] to consumers. The site provides information on EPA fuel economy ratings for passenger cars and light trucks from 1985 to the present and other relevant information related to energy use such as alternative fuels and driving and vehicle maintenance tips. In recent years, fluctuations in the price of crude oil and corresponding fluctuations in the price of gasoline and diesel fuels have renewed interest in vehicle fuel economy in the United States. (User sessions on the fuel economy website exceeded 20 million in 2008 compared to less than 5 million in 2004 and less than 1 million in 2001.) As a result of this renewed interest and the age of some of the references cited in the tips section of the website, DOE authorized the Oak Ridge National Laboratory (ORNL) Fuels, Engines, and Emissions Research Center (FEERC) to initiate studies to validate and improve these tips. This report documents a study aimed specifically at the effect of engine air filter condition on fuel economy. The goal of this study was to explore the effects of a clogged air filter on the fuel economy of vehicles operating over prescribed test cycles. Three newer vehicles (a 2007 Buick Lucerne, a 2006 Dodge Charger, and a 2003 Toyota Camry) and an older carbureted vehicle were tested. Results show that clogging the air filter has no significant effect on the fuel economy of the newer vehicles (all fuel injected with closed-loop control and one equipped with MDS). The engine control systems were able to maintain the desired AFR regardless of intake restrictions, and therefore fuel consumption was not increased. The carbureted engine did show a decrease in fuel economy with increasing restriction. However, the level of restriction required to cause a substantial (10-15%) decrease in fuel economy (such as that cited in the literature) was so severe that the vehicle was almost undrivable. Acceleration performance on all vehicles was improved with a clean air filter. Once it was determined how severe the restriction had to be to affect the carbureted vehicle fuel economy, the 2007 Buick Lucerne was retested in a similar manner. We were not able to achieve the level of restriction that was achieved with the 1972 Pontiac with the Lucerne. The Lucerne's air filter box would not hold the filter in place under such severe conditions. (It is believed that this testing exceeded the design limits of the air box.) Tests were conducted at a lower restriction level (although still considerably more severe than the initial clogged filter testing), allowing the air filter to stay seated in the air box, and no significant change was observed in the Lucerne's fuel economy or the AFR over the HFET cycle. Closed-loop control in modern fuel injected vehicle applications is sophisticated enough to keep a clogged air filter from affecting the vehicle fuel economy. However for older, open-loop, carbureted vehicles, a clogged air filter can affect the fuel economy. For the vehicle tested, the fuel economy with a new air filter improved as much as 14% over that with a severely clogged filter (in which the filter was so clogged that drivability was impacted). Under a more typical state of clog, the improvement with a new filter ranged from 2 to 6%.

  4. Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency

    Broader source: Energy.gov [DOE]

    Besides their energy security and environmental benefits, many alternative fuels such as biodiesel, ethanol, and natural gas have unique chemical properties that offer advantages to drivers. These...

  5. Prospects on fuel economy improvements for hydrogen powered vehicles.

    SciTech Connect (OSTI)

    Rousseau, A.; Wallner, T.; Pagerit, S.; Lohse-Bush, H.

    2008-01-01

    Fuel cell vehicles are the subject of extensive research and development because of their potential for high efficiency and low emissions. Because fuel cell vehicles remain expensive and the demand for hydrogen is therefore limited, very few fueling stations are being built. To try to accelerate the development of a hydrogen economy, some original equipment manufacturers (OEM) in the automotive industry have been working on a hydrogen-fueled internal combustion engine (ICE) as an intermediate step. Despite its lower cost, the hydrogen-fueled ICE offers, for a similar amount of onboard hydrogen, a lower driving range because of its lower efficiency. This paper compares the fuel economy potential of hydrogen-fueled vehicles to their conventional gasoline counterparts. To take uncertainties into account, the current and future status of both technologies were considered. Although complete data related to port fuel injection were provided from engine testing, the map for the direct-injection engine was developed from single-cylinder data. The fuel cell system data represent the status of the current technology and the goals of FreedomCAR. For both port-injected and direct-injected hydrogen engine technologies, power split and series Hybrid Electric Vehicle (HEV) configurations were considered. For the fuel cell system, only a series HEV configuration was simulated.

  6. Alternative Fuels Data Center: Vehicle Maintenance to Conserve...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tuning a neglected vehicle or fixing one that failed an emissions test can increase fuel economy by 4%, based on the repair type and quality. Repairing a serious problem, such as a ...

  7. Improving Vehicle Fuel Efficiency Through Tire Design, Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon vss083donley2012o.pdf More Documents &...

  8. Improving Vehicle Fuel Efficiency Through Tire Design, Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon vss083donley2013o%20.pdf More Documents &...

  9. 2012 Fuel Economy of New Vehicles Sets Record High: EPA

    Broader source: Energy.gov [DOE]

    The U.S. Environmental Protection Agency (EPA) reported that model year 2012 vehicles achieved an all-time high fuel economy average of 23.6 miles per gallon.

  10. Petroleum Reduction Strategies to Use Alternative Fuels in Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    For reducing greenhouse gas emissions, the table below describes strategies to reduce petroleum through the use of alternative fuels in vehicles, as well as guidance and best practices for each strategy.

  11. Fact #594: October 26, 2009 Fuel Economy and Annual Fuel Cost Ranges for Vehicle Classes

    Broader source: Energy.gov [DOE]

    The graph below shows the range of the lowest and highest fuel economy for each vehicle class, along with the lowest and highest annual fuel cost (in parentheses). For example, the two-seater model...

  12. Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles

    SciTech Connect (OSTI)

    2013-08-01

    Today's fleets are increasingly interested in medium-duty and heavy-duty vehicles that use alternative fuels or advanced technologies that can help reduce operating costs, meet emissions requirements, improve fleet sustainability, and support U.S. energy independence. Vehicle and engine manufacturers are responding to this interest with a wide range of options across a steadily growing number of vehicle applications. This guide provides an overview of alternative fuel power systems--including engines, microturbines, electric motors, and fuel cells--and hybrid propulsion systems. The guide also offers a list of individual medium- and heavy-duty vehicle models listed by application, along with associated manufacturer contact information, fuel type(s), power source(s), and related information.

  13. Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles (Book)

    SciTech Connect (OSTI)

    Not Available

    2013-08-01

    Today's fleets are increasingly interested in medium-duty and heavy-duty vehicles that use alternative fuels or advanced technologies that can help reduce operating costs, meet emissions requirements, improve fleet sustainability, and support U.S. energy independence. Vehicle and engine manufacturers are responding to this interest with a wide range of options across a steadily growing number of vehicle applications. This guide provides an overview of alternative fuel power systems?including engines, microturbines, electric motors, and fuel cells?and hybrid propulsion systems. The guide also offers a list of individual medium- and heavy-duty vehicle models listed by application, along with associated manufacturer contact information, fuel type(s), power source(s), and related information.

  14. NREL: Energy Analysis - Vehicles and Fuels Research Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Research Analysis NREL offers online resources for information, data, and publications related to advanced transportation technologies and fuels. These easy-to-use resources help industry, fleet managers, and the public understand alternative fuel and advanced vehicle issues, technologies, regulations, incentives, and more. Fleet DNA: Commercial Fleet Vehicle Operating Data Online tool providing data summaries and visualizations similar to real-world "genetics" for

  15. Alternative Fuel Vehicles: How Do They Really Measure Up?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How Do They Really Measure Up? For more information contact: e:mail: Public Affairs Golden, Colo., Sept. 8, 1997 -- What do the people who actually use alternative fuel vehicles really think about their performance? The National Renewable Energy Laboratory (NREL) asked that question in a 1996 nationwide survey of federal fleet managers and alternative fuel vehicle drivers. Perspectives on AFVs: 1996 Federal Fleet Managers Survey presents the results of the survey, conducted by Dwights Energydata

  16. Fuel-cycle energy and emissions impacts of tripled fuel economy vehicles

    SciTech Connect (OSTI)

    Mintz, M.M.; Wang, M.Q.; Vyas, A.D.

    1998-12-31

    This paper presents estimates of the full cycle energy and emissions impacts of light-duty vehicles with tripled fuel economy (3X vehicles) as currently being developed by the Partnership for a New Generation of Vehicles (PNGV). Seven engine and fuel combinations were analyzed: reformulated gasoline, methanol, and ethanol in spark-ignition, direct-injection engines; low sulfur diesel and dimethyl ether in compression-ignition, direct-injection engines; and hydrogen and methanol in fuel-cell vehicles. The fuel efficiency gain by 3X vehicles translated directly into reductions in total energy demand, petroleum demand, and carbon dioxide emissions. The combination of fuel substitution and fuel efficiency resulted in substantial reductions in emissions of nitrogen oxide, carbon monoxide, volatile organic compounds, sulfur oxide, and particulate matter smaller than 10 microns, particularly under the High Market Share Scenario.

  17. Validation of Hydrogen Fuel Cell Vehicle and Infrastructure Technology (Fact Sheet)

    Broader source: Energy.gov [DOE]

    Fact sheet on Validation of Hydrogen Fuel Cell Vehicle and Infrastructure Technology activities at NREL.

  18. U.S. Fuel Cell Electric Vehicle Demonstration Project 2010 Status Update (Presentation)

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

    2010-10-21

    This presentation summarizes U.S. Fuel Cell Electric Vehicle Demonstration Project 2010 Status Update.

  19. Alternative Fuels Data Center: Smith Dairy Deploys Natural Gas Vehicles and

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Infrastructure in the Midwest Smith Dairy Deploys Natural Gas Vehicles and Fueling Infrastructure in the Midwest to someone by E-mail Share Alternative Fuels Data Center: Smith Dairy Deploys Natural Gas Vehicles and Fueling Infrastructure in the Midwest on Facebook Tweet about Alternative Fuels Data Center: Smith Dairy Deploys Natural Gas Vehicles and Fueling Infrastructure in the Midwest on Twitter Bookmark Alternative Fuels Data Center: Smith Dairy Deploys Natural Gas Vehicles and

  20. Fact #586: August 31, 2009 New Vehicle Fuel Economies by Vehicle Type

    Broader source: Energy.gov [DOE]

    The average fuel economy for new cars climbed to over 30 miles per gallon (mpg) in 2008 while the average for new pickup trucks stayed around 20 mpg. For new vans and sport utility vehicles (SUVs)...

  1. New York State-wide Alternative Fuel Vehicle Program for Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon tiarravt053bolton2010p.pdf More Documents & Publications New York State-wide Alternative Fuel Vehicle...

  2. Fact #591: October 5, 2009 Consumer Reports Tests Vehicle Fuel Economy by Speed

    Broader source: Energy.gov [DOE]

    Seven vehicles were tested by Consumer Reports recently to determine the fuel economy of the vehicles at a given speed. For these vehicles, the decline in fuel economy from a speed of 55 miles per...

  3. Modular Energy Storage System for Hydrogen Fuel Cell Vehicles

    SciTech Connect (OSTI)

    Janice Thomas

    2010-05-31

    The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles ?? plug-in electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. The in-depth research into the complex interactions between the lower and higher voltage systems from data obtained via modeling, bench testing and instrumented vehicle data will allow an optimum system to be developed from a performance, cost, weight and size perspective. The subsystems are designed for modularity so that they may be used with different propulsion and energy delivery systems. This approach will allow expansion into new alternative energy vehicle markets.

  4. Renewable Fuel Vehicle Modeling and Analysis

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  5. Predicting Light-Duty Vehicle Fuel Economy as a Function of Highway Speed

    SciTech Connect (OSTI)

    Thomas, John F; Hwang, Ho-Ling; West, Brian H; Huff, Shean P

    2013-01-01

    The www.fueleconomy.gov website offers information such as window label fuel economy for city, highway, and combined driving for all U.S.-legal light-duty vehicles from 1984 to the present. The site is jointly maintained by the U.S. Department of Energy and the U.S. Environmental Protection Agency (EPA), and also offers a considerable amount of consumer information and advice pertaining to vehicle fuel economy and energy related issues. Included with advice pertaining to driving styles and habits is information concerning the trend that as highway cruising speed is increased, fuel economy will degrade. An effort was undertaken to quantify this conventional wisdom through analysis of dynamometer testing results for 74 vehicles at steady state speeds from 50 to 80 mph. Using this experimental data, several simple models were developed to predict individual vehicle fuel economy and its rate of change over the 50-80 mph speed range interval. The models presented require a minimal number of vehicle attributes. The simplest model requires only the EPA window label highway mpg value (based on the EPA specified estimation method for 2008 and beyond). The most complex of these simple model uses vehicle coast-down test coefficients (from testing prescribed by SAE Standard J2263) known as the vehicle Target Coefficients, and the raw fuel economy result from the federal highway test. Statistical comparisons of these models and discussions of their expected usefulness and limitations are offered.

  6. Fuel Cell Electric Vehicle Evaluation; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Kurtz, Jennifer; Sprik, Sam; Ainscough, Chris; Saur, Genevieve

    2015-06-10

    This presentation provides a summary of NREL's FY15 fuel cell electric vehicle evaluation project activities and accomplishments. It was presented at the U.S. Department of Energy Hydrogen and Fuel Cells Program 2015 Annual Merit Review and Peer Evaluation Meeting on June 10, 2015, in Arlington, Virginia.

  7. Fact #804: November 18, 2013 Tool Available to Print Used Vehicle Fuel Economy Window Stickers

    Broader source: Energy.gov [DOE]

    Because used vehicle sales outnumber new vehicle sales by about three to one, a new tool has been developed that allows those selling used vehicles to produce a fuel economy label for the vehicle....

  8. Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Light-Duty Vehicle Idle Reduction Strategies to someone by E-mail Share Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies on Facebook Tweet about Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies on Twitter Bookmark Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies on Google Bookmark Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies on Delicious Rank Alternative Fuels Data Center: Light-Duty

  9. Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    in Public to someone by E-mail Share Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on Facebook Tweet about Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on Twitter Bookmark Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on Google Bookmark Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on Delicious Rank Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on

  10. Hydraulic Hybrid and Conventional Parcel Delivery Vehicles' Measured Laboratory Fuel Economy on Targeted Drive Cycles

    SciTech Connect (OSTI)

    Lammert, M. P.; Burton, J.; Sindler, P.; Duran, A.

    2014-10-01

    This research project compares laboratory-measured fuel economy of a medium-duty diesel powered hydraulic hybrid vehicle drivetrain to both a conventional diesel drivetrain and a conventional gasoline drivetrain in a typical commercial parcel delivery application. Vehicles in this study included a model year 2012 Freightliner P100H hybrid compared to a 2012 conventional gasoline P100 and a 2012 conventional diesel parcel delivery van of similar specifications. Drive cycle analysis of 484 days of hybrid parcel delivery van commercial operation from multiple vehicles was used to select three standard laboratory drive cycles as well as to create a custom representative cycle. These four cycles encompass and bracket the range of real world in-use data observed in Baltimore United Parcel Service operations. The NY Composite cycle, the City Suburban Heavy Vehicle Cycle cycle, and the California Air Resources Board Heavy Heavy-Duty Diesel Truck (HHDDT) cycle as well as a custom Baltimore parcel delivery cycle were tested at the National Renewable Energy Laboratory's Renewable Fuels and Lubricants Laboratory. Fuel consumption was measured and analyzed for all three vehicles. Vehicle laboratory results are compared on the basis of fuel economy. The hydraulic hybrid parcel delivery van demonstrated 19%-52% better fuel economy than the conventional diesel parcel delivery van and 30%-56% better fuel economy than the conventional gasoline parcel delivery van on cycles other than the highway-oriented HHDDT cycle.

  11. Fuel-cycle energy and emissions impacts of tripled fuel-economy vehicles

    SciTech Connect (OSTI)

    Mintz, M. M.; Vyas, A. D.; Wang, M. Q.

    1997-12-18

    This paper presents estimates of the fill fuel-cycle energy and emissions impacts of light-duty vehicles with tripled fuel economy (3X vehicles) as currently being developed by the Partnership for a New Generation of Vehicles (PNGV). Seven engine and fuel combinations were analyzed: reformulated gasoline, methanol, and ethanol in spark-ignition, direct-injection engines; low-sulfur diesel and dimethyl ether in compression-ignition, direct-injection engines; and hydrogen and methanol in fuel-cell vehicles. Results were obtained for three scenarios: a Reference Scenario without PNGVs, a High Market Share Scenario in which PNGVs account for 60% of new light-duty vehicle sales by 2030, and a Low Market Share Scenario in which PNGVs account for half as many sales by 2030. Under the higher of these two, the fuel-efficiency gain by 3X vehicles translated directly into a nearly 50% reduction in total energy demand, petroleum demand, and carbon dioxide emissions. The combination of fuel substitution and fuel efficiency resulted in substantial reductions in emissions of nitrogen oxide (NO{sub x}), carbon monoxide (CO), volatile organic compounds (VOCs), sulfur oxide, (SO{sub x}), and particulate matter smaller than 10 microns (PM{sub 10}) for most of the engine-fuel combinations examined. The key exceptions were diesel- and ethanol-fueled vehicles for which PM{sub 10} emissions increased.

  12. Fuel Cell and Battery Electric Vehicles Compared

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... EV 300 miles compared to a fuel cell EV traveling 300 miles In effect, the increased ... city cars for niche markets, the underlying benefits of the fuel cell have not changed. ...

  13. Model Year 2006: Alternative Fuel and Advanced Technology Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Model Year 2006: Alternative Fuel and Advanced Technology Vehicles Fuel Type EPAct Compliant? Model Vehicle Type Emission Class Powertrain Fuel Capacity Range American Honda Motor Corporation 888-CCHONDA www.honda.com CNG Dedicated EPAct Yes Civic GX Compact Sedan SULEV Tier 2 Bin II 1.7L, 4-cylinder 8 GGE 200 mi HEV (NiMH) EPAct No Accord Hybrid Sedan ULEV 3.0L V6 144 volt NiMH + 17.1 Gal Gasoline TBD HEV (NiMH) EPAct No Civic Hybrid Sedan CA ULEV 1.3L, 4-cylinder 144 volt NiMH + 13.2 Gal

  14. Fact #813: January 20, 2014 New Light Vehicle Fuel Economy Continues...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3: January 20, 2014 New Light Vehicle Fuel Economy Continues to Rise Fact 813: January 20, 2014 New Light Vehicle Fuel Economy Continues to Rise The sales-weighted fuel economy ...

  15. Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure Factors to consider in the implementation of fueling stations and equipment Margaret Smith, New West Technologies (DOE HQ Technical Support) John Gonzales, National Renewable Energy Laboratory This document has been peer reviewed by the natural gas industry. September 2014 2 Introduction This document is designed to help fleets understand the cost factors associated with fueling infrastructure for compressed natural gas

  16. Natural Gas Delivered to Consumers in Massachusetts (Including Vehicle

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel) (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 400,273 356,942 342,136 2000's 340,923 345,916 388,972 402,003 370,777 376,257 369,166 406,968 405,562 394,759 2010's 428,471 444,537 412,637 418,241 412,268 434,781

  17. Natural Gas Delivered to Consumers in New Hampshire (Including Vehicle

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel) (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 20,824 19,105 20,311 2000's 24,918 23,374 24,841 54,122 61,150 70,463 62,530 62,115 71,170 59,937 2010's 60,131 69,776 72,004 53,961 56,936

  18. Natural Gas Delivered to Consumers in North Carolina (Including Vehicle

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel) (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 208,369 207,427 210,606 2000's 226,543 200,542 229,338 212,534 219,814 225,423 218,379 232,374 237,789 239,141 2010's 296,169 300,481 358,510 436,146 449,335 NA

  19. Natural Gas Delivered to Consumers in South Carolina (Including Vehicle

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel) (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 150,978 156,295 159,338 2000's 156,975 138,866 181,648 143,833 161,283 169,605 172,514 173,092 167,473 188,081 2010's 216,783 226,089 241,434 229,768 229,454 270,546

  20. Natural Gas Delivered to Consumers in West Virginia (Including Vehicle

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel) (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 119,976 105,099 104,219 2000's 106,057 102,110 103,119 102,567 98,525 90,436 85,507 88,317 84,485 75,475 2010's 79,432 77,189 74,459 80,393 86,978 NA

  1. Achieving and Demonstrating Vehicle Technologies Engine Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ace16wagner.pdf More Documents & Publications Achieving and Demonstrating Vehicle Technologies ...

  2. Achieving and Demonstrating Vehicle Technologies Engine Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    10 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ace017wagner2010o.pdf More...

  3. RD&D Cooperation for the Development of Fuel Cell, Hybrid and Electric Vehicles within the International Energy Agency: Preprint

    SciTech Connect (OSTI)

    Telias, G.; Day, K.; Dietrich, P.

    2011-01-01

    Annex XIII on 'Fuel Cell Vehicles' of the Implementing Agreement Hybrid and Electric Vehicles of the International Energy Agency has been operating since 2006, complementing the ongoing activities on battery and hybrid electric vehicles within this group. This paper provides an overview of the Annex XIII final report for 2010, compiling an up-to-date, neutral, and comprehensive assessment of current trends in fuel cell vehicle technology and related policy. The technological description includes trends in system configuration as well as a review of the most relevant components including the fuel cell stack, batteries, and hydrogen storage. Results from fuel cell vehicle demonstration projects around the world and an overview of the successful implementation of fuel cells in specific transport niche markets will also be discussed. The final section of this report provides a detailed description of national research, development, and demonstration (RD&D) efforts worldwide.

  4. Fuel cell repeater unit including frame and separator plate

    DOE Patents [OSTI]

    Yamanis, Jean; Hawkes, Justin R; Chiapetta, Jr., Louis; Bird, Connie E; Sun, Ellen Y; Croteau, Paul F

    2013-11-05

    An example fuel cell repeater includes a separator plate and a frame establishing at least a portion of a flow path that is operative to communicate fuel to or from at least one fuel cell held by the frame relative to the separator plate. The flow path has a perimeter and any fuel within the perimeter flow across the at least one fuel cell in a first direction. The separator plate, the frame, or both establish at least one conduit positioned outside the flow path perimeter. The conduit is outside of the flow path perimeter and is configured to direct flow in a second, different direction. The conduit is fluidly coupled with the flow path.

  5. Refueliing Infrastructure for Alternative Fuel Vehicles: Lessons...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Proceedings of the 2005 Hydrogen Pipeline Working Group Workshop City of Tulare Renewable Biogas Fuel Cell Project Microsoft Word - AL2003-04.doc

  6. Infographic: The Fuel Cell Electric Vehicle (FCEV)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    gas * water (electrolysis) * biomass * waste products Uses Domestic Fuel Reduces Greenhouse Gas Emissions 50% 90% Operates Efficiently FCEV internal combustion 20-30% 60% ...

  7. Fuel economy and emissions evaluation of BMW hydrogen 7 mono-fuel demonstration vehicles.

    SciTech Connect (OSTI)

    Wallner, T.; Lohse-Busch, H.; Gurski, S.; Duoba, M.; Thiel, W.; Martin, D.; Korn, T.; Energy Systems; BMW Group Munich Germany; BMW Group Oxnard USA

    2008-12-01

    This article summarizes the testing of two BMW Hydrogen 7 Mono-Fuel demonstration vehicles at Argonne National Laboratory's Advanced Powertrain Research Facility (APRF). The BMW Hydrogen 7 Mono-Fuel demonstration vehicles are derived from the BMW Hydrogen 7 bi-fuel vehicles and based on a BMW 760iL. The mono-fuel as well as the bi-fuel vehicle(s) is equipped with cryogenic hydrogen on-board storage and a gaseous hydrogen port fuel injection system. The BMW Hydrogen 7 Mono-Fuel demonstration vehicles were tested for fuel economy as well as emissions on the Federal Test Procedure FTP-75 cold-start test as well as the highway test. The results show that these vehicles achieve emissions levels that are only a fraction of the Super Ultra Low Emissions Vehicle (SULEV) standard for nitric oxide (NO{sub x}) and carbon monoxide (CO) emissions. For non-methane hydrocarbon (NMHC) emissions the cycle-averaged emissions are actually 0 g/mile, which require the car to actively reduce emissions compared to the ambient concentration. The fuel economy numbers on the FTP-75 test were 3.7 kg of hydrogen per 100 km, which, on an energy basis, is equivalent to a gasoline fuel consumption of 17 miles per gallon (mpg). Fuel economy numbers for the highway cycle were determined to be 2.1 kg of hydrogen per 100 km or 30 miles per gallon of gasoline equivalent (GGE). In addition to cycle-averaged emissions and fuel economy numbers, time-resolved (modal) emissions as well as air/fuel ratio data is analyzed to further investigate the root causes of the remaining emissions traces. The BMW Hydrogen 7 vehicles employ a switching strategy with lean engine operation at low engine loads and stoichiometric operation at high engine loads that avoids the NO{sub x} emissions critical operating regime with relative air/fuel ratios between 1 < {lambda} < 2. The switching between these operating modes was found to be a major source of the remaining NO{sub x} emissions. The emissions results collected during this period lead to the conclusion that the BMW Hydrogen 7 Mono-Fuel demonstration vehicles are likely the cleanest combustion engine vehicles ever tested at Argonne's APRF.

  8. Describing current and potential markets for alternative-fuel vehicles

    SciTech Connect (OSTI)

    1996-03-26

    Motor vehicles are a major source of greenhouse gases, and the rising numbers of motor vehicles and miles driven could lead to more harmful emissions that may ultimately affect the world`s climate. One approach to curtailing such emissions is to use, instead of gasoline, alternative fuels: LPG, compressed natural gas, or alcohol fuels. In addition to the greenhouse gases, pollutants can be harmful to human health: ozone, CO. The Clean Air Act Amendments of 1990 authorized EPA to set National Ambient Air Quality Standards to control this. The Energy Policy Act of 1992 (EPACT) was the first new law to emphasize strengthened energy security and decreased reliance on foreign oil since the oil shortages of the 1970`s. EPACT emphasized increasing the number of alternative-fuel vehicles (AFV`s) by mandating their incremental increase of use by Federal, state, and alternative fuel provider fleets over the new few years. Its goals are far from being met; alternative fuels` share remains trivial, about 0.3%, despite gains. This report describes current and potential markets for AFV`s; it begins by assessing the total vehicle stock, and then it focuses on current use of AFV`s in alternative fuel provider fleets and the potential for use of AFV`s in US households.

  9. Natural Gas Delivered to Consumers in Massachusetts (Including Vehicle

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 45,181 40,868 39,690 30,815 23,495 19,798 19,305 23,154 22,753 24,627 24,646 31,456 2002 44,559 40,420 40,295 29,989 27,757 25,316 23,254 26,957 25,422 27,484 31,958 45,435 2003 46,732 47,096 41,405 35,646 26,400 24,827 26,581 25,461 23,294 32,416 32,407 39,583 2004 47,337 47,355 40,517 38,312 23,705 22,360 23,202 21,585 20,120 22,710 28,310 35,091 2005 43,684 45,004 45,737 36,162 25,515 25,040 24,822 25,383

  10. Natural Gas Delivered to Consumers in New Hampshire (Including Vehicle

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 3,171 3,309 2,951 2,280 1,441 1,134 1,003 888 1,182 1,589 1,904 2,520 2002 2,917 3,188 2,833 2,179 1,815 1,423 1,657 1,055 1,381 1,038 1,847 3,507 2003 6,844 6,457 5,490 3,772 3,085 2,034 3,900 5,640 4,166 4,643 3,574 4,515 2004 5,204 7,595 6,870 6,131 2,712 4,473 4,167 4,306 4,766 3,194 5,704 6,026 2005 6,958 7,545 6,875 5,691 6,049 5,824 5,780 6,010 4,491 4,069 5,173 5,988 2006 7,782 6,823 7,852 4,511

  11. Natural Gas Delivered to Consumers in North Carolina (Including Vehicle

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 29,800 21,808 20,434 14,585 11,544 11,979 13,229 15,763 11,364 14,905 15,898 19,179 2002 27,750 25,444 22,993 16,550 13,274 14,816 16,400 17,088 13,640 15,047 19,024 27,257 2003 32,135 30,180 20,979 15,717 12,038 9,338 12,359 13,177 11,210 12,814 16,520 25,999 2004 31,785 30,416 22,379 16,242 16,033 12,711 12,866 13,027 11,970 11,729 15,635 24,946 2005 30,538 27,324 26,203 17,851 13,162 12,669 15,688 16,197

  12. Natural Gas Delivered to Consumers in South Carolina (Including Vehicle

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 17,028 13,472 12,569 10,957 8,683 9,367 10,138 11,625 9,077 11,870 11,334 12,725 2002 20,494 17,611 16,270 14,448 14,921 14,889 16,325 15,616 11,675 10,993 12,221 16,164 2003 18,666 17,514 12,917 11,948 9,803 8,615 10,304 12,231 8,766 8,909 9,675 14,460 2004 19,029 19,575 14,664 11,619 12,602 10,686 12,311 13,363 11,234 9,815 10,497 15,861 2005 19,494 16,945 17,212 12,523 11,619 12,506 16,813 18,833 10,439

  13. Natural Gas Delivered to Consumers in West Virginia (Including Vehicle

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 14,634 12,224 11,221 9,393 5,380 4,688 5,050 5,820 5,703 7,694 9,286 10,802 2002 12,686 11,546 11,965 8,927 7,125 5,425 5,123 5,557 4,801 6,781 10,011 12,951 2003 15,151 14,627 10,226 7,588 5,910 5,006 4,985 5,571 5,552 7,192 8,076 12,413 2004 14,651 15,031 11,525 9,338 5,321 4,737 4,621 4,572 4,754 5,775 6,898 10,999 2005 13,027 12,645 12,670 7,853 5,985 4,008 3,754 4,142 3,627 4,345 6,919 11,453 2006

  14. Alternative Fuels Data Center: Hybrid and Electric Vehicles Boom Coast to

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Coast Hybrid and Electric Vehicles Boom Coast to Coast to someone by E-mail Share Alternative Fuels Data Center: Hybrid and Electric Vehicles Boom Coast to Coast on Facebook Tweet about Alternative Fuels Data Center: Hybrid and Electric Vehicles Boom Coast to Coast on Twitter Bookmark Alternative Fuels Data Center: Hybrid and Electric Vehicles Boom Coast to Coast on Google Bookmark Alternative Fuels Data Center: Hybrid and Electric Vehicles Boom Coast to Coast on Delicious Rank Alternative

  15. Alternative Fuels Data Center: Texas Law Enforcement Vehicles Fill up With

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Propane Texas Law Enforcement Vehicles Fill up With Propane to someone by E-mail Share Alternative Fuels Data Center: Texas Law Enforcement Vehicles Fill up With Propane on Facebook Tweet about Alternative Fuels Data Center: Texas Law Enforcement Vehicles Fill up With Propane on Twitter Bookmark Alternative Fuels Data Center: Texas Law Enforcement Vehicles Fill up With Propane on Google Bookmark Alternative Fuels Data Center: Texas Law Enforcement Vehicles Fill up With Propane on Delicious

  16. Fuel Consumption and Cost Benefits of DOE Vehicle Technologies Program |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 12 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon vss077_shidore_2012_o.pdf More Documents & Publications Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Government Performance Result Act (GPRA) / Portfolio Decision Support (PDS) Support for Government Performance and Results Act (GPRA)

  17. Assessment of Future ICE and Fuel-Cell Powered Vehicles and Their...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Technology PDF icon 2004deerheywood.pdf More Documents & Publications An Energy Evolution:Alternative Fueled Vehicle Comparisons WORKSHOP REPORT:Light-Duty Vehicles Technical ...

  18. South Dakota Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (Million Cubic Feet) South Dakota Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 1990's 0 2 5 7 5 4 4 10 8 10 2000's 10 13 13 16 18 0 W 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Delivered

  19. Delaware Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (Million Cubic Feet) Delaware Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 1990's 0 0 0 0 1 1 1 21 27 33 2000's 37 46 46 56 63 9 6 5 4 1 2010's 1 1 1 1 1 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Delivered to

  20. North Dakota Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (Million Cubic Feet) North Dakota Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 1990's 0 1 3 8 8 12 15 41 40 49 2000's 54 67 68 83 93 3 1 1 1 2010's 1 1 1 0 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Delivered

  1. Mississippi Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Mississippi Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.82 1.63 2.51 2.76 2.79 2.91 2000's 3.75 7.85 -- -- -- -- -- -- -- -- 2010's -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring

  2. Montana Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (Million Cubic Feet) Montana Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 1990's 0 2 2 4 6 8 13 40 31 38 2000's 43 53 54 66 74 4 2 1 1 1 2010's 1 0 1 1 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Delivered to

  3. Vehicles and Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    You could be stuck in a traffic jam even while surrounded by beautiful wilderness. Make smart driving choices to reduce your environmental impact and reduce your fuel use and ...

  4. Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure

    SciTech Connect (OSTI)

    Smith, M.; Gonzales, J.

    2014-09-01

    This document is designed to help fleets understand the cost factors associated with fueling infrastructure for compressed natural gas (CNG) vehicles. It provides estimated cost ranges for various sizes and types of CNG fueling stations and an overview of factors that contribute to the total cost of an installed station. The information presented is based on input from professionals in the natural gas industry who design, sell equipment for, and/or own and operate CNG stations.

  5. Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol

    Broader source: Energy.gov [DOE]

    Webinar slides from the U.S. Department of Energy Fuel Cell Technologies Office webinar, "Hydrogen Refueling Protocols," held February 22, 2013.

  6. Natural Gas Delivered to Consumers in Alabama (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 36,984 28,384 27,217 23,714 21,027 21,010 22,537 23,488 21,619 24,186 23,647 25,742 2002 36,559 33,467 32,355 26,061 23,580 27,901 29,889 30,615 26,781 22,744 22,838 31,044 2003 39,779 34,222 26,412 23,422 20,310 22,858 27,147 32,162 21,482 18,885 20,502 29,389 2004 38,499 36,343 31,829 27,460 26,994 26,923 32,691 29,710 24,787 23,688 22,042 29,661 2005 32,785 29,012 29,689 22,622 22,525 26,381 30,759 31,841

  7. Natural Gas Delivered to Consumers in Alaska (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 12,927 11,677 12,492 10,557 9,618 8,588 9,860 10,185 9,784 11,290 11,926 13,523 2002 12,414 11,258 11,090 10,310 10,076 11,260 10,510 9,907 9,717 10,827 10,291 11,621 2003 9,731 8,407 9,561 9,112 8,639 8,518 8,461 8,717 8,895 10,027 9,481 10,141 2004 12,414 10,221 10,996 9,967 9,462 9,831 9,829 8,537 9,512 9,377 9,374 11,436 2005 11,592 10,185 10,627 9,847 9,809 9,712 10,596 10,360 10,325 10,740 11,792 11,516 2006

  8. Natural Gas Delivered to Consumers in Arkansas (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 26,139 20,654 21,940 16,528 13,819 12,558 14,779 16,061 15,014 18,239 19,675 22,233 2002 24,431 24,940 22,284 19,166 15,635 16,964 18,741 17,700 16,789 16,932 17,770 21,567 2003 27,116 27,256 22,904 18,625 17,603 17,849 18,208 18,467 15,282 16,402 16,960 20,603 2004 24,746 25,909 21,663 16,382 15,991 14,085 14,456 14,551 11,956 14,094 13,138 18,337 2005 22,386 19,719 19,170 15,597 14,643 15,315 16,703 17,392

  9. Natural Gas Delivered to Consumers in Colorado (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 57,089 50,447 49,042 41,157 30,506 23,904 22,403 22,033 19,905 22,672 30,231 42,797 2002 47,541 44,713 45,909 30,319 24,230 22,105 26,301 21,119 21,764 34,563 38,884 46,826 2003 44,971 47,164 38,292 25,380 24,811 18,484 23,772 23,529 20,981 22,248 39,408 48,023 2004 47,548 44,859 30,853 28,458 23,766 20,408 22,895 21,210 20,651 26,731 39,719 50,977 2005 50,356 41,495 39,617 33,501 25,108 20,725 26,350 23,387

  10. Natural Gas Delivered to Consumers in Florida (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 34,086 30,338 35,463 39,708 42,466 46,947 53,430 53,352 55,306 52,955 42,205 47,598 2002 50,177 41,302 50,453 55,845 56,767 62,343 67,197 70,144 65,136 64,259 47,600 45,144 2003 53,384 43,538 54,761 51,487 62,575 58,312 64,041 61,764 62,150 59,558 56,488 50,525 2004 50,877 49,866 51,687 53,442 62,663 69,628 72,443 70,540 70,259 66,961 50,122 53,169 2005 59,417 49,956 60,238 55,269 64,436 69,719 90,376 84,114

  11. Natural Gas Delivered to Consumers in Georgia (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 49,414 34,292 35,867 25,368 20,633 20,544 24,229 26,863 21,857 25,679 23,983 34,450 2002 44,041 37,992 33,260 23,775 22,612 24,924 30,113 29,701 24,899 23,785 32,829 47,106 2003 56,470 43,704 31,355 30,232 21,920 20,512 23,789 26,828 21,628 22,981 26,920 45,508 2004 52,486 48,806 31,529 28,718 26,610 24,562 26,132 26,093 22,927 22,025 29,012 49,125 2005 47,756 39,503 39,085 25,191 23,198 26,957 31,619 33,089

  12. Natural Gas Delivered to Consumers in Hawaii (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 253 237 247 243 237 244 242 227 226 220 217 225 2002 236 226 225 234 226 224 239 222 224 215 227 236 2003 251 236 234 229 226 218 224 218 223 218 216 239 2004 243 230 239 240 221 235 229 222 226 221 230 236 2005 242 225 240 240 245 238 224 225 226 218 229 240 2006 241 226 242 237 239 235 229 222 233 223 223 231 2007 259 226 229 232 234 244 241 218 223 244 256 244 2008 245 237 235 238 225 233 238 211 211 206 204

  13. Natural Gas Delivered to Consumers in Idaho (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 9,061 8,656 6,890 5,799 4,539 3,728 4,106 4,145 4,609 5,611 7,528 8,984 2002 8,747 8,547 7,861 5,699 4,667 3,654 3,038 2,812 3,303 4,162 5,950 7,000 2003 7,519 7,632 7,150 5,498 4,487 3,443 4,268 3,399 3,902 3,977 6,312 7,657 2004 10,168 9,168 7,032 4,556 4,391 3,602 3,672 3,601 3,844 4,668 6,536 8,238 2005 9,355 8,465 6,757 6,168 3,946 3,381 3,511 3,614 3,733 4,635 6,142 9,403 2006 8,375 8,140 7,439 5,455 3,877

  14. Natural Gas Delivered to Consumers in Illinois (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 151,699 132,638 117,186 62,934 46,113 39,615 44,463 46,777 41,870 67,167 74,519 115,418 2002 131,434 119,430 122,242 93,668 61,529 49,664 60,624 51,277 43,656 70,127 100,944 131,720 2003 167,855 147,181 114,072 74,457 47,169 38,291 39,012 43,781 39,310 59,953 89,354 127,165 2004 163,310 135,906 102,899 68,328 47,779 40,404 40,176 39,133 37,585 53,947 80,742 131,346 2005 153,861 118,319 117,462 65,549 48,798 46,244

  15. Natural Gas Delivered to Consumers in Indiana (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 77,275 61,840 57,608 37,045 27,762 26,685 25,473 29,184 25,697 34,650 39,146 51,997 2002 65,893 58,962 58,569 44,882 32,659 27,696 30,899 30,668 28,357 37,204 49,556 68,056 2003 80,534 70,155 52,368 35,903 31,266 25,652 24,580 26,666 27,072 34,914 46,556 64,253 2004 80,680 70,341 53,056 37,842 30,840 25,006 25,592 27,498 26,658 33,102 43,630 65,054 2005 72,775 58,428 61,390 39,473 30,697 28,897 28,628 29,602

  16. Natural Gas Delivered to Consumers in Iowa (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 33,183 29,626 26,788 17,172 12,430 10,449 10,249 10,177 10,494 14,476 16,865 23,400 2002 28,527 25,072 25,693 18,706 13,413 10,076 9,731 9,815 10,403 14,561 22,219 27,225 2003 31,445 32,450 25,482 16,870 12,421 10,288 9,892 10,030 10,550 13,644 20,542 26,599 2004 32,639 30,955 23,081 15,569 11,543 10,481 9,546 10,080 10,193 14,132 20,759 27,591 2005 34,272 27,838 24,671 18,370 13,180 12,206 11,888 11,542 11,838

  17. Natural Gas Delivered to Consumers in Kentucky (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 31,659 23,182 21,670 14,953 9,527 8,890 9,668 9,881 10,024 12,591 16,271 23,216 2002 26,131 24,533 23,241 14,879 12,317 11,623 13,804 10,869 11,129 14,628 21,069 27,646 2003 34,776 29,032 20,580 14,017 10,797 9,334 9,467 10,296 10,390 13,196 16,933 27,218 2004 32,640 27,566 21,630 15,771 12,331 11,249 10,810 11,428 10,883 13,355 17,689 27,203 2005 29,373 24,036 24,578 15,557 13,614 13,693 12,658 14,134 12,122

  18. Natural Gas Delivered to Consumers in Louisiana (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 90,750 82,773 86,038 87,577 81,223 77,877 93,937 105,743 93,365 92,353 85,277 92,797 2002 102,807 96,945 102,315 94,281 91,511 97,058 107,870 109,348 97,986 94,054 96,857 102,289 2003 106,504 91,821 89,554 89,376 88,426 78,863 91,469 95,243 85,824 84,198 83,677 94,139 2004 101,114 98,005 96,851 86,763 89,143 89,075 96,344 98,583 93,156 94,397 89,577 99,046 2005 102,652 87,403 100,620 97,398 104,027 102,860 104,234

  19. Natural Gas Delivered to Consumers in Maine (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 6,537 6,903 6,950 5,791 7,780 6,957 8,161 9,020 8,835 8,864 9,644 9,127 2002 9,857 10,737 9,131 9,186 10,030 9,602 7,965 10,909 8,186 10,974 12,161 11,924 2003 8,047 5,034 5,581 5,924 4,577 4,916 6,000 5,629 5,606 6,652 5,970 6,036 2004 7,095 8,049 7,635 7,137 6,496 6,314 6,648 7,333 6,100 7,027 7,786 7,858 2005 5,882 5,823 5,955 5,764 4,162 5,163 5,883 6,097 4,936 4,955 4,236 2,234 2006 3,888 4,850 5,239 4,090

  20. Natural Gas Delivered to Consumers in Maryland (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 28,398 21,618 21,408 13,900 9,252 8,342 9,046 11,007 9,109 12,662 13,558 17,125 2002 24,221 22,802 20,670 12,534 8,846 8,846 10,514 12,842 10,157 12,911 20,408 28,827 2003 31,739 28,530 21,240 15,685 9,809 8,723 8,128 7,986 7,131 11,863 16,167 27,049 2004 33,576 27,062 20,558 14,623 9,867 8,560 7,704 8,271 7,535 11,725 16,222 26,279 2005 29,469 25,497 24,272 13,414 10,273 10,104 9,641 11,634 8,302 12,060 16,807

  1. Natural Gas Delivered to Consumers in Michigan (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 133,140 112,047 111,301 76,191 48,707 41,686 43,845 44,577 40,142 59,283 71,352 92,053 2002 119,902 108,891 104,208 87,138 63,810 52,457 51,899 47,094 40,938 53,419 82,015 114,268 2003 140,545 133,702 114,085 80,651 53,258 37,279 35,261 42,115 32,744 49,901 69,659 99,067 2004 137,906 127,671 102,442 76,978 54,610 41,310 38,001 37,565 37,285 48,239 71,870 107,025 2005 133,079 112,812 108,608 72,884 50,886 47,768

  2. Natural Gas Delivered to Consumers in Mississippi (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 26,479 16,635 19,646 21,739 20,948 20,348 30,696 31,715 28,537 28,525 24,653 28,356 2002 29,331 28,518 28,650 25,702 23,117 27,335 33,509 29,104 24,492 19,663 18,433 24,444 2003 29,743 24,826 20,395 19,195 18,492 16,946 17,613 19,394 16,780 14,228 16,133 21,577 2004 23,187 23,828 21,311 19,087 24,565 21,821 24,034 23,064 18,228 18,641 15,628 21,305 2005 23,881 20,984 23,827 18,047 21,247 24,690 29,577 32,966

  3. Natural Gas Delivered to Consumers in Missouri (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 51,986 40,694 34,239 22,717 13,209 12,679 16,175 16,218 12,056 13,682 18,230 29,876 2002 39,936 35,157 34,198 24,362 15,624 13,116 15,351 13,593 11,804 14,038 22,945 32,834 2003 42,257 42,379 33,569 21,083 13,307 10,498 12,889 15,215 9,788 10,817 17,229 30,354 2004 41,477 43,268 30,344 20,642 15,737 12,404 12,556 11,676 12,399 11,977 16,704 31,367 2005 42,227 35,965 31,014 19,890 15,686 13,519 13,855 14,649 12,548

  4. Natural Gas Delivered to Consumers in Montana (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 7,993 8,301 5,782 5,036 3,055 2,439 2,359 2,152 2,135 3,446 5,081 6,696 2002 7,738 6,859 7,247 5,853 4,084 2,965 2,265 2,298 2,711 4,300 5,929 6,147 2003 7,471 6,977 6,706 4,682 3,515 2,729 2,042 2,006 2,468 3,629 6,282 7,503 2004 8,787 6,926 5,508 3,906 3,279 2,725 2,154 2,098 2,533 3,912 5,268 6,895 2005 8,717 6,227 5,828 4,563 3,517 2,678 2,135 2,426 2,551 4,121 4,933 7,501 2006 7,064 7,060 7,344 4,972 3,562

  5. Natural Gas Delivered to Consumers in Nebraska (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 17,481 15,747 13,983 11,129 7,094 5,429 8,556 6,368 5,506 5,854 10,730 11,012 2002 16,123 14,049 12,938 10,424 6,676 4,984 8,748 7,414 6,786 6,218 9,753 13,269 2003 15,675 15,319 13,354 8,644 6,232 4,472 7,653 7,469 5,904 6,758 8,775 13,011 2004 16,104 16,445 12,058 7,983 6,255 5,830 6,952 6,641 4,338 5,935 8,995 13,129 2005 17,242 14,641 11,440 8,360 6,579 5,853 7,874 8,028 6,345 6,081 8,200 13,733 2006 15,551

  6. Natural Gas Delivered to Consumers in Nevada (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 19,952 19,433 17,795 12,312 12,723 11,650 12,329 14,023 12,067 12,854 12,525 17,842 2002 18,621 16,951 15,943 11,123 11,789 13,044 14,033 14,618 13,988 13,798 14,840 16,521 2003 17,053 15,548 15,238 12,410 12,410 13,355 17,113 17,666 15,088 14,301 14,598 18,798 2004 19,886 20,030 14,760 11,514 13,220 16,819 20,333 19,864 17,480 16,556 18,897 22,720 2005 23,220 21,494 17,907 16,239 13,790 15,823 20,156 20,490

  7. Natural Gas Delivered to Consumers in Oklahoma (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 45,337 36,026 35,468 29,023 26,153 28,194 41,056 38,697 30,910 29,194 26,719 33,193 2002 42,957 42,546 40,981 36,989 28,784 31,741 39,440 43,092 34,007 26,058 27,197 34,574 2003 44,633 43,363 39,395 32,941 30,147 32,417 46,076 47,914 30,139 28,937 26,588 39,627 2004 44,286 47,720 40,198 35,528 36,608 33,843 39,855 38,791 36,056 30,069 25,036 35,444 2005 42,941 41,516 38,987 36,599 35,972 45,327 48,696 49,698

  8. Natural Gas Delivered to Consumers in Oregon (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 21,689 25,019 21,080 18,224 15,822 14,891 14,036 15,541 15,102 16,822 18,239 22,097 2002 25,687 22,100 21,179 14,501 12,612 11,363 9,336 12,198 12,978 14,195 16,780 20,005 2003 23,496 19,260 18,102 13,784 12,066 11,146 16,560 16,275 17,015 16,463 19,222 21,940 2004 26,773 24,112 19,699 16,486 14,346 12,752 16,235 16,733 16,179 17,146 21,137 23,569 2005 25,874 23,392 21,951 20,274 11,452 11,481 14,502 16,348 15,706

  9. Natural Gas Delivered to Consumers in Pennsylvania (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 96,012 79,547 77,363 52,992 33,092 26,098 25,208 27,662 29,499 38,457 46,614 63,083 2002 80,458 74,651 70,773 53,368 38,209 33,401 32,700 34,743 30,425 40,462 58,542 83,877 2003 101,975 96,176 79,246 53,759 36,015 29,095 30,298 32,640 26,799 39,895 47,467 78,054 2004 100,298 95,715 73,189 54,937 42,873 33,367 36,047 33,735 32,060 34,578 50,908 74,224 2005 90,958 84,388 85,058 50,137 38,196 34,547 36,133 37,648

  10. Natural Gas Delivered to Consumers in Tennessee (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 43,045 30,197 26,202 21,053 13,399 12,059 12,967 13,230 11,569 16,135 19,011 23,239 2002 37,019 31,272 27,242 19,932 14,058 12,918 12,293 12,439 11,103 13,432 20,337 31,833 2003 37,778 37,692 27,915 18,989 14,580 13,392 11,615 12,627 12,016 13,775 16,202 27,807 2004 34,375 33,788 24,928 18,001 14,262 11,211 10,988 11,553 11,041 11,874 13,718 24,756 2005 30,997 29,214 25,561 19,122 13,849 11,579 11,055 13,522

  11. Natural Gas Delivered to Consumers in Utah (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 20,043 17,426 13,012 11,173 7,791 7,056 6,214 6,023 6,572 9,189 11,646 18,505 2002 19,727 17,659 15,165 8,453 7,113 5,260 5,915 6,481 7,591 11,589 13,814 16,447 2003 16,474 16,494 12,825 10,664 6,942 5,612 6,174 6,166 6,229 7,898 13,299 16,533 2004 21,414 17,627 10,247 9,033 6,775 5,344 6,398 5,617 6,456 8,714 13,097 17,058 2005 18,357 16,430 13,763 12,951 9,253 7,461 7,380 6,187 6,053 6,449 9,027 16,786 2006

  12. Natural Gas Delivered to Consumers in Vermont (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 1,164 1,003 1,084 834 544 381 304 307 361 438 658 827 2002 1,127 1,149 960 808 575 428 330 336 348 485 803 1,003 2003 1,153 1,191 1,062 906 539 367 293 312 325 502 708 1,029 2004 1,154 1,381 1,072 829 517 421 331 342 365 479 769 1,011 2005 1,211 1,280 1,199 776 558 404 310 298 295 418 666 943 2006 1,112 1,063 1,190 745 501 415 318 318 347 481 658 893 2007 1,104 1,375 1,250 915 536 382 340 331 342 423 696 1,158

  13. Natural Gas Delivered to Consumers in Virginia (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 34,325 27,001 23,081 15,728 11,714 10,937 14,866 15,873 15,145 14,257 21,748 23,733 2002 30,728 25,956 22,525 16,988 14,493 13,877 18,202 18,373 14,992 16,512 22,349 32,089 2003 39,589 32,153 25,608 18,114 15,312 12,832 14,519 15,084 11,238 15,259 21,050 32,921 2004 40,135 33,982 24,192 18,779 18,241 16,500 15,667 17,654 16,341 13,924 21,649 31,243 2005 37,448 31,508 31,147 18,853 12,905 18,009 23,552 25,949

  14. Natural Gas Delivered to Consumers in Washington (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 31,231 31,904 29,422 27,137 23,855 18,345 18,349 16,283 15,107 23,527 30,172 37,445 2002 29,531 27,361 27,117 20,531 15,439 11,596 10,256 11,367 12,459 15,045 20,551 25,818 2003 27,912 26,079 26,003 19,269 14,939 11,471 15,334 15,006 15,698 18,116 25,119 27,774 2004 33,107 29,246 23,696 18,926 15,242 11,848 16,510 17,954 16,165 18,170 24,172 28,231 2005 32,764 27,001 24,695 21,951 14,060 13,150 16,232 18,247

  15. Natural Gas Delivered to Consumers in Wisconsin (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 52,126 51,020 52,466 24,969 17,238 15,421 16,478 16,540 16,716 25,355 26,981 41,400 2002 49,850 43,815 48,646 31,946 24,278 16,100 16,531 15,795 16,659 28,429 39,330 49,912 2003 62,523 55,695 44,756 32,270 20,752 15,502 15,630 18,099 16,485 24,636 36,907 47,677 2004 65,038 48,498 41,599 27,544 21,106 15,420 15,949 14,951 16,063 23,268 33,602 56,693 2005 59,667 45,463 47,647 29,885 23,265 22,788 21,959 22,549

  16. Natural Gas Delivered to Consumers in Wyoming (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 7,475 6,484 5,643 5,505 4,182 3,864 3,515 3,541 3,688 4,790 5,518 6,170 2002 6,844 5,846 6,319 5,737 5,034 4,070 4,980 4,124 4,599 6,126 7,421 8,523 2003 7,672 7,313 7,026 5,737 4,976 4,408 4,112 4,164 4,356 5,062 5,554 7,236 2004 7,555 7,180 6,077 5,400 4,775 4,216 4,064 4,187 4,024 5,032 6,153 6,963 2005 7,585 6,443 6,231 5,612 5,092 4,247 4,081 3,903 4,080 4,829 5,360 7,262 2006 7,304 6,824 6,957 5,389 4,762

  17. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Alabama (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,434 3,514 3,395 2,369 1,720 1,215 1,673 1,117 1,189 1,382 1,955 3,507 1990 4,550 3,040 2,645 2,167 1,626 984 1,157 1,164 1,195 1,353 1,921 2,487 1991 3,334 3,576 2,761 1,886 1,332 1,149 1,128 1,052 1,093 1,311 2,120 2,968 1992 3,739 3,833 2,671 2,287 1,513 1,225 1,108 1,078 1,136 1,320 1,983 3,338 1993 3,532 3,599 3,655 2,569 1,551 1,179 1,084 1,070 1,111 1,259 2,073 3,041 1994 4,325

  18. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Alaska (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2,500 2,691 2,258 1,949 1,569 1,287 1,042 1,091 1,202 1,577 2,144 2,429 1990 2,447 2,584 2,429 1,809 1,456 1,134 1,061 1,077 1,148 1,554 2,106 2,818 1991 2,579 2,388 2,149 1,896 1,576 1,171 1,069 1,073 1,198 1,561 1,930 2,308 1992 2,414 2,372 2,319 1,935 1,597 1,206 1,084 1,013 1,252 1,790 1,928 2,390 1993 2,487 2,471 2,051 1,863 1,441 1,055 917 957 1,112 1,563 1,785 2,301 1994 2,367 2,156

  19. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Arizona (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,945 3,572 2,845 2,275 1,994 1,951 1,805 1,579 1,597 1,634 2,296 3,108 1990 3,706 3,577 3,165 2,338 2,174 1,854 1,686 1,580 1,610 1,555 2,018 3,139 1991 3,716 3,091 2,935 2,785 2,039 1,637 1,669 1,722 1,375 1,609 1,941 3,077 1992 3,647 3,011 2,898 2,352 1,620 1,754 1,690 1,505 1,601 1,580 1,858 3,573 1993 3,422 2,954 3,056 2,408 1,851 2,035 1,654 1,601 1,521 1,551 2,100 3,416 1994 3,689

  20. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Arkansas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,919 4,336 3,961 2,180 1,261 1,357 1,019 1,007 1,096 1,245 1,948 3,942 1990 4,957 3,368 2,807 2,223 1,398 1,065 1,030 1,043 1,081 1,260 1,948 2,949 1991 5,034 4,043 2,848 1,778 1,211 1,027 998 1,023 1,045 1,184 2,497 3,297 1992 4,159 3,861 2,708 2,114 1,358 1,108 1,062 1,022 1,029 1,219 2,078 3,596 1993 4,757 4,174 3,999 2,923 1,540 1,078 1,013 1,047 1,126 1,389 2,480 3,473 1994 5,101

  1. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Colorado (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 10,522 10,845 9,208 6,135 4,160 3,082 2,328 2,119 2,303 3,232 5,441 8,102 1990 10,718 9,546 8,633 6,902 5,116 3,122 2,167 2,127 2,069 2,918 5,301 7,682 1991 12,120 9,991 7,910 6,328 4,849 2,826 2,180 2,040 2,087 3,017 6,096 9,494 1992 10,794 9,450 7,609 5,965 3,631 3,055 2,430 2,183 2,312 3,078 5,594 10,319 1993 11,775 10,132 9,435 6,499 4,292 3,119 2,445 2,357 3,012 3,108 6,080 9,396

  2. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Connecticut (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,909 3,749 3,937 2,897 2,106 1,625 1,528 1,579 1,551 1,685 2,324 3,891 1990 4,318 3,869 3,369 3,009 1,743 1,483 1,358 1,315 1,352 1,603 2,456 3,534 1991 4,341 3,973 3,566 2,352 1,462 1,030 995 1,020 884 1,423 2,396 3,396 1992 4,417 4,374 3,940 2,941 1,779 1,149 1,046 1,061 1,075 1,562 2,623 3,871 1993 4,666 4,995 4,461 3,038 1,583 1,161 1,122 1,070 1,121 1,789 2,896 3,525 1994 5,882

  3. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Delaware (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 632 605 624 398 249 166 128 133 144 182 294 630 1990 784 530 530 419 239 174 139 138 136 163 309 480 1991 677 653 579 414 237 161 146 142 145 203 354 541 1992 744 755 686 537 308 198 166 152 162 240 395 622 1993 739 818 858 574 284 140 165 155 155 229 412 666 1994 945 1,076 856 510 259 209 157 156 172 221 345 554 1995 829 935 854 527 341 223 182 168 205 209 417 851 1996 1,099 1,181 885

  4. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Florida (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,493 3,435 3,545 3,083 2,670 2,570 2,525 2,369 2,484 2,444 2,868 3,620 1990 4,101 3,305 3,246 3,026 2,860 2,673 2,584 2,497 2,483 2,521 3,285 3,725 1991 3,875 3,770 3,782 3,363 2,978 2,674 2,845 2,708 2,998 2,798 3,519 3,954 1992 4,408 4,364 3,856 3,741 3,382 3,085 2,976 2,881 2,849 2,954 3,317 3,914 1993 3,951 4,078 4,088 3,871 3,362 3,085 2,919 2,830 2,887 2,983 3,336 3,760 1994 4,619

  5. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Georgia (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 7,127 7,499 5,163 3,921 2,982 2,340 2,411 2,360 2,589 3,475 4,834 8,389 1990 8,162 5,935 5,172 3,960 2,844 2,498 2,359 2,535 2,416 3,098 4,228 6,280 1991 7,680 6,782 5,905 3,348 2,820 2,387 2,381 2,482 2,346 3,082 5,153 6,670 1992 8,066 6,952 5,778 4,381 3,103 2,596 2,536 2,503 2,462 3,201 4,640 7,642 1993 7,627 7,915 7,796 4,837 3,069 2,544 2,570 2,481 2,440 3,312 5,214 7,719 1994 9,543

  6. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Hawaii (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 187 178 174 175 181 175 182 173 175 179 172 177 1990 190 188 188 180 181 188 195 180 180 183 184 185 1991 192 177 169 187 173 173 187 172 179 177 178 185 1992 190 180 174 183 177 184 174 173 178 168 178 184 1993 185 190 179 177 168 183 174 170 168 173 183 172 1994 195 176 190 185 181 184 177 178 184 177 189 185 1995 200 180 185 183 185 188 186 178 179 179 178 177 1996 200 192 184 190 172

  7. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Idaho (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 1,567 1,575 1,160 692 409 355 301 249 321 435 785 1,176 1990 1,313 1,283 1,000 610 479 389 293 280 292 459 822 1,315 1991 1,848 1,291 956 822 623 405 316 304 329 424 942 1,321 1992 1,543 1,167 834 643 447 343 345 330 369 465 889 1,557 1993 1,806 1,673 1,294 828 566 387 383 360 381 507 947 1,543 1994 1,510 1,457 1,121 771 480 377 374 306 357 571 1,098 1,667 1995 1,754 1,319 1,154 951 708 487

  8. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Illinois (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 27,838 29,591 25,963 15,899 9,308 5,975 5,445 4,862 6,177 11,093 20,173 33,847 1990 30,713 25,802 22,068 17,635 10,676 6,785 7,008 7,341 7,970 15,118 19,910 29,245 1991 35,376 26,327 22,768 13,059 8,214 5,162 6,031 5,693 7,979 11,574 23,098 28,563 1992 30,506 26,501 23,400 17,598 8,872 4,907 5,811 6,025 6,618 12,394 22,757 31,575 1993 33,166 29,686 27,677 17,598 7,744 5,101 5,879 5,644

  9. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Indiana (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 11,170 11,376 9,613 5,768 3,297 1,904 1,579 1,659 2,217 3,850 7,577 13,614 1990 11,991 9,374 7,958 6,087 3,191 1,963 1,658 1,860 1,991 4,087 6,640 10,462 1991 13,081 10,656 8,567 4,535 2,546 1,648 1,613 1,710 2,358 3,614 7,821 10,233 1992 12,060 10,265 8,437 6,172 3,400 2,004 1,811 1,955 2,131 4,253 8,135 12,097 1993 12,941 12,125 10,972 6,557 2,866 2,100 1,819 1,838 2,442 4,559 8,381

  10. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Iowa (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 7,372 7,466 6,928 4,133 2,216 1,380 1,190 1,234 1,247 179 3,738 7,110 1990 8,087 6,374 5,719 4,261 2,409 1,602 1,226 1,204 1,302 2,087 3,726 5,955 1991 9,237 6,828 5,412 3,305 1,993 1,308 1,090 1,198 1,308 2,482 5,287 7,167 1992 7,145 6,709 4,949 3,883 1,877 1,427 1,100 1,257 1,433 2,645 5,843 7,827 1993 8,688 7,779 6,773 4,316 2,029 1,481 1,214 1,214 1,637 2,869 5,694 6,642 1994 9,353 8,260

  11. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Kansas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 7,155 7,697 6,870 5,433 3,660 2,547 3,366 4,812 3,081 2,785 4,386 6,763 1990 8,061 6,230 5,114 4,800 3,112 2,848 4,906 4,462 3,836 2,893 3,877 5,907 1991 10,250 7,397 5,694 4,278 3,082 2,657 4,321 3,994 2,629 2,656 6,075 5,538 1992 6,844 5,862 4,372 4,571 3,736 2,814 3,609 3,462 3,132 3,162 4,867 7,543 1993 8,768 7,385 7,019 4,938 2,840 2,559 3,348 3,324 2,395 2,469 4,413 6,565 1994 8,139

  12. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Kentucky (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 5,139 5,507 4,546 2,840 1,766 1,167 1,099 991 1,147 954 3,327 6,648 1990 5,355 4,280 3,496 2,702 1,576 1,129 1,037 1,077 1,025 2,050 3,194 4,884 1991 6,313 5,098 3,647 1,925 1,198 1,029 941 991 1,338 1,862 4,197 5,161 1992 6,191 4,758 3,874 2,612 1,600 1,132 1,066 1,158 1,209 2,237 4,064 5,519 1993 5,878 5,863 5,207 2,934 1,330 1,449 1,029 1,060 1,220 2,417 3,997 5,433 1994 8,181 6,018

  13. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Louisiana (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,399 3,365 3,462 2,362 1,790 1,479 1,399 1,340 1,433 1,568 2,035 3,524 1990 4,528 2,757 2,490 2,135 1,628 1,499 1,361 1,238 1,275 1,487 2,082 2,491 1991 3,639 3,555 2,713 1,974 1,539 1,418 1,504 1,253 1,229 1,440 2,347 2,842 1992 4,060 4,003 2,743 2,367 1,769 1,564 1,556 1,431 1,508 1,577 2,295 3,574 1993 3,260 3,207 3,075 2,376 1,742 1,454 1,267 1,277 1,290 1,346 2,091 2,771 1994 3,925

  14. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Maine (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 229 226 221 160 106 63 51 50 60 96 128 269 1990 268 227 211 175 108 70 52 47 62 83 157 219 1991 282 265 236 180 101 73 65 65 59 103 152 278 1992 322 318 315 229 157 80 79 52 67 116 188 285 1993 356 364 291 192 107 80 71 67 77 166 224 316 1994 458 364 302 181 128 79 63 71 84 135 207 309 1995 350 373 288 211 128 77 70 71 86 129 254 389 1996 413 386 356 208 132 82 74 75 78 172 280 310 1997 433

  15. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Massachusetts (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 7,394 6,984 7,234 5,392 3,703 2,150 1,726 1,894 1,799 2,720 3,647 6,864 1990 8,247 6,548 6,367 5,235 3,381 2,491 2,009 2,040 1,906 2,416 4,275 5,704 1991 7,617 7,579 6,948 5,504 3,772 2,466 2,435 2,188 1,939 2,666 4,048 6,027 1992 8,184 8,736 8,217 7,049 4,450 2,768 3,072 2,884 2,753 3,776 5,530 6,933 1993 8,556 9,118 9,026 6,491 4,195 3,184 2,692 2,802 2,766 3,878 5,622 7,098 1994

  16. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Michigan (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 26,553 25,448 24,717 16,375 10,150 5,954 4,570 4,467 5,047 8,855 15,776 28,269 1990 26,939 22,780 20,870 15,431 9,230 5,638 4,610 4,865 5,117 8,592 14,122 21,237 1991 29,054 24,902 21,321 14,617 9,583 5,601 4,916 4,508 5,510 9,450 12,966 23,131 1992 26,677 24,979 22,443 17,769 10,406 5,883 4,981 4,964 5,431 9,760 16,298 24,211 1993 28,122 27,427 25,623 18,238 9,009 5,968 5,035 4,140 5,767

  17. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Minnesota (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 13,112 13,607 11,411 6,916 3,980 2,416 2,112 2,011 2,475 4,718 8,764 13,661 1990 12,696 11,412 9,846 6,734 4,032 2,369 2,100 2,060 2,342 4,865 7,491 12,066 1991 15,649 11,426 10,026 6,092 4,220 2,541 2,315 2,304 2,930 5,399 10,392 12,580 1992 13,000 11,075 10,134 7,517 3,602 2,467 2,244 2,296 2,631 5,092 9,526 12,795 1993 14,685 12,874 11,396 7,267 3,588 2,549 2,190 2,207 2,952 5,614

  18. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Mississippi (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2,372 2,502 2,411 1,407 947 739 718 701 754 939 1,350 2,727 1990 3,199 2,007 1,675 1,541 1,070 884 819 818 841 1,137 1,508 2,050 1991 2,704 2,572 1,977 1,291 901 875 806 834 865 989 1,721 2,208 1992 2,817 2,595 1,758 1,473 994 888 885 867 847 942 1,489 2,387 1993 2,663 2,583 2,559 1,756 1,108 925 904 864 843 985 1,710 2,298 1994 3,417 2,993 2,136 1,456 1,012 942 992 973 1,000 1,050

  19. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Missouri (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 10,118 10,280 9,192 5,246 2,799 2,359 1,829 1,780 2,021 2,798 4,716 9,903 1990 11,634 7,979 6,849 5,622 3,309 2,310 2,034 1,971 2,083 2,863 4,811 7,921 1991 12,748 9,932 7,479 4,261 2,760 2,181 1,853 1,896 2,056 2,689 6,471 8,864 1992 10,201 9,060 6,835 5,601 3,144 2,547 1,849 1,993 2,024 2,728 5,335 9,646 1993 12,062 10,467 10,336 6,750 3,580 2,266 2,066 1,959 2,222 2,864 5,974 9,124

  20. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Montana (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2,029 1,923 1,841 1,208 687 478 330 381 442 806 1,235 1,781 1990 1,912 1,705 1,402 998 766 487 323 348 347 782 1,206 1,889 1991 2,425 1,435 1,450 1,053 843 431 357 341 438 724 1,559 1,790 1992 1,726 1,464 1,099 930 568 377 365 331 523 810 1,271 2,095 1993 2,465 1,705 1,741 1,137 682 434 437 416 535 819 1,508 1,999 1994 1,844 1,936 1,465 1,100 699 452 362 348 423 860 1,447 2,043 1995 2,085

  1. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Nebraska (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 4,202 4,825 4,252 2,505 1,648 1,757 3,381 4,240 1,634 2,109 2,602 4,196 1990 4,765 4,019 3,355 2,799 1,480 1,325 4,837 2,596 2,333 2,334 2,552 4,094 1991 5,452 4,111 3,382 2,193 1,771 1,779 5,675 4,406 1,961 2,056 3,468 4,037 1992 4,332 3,760 2,970 2,411 1,781 1,330 2,366 2,393 1,710 2,508 3,988 4,941 1993 5,784 3,806 4,611 3,119 1,629 1,388 1,324 1,828 1,333 2,164 3,495 4,263 1994 5,469

  2. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Nevada (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2,156 2,125 1,533 1,100 1,004 890 790 805 811 954 1,257 1,690 1990 1,959 1,963 1,740 1,185 1,006 970 879 782 701 1,157 1,026 1,705 1991 2,447 1,839 1,739 1,593 1,333 1,121 947 1,005 761 1,104 1,095 1,976 1992 2,327 1,873 1,725 1,335 1,012 945 1,015 824 872 982 1,022 2,170 1993 2,271 2,110 2,016 1,314 1,341 1,052 919 939 909 1,047 1,421 2,211 1994 2,334 2,277 1,995 1,456 1,300 1,136 995 909

  3. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in New Hampshire (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 842 753 771 551 339 188 154 140 176 248 393 817 1990 899 803 618 518 307 221 153 153 170 265 380 585 1991 795 798 672 484 291 186 155 156 173 256 420 643 1992 911 931 762 629 376 208 179 169 174 295 515 715 1993 993 973 911 611 294 204 177 171 186 332 522 770 1994 1,261 1,097 863 581 347 229 173 166 206 305 442 743 1995 978 999 864 632 369 227 188 166 197 285 620 989 1996 1,163 1,129

  4. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in New York (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 25,565 24,630 25,344 18,494 12,079 8,747 8,382 8,305 8,812 11,741 16,631 27,650 1990 24,659 23,697 22,939 17,706 11,586 10,272 9,602 9,683 10,261 12,661 17,210 24,715 1991 28,442 25,685 23,462 17,684 11,669 9,641 10,331 9,764 9,195 11,571 17,033 25,121 1992 29,246 29,912 27,748 23,039 13,518 9,915 9,327 9,456 9,582 12,860 16,804 25,808 1993 28,857 29,740 28,926 20,266 11,667 11,221 10,477

  5. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in North Carolina (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 4,784 4,016 4,367 3,046 2,022 1,568 1,475 1,454 1,534 1,843 2,639 4,396 1990 5,379 3,690 3,400 2,747 1,820 1,445 1,394 1,480 1,596 1,795 2,715 3,817 1991 4,947 4,647 3,990 2,629 1,928 1,677 1,613 1,679 1,789 2,052 3,200 4,162 1992 5,169 5,066 3,983 3,296 2,205 1,733 1,591 1,607 1,679 2,138 3,010 4,941 1993 5,866 5,566 5,426 3,602 1,988 1,532 1,437 1,539 1,674 2,067 3,379 3,292 1994

  6. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in North Dakota (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 1,789 1,669 1,514 1,027 508 335 269 238 340 464 951 1,506 1990 1,666 1,457 1,243 1,048 616 383 315 298 370 561 916 1,363 1991 1,917 1,394 1,253 847 629 320 302 314 348 633 1,241 1,535 1992 1,489 1,380 1,082 937 529 298 279 262 363 576 1,015 1,549 1993 1,911 1,477 1,339 925 477 347 317 294 381 629 1,068 1,478 1994 2,016 1,812 1,339 932 526 302 284 288 315 530 1,241 1,198 1995 1,807

  7. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Ohio (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 23,636 24,435 21,187 13,360 8,237 3,927 3,565 3,735 4,397 8,946 15,949 30,143 1990 25,317 19,642 20,361 13,373 7,446 4,838 3,975 4,165 4,240 7,272 13,757 19,190 1991 26,286 24,481 20,157 11,779 6,341 3,971 3,703 3,933 4,196 8,065 15,488 21,940 1992 26,321 24,820 20,215 15,893 7,455 5,016 4,291 4,260 4,418 9,092 15,094 23,770 1993 25,230 26,706 25,531 15,019 6,359 5,221 3,939 3,860 4,492 9,636

  8. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Oklahoma (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 6,069 7,033 6,197 2,868 1,601 1,279 1,180 1,097 1,241 1,528 2,542 5,873 1990 7,587 5,618 4,176 3,424 2,281 1,519 1,312 1,355 1,235 1,613 2,520 4,567 1991 8,702 6,014 4,265 2,489 1,702 1,330 1,290 1,279 1,299 1,590 3,974 5,653 1992 6,180 5,310 3,653 2,956 1,785 1,540 1,407 1,292 1,240 1,449 2,608 5,771 1993 7,076 6,147 5,910 3,743 2,057 1,439 1,324 1,432 1,345 1,544 3,424 5,327 1994 6,644

  9. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Oregon (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2,884 3,283 2,761 1,724 1,140 989 823 804 882 972 1,624 2,363 1990 2,984 3,031 2,562 1,550 1,268 1,157 821 769 823 1,050 1,697 2,737 1991 4,074 2,764 2,407 2,048 1,610 1,274 902 812 855 927 1,898 2,758 1992 3,231 2,465 1,925 1,542 1,171 884 784 782 863 1,105 1,652 3,166 1993 4,148 3,370 2,880 1,927 1,448 1,010 915 840 934 1,099 1,918 3,557 1994 3,388 3,166 2,480 1,836 1,234 1,078 865 801

  10. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Rhode Island (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 1,032 979 1,003 855 565 457 471 518 560 657 654 1,014 1990 1,195 903 893 857 577 244 413 365 508 587 763 774 1991 1,089 979 864 605 667 414 538 540 555 628 496 895 1992 1,076 1,128 1,103 1,047 676 498 448 479 411 609 654 951 1993 1,140 1,359 1,325 907 429 330 273 364 243 503 1,008 1,324 1994 1,919 1,974 1,626 1,092 653 542 343 599 384 569 1,010 1,338 1995 1,077 1,679 1,883 1,353 901

  11. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in South Carolina (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2,176 1,936 2,098 1,489 1,094 891 908 808 866 970 1,324 1,964 1990 2,455 1,649 1,576 1,262 1,040 846 836 830 872 965 1,315 1,749 1991 2,199 2,076 1,746 1,143 908 818 810 859 875 952 1,492 1,917 1992 2,276 2,158 1,745 1,436 1,068 944 820 882 875 1,006 1,345 2,089 1993 2,268 2,155 2,200 1,507 1,007 877 832 840 846 947 1,463 2,070 1994 2,845 2,472 1,910 1,174 1,027 1,342 913 949 947

  12. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in South Dakota (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 1,339 1,454 1,253 776 413 276 203 197 255 434 851 1,374 1990 1,398 1,234 1,064 769 537 306 230 223 239 459 825 1,269 1991 1,723 1,243 1,076 713 543 303 263 251 309 588 1,176 1,286 1992 1,314 1,174 1,007 828 460 303 291 284 324 558 1,104 1,476 1993 1,847 1,496 1,344 995 531 342 315 291 392 632 1,083 1,429 1994 1,738 1,695 1,285 846 524 347 239 322 329 531 946 1,472 1995 1,619 1,491

  13. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Tennessee (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 6,960 6,840 6,382 4,054 2,529 1,916 1,802 1,659 1,843 2,355 3,769 7,404 1990 8,672 5,800 4,578 3,811 2,474 1,988 1,652 1,791 1,597 2,276 3,426 5,490 1991 7,499 7,400 5,761 3,131 2,231 1,829 1,640 1,708 1,837 2,454 4,304 6,158 1992 7,343 6,834 5,069 4,205 2,436 2,016 1,838 1,681 1,933 2,368 3,963 6,846 1993 7,296 7,526 7,354 4,605 2,613 1,992 1,884 1,811 1,992 2,565 4,648 6,470 1994 9,690

  14. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Texas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 21,163 22,930 20,215 15,779 11,310 10,731 12,786 11,350 9,367 10,345 12,823 23,871 1990 21,376 16,323 17,118 14,054 12,299 14,204 14,184 11,592 9,448 9,571 12,192 19,981 1991 26,377 18,723 16,796 15,181 11,439 10,763 12,769 11,125 8,843 11,156 17,192 20,608 1992 22,907 19,049 15,866 14,174 12,557 10,879 13,768 12,966 11,356 11,672 17,386 22,093 1993 21,489 18,444 16,162 14,455 12,175 12,943

  15. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Utah (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,283 3,376 2,280 1,227 653 472 357 346 390 522 1,313 2,304 1990 2,864 2,779 2,272 1,203 860 581 373 364 374 629 1,382 2,540 1991 4,055 3,108 2,282 1,771 1,316 668 405 375 407 551 1,634 2,704 1992 3,330 2,952 1,866 1,155 642 457 410 372 405 545 1,329 3,120 1993 3,922 3,682 2,988 1,839 1,248 707 597 594 606 946 2,023 3,436 1994 3,929 3,846 2,665 2,037 962 814 820 787 882 1,883 3,542 4,335 1995

  16. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Vermont (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 315 300 283 199 105 66 57 57 73 130 189 307 1990 338 288 269 196 116 68 46 62 84 127 195 261 1991 335 311 259 187 105 61 55 58 82 133 188 284 1992 366 354 320 231 118 75 79 75 77 144 211 269 1993 347 368 350 199 124 80 62 67 83 143 235 324 1994 476 455 341 269 150 90 65 69 88 144 187 334 1995 388 406 352 277 140 89 70 72 95 130 242 410 1996 458 445 381 279 153 97 67 69 90 162 276 348 1997

  17. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Virginia (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 6,164 6,056 5,721 4,051 2,446 2,129 1,866 1,485 1,985 2,192 3,612 6,474 1990 6,162 5,181 5,100 4,541 2,412 1,831 1,802 1,772 1,671 2,233 3,251 5,081 1991 6,667 5,956 5,270 3,581 2,481 2,159 1,867 2,057 1,860 2,625 3,855 5,701 1992 7,072 6,690 5,985 4,523 3,289 2,271 2,085 2,055 1,903 3,275 4,714 6,895 1993 7,432 7,800 7,347 4,850 2,842 2,177 1,987 2,033 2,106 3,073 4,355 6,877 1994 8,677

  18. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Washington (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 5,343 5,561 5,424 3,672 2,194 1,851 1,671 1,548 1,357 2,083 3,366 4,433 1990 5,136 5,666 4,496 3,289 2,728 1,951 1,639 1,476 1,575 2,249 3,444 5,071 1991 6,279 5,277 4,597 4,047 3,025 2,400 1,831 1,635 1,689 2,099 3,802 5,057 1992 5,564 4,840 3,855 3,179 2,343 1,830 1,575 1,514 1,734 2,240 3,418 5,709 1993 7,058 5,670 5,157 3,785 2,774 1,905 1,801 1,750 1,829 2,236 3,639 6,016 1994

  19. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in West Virginia (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,177 3,265 2,807 2,041 1,476 881 785 853 859 1,373 2,036 3,704 1990 3,701 2,707 2,391 2,064 1,224 924 889 845 862 1,237 1,963 2,585 1991 3,061 2,971 2,522 1,725 1,068 810 848 823 915 1,365 2,169 2,767 1992 3,659 3,565 2,986 2,322 1,341 999 812 855 910 1,482 2,092 3,396 1993 3,123 3,522 3,444 2,169 1,218 992 818 914 983 1,510 2,404 3,286 1994 4,653 3,681 3,246 2,031 1,437 982 812 973

  20. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Wisconsin (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 10,596 10,988 10,169 6,662 3,882 2,012 1,562 1,499 1,718 3,437 6,386 11,183 1990 11,878 9,411 8,746 5,436 3,701 2,130 1,686 1,617 1,786 3,865 6,030 10,074 1991 13,062 10,137 8,785 5,471 3,084 1,643 1,853 1,415 2,229 4,335 8,565 10,938 1992 11,235 10,037 9,113 6,870 3,632 1,986 1,759 1,615 1,954 4,108 7,918 11,087 1993 12,658 11,647 10,442 7,011 3,438 2,418 1,843 1,719 2,326 4,637 7,976

  1. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Wyoming (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 1,357 1,414 1,111 852 521 368 285 233 268 396 724 1,022 1990 1,305 1,199 1,085 822 628 410 247 234 241 378 759 1,132 1991 1,639 1,249 996 830 680 362 272 248 269 449 873 1,233 1992 1,404 1,078 821 668 438 309 264 269 287 439 760 1,271 1993 1,631 1,376 1,262 882 639 400 362 389 378 667 874 1,407 1994 1,351 1,412 1,065 869 544 369 291 270 308 550 915 1,287 1995 1,671 1,247 1,217 987 873 594

  2. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in the District of Columbia (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2,133 2,021 2,066 1,635 999 803 692 763 712 775 1,090 2,052 1990 1,986 1,857 1,789 1,384 951 699 514 572 721 574 836 1,589 1991 2,204 2,308 2,131 1,381 1,063 784 705 794 689 658 1,071 1,764 1992 2,300 2,256 2,132 1,774 1,056 764 718 673 653 753 1,103 1,921 1993 2,352 2,438 2,166 1,550 1,150 731 664 703 684 841 1,040 1,909 1994 2,303 1,865 1,483 1,588 979 815 753 692 740

  3. Natural Gas Delivered to Consumers in Alabama (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 293,981 299,146 299,872 2000's 315,202 299,631 343,913 316,665 350,734 323,143 358,141 385,209 369,750 418,677 2010's 496,051 558,116 622,359 573,981 599,473 640,70

  4. Natural Gas Delivered to Consumers in Alaska (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 149,171 147,435 150,062 2000's 150,745 132,441 129,292 109,707 120,974 127,140 113,933 99,281 87,677 81,335 2010's 80,794 88,178 87,404 75,926 70,960 70,027

  5. Natural Gas Delivered to Consumers in Arkansas (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 241,664 247,908 241,648 2000's 240,672 217,765 233,046 237,428 205,480 202,946 221,378 214,298 221,983 230,488 2010's 256,102 266,194 278,304 263,281 249,549 270,209

  6. Natural Gas Delivered to Consumers in California (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2,049,536 2,228,414 2,264,158 2000's 2,434,770 2,400,993 2,218,923 2,218,715 2,353,823 2,196,741 2,248,988 2,327,205 2,330,514 2,256,380 2010's 2,196,086 2,096,279 2,337,017 2,352,421 2,265,431 2,257,216

  7. Natural Gas Delivered to Consumers in Colorado (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 272,530 289,945 288,147 2000's 321,784 412,773 404,873 377,794 378,894 405,509 383,452 435,360 426,034 420,500 2010's 396,083 345,663 327,108 361,779 367,021 NA

  8. Natural Gas Delivered to Consumers in Delaware (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 46,499 40,794 55,968 2000's 48,325 50,090 52,167 46,143 48,019 46,863 43,172 48,139 48,144 50,126 2010's 54,685 79,251 100,630 95,008 99,736 99,543

  9. Natural Gas Delivered to Consumers in Georgia (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 363,402 360,973 328,730 2000's 408,209 343,698 375,567 372,492 388,751 406,852 414,377 435,919 419,057 456,082 2010's 521,557 512,466 605,262 617,310 645,253 683,796

  10. Natural Gas Delivered to Consumers in Hawaii (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2,894 2,654 3,115 2000's 2,841 2,818 2,734 2,732 2,772 2,793 2,782 2,848 2,700 2,605 2010's 2,625 2,616 2,687 2,853 2,927 2,929

  11. Natural Gas Delivered to Consumers in Idaho (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 63,483 63,781 66,160 2000's 66,758 73,723 65,510 65,329 69,572 69,202 69,202 74,395 81,646 78,166 2010's 75,647 77,343 83,274 98,843 87,647 98,782

  12. Natural Gas Delivered to Consumers in Illinois (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1,062,536 944,170 992,865 2000's 1,017,283 940,691 1,036,615 987,964 941,964 958,727 883,080 954,100 987,137 931,329 2010's 942,205 960,018 910,611 1,024,851 1,062,377 NA

  13. Natural Gas Delivered to Consumers in Indiana (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 545,839 514,407 549,639 2000's 564,919 494,706 533,754 520,352 519,785 524,415 489,881 528,655 544,202 500,135 2010's 564,904 619,977 642,209 664,817 703,637 712,946

  14. Natural Gas Delivered to Consumers in Iowa (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 243,181 223,287 222,943 2000's 224,299 215,348 215,482 220,263 216,625 229,717 225,929 280,954 311,672 301,340 2010's 300,033 296,098 285,038 314,742 317,784 NA

  15. Natural Gas Delivered to Consumers in Kansas (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 252,275 259,783 240,248 2000's 253,037 224,367 239,449 227,436 213,122 206,537 217,981 246,094 244,181 243,199 2010's 235,316 241,473 223,188 241,292 246,547 NA

  16. Natural Gas Delivered to Consumers in Louisiana (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1,361,995 1,313,827 1,267,668 2000's 1,286,353 1,069,808 1,193,418 1,079,213 1,132,186 1,121,178 1,074,563 1,124,310 1,089,351 1,044,149 2010's 1,207,599 1,244,752 1,336,521 1,267,795 1,325,708 1,361,733

  17. Natural Gas Delivered to Consumers in Maine (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 6,290 5,716 6,572 2000's 43,971 94,569 100,659 69,973 85,478 61,088 63,541 62,430 69,202 69,497 2010's 75,821 69,291 67,504 63,247 59,362

  18. Natural Gas Delivered to Consumers in Maryland (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 208,890 185,583 193,142 2000's 208,894 175,611 193,766 194,280 192,242 200,336 179,949 198,715 193,613 193,988 2010's 205,688 187,921 201,550 193,232 201,199 205,407

  19. Natural Gas Delivered to Consumers in Michigan (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 958,506 846,478 919,922 2000's 926,633 874,578 926,299 888,584 881,257 875,492 767,509 762,502 748,655 703,346 2010's 713,533 745,769 761,544 787,603 824,527 NA

  20. Natural Gas Delivered to Consumers in Mississippi (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 206,845 201,303 271,218 2000's 266,008 298,296 312,317 235,345 254,727 274,431 278,563 328,487 316,214 325,132 2010's 399,073 401,561 440,741 393,161 390,396 NA

  1. Natural Gas Delivered to Consumers in Missouri (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 275,838 253,157 259,054 2000's 277,206 281,875 273,073 259,526 260,708 265,485 250,290 269,825 288,847 260,976 2010's 274,361 265,534 250,902 271,341 290,421 271,116

  2. Natural Gas Delivered to Consumers in Montana (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 54,138 54,093 55,129 2000's 57,725 54,529 58,451 56,074 54,066 55,200 60,602 60,869 64,240 66,613 2010's 60,517 68,113 61,963 68,410 71,435 NA

  3. Natural Gas Delivered to Consumers in Nebraska (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 128,092 127,840 118,536 2000's 123,791 118,933 117,427 113,320 110,725 114,402 125,202 145,253 160,685 156,161 2010's 161,284 162,219 150,961 166,233 165,620 149,107

  4. Natural Gas Delivered to Consumers in Nevada (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 131,463 147,747 153,880 2000's 188,288 175,966 175,739 184,152 212,723 224,919 246,865 251,425 261,579 272,543 2010's 256,256 245,807 267,242 268,008 247,182 NA

  5. Natural Gas Delivered to Consumers in Ohio (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 877,039 792,617 823,448 2000's 871,444 787,719 813,735 832,563 812,084 811,759 729,264 791,733 780,187 723,471 2010's 767,704 808,509 832,437 901,087 982,855 949,865

  6. Natural Gas Delivered to Consumers in Oklahoma (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 459,508 490,070 456,573 2000's 450,596 400,740 429,152 443,139 444,514 487,723 528,236 563,474 590,997 566,176 2010's 582,389 559,215 587,287 539,056 508,363 544,200

  7. Natural Gas Delivered to Consumers in Oregon (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 172,588 216,058 224,767 2000's 213,063 218,632 193,006 205,415 225,263 225,277 214,346 242,371 261,105 240,765 2010's 232,900 194,336 211,232 236,276 216,365 233,523

  8. Natural Gas Delivered to Consumers in Pennsylvania (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 664,782 609,779 648,194 2000's 659,042 596,041 632,035 651,938 662,513 656,097 625,944 711,945 705,284 755,938 2010's 811,209 866,775 918,490 959,041 1,042,647 1,078,193

  9. Natural Gas Delivered to Consumers in Tennessee (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 259,790 262,598 263,607 2000's 256,821 242,184 243,955 244,484 220,602 221,088 212,864 211,020 219,535 204,990 2010's 247,000 252,200 266,762 272,304 297,814 306,194

  10. Natural Gas Delivered to Consumers in Texas (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3,732,807 3,809,430 3,658,039 2000's 4,073,007 3,917,933 3,966,512 3,747,467 3,595,474 3,154,632 3,068,002 3,133,456 3,128,339 2,947,542 2010's 3,185,011 3,305,730 3,377,217 3,350,645 3,415,789 3,589,916

  11. Natural Gas Delivered to Consumers in Utah (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 137,700 139,522 133,518 2000's 137,213 135,123 135,699 125,899 128,441 130,286 152,283 183,237 192,281 182,187 2010's 185,228 184,581 178,941 199,684 198,278 187,452

  12. Natural Gas Delivered to Consumers in Vermont (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 8,052 7,726 8,025 2000's 10,411 7,906 8,353 8,386 8,672 8,358 8,041 8,851 8,609 8,621 2010's 8,428 8,558 8,077 9,512 10,554 11,766

  13. Natural Gas Delivered to Consumers in Virginia (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 240,244 252,233 267,269 2000's 258,975 228,670 247,351 254,008 268,674 292,043 264,954 309,866 286,497 304,266 2010's 359,208 352,281 392,255 401,623 404,939 NA

  14. Natural Gas Delivered to Consumers in Washington (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 247,530 281,143 279,656 2000's 280,617 303,060 227,360 243,072 253,663 256,580 256,842 265,211 291,535 302,930 2010's 278,139 257,945 255,356 308,148 298,088 NA

  15. Natural Gas Delivered to Consumers in Wisconsin (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 396,107 363,738 376,409 2000's 389,543 356,915 381,498 391,185 380,014 406,550 369,353 395,519 406,723 385,418 2010's 369,924 391,128 400,876 439,741 458,999 454,45

  16. Natural Gas Delivered to Consumers in Wyoming (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 70,792 77,652 60,593 2000's 63,384 60,385 69,633 67,627 65,639 64,753 65,487 67,693 66,472 61,774 2010's 67,736 70,862 73,690 74,597 73,096 72,765

  17. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Alabama (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 30,401 34,749 37,275 1970's 36,254 36,657 37,389 33,126 35,349 33,439 34,450 34,303 29,649 36,717 1980's 28,525 26,860 25,876 26,665 27,567 25,836 25,128 22,384 25,562 26,469 1990's 24,287 23,711 25,232 25,723 25,526 26,228 29,000 32,360 25,705 27,581 2000's 25,580 26,391 25,011 25,356 26,456 25,046 24,396 23,420 25,217 24,293 2010's 27,071 25,144 21,551 25,324

  18. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Alaska (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,722 4,713 11,018 1970's 12,519 14,256 16,011 12,277 13,106 14,415 14,191 14,564 15,208 15,862 1980's 16,513 16,149 24,232 24,693 24,654 20,344 20,874 20,224 20,842 21,738 1990's 21,622 20,897 21,299 20,003 20,698 24,979 27,315 26,908 27,079 27,667 2000's 26,485 15,849 15,691 17,270 18,373 16,903 18,544 18,756 17,025 16,620 2010's 15,920 19,399 19,898 18,694

  19. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Arkansas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 35,295 37,886 39,962 1970's 39,169 30,832 32,457 33,789 31,040 33,291 34,011 33,913 34,612 33,442 1980's 30,690 28,282 29,438 27,739 28,995 26,731 24,949 24,603 27,457 27,271 1990's 25,129 25,986 25,314 28,998 27,407 27,409 31,006 29,441 28,062 27,898 2000's 33,180 32,031 32,928 31,746 29,821 31,521 31,286 32,187 36,924 36,373 2010's 40,232 39,986 41,435 47,636

  20. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in California (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 184,630 189,903 206,861 1970's 209,945 239,685 231,536 232,774 228,988 240,239 219,840 227,543 221,441 258,490 1980's 258,151 236,910 236,202 215,918 191,838 205,044 182,794 212,904 248,397 259,118 1990's 285,090 287,608 285,008 250,283 261,989 278,761 235,068 253,923 282,153 244,701 2000's 246,439 245,795 238,308 232,912 231,597 233,082 244,432 251,024 251,045

  1. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Colorado (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 39,942 47,287 52,256 1970's 59,081 62,805 63,154 69,844 68,322 76,288 75,959 72,597 71,422 74,831 1980's 66,952 58,913 66,991 64,615 71,890 68,975 61,620 64,355 68,515 67,477 1990's 66,290 68,938 66,420 71,647 65,870 66,639 68,914 69,074 63,132 59,346 2000's 60,874 65,011 66,939 62,616 61,956 62,099 59,851 63,231 65,806 62,441 2010's 57,658 55,843 51,795 58,787

  2. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Delaware (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,968 2,084 2,526 1970's 2,804 3,010 3,205 3,093 3,169 2,964 3,078 2,815 3,005 2,842 1980's 3,246 3,783 3,577 3,428 3,827 3,412 3,514 3,741 4,041 4,184 1990's 4,042 4,253 4,965 5,195 5,459 5,743 6,694 6,608 5,590 6,119 2000's 5,125 5,680 7,477 8,437 8,465 8,383 8,134 8,628 8,868 11,684 2010's 12,193 10,478 10,034 11,170 11,882 11,189

  3. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Florida (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 22,501 21,890 24,721 1970's 26,914 25,478 23,243 24,315 22,527 31,745 39,681 41,236 35,386 36,638 1980's 30,182 33,702 29,788 29,228 30,481 30,674 35,829 37,492 37,834 35,105 1990's 36,306 39,264 41,727 41,151 39,935 40,383 41,810 36,700 37,659 36,269 2000's 47,904 49,286 55,803 54,283 56,321 57,690 50,625 51,097 50,901 50,371 2010's 54,065 53,532 54,659 59,971

  4. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Georgia (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 30,202 36,034 39,020 1970's 38,726 41,881 44,992 47,253 44,317 49,438 46,351 55,268 60,266 62,437 1980's 58,763 57,139 54,718 56,280 55,909 51,519 50,405 54,592 55,963 53,089 1990's 49,486 51,036 53,861 57,525 54,051 56,536 61,377 57,220 55,419 43,581 2000's 58,793 50,645 48,631 50,273 55,047 52,902 48,137 48,591 51,518 53,627 2010's 60,153 56,602 51,918 57,195

  5. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Hawaii (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,715 1,610 1,607 1,548 1,328 1,858 1,883 2,019 2,049 2,129 1990's 2,223 2,148 2,144 2,123 2,200 2,199 2,132 1,751 1,747 1,749 2000's 1,771 1,749 1,720 1,751 1,803 1,838 1,813 1,836 1,769 1,752 2010's 1,777 1,768 1,850 1,873 1,931 1,908

  6. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Idaho (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 4,972 6,374 6,613 1970's 5,851 8,232 10,712 9,387 8,040 12,177 8,742 8,405 5,503 6,923 1980's 5,756 5,422 5,729 5,758 8,493 8,999 8,543 7,618 8,252 9,024 1990's 8,535 9,582 8,932 10,675 10,088 10,360 11,506 11,433 11,676 12,618 2000's 13,414 13,623 13,592 12,019 12,995 13,231 13,573 14,274 16,333 15,740 2010's 15,033 16,855 15,838 18,485 16,963 16,171

  7. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Illinois (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 175,281 174,565 189,006 1970's 193,434 210,424 224,488 218,530 216,114 215,718 246,659 243,686 251,895 237,199 1980's 228,178 223,427 218,751 204,834 232,170 213,528 204,979 191,047 215,257 196,171 1990's 200,267 193,844 196,964 203,157 197,558 203,802 218,054 202,850 174,687 188,520 2000's 201,768 189,160 204,570 211,710 204,039 201,882 196,361 203,368 222,382

  8. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Kansas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 37,141 46,232 54,062 1970's 52,632 56,246 61,286 52,674 53,461 51,705 57,310 51,815 64,532 60,931 1980's 58,880 52,036 55,470 52,535 57,516 56,522 55,730 53,609 61,120 58,554 1990's 56,045 58,571 53,973 56,023 52,253 53,122 57,229 41,482 41,788 38,952 2000's 40,297 37,560 38,802 37,781 36,779 29,616 27,505 30,546 33,531 32,512 2010's 31,799 32,117 25,452 33,198

  9. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Louisiana (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 51,062 56,937 54,010 1970's 70,321 67,515 66,331 59,518 58,097 50,662 43,567 44,563 65,300 115,743 1980's 39,996 39,507 33,729 34,906 33,088 30,228 27,985 27,845 27,475 27,156 1990's 24,937 25,452 28,445 25,157 24,184 23,833 25,746 25,613 24,042 24,559 2000's 25,687 24,604 25,540 25,161 24,700 25,085 22,240 23,863 22,869 23,672 2010's 27,009 25,925 26,294 28,875

  10. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Maine (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,961 1,672 2,338 1970's 3,220 3,604 3,678 3,323 3,441 3,894 3,814 3,846 4,467 5,023 1980's 864 1,043 1,192 1,124 1,124 1,139 1,214 1,250 1,461 1,660 1990's 1,678 1,860 2,209 2,311 2,381 2,426 2,566 2,713 2,456 2,547 2000's 2,770 2,642 5,167 4,781 4,811 4,792 4,701 5,749 5,878 5,541 2010's 5,830 6,593 7,313 8,146 9,030 9,795

  11. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Maryland (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 28,154 30,419 34,674 1970's 37,529 40,988 43,950 42,953 43,080 37,466 42,422 40,532 39,821 47,326 1980's 28,576 32,055 30,871 30,758 25,299 24,134 23,816 25,544 25,879 26,920 1990's 24,051 38,117 42,464 43,635 44,136 46,874 45,842 49,802 57,370 58,103 2000's 55,669 59,802 63,999 70,557 70,195 69,718 62,868 70,852 70,411 69,119 2010's 67,555 67,505 64,146 71,145

  12. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Massachusetts (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 24,737 25,396 29,821 1970's 35,356 36,994 36,778 39,288 37,384 37,812 37,763 40,598 45,657 46,701 1980's 53,462 50,131 61,286 39,640 41,271 41,382 43,661 46,522 48,915 51,508 1990's 50,618 53,188 64,352 65,429 84,534 82,270 96,187 105,813 90,092 65,136 2000's 63,793 61,677 64,763 62,590 56,879 56,665 52,283 61,504 72,303 71,546 2010's 72,053 81,068 73,040

  13. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Michigan (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 107,796 117,124 130,062 1970's 132,708 146,217 159,970 180,274 189,192 181,949 178,220 131,266 142,935 182,316 1980's 190,268 174,722 170,269 159,916 160,952 157,758 135,592 185,956 167,900 176,182 1990's 159,429 165,558 173,802 180,230 183,068 194,078 201,390 192,258 163,368 179,351 2000's 186,800 173,734 176,010 186,129 175,190 174,625 153,896 163,740 172,108

  14. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Mississippi (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 16,547 18,297 17,667 1970's 23,846 25,853 24,604 23,701 25,504 23,922 20,214 19,304 21,312 27,224 1980's 20,886 19,267 17,213 17,158 17,860 16,591 16,891 17,922 18,108 17,568 1990's 17,548 17,743 17,942 19,199 19,232 19,904 22,225 22,070 21,358 20,208 2000's 21,673 21,585 21,221 22,933 22,130 20,882 19,425 20,774 20,181 19,095 2010's 21,179 20,247 17,834

  15. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Missouri (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 82,524 79,821 79,019 1970's 87,644 89,534 97,506 91,038 90,291 90,719 98,435 93,323 98,680 94,629 1980's 76,054 68,455 69,913 66,106 67,218 60,345 61,890 58,205 63,839 63,039 1990's 59,387 63,191 60,963 69,670 66,196 65,086 72,802 69,829 61,995 63,100 2000's 62,673 64,924 61,897 61,516 61,755 60,369 56,722 59,224 64,993 61,433 2010's 61,194 62,304 54,736 64,522

  16. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Montana (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 15,516 13,651 16,593 1970's 18,564 18,109 19,151 19,143 16,602 18,654 17,831 16,706 17,766 17,396 1980's 14,265 13,725 15,987 13,534 14,256 14,820 12,536 10,989 12,041 13,141 1990's 12,164 12,846 11,557 13,880 12,981 13,489 14,823 13,911 12,952 12,088 2000's 13,533 13,245 14,704 15,119 13,407 13,136 13,181 13,223 14,340 23,575 2010's 20,459 22,336 19,205 20,971

  17. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Nebraska (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 41,443 41,765 46,041 1970's 46,824 47,261 45,518 38,690 42,298 43,117 48,713 46,989 40,736 43,507 1980's 43,356 40,612 43,022 39,055 41,900 39,404 36,357 34,205 39,388 37,351 1990's 36,489 40,291 34,490 34,745 38,946 40,044 40,833 33,853 28,911 27,586 2000's 28,907 27,792 28,185 28,368 29,858 27,401 28,087 30,067 34,813 31,790 2010's 31,993 32,115 26,503 32,214

  18. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Nevada (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 6,164 6,997 8,204 1970's 9,633 11,014 12,755 13,144 14,078 14,965 18,389 17,436 19,940 19,638 1980's 10,207 8,294 8,449 11,758 12,012 12,232 11,451 13,747 14,879 15,116 1990's 15,073 16,960 16,101 17,549 18,694 18,703 20,421 21,958 23,314 22,710 2000's 25,586 22,912 22,685 24,099 26,862 26,552 28,046 28,224 28,920 29,531 2010's 29,475 30,763 28,991 31,211 29,105

  19. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in New Hampshire (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4,116 4,376 4,414 4,437 4,100 4,955 4,438 4,601 5,034 5,371 1990's 5,073 5,028 5,862 6,142 6,412 6,514 7,099 7,489 6,808 7,214 2000's 8,323 7,349 8,768 9,673 8,943 9,844 8,494 9,360 10,043 9,935 2010's 8,406 8,890 8,130 9,204 9,412 9,327

  20. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in New Jersey (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 28,656 32,546 34,510 1970's 55,953 60,230 62,917 61,846 58,210 53,346 90,463 53,896 48,005 52,314 1980's 60,481 74,627 78,750 79,624 83,906 83,467 85,775 94,459 101,325 117,385 1990's 115,591 121,240 130,891 128,942 132,008 138,965 150,432 168,760 146,653 163,759 2000's 158,543 131,417 146,176 159,647 168,768 169,857 152,501 168,778 168,574 180,404 2010's