Powered by Deep Web Technologies
Note: This page contains sample records for the topic "including tight oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Table 2. Principal tight oil plays: oil production and proved...  

U.S. Energy Information Administration (EIA) Indexed Site

"Other tight oil plays (e.g. Monterey, Woodford)",,,24,253 "All U.S. tight oil plays",,,228,3628 "Note: Includes lease condensate." "Source: U.S. Energy...

2

Does EIA have data on shale (or “tight oil ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

3

tight oil - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

4

Status and outlook for shale gas and tight oil development in...  

Gasoline and Diesel Fuel Update (EIA)

10 15 20 25 30 35 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 Associated with oil Coalbed methane Tight gas Shale gas Alaska Non-associated onshore Non-associated...

5

Figure 97. Total U.S. tight oil production by geologic formation ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 97. Total U.S. tight oil production by geologic formation, 2011-2040 (million barrels per day) Permian Basin Bakken Eagle Ford

6

Low Total OECD Oil Stocks* Keep Market Balance Tight  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: This chart illustrates why EIA sees crude oil prices staying relatively high. It shows global inventories, as measured by OECD petroleum stocks. EIA sees a tenuous supply/demand balance over the remainder of 2001. Global inventories remain low, and need to recover to more adequate levels of forward demand coverage in order to avoid continued price volatility. The most recent data show OECD inventories remaining at very low levels. Low inventories increase the potential for price volatility throughout 2001. Inventories are a good measure of the supply/demand balance that affects prices. A large over-supply (production greater than demand) will put downward pressure on prices, while under-supply will push prices upward. OECD inventories illustrate the changes in the world petroleum

7

Guam Refinery Thermal Cracking/Other (including Gas Oil ...  

U.S. Energy Information Administration (EIA)

Guam Refinery Thermal Cracking/Other (including Gas Oil) Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

8

U.S. Refinery Thermal Cracking, Other (including Gas Oil ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Thermal Cracking, Other (including Gas Oil) Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

9

Tight oil, Gulf of Mexico deepwater drive projected increases in U ...  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline ... and other liquids including biofuels and natural gas liquids. Natural Gas. Exploration and reserves ... EIA's Annual Energy Outlook 2012 ...

10

Table A14. Oil and gas supply - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Carbon dioxide enhanced oil recovery ... 3Tight oil represents resources in low-permeability reservoirs, including shale and chalk formations.

11

Analysis of stress sensitivity and its influence on oil production from tight reservoirs  

E-Print Network (OSTI)

fluid flow into a production oil well, subject to constant-on the productivity of oil well,” Journal of Xi’an Petroleumpermeability can affect well oil production. Specifically,

Lei, Qun; Xiong, Wei; Yuan, Cui; Wu, Yu-Shu

2008-01-01T23:59:59.000Z

12

Tight oil, Gulf of Mexico deepwater drive projected increases in U ...  

U.S. Energy Information Administration (EIA)

... oil refers to oil produced from shale, or other very low-permeability rocks, with horizontal drilling and multi-stage hydraulic fracturing technologies.

13

Tight oil, Gulf of Mexico deepwater drive projected increases in U ...  

U.S. Energy Information Administration (EIA)

... to oil produced from shale, or other very low-permeability rocks, with horizontal drilling and multi-stage hydraulic fracturing technologies.

14

FORECASTING THE PRODUCTION PERFORMANCE OF WELLS LOCATED IN TIGHT OIL PLAYS USING ARTIFICIAL EXPERT SYSTEMS.  

E-Print Network (OSTI)

??The potential of unconventional oil and gas reservoirs is promising to account for the declining conventional supplies in the future. However, because of their complex… (more)

Bansal, Yogesh

2011-01-01T23:59:59.000Z

15

Lubricant base oil and wax processing. [Glossary included  

SciTech Connect

This book provides state-of-the-art information on all processes currently used to manufacture lubricant base oils and waxes. It furnishes helpful lists of conversion factors, construction cost data, and process licensors, as well as a glossary of essential petroleum processing terms.

Sequeira, A. Jr.

1994-01-01T23:59:59.000Z

16

Oil and gas field code master list, 1983. [Glossary included  

Science Conference Proceedings (OSTI)

This report is the second annual listing of all identified oil and gas fields in the United States with field information collected through November 1983. The purpose of the publication is to provide codes for easy identification of domestic fields. A standardization of these field codes will foster consistency in field identification by government and industry. The use of field names and codes listed in this publication is required on the survey forms and reports regarding field-specific data for the Energy Information Administration (EIA) and the Federal Energy Regulatory Commission. A glossary of the terms is provided to assist the readers in more fully understanding the information in this Field Code Master List. 8 figures, 4 tables.

Not Available

1984-01-01T23:59:59.000Z

17

Status and outlook for shale gas and tight oil development in the U.S.  

Gasoline and Diesel Fuel Update (EIA)

American Petroleum Institute American Petroleum Institute April 04, 2013 | Washington, DC By Adam Sieminski, Administrator U.S. Shale Gas 2 Adam Sieminski , API, April 04, 2013 An average well in shale gas and other continuous resource plays can also have steep decline curves, which require continued drilling to grow production 3 0 500 1,000 1,500 2,000 0 5 10 15 20 Haynesville Eagle Ford Woodford Marcellus Fayetteville million cubic feet per year Source: EIA, Annual Energy Outlook 2012 1 0% 50% 100% 0 5 10 15 20 Cumulative production = EUR Adam Sieminski , API, April 04, 2013 For example: Oil production by monthly vintage of wells in the Williston Basin 4 Source: DrillingInfo history through August 2012, EIA Short-Term Energy Outlook, February 2013 forecast

18

Status and outlook for shale gas and tight oil development in the U.S.  

Gasoline and Diesel Fuel Update (EIA)

CERAWEEK 2013, North American Energy CERAWEEK 2013, North American Energy March 06, 2013 | Houston, TX by Adam Sieminski, Administrator U.S. Shale Gas 2 Adam Sieminski , CERAWEEK, March 06, 2013 An average well in shale gas and other continuous resource plays can also have steep decline curves, which require continued drilling to grow production 3 0 500 1,000 1,500 2,000 0 5 10 15 20 Haynesville Eagle Ford Woodford Marcellus Fayetteville million cubic feet per year Source: EIA, Annual Energy Outlook 2012 1 0% 50% 100% 0 5 10 15 20 Cumulative production = EUR Adam Sieminski , CERAWEEK, March 06, 2013 For example: Oil production by monthly vintage of wells in the Williston Basin 4 Source: DrillingInfo history through August 2012, EIA Short-Term Energy Outlook, February 2013 forecast

19

Status and outlook for shale gas and tight oil development in the U.S.  

Gasoline and Diesel Fuel Update (EIA)

Platts - North American Crude Marketing Conference Platts - North American Crude Marketing Conference March 01, 2013 | Houston, TX by Adam Sieminski, Administrator Annual Energy Outlook 2013 projections to 2040 Adam Sieminski , Platts, March 01, 2013 2 * Growth in energy production outstrips consumption growth * Crude oil production rises sharply over the next decade * Motor gasoline consumption reflects more stringent fuel economy standards * The U.S. becomes a net exporter of natural gas in the early 2020s * U.S. energy-related carbon dioxide emissions remain below their 2005 level through 2040 U.S. energy use grows slowly over the projection reflecting improving energy efficiency and slow, extended economic recovery 3 U.S. primary energy consumption quadrillion Btu

20

Status and outlook for shale gas and tight oil development in the U.S.  

Gasoline and Diesel Fuel Update (EIA)

for for IEA Bilateral Meetings March 14, 2013 | Paris, France by Adam Sieminski, Administrator Annual Energy Outlook 2013 projections to 2040 2 * Growth in energy production outstrips consumption growth * Crude oil production rises sharply over the next decade * Motor gasoline consumption reflects more stringent fuel economy standards * The U.S. becomes a net exporter of natural gas in the early 2020s * U.S. energy-related carbon dioxide emissions remain below their 2005 level through 2040 Adam Sieminski, IEA Bilateral Meetings, March 14, 2013 U.S. energy use grows slowly over the projection reflecting improving energy efficiency and slow, extended economic recovery 3 0 20 40 60 80 100 120 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040

Note: This page contains sample records for the topic "including tight oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Status and outlook for shale gas and tight oil development in the U.S.  

Gasoline and Diesel Fuel Update (EIA)

Washington Association of Money Managers Washington Association of Money Managers April 18, 2013 | Washington, DC By Adam Sieminski, Administrator U.S. Shale Gas 2 Adam Sieminski , WAMM, April 18, 2013 An average well in shale gas and other continuous resource plays has steep decline curves Adam Sieminski , WAMM, April 18, 2013 3 0 500 1,000 1,500 2,000 0 5 10 15 20 Haynesville Eagle Ford Woodford Marcellus Fayetteville million cubic feet per year Source: EIA, Annual Energy Outlook 2012 1 0% 50% 100% 0 5 10 15 20 Cumulative production = EUR Oil production by monthly vintage of wells in the Williston Basin - production grows with continued drilling Adam Sieminski , WAMM, April 18, 2013

22

Analytical questions for shale gas and tight oil development in the U.S.  

Gasoline and Diesel Fuel Update (EIA)

For For Consumer Energy Alliance February 21, 2013 | Washington, D.C. By Adam Sieminski, Administrator Annual Energy Outlook 2013 projections to 2040 2 * Growth in energy production outstrips consumption growth * Crude oil production rises sharply over the next decade * Motor gasoline consumption reflects more stringent fuel economy standards * The U.S. becomes a net exporter of natural gas in the early 2020s * U.S. energy-related carbon dioxide emissions remain below their 2005 level through 2040 Adam Sieminski February 21, 2013 U.S. energy use grows slowly over the projection reflecting improving energy efficiency and slow, extended economic recovery 3 0 20 40 60 80 100 120 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040

23

Status and outlook for shale gas and tight oil development in the U.S.  

Gasoline and Diesel Fuel Update (EIA)

Council on Foreign Relations Council on Foreign Relations April 11, 2013 | Washington, DC By Adam Sieminski, Administrator U.S. Shale Gas 2 Adam Sieminski , CFR, April 11, 2013 An average well in shale gas and other continuous resource plays can also have steep decline curves, which require continued drilling to grow production 3 0 500 1,000 1,500 2,000 0 5 10 15 20 Haynesville Eagle Ford Woodford Marcellus Fayetteville million cubic feet per year Source: EIA, Annual Energy Outlook 2012 1 0% 50% 100% 0 5 10 15 20 Cumulative production = EUR Adam Sieminski , CFR, April 11, 2013 For example: Oil production by monthly vintage of wells in the Williston Basin 4 Source: Drilling Info history through August 2012, EIA Short-Term Energy Outlook, February 2013 forecast

24

Status and outlook for shale gas and tight oil development in the U.S.  

Gasoline and Diesel Fuel Update (EIA)

IFRI IFRI March 14, 2013 | Paris, France by Adam Sieminski, Administrator Annual Energy Outlook 2013 projections to 2040 2 * Growth in energy production outstrips consumption growth * Crude oil production rises sharply over the next decade * Motor gasoline consumption reflects more stringent fuel economy standards * The U.S. becomes a net exporter of natural gas in the early 2020s * U.S. energy-related carbon dioxide emissions remain below their 2005 level through 2040 Adam Sieminski , IFRI March 14, 2013 U.S. energy use grows slowly over the projection reflecting improving energy efficiency and slow, extended economic recovery 3 U.S. primary energy consumption quadrillion Btu Adam Sieminski , IFRI March 14, 2013 History Projections 2011 36% 20%

25

Status and outlook for shale gas and tight oil development in the U.S.  

Gasoline and Diesel Fuel Update (EIA)

FLAME Natural Gas & LNG Conference FLAME Natural Gas & LNG Conference March 13, 2013 | Amsterdam, Netherlands by Adam Sieminski, Administrator Annual Energy Outlook 2013 projections to 2040 2 * Growth in energy production outstrips consumption growth * Crude oil production rises sharply over the next decade * Motor gasoline consumption reflects more stringent fuel economy standards * The U.S. becomes a net exporter of natural gas in the early 2020s * U.S. energy-related carbon dioxide emissions remain below their 2005 level through 2040 Adam Sieminski , FLAME March 13, 2013 U.S. energy use grows slowly over the projection reflecting improving energy efficiency and slow, extended economic recovery 3 0 20 40 60 80 100 120 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040

26

Status and outlook for shale gas and tight oil development in the U.S.  

Gasoline and Diesel Fuel Update (EIA)

Baltimore Chartered Financial Analyst Society Baltimore Chartered Financial Analyst Society April 08, 2013 | Baltimore, MD By Adam Sieminski, Administrator Annual Energy Outlook 2013 projections to 2040 2 * Growth in energy production outstrips consumption growth * Crude oil production rises sharply over the next decade * Motor gasoline consumption reflects more stringent fuel economy standards * The U.S. becomes a net exporter of natural gas in the early 2020s * U.S. energy-related carbon dioxide emissions remain below their 2005 level through 2040 Adam Sieminski, Baltimore CFA Society April 08, 2013 U.S. energy use grows slowly over the projection reflecting improving energy efficiency and slow, extended economic recovery 3 0 20 40 60 80 100 120 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040

27

Stocks of Total Crude Oil and Petroleum Products (Including SPR)  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Stocks include those ...

28

Ames/Salmonella mutagenicity assay of natural and synthetic crude oils including a Fischer-Retorted Estonian shale oil  

DOE Green Energy (OSTI)

DMSO extracts of a variety of natural and synthetic crude oils were tested for genotoxic activity in the Ames/Salmonella bioassay. Both mutagenic and cytotoxic potentials are cited. Natural crude oils and their refined products and upgraded synfuels are less mutagenic than parent crude shale oils which in turn are less mutagenic than the coal derived distillate blend sample, SRC II. However, this order is not true for cytotoxicity induced by these oil samples; therefore, caution must be exercised in the assessment of their mutagenic potential without consideration of other influential factors including cytotoxicity.

Strniste, G.F.; Nickols, J.W.

1981-01-01T23:59:59.000Z

29

US production of natural gas from tight reservoirs  

Science Conference Proceedings (OSTI)

For the purposes of this report, tight gas reservoirs are defined as those that meet the Federal Energy Regulatory Commission`s (FERC) definition of tight. They are generally characterized by an average reservoir rock permeability to gas of 0.1 millidarcy or less and, absent artificial stimulation of production, by production rates that do not exceed 5 barrels of oil per day and certain specified daily volumes of gas which increase with the depth of the reservoir. All of the statistics presented in this report pertain to wells that have been classified, from 1978 through 1991, as tight according to the FERC; i.e., they are ``legally tight`` reservoirs. Additional production from ``geologically tight`` reservoirs that have not been classified tight according to the FERC rules has been excluded. This category includes all producing wells drilled into legally designated tight gas reservoirs prior to 1978 and all producing wells drilled into physically tight gas reservoirs that have not been designated legally tight. Therefore, all gas production referenced herein is eligible for the Section 29 tax credit. Although the qualification period for the credit expired at the end of 1992, wells that were spudded (began to be drilled) between 1978 and May 1988, and from November 5, 1990, through year end 1992, are eligible for the tax credit for a subsequent period of 10 years. This report updates the EIA`s tight gas production information through 1991 and considers further the history and effect on tight gas production of the Federal Government`s regulatory and tax policy actions. It also provides some high points of the geologic background needed to understand the nature and location of low-permeability reservoirs.

Not Available

1993-10-18T23:59:59.000Z

30

A high liquid yield process for retorting various organic materials including oil shale  

DOE Patents (OSTI)

This invention is a continuous retorting process for various high molecular weight organic materials, including oil shale, that yields an enhanced output of liquid product. The organic material, mineral matter, and an acidic catalyst, that appreciably adsorbs alkenes on surface sites at prescribed temperatures, are mixed and introduced into a pyrolyzer. A circulating stream of olefin enriched pyrolysis gas is continuously swept through the organic material and catalyst, whereupon, as the result of pyrolysis, the enhanced liquid product output is provided. Mixed spent organic material, mineral matter, and cool catalyst are continuously withdrawn from the pyrolyzer. Combustion of the spent organic material and mineral matter serves to reheat the catalyst. Olefin depleted pyrolysis gas, from the pyrolyzer, is enriched in olefins and recycled into the pyrolyzer. The reheated acidic catalyst is separated from the mineral matter and again mixed with fresh organic material, to maintain the continuously cyclic process. 2 figs.

Coburn, T.T.

1988-07-26T23:59:59.000Z

31

High liquid yield process for retorting various organic materials including oil shale  

DOE Patents (OSTI)

This invention is a continuous retorting process for various high molecular weight organic materials, including oil shale, that yields an enhanced output of liquid product. The organic material, mineral matter, and an acidic catalyst, that appreciably adsorbs alkenes on surface sites at prescribed temperatures, are mixed and introduced into a pyrolyzer. A circulating stream of olefin enriched pyrolysis gas is continuously swept through the organic material and catalyst, whereupon, as the result of pyrolysis, the enhanced liquid product output is provided. Mixed spent organic material, mineral matter, and cool catalyst are continuously withdrawn from the pyrolyzer. Combustion of the spent organic material and mineral matter serves to reheat the catalyst. Olefin depleted pyrolysis gas, from the pyrolyzer, is enriched in olefins and recycled into the pyrolyzer. The reheated acidic catalyst is separated from the mineral matter and again mixed with fresh organic material, to maintain the continuously cyclic process.

Coburn, Thomas T. (Livermore, CA)

1990-01-01T23:59:59.000Z

32

High Hopes, Tight Quarters  

NLE Websites -- All DOE Office Websites (Extended Search)

Hopes, Hopes, Tight Quarters Unique Recycler, world's largest array of permanent magnets, taking shape in crowded Main Injector tunnel. by Mike Perricone, Office of Public Affairs The magnets are numbered in the hundreds; their weight is measured in tons. The available space in the tunnel is usually about four and a half feet, but it can be as little as two or three inches, and the forklifts doing the moving have been custom- designed for these tight quarters. The obstacles include water systems, cable trays, workers performing other installations, and the precisely aligned components of the signature Main Injector accelerator. The consequences of a possible slip-up: Don't even ask. Installation crews can put eight to 10 magnets in place in a day, if the magnets are located close together. Installing a magnet

33

Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance  

E-Print Network (OSTI)

caverns for the storage of natural gas, crude oil and compressed air: Geomechanical aspects of construction, operation and abandonment,caverns involved in CAES include stability, air tightness, acceptable surface subsidence, and (later on) an environmentally safe decommissioning and abandonment [

Kim, H.-M.

2012-01-01T23:59:59.000Z

34

Will lecture on: Unconventional Oil and Gas  

E-Print Network (OSTI)

are not yet resolved. Ten years ago this category comprised heavy oil, oil shale, coal bed methane, tight gas, and economic aspects of gas shale and tight oil development. The role of oil shale in the emerging energy applied research on heavy oil, gas hydrate, gas shale, tight oil, and oil shale reservoirs. He advises

Schuster, Assaf

35

Stocks of Crude Oil (Including SPR) - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Stocks include those ...

36

Developing a tight gas sand advisor for completion and stimulation in tight gas reservoirs worldwide  

E-Print Network (OSTI)

As the demand for energy worldwide increases, the oil and gas industry will need to increase recovery from unconventional gas reservoirs (UGR). UGRs include Tight Gas Sand (TGS), coalbed methane and gas shales. To economically produce UGRs, one must have adequate product price and one must use the most current technology. TGS reservoirs require stimulation as a part of the completion, so improvement of completion practices is very important. We did a thorough literature review to extract knowledge and experience about completion and stimulation technologies used in TGS reservoirs. We developed the principal design and two modules of a computer program called Tight Gas Sand Advisor (TGS Advisor), which can be used to assist engineers in making decisions while completing and stimulating TGS reservoirs. The modules include Perforation Selection and Proppant Selection. Based on input well/reservoir parameters these subroutines provide unambiguous recommendations concerning which perforation strategy(s) and what proppant(s) are applicable for a given well. The most crucial parameters from completion best-practices analyses and consultations with experts are built into TGS Advisor's logic, which mimics human expert's decision-making process. TGS Advisor's recommended procedures for successful completions will facilitate TGS development and improve economical performance of TGS reservoirs.

Bogatchev, Kirill Y

2007-12-01T23:59:59.000Z

37

Developing a tight gas sand advisor for completion and stimulation in tight gas reservoirs worldwide  

E-Print Network (OSTI)

As the demand for energy worldwide increases, the oil and gas industry will need to increase recovery from unconventional gas reservoirs (UGR). UGRs include Tight Gas Sand (TGS), coalbed methane and gas shales. To economically produce UGRs, one must have adequate product price and one must use the most current technology. TGS reservoirs require stimulation as a part of the completion, so improvement of completion practices is very important. We did a thorough literature review to extract knowledge and experience about completion and stimulation technologies used in TGS reservoirs. We developed the principal design and two modules of a computer program called Tight Gas Sand Advisor (TGS Advisor), which can be used to assist engineers in making decisions while completing and stimulating TGS reservoirs. The modules include Perforation Selection and Proppant Selection. Based on input well/reservoir parameters these subroutines provide unambiguous recommendations concerning which perforation strategy(s) and what proppant(s) are applicable for a given well. The most crucial parameters from completion best-practices analyses and consultations with experts are built into TGS Advisor’s logic, which mimics human expert’s decision-making process. TGS Advisor’s recommended procedures for successful completions will facilitate TGS development and improve economical performance of TGS reservoirs.

Bogatchev, Kirill Y.

2007-12-01T23:59:59.000Z

38

Tight Product Balance Pushes Up Product Spread (Spot Product...  

Gasoline and Diesel Fuel Update (EIA)

1 Notes: To reinforce the impact that inventory levels (I.e., tight markets) have on price, note the variation in spot gasoline prices relative to crude oil prices, as shown by the...

39

Completion methods in thick, multilayered tight gas sands  

E-Print Network (OSTI)

Tight gas sands, coal-bed methane, and gas shales are commonly called unconventional reservoirs. Tight gas sands (TGS) are often described as formations with an expected average permeability of 0.1mD or less. Gas production rates from TGS reservoirs are usually low due to poor permeability. As such, state-of-the-art technology must be used to economically develop the resource. TGS formations need to be hydraulically fractured in order to enhance the gas production rates. A majority of these reservoirs can be described as thick, multilayered gas systems. Many reservoirs are hundreds of feet thick and some are thousands of feet thick. The technology used to complete and stimulate thick, tight gas reservoirs is quite complex. It is often difficult to determine the optimum completion and stimulating techniques in thick reservoirs. The optimum methods are functions of many parameters, such as depth, pressure, temperature, in-situ stress and the number of layers. In multilayered reservoirs, it is important to include several sand layers in a single completion. The petroleum literature contains information on the various diversion techniques involved in the completion of these multilayered reservoirs. In this research, we have deduced and evaluated eight possible techniques that have been used in the oil and gas industry to divert multilayered fracture treatments in layered reservoirs. We have developed decision charts, economic analyses and computer programs that will assist completion engineers in determining which of the diversion methods are feasible for a given well stimulation. Our computer programs have been tested using case histories from the petroleum literature with results expressed in this thesis. A limited entry design program has also being developed from this research to calculate the fluid distribution into different layers when fracture treating multilayered tight gas reservoirs using the limited entry technique. The research is aimed at providing decision tools which will eventually be input into an expert advisor for well completions in tight gas reservoirs worldwide.

Ogueri, Obinna Stavely

2007-12-01T23:59:59.000Z

40

Omega-3 Oils: Applications in Functional FoodsChapter 3 Fish Sources of Various Lipids Including n-3 Polyunsaturated Fatty Acids and Their Dietary Effects  

Science Conference Proceedings (OSTI)

Omega-3 Oils: Applications in Functional Foods Chapter 3 Fish Sources of Various Lipids Including n-3 Polyunsaturated Fatty Acids and Their Dietary Effects Health Nutrition Biochemistry eChapters Health - Nutrition - Biochemistry 448930

Note: This page contains sample records for the topic "including tight oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Oil and natural gas reserve prices : addendum to CEEPR WP 03-016 ; including results for 2003 revisions to 2001  

E-Print Network (OSTI)

Introduction. A working paper entitled "Oil and Natural Gas Reserve Prices 1982-2002: Implications for Depletion and Investment Cost" was published in October 2003 (cited hereafter as Adelman & Watkins [2003]). Since then ...

Adelman, Morris Albert

2005-01-01T23:59:59.000Z

42

Unconventional Oil and Gas Resources  

Science Conference Proceedings (OSTI)

World oil use is projected to grow to 98 million b/d in 2015 and 118 million b/d in 2030. Total world natural gas consumption is projected to rise to 134 Tcf in 2015 and 182 Tcf in 2030. In an era of declining production and increasing demand, economically producing oil and gas from unconventional sources is a key challenge to maintaining global economic growth. Some unconventional hydrocarbon sources are already being developed, including gas shales, tight gas sands, heavy oil, oil sands, and coal bed methane. Roughly 20 years ago, gas production from tight sands, shales, and coals was considered uneconomic. Today, these resources provide 25% of the U.S. gas supply and that number is likely to increase. Venezuela has over 300 billion barrels of unproven extra-heavy oil reserves which would give it the largest reserves of any country in the world. It is currently producing over 550,000 b/d of heavy oil. Unconventional oil is also being produced in Canada from the Athabasca oil sands. 1.6 trillion barrels of oil are locked in the sands of which 175 billion barrels are proven reserves that can be recovered using current technology. Production from 29 companies now operating there exceeds 1 million barrels per day. The report provides an overview of continuous petroleum sources and gives a concise overview of the current status of varying types of unconventional oil and gas resources. Topics covered in the report include: an overview of the history of Oil and Natural Gas; an analysis of the Oil and Natural Gas industries, including current and future production, consumption, and reserves; a detailed description of the different types of unconventional oil and gas resources; an analysis of the key business factors that are driving the increased interest in unconventional resources; an analysis of the barriers that are hindering the development of unconventional resources; profiles of key producing regions; and, profiles of key unconventional oil and gas producers.

none

2006-09-15T23:59:59.000Z

43

Increased tight oil production, vehicle efficiency reduce ...  

U.S. Energy Information Administration (EIA)

Natural gas overtakes coal as the largest fuel for U.S. electricity generation. ... Over the same period, pipeline imports from Canada fall by 30%, ...

44

Characterization and Alteration of Wettability States of Alaskan Reserviors to Improve Oil Recovery Efficiency (including the within-scope expansion based on Cyclic Water Injection - a pulsed waterflood for Enhanced Oil Recovery)  

SciTech Connect

Numerous early reports on experimental works relating to the role of wettability in various aspects of oil recovery have been published. Early examples of laboratory waterfloods show oil recovery increasing with increasing water-wetness. This result is consistent with the intuitive notion that strong wetting preference of the rock for water and associated strong capillary-imbibition forces gives the most efficient oil displacement. This report examines the effect of wettability on waterflooding and gasflooding processes respectively. Waterflood oil recoveries were examined for the dual cases of uniform and non-uniform wetting conditions. Based on the results of the literature review on effect of wettability and oil recovery, coreflooding experiments were designed to examine the effect of changing water chemistry (salinity) on residual oil saturation. Numerous corefloods were conducted on reservoir rock material from representative formations on the Alaska North Slope (ANS). The corefloods consisted of injecting water (reservoir water and ultra low-salinity ANS lake water) of different salinities in secondary as well as tertiary mode. Additionally, complete reservoir condition corefloods were also conducted using live oil. In all the tests, wettability indices, residual oil saturation, and oil recovery were measured. All results consistently lead to one conclusion; that is, a decrease in injection water salinity causes a reduction in residual oil saturation and a slight increase in water-wetness, both of which are comparable with literature observations. These observations have an intuitive appeal in that water easily imbibes into the core and displaces oil. Therefore, low-salinity waterfloods have the potential for improved oil recovery in the secondary recovery process, and ultra low-salinity ANS lake water is an attractive source of injection water or a source for diluting the high-salinity reservoir water. As part of the within-scope expansion of this project, cyclic water injection tests using high as well as low salinity were also conducted on several representative ANS core samples. These results indicate that less pore volume of water is required to recover the same amount of oil as compared with continuous water injection. Additionally, in cyclic water injection, oil is produced even during the idle time of water injection. It is understood that the injected brine front spreads/smears through the pores and displaces oil out uniformly rather than viscous fingering. The overall benefits of this project include increased oil production from existing Alaskan reservoirs. This conclusion is based on the performed experiments and results obtained on low-salinity water injection (including ANS lake water), vis-a-vis slightly altering the wetting conditions. Similarly, encouraging cyclic water-injection test results indicate that this method can help achieve residual oil saturation earlier than continuous water injection. If proved in field, this would be of great use, as more oil can be recovered through cyclic water injection for the same amount of water injected.

Abhijit Dandekar; Shirish Patil; Santanu Khataniar

2008-12-31T23:59:59.000Z

45

Groundwater and Wastewater Remediation Using Agricultural Oils  

agricultural oils to stimulate endogenous microbes which accelerates the cleanup.  The oils tested include canola oil, grapeseed oil, coconut oil, corn oil, cottonseed oil, olive oil, palm oil, palm kernel oil, peanut oil, ...

46

U.S. Crude Oil Inventory Outlook  

U.S. Energy Information Administration (EIA)

Crude oil stocks in the United States, while tending to increase of late toward more normal levels, remain well below average. Near-term tightness in crude oil ...

47

Fraced horizontal well shows potential of deep tight gas  

SciTech Connect

Successful completion of a multiple fraced, deep horizontal well demonstrated new techniques for producing tight gas sands. In Northwest Germany, Mobil Erdgas-Erdoel GmbH drilled, cased, and fraced the world`s deepest horizontal well in the ultra-tight Rotliegendes ``Main`` sand at 15,687 ft (4,783 m) true vertical depth. The multiple frac concept provides a cost-efficient method to economically produce significant gas resources in the ultra-tight Rotliegendes ``Main`` sand. Besides the satisfactory initial gas production rate, the well established several world records, including deepest horizontal well with multiple fracs, and proved this new technique to develop ultra-tight sands.

Schueler, S. [Mobil Erdgas-Erdoel GmbH, Celle (Germany); Santos, R. [Mobil Erdgas-Erdoel GmbH, Hamburg (Germany)

1996-01-08T23:59:59.000Z

48

Tight Product Balance Pushes Up Product Spread (Spot Product - Crude  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: Gasoline inventories indicate how tight the gasoline product market is in any one region. When the gasoline market is tight, it affects the portion of gasoline price is the spread between spot product price and crude oil price. Note that in late 1998-and early 1999 spreads were very small when inventories were quite high. Contrast summers of 1998 or 1999 with summer 2000. Last summer's tight markets, resulting low stocks and transition to Phase 2 RFG added price pressure over and above the already high crude price pressure on gasoline -- particularly in the Midwest. As we ended last winter, gasoline inventories were low, and the spread between spot prices and crude oil were higher than typical as a result. Inventories stayed well below average and the spread during the

49

SPE Tight Gas Conference, 2009 "Program for the Beneficial Use  

E-Print Network (OSTI)

SPE Tight Gas Conference, 2009 "Program for the Beneficial Use of Oil Field Produced Water" David B Additional cost of demineralization of water. The (probable) salinity of the produced brine. Environmental. Servicing Schedule weekly #12;Comparison of Desalinated Produced Water with Municipal

50

Specialty Oils Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing provider for Specialty Oils. Samples tested include Walnut Oil, Pecan Oil, Pistachio Oil, Sesame Seed Oil, Flax Seed Oil, Neem Oil, Safflower Oil, Sunflower Oil. Specialty Oils Laboratory Proficiency Testing Program Laboratory Pro

51

"U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil, Natural Gas, and Natural Gas Liquids Reserves Summary Data Tables, 2011" "Contents" "Table 1: Changes to Proved Reserves, 2011" "Table 2: Principal Tight Oil Plays: Oil...

52

Evaluation of EOR Potential by Gas and Water Flooding in Shale Oil Reservoirs.  

E-Print Network (OSTI)

??The demand for oil and natural gas will continue to increase for the foreseeable future; unconventional resources such as tight oil, shale gas, shale oil… (more)

Chen, Ke

2013-01-01T23:59:59.000Z

53

Crude Oil, Heating Oil, and Propane Market Outlook  

U.S. Energy Information Administration (EIA)

... March 2003 Price Spike August 2003 Price Spike Quarterly World Oil Demand Growth from Previous Year Overview of Market Fundamentals Tight balance in global ...

54

Emerging Oil & Gas Supplies: Future Prospects for Oil ...  

U.S. Energy Information Administration (EIA)

The shale gas & tight oil technology story is only beginning, with much yet to be written • Technology is creating new resources out of rocks

55

Future Prospects for Oil Production  

U.S. Energy Information Administration (EIA)

2010 2015 2020 2025 2030 2035 . High TRR . Reference . High EUR . Tight oil production . million barrels per day . Low EUR . 5 Adam Sieminski

56

Western tight gas sands advanced logging workshop proceedings  

SciTech Connect

An advanced logging research program is one major aspect of the Western Tight Sands Program. Purpose of this workshop is to help BETC define critical logging needs for tight gas sands and to allow free interchange of ideas on all aspects of the current logging research program. Sixteen papers and abstracts are included together with discussions. Separate abstracts have been prepared for the 12 papers. (DLC)

Jennings, J B; Carroll, Jr, H B [eds.

1982-04-01T23:59:59.000Z

57

Pore-scale mechanisms of gas flow in tight sand reservoirs  

E-Print Network (OSTI)

include tight gas sands, gas shales, and coal-bed methane.Figure 3. Although the gas-shale production grows at a

Silin, D.

2011-01-01T23:59:59.000Z

58

Low Stocks Mean Tight Markets  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: Like those for other petroleum products, gasoline inventories have been running below normal. As of the latest weekly data, stocks are about 5% lower than the low end of the normal range for this time of year. Behind all of the low product inventories are low crude oil inventories. Recall that the crude market tightened in 1999 when OPEC cut back production. Demand was greater than supply and inventories were used to make up the difference. They have not yet recovered. Crude oil inventories are running about 7% below the low end of the normal range for this time of year. After last week's very large stock draw, it appears inventories are the lowest that they have been since December 1975. The U.S. inventory data will be an important price barometer to

59

Naturally fractured tight gas reservoir detection optimization  

SciTech Connect

Research continued on methods to detect naturally fractured tight gas reservoirs. This report discusses 3D-3C seismic acquisition and 3D P-wave alternate processing.

NONE

1995-12-31T23:59:59.000Z

60

Simulation and Economic Screening of Improved Oil Recovery Methods with Emphasis on Injection Profile Control Including Waterflooding, Polymer Flooding and a Thermally Activated Deep Diverting Gel  

E-Print Network (OSTI)

The large volume of water produced during the extraction of oil presents a significant problem due to the high cost of disposal in an environmentally friendly manner. On average, an estimated seven barrels of water is produced per barrel of oil in the US alone and the associated treatment and disposal cost is an estimated $5-10 billion. Besides making oil-water separation more complex, produced water also causes problems such as corrosion in the wellbore, decline in production rate and ultimate recovery of hydrocarbons and premature well or field abandonment. Water production can be more problematic during waterflooding in a highly heterogeneous reservoir with vertical communication between layers leading to unevenness in the flood front, cross-flow between high and low permeability layers and early water breakthrough from high permeability layers. Some of the different technologies that can be used to counteract this involve reducing the mobility of water or using a permeability block in the higher permeability, swept zones. This research was initiated to evaluate the potential effectiveness of the latter method, known as deep diverting gels (DDG) to plug thief zones deep within the reservoir and far from the injection well. To evaluate the performance of DDG, its injection was modeled, sensitivities run for a range of reservoir characteristics and conditions and an economic analysis was also performed. The performance of the DDG was then compared to other recovery methods, specifically waterflooding and polymer flooding from a technical and economic perspective. A literature review was performed on the background of injection profile control methods, their respective designs and technical capabilities. For the methods selected, Schlumberger's Eclipse software was used to simulate their behavior in a reservoir using realistic and simplified assumptions of reservoir characteristics and fluid properties. The simulation results obtained were then used to carry out economic analyses upon which conclusions and recommendations are based. These results show that the factor with the largest impact on the economic success of this method versus a polymer flood was the amount of incremental oil produced. By comparing net present values of the different methods, it was found that the polymer flood was the most successful with the highest NPV for each configuration followed by DDG.

Okeke, Tobenna

2012-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "including tight oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Assessment of API Thread Connections Under Tight Gas Well Conditions  

E-Print Network (OSTI)

The modern oil and gas industry of America has seen most of the high quality, easily obtainable resources, already produced, thus causing wells to be drilled deeper in search for unconventional resources. This means Oil Country Tubular Goods (OCTG) must improve in order to withstand harsher conditions; especially the ability of connections to effectively create leak tight seals. This study investigates the use of thread connections in tight gas fields; therefore, an insight into their potential to contribute to fulfilling the energy demands is necessary. Also, a survey of completed projects done in tight gas fields can provide vital information that will establish the minimum requirements thread connection must meet to perform its functions. To make suitable adjustments to ensure safe and efficient operations we must thoroughly understand the many aspects of thread connections. To have this understanding, a review of previous works was carried out that highlights the capabilities and imitations of thread connections. In addition to reviewing previous work done on thread connections; this study measured the viscosity of thread compounds under variable conditions. It was found that viscosity of thread compound falls in the range of 285,667 cP and 47,758 cP when measured between 32.9 degrees F and 121.5 degrees F. This can be very important because thread compound is essential to the function of thread connections. The knowledge of its viscosity can help choose the most suitable compound. By knowing the value of the viscosity of a thread compound it can also be used to form an analytical assessment of the grooved plate method by providing a means to calculate a pressure gradient which impacts the leakage.

Bourne, Dwayne

2009-08-01T23:59:59.000Z

62

Combustion System Development for Medium-Sized Industrial Gas Turbines: Meeting Tight Emission Regulations while Using  

E-Print Network (OSTI)

Combustion System Development for Medium-Sized Industrial Gas Turbines: Meeting Tight Emission and the oil & gas industries. The combustion system used in Solar's products are discussed along- bility for the introduction of new combustion systems for gas turbine products to enhance fuel

Ponce, V. Miguel

63

Energy and Financial Markets Overview: Crude Oil Price Formation  

U.S. Energy Information Administration (EIA)

1970 1975 1980 1985 1990 1995 2000 2005 2010 ... oil demand growth, slow supply growth and tight spare capacity 22 Richard Newell, May 5, 2011

64

Analytical questions for shale gas and tight oil development ...  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration Independent Statistics & Analysis www.eia.gov ... Technology Economics . Theory . ... • Risk appetite of industry participants

65

Mobil completes deep, tight, horizontal gas well in Germany  

Science Conference Proceedings (OSTI)

A completion and fracturing program for stimulating a horizontal well in the ultra-tight Rotliegendes sand onshore Germany included casing design, completion fluid selection, overbalanced perforation, analysis of the stimulation treatment, design modification, zone and fracture isolation, well testing and acid stimulation. This paper reviews the field geology, the well design, casing design, describes the completion fluids, perforation techniques, fracture treatment, and methods for zone isolation.

Abou-Sayed, I.S.; Chambers, M.R. [Mobil E and P Technical Center, Dallas, TX (United States); Mueller, M.W. [Mobil Erdgas-Erdoel GmbH, Celle (Germany)

1996-08-01T23:59:59.000Z

66

Collection of technical data for tight gas sands in support of the massive hydraulic fracturing system. Final report  

SciTech Connect

Results are presented of work performed to study case histories of logging problems/requirements in tight gas sand areas, provide production histories/completion information on selected Uinta Basin tight gas sand wells, provide geologic guidance and additional technical input for computer simulation of tight gas sand well behavior, and develop information about production histories, completion techniques and reservoir rock characteristics from selected tight gas sand key wells in the Piceance and Green River Basins. A list of gas sand wells in the Uinta Basin is included along with gas production statistics, completion and reservoir data, and well production data. (JRD)

Knutson, C.F.; Boardman, C.R.

1978-09-20T23:59:59.000Z

67

Naturally fractured tight gas reservoir detection optimization  

SciTech Connect

The goal of the work this quarter has been to partition and high-grade the Greater Green River basin for exploration efforts in the Upper Cretaceous tight gas play and to initiate resource assessment of the basin. The work plan for the quarter of July 1-September 30, 1998 comprised three tasks: (1) Refining the exploration process for deep, naturally fractured gas reservoirs; (2) Partitioning of the basin based on structure and areas of overpressure; (3) Examination of the Kinney and Canyon Creek fields with respect to the Cretaceous tight gas play and initiation of the resource assessment of the Vermilion sub-basin partition (which contains these two fields); and (4) Initiation analysis of the Deep Green River Partition with respect to the Stratos well and assessment of the resource in the partition.

NONE

1998-11-30T23:59:59.000Z

68

Gas seal for an in situ oil shale retort and method of forming thermal barrier  

DOE Patents (OSTI)

A gas seal is provided in an access drift excavated in a subterranean formation containing oil shale. The access drift is adjacent an in situ oil shale retort and is in gas communication with the fragmented permeable mass of formation particles containing oil shale formed in the in situ oil shale retort. The mass of formation particles extends into the access drift, forming a rubble pile of formation particles having a face approximately at the angle of repose of fragmented formation. The gas seal includes a temperature barrier which includes a layer of heat insulating material disposed on the face of the rubble pile of formation particles and additionally includes a gas barrier. The gas barrier is a gas-tight bulkhead installed across the access drift at a location in the access drift spaced apart from the temperature barrier.

Burton, III, Robert S. (Mesa, CO)

1982-01-01T23:59:59.000Z

69

ELASTIC ROCK PROPERTIES OF TIGHT GAS SANDSTONES FOR RESERVOIR CHARACTERIZATION  

E-Print Network (OSTI)

and to locate the best locations to drill for them. The tight gas sands of the Piceance Basin have long been understanding of the way that fractures have controlled the production of gas in these tight gas sands an east to west trend of tight gas sand fields that produce a substantial amount of the total gas produced

70

NIOP-AOCS Fats and Oils Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing service for NIOP-AOCS Fats & Oils, samples in this series include crude coconut oil, RB Palm Oil, Crude Safflower Oil, Crude sunflower Oil. NIOP-AOCS Fats and Oils Laboratory Proficiency Testing Program Laboratory Proficiency Progr

71

Pore-scale mechanisms of gas flow in tight sand reservoirs  

E-Print Network (OSTI)

pore space. Although the grains in tight sand samples do notfluid displacement. For tight sands, the simulations predictflow properties of tight sand imply that a small amount of

Silin, D.

2011-01-01T23:59:59.000Z

72

MANAGING TIGHT BINDING RECEPTORS FOR NEW SPEARATIONS TECHNOLOGIES  

DOE Green Energy (OSTI)

Much of the earth's pollution involves compounds of the metallic elements, including actinides, strontium, cesium, technetium, and RCRA metals. Metal ions bind to molecules called ligands, which are the molecular tools that can manipulate the metal ions under most conditions. This DOE-EMSP sponsored program strives (1) to provide the foundations for using the most powerful ligands in transformational separations technologies and (2) to produce seminal examples of their applications to separations appropriate to the DOE EM mission. These ultra tight-binding ligands can capture metal ions in the most competitive of circumstances (from mineralized sites, lesser ligands, and even extremely dilute solutions), but they react so slowly that they are useless in traditional separations methodologies. Two attacks on this problem are underway. The first accommodates to the challenging molecular lethargy by developing a seminal slow separations methodology termed the soil poultice. The second designs ligands that are only tight-binding while wrapped around the targeted metal ion, but can be put in place by switch-binding and removed by switch-release. We envision a kind of molecular switching process to accelerate the union between metal ion and tight-binding ligand. Molecular switching processes are suggested for overcoming the slow natural equilibration rate with which ultra tight-binding ligands combine with metal ions. Ligands that bind relatively weakly combine with metal ions rapidly, so the trick is to convert a ligand from a weak, rapidly binding species to a powerful, slow releasing ligand--during the binding of the ligand to the metal ion. Such switch-binding ligands must react with themselves, and the reaction must take place under the influence of the metal ion. For example, our generation 1 ligands showed that a well-designed linear ligand with ends that readily combine, forms a cyclic molecule when it wraps around a metal ion. Our generation 2 ligands are even more interesting. They convert from rings to structures that wrap around a metal ion to form a cage. These ligands are called cryptands. Switch release is accomplished by photolytic cleavage of a bond to convert a cyclic ligand into a linear ligand or to break similar bonds in a cryptate. Our studies have demonstrated switch binding and switch release with cryptates of calcium. These remarkable cyclic ligands and cage-like ligands are indeed tight-binding and may, in principle, be incorporated in various separations methodologies, including the soil poultice. The soil poultice mimics the way in which microbes secrete extremely powerful ligands into the soil in order to harvest iron. The cellular membrane of the microbe recognizes the iron/ligand complex and admits it into the cell. The soil poultice uses molecularly imprinted polymers (MIPs) to play the role of the cellular membrane. Imprinting involves creation of the polymer in the presence of the metal/ligand complex. In principle, a well design ligand/MIP combination can be highly selective toward almost any targeted metal ion. The principles for that design are the focus of these investigations. An imprinting molecule can interact with the polymer through any, some, or all of the so-called supramolecular modes; e.g., hydrogen bonding, electrostatic charge, minor ligand bonding, Pi-Pi stacking, and hydrophobic and van der Waals interactions. Historically these modes of binding have given MIPs only small re-binding capacities and very limited selectivities. This program has shown that each mode of interaction can be made more powerful than previously suspected and that combinations of different supramolecular interaction modes can produce remarkable synergisms. The results of this systematic study provide a firm foundation for tailoring molecular imprinted polymers for reclamation of specific metal ion, including those important to the DOE EM mission.

DARYLE H BUSCH RICHARD S GIVENS

2004-12-10T23:59:59.000Z

73

U.S. monthly oil production tops 8 million barrels per day for...  

U.S. Energy Information Administration (EIA) Indexed Site

barrels per day for the first time in 25 years, according to the new monthly energy forecast from the U.S. Energy Information Administration. Rising oil output from tight oil...

74

www.myresources.com.au OIL & GAS BULLETIN VOL. 15, NO. 11 PAGE 9 Safety first: Oil rigs off the north west shelf will be studied for  

E-Print Network (OSTI)

www.myresources.com.au OIL & GAS BULLETIN VOL. 15, NO. 11 PAGE 9 NEWS Safety first: Oil rigs off for future successful tight gas exploration projects in Western Australia has been set up and studies the tight gas sand field at its exploration permit in the South Perth Basin. Professor Rezaee said

75

Naturally fractured tight gas reservoir detection optimization  

SciTech Connect

Building upon the partitioning of the Greater Green River Basin (GGRB) that was conducted last quarter, the goal of the work this quarter has been to conclude evaluation of the Stratos well and the prototypical Green River Deep partition, and perform the fill resource evaluation of the Upper Cretaceous tight gas play, with the goal of defining target areas of enhanced natural fracturing. The work plan for the quarter of November 1-December 31, 1998 comprised four tasks: (1) Evaluation of the Green River Deep partition and the Stratos well and examination of potential opportunity for expanding the use of E and P technology to low permeability, naturally fractured gas reservoirs, (2) Gas field studies, and (3) Resource analysis of the balance of the partitions.

NONE

1999-06-01T23:59:59.000Z

76

Air Tightness of New U.S. Houses: A Preliminary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Tightness of New U.S. Houses: A Preliminary Report Tightness of New U.S. Houses: A Preliminary Report Title Air Tightness of New U.S. Houses: A Preliminary Report Publication Type Report LBNL Report Number LBNL-48671 Year of Publication 2002 Authors Sherman, Max H., and Nance Matson Abstract Most dwellings in the United States are ventilated primarily through leaks in the building shell (i.e., infiltration) rather than by whole-house mechanical ventilation systems. Consequently, quantification of envelope air-tightness is critical to determining how much energy is being lost through infiltration and how much infiltration is contributing toward ventilation requirements. Envelope air tightness and air leakage can be determined from fan pressurization measurements with a blower door. Tens of thousands of unique fan pressurization measurements have been made of U.S. dwellings over the past decades. LBNL has collected the available data on residential infiltration into its Residential Diagnostics Database, with support from the U.S. Department of Energy. This report documents the envelope air leakage section of the LBNL database, with particular emphasis on new construction. The work reported here is an update of similar efforts carried out a decade ago, which used available data largely focused on the housing stock, rather than on new construction. The current effort emphasizes shell tightness measurements made on houses soon after they are built. These newer data come from over two dozen datasets, including over 73,000 measurements spread throughout a majority of the U.S. Roughly one-third of the measurements are for houses identified as energy-efficient through participation in a government or utility program. As a result, the characteristics reported here provide a quantitative estimate of the impact that energy-efficiency programs have on envelope tightness in the US, as well as on trends in construction.

77

DOE Showcases Websites for Tight Gas Resource Development | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Showcases Websites for Tight Gas Resource Development Showcases Websites for Tight Gas Resource Development DOE Showcases Websites for Tight Gas Resource Development July 30, 2009 - 1:00pm Addthis Washington, D.C. -- Two U.S. Department of Energy (DOE) projects funded by the Office of Fossil Energy's National Energy Technology Laboratory provide quick and easy web-based access to sought after information on tight-gas sandstone plays. Operators can use the data on the websites to expand natural gas recovery in the San Juan Basin of New Mexico and the central Appalachian Basin of West Virginia and Pennsylvania. As production from conventional natural gas resources declines, natural gas from tight-gas sandstone formations is expected to contribute a growing percentage to the nation's energy supply. "Tight gas" is natural gas

78

NETL: Oil & Natural Gas Projects: Shale Oil Upgrading Utilizing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Companies providing oil samples of at least five (5) gallons include Chevron, Oil Shale Exploration Company (OSEC), and Red Leaf Resources, Inc. Background Work performed...

79

Assumptions to the Annual Energy Outlook 1999 - Oil and Gas Supply Module  

Gasoline and Diesel Fuel Update (EIA)

oil.gif (4836 bytes) oil.gif (4836 bytes) The NEMS Oil and Gas Supply Module (OGSM) constitutes a comprehensive framework with which to analyze oil and gas supply. A detailed description of the OGSM is provided in the EIA publication, Model Documentation Report: The Oil and Gas Supply Module (OGSM), DOE/EIA-M063(99), (Washington, DC, January 1999). The OGSM provides crude oil and natural gas short-term supply parameters to both the Natural Gas Transmission and Distribution Module and the Petroleum Market Module. The OGSM simulates the activity of numerous firms that produce oil and natural gas from domestic fields throughout the United States, acquire natural gas from foreign producers for resale in the United States, or sell U.S. gas to foreign consumers. OGSM encompasses domestic crude oil and natural gas supply by both conventional and nonconventional recovery techniques. Nonconventional recovery includes enhanced oil recovery and unconventional gas recovery from tight gas formations, gas shale, and coalbeds. Foreign gas transactions may occur via either pipeline (Canada or Mexico) or transport ships as liquefied natural gas (LNG).

80

Methods and apparatus for measuring the tightness of enclosures  

DOE Patents (OSTI)

Disclosed are methods and apparatus for measuring tightness of an enclosure such as a building by utilizing alternating pressurization techniques. One method comprises providing apparatus capable of causing an internal volume change for the enclosure, the apparatus including a means for determining the instantaneous volume change, and a means for determining the instantaneous pressure within the enclosure. The apparatus is operated within the enclosure to change the volume thereof, and at least one of the frequency and the displacement is adjusted to achieve a root mean square pressure in the enclosure approximately equal to a reference pressure. At that pressure, the leakage of the enclosure is determined from the instantaneous displacement and instantaneous pressure values. 3 figs.

Modera, M.P.; Sherman, M.H.

1987-01-13T23:59:59.000Z

Note: This page contains sample records for the topic "including tight oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

A-84: Tight Binding Understanding of Carbon Defects in Steel  

Science Conference Proceedings (OSTI)

Thus, a coherent transferable tight-binding (TB) parameterization was developed for Fe-C by ... A-54: Used Foundry Sand Reclamation in New Vibratory Unit.

82

Oil shale, tar sand, coal research advanced exploratory process technology, jointly sponsored research  

SciTech Connect

Accomplishments for the past quarter are presented for the following five tasks: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale research covers oil shale process studies. Tar sand research is on process development of Recycle Oil Pyrolysis and Extraction (ROPE) Process. Coal research covers: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes: advanced process concepts;advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO[sub 2] HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; NMR analysis of samples from the ocean drilling program; in situ treatment of manufactured gas plant contaminated soils demonstration program; and solid state NMR analysis of naturally and artificially matured kerogens.

Speight, J.G.

1992-01-01T23:59:59.000Z

83

Documentation of the Oil and Gas Supply Module (OGSM)  

Science Conference Proceedings (OSTI)

The purpose of this report is to define the objectives of the Oil and Gas Supply Model (OGSM), to describe the model`s basic approach, and to provide detail on how the model works. This report is intended as a reference document for model analysts, users, and the public. Projected production estimates of US crude oil and natural gas are based on supply functions generated endogenously within National Energy Modeling System (NEMS) by the OGSM. OGSM encompasses domestic crude oil and natural gas supply by both conventional and nonconventional recovery techniques. Nonconventional recovery includes enhanced oil recovery (EOR), and unconventional gas recovery (UGR) from tight gas formations, Devonian/Antrim shale and coalbeds. Crude oil and natural gas projections are further disaggregated by geographic region. OGSM projects US domestic oil and gas supply for six Lower 48 onshore regions, three offshore regions, and Alaska. The general methodology relies on forecasted profitability to determine exploratory and developmental drilling levels for each region and fuel type. These projected drilling levels translate into reserve additions, as well as a modification of the production capacity for each region. OGSM also represents foreign trade in natural gas, imports and exports by entry region. Foreign gas trade may occur via either pipeline (Canada or Mexico), or via transport ships as liquefied natural gas (LNG). These import supply functions are critical elements of any market modeling effort.

NONE

1998-01-01T23:59:59.000Z

84

DAG in Oil Laboratory Proficiency Testing  

Science Conference Proceedings (OSTI)

Lab proficiency testing for DAG in Oil to determine Total DAG.Samples include canola oil and soybean oil. DAG in Oil Laboratory Proficiency Testing Laboratory Proficiency Program (LPP) aocs applicants certified chemist chemists Lab laboratories Laborato

85

Oil and Gas Exploration  

E-Print Network (OSTI)

Metals Industrial Minerals Oil and Gas Geothermal Exploration Development Mining Processing Nevada, oil and gas, and geothermal activities and accomplishments in Nevada: production statistics, exploration and development including drilling for petroleum and geothermal resources, discoveries of ore

Tingley, Joseph V.

86

Oil shale, tar sand, coal research, advanced exploratory process technology jointly sponsored research  

SciTech Connect

Accomplishments for the quarter are presented for the following areas of research: oil shale, tar sand, coal, advanced exploratory process technology, and jointly sponsored research. Oil shale research includes; oil shale process studies, environmental base studies for oil shale, and miscellaneous basic concept studies. Tar sand research covers process development. Coal research includes; underground coal gasification, coal combustion, integrated coal processing concepts, and solid waste management. Advanced exploratory process technology includes; advanced process concepts, advanced mitigation concepts, and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO[sub 2] HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesa Verde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced recovery techniques; and menu driven access to the WDEQ Hydrologic Data Management Systems.

1992-01-01T23:59:59.000Z

87

Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research  

SciTech Connect

Progress made in five research programs is described. The subtasks in oil shale study include oil shale process studies and unconventional applications and markets for western oil shale.The tar sand study is on recycle oil pyrolysis and extraction (ROPE) process. Four tasks are described in coal research: underground coal gasification; coal combustion; integrated coal processing concepts; and sold waste management. Advanced exploratory process technology includes: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research covers: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO[sub 2] HUFF-N-PUFF process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; shallow oil production using horizontal wells with enhanced oil recovery techniques; NMR analysis of sample from the ocean drilling program; and menu driven access to the WDEQ hydrologic data management system.

Not Available

1992-01-01T23:59:59.000Z

88

Evaluation of the Sparton Tight-Tolerance AXBT  

Science Conference Proceedings (OSTI)

Forty-six near-simultaneous pairs of conductivity-temperature-depth (CTD) and Sparton “tight tolerance” air expendable bathythermograph (AXBT) temperature profiles were obtained in summer 1991 from a location in the Sargasso Sea. The data were ...

Janice D. Boyd; Robert S. Linzell

1993-12-01T23:59:59.000Z

89

File:EIA-tight-gas.pdf | Open Energy Information  

Open Energy Info (EERE)

tight-gas.pdf tight-gas.pdf Jump to: navigation, search File File history File usage Major Tight Gas Plays, Lower 48 States Size of this preview: 776 × 600 pixels. Full resolution ‎(1,650 × 1,275 pixels, file size: 2.04 MB, MIME type: application/pdf) Description Major Tight Gas Plays, Lower 48 States Sources U.S. Energy Information Administration Related Technologies Natural Gas Creation Date 2010-06-06 Extent National Countries United States UN Region Northern America File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 18:44, 20 December 2010 Thumbnail for version as of 18:44, 20 December 2010 1,650 × 1,275 (2.04 MB) MapBot (Talk | contribs) Automated bot upload You cannot overwrite this file.

90

Biochemical upgrading of oils  

DOE Patents (OSTI)

A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing in organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed.

Premuzic, Eugene T. (East Moriches, NY); Lin, Mow S. (Rocky Point, NY)

1999-01-12T23:59:59.000Z

91

Biochemical upgrading of oils  

DOE Patents (OSTI)

A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed. 121 figs.

Premuzic, E.T.; Lin, M.S.

1999-01-12T23:59:59.000Z

92

Consumer Winter Heating Oil Costs  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: The outlook for heating oil costs this winter, due to high crude oil costs and tight heating oil supplies, breaks down to an expected increase in heating expenditures for a typical oil-heated household of more than $200 this winter, the result of an 18% increase in the average price and an 11% increase in consumption. The consumption increase is due to the colder than normal temperatures experienced so far this winter and our expectations of normal winter weather for the rest of this heating season. Last winter, Northeast heating oil (and diesel fuel) markets experienced an extremely sharp spike in prices when a severe weather situation developed in late January. It is virtually impossible to gauge the probability of a similar (or worse) price shock recurring this winter,

93

The effect of biofuel on the international oil market  

E-Print Network (OSTI)

hand, the literature on crude oil usually assumes a COFconsequence of extracting crude oil. User costs include thecountries, at times when crude oil prices surged during 2002

Hochman, Gal; Rajagopal, Deepak; Zilberman, David D.

2010-01-01T23:59:59.000Z

94

PURADYN Oil Bypass Filtration System Evaluation Test Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

including: * Less dependency on foreign oil * Less oil disposed as waste products * Lower oil disposal costs * Less downtime of equipment * Reduced vehicle maintenance costs *...

95

Crude Oil  

U.S. Energy Information Administration (EIA) Indexed Site

Barrels) Product: Crude Oil Liquefied Petroleum Gases Distillate Fuel Oil Residual Fuel Oil Still Gas Petroleum Coke Marketable Petroleum Coke Catalyst Petroleum Coke Other...

96

OIL PRODUCTION  

NLE Websites -- All DOE Office Websites (Extended Search)

OIL PRODUCTION Enhanced Oil Recovery (EOR) is a term applied to methods used for recovering oil from a petroleum reservoir beyond that recoverable by primary and secondary methods....

97

Table 4. Crude oil production and resources (million barrels)  

U.S. Energy Information Administration (EIA)

2013 EIA/ARI unproved shale oil technically recoverable resources (TRR) 2012 USGS conventional unproved oil TRR, including reserve growth

98

North American spot crude oil benchmarks likely diverging ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

99

What is the difference between crude oil, petroleum ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

100

Bakken crude oil price differential to WTI narrows over ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

Note: This page contains sample records for the topic "including tight oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Shale oil and shale gas resources are globally abundant  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

102

Acoustic wave propagation in cracked porous rocks and application to interpreting acoustic log data in tight formations  

Science Conference Proceedings (OSTI)

Rocks in earth's crust usually contain both pores and cracks. Typical examples include tight sandstone and shale rocks that have low porosity but contain abundant microcracks. By extending the classic Biot's poroelastic wavetheory to include the effects of cracks

Xiaoming Tang; Xuelian Chen

2012-01-01T23:59:59.000Z

103

Tight gas sands study breaks down drilling and completion costs  

Science Conference Proceedings (OSTI)

Given the high cost to drill and complete tight gas sand wells, advances in drilling and completion technology that result in even modest cost savings to the producer have the potential to generate tremendous savings for the natural gas industry. The Gas Research Institute sponsored a study to evaluate drilling and completion costs in selected tight gas sands. The objective of the study was to identify major expenditures associated with tight gas sand development and determine their relative significance. A substantial sample of well cost data was collected for the study. Individual well cost data were collected from nearly 300 wells in three major tight gas sand formations: the Cotton Valley sand in East Texas, the Frontier sand in Wyoming, and the Wilcox sand in South Texas. The data were collected and organized by cost category for each formation. After the information was input into a data base, a simple statistical analysis was performed. The statistical analysis identified data discrepancies that were then resolved, and it helped allow conclusions to be drawn regarding drilling and completion costs in these tight sand formations. Results are presented.

Brunsman, B. (Gas Research Inst., Chicago, IL (United States)); Saunders, B. (S.A. Holditch Associates Inc., College Station, TX (United States))

1994-06-06T23:59:59.000Z

104

U.S. Crude Oil Inventory Outlook  

Gasoline and Diesel Fuel Update (EIA)

9 9 Notes: Consistent with OECD inventories, U.S. inventories are low. They have been well below the normal range for over one year. Crude oil stocks in the United States, while tending to increase of late toward more normal levels, remain well below average. At the end of December, crude oil stocks were near 289 million barrels, about 4% below the 5-year average, and slightly higher than at the end of 1999. The latest weekly data, for the week ending January 19, show U.S. crude oil stocks at 286 million barrels, just about a million barrels above their level a year ago. Near-term tightness in U.S. crude oil markets have kept current prices above forward prices, reflecting current strength in crude oil demand relative to supply. Relatively strong U.S. oil demand next year should keep crude oil

105

STEO January 2013 - oil production increase  

U.S. Energy Information Administration (EIA) Indexed Site

oil production to increase in 2013 and 2014 oil production to increase in 2013 and 2014 U.S. crude oil production is expected to keep rising over the next two years. America's oil output will jump nearly 900,000 barrels per day in 2013 to an average 7.3 million barrels a day, according to the latest monthly forecast from the U.S. Energy Information Administration. This would mark the biggest one-year increase in output since U.S. commercial crude oil production began in 1859. U.S. daily oil production is expected to rise by another 600,000 barrels in 2014 to nearly 8 million barrels a day, the highest level since 1988. Most of America's oil production growth over the next two years will come from more drilling activity in tight shale rock formations located in North Dakota and Texas

106

Regional Vermont Agency Provides Work in Tight-Knit Communities |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vermont Agency Provides Work in Tight-Knit Communities Vermont Agency Provides Work in Tight-Knit Communities Regional Vermont Agency Provides Work in Tight-Knit Communities June 11, 2010 - 4:33pm Addthis Weatherization auditors and crews assist in making a Vermont home more energy-efficient in New England winters. | Photo Courtesy of Southeastern Vermont Community Action (SEVCA) Agency | Weatherization auditors and crews assist in making a Vermont home more energy-efficient in New England winters. | Photo Courtesy of Southeastern Vermont Community Action (SEVCA) Agency | Joshua DeLung "I think everyone has their heart in it. I think we see weatherization as a really worthy process." Morgan McKane, weatherization auditor at SEVCA Morgan McKane spent most of his career in southeast Vermont working in the

107

Selection of fracture fluid for stimulating tight gas reservoirs  

E-Print Network (OSTI)

Essentially all producing wells drilled in tight gas sands and shales are stimulated using hydraulic fracture treatments. The development of optimal fracturing procedures, therefore, has a large impact on the long-term economic viability of the wells. The industry has been working on stimulation technology for more than 50 years, yet practices that are currently used may not always be optimum. Using information from the petroleum engineering literature, numerical and analytical simulators, surveys from fracturing experts, and statistical analysis of production data, this research provides guidelines for selection of the appropriate stimulation treatment fluid in most gas shale and tight gas reservoirs. This study takes into account various parameters such as the type of formation, the presence of natural fractures, reservoir properties, economics, and the experience of experts we have surveyed. This work provides a guide to operators concerning the selection of an appropriate type of fracture fluid for a specific set of conditions for a tight gas reservoir.

Malpani, Rajgopal Vijaykumar

2006-12-01T23:59:59.000Z

108

Qubits from tight knots and bent nano-bars  

E-Print Network (OSTI)

We propose a novel mechanism for creating a qubit based on a tight knot, that is a nano-quantum wire system so small and so cold as to be quantum coherent with respect to curvature-induced effects. To establish tight knots as legitimate candidates for qubits, we propose an effective curvature-induced potential that produces the two-level system and identify the tunnel coupling between the two local states. We propose also a different design of nano-mechanical qubit based on twisted nano-rods. We describe how both devices can be manipulated. Also we outline possible decoherence channels, detection schemes and experimental setups.

Victor Atanasov; Rossen Dandoloff

2008-03-21T23:59:59.000Z

109

Qubits from tight knots and bent nano-bars  

E-Print Network (OSTI)

We propose a novel mechanism for creating a qubit based on a tight knot, that is a nano-quantum wire system so small and so cold as to be quantum coherent with respect to curvature-induced effects. To establish tight knots as legitimate candidates for qubits, we propose an effective curvature-induced potential that produces the two-level system and identify the tunnel coupling between the two local states. We propose also a different design of nano-mechanical qubit based on twisted nano-rods. We describe how both devices can be manipulated. Also we outline possible decoherence channels, detection schemes and experimental setups.

Atanasov, Victor

2008-01-01T23:59:59.000Z

110

Oil shale, tar sand, coal research advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, October--December 1992  

SciTech Connect

Accomplishments for the past quarter are presented for the following five tasks: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale research covers oil shale process studies. Tar sand research is on process development of Recycle Oil Pyrolysis and Extraction (ROPE) Process. Coal research covers: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes: advanced process concepts;advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; NMR analysis of samples from the ocean drilling program; in situ treatment of manufactured gas plant contaminated soils demonstration program; and solid state NMR analysis of naturally and artificially matured kerogens.

Speight, J.G.

1992-12-31T23:59:59.000Z

111

Palm Oil: Production, Processing, Characterization, and Uses  

Science Conference Proceedings (OSTI)

This book serves as a rich source of information on the production, processing, characterization and utilization of palm oil and its components. It also includes several topics related to oil palm genomics, tissue culture and genetic engineering of oil pal

112

PHYS 551 Lecture #27 Title: TightBinding  

E-Print Network (OSTI)

PHYS 551 Lecture #27 Title: Tight­Binding Now that we have shown that /( ~ k; ~r) = \\Gamma P ~ R e i ~ k \\Delta ~ R OE A (~r \\Gamma ~ R) satisfies the Bloch condition, all that remains is to grind the calculation explicitly. First, the wave­function /( ~ k; ~r) must be normalized. Thus Z / \\Lambda / dV = 1 = j

Winokur, Michael

113

Crude Oil Imports from Qatar  

U.S. Energy Information Administration (EIA)

PAD District Imports by Country of Origin ... Crude oil includes imports for storage in the Stategic Petroleum Reserve. The Persian Gulf includes Bahrain, ...

114

Crude Oil Imports from Sweden  

U.S. Energy Information Administration (EIA)

PAD District Imports by Country of Origin ... Crude oil includes imports for storage in the Stategic Petroleum Reserve. The Persian Gulf includes Bahrain, ...

115

Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, April--June 1993  

SciTech Connect

Progress made in five areas of research is described briefly. The subtask in oil shale research is on oil shale process studies. For tar sand the subtask reported is on process development. Coal research includes the following subtasks: Coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes the following: Advanced process concepts; advanced mitigation concepts; oil and gas technology. Jointly sponsored research includes: Organic and inorganic hazardous waste stabilization; CROW{sup TM} field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sup 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid-state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; characterization of petroleum residua; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process;NMR analysis of samples from the ocean drilling program; oil field waste cleanup using tank bottom recovery process; remote chemical sensor development; in situ treatment of manufactured gas plant contaminated soils demonstration program; solid-state NMR analysis of Mowry formation shale from different sedimentary basins; solid-state NMR analysis of naturally and artificially matured kerogens; and development of effective method for the clean-up of natural gas.

1993-09-01T23:59:59.000Z

116

Non-Darcy flow analysis through tight sand formations  

SciTech Connect

An experimental setup was designed and constructed to measure the flow parameters through tight sand porous media. The two kinds of coreholders being used are Hassler-type and one in which the core sample is encapsulated in layers of epoxy resin and metal alloy. A gas flow measuring system was also developed for accurately measuring very low gas flow rates. Using Darcy's Law as a tool for analysis of the experimental data, we obtained that the gas permeability of the SFE No. 3 (Staged Field Experiment No. 3) core samples is a linear function of reciprocal mean pressure, and decreases with overburden pressure. The water permeability is also decreased with overburden pressure and is about 6 times smaller than gas permeability for the samples that we have tested. No significant hysteresis effect was obtained for dry gas permeability after several two phase flow runs. We successfully tested our encapsulated coreholder and measured gas flow rate through a tight sand core sample at different pressure drops. The results showed that the experimental runs using Hassler-type coreholder at overburden pressures higher than 2000 psig will probably give us the reliable experimental data. The experimental data obtained from the two different types of tight sandstones were analyzed using the Non-Darcy flow equation. The results showed the importance and reliability of the Non-Darcy formulation for describing the flow behavior under different overburden and system pressures. Non-Darcy's velocity for both gas and liquid phase were incorporated into an existing FORTRAN code for simulation of the tight gas reservoirs. The modified program was tested to compare the initial production data of SFE No. 2 well. Our simulation showed in the case of local turbulence and non-uniformities in the tight sand formation, the value of [beta] increases and Non-Darcy effect becomes important.

Wang, Ching-Huei.

1992-01-01T23:59:59.000Z

117

OPTIMIZATION OF INFILL DRILLING IN NATURALLY-FRACTURED TIGHT-GAS RESERVOIRS  

Science Conference Proceedings (OSTI)

A major goal of industry and the U.S. Department of Energy (DOE) fossil energy program is to increase gas reserves in tight-gas reservoirs. Infill drilling and hydraulic fracture stimulation in these reservoirs are important reservoir management strategies to increase production and reserves. Phase II of this DOE/cooperative industry project focused on optimization of infill drilling and evaluation of hydraulic fracturing in naturally-fractured tight-gas reservoirs. The cooperative project involved multidisciplinary reservoir characterization and simulation studies to determine infill well potential in the Mesaverde and Dakota sandstone formations at selected areas in the San Juan Basin of northwestern New Mexico. This work used the methodology and approach developed in Phase I. Integrated reservoir description and hydraulic fracture treatment analyses were also conducted in the Pecos Slope Abo tight-gas reservoir in southeastern New Mexico and the Lewis Shale in the San Juan Basin. This study has demonstrated a methodology to (1) describe reservoir heterogeneities and natural fracture systems, (2) determine reservoir permeability and permeability anisotropy, (3) define the elliptical drainage area and recoverable gas for existing wells, (4) determine the optimal location and number of new in-fill wells to maximize economic recovery, (5) forecast the increase in total cumulative gas production from infill drilling, and (6) evaluate hydraulic fracture simulation treatments and their impact on well drainage area and infill well potential. Industry partners during the course of this five-year project included BP, Burlington Resources, ConocoPhillips, and Williams.

Lawrence W. Teufel; Her-Yuan Chen; Thomas W. Engler; Bruce Hart

2004-05-01T23:59:59.000Z

118

X-ray analysis can improve recovery of oil and natural gas |...  

NLE Websites -- All DOE Office Websites (Extended Search)

and gas industries are undergoing a revolution that has opened up previously inaccessible resources trapped in shale and tight play formations. Oil and GasFact SheetJanuary 2013...

119

Air tightness of new houses in the U.S.: A preliminary report  

SciTech Connect

Most dwellings in the United States are ventilated primarily through leaks in the building shell (i.e., infiltration) rather than by whole-house mechanical ventilation systems. Consequently, quantification of envelope air-tightness is critical to determining how much energy is being lost through infiltration and how much infiltration is contributing toward ventilation requirements. Envelope air tightness and air leakage can be determined from fan pressurization measurements with a blower door. Tens of thousands of unique fan pressurization measurements have been made of U.S. dwellings over the past decades. LBNL has collected the available data on residential infiltration into its Residential Diagnostics Database, with support from the U.S. Department of Energy. This report documents the envelope air leakage section of the LBNL database, with particular emphasis on new construction. The work reported here is an update of similar efforts carried out a decade ago, which used available data largely focused on the housing stock, rather than on new construction. The current effort emphasizes shell tightness measurements made on houses soon after they are built. These newer data come from over two dozen datasets, including over 73,000 measurements spread throughout a majority of the U.S. Roughly one-third of the measurements are for houses identified as energy-efficient through participation in a government or utility program. As a result, the characteristics reported here provide a quantitative estimate of the impact that energy-efficiency programs have on envelope tightness in the US, as well as on trends in construction.

Sherman, Max H.; Matson, Nance E.

2002-03-01T23:59:59.000Z

120

Utah Heavy Oil Program  

Science Conference Proceedings (OSTI)

The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987 technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.

J. Bauman; S. Burian; M. Deo; E. Eddings; R. Gani; R. Goel; C.K. Huang; M. Hogue; R. Keiter; L. Li; J. Ruple; T. Ring; P. Rose; M. Skliar; P.J. Smith; J.P. Spinti; P. Tiwari; J. Wilkey; K. Uchitel

2009-10-20T23:59:59.000Z

Note: This page contains sample records for the topic "including tight oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Documentation of the Oil and Gas Supply Module (OGSM)  

Science Conference Proceedings (OSTI)

The purpose of this report is to define the objectives of the Oil and Gas Supply Model (OGSM), to describe the model`s basic approach, and to provide detail on how the model works. This report is intended as a reference document for model analysts, users, and the public. It is prepared in accordance with the Energy Information Administration`s (EIA) legal obligation to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, Section 57(b)(2)). Projected production estimates of U.S. crude oil and natural gas are based on supply functions generated endogenously within National Energy Modeling System (NEMS) by the OGSM. OGSM encompasses domestic crude oil and natural gas supply by both conventional and nonconventional recovery techniques. Nonconventional recovery includes enhanced oil recovery (EOR), and unconventional gas recovery (UGR) from tight gas formations, Devonian shale and coalbeds. Crude oil and natural gas projections are further disaggregated by geographic region. OGSM projects U.S. domestic oil and gas supply for six Lower 48 onshore regions, three offshore regions, and Alaska. The general methodology relies on forecasted drilling expenditures and average drilling costs to determine exploratory and developmental drilling levels for each region and fuel type. These projected drilling levels translate into reserve additions, as well as a modification of the production capacity for each region. OGSM also represents foreign trade in natural gas, imports and exports by entry region. Foreign gas trade may occur via either pipeline (Canada or Mexico), or via transport ships as liquefied natural gas (LNG). These import supply functions are critical elements of any market modeling effort.

NONE

1995-10-24T23:59:59.000Z

122

OIl Speculation  

Gasoline and Diesel Fuel Update (EIA)

Investor Investor Flows and the 2008 Boom/Bust in Oil Prices Kenneth J. Singleton 1 August 10, 2011 1 Graduate School of Business, Stanford University, kenneths@stanford.edu. This research is the outgrowth of a survey paper I prepared for the Air Transport Association of America. I am grateful to Kristoffer Laursen for research assistance and to Kristoffer and Stefan Nagel for their comments. Abstract This paper explores the impact of investor flows and financial market conditions on returns in crude-oil futures markets. I begin by arguing that informational frictions and the associated speculative activity may induce prices to drift away from "fundamental" values and show increased volatility. This is followed by a discussion of the interplay between imperfect infor- mation about real economic activity, including supply, demand, and inventory accumulation, and speculative

123

Advanced Hydraulic Fracturing Technology for Unconventional Tight Gas Reservoirs  

Science Conference Proceedings (OSTI)

The objectives of this project are to develop and test new techniques for creating extensive, conductive hydraulic fractures in unconventional tight gas reservoirs by statistically assessing the productivity achieved in hundreds of field treatments with a variety of current fracturing practices ranging from 'water fracs' to conventional gel fracture treatments; by laboratory measurements of the conductivity created with high rate proppant fracturing using an entirely new conductivity test - the 'dynamic fracture conductivity test'; and by developing design models to implement the optimal fracture treatments determined from the field assessment and the laboratory measurements. One of the tasks of this project is to create an 'advisor' or expert system for completion, production and stimulation of tight gas reservoirs. A central part of this study is an extensive survey of the productivity of hundreds of tight gas wells that have been hydraulically fractured. We have been doing an extensive literature search of the SPE eLibrary, DOE, Gas Technology Institute (GTI), Bureau of Economic Geology and IHS Energy, for publicly available technical reports about procedures of drilling, completion and production of the tight gas wells. We have downloaded numerous papers and read and summarized the information to build a database that will contain field treatment data, organized by geographic location, and hydraulic fracture treatment design data, organized by the treatment type. We have conducted experimental study on 'dynamic fracture conductivity' created when proppant slurries are pumped into hydraulic fractures in tight gas sands. Unlike conventional fracture conductivity tests in which proppant is loaded into the fracture artificially; we pump proppant/frac fluid slurries into a fracture cell, dynamically placing the proppant just as it occurs in the field. From such tests, we expect to gain new insights into some of the critical issues in tight gas fracturing, in particular the roles of gel damage, polymer loading (water-frac versus gel frac), and proppant concentration on the created fracture conductivity. To achieve this objective, we have designed the experimental apparatus to conduct the dynamic fracture conductivity tests. The experimental apparatus has been built and some preliminary tests have been conducted to test the apparatus.

Stephen Holditch; A. Daniel Hill; D. Zhu

2007-06-19T23:59:59.000Z

124

Heating oil prices rise due to winter demand and crude oil prices ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

125

Table 5.2 Crude Oil Production and Crude Oil Well Productivity ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

126

Oil shale, tar sand, coal research, advanced exploratory process technology jointly sponsored research. Quarterly technical progress report, April--June 1992  

SciTech Connect

Accomplishments for the quarter are presented for the following areas of research: oil shale, tar sand, coal, advanced exploratory process technology, and jointly sponsored research. Oil shale research includes; oil shale process studies, environmental base studies for oil shale, and miscellaneous basic concept studies. Tar sand research covers process development. Coal research includes; underground coal gasification, coal combustion, integrated coal processing concepts, and solid waste management. Advanced exploratory process technology includes; advanced process concepts, advanced mitigation concepts, and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesa Verde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced recovery techniques; and menu driven access to the WDEQ Hydrologic Data Management Systems.

1992-12-01T23:59:59.000Z

127

Air quality in tightly sealed and passive homes  

DOE Green Energy (OSTI)

Indoor air quality has attracted increasing attention during the past few yars. Pollutants generated from combustion, building materials, and human activities may reach significant levels in the indoor environment to produce adverse health effects. This report deals with the classes of pollutants and their sources, and the significance of reported levels, possible health effects, and control strategies in relation to tightly sealed and passive solar construction techniques. In tightly sealed homes, residential air-to-air heat exchangers, whose design and performance are discussed, offer one method of improving air quality at reasonable cost. It is recommended that further research be implemented to identify hazardous concentrations of pollutants and set standards to minimize health impacts in the search for new energy innovations.

Scott, L.A.

1981-09-01T23:59:59.000Z

128

Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, January--March 1993  

SciTech Connect

Accomplishments for the past quarter are briefly described for the following areas of research: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale and tar sand researches cover processing studies. Coal research includes: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology covers: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW{sup TM} field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid-state NMR analysis of Mesaverde Group, Greater Green River Basin tight gas sands; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; oil field waste cleanup using tank bottom recovery process; remote chemical sensor development; in situ treatment of manufactured gas plant contaminated soils demonstration program; solid-state NMR analysis of naturally and artificially matured kerogens; and development of an effective method for the clean-up of natural gas.

1993-09-01T23:59:59.000Z

129

Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, July--September 1992  

SciTech Connect

Progress made in five research programs is described. The subtasks in oil shale study include oil shale process studies and unconventional applications and markets for western oil shale.The tar sand study is on recycle oil pyrolysis and extraction (ROPE) process. Four tasks are described in coal research: underground coal gasification; coal combustion; integrated coal processing concepts; and sold waste management. Advanced exploratory process technology includes: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research covers: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO{sub 2} HUFF-N-PUFF process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; shallow oil production using horizontal wells with enhanced oil recovery techniques; NMR analysis of sample from the ocean drilling program; and menu driven access to the WDEQ hydrologic data management system.

Not Available

1992-12-31T23:59:59.000Z

130

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA)

PAD District level net receipts includes implied net ... Total stocks do not include distillate fuel oil stocks located in the Northeast Heating Oil ...

131

Outlook for U.S. shale oil and gas  

Gasoline and Diesel Fuel Update (EIA)

shale oil and gas shale oil and gas IAEE/AEA Meeting January 4, 2014 | Philadelphia, PA By Adam Sieminski, EIA Administrator Key insights on drilling productivity and production trends Adam Sieminski, IAEE/AEA January 4, 2014 2 * The U.S. has experienced a rapid increase in natural gas and oil production from shale and other tight resources * Six tight oil and shale gas plays taken together account for nearly 90% of domestic oil production growth and virtually all domestic natural gas production growth over the last 2 years * Higher drilling efficiency and new well productivity, rather than an increase in the rig count, have been the main drivers of recent production growth * Steep legacy production decline rates are being offset by growing

132

Shale oil cracking. 2. Effect on oil composition  

DOE Green Energy (OSTI)

Results from spectroscopic investigations are presented that demonstrate the effect of oil cracking on shale oil composition. Techniques used include infrared spectroscopy, capillary column gas chromatography/mass spectroscopy and /sup 13/C nuclear magnetic resonance. We show that cracking causes an increase in aromatic and alkene content of the oil. We compare our results for oils prepared in the laboratory with oils prepared in the TOSCO-II semi-works and in modified and true-in-situ combustion retorts. We demonstrate that the napthalene/2-methyl-naphthalene ratio is a good indicator of cracking conditions in an oil shale retort.

Burnham, A.K.; Sanborn, R.H.; Crawford, R.W.; Newton, J.C.; Happe, J.A.

1980-08-01T23:59:59.000Z

133

Edible Oils Package  

Science Conference Proceedings (OSTI)

Contains four (4) titles regarding frying and edible oils. Edible Oils Package Food Science & Technology Health - Nutrition - Biochemistry Value Packages 1766A8D5F05863694E128DE1C47D07C3 This Value Package includes: ...

134

Oil from rock  

SciTech Connect

The article discusses first the Green River Formation oil shale projects in the western United States from which conservative estimates have suggested an output of 400,000 to 600,000 bbl/day of crude shale oil by 1990. The western reserves recoverable with present technology are said to exceed 600 billion (10/sup 9/) bbl. Three major considerations could limit the large-scale development of shale oil: availability of water, environmental factors, and socio-economic considerations. Water is used to obtain and process the crude shale oil, and additional water is needed to cool the spent shale and to establish new vegetation on top of it. Nitrogenous compounds and arsenic in crude shale oil are among potential pollutants. Spent shale contains salts that are potentially leachable, as well as organic pyrolytic products. Retorting oil shales may release more CO/sub 2/ through decomposition of carbonate minerals that will subsequently be generated by burning the oil produced. Topographic effects of oil shale mining may raise socio-economic problems. Next the article discusses the conversion of coal to liquid by pyrolysis or hydrogenation, including the Gulf solvent refined coal (SRC) and the Exxon (EDS) liquefaction processes. Also described in the South African SASOL process for producing synthetic fuel from coal. A parallel account is included on the estimated complete cycle of United States and of worldwide crude oil production, forecasting depletion within less than a century. 11 refs.

Walters, S.

1982-02-01T23:59:59.000Z

135

Transferable tight-binding parameters: An application to Ni and Ni-Al alloys  

Science Conference Proceedings (OSTI)

Two approaches for obtaining tight-binding parameters for metallic alloys are compared and contrasted with special regard for the application to large scale simulations such as may occur in tight-binding molecular dynamics studies.

Sluiter, M.H.F.; Singh, P.P.

1993-07-01T23:59:59.000Z

136

Postgraduate Handbook Courses, programs and any arrangements for programs including staff  

E-Print Network (OSTI)

corn oil; Camelina oil. One of the following: Trans-Esterification, Esterification, Hydrotreating-process renewable biomass and petroleum. 5 POTENTIALLY RELEVANT I Naphtha, LPG Camelina oil Hydrotreating 5 including peat, dung, plant-oils, bees wax, rendered animal fats, draft animals, natural derived sources

Benatallah, Boualem

137

Stocks of Total Crude Oil and Petroleum Products (Including SPR)  

U.S. Energy Information Administration (EIA)

Weekly data for RBOB with Ether, RBOB with Alcohol, and Reformulated GTAB Motor Gasoline Blending Components are discontinued as of the week ending June 4, ...

138

Status and outlook for shale gas and tight oil development in the U.S.  

Gasoline and Diesel Fuel Update (EIA)

Deloitte Energy Conference Deloitte Energy Conference May 21, 2013 | Washington, DC By Adam Sieminski, Administrator U.S. Shale Gas 2 Adam Sieminski , Deloitte, May 21, 2013 Domestic production of shale gas has grown dramatically over the past few years Adam Sieminski , Deloitte, May 21, 2013 3 shale gas production (dry) billion cubic feet per day Sources: LCI Energy Insight gross withdrawal estimates as of March 2013 and converted to dry production estimates with EIA-calculated average gross-to-dry shrinkage factors by state and/or shale play. Shale gas leads growth in total gas production through 2040 to reach half of U.S. output 4 U.S. dry natural gas production trillion cubic feet Source: EIA, Annual Energy Outlook 2013

139

Status and outlook for shale gas and tight oil development in the U.S.  

Gasoline and Diesel Fuel Update (EIA)

Energy Symposium, University of Oklahoma, Price College Energy Institute Energy Symposium, University of Oklahoma, Price College Energy Institute March 05, 2013 | Norman, OK by Adam Sieminski, Administrator EIA's mission and main functions Adam Sieminski , Energy Symposium, March 05, 2013 2 Independent Statistical and Analytical agency within the U.S. Department of Energy - EIA collects, analyzes, and disseminates independent and impartial energy information to promote sound policymaking, efficient markets, and public understanding of energy and its interaction with the economy and the environment. - By law, its data, analyses, and forecasts are independent of approval by any other officer or employee of the U.S. Government [EIA] ...is the gold standard for energy data around the world, and the

140

Status and outlook for shale gas and tight oil development in the U.S.  

Gasoline and Diesel Fuel Update (EIA)

Joint Forum on US Shale Gas & Pacific Gas Markets Joint Forum on US Shale Gas & Pacific Gas Markets May 14, 2013 | New York, NY By Adam Sieminski, Administrator U.S. Shale Gas 2 Adam Sieminski , May 14, 2013 Domestic production of shale gas has grown dramatically over the past few years Adam Sieminski , May 14, 2013 3 0 5 10 15 20 25 30 2000 2002 2004 2006 2008 2010 2012 Rest of US Marcellus (PA and WV) Haynesville (LA and TX) Eagle Ford (TX) Bakken (ND) Woodford (OK) Fayetteville (AR) Barnett (TX) Antrim (MI, IN, and OH) shale gas production (dry) billion cubic feet per day Sources: LCI Energy Insight gross withdrawal estimates as of March 2013 and converted to dry production estimates with EIA-calculated average gross-to-dry shrinkage factors by state and/or shale play. Shale gas leads growth in total gas production through 2040 to

Note: This page contains sample records for the topic "including tight oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Status and outlook for shale gas and tight oil development in the U.S.  

Gasoline and Diesel Fuel Update (EIA)

The Energy Council The Energy Council March 09, 2013 | Washington, DC by Adam Sieminski, Administrator EIA's mission and main functions Adam Sieminski, Energy Council March 09, 2013 2 Independent Statistical and Analytical agency within the U.S. Department of Energy - EIA collects, analyzes, and disseminates independent and impartial energy information to promote sound policymaking, efficient markets, and public understanding of energy and its interaction with the economy and the environment. - By law, its data, analyses, and forecasts are independent of approval by any other officer or employee of the U.S. Government [EIA] ...is the gold standard for energy data around the world, and the accessibility of it is so much greater than other places - Dan Yergin,

142

Status and outlook for shale gas and tight oil development in the U.S.  

U.S. Energy Information Administration (EIA)

Domestic production of shale gas has grown dramatically over the past few years Adam Sieminski , Deloitte, May 21, 2013

143

Status and outlook for shale gas and tight oil development in the U.S.  

U.S. Energy Information Administration (EIA)

Domestic production of shale gas has grown dramatically over the past few years Adam Sieminski , B of A/Merrill Lynch, April 20, 2013

144

Status and outlook for shale gas and tight oil development in the U.S.  

U.S. Energy Information Administration (EIA)

• Renewable Fuels Standard / RINS / cellulosic ethanol • Growth of natural gas use in transportation

145

Structural Oil Pan With Integrated Oil Filtration And Cooling System  

DOE Patents (OSTI)

An oil pan for an internal combustion engine includes a body defining a reservoir for collecting engine coolant. The reservoir has a bottom and side walls extending upwardly from the bottom to present a flanged lip through which the oil pan may be mounted to the engine. An oil cooler assembly is housed within the body of the oil pan for cooling lubricant received from the engine. The body includes an oil inlet passage formed integrally therewith for receiving lubricant from the engine and delivering lubricant to the oil cooler. In addition, the body also includes an oil pick up passage formed integrally therewith for providing fluid communication between the reservoir and the engine through the flanged lip.

Freese, V, Charles Edwin (Westland, MI)

2000-05-09T23:59:59.000Z

146

Oil and Oil Derivatives Compliance Requirements  

Science Conference Proceedings (OSTI)

... for international connection of oiled residues discharge ... C to + 163°C, fuels, lubricating oils and hydraulic ... fuel of gas turbine, crude oil, lubricating oil ...

2012-10-26T23:59:59.000Z

147

Industrial Oil Products Division  

Science Conference Proceedings (OSTI)

A forum for professionals involved in research, development, engineering, marketing, and testing of industrial products and co-products from fats and oils, including fuels, lubricants, coatings, polymers, paints, inks, cosmetics, dielectric fluids, and ad

148

Tight-binding model for hydrogen-silicon interactions  

SciTech Connect

We have developed an empirical tight-binding model for use in molecular-dynamics simulations to study hydrogen-silicon systems. The hydrogen-silicon interaction is constructed to reproduce the electronic energy levels and vibration frequencies of silane (SiH{sub 4}). Further use of the model in the studies of disilane (Si{sub 2}H{sub 6}) and of hydrogen on the Si(111) surface also yields results in good agreement with first-principles calculations and experiments.

Min, B.J.; Lee, Y.H.; Wang, C.Z.; Chan, C.T.; Ho, K.M. (Microelectronics Research Center, Ames Laboratory, Iowa State University, Ames, Iowa 50011 (United States) Department of Physics and Astronomy, Ames Laboratory, Iowa State University, Ames, Iowa 50011 (United States))

1992-03-15T23:59:59.000Z

149

PHYS 551 Lecture #27 Title: Tight-Binding  

E-Print Network (OSTI)

PHYS 551 Lecture #27 Title: Tight-Binding Now that we have shown that (~k;~r) = P ~R ei~k~RA(~r ~R-function (~k;~r) must be normalized. Thus Z dV = 1 = j j2 X R X R0 ei~k~R ~R0 Z A(~r ~R0)A(~r ~R)dV Now for each ~R0, the sum over ~R must be the same since the crystal has the same distribution of neighbors

Winokur, Michael

150

Design and Implementation of Energized Fracture Treatment in Tight Gas Sands  

SciTech Connect

Hydraulic fracturing is essential for producing gas and oil at an economic rate from low permeability sands. Most fracturing treatments use water and polymers with a gelling agent as a fracturing fluid. The water is held in the small pore spaces by capillary pressure and is not recovered when drawdown pressures are low. The un-recovered water leaves a water saturated zone around the fracture face that stops the flow of gas into the fracture. This is a particularly acute problem in low permeability formations where capillary pressures are high. Depletion (lower reservoir pressures) causes a limitation on the drawdown pressure that can be applied. A hydraulic fracturing process can be energized by the addition of a compressible, sometimes soluble, gas phase into the treatment fluid. When the well is produced, the energized fluid expands and gas comes out of solution. Energizing the fluid creates high gas saturation in the invaded zone, thereby facilitating gas flowback. A new compositional hydraulic fracturing model has been created (EFRAC). This is the first model to include changes in composition, temperature, and phase behavior of the fluid inside the fracture. An equation of state is used to evaluate the phase behavior of the fluid. These compositional effects are coupled with the fluid rheology, proppant transport, and mechanics of fracture growth to create a general model for fracture creation when energized fluids are used. In addition to the fracture propagation model, we have also introduced another new model for hydraulically fractured well productivity. This is the first and only model that takes into account both finite fracture conductivity and damage in the invaded zone in a simple analytical way. EFRAC was successfully used to simulate several fracture treatments in a gas field in South Texas. Based on production estimates, energized fluids may be required when drawdown pressures are smaller than the capillary forces in the formation. For this field, the minimum CO{sub 2} gas quality (volume % of gas) recommended is 30% for moderate differences between fracture and reservoir pressures (2900 psi reservoir, 5300 psi fracture). The minimum quality is reduced to 20% when the difference between pressures is larger, resulting in additional gas expansion in the invaded zone. Inlet fluid temperature, flow rate, and base viscosity did not have a large impact on fracture production. Finally, every stage of the fracturing treatment should be energized with a gas component to ensure high gas saturation in the invaded zone. A second, more general, sensitivity study was conducted. Simulations show that CO{sub 2} outperforms N{sub 2} as a fluid component because it has higher solubility in water at fracturing temperatures and pressures. In fact, all gas components with higher solubility in water will increase the fluid's ability to reduce damage in the invaded zone. Adding methanol to the fracturing solution can increase the solubility of CO{sub 2}. N{sub 2} should only be used if the gas leaks-off either during the creation of the fracture or during closure, resulting in gas going into the invaded zone. Experimental data is needed to determine if the gas phase leaks-off during the creation of the fracture. Simulations show that the bubbles in a fluid traveling across the face of a porous medium are not likely to attach to the surface of the rock, the filter cake, or penetrate far into the porous medium. In summary, this research has created the first compositional fracturing simulator, a useful tool to aid in energized fracture design. We have made several important and original conclusions about the best practices when using energized fluids in tight gas sands. The models and tools presented here may be used in the future to predict behavior of any multi-phase or multi-component fracturing fluid system.

Mukul Sharma; Kyle Friehauf

2009-12-31T23:59:59.000Z

151

U.S. crude oil production  

U.S. Energy Information Administration (EIA)

Production of Crude Oil including Lease Condensate (Thousand Barrels Per Day) Loading... Units Conversion Download Excel: 2012 2013 JAN ...

152

Division of Oil, Gas, and Mining Permitting  

E-Print Network (OSTI)

" or "Gas" does not include any gaseous or liquid substance processed from coal, oil shale, or tar sands

Utah, University of

153

Residual Fuel Oil - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Other products includes pentanes plus, other hydrocarbons, oxygenates, hydrogen, unfinished oils, gasoline, special naphthas, jet fuel, lubricants, asphalt and road ...

154

www.eia.gov  

U.S. Energy Information Administration (EIA)

to be confused with shale oil/tight oil). ... 7/ Includes liquids produced from energy crops, natural gas, coal, extra-heavy oil, bitumen (oil sands), ...

155

Optimization of density functional tight-binding and classical reactive molecular dynamics for high-throughput simulations of carbon materials  

Science Conference Proceedings (OSTI)

Carbon materials and nanostructures (fullerenes, nanotubes) are promising building blocks of nanotechnology. Potential applications include optical and electronic devices, sensors, and nano-scale machines. The multiscale character of processes related ... Keywords: ACM proceedings, BLAS, Cray XT5, LAPACK, advanced materials, density-functional tight binding, high-throughput, linear algebra, material science, molecular dynamics, multiscale-modeling, quantum chemistry, scientific libraries, scientific-computing

Jacek Jakowski; Bilel Hadri; Steven J. Stuart; Predrag Krstic; Stephan Irle; Dulma Nugawela; Sophya Garashchuk

2012-07-01T23:59:59.000Z

156

Field Validation of ICF Residential Building Air-Tightness  

SciTech Connect

Recent advances in home construction methods have made considerable progress in addressing energy savings issues. Certain methods are potentially capable of tightening the building envelope, consequently reducing air leakage and minimizing heating and air conditioning related energy losses. Insulated concrete form (ICF) is an economically viable alternative to traditional woodframe construction. Two homes, one of wood-frame, the other of ICF construction, were studied. Standard air leakage testing procedures were used to compare air tightness characteristics achieved by the two construction types. The ICF home showed consistently lower values for air leakage in these tests. The buildings otherwise provided similar data during testing, suggesting that the difference in values is due to greater airtight integrity of the ICF construction method. Testing on more homes is necessary to be conclusive. However, ICF construction shows promise as a tighter building envelope construction method.

Sacs, I.; Ternes, M.P.

2001-01-01T23:59:59.000Z

157

Crude oil distillation and the definition of refinery capacity ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

158

Rail traffic reflects more oil production, less coal-fired ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

159

Hurricane effects on oil and natural gas production depend on ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

160

International Petroleum (Oil) Prices webpage provided by EIA  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

Note: This page contains sample records for the topic "including tight oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Energy Security - Oil - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

162

Crude oils have different quality characteristics - Today in ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

163

State Ranking - Crude Oil Production - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

164

oil reserves - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

165

Bakken formation oil and gas drilling activity mirrors development ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

166

Price difference between Brent and WTI crude oil narrowing - Today ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

167

oil prices - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

168

Performance Profiles Table Browser: T-19. Oil and Natural Gas ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

169

Performance Profiles Table Browser: T-20. Oil and Natural Gas ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

170

Performance Profiles Table Browser: T-22. Oil and Natural Gas ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

171

Heating Oil and Propane Update - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

172

State heating oil and propane program season begins - Today in ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

173

Tenth oil recovery conference  

SciTech Connect

The Tertiary Oil Recovery Project is sponsored by the State of Kansas to introduce Kansas producers to the economic potential of enhanced recovery methods for Kansas fields. Specific objectives include estimation of the state-wide tertiary oil resource, identification and evaluation of the most applicable processes, dissemination of technical information to producers, occasional collaboration on recovery projects, laboratory studies on Kansas applicable processes, and training of students and operators in tertiary oil recovery methods. Papers have been processed separately for inclusion on the data base.

Sleeper, R. (ed.)

1993-01-01T23:59:59.000Z

174

Methods and apparatuses for preparing upgraded pyrolysis oil  

SciTech Connect

Methods and apparatuses for preparing upgraded pyrolysis oil are provided herein. In an embodiment, a method of preparing upgraded pyrolysis oil includes providing a biomass-derived pyrolysis oil stream having an original oxygen content. The biomass-derived pyrolysis oil stream is hydrodeoxygenated under catalysis in the presence of hydrogen to form a hydrodeoxygenated pyrolysis oil stream comprising a cyclic paraffin component. At least a portion of the hydrodeoxygenated pyrolysis oil stream is dehydrogenated under catalysis to form the upgraded pyrolysis oil.

Brandvold, Timothy A; Baird, Lance Awender; Frey, Stanley Joseph

2013-10-01T23:59:59.000Z

175

Oil reserves  

SciTech Connect

As of March 1988, the Strategic Petroleum Reserve inventory totaled 544.9 million barrels of oil. During the past 6 months the Department of Energy added 11.0 million barrels of crude oil to the SPR. During this period, DOE distributed $208 million from the SPR Petroleum Account. All of the oil was purchased from PEMEX--the Mexican national oil company. In FY 1988, $164 million was appropriated for facilities development and management and $439 million for oil purchases. For FY 1989, DOE proposes to obligate $173 million for facilities development and management and $236 million for oil purchases. DOE plans to postpone all further drawdown exercises involving crude oil movements until their effects on cavern integrity are evaluated. DOE and the Military Sealift Command have made progress in resolving the questions surrounding nearly $500,000 in payments for demurrage charges.

Not Available

1988-01-01T23:59:59.000Z

176

Multiphase flow analysis of oil shale retorting  

DOE Green Energy (OSTI)

Several multiphase phenomena occur during oil shale retorting. An analysis is presented of two of these processes including condensation of oil shale vapor and oscillations of pressure in oil shale blocks through cracked bedding planes. Energy conservation equations for oil shale retorting, which include the effects associated with condensation of oil, are derived on the basis of two phase flow theory. It is suggested that an effective heat capacity associated with the latent heat of condensation should be included in the modeling of simulated modified in-situ oil shale retorting. A pressure propagation equation for fast transients in oil shale cracks has been derived and examined in view of existing experimental data. For slow processes, a limiting solution for maximum pressure in oil shale rocks has been obtained. Generation of high pressures in rocks by thermal or other means may lead to rock fracture which may be taken advantage of in modified in-situ oil shale processing.

Gidaspow, D.; Lyczkowski, R.W.

1978-09-18T23:59:59.000Z

177

Oil shale: The environmental challenges III  

SciTech Connect

This book presents the papers of a symposium whose purpose was to discuss the environmental and socio-economic aspects of oil shale development. Topics considered include oil shale solid waste disposal, modeling spent shale disposal, water management, assessing the effects of oil shale facilities on water quality, wastewater treatment and use at oil shale facilities, potential air emissions from oil shale retorting, the control of air pollutant emissions from oil shale facilities, oil shale air emission control, socioeconomic research, a framework for mitigation agreements, the Garfield County approach to impact mitigation, the relationship of applied industrial hygiene programs and experimental toxicology programs, and industrial hygiene programs.

Petersen, K.K.

1983-01-01T23:59:59.000Z

178

Vegetable Oil for Color Only Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing service for Vegetable Oil for Color Only. Sample Includes soybean oil. Vegetable Oil for Color Only Laboratory Proficiency Testing Program Laboratory Proficiency Program (LPP) aocs applicants certified chemist chemists Lab laborat

179

Vehicle Technologies Office: Fact #456: February 12, 2007 Oil...  

NLE Websites -- All DOE Office Websites (Extended Search)

12, 2007 Oil Imports, Today and Tomorrow U.S. oil imports, which include both crude oil and petroleum products, are predicted to rise to 16.4 million barrels per day by the...

180

Dynamics of the Oil Transition: Modeling Capacity, Costs, and Emissions  

E-Print Network (OSTI)

playing key role in peak-oil debate, future energy supply.of di?ering views of peak oil, including Yergin’s, isHubbert’s Peak: The Impending World Oil Shortage. Princeton

Brandt, Adam R.; Farrell, Alexander E.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "including tight oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

PIA - Northeast Home Heating Oil Reserve System (Heating Oil...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil)...

182

Crude Oil Imports from Persian Gulf  

U.S. Energy Information Administration (EIA)

U.S. Imports by Country of Origin ... Crude oil includes imports for storage in the Stategic Petroleum Reserve. The Persian Gulf includes Bahrain, ...

183

Hydraulic fracture productivity performance in tight gas sands, a numerical simulation approach.  

E-Print Network (OSTI)

??Hydraulically fractured tight gas reservoirs are one of the most common unconventional sources being produced today, and look to be a regular source of gas… (more)

Ostojic, Jakov

2013-01-01T23:59:59.000Z

184

Production optimization of a tight sandstone gas reservoir with well completions: A numerical simulation study.  

E-Print Network (OSTI)

??Tight gas sands have significant gas reserves, which requires cost-effective well completion technology and reservoir development plans for viable commercial exploitation. In this study, a… (more)

Defeu, Cyrille W.

2010-01-01T23:59:59.000Z

185

DEVELOPMENT OF AN ARTIFICIAL NEURAL NETWORK FOR HYDRAULICALLY FRACTURED HORIZONTAL WELLS IN TIGHT GAS SANDS.  

E-Print Network (OSTI)

??Increasing demand on fossil fuels and the decline in their production promote producing hydrocarbon from unconventional sources. Natural gas existing in tight reservoirs has a… (more)

Kulga, Ihsan

2010-01-01T23:59:59.000Z

186

Pore-scale characterization and modeling of two-phase flow in tight gas sandstones.  

E-Print Network (OSTI)

??Unconventional natural gas resources, particularly tight gas sands, constitute a significant percentage of the natural gas resource base and offer abundant potential for future reserves… (more)

Mousavi, Maryam Alsadat

2011-01-01T23:59:59.000Z

187

Oil shale data book  

SciTech Connect

The Oil Shale Data Book has been prepared as a part of its work under DOE Management Support and Systems Engineering for the Naval Oil Shale Reserves Predevelopment Plan. The contract calls for the preparation of a Master Development Plan for the Reserves which comprise some 145,000 acres of oil shale lands in Colorado and Utah. The task of defining the development potential of the Reserves required that the resources of the Reserves be well defined, and the shale oil recovery technologies that are potentially compatible with this resource be cataloged. Additionally, processes associated with shale oil recovery like mining, materials handling, beneficiation, upgrading and spent shale disposal have also been cataloged. This book, therefore, provides a ready reference for evaluation of appropriate recovery technologies and associated processes, and should prove to be valuable for many oil shale activities. Technologies that are still in the process of development, like retorting, have been treated in greater detail than those that are commercially mature. Examples of the latter are ore crushing, certain gas clean-up systems, and pipeline transportation. Emphasis has been on documenting available design information such as, maximum module size, operation conditions, yields, utility requirements, outlet gas compositions, shale oil characteristics, etc. Cost information has also been included where available.

1979-06-01T23:59:59.000Z

188

Water issues associated with heavy oil production.  

Science Conference Proceedings (OSTI)

Crude oil occurs in many different forms throughout the world. An important characteristic of crude oil that affects the ease with which it can be produced is its density and viscosity. Lighter crude oil typically can be produced more easily and at lower cost than heavier crude oil. Historically, much of the nation's oil supply came from domestic or international light or medium crude oil sources. California's extensive heavy oil production for more than a century is a notable exception. Oil and gas companies are actively looking toward heavier crude oil sources to help meet demands and to take advantage of large heavy oil reserves located in North and South America. Heavy oil includes very viscous oil resources like those found in some fields in California and Venezuela, oil shale, and tar sands (called oil sands in Canada). These are described in more detail in the next chapter. Water is integrally associated with conventional oil production. Produced water is the largest byproduct associated with oil production. The cost of managing large volumes of produced water is an important component of the overall cost of producing oil. Most mature oil fields rely on injected water to maintain formation pressure during production. The processes involved with heavy oil production often require external water supplies for steam generation, washing, and other steps. While some heavy oil processes generate produced water, others generate different types of industrial wastewater. Management and disposition of the wastewater presents challenges and costs for the operators. This report describes water requirements relating to heavy oil production and potential sources for that water. The report also describes how water is used and the resulting water quality impacts associated with heavy oil production.

Veil, J. A.; Quinn, J. J.; Environmental Science Division

2008-11-28T23:59:59.000Z

189

Enhanced Oil Recovery | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enhanced Oil Recovery Enhanced Oil Recovery Enhanced Oil Recovery Cross-section illustrating how carbon dioxide and water can be used to flush residual oil from a subsurface rock formation between wells. Cross-section illustrating how carbon dioxide and water can be used to flush residual oil from a subsurface rock formation between wells. Crude oil development and production in U.S. oil reservoirs can include up to three distinct phases: primary, secondary, and tertiary (or enhanced) recovery. During primary recovery, the natural pressure of the reservoir or gravity drive oil into the wellbore, combined with artificial lift techniques (such as pumps) which bring the oil to the surface. But only about 10 percent of a reservoir's original oil in place is typically produced during primary recovery. Secondary recovery techniques extend a

190

Prediction of Gas Leak Tightness of Superplastically Formed Products  

Science Conference Proceedings (OSTI)

In some applications, in this case an aluminium box in a subatomic particle detector containing highly sensitive detecting devices, it is important that a formed sheet should show no gas leak from one side to the other. In order to prevent a trial-and-error procedure to make this leak tight box, a method is set up to predict if a formed sheet conforms to the maximum leak constraint. The technique of superplastic forming (SPF) is used in order to attain very high plastic strains before failure. Since only a few of these boxes are needed, this makes, this generally slow, process an attractive production method. To predict the gas leak of a superplastically formed aluminium sheet in an accurate way, finite element simulations are used in combination with a user-defined material model. This constitutive model couples the leak rate with the void volume fraction. This void volume fraction is then dependent on both the equivalent plastic strain and the applied hydrostatic pressure during the bulge process (backpressure).

Snippe, Corijn H. C. [National Institute for Subatomic Physics (Nikhef) PO Box 41882, 1009 DB Amsterdam (Netherlands); Meinders, T. [University of Twente, Faculty of Engineering Technology PO Box 217, 7500 AE Enschede (Netherlands)

2010-06-15T23:59:59.000Z

191

Stability of spinor Fermi gases in tight waveguides  

Science Conference Proceedings (OSTI)

The two- and three-body correlation functions of the ground state of an optically trapped ultracold spin-(1/2) Fermi gas (SFG) in a tight waveguide [one-dimensional (1D) regime] are calculated in the plane of even- and odd-wave coupling constants, assuming a 1D attractive zero-range odd-wave interaction induced by a 3D p-wave Feshbach resonance, as well as the usual repulsive zero-range even-wave interaction stemming from 3D s-wave scattering. The calculations are based on the exact mapping from the SFG to a 'Lieb-Liniger-Heisenberg' model with delta-function repulsions depending on isotropic Heisenberg spin-spin interactions, and indicate that the SFG should be stable against three-body recombination in a large region of the coupling constant plane encompassing parts of both the ferromagnetic and antiferromagnetic phases. However, the limiting case of the fermionic Tonks-Girardeau gas, a spin-aligned 1D Fermi gas with infinitely attractive p-wave interactions, is unstable in this sense. Effects due to the dipolar interaction and a Zeeman term due to a resonance-generating magnetic field do not lead to shrinkage of the region of stability of the SFG.

Campo, A. del; Muga, J. G. [Departamento de Quimica-Fisica, Universidad del Pais Vasco, Apartado 644, 48080 Bilbao (Spain); Girardeau, M. D. [College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 (United States)

2007-07-15T23:59:59.000Z

192

Winter Crude Oil and  

Gasoline and Diesel Fuel Update (EIA)

4 4 Notes: While the relatively low stock forecast (although not as low as last winter) adds some extra pressure to prices, the price of crude oil could be the major factor affecting heating oil prices this winter. The current EIA forecast shows residential prices averaging $1.29 this winter, assuming no volatility. The average retail price is about 7 cents less than last winter, but last winter included the price spike in November 2000, December 2000, and January 2001. Underlying crude oil prices are currently expected to be at or below those seen last winter. WTI averaged over $30 per barrel last winter, and is currently forecast to average about $27.50 per barrel this winter. As those of you who watch the markets know, there is tremendous uncertainty in the amount of crude oil supply that will be available this winter. Less

193

Feasibility of calculating petrophysical properties in tight-sand reservoirs using neural networks. Final report, October 1989-July 1991  

Science Conference Proceedings (OSTI)

The objective of the research was to determine the feasibility of using neural networks to estimate petrophysical properties in tight sand reservoirs. A second objective was to gain some experience concerning how to approach the development of a future prototype, including what should be done and what should be avoided. Gas Research Institute (GRI) focused the project on tight sands because they contain enormous gas reserves and their complicated lithology represents a challenge to log analysts. The data were supplied by GRI from two of its geographically proximate experimental wells in tight sand formations. The nets were tested in sections of those wells that were not used for training, and in two other wells, one in a geographically close but geologically unrelated formation and one in Wyoming. The feasibility testing demonstrated that the relatively simple neural networks developed have comparable accuracy with standard logging analysis estimates in wells that contributed data to the training set. Transportability of the network was tested by using core measurements in two wells in which the nets were not trained, with inconclusive results. Recommendations were made to increase the accuracy of the neural networks.

Urquidi-Macdonald, M.; Javitz, H.S.; Park, W.; Lee, J.D.; Bergman, A.

1991-07-01T23:59:59.000Z

194

Remedial investigation work plan for Bear Creek Valley Operable Unit 1 (S-3 Ponds, Boneyard/Burnyard, Oil Landfarm, Sanitary Landfill 1, and the Burial Grounds, including Oil Retention Ponds 1 and 2) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1, Main text  

Science Conference Proceedings (OSTI)

The intent and scope of the work plan are to assemble all data necessary to facilitate selection of remediation alternatives for the sites in Bear Creek Valley Operable Unit 1 (BCV OU 1) such that the risk to human health and the environment is reduced to acceptable levels based on agreements with regulators. The ultimate goal is to develop a final Record Of Decision (ROD) for all of the OUs in BCV, including the integrator OU. However, the initial aim of the source OUs is to develop a ROD for interim measures. For source OUs such as BCV OU 1, data acquisition will not be carried out in a single event, but will be carried out in three stages that accommodate the schedule for developing a ROD for interim measures and the final site-wide ROD. The three stages are as follows: Stage 1, Assemble sufficient data to support decisions such as the need for removal actions, whether to continue with the remedial investigation (RI) process, or whether no further action is required. If the decision is made to continue the RI/FS process, then: Stage 2, Assemble sufficient data to allow for a ROD for interim measures that reduce risks to the human health and the environment. Stage 3, Provide input from the source OU that allows a final ROD to be issued for all OUs in the BCV hydrologic regime. One goal of the RI work plan will be to ensure that sampling operations required for the initial stage are not repeated at later stages. The overall goals of this RI are to define the nature and extent of contamination so that the impact of leachate, surface water runoff, and sediment from the OU I sites on the integrator OU can be evaluated, the risk to human health and the environment can be defined, and the general physical characteristics of the subsurface can be determined such that remedial alternatives can be screened.

Not Available

1993-09-01T23:59:59.000Z

195

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Low Permeability Gas Low Permeability Gas Design and Implementation of Energized Fracture Treatment in Tight Gas Sands DE-FC26-06NT42955 Goal The goal of this project is to develop methods and tools that can enable operators to design, optimize, and implement energized fracture treatments in a systematic way. The simulator that will result from this work would significantly expand the use and cost-effectiveness of energized fracs and improve their design and implementation in tight gas sands. Performer University of Texas-Austin, Austin, TX Background A significant portion of U.S. natural gas production comes from unconventional gas resources such as tight gas sands. Tight gas sands account for 58 percent of the total proved natural gas reserves in the United States. As many of these tight gas sand basins mature, an increasing number of wells are being drilled or completed into nearly depleted reservoirs. This includes infill wells, recompletions, and field-extension wells. When these activities are carried out, the reservoir pressures encountered are not as high as the initial reservoir pressures. In these situations, where pressure drawdowns can be less than 2,000 psi, significant reductions in well productivity are observed, often due to water blocking and insufficient clean-up of fracture-fluid residues. In addition, many tight gas sand reservoirs display water sensitivity—owing to high clay content—and readily imbibe water due both to very high capillary pressures and low initial water saturations.

196

The Fuels and Lubricants Research Division of Southwest Research includes extensive engines, fuels and lubricants research,  

E-Print Network (OSTI)

Caterpillar 1K Lubricant Test This test evaluates the piston deposits, liner wear, and oil consumption and oil consumption. The test is proposed for inclusion in the PC-10 category. Mack T8/T8A/T8E Lubricant of Mack engine oil specification EON+ 03, CI-4+ and will be included in PC-10. Mack T12 Lubricant Test

Chapman, Clark R.

197

SEISMIC ANISOTROPY IN TIGHT GAS SANDSTONES, RULISON FIELD, PICEANCE BASIN, COLORADO  

E-Print Network (OSTI)

in the Piceance basin area have created the Mesaverde Group tight gas sand reservoirs. As shown in Figure 2 of siltstones, shales and tight sandstones with a coaly interval at the base. The main producing interval was predominantly from the fluvial point bar sand bodies, with extremely low matrix permeabilities (

198

Parabolic Kazhdan-Lusztig R-polynomials for tight quotients of the symmetric groups 1  

E-Print Network (OSTI)

Parabolic Kazhdan-Lusztig R-polynomials for tight quotients of the symmetric groups formulas for the parabolic Kazhda* *n- Lusztig R-polynomials of the tight quotients* * to that of the Kazhdan-Lusztig polynomials. In 1987 Deodhar ([5]) introduced parabolic analogues of all

Brenti, Francesco

199

TOWARD TIGHT GAMMA-RAY BURST LUMINOSITY RELATIONS  

Science Conference Proceedings (OSTI)

The large scatters of luminosity relations of gamma-ray bursts (GRBs) have been one of the most important reasons preventing the extensive application of GRBs in cosmology. Many efforts have been made to seek tight luminosity relations. With the latest sample of 116 GRBs with measured redshift and spectral parameters, we investigate 6 two-dimensional (2D) correlations and 14 derived three-dimensional (3D) correlations of GRBs to explore the possibility of decreasing the intrinsic scatters of the luminosity relations of GRBs. We find the 3D correlation of E{sub peak}-{tau}{sub RT}-L to be evidently tighter (at the 2{sigma} confidence level) than its corresponding 2D correlations, i.e., the E{sub peak}-L and {tau}{sub RT}-L correlations. In addition, the coefficients before the logarithms of E{sub peak} and {tau}{sub RT} in the E{sub peak}-{tau}{sub RT}-L correlation are almost exact opposites of each other. Inputting this situation as a prior reduces the relation to L{proportional_to}(E'{sub peak}/{tau}{sub RT}'){sup 0.842{+-}0.064}, where E'{sub peak} and {tau}'{sub RT} denote the peak energy and minimum rise time in the GRB rest frame. We discuss how our findings can be interpreted/understood in the framework of the definition of the luminosity (energy released in units of time). Our argument about the connection between the luminosity relations of GRBs and the definition of the luminosity provides a clear direction for exploring tighter luminosity relations of GRBs in the future.

Qi Shi; Lu Tan, E-mail: qishi11@gmail.com, E-mail: t.lu@pmo.ac.cn [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

2012-04-20T23:59:59.000Z

200

Oil shale, tar sands, and related materials  

SciTech Connect

This sixteen-chapter book focuses on the many problems and the new methodology associated with the commercialization of the oil shale and tar sand industry. Topics discussed include: an overview of the Department of Energy's oil shale R, D, and D program; computer simulation of explosive fracture of oil shale; fracturing of oil shale by treatment with liquid sulfur dioxide; chemistry of shale oil cracking; hydrogen sulfide evolution from Colorado oil shale; a possible mechanism of alkene/alkane production in oil shale retorting; oil shale retorting kinetics; kinetics of oil shale char gasification; a comparison of asphaltenes from naturally occurring shale bitumen and retorted shale oils: the influence of temperature on asphaltene structure; beneficiation of Green River oil shale by density methods; beneficiation of Green River oil shale pelletization; shell pellet heat exchange retorting: the SPHER energy-efficient process for retorting oil shale; retorted oil shale disposal research; an investigation into the potential economics of large-scale shale oil production; commercial scale refining of Paraho crude shale oil into military specification fuels; relation between fuel properties and chemical composition; chemical characterization/physical properties of US Navy shale-II fuels; relation between fuel properties and chemical composition: stability of oil shale-derived jet fuel; pyrolysis of shale oil residual fractions; synfuel stability: degradation mechanisms and actual findings; the chemistry of shale oil and its refined products; the reactivity of Cold Lake asphaltenes; influence of thermal processing on the properties of Cold Lake asphaltenes: the effect of distillation; thermal recovery of oil from tar sands by an energy-efficient process; and hydropyrolysis: the potential for primary upgrading of tar sand bitumen.

Stauffer, H.C.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "including tight oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Improving the Availability and Delivery of Critical Information for Tight Gas Resource Development in the Appalachian Basin  

SciTech Connect

To encourage, facilitate and accelerate the development of tight gas reservoirs in the Appalachian basin, the geological surveys in Pennsylvania and West Virginia collected widely dispersed data on five gas plays and formatted these data into a large database that can be accessed by individual well or by play. The database and delivery system that were developed can be applied to any of the 30 gas plays that have been defined in the basin, but for this project, data compilation was restricted to the following: the Mississippian-Devonian Berea/Murrysville sandstone play and the Upper Devonian Venango, Bradford and Elk sandstone plays in Pennsylvania and West Virginia; and the 'Clinton'/Medina sandstone play in northwestern Pennsylvania. In addition, some data were collected on the Tuscarora Sandstone play in West Virginia, which is the lateral equivalent of the Medina Sandstone in Pennsylvania. Modern geophysical logs are the most common and cost-effective tools for evaluating reservoirs. Therefore, all of the well logs in the libraries of the two surveys from wells that had penetrated the key plays were scanned, generating nearly 75,000 scanned e-log files from more than 40,000 wells. A standard file-naming convention for scanned logs was developed, which includes the well API number, log curve type(s) scanned, and the availability of log analyses or half-scale logs. In addition to well logs, other types of documents were scanned, including core data (descriptions, analyses, porosity-permeability cross-plots), figures from relevant chapters of the Atlas of Major Appalachian Gas Plays, selected figures from survey publications, and information from unpublished reports and student theses and dissertations. Monthly and annual production data from 1979 to 2007 for West Virginia wells in these plays are available as well. The final database also includes digitized logs from more than 800 wells, sample descriptions from more than 550 wells, more than 600 digital photos in 1-foot intervals from 11 cores, and approximately 260 references for these plays. A primary objective of the research was to make data and information available free to producers through an on-line data delivery model designed for public access on the Internet. The web-based application that was developed utilizes ESRI's ArcIMS GIS software to deliver both well-based and play-based data that are searchable through user-originated queries, and allows interactive regional geographic and geologic mapping that is play-based. System tools help users develop their customized spatial queries. A link also has been provided to the West Virginia Geological Survey's 'pipeline' system for accessing all available well-specific data for more than 140,000 wells in West Virginia. However, only well-specific queries by API number are permitted at this time. The comprehensive project web site (http://www.wvgs.wvnet.edu/atg) resides on West Virginia Geological Survey's servers and links are provided from the Pennsylvania Geological Survey and Appalachian Oil and Natural Gas Research Consortium web sites.

Mary Behling; Susan Pool; Douglas Patchen; John Harper

2008-12-31T23:59:59.000Z

202

General model of oil shale pyrolysis  

DOE Green Energy (OSTI)

A mathematical model for pyrolysis of Green River oil shale is developed from previous experiments on oil, water, and gas evolution and oil cracking over a wide range of pyrolysis conditions. Reactions included are evolution of 5 gas species, oil, and water from kerogen, clay dehydration, oil coking and cracking, and evolution of H/sub 2/ and CH/sub 4/ from char. Oil is treated in eleven boiling-point fractions in order to treat the competition between oil coking and evaporation, and to evaluate the effect of oil cracking on the boiling point distribution of the oil. The kinetics and product yields calculated by the model are compared to experimental results for pyrolysis conditions ranging from isothermal fluid-bed to high-pressure slow-heating-rate retorting.

Burnham, A.K.; Braun, R.L.

1983-11-01T23:59:59.000Z

203

International Energy Outlook 2006 - World Oil Markets  

Gasoline and Diesel Fuel Update (EIA)

Oil Markets Oil Markets International Energy Outlook 2006 Chapter 3: World Oil Markets In the IEO2006 reference case, world oil demand increases by 47 percent from 2003 to 2030. Non-OECD Asia, including China and India, accounts for 43 percent of the increase. In the IEO2006 reference case, world oil demand grows from 80 million barrels per day in 2003 to 98 million barrels per day in 2015 and 118 million barrels per day in 2030. Demand increases strongly despite world oil prices that are 35 percent higher in 2025 than in last yearÂ’s outlook. Much of the growth in oil consumption is projected for the nations of non-OECD Asia, where strong economic growth is expected. Non-OECD Asia (including China and India) accounts for 43 percent of the total increase in world oil use over the projection period.

204

Knowledge exchange Research grant proposals now include  

E-Print Network (OSTI)

of Edinburgh. Traditionally, geophysicists use seismic exploration to find new oil and gas fields. But MTEM a new method to prospect for oil and gas deep beneath the ground. NERC-funded PhD student David Wright-out sells for $275 million In June 2007, Norwegian oil giant Petroleum Geo-Services (PGS) bought Scotland

Brierley, Andrew

205

PIA - Northeast Home Heating Oil Reserve System (Heating Oil...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating...

206

OIl Speculation  

Gasoline and Diesel Fuel Update (EIA)

Investor Flows and the 2008 BoomBust in Oil Prices Kenneth J. Singleton 1 August 10, 2011 1 Graduate School of Business, Stanford University, kenneths@stanford.edu. This research...

207

Crude Oil Exports  

U.S. Energy Information Administration (EIA)

Notes: Crude oil exports are restricted to: (1) crude oil derived from fields under the State waters of Alaska's Cook Inlet; (2) Alaskan North Slope crude oil; (3) ...

208

Heavy Oil Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Select Reports from Heavy Oil Projects Project Number Performer Title Heavy Oil Recovery US (NIPERBDM-0225) BDM-Oklahoma, Inc. Feasibility Study of Heavy Oil Recovery in the...

209

3. Crude Oil Statistics  

U.S. Energy Information Administration (EIA)

3. Crude Oil Statistics The United States had 21,371 million barrels of crude oil proved reserves as of December 31, 2004. Crude oil proved reserves ...

210

Isolation of levoglucosan from lignocellulosic pyrolysis oil ...  

A method is provided for preparing high purity levoglucosan from lignocellulosic pyrolysis oils derived from wood or waste newsprint. The method includes reducing ...

211

Materials for Oil and Gas Transport  

Science Conference Proceedings (OSTI)

Jun 18, 2008 ... The demand on materials for transporting oil, natural gas, and other fluids, including hydrogen, ethanol, etc. is severe in terms of material ...

212

Palm oil - towards a sustainable future?.  

E-Print Network (OSTI)

?? The food industry faces problems relating to the sustainability of palm oil as a food commodity. These problem areas include social, environmental, economic and… (more)

Nilsson, Sara

2013-01-01T23:59:59.000Z

213

V. Shifts in Governance: Oil Pollution  

Science Conference Proceedings (OSTI)

In the American Oil Pollution Act these costs are included in the term ..... The background of this second objective is that from 1969 to 1972 the proportion.

214

NETL: News Release - DOE Selects Projects Targeting America's "Tight" Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

7, 2006 7, 2006 DOE Selects Projects Targeting America's "Tight" Gas Resources Research to Help Unlock Nation's Largest Growing Source of Natural Gas WASHINGTON, DC - The Department of Energy today announced the selection of two cost-shared research and development projects targeting America's major source of natural gas: low-permeability or "tight" gas formations. Tight gas is the largest of three so-called unconventional gas resources?the other two being coalbed methane (natural gas) and gas shales. Production of unconventional gas in the United States represents about 40 percent of the Nation's total gas output in 2004, but could grow to 50 percent by 2030 if advanced technologies are developed and implemented. The constraints on producing tight gas are due to the impermeable nature of the reservoir rocks, small reservoir compartments, abnormal (high or low) pressures, difficulty in predicting natural fractures that aid gas flow rates, and need to predict and avoid reservoirs that produce large volumes of water.

215

DensEl: An O(N) Tight Binding Code - TMS  

Science Conference Proceedings (OSTI)

Apr 3, 2008 ... DensEl is an O(N) (or linear scaling) tight binding code written in the first place by Chris Goringe with contributions by Paul Godwin and David ...

216

5 World Oil Trends WORLD OIL TRENDS  

E-Print Network (OSTI)

5 World Oil Trends Chapter 1 WORLD OIL TRENDS INTRODUCTION In considering the outlook for California's petroleum supplies, it is important to give attention to expecta- tions of what the world oil market. Will world oil demand increase and, if so, by how much? How will world oil prices be affected

217

Economics of tight sands gas extraction as affected by r and d. Occasional pub  

SciTech Connect

The paper examines the economics and resource potential of tight sand formations as a major near-term source of unconventional gas. The main vehicles for analyzing the issues to date are the 1980 study by the National Petroleum Council (NPC) on tight sand resources and two studies based on the NPC's work at different stages of completion for the GRI Center for Energy Systems Analysis (CESA).

Rosenberg, J.

1983-08-01T23:59:59.000Z

218

Oil shale and tar sands technology: recent developments  

SciTech Connect

The detailed, descriptive information in this book is based on US patents, issued since March 1975, that deal with the technology of oil shale and tar sands. The book contains an introductory overview of the subject. Topics included are oil shale retorting, in situ processing of oil shale, shale oil refining and purification processes, in situ processing of tar sands, tar sands separation processes.

Ranney, M.W.

1979-01-01T23:59:59.000Z

219

Zebrafish homologs of 16p11.2, a genomic region associated with brain disorders, are active during brain development, and include two deletion dosage sensor genes  

E-Print Network (OSTI)

Deletion or duplication of one copy of the human 16p11.2 interval is tightly associated with impaired brain function, including autism spectrum disorders (ASDs), intellectual disability disorder (IDD) and other phenotypes, ...

Blaker-Lee, Alicia

220

Process for oil shale retorting  

DOE Patents (OSTI)

Particulate oil shale is subjected to a pyrolysis with a hot, non-oxygenous gas in a pyrolysis vessel, with the products of the pyrolysis of the shale contained kerogen being withdrawn as an entrained mist of shale oil droplets in a gas for a separation of the liquid from the gas. Hot retorted shale withdrawn from the pyrolysis vessel is treated in a separate container with an oxygenous gas so as to provide combustion of residual carbon retained on the shale, producing a high temperature gas for the production of some steam and for heating the non-oxygenous gas used in the oil shale retorting process in the first vessel. The net energy recovery includes essentially complete recovery of the organic hydrocarbon material in the oil shale as a liquid shale oil, a high BTU gas, and high temperature steam.

Jones, John B. (300 Enterprise Bldg., Grand Junction, CO 80501); Kunchal, S. Kumar (300 Enterprise Bldg., Grand Junction, CO 80501)

1981-10-27T23:59:59.000Z

Note: This page contains sample records for the topic "including tight oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Oil | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil Oil Oil Prices, 2000-2008 For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our interactive chart. |...

222

FE Oil and Natural Gas News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 30, 2009 July 30, 2009 DOE Leads National Research Program in Gas Hydrates The U.S. Department of Energy today told Congress the agency is leading a nationwide program in search of naturally occurring natural gas hydrates - a potentially significant storehouse of methane--with far reaching implications for the environment and the nation's future energy supplies. July 30, 2009 DOE Showcases Websites for Tight Gas Resource Development Two U.S. Department of Energy projects funded by the Office of Fossil Energy's National Energy Technology Laboratory provide quick and easy web-based access to sought after information on tight-gas sandstone plays. May 18, 2009 DOE-Supported Publication Boosts Search for Oil, Natural Gas by Petroleum Operators A comprehensive publication detailing the oil-rich fields of Utah and

223

of oil yields from enhanced oil recovery  

NLE Websites -- All DOE Office Websites (Extended Search)

oil yields from enhanced oil recovery (EOR) and CO oil yields from enhanced oil recovery (EOR) and CO 2 storage capacity in depleted oil reservoirs. The primary goal of the project is to demonstrate that remaining oil can be economically produced using CO 2 -EOR technology in untested areas of the United States. The Citronelle Field appears to be an ideal site for concurrent CO 2 storage and EOR because the field is composed of sandstone reservoirs

224

EIA Oil price timeline  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, propane, ... Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions.

225

WORLD OIL SUPPLY – PRODUCTION, RESERVES, AND EOR  

E-Print Network (OSTI)

“The weakness of intelligence is in discerning the turning points” (J. Schlesinger: former CIA Director and Ex-Secretary of Defense and of Energy) World Oil Consumption: Since 1980, the world has consumed far more oil than has been discovered. We are now finding only one barrel of new oil for every four barrels that we consume. As Donald Hodel, Ex-U.S. Secretary of Energy said: “We are sleepwalking into a disaster.” Global R/P: (Figure 1-A). Economists and laymen routinely view the future of global oil production as being directly related to a simple global Reserves/Production (R/P) ratio. This implies that oil produced in all of the world’s fields will abruptly stop when the R/P date (40 years in the future) is reached. This is as unrealistic as to expect all humans to die off suddenly, instead of gradually. Global R/Ps should NOT be used to estimate timing of future oil supplies. National R/P: (Figure 1-B). Instead of posting one average Global R/P of 40 years for the entire world, Figure 1-B shows (“National R/P”) for individual nations. This results in a very different, but a much more realistic semi-quantitative picture of the distribution of the world’s claimed oil reserves and future global oil supply than does Figure 1-A. Scale: All of these graphs are drawn to scale, which puts tight limits on their construction and analysis. A 40,000-million-barrels (4 BBO/year x 10 years) rectangle in the upper left corner of each figure shows the graphic scale for the area under the World Production Curve (WPC). (BBO =

M. King; Hubbert Center; M. King; Hubbert Center; L. F. Ivanhoe

2000-01-01T23:59:59.000Z

226

Study of Flow Regimes in Multiply-Fractured Horizontal Wells in Tight Gas and Shale Gas Reservoir Systems  

E-Print Network (OSTI)

Various analytical, semi-analytical, and empirical models have been proposed to characterize rate and pressure behavior as a function of time in tight/shale gas systems featuring a horizontal well with multiple hydraulic fractures. Despite a small number of analytical models and published numerical studies there is currently little consensus regarding the large-scale flow behavior over time in such systems. The purpose of this work is to construct a fit-for-purpose numerical simulator which will account for a variety of production features pertinent to these systems, and to use this model to study the effects of various parameters on flow behavior. Specific features examined in this work include hydraulically fractured horizontal wells, multiple porosity and permeability fields, desorption, and micro-scale flow effects. The theoretical basis of the model is described in Chapter I, along with a validation of the model. We employ the numerical simulator to examine various tight gas and shale gas systems and to illustrate and define the various flow regimes which progressively occur over time. We visualize the flow regimes using both specialized plots of rate and pressure functions, as well as high-resolution maps of pressure distributions. The results of this study are described in Chapter II. We use pressure maps to illustrate the initial linear flow into the hydraulic fractures in a tight gas system, transitioning to compound formation linear flow, and then into elliptical flow. We show that flow behavior is dominated by the fracture configuration due to the extremely low permeability of shale. We also explore the possible effect of microscale flow effects on gas effective permeability and subsequent gas species fractionation. We examine the interaction of sorptive diffusion and Knudsen diffusion. We show that microscale porous media can result in a compositional shift in produced gas concentration without the presence of adsorbed gas. The development and implementation of the micro-flow model is documented in Chapter III. This work expands our understanding of flow behavior in tight gas and shale gas systems, where such an understanding may ultimately be used to estimate reservoir properties and reserves in these types of reservoirs.

Freeman, Craig M.

2010-05-01T23:59:59.000Z

227

Price ratio of crude oil to natural gas continues to increase ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

228

How many gallons of gasoline does one barrel of oil make? - FAQ ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

229

Does EIA have data on U.S. oil refineries and their locations ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

230

Attributes of crude oil at U.S. refineries vary by region - Today ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

231

Refinery receipts of crude oil by rail, truck, and barge continue ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

232

Drop in U.S. gasoline prices reflects decline in crude oil costs ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

233

Gasoline prices rise due to increased crude oil costs - Today in ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

234

Rail deliveries of oil and petroleum products up 38% in first half ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

235

Heating oil futures contract now uses ultra-low sulfur diesel fuel ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

236

Oil and natural gas production is growing in Caspian Sea region ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

237

Table 2. Fuel Oil Consumption and Expenditures in U.S. Households ...  

U.S. Energy Information Administration (EIA)

1 A small amount of fuel oil used for appliances is included in "Fuel Oil" under "All Uses." NF = No applicable RSE row factor.

238

Price ratio of crude oil to natural gas increasing - Today in ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

239

U.S. oil rig count overtakes natural gas rig count - Today in ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

240

WTI-Brent crude oil price spread has reached unseen levels - Today ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

Note: This page contains sample records for the topic "including tight oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Effects of low temperature preheating on the pyrolysis products from blocks of oil shale.  

E-Print Network (OSTI)

??Oil shale is a sedimentary rock composed of inorganic and organic fractions. The inorganic minerals contained in oil shale include: dolomite, calcite, quartz, i1 lite,… (more)

Alston, David W.

1905-01-01T23:59:59.000Z

242

New data show record growth in U.S. crude oil reserves and strong ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

243

Table 4.7 Crude Oil and Natural Gas Development Wells, 1949-2010  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

244

Table 4.6 Crude Oil and Natural Gas Exploratory Wells, 1949-2010  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

245

System and method for preparing near-surface heavy oil for extraction using microbial degradation  

DOE Patents (OSTI)

A system and method for enhancing the recovery of heavy oil in an oil extraction environment by feeding nutrients to a preferred microbial species (bacteria and/or fungi). A method is described that includes the steps of: sampling and identifying microbial species that reside in the oil extraction environment; collecting fluid property data from the oil extraction environment; collecting nutrient data from the oil extraction environment; identifying a preferred microbial species from the oil extraction environment that can transform the heavy oil into a lighter oil; identifying a nutrient from the oil extraction environment that promotes a proliferation of the preferred microbial species; and introducing the nutrient into the oil extraction environment.

Busche, Frederick D. (Highland Village, TX); Rollins, John B. (Southlake, TX); Noyes, Harold J. (Golden, CO); Bush, James G. (West Richland, WA)

2011-04-12T23:59:59.000Z

246

Production of Natural Gas and Fluid Flow in Tight Sand Reservoirs  

Science Conference Proceedings (OSTI)

This document reports progress of this research effort in identifying relationships and defining dependencies between macroscopic reservoir parameters strongly affected by microscopic flow dynamics and production well performance in tight gas sand reservoirs. These dependencies are investigated by identifying the main transport mechanisms at the pore scale that should affect fluids flow at the reservoir scale. A critical review of commercial reservoir simulators, used to predict tight sand gas reservoir, revealed that many are poor when used to model fluid flow through tight reservoirs. Conventional simulators ignore altogether or model incorrectly certain phenomena such as, Knudsen diffusion, electro-kinetic effects, ordinary diffusion mechanisms and water vaporization. We studied the effect of Knudsen's number in Klinkenberg's equation and evaluated the effect of different flow regimes on Klinkenberg's parameter b. We developed a model capable of explaining the pressure dependence of this parameter that has been experimentally observed, but not explained in the conventional formalisms. We demonstrated the relevance of this, so far ignored effect, in tight sands reservoir modeling. A 2-D numerical simulator based on equations that capture the above mentioned phenomena was developed. Dynamic implications of new equations are comprehensively discussed in our work and their relative contribution to the flow rate is evaluated. We performed several simulation sensitivity studies that evidenced that, in general terms, our formalism should be implemented in order to get more reliable tight sands gas reservoirs' predictions.

Maria Cecilia Bravo

2006-06-30T23:59:59.000Z

247

Studies of oil-shale reaction chemistry at LLL  

DOE Green Energy (OSTI)

A review is presented of recent studies on the chemistry of oil shale retorting. Kinetics are summarized for oil production and destruction mechanisms including kerogen-bitumen pyrolysis, oil coking and oil cracking. The effect of retorting conditions on shale oil quality is discussed along with the reverse process of inferring retorting conditions and yield loss mechanisms in modified in-situ retorts. Kinetic studies of carbonate mineral decomposition and related mineral reactions as well as residual carbon gasification are outlined.

Burnham, A.K.

1979-11-01T23:59:59.000Z

248

Revitalizing an old oil field  

Science Conference Proceedings (OSTI)

Redevelopment of the Olney oil field in Illinois is described. First discovered in 1936, production peaked in 1941 when over 30,000 bopd were produced. In 1970, 600 wells in the Olney field pumped only 4000 bpd. Since the decontrol of crude oil prices, a redevelopment project has begun in the field. The project includes well stimulation techniques plus newly drilled or deepened wells. Present production in the Olney field has reached 5000 bopd.

Ortiz, S.

1981-12-01T23:59:59.000Z

249

Northeast Home Heating Oil Reserve System Heating Oil, PIA Office...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy Headquaters Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy...

250

Vsd Oil Free Compressor, Vsd Oil Free Compressor Products, Vsd ...  

U.S. Energy Information Administration (EIA)

Vsd Oil Free Compressor, You Can Buy Various High Quality Vsd Oil Free Compressor Products from Global Vsd Oil Free Compressor Suppliers and Vsd Oil ...

251

SPECIATION OF TRACE ORGANIC LIGANDS AND INORGANIC AND ORGANOMETALLIC COMPOUNDS IN OIL SHALE PROCESS WATERS  

E-Print Network (OSTI)

Division of Oil, Gas, and Shale Technology to appropriateseven oil shale process waters including retort water, gas1d1i lc the gas condensate is condensed develop oil shale

Fish, Richard H.

2013-01-01T23:59:59.000Z

252

Waste oil reclamation. (Latest citations from the NTIS database). Published Search  

SciTech Connect

The bibliography contains citations concerning the reclamation and recycling of used lubricating oils. Topics include specific program descriptions, re-refining techniques, chemical component analysis, and reclaimed oil performance. Appropriate regulations, standards, and clean-up efforts at sites contaminated by waste oils or waste oil refineries are included. (Contains a minimum of 222 citations and includes a subject term index and title list.)

Not Available

1993-05-01T23:59:59.000Z

253

Waste oil reclamation. (Latest citations from the NTIS Bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning the reclamation and recycling of used lubricating oils. Topics include specific program descriptions, re-refining techniques, chemical component analysis, and reclaimed oil performance. Appropriate regulations, standards, and clean-up efforts at sites contaminated by waste oils or waste oil refineries are included. (Contains a minimum of 228 citations and includes a subject term index and title list.)

Not Available

1993-11-01T23:59:59.000Z

254

Crude Oil Imports From Persian Gulf  

Gasoline and Diesel Fuel Update (EIA)

Crude Oil Imports From Persian Gulf Crude Oil Imports From Persian Gulf January - June 2013 | Release Date: August 29, 2013 | Next Release Date: February 27, 2014 2013 Crude Oil Imports From Persian Gulf Highlights It should be noted that several factors influence the source of a company's crude oil imports. For example, a company like Motiva, which is partly owned by Saudi Refining Inc., would be expected to import a large percentage from the Persian Gulf, while Citgo Petroleum Corporation, which is owned by the Venezuelan state oil company, would not be expected to import a large percentage from the Persian Gulf, since most of their imports likely come from Venezuela. In addition, other factors that influence a specific company's sources of crude oil imports would include the characteristics of various crude oils as well as a company's economic

255

Impacts of PSC Elements on Contract Economics under Oil Price Uncertainty  

Science Conference Proceedings (OSTI)

Production sharing contract (PSC) is one of the most common types of cooperation modes in international petroleum contracts. The elements that affect PSC economics mainly include royalty, cost oil, profit oil as well as income tax. Assuming that oil ... Keywords: Production Sharing, Oil Price, Oil Contract, International Petroleum Cooperation

Wang Zhen; Zhao Lin; Liu Mingming

2010-05-01T23:59:59.000Z

256

Petrophysical Analysis and Geographic Information System for San Juan Basin Tight Gas Reservoirs  

Science Conference Proceedings (OSTI)

The primary goal of this project is to increase the availability and ease of access to critical data on the Mesaverde and Dakota tight gas reservoirs of the San Juan Basin. Secondary goals include tuning well log interpretations through integration of core, water chemistry and production analysis data to help identify bypassed pay zones; increased knowledge of permeability ratios and how they affect well drainage and thus infill drilling plans; improved time-depth correlations through regional mapping of sonic logs; and improved understanding of the variability of formation waters within the basin through spatial analysis of water chemistry data. The project will collect, integrate, and analyze a variety of petrophysical and well data concerning the Mesaverde and Dakota reservoirs of the San Juan Basin, with particular emphasis on data available in the areas defined as tight gas areas for purpose of FERC. A relational, geo-referenced database (a geographic information system, or GIS) will be created to archive this data. The information will be analyzed using neural networks, kriging, and other statistical interpolation/extrapolation techniques to fine-tune regional well log interpretations, improve pay zone recognition from old logs or cased-hole logs, determine permeability ratios, and also to analyze water chemistries and compatibilities within the study area. This single-phase project will be accomplished through four major tasks: Data Collection, Data Integration, Data Analysis, and User Interface Design. Data will be extracted from existing databases as well as paper records, then cleaned and integrated into a single GIS database. Once the data warehouse is built, several methods of data analysis will be used both to improve pay zone recognition in single wells, and to extrapolate a variety of petrophysical properties on a regional basis. A user interface will provide tools to make the data and results of the study accessible and useful. The final deliverable for this project will be a web-based GIS providing data, interpretations, and user tools that will be accessible to anyone with Internet access. During this project, the following work has been performed: (1) Assimilation of most special core analysis data into a GIS database; (2) Inventorying of additional data, such as log images or LAS files that may exist for this area; (3) Analysis of geographic distribution of that data to pinpoint regional gaps in coverage; (4) Assessment of the data within both public and proprietary data sets to begin tuning of regional well logging analyses and improve payzone recognition; (5) Development of an integrated web and GIS interface for all the information collected in this effort, including data from northwest New Mexico; (6) Acquisition and digitization of logs to create LAS files for a subset of the wells in the special core analysis data set; and (7) Petrophysical analysis of the final set of well logs.

Martha Cather; Robert Lee; Robert Balch; Tom Engler; Roger Ruan; Shaojie Ma

2008-10-01T23:59:59.000Z

257

Appendix F Cultural Resources, Including  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appendix F Appendix F Cultural Resources, Including Section 106 Consultation STATE OF CALIFORNIA - THE RESOURCES AGENCY EDMUND G. BROWN, JR., Governor OFFICE OF HISTORIC PRESERVATION DEPARTMENT OF PARKS AND RECREATION 1725 23 rd Street, Suite 100 SACRAMENTO, CA 95816-7100 (916) 445-7000 Fax: (916) 445-7053 calshpo@parks.ca.gov www.ohp.parks.ca.gov June 14, 2011 Reply in Reference To: DOE110407A Angela Colamaria Loan Programs Office Environmental Compliance Division Department of Energy 1000 Independence Ave SW, LP-10 Washington, DC 20585 Re: Topaz Solar Farm, San Luis Obispo County, California Dear Ms. Colamaria: Thank you for seeking my consultation regarding the above noted undertaking. Pursuant to 36 CFR Part 800 (as amended 8-05-04) regulations implementing Section

258

Modeling shelter-in-place including sorption on indoor surfaces  

NLE Websites -- All DOE Office Websites (Extended Search)

response option, especially in situations when evacuation is infeasible. Reasonably tight building envelopes provide protection against exposure to peak concentrations when...

259

Countries Gasoline Prices Including Taxes  

Gasoline and Diesel Fuel Update (EIA)

Countries (U.S. dollars per gallon, including taxes) Countries (U.S. dollars per gallon, including taxes) Date Belgium France Germany Italy Netherlands UK US 01/13/14 7.83 7.76 7.90 8.91 8.76 8.11 3.68 01/06/14 8.00 7.78 7.94 8.92 8.74 8.09 3.69 12/30/13 NA NA NA NA NA NA 3.68 12/23/13 NA NA NA NA NA NA 3.63 12/16/13 7.86 7.79 8.05 9.00 8.78 8.08 3.61 12/9/13 7.95 7.81 8.14 8.99 8.80 8.12 3.63 12/2/13 7.91 7.68 8.07 8.85 8.68 8.08 3.64 11/25/13 7.69 7.61 8.07 8.77 8.63 7.97 3.65 11/18/13 7.99 7.54 8.00 8.70 8.57 7.92 3.57 11/11/13 7.63 7.44 7.79 8.63 8.46 7.85 3.55 11/4/13 7.70 7.51 7.98 8.70 8.59 7.86 3.61 10/28/13 8.02 7.74 8.08 8.96 8.79 8.04 3.64 10/21/13 7.91 7.71 8.11 8.94 8.80 8.05 3.70 10/14/13 7.88 7.62 8.05 8.87 8.74 7.97 3.69

260

New Zealand Energy Data: Oil Consumption by Fuel and Sector ...  

Open Energy Info (EERE)

Oil Consumption by Fuel and Sector The New Zealand Ministry of Economic Development publishes energy data including many datasets related to oil and other...

Note: This page contains sample records for the topic "including tight oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

A number of western states increased oil production since 2010 ...  

U.S. Energy Information Administration (EIA)

Onshore oil production, including crude oil and lease condensate, rose more than 2 million barrels per day (bbl/d), or 64%, in the Lower 48 states from February 2010 ...

262

PADD 2 Stocks of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA)

History; Total Crude Oil and Petroleum Products (Incl. SPR) 279,627: 277,974: 280,607: 273,702: 274,961: 280,571: 1981-2013: Crude Oil (Including SPR) 117,512:

263

Lubrication from mixture of boric acid with oils and greases  

DOE Patents (OSTI)

Lubricating compositions including crystalline boric acid and a base lubricant selected from oils, greases and the like. The lubricity of conventional oils and greases can also be improved by adding concentrates of boric acid.

Erdemir, Ali (Naperville, IL)

1995-01-01T23:59:59.000Z

264

Category:Oil and Gas | Open Energy Information  

Open Energy Info (EERE)

Gas Gas Jump to: navigation, search This category includes companies and information related to oil (petroleum) or natural gas. Pages in category "Oil and Gas" The following 114 pages are in this category, out of 114 total. A Abu Dhabi National Oil Company Abu Dhabi Supreme Petroleum Council Al Furat Petroleum Company Alabama Oil and Gas Board Alaska Division of Oil and Gas Alaska Oil and Gas Conservation Commission Algeria Ministry of Energy and Mining Archaeological Resource Protection Act Archaeological Resources Protection Act Arizona Oil and Gas Commission Arkansas Oil and Gas Commission B Bahrain National Gas and Oil Authority Bald and Golden Eagle Protection Act C California Division of Oil, Gas, and Geothermal Resources California Environmental Quality Act

265

Enriching off gas from oil shale retort  

SciTech Connect

Liquid and gaseous products are recovered from oil shale in an in situ oil shale retort in which a combustion zone is advanced therethrough by a method which includes the steps of establishing a combustion zone in the oil shale in the in situ oil shale retort and introducing a gaseous feed mixture into the combustion zone in the direction the combustion zone is to be advanced through the in situ oil shale retort. The gaseous feed mixture comprises an oxygen supplying gas and water vapor and is introduced into the combustion zone at a rate sufficient to maintain the temperature in the combustion zone within a predetermined range of temperatures above the retorting temperature of the oil shale in the in situ oil shale retort and sufficient to advance the combustion zone through the in situ oil shale retort. The introduction of the gaseous feed mixture into the combustion zone generates combustion products gases which together with the portion of the gaseous feed mixture which does not take part in the combustion process, is called flue gas. The flue gas passes through the oil shale on the advancing side of the combustion zone, thereby retorting the oil shale to produce liquid and gaseous products. The liquid product and the retort off gas, which comprises gaseous product and flue gas, are withdrawn from the in situ oil shale retort at a point on the advancing side of the retorting zone. 47 claims, 1 figure.

Cha, C.Y.; Ridley, R.D.

1977-07-19T23:59:59.000Z

266

Oil price; oil demand shocks; oil supply shocks; dynamic effects.  

E-Print Network (OSTI)

Abstract: Using a newly developed measure of global real economic activity, a structural decomposition of the real price of crude oil in four components is proposed: oil supply shocks driven by political events in OPEC countries; other oil supply shocks; aggregate shocks to the demand for industrial commodities; and demand shocks that are specific to the crude oil market. The latter shock is designed to capture shifts in the price of oil driven by higher precautionary demand associated with fears about future oil supplies. The paper quantifies the magnitude and timing of these shocks, their dynamic effects on the real price of oil and their relative importance in determining the real price of oil during 1975-2005. The analysis sheds light on the origin of the observed fluctuations in oil prices, in particular during oil price shocks. For example, it helps gauge the relative importance of these shocks in the build-up of the real price of crude oil since the late 1990s. Distinguishing between the sources of higher oil prices is shown to be crucial in assessing the effect of higher oil prices on U.S. real GDP and CPI inflation, suggesting that policies aimed at dealing with higher oil prices must take careful account of the origins of higher oil prices. The paper also quantifies the extent to which the macroeconomic performance of the U.S. since the mid-1970s has been driven by the external economic shocks driving the real price of oil as opposed to domestic economic factors and policies. Key words: JEL:

Lutz Kilian

2006-01-01T23:59:59.000Z

267

RMOTC - Testing - Enhanced Oil Recovery  

NLE Websites -- All DOE Office Websites (Extended Search)

Enhanced Oil Recovery Enhanced Oil Recovery Notice: As of July 15th 2013, the Department of Energy announced the intent to sell Naval Petroleum Reserve Number 3 (NPR3). The sale of NPR-3 will also include the sale of all equipment and materials onsite. A decision has been made by the Department of Energy to complete testing at RMOTC by July 1st, 2014. RMOTC will complete testing in the coming year with the currently scheduled testing partners. For more information on the sale of NPR-3 and sale of RMOTC equipment and materials please join our mailing list here. RMOTC will play a significant role in continued enhanced oil recovery (EOR) technology development and field demonstration. A scoping engineering study on Naval Petroleum Reserve No. 3's (NPR-3) enhanced oil recovery

268

Oil shale retort apparatus  

DOE Patents (OSTI)

A retorting apparatus including a vertical kiln and a plurality of tubes for delivering rock to the top of the kiln and removal of processed rock from the bottom of the kiln so that the rock descends through the kiln as a moving bed. Distributors are provided for delivering gas to the kiln to effect heating of the rock and to disturb the rock particles during their descent. The distributors are constructed and disposed to deliver gas uniformly to the kiln and to withstand and overcome adverse conditions resulting from heat and from the descending rock. The rock delivery tubes are geometrically sized, spaced and positioned so as to deliver the shale uniformly into the kiln and form symmetrically disposed generally vertical paths, or "rock chimneys", through the descending shale which offer least resistance to upward flow of gas. When retorting oil shale, a delineated collection chamber near the top of the kiln collects gas and entrained oil mist rising through the kiln.

Reeves, Adam A. (Grand Junction, CO); Mast, Earl L. (Norman, OK); Greaves, Melvin J. (Littleton, CO)

1990-01-01T23:59:59.000Z

269

Production of Natural Gas and Fluid Flow in Tight Sand Reservoirs  

Science Conference Proceedings (OSTI)

This document reports progress of this research effort in identifying possible relationships and defining dependencies between macroscopic reservoir parameters strongly affected by microscopic flow dynamics and production well performance in tight gas sand reservoirs. Based on a critical review of the available literature, a better understanding of the main weaknesses of the current state of the art of modeling and simulation for tight sand reservoirs has been reached. Progress has been made in the development and implementation of a simple reservoir simulator that is still able to overcome some of the deficiencies detected. The simulator will be used to quantify the impact of microscopic phenomena in the macroscopic behavior of tight sand gas reservoirs. Phenomena such as, Knudsen diffusion, electro-kinetic effects, ordinary diffusion mechanisms and water vaporization are being considered as part of this study. To date, the adequate modeling of gas slippage in porous media has been determined to be of great relevance in order to explain unexpected fluid flow behavior in tight sand reservoirs.

Maria Cecilia Bravo; Mariano Gurfinkel

2005-06-30T23:59:59.000Z

270

Social navigation for loosely-coupled information seeking in tightly-knit groups using webwear  

Science Conference Proceedings (OSTI)

Many web-based information-seeking tasks are set in a social context where other people's knowledge and advice improves success in finding information. However, when tightly-knit contacts (friends, family, colleagues) are not available, information seeking ... Keywords: collaborative information seeking, social navigation

Scott S. Bateman; Carl A. Gutwin; Gordon I. McCalla

2013-02-01T23:59:59.000Z

271

Efficiency and Fluctuation in Tight-Coupling Model of Molecular Motor  

E-Print Network (OSTI)

A simple tight-coupling model of a molecular chemical engine is proposed. The efficiency of the chemical engine and its average velocity can be explicitly calculated. The diffusion constant is evaluated approximately using the fluctuation theorem. Langevin simulations with stochastic boundary conditions are performed and the numerical results are compared with theoretical calculations.

Hidetsugu Sakaguchi

2006-05-08T23:59:59.000Z

272

High Performance Biomorphic Image Processing Under Tight Space and Power Constraints  

Science Conference Proceedings (OSTI)

Image processing for space systems must be performed under tight space and power constraints while not compromising performance. Traditional computer vision approaches are not ideal because they are notoriously power hungry and physically large. We present ... Keywords: centroid localization chip, computational sensing, focal-plane processing, image process chip, motion detection chip, spatiotemporal convolution chip, vision chip

Ralph Etienne-Cummings; Viktor Gruev; Mathew Clapp

2001-11-01T23:59:59.000Z

273

A Tight Lower Bound to the Outage Probability of Discrete-Input Block-Fading Channels  

Science Conference Proceedings (OSTI)

In this correspondence, a tight lower bound to the outage probability of discrete-input Nakagami-m block-fading channels is proposed. The approach permits an efficient method for numerical evaluation of the bound, providing an additional tool for system ... Keywords: Block-fading channel, diversity, error probability, outage probability, rate-diversity tradeoff, signal-to-noise ratio (SNR)-exponent

K. D. Nguyen; A. Guillen i Fabregas; L. K. Rasmussen

2007-11-01T23:59:59.000Z

274

Wilcox formation evaluation; Improved procedures for tight-gas-sand evaluation  

Science Conference Proceedings (OSTI)

This paper discusses risks in tight-gas-sand evaluation, reduced by defining relationships between pore geometry and critical water saturations. These results are integrated with log interpretation to derive an estimated kh that compares favorably with a true kh from production tests. These procedures are potentially applicable for evaluating other complex reservoirs.

Lewis, D.J.; Perrin, J.D. (BP Exploration Inc., Houston, TX (US))

1992-06-01T23:59:59.000Z

275

Understanding Crude Oil Prices  

E-Print Network (OSTI)

World Production of Crude Oil, NGPL, and Other Liquids, andWorld Production of Crude Oil, NGPL, and Other Liquids, andProduction of Crude Oil, NGPL, and Other Liquids, and Re?

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

276

Understanding Crude Oil Prices  

E-Print Network (OSTI)

2004. “OPEC’s Optimal Crude Oil Price,” Energy Policy 32(2),Figure 3. Price of crude oil contract maturing December ofbarrels per day. Monthly crude oil production Iran Iraq

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

277

Reduce Oil Dependence Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

Reduce Oil Dependence Costs U.S. Petroleum Use, 1970-2010 Nearly 40% of the oil we use is imported, costing us roughly 300 billion annually. Increased domestic oil production from...

278

China's Global Oil Strategy  

E-Print Network (OSTI)

interpretations of China’s foreign oil strategy. Argumentsof aspects of China’s foreign oil activities, they do notits largest directly-run foreign oil project. Supplying 10

Thomas, Bryan G

2009-01-01T23:59:59.000Z

279

Understanding Crude Oil Prices  

E-Print Network (OSTI)

Natural Gas, Heating Oil and Gasoline,” NBER Working Paper.2006. “China’s Growing Demand for Oil and Its Impact on U.S.and Income on Energy and Oil Demand,” Energy Journal 23(1),

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

280

Oil Spills and Wildlife  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil Spills and Wildlife Name: jess Location: NA Country: NA Date: NA Question: what are some effects of oil spills on plants? Replies: The effects of oil spills over the last...

Note: This page contains sample records for the topic "including tight oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

China's Global Oil Strategy  

E-Print Network (OSTI)

Michael T. Klare, Blood and Oil: The Dangers of America’sDowns and Jeffrey A. Bader, “Oil-Hungry China Belongs at BigChina, Africa, and Oil,” (Council on Foreign Relations,

Thomas, Bryan G

2009-01-01T23:59:59.000Z

282

Understanding Crude Oil Prices  

E-Print Network (OSTI)

by the residual quantity of oil that never gets produced.order to purchase a quantity Q barrels of oil at a price P tD t Q t Q t+1 Quantity Figure 5. Monthly oil production for

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

283

China's Global Oil Strategy  

E-Print Network (OSTI)

is an important oil source for China, yet unlike itsthe United States as a major oil source outside the volatileto be a critical source of oil, and one that is almost

Thomas, Bryan G

2009-01-01T23:59:59.000Z

284

Understanding Crude Oil Prices  

E-Print Network (OSTI)

2004. “OPEC’s Optimal Crude Oil Price,” Energy Policy 32(2),percent change in real oil price. Figure 3. Price of crude023 Understanding Crude Oil Prices James D. Hamilton June

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

285

China's Global Oil Strategy  

E-Print Network (OSTI)

nations began to seek out oil reserves around the world. 3on the limited global oil reserves and spiking prices. Manyto the largest proven oil reserves, making up 61 percent of

Thomas, Bryan G

2009-01-01T23:59:59.000Z

286

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

of Texas-Austin, Austin, TX Background A significant portion of U.S. natural gas production comes from unconventional gas resources such as tight gas sands. Tight gas sands...

287

China's Global Oil Strategy  

E-Print Network (OSTI)

China’s domestic oil supply will peak, and demand Robertpeak will come around 2020, 24 and that by this point, China’s demand Oil

Thomas, Bryan G

2009-01-01T23:59:59.000Z

288

Understanding Crude Oil Prices  

E-Print Network (OSTI)

5. Monthly oil production for Iran, Iraq, and Kuwait, inday. Monthly crude oil production Iran Iraq Kuwait Figure 6.Arabia PRODUCTION QUOTA Iran PRODUCTION QUOTA Venezuela

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

289

Crude Oil Affects Gasoline Prices  

U.S. Energy Information Administration (EIA)

Crude Oil Affects Gasoline Prices. WTI Crude Oil Price. Retail Gasoline Price. Source: Energy Information Administration

290

Oil well jar  

SciTech Connect

A jar for use in imparting jarring blows to an object lodged in the bore of a well. The jar includes a mandrel member and outer telescopically related tubular member, the mandrel member and said tubular member being telescopically movable between an extended and a collapsed position of the jar. One of the members is connected to a drill string while the other of the members is connected to the object to be jarred. Telescopically overlapping portions of the members provide an annular chamber for confining an operating fluid. A sleeve and a cylinder extend into the chamber and into an essentially fluid tight fit with each other for a selected portion of the telescopic travel between the extended and collapsed positions. An operating fluid bypass is provided in the first one of the members, the bypass being in fluid communication with the operating fluid above and below the sleeve, the bypass including a channel. An orifice is disposed in the channel. A filter, distinct from said orifice, is provided by controlling the clearences between the sleeve and the first one of the members.

Sutliff, W. N.

1985-06-25T23:59:59.000Z

291

Biochemically enhanced oil recovery and oil treatment  

DOE Patents (OSTI)

This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil.

Premuzic, Eugene T. (East Moriches, NY); Lin, Mow (Rocky Point, NY)

1994-01-01T23:59:59.000Z

292

Biochemically enhanced oil recovery and oil treatment  

DOE Patents (OSTI)

This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. 62 figures.

Premuzic, E.T.; Lin, M.

1994-03-29T23:59:59.000Z

293

Production of Shale Oil  

E-Print Network (OSTI)

Intensive pre-project feasibility and engineering studies begun in 1979 have produced an outline plan for development of a major project for production of shale oil from private lands in the Piceance Basin in western Colorado. This outline plan provides a blueprint for the development of a 28,000 acre holding on Clear Creek in Garfield County, Colorado on property acquired by Standard Oil of California in the late 1940's and early 1950's. The paper describes these planning activities and the principal features of a proposed $5 billion project to develop facilities for production of 100,000 barrels per day of synthetic crude from oil shale. Subjects included are resource evaluation, environmental baseline studies, plans for acquisition of permits, plans for development of required retorting and mining technology and a preliminary description of the commercial project which will ultimately emerge from these activities. General financial impact of the project and the case for additional tax incentives to encourage it will be described.

Loper, R. D.

1982-01-01T23:59:59.000Z

294

An Advisory System For Selecting Drilling Technologies and Methods in Tight Gas Reservoirs.  

E-Print Network (OSTI)

??The supply and demand situation is crucial for the oil and gas industry during the first half of the 21st century. For the future, we… (more)

Pilisi, Nicolas

2010-01-01T23:59:59.000Z

295

Using multi-layer models to forecast gas flow rates in tight gas reservoirs  

E-Print Network (OSTI)

The petroleum industry commonly uses single-layer models to characterize and forecast long-term production in tight gas reservoir systems. However, most tight gas reservoirs are layered systems where the permeability and porosity of each layer can vary significantly, often over several orders of magnitude. In addition, the drainage areas of each of the layers can be substantially different. Due to the complexity of such reservoirs, the analysis of pressure and production history using single-layer analyses techniques provide incorrect estimates of permeability, fracture conductivity, drainage area, and fracture half-length. These erroneous values of reservoir properties also provide the reservoir engineer with misleading values of forecasted gas recovery. The main objectives of this research project are: (1) to demonstrate the typical errors that can occur in reservoir properties when single-layer modeling methods are used to history match production data from typical layered tight gas reservoirs, and (2) to use the single-layer match to demonstrate the error that can occur when forecasting long-term gas production for such complex gas reservoirs. A finite-difference reservoir simulator was used to simulate gas production from various layered tight gas reservoirs. These synthetic production data were analyzed using single-layer models to determine reservoir properties. The estimated reservoir properties obtained from the history matches were then used to forecast ten years of cumulative gas production and to find the accuracy of gas reserves estimated for tight gas reservoirs when a single-layer model is used for the analysis. Based on the results obtained in this work, I conclude that the accuracy in reservoir properties and future gas flow rates in layered tight gas reservoirs when analyzed using a single-layer model is a function of the degree of variability in permeability within the layers and the availability of production data to be analyzed. In cases where there is an idea that the reservoir presents a large variability in ��k�, using a multi-layer model to analyze the production data will provide the reservoir engineer with more accurate estimates of long-term production recovery and reservoir properties.

Jerez Vera, Sergio Armando

2006-12-01T23:59:59.000Z

296

General model of oil shale pyrolysis. Revision 1  

DOE Green Energy (OSTI)

A mathematical model for pyrolysis of Green River oil shale is developed from previous experiments on oil, water, and gas evolution and oil cracking over a wide range of pyrolysis conditions. Reactions included are evolution of 5 gas species, oil, and water from kerogen, clay dehydration, oil coking and cracking, and evolution of H/sub 2/ and CH/sub 4/ from char. Oil is treated in eleven boiling point fractions in order to treat the competition between oil coking and evaporation, and to evalute the effect of oil cracking on the boiling point distribution of the oil. The kinetics and product yields calculated by the model are compared to experimental results for pyrolysis conditions ranging from isothermal fluid-bed to high-pressure slow-heating-rate retorting.

Burnham, A.K.; Braun, R.L.

1984-04-01T23:59:59.000Z

297

Method for forming an in-situ oil shale retort in differing grades of oil shale  

Science Conference Proceedings (OSTI)

An in-situ oil shale retort is formed in a subterranean formation containing oil shale. The formation comprises at least one region of relatively richer oil shale and another region of relatively leaner oil shale. According to one embodiment, formation is excavated from within a retort site for forming at least one void extending horizontally across the retort site, leaving a portion of unfragmented formation including the regions of richer and leaner oil shale adjacent such a void space. A first array of vertical blast holes are drilled in the regions of richer and leaner oil shale, and a second array of blast holes are drilled at least in the region of richer oil shale. Explosive charges are placed in portions of the blast holes in the first and second arrays which extend into the richer oil shale, and separate explosive charges are placed in portions of the blast holes in the first array which extend into the leaner oil shale. This provides an array with a smaller scaled depth of burial (sdob) and closer spacing distance between explosive charges in the richer oil shale than the sdob and spacing distance of the array of explosive charges in the leaner oil shale. The explosive charges are detonated for explosively expanding the regions of richer and leaner oil shale toward the horizontal void for forming a fragmented mass of particles. Upon detonation of the explosive, greater explosive energy is provided collectively by the explosive charges in the richer oil shale, compared with the explosive energy produced by the explosive charges in the leaner oil shale, resulting in comparable fragmentation in both grades of oil shale.

Ricketts, T.E.

1984-04-24T23:59:59.000Z

298

Energy & Financial Markets: What Drives Crude Oil Prices?  

Reports and Publications (EIA)

An assessment of the various factors that may influence oil prices - physical market factors as well as those related to trading and financial markets. The analysis describes 7 key factors that could influence oil markets and explores possible linkages between each factor and oil prices, and includes regularly-updated graphs that depict aspects of those relationships.

2011-12-14T23:59:59.000Z

299

Proceedings of the 7th Middle East oil show  

Science Conference Proceedings (OSTI)

This book contains the November, 1991 proceedings of the 7th Middle East Oil Show. It includes the following topics: Horizontal drilling; Emergency pipeline repair; Geologic interpretation and digital processing of satellite images; Fracturing patterns; Oil and gas saturation monitoring; and The environmental impact of oil spills.

Not Available

1991-01-01T23:59:59.000Z

300

Eco Oil 4  

DOE Green Energy (OSTI)

This article describes the processes, challenges, and achievements of researching and developing a biobased motor oil.

Brett Earl; Brenda Clark

2009-10-26T23:59:59.000Z

Note: This page contains sample records for the topic "including tight oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Subject is oil shale  

SciTech Connect

The article reviews the current financial, legislative and regulatory problems of oil shale development. 2 refs.

Due, M.J.C.

1982-02-01T23:59:59.000Z

302

Oil | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil Oil Oil Oil Prices, 2000-2008 For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our interactive chart. | Graphic by Daniel Wood, Energy Department. For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our interactive chart. | Graphic by Daniel Wood, Energy Department. Oil is used for heating and transportation -- most notably, as fuel for gas-powered vehicles. America's dependence on foreign oil has declined in recent years, but oil prices have increased. The Energy Department supports research and policy options to increase our domestic supply of oil while ensuring environmentally sustainable supplies domestically and abroad, and is investing in research, technology and

303

Market model finds tight gas sands R and D offers most promise  

Science Conference Proceedings (OSTI)

Unconventional natural gas (UNG) - primarily tight gas sands - offers by far the largest opportunity for reducing gas costs between now and 2000, a team of researchers reported at the Sept. 1984 International Gas Research conference in Washington, DC. The promises of UNG R and D far outweigh those of synthetic natural gas (SNG), the researchers concluded, but stressed that SNG R and D should nonetheless continue - but with a different focus and changed performance goals.

Not Available

1984-09-17T23:59:59.000Z

304

Energy Department Expands Gas Gouging Reporting System to Include...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

quickly to approve requests of loans from the Strategic Petroleum Reserve to oil refineries. Within 48 hours of receiving requests, oil was on its way to requesting refineries....

305

Oil Dependencies and Peak Oil's Effects on Oil Consumption.  

E-Print Network (OSTI)

?? During the year of 2007, the world has experienced historically high oil prices both in nominal and in real terms, which has reopened discussions… (more)

Tekin, Josef

2007-01-01T23:59:59.000Z

306

U.S. Military Expenditures to Protect the Use of Persian-Gulf Oil For Motor Vehicles  

E-Print Network (OSTI)

of crude oil includes all transportation costs and fees updid not produce or consume oil); the cost of defending theDivision, The External Costs of Oil Used in Transportation,

Delucchi, Mark A.; Murphy, James

1996-01-01T23:59:59.000Z

307

PARTITIONING OF MAJOR, MINOR, AND TRACE ELEMENTS DURING SIMULATED IN SITU OIL SHALE RETORTING IN A CONTROLLED-STATE RETORT  

E-Print Network (OSTI)

produce oil, in various gas, bitumen, and C quantities andquantity of each element distributed among the products and Elements in the oilOil shales contain organic material in a mineral matrix which includes significant environmentally As, quantities

Fox, J. P.

2011-01-01T23:59:59.000Z

308

Lube Oil System Leakage Mitigation  

Science Conference Proceedings (OSTI)

Lube Oil System Leakage Mitigation is the second in a series of training modules addressing leakage in nuclear power plants. The first planned modules in the leakage reduction series include leakage reduction program management, bolted joints with flat gaskets, valve packing, threaded joints, compression fittings, mechanical seals, and miscellaneous bolting issues.

1999-07-28T23:59:59.000Z

309

Colorado oil shale: the current status, October 1979  

DOE Green Energy (OSTI)

A general background to oil shale and the potential impacts of its development is given. A map containing the names and locations of current oil shale holdings is included. The history, geography, archaeology, ecology, water resources, air quality, energy resources, land use, sociology, transportation, and electric power for the state of Colorado are discussed. The Colorado Joint Review Process Stages I, II, and III-oil shale are explained. Projected shale oil production capacity to 1990 is presented. (DC)

Not Available

1979-01-01T23:59:59.000Z

310

Crude Oil, Heating Oil, and Propane Market Outlook  

U.S. Energy Information Administration (EIA)

Crude Oil, Heating Oil, and Propane Outlook Briefing for the State Heating Oil and Propane Program Conference Asheville, NC Mike Burdette Petroleum Division, Energy ...

311

Crude Oil, Heating Oil, and Propane Market Outlook  

U.S. Energy Information Administration (EIA)

Table of Contents. Crude Oil, Heating Oil, and Propane Market Outlook. Short-Term World Oil Price Forecast . Price Movements Related to Supply/Demand Balance

312

Crude Oil, Heating Oil, and Propane Market Outlook  

U.S. Energy Information Administration (EIA)

Crude Oil, Heating Oil, and Propane Market Outlook Briefing for the State Heating Oil and Propane Program Conference Wilmington, DE by Douglas MacIntyre

313

Vsd Oil Free Air Compressor, Vsd Oil Free Air Compressor ...  

U.S. Energy Information Administration (EIA)

Vsd Oil Free Air Compressor, You Can Buy Various High Quality Vsd Oil Free Air Compressor Products from Global Vsd Oil Free Air Compressor Suppliers ...

314

Oil Free Vsd Air Compressor, Oil Free Vsd Air Compressor ...  

U.S. Energy Information Administration (EIA)

Oil Free Vsd Air Compressor, You Can Buy Various High Quality Oil Free Vsd Air Compressor Products from Global Oil Free Vsd Air Compressor Suppliers ...

315

Oil export policy and economic development in OPEC  

Science Conference Proceedings (OSTI)

During the 1970s, members of the Organization of Petroleum Exporting Countries (OPEC) increased the price of their oil exports by 2000% in nominal terms. The ability of OPEC countries to increase the economic and other benefits they drew from each barrel of oil was a familiar theme of that decade. However, recent developments in the world oil market may not be so encouraging for OPEC. From 1979 to 1983, demand for OPEC crude oil decreased by almost 45%, or from 30.9 to 17.5 million barrels per day (mbd). Despite this dramatic decrease, the news on the price front has not so far been that bad for OPEC. The average OPEC oil price, which had increased from $1.80/bbl (barrel) in 1970 to $36/bbl by 1980, declined to $29/bbl by 1983. OPEC has thus defied many experts by managing to avoid a price collapse. Not surprisingly, these developments have raised arguments about the nature of OPEC and how it operates. OPEC has been characterized variously as a very tight cartel and as a loose and ineffectual organization. This paper tries to shed some light on OPEC, and especially on how the economic development objectives of influential OPEC members affect their oil policies.

Aperjis, D.G.

1984-01-01T23:59:59.000Z

316

Crude Oil  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Includes volumes uses as ...

317

Green Vegetable Oil Processing, Revised First Edition  

Science Conference Proceedings (OSTI)

This book addresses alternative green technologies at various stages of oilseed and vegetable oil processing. The Revised First Edition includes much of the content of the first edition, but incorporates updated data, details, images, figures, and captions

318

Crude-oil market report  

SciTech Connect

The crude oil market has been both quieter and thinner during the past few months. Various factors, including OPEC restraints, settlement of the British coal strike, and dollar exchange rates, have been stabilizing, although erratic output by Iran and the Soviet Union have caused fluctuations in prices. Higher gasoline prices have triggered a preference for sweet crudes and a possible shortage during the summer motoring season. Oil stocks appear to be at the bottom now, but restocking activities will probably not cause shortages. The author forecasts a continued weak market. 2 tables.

1985-01-01T23:59:59.000Z

319

Oil-shale material properties  

SciTech Connect

The mechanical properties of oil shale have been under examination at Sandia since 1975 in a program which has involved laboratory and field experimentation along with complementary analytical activities. The dependence of the fragmentation phenomenon on strain rate is important in explosive applications because strain rates realized in typical blasting events extend over a wide range. The model has been used to calculate a variety of explosive geometries in oil shale, with results compared to small- and large-scale experiments, including a small block test with 80 g of explosive and a field test with 5 kg explosive.

Kipp, M.E.

1983-01-01T23:59:59.000Z

320

Waste oil reclamation. (Latest citations from the NTIS bibliographic database). Published Search  

Science Conference Proceedings (OSTI)

The bibliography contains citations concerning methods and equipment for reclamation and recycling of waste oils. Citations discuss recovery, disposal, and reuse of lubricating oils. Topics include economic analysis, programs assessment, re-refining techniques, chemical component analysis, and reclaimed oil evaluation. Regulations and standards for waste oil treatment and waste oil refineries are examined. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1996-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "including tight oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Waste oil reclamation. (Latest citations from the NTIS bibliographic database). Published Search  

Science Conference Proceedings (OSTI)

The bibliography contains citations concerning methods and equipment for reclamation and recycling of waste oils. Citations discuss recovery, disposal, and reuse of lubricating oils. Topics include economic analysis, programs assessment, re-refining techniques, chemical component analysis, and reclaimed oil evaluation. Regulations and standards for waste oil treatment and waste oil refineries are examined. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1997-10-01T23:59:59.000Z

322

Waste oil reclamation. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning methods and equipment for reclamation and recycling of waste oils. Citations discuss recovery, disposal, and reuse of lubricating oils. Topics include economic analysis, programs assessment, re-refining techniques, chemical component analysis, and reclaimed oil evaluation. Regulations and standards for waste oil treatment and waste oil refineries are examined. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1995-03-01T23:59:59.000Z

323

World Oil Prices and Production Trends in AEO2010 (released in AEO2010)  

Reports and Publications (EIA)

In AEO2010, the price of light, low-sulfur (or sweet) crude oil delivered at Cushing, Oklahoma, is tracked to represent movements in world oil prices. EIA makes projections of future supply and demand for total liquids, which includes conventional petroleum liquidssuch as conventional crude oil, natural gas plant liquids, and refinery gainin addition to unconventional liquids, which include biofuels, bitumen, coal-to-liquids (CTL), gas-to-liquids (GTL), extra-heavy oils, and shale oil.

Information Center

2010-05-11T23:59:59.000Z

324

Oil-Well Fire Fighting  

Science Conference Proceedings (OSTI)

... Oil Well Fire Fighting. NIST fire Research NIST Fire Research 2 Oil Well Fire Fighting RoboCrane Model Oil Well Fire Fighting Working Model.

2011-08-25T23:59:59.000Z

325

AN ENGINE OIL LIFE ALGORITHM.  

E-Print Network (OSTI)

??An oil-life algorithm to calculate the remaining percentage of oil life is presented as a means to determine the right time to change the oil… (more)

Bommareddi, Anveshan

2009-01-01T23:59:59.000Z

326

Fuel Oil Use in Manufacturing  

Gasoline and Diesel Fuel Update (EIA)

and residual fuel oils. Distillate fuel oil, the lighter product, is also used for heating of homes and commercial buildings. Residual oil is a much denser, heavier product...

327

Basin Play States  

U.S. Energy Information Administration (EIA) Indexed Site

WY 2 8 Subtotal 204 3,375 Other tight oil plays (e.g. Monterey, Woodford) 24 253 All U.S. tight oil plays 228 3,628 Note: Includes lease condensate. Source: U.S. Energy Information...

328

Angolan oil production has doubled since 2003 - Today in Energy ...  

U.S. Energy Information Administration (EIA)

International oil companies, including Chevron, ExxonMobil, Total, Eni, and BP, play a major role in Angola, operating most production.

329

Heating Oil and Propane Update - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. ... Weekly heating oil and propane prices are only collected during the heating season, ...

330

North Dakota crude oil production continues to rise ...  

U.S. Energy Information Administration (EIA)

... diesel, propane, and other liquids including ... North Dakota's oil production averaged 660 thousand barrels per day (bbl/d) in June 2012, ... Add ...

331

How dependent is the United States on foreign oil? - FAQ ...  

U.S. Energy Information Administration (EIA)

... propane, and other liquids including biofuels and ... In 2012, about 57% of the ... How dependent is the United States on foreign oil? How many ...

332

Modeling of Energy Production Decisions: An Alaska Oil Case Study  

E-Print Network (OSTI)

the Optimization of Oil Exploration and Production: The UKof taxation on exploration and production include Yucel (of petroleum exploration and production. He found the

Leighty, Wayne

2008-01-01T23:59:59.000Z

333

Turkmenistan Net Imports of Crude Oil and Petroleum Products ...  

U.S. Energy Information Administration (EIA)

... California crude oil to Pacific Rim countries. The Persian Gulf includes Bahrain, Iran, Iraq, Kuwait, Qatar, Saudi Arabia, and the United Arab Emirates.

334

Montenegro Net Imports of Crude Oil and Petroleum Products into ...  

U.S. Energy Information Administration (EIA)

... California crude oil to Pacific Rim countries. The Persian Gulf includes Bahrain, Iran, Iraq, Kuwait, Qatar, Saudi Arabia, and the United Arab Emirates.

335

Middle East leads global crude oil and condensate production ...  

U.S. Energy Information Administration (EIA)

Growth in North American crude oil production (including lease condensate) contributed to record global production of 75.6 million barrels per day (bbl/d) in 2012 ...

336

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

inputs, and exports minus the sum of renewable fuels and oxygenate plant net production, imports, and adjustments. Adjustments include an adjustment for crude oil, previously...

337

U.S. Imports of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil includes ...

338

North Dakota oil production reaches new high in 2012 ...  

U.S. Energy Information Administration (EIA)

North Dakota crude oil production (including lease condensate) averaged an all-time high of 770,000 barrels per day in December 2012. Total annual ...

339

SUPRI heavy oil research program  

SciTech Connect

The 14th Annual Report of the SUPRI Heavy Oil Research Program includes discussion of the following topics: (1) A Study of End Effects in Displacement Experiments; (2) Cat Scan Status Report; (3) Modifying In-situ Combustion with Metallic Additives; (4) Kinetics of Combustion; (5) Study of Residual Oil Saturation for Steam Injection and Fuel Concentration for In-Situ Combustion; (6) Analysis of Transient Foam Flow in 1-D Porous Media with Computed Tomography; (7) Steam-Foam Studies in the Presence of Residual Oil; (8) Microvisualization of Foam Flow in a Porous Medium; (9) Three- Dimensional Laboratory Steam Injection Model; (10) Saturation Evaluation Following Water Flooding; (11) Numerical Simulation of Well-to-Well Tracer Flow Test with Nonunity Mobility Ratio.

Aziz, K.; Ramey, H.J. Jr.; Castanier, L.M.

1991-12-01T23:59:59.000Z

340

Apparatus for distilling shale oil from oil shale  

Science Conference Proceedings (OSTI)

An apparatus for distilling shale oil from oil shale comprises: a vertical type distilling furnace which is divided by two vertical partitions each provided with a plurality of vent apertures into an oil shale treating chamber and two gas chambers, said oil shale treating chamber being located between said two gas chambers in said vertical type distilling furnace, said vertical type distilling furnace being further divided by at least one horizontal partition into an oil shale distilling chamber in the lower part thereof and at least one oil shale preheating chamber in the upper part thereof, said oil shale distilling chamber and said oil shale preheating chamber communication with each other through a gap provided at an end of said horizontal partition, an oil shale supplied continuously from an oil shale supply port provided in said oil shale treating chamber at the top thereof into said oil shale treating chamber continuously moving from the oil shale preheating chamber to the oil shale distilling chamber, a high-temperature gas blown into an oil shale distilling chamber passing horizontally through said oil shale in said oil shale treating chamber, thereby said oil shale is preheated in said oil shale preheating chamber, and a gaseous shale oil is distilled from said preheated oil shale in said oil shale distilling chamber; and a separator for separating by liquefaction a gaseous shale oil from a gas containing the gaseous shale oil discharged from the oil shale preheating chamber.

Shishido, T.; Sato, Y.

1984-02-14T23:59:59.000Z

Note: This page contains sample records for the topic "including tight oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

GLOBAL SUSTAINABILITY/OIL SPILL COMMUNITY SEMINAR "Natural and Unnatural Oil in the Gulf of Mexico  

E-Print Network (OSTI)

GLOBAL SUSTAINABILITY/OIL SPILL COMMUNITY SEMINAR "Natural and Unnatural Oil in the Gulf of Mexico in the Gulf of Mexico has been cited as a factor that may have pre-conditioned the gulf ecosystem better a strong Gulf of Mexico focus, but includes work on the deep-sea biology of hydrothermal vents

342

Natural gas liquids play a greater role in oil and gas ...  

U.S. Energy Information Administration (EIA)

... gasoline, heating oil, diesel, propane, and other liquids including biofuels and ... topping 2 million barrels per day ... 2012. December; ...

343

What oil changers in America are doing with their used oil  

SciTech Connect

Each year, the US generates 1.378 billion gallons of used oil, with just 57% of this oil accounted for by recycling. The most significant types of used oil disposition come from the very small generator or the so called do-it-yourselfer (DIY). The DIY is an individual who removes used oil from a motor vehicle, utility engine, or piece of farm equipment that he or she owns and operates. Numerous retailers have shown that accepting DIY used oil translates into good public relations and business. First Recovery/Valvoline conducted a recent study of its 2,000 auto parts stores that collect used oil. Sixty-five percent of their customers who returned used oil made a special trip for its return and 44% of them purchased something at the store (average of $13 per customer) when they returned their used oil. The cost of accepting used oil was $85 per month for the 185-gallon indoor collection system including oil pickup. This public service stimulated an additional $429 per month in new revenue for the retailer.

Arner, R.; O'Hare, M.

1995-03-01T23:59:59.000Z

344

Mapping oil spills on sea water using spectral mixture analysis of hyperspectral image data  

E-Print Network (OSTI)

Mapping oil spills on sea water using spectral mixture analysis of hyperspectral image data Javier large spill oil events threatening coastal habitats and species. Some recent examples include the 2002 Prestige tanker oil spill in Galicia, Northern Spain, as well as repeated oil spill leaks evidenced

Plaza, Antonio J.

345

Oil Bypass Filter Technology Performance Evaluation - First Quarterly Report  

DOE Green Energy (OSTI)

This report details the initial activities to evaluate the performance of the oil bypass filter technology being tested by the Idaho National Engineering and Environmental Laboratory (INEEL) for the U.S. Department of Energy's FreedomCAR & Vehicle Technologies Program. Eight full-size, four-cycle diesel-engine buses used to transport INEEL employees on various routes have been equipped with oil bypass systems from the puraDYN Corporation. Each bus averages about 60,000 miles a year. The evaluation includes an oil analysis regime to monitor the presence of necessary additives in the oil and to detect undesirable contaminants. Very preliminary economic analysis suggests that the oil bypass system can reduce life-cycle costs. As the evaluation continues and oil avoidance costs are quantified, it is estimated that the bypass system economics may prove increasingly favorable, given the anticipated savings in operational costs and in reduced use of oil and waste oil avoidance.

Zirker, L.R.; Francfort, J.E.

2003-01-31T23:59:59.000Z

346

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

5 End Uses of Fuel Consumption, 2010;" 5 End Uses of Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal"," " " ",,,,"Fuel Oil",,,"(excluding Coal" " "," ","Net","Residual","and","Natural Gas(c)","LPG and","Coke and Breeze)"," " " ","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","NGL(d)","(million","Other(e)"

347

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

5 End Uses of Fuel Consumption, 2002;" 5 End Uses of Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ",," "," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and","Natural ","LPG and","(excluding Coal"," ","RSE" " ","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Gas(c)","NGL(d)","Coke and Breeze)","Other(e)","Row"

348

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 End Uses of Fuel Consumption, 2010;" 6 End Uses of Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG and","(excluding Coal"," " "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze)","Other(e)"

349

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 End Uses of Fuel Consumption, 2002;" 6 End Uses of Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," "," " " ",,,,"Fuel Oil",,,"Coal",,"RSE" " "," ","Net","Residual","and","Natural ","LPG and","(excluding Coal"," ","Row" "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Gas(c)","NGL(d)","Coke and Breeze)","Other(e)","Factors"

350

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 End Uses of Fuel Consumption, 2006;" 6 End Uses of Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG and","(excluding Coal"," " "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze)","Other(e)"

351

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. End Uses of Fuel Consumption, 1998;" 1. End Uses of Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal"," "," " " ",,,,"Fuel Oil",,,"(excluding Coal" " "," ","Net","Residual","and","Natural Gas(c)","LPG and","Coke and Breeze)"," ","RSE" " ","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","NGL(d)","(million","Other(e)","Row"

352

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. End Uses of Fuel Consumption, 1998;" 2. End Uses of Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," "," " " ",,,,"Fuel Oil",,,"Coal",,"RSE" " "," ","Net","Residual","and",,"LPG and","(excluding Coal"," ","Row" "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze)","Other(e)","Factors"

353

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

5 End Uses of Fuel Consumption, 2006;" 5 End Uses of Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal"," " " ",,,,"Fuel Oil",,,"(excluding Coal" " "," ","Net","Residual","and","Natural Gas(c)","LPG and","Coke and Breeze)"," " " ","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","NGL(d)","(million","Other(e)"

354

Crude Oil and Petroleum Products Total Stocks Stocks by Type  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Crude Oil and Petroleum Products Crude Oil All Oils (Excluding Crude Oil) Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Butylene Other Hydrocarbons Oxygenates (excluding Fuel Ethanol) MTBE Other Oxygenates Renewables (including Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils Unfinished Oils, Naphthas & Lighter Unfinished Oils, Kerosene & Light Gas Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated, RBOB MGBC - Reformulated, RBOB w/ Alcohol MGBC - Reformulated, RBOB w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Conventional Other Aviation Gasoline Blending Comp. Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated Gasoline, Other Conventional Gasoline Conventional Gasoline Blended Fuel Ethanol Conventional Gasoline Blended Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 to 500 ppm Sulfur Distillate F.O., Greater 500 ppm Sulfur Residual Fuel Oil Residual F.O., than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petro. Feedstock Use Other Oils for Petro. Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

355

Aqueous flooding methods for tertiary oil recovery  

DOE Patents (OSTI)

A method of aqueous flooding of subterranean oil bearing formation for tertiary oil recovery involves injecting through a well into the formation a low alkaline pH aqueous sodium bicarbonate flooding solution. The flooding solution's pH ranges from about 8.25 to 9.25 and comprises from 0.25 to 5 weight percent and preferably about 0.75 to 3.0 weight percent of sodium bicarbonate and includes a petroleum recovery surfactant of 0.05 to 1.0 weight percent and between 1 and 20 weight percent of sodium chloride. After flooding, an oil and water mixture is withdrawn from the well and the oil is separated from the oil and water mixture.

Peru, Deborah A. (Bartlesville, OK)

1989-01-01T23:59:59.000Z

356

Current status of nonthermal heavy oil recovery  

Science Conference Proceedings (OSTI)

Heavy oils are an important resource worldwide, and yet two-thirds of the heavy oil deposits cannot be exploited by means of thermal recovery methods, because the effective energy production approaches energy input for reasons of formation thickness, depth, oil saturation and/or porosity. In such instances, especially if the heavy oil is not too viscous (below ca 1000 cp), it may be economical to employ nonthermal recovery methods. These include polymer flooding, alkaline flooding, CO/sub 2/ (gaseous) floods, solvent floods, and other more specialized recovery methods, such as emulsion flooding, and combination techniques. This work discusses nonthermal heavy oil recovery methods, based upon their application in the field. The processes and their mechanistic features are discussed in the light of laboratory observations, which tend to be more optimistic than field results. 48 references.

Alikhan, A.A.; Farouq Ali, S.M.

1983-01-01T23:59:59.000Z

357

Oil and Gas Supply Module  

Annual Energy Outlook 2012 (EIA)

Onshore Lower 48 Oil and Gas Supply Submodule, Offshore Oil and Gas Supply Submodule, Oil Shale Supply Submodule, and Alaska Oil and Gas Supply Submodule. A detailed description of...

358

Industrial Uses of Vegetable Oils  

Science Conference Proceedings (OSTI)

Industrial Uses of Vegetable Oils offers new insights into these important (and growing) products of vegetable oils, while also covering developments in biodegradable grease, vegetable oils-based polyols, and the synthesis of surfactants from vegetable oil

359

The Legacy of Oil Spills  

E-Print Network (OSTI)

When a 1979 exploratory oil well blew out and leaked oil foraddicted to oil directly causes spills as well as globalmagnitudes of past oil spills. They are well aware of the

Trevors, J. T.; Saier, M. H.

2010-01-01T23:59:59.000Z

360

Assessment of environmental health and safety issues associated with the commercialization of unconventional gas recovery: Tight Western Sands  

SciTech Connect

Results of a study to identify and evaluate potential public health and safety problems and the potential environmental impacts from recovery of natural gas from Tight Western Sands are reported. A brief discussion of economic and technical constraints to development of this resource is also presented to place the environmental and safety issues in perspective. A description of the resource base, recovery techniques, and possible environmental effects associated with tight gas sands is presented.

Riedel, E.F.; Cowan, C.E.; McLaughlin, T.J.

1980-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "including tight oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Improved Upscaling & Well Placement Strategies for Tight Gas Reservoir Simulation and Management  

E-Print Network (OSTI)

Tight gas reservoirs provide almost one quarter of the current U.S. domestic gas production, with significant projected increases in the next several decades in both the U.S. and abroad. These reservoirs constitute an important play type, with opportunities for improved reservoir simulation & management, such as simulation model design, well placement. Our work develops robust and efficient strategies for improved tight gas reservoir simulation and management. Reservoir simulation models are usually acquired by upscaling the detailed 3D geologic models. Earlier studies of flow simulation have developed layer-based coarse reservoir simulation models, from the more detailed 3D geologic models. However, the layer-based approach cannot capture the essential sand and flow. We introduce and utilize the diffusive time of flight to understand the pressure continuity within the fluvial sands, and develop novel adaptive reservoir simulation grids to preserve the continuity of the reservoir sands. Combined with the high resolution transmissibility based upscaling of flow properties, and well index based upscaling of the well connections, we can build accurate simulation models with at least one order magnitude simulation speed up, but the predicted recoveries are almost indistinguishable from those of the geologic models. General practice of well placement usually requires reservoir simulation to predict the dynamic reservoir response. Numerous well placement scenarios require many reservoir simulation runs, which may have significant CPU demands. We propose a novel simulation-free screening approach to generate a quality map, based on a combination of static and dynamic reservoir properties. The geologic uncertainty is taken into consideration through an uncertainty map form the spatial connectivity analysis and variograms. Combining the quality map and uncertainty map, good infill well locations and drilling sequence can be determined for improved reservoir management. We apply this workflow to design the infill well drilling sequence and explore the impact of subsurface also, for a large-scale tight gas reservoir. Also, we evaluated an improved pressure approximation method, through the comparison with the leading order high frequency term of the asymptotic solution. The proposed pressure solution can better predict the heterogeneous reservoir depletion behavior, thus provide good opportunities for tight gas reservoir management.

Zhou, Yijie

2013-08-01T23:59:59.000Z

362

Tight bound on coherent-state-based entanglement generation over lossy channels  

Science Conference Proceedings (OSTI)

The first stage of the hybrid quantum repeaters is entanglement generation based on transmission of pulses in coherent states over a lossy channel. Protocols to make entanglement with only one type of error are favorable for rendering subsequent entanglement distillation efficient. Here we provide the tight upper bound on performances of these protocols that is determined only by the channel loss. In addition, we show that this bound is achievable by utilizing a proposed protocol [K. Azuma, N. Sota, R. Namiki, S. K. Oezdemir, T. Yamamoto, M. Koashi, and N. Imoto, Phys. Rev. A 80, 060303(R) (2009)] composed of a simple combination of linear optical elements and photon-number-resolving detectors.

Azuma, Koji; Sota, Naoya; Koashi, Masato; Imoto, Nobuyuki [Division of Materials Physics, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan)

2010-02-15T23:59:59.000Z

363

Oil and Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil and Plants Name: Matt Location: NA Country: NA Date: NA Question: If you could please tell me exactly what motor oil (unused) does to plants, and the effects. Does it...

364

China's Global Oil Strategy  

E-Print Network (OSTI)

21, 2008. Ying, Wang. “ China, Venezuela firms to co-developApril 21, “China and Venezuela sign oil agreements. ” Chinaaccessed April 21, “Venezuela and China sign oil deal. ” BBC

Thomas, Bryan G

2009-01-01T23:59:59.000Z

365

Palm oil pundit speaks  

Science Conference Proceedings (OSTI)

Dorab E. Mistry, director of Godrej International Ltd. in Mumbai, India, spoke about palm oil on March 15, 2010, during the 2010 Annual Convention of the National Institute of Oilseed Products in Palm Springs, California, USA. Palm oil pundit speaks ...

366

Understanding Crude Oil Prices  

E-Print Network (OSTI)

well below unity accounts for the broad trends we see in the share of oil purchases in totalWells. ” Middle panel: percent of U.S. total crude oil

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

367

Hydraulic fracture model and diagnostics verification at GRI/DOE multi-site projects and tight gas sand program support. Final report, July 28, 1993--February 28, 1997  

Science Conference Proceedings (OSTI)

The Mesaverde Group of the Piceance Basin in western Colorado has been a pilot study area for government-sponsored tight gas sand research for over twenty years. Early production experiments included nuclear stimulations and massive hydraulic fracture treatments. This work culminated in the US Department of Energy (DOE)`s Multiwell Experiment (MWX), a field laboratory designed to study the reservoir and production characteristics of low permeability sands. A key feature of MWX was an infrastructure which included several closely spaced wells that allowed detailed characterization of the reservoir through log and core analysis, and well testing. Interference and tracer tests, as well as the use of fracture diagnostics gave further information on stimulation and production characteristics. Thus, the Multiwell Experiment provided a unique opportunity for identifying the factors affecting production from tight gas sand reservoirs. The purpose of this operation was to support the gathering of field data that may be used to resolve the number of unknowns associated with measuring and modeling the dimensions of hydraulic fractures. Using the close-well infrastructure at the Multiwell Site near Rifle, Colorado, this operation focused primarily on the field design and execution of experiments. The data derived from the experiments were gathered and analyzed by DOE team contractors.

Schroeder, J.E.

1997-12-31T23:59:59.000Z

368

Oil Peak or Panic?  

SciTech Connect

In this balanced consideration of the peak-oil controversy, Gorelick comes down on the side of the optimists.

Greene, David L [ORNL

2010-01-01T23:59:59.000Z

369

SRC Residual fuel oils  

DOE Patents (OSTI)

Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

Tewari, Krishna C. (Whitehall, PA); Foster, Edward P. (Macungie, PA)

1985-01-01T23:59:59.000Z

370

PREDICTIVE MODELS. Enhanced Oil Recovery Model  

SciTech Connect

PREDICTIVE MODELS is a collection of five models - CFPM, CO2PM, ICPM, PFPM, and SFPM - used in the 1982-1984 National Petroleum Council study of enhanced oil recovery (EOR) potential. Each pertains to a specific EOR process designed to squeeze additional oil from aging or spent oil fields. The processes are: 1 chemical flooding; 2 carbon dioxide miscible flooding; 3 in-situ combustion; 4 polymer flooding; and 5 steamflood. CFPM, the Chemical Flood Predictive Model, models micellar (surfactant)-polymer floods in reservoirs, which have been previously waterflooded to residual oil saturation. Thus, only true tertiary floods are considered. An option allows a rough estimate of oil recovery by caustic or caustic-polymer processes. CO2PM, the Carbon Dioxide miscible flooding Predictive Model, is applicable to both secondary (mobile oil) and tertiary (residual oil) floods, and to either continuous CO2 injection or water-alternating gas processes. ICPM, the In-situ Combustion Predictive Model, computes the recovery and profitability of an in-situ combustion project from generalized performance predictive algorithms. PFPM, the Polymer Flood Predictive Model, is switch-selectable for either polymer or waterflooding, and an option allows the calculation of the incremental oil recovery and economics of polymer relative to waterflooding. SFPM, the Steamflood Predictive Model, is applicable to the steam drive process, but not to cyclic steam injection (steam soak) processes. The IBM PC/AT version includes a plotting capability to produces a graphic picture of the predictive model results.

Ray, R.M. [DOE Bartlesville Energy Technology Center, Bartlesville, OK (United States)

1992-02-26T23:59:59.000Z

371

Gourmet and Health-Promoting Specialty OilsChapter 11 Camellia Oil and Tea Oil  

Science Conference Proceedings (OSTI)

Gourmet and Health-Promoting Specialty Oils Chapter 11 Camellia Oil and Tea Oil Health Nutrition Biochemistry eChapters Health - Nutrition - Biochemistry Press Downloadable pdf of Chapter 11 Camellia Oil and T

372

Using Oils As Pesticides  

E-Print Network (OSTI)

Petroleum and plant-derived spray oils show increasing potential for use as part of Integrated Pest Management systems for control of soft-bodied pests on fruit trees, shade trees, woody ornamentals and household plants. Sources of oils, preparing oils for use, application and precautions are discussed.

Bogran, Carlos E.; Ludwig, Scott; Metz, Bradley

2006-10-30T23:59:59.000Z

373

Understanding Crude Oil Prices  

E-Print Network (OSTI)

to a “negative” storage cost for oil in the form of a bene?tin levels. oil for more than your costs, that is, if P t+1 QSaudi oil, and M S the Saudi’s marginal cost of production.

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

374

Exploiting heavy oil reserves  

E-Print Network (OSTI)

the behaviour of oil and gas prices and the fruits of future exploration. The rate of technological progress. How optimistic are you that the North Sea remains a viable source of oil and gas? A) Our new researchNorth Sea investment potential Exploiting heavy oil reserves Beneath the waves in 3D Aberdeen

Levi, Ran

375

Oil shale in Colorado, the '80s  

SciTech Connect

An overview of near-future oil shale development in Colorado, including an assessment of Colorado's oil shale deposits is presented. A description of the state-of-the-art oil shale technology is also included, and an in-depth look at current projects is given. Also noted are governmental and legal aspects involved, with six areas of specific concern to Colorado pointed out. (JMT)

1979-01-01T23:59:59.000Z

376

Running Out of and Into Oil: Analyzing Global Oil Depletion and Transition Through 2050  

DOE Green Energy (OSTI)

This report presents a risk analysis of world conventional oil resource production, depletion, expansion, and a possible transition to unconventional oil resources such as oil sands, heavy oil and shale oil over the period 2000 to 2050. Risk analysis uses Monte Carlo simulation methods to produce a probability distribution of outcomes rather than a single value. Probability distributions are produced for the year in which conventional oil production peaks for the world as a whole and the year of peak production from regions outside the Middle East. Recent estimates of world oil resources by the United States Geological Survey (USGS), the International Institute of Applied Systems Analysis (IIASA), the World Energy Council (WEC) and Dr. C. Campbell provide alternative views of the extent of ultimate world oil resources. A model of oil resource depletion and expansion for twelve world regions is combined with a market equilibrium model of conventional and unconventional oil supply and demand to create a World Energy Scenarios Model (WESM). The model does not make use of Hubbert curves but instead relies on target reserve-to-production ratios to determine when regional output will begin to decline. The authors believe that their analysis has a bias toward optimism about oil resource availability because it does not attempt to incorporate political or environmental constraints on production, nor does it explicitly include geologic constraints on production rates. Global energy scenarios created by IIASA and WEC provide the context for the risk analysis. Key variables such as the quantity of undiscovered oil and rates of technological progress are treated as probability distributions, rather than constants. Analyses based on the USGS and IIASA resource assessments indicate that conventional oil production outside the Middle East is likely to peak sometime between 2010 and 2030. The most important determinants of the date are the quantity of undiscovered oil, the rate at which unconventional oil production can be expanded, and the rate of growth of reserves and enhanced recovery. Analysis based on data produced by Campbell indicates that the peak of non-Middle East production will occur before 2010. For total world conventional oil production, the results indicate a peak somewhere between 2020 and 2050. Key determinants of the peak in world oil production are the rate at which the Middle East region expands its output and the minimum reserves-to-production ratios producers will tolerate. Once world conventional oil production peaks, first oil sands and heavy oil from Canada, Venezuela and Russia, and later some other source such as shale oil from the United States must expand if total world oil consumption is to continue to increase. Alternative sources of liquid hydrocarbon fuels, such as coal or natural gas are also possible resources but not considered in this analysis nor is the possibility of transition to a hydrogen economy. These limitations were adopted to simplify the transition analysis. Inspection of the paths of conventional oil production indicates that even if world oil production does not peak before 2020, output of conventional oil is likely to increase at a substantially slower rate after that date. The implication is that there will have to be increased production of unconventional oil after that date if world petroleum consumption is to grow.

Greene, D.L.

2003-11-14T23:59:59.000Z

377

Method for maximizing shale oil recovery from an underground formation  

DOE Patents (OSTI)

A method for maximizing shale oil recovery from an underground oil shale formation which has previously been processed by in situ retorting such that there is provided in the formation a column of substantially intact oil shale intervening between adjacent spent retorts, which method includes the steps of back filling the spent retorts with an aqueous slurry of spent shale. The slurry is permitted to harden into a cement-like substance which stabilizes the spent retorts. Shale oil is then recovered from the intervening column of intact oil shale by retorting the column in situ, the stabilized spent retorts providing support for the newly developed retorts.

Sisemore, Clyde J. (Livermore, CA)

1980-01-01T23:59:59.000Z

378

Summary World Oil Data (from World on the Edge) | OpenEI  

Open Energy Info (EERE)

Oil Data (from World on the Edge) Oil Data (from World on the Edge) Dataset Summary Description This dataset presents summary information related to world oil. It is part of a supporting dataset for the book World On the Edge: How to Prevent Environmental and Economic Collapse by Lester R. Brown, available from the Earth Policy Institute. This world oil dataset includes the following data: World oil production (1950 - 2009): Top 20 producing countries (2009); Oil production in U.S. (1900 - 2009); Oil consumption in U.S. (950 - 2010); Oil consumption in China (1965 - 2009); Oil consumption in E.U. (1965 - 2009); Top 20 oil importing countries (2009); World's 20 largest oil discoveries; Real price of gasoline (2007); Retail gas prices by country (2008); and fossil fuel consumption subsidies (2009).

379

Italy (including San Marino) Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Western Europe » Italy Western Europe » Italy (including San Marino) Italy (including San Marino) Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends As occurred in many industrialized nations, CO2 emissions from Italy rose steeply since the late 1940's until the growth was abruptly terminated in 1974. Since 1974, emissions from liquid fuels have vacillated, dropping from 76% to 46% of a static but varying total. Significant increases in natural gas consumption have compensated for the drop in oil consumption. In 2008, 35.8% of Italy's fossil-fuel CO2 emissions were due to natural gas consumption. Coal usage grew steadily until 1985 when CO2 emissions from coal consumption reached 16 million metric tons of carbon. Not until 2004 did coal usage exceed 1985 levels and now accounts for 13.9% of Italy's

380

Oil shale oxidation at subretorting temperatures  

SciTech Connect

Green River oil shale was air oxidized at subretorting temperatures. Off gases consisting of nitrogen, oxygen, carbon monoxide, carbon dioxide, and water were monitored and quantitatively determined. A mathematical model of the oxidation reactions based on a shrinking core model has been developed. This model incorporates the chemical reaction of oxygen and the organic material in the oil shale as well as the diffusivity of the oxygen into the shale particle. Diffusivity appears to be rate limiting for the oxidation. Arrhenius type equations, which include a term for oil shale grade, have been derived for both the chemical reaction and the diffusivity.

Jacobson, I.A. Jr.

1980-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "including tight oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Fuel oil and kerosene sales 1995  

Science Conference Proceedings (OSTI)

This publication contains the 1995 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the seventh year that the survey data have appeared in a separate publication. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the product supplied volumes published in the Petroleum Supply Annual (PSA). 24 tabs.

NONE

1996-09-01T23:59:59.000Z

382

Science Accelerator content now includes multimedia  

Office of Scientific and Technical Information (OSTI)

Science Accelerator content now includes multimedia Science Accelerator has expanded its suite of collections to include ScienceCinema, which contains videos produced by the U.S....

383

Process for tertiary oil recovery using tall oil pitch  

DOE Patents (OSTI)

Compositions and process employing same for enhancing the recovery of residual acid crudes, particularly heavy crudes, by injecting a composition comprising caustic in an amount sufficient to maintain a pH of at least about 11, preferably at least about 13, and a small but effective amount of a multivalent cation for inhibiting alkaline silica dissolution with the reservoir. Preferably a tall oil pitch soap is included and particularly for the heavy crudes a polymeric mobility control agent.

Radke, Clayton J. (El Cerrito, CA)

1985-01-01T23:59:59.000Z

384

Table 5.2 Crude Oil Production and Crude Oil Well Productivity ...  

U.S. Energy Information Administration (EIA)

1 See "Crude Oil Well" in Glossary. R=Revised. P=Preliminary. E=Estimate. NA=Not available. 2 United States excluding Alaska and Hawaii. Includes State onshore, State ...

385

Heating oils, 1983  

Science Conference Proceedings (OSTI)

Properties of 195 heating oils marketed in the United States were submitted for study and compilation under agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). The fuels were manufactured by 25 petroleum refining companies in 83 domestic refineries. The data are tabulated according to six grades of fuel and subdivided into five geographic regions in which the fuels are marketed. The six grades of fuels are defined by the American Society for Testing and Materials (ASTM) Specification D396. The five regions containing a total of 16 marketing districts are shown on a map in the report. Trend charts are included showing average properties of the six grades of fuel for the past several years. Summaries of the results of the tests by grade and by region for 1983 are compared with data for 1982. 7 figures, 12 tables.

Shelton, E.M.

1983-08-01T23:59:59.000Z

386

Oil shale commercialization study  

SciTech Connect

Ninety four possible oil shale sections in southern Idaho were located and chemically analyzed. Sixty-two of these shales show good promise of possible oil and probable gas potential. Sixty of the potential oil and gas shales represent the Succor Creek Formation of Miocene age in southwestern Idaho. Two of the shales represent Cretaceous formations in eastern Idaho, which should be further investigated to determine their realistic value and areal extent. Samples of the older Mesozonic and paleozoic sections show promise but have not been chemically analyzed and will need greater attention to determine their potential. Geothermal resources are of high potential in Idaho and are important to oil shale prospects. Geothermal conditions raise the geothermal gradient and act as maturing agents to oil shale. They also might be used in the retorting and refining processes. Oil shales at the surface, which appear to have good oil or gas potential should have much higher potential at depth where the geothermal gradient is high. Samples from deep petroleum exploration wells indicate that the succor Creek shales have undergone considerable maturation with depth of burial and should produce gas and possibly oil. Most of Idaho's shales that have been analyzed have a greater potential for gas than for oil but some oil potential is indicated. The Miocene shales of the Succor Creek Formation should be considered as gas and possibly oil source material for the future when technology has been perfectes. 11 refs.

Warner, M.M.

1981-09-01T23:59:59.000Z

387

Absorbents for Mineral Oil Spill Cleanup  

Science Conference Proceedings (OSTI)

Residual mineral oil on the ground surface following electrical equipment spills is often removed using a surface application of an absorbent material. Traditional absorbent products include clays, sawdust-like products, silica-based products, and various organic industry byproduct materials. After the material has had time to absorb the mineral oil on the ground surface, it is removed and normally sent to a landfill with a liner and leachate collection system designed to Subtitle D standards for municip...

2011-08-23T23:59:59.000Z

388

Petroleum Gasoline & Distillate Needs Including the Energy ...  

U.S. Energy Information Administration (EIA)

Home > Petroleum > Analysis > Petroleum Gasoline & Distillate Needs Including the Energy Independence and Security Act (EISA) ...

389

Petroleum Gasoline & Distillate Needs Including the Energy ...  

U.S. Energy Information Administration (EIA)

Petroleum Gasoline & Distillate Needs Including the Energy Independence and Security Act (EISA) Impacts

390

International developments in oil shale  

SciTech Connect

An overview of oil shale research and development outside the US provides a status report on technology approaches under active consideration in Australia, Brazil, Canada, China, West Germany, Israel, Jordan, Morocco, Soviet Union, Thailand, Turkey, and Yugoslavia. The status report covers the development plans and project costs of industrial projects. The technologies under consideration include the Fushun, Galoter, Kiviter, Lurgi, and Petrosix processes. 10 references.

Uthus, D.B.

1985-08-01T23:59:59.000Z

391

LLNL oil shale project review  

Science Conference Proceedings (OSTI)

Livermore's oil shale project is funded by two budget authorities, two thirds from base technology development and one third from environmental science. Our base technology development combines fundamental chemistry research with operation of pilot retorts and mathematical modeling. We've studied mechanisms for oil coking and cracking and have developed a detailed model of this chemistry. We combine the detailed chemistry and physics into oil shale process models (OSP) to study scale-up of generic second generation Hot-Recycled-Solid (HRS) retorting systems and compare with results from our 4 tonne-per-day continuous-loop HRS pilot retorting facility. Our environmental science program focuses on identification of gas, solid and liquid effluents from oil shale processes and development of abatement strategies where necessary. We've developed on-line instruments to quantitatively measure trace sulfur and nitrogen compounds released during shale pyrolysis and combustion. We've studied shale mineralogy, inorganic and organic reactions which generate and consume environmentally sensitive species. Figures, references, and tables are included with each discussion.

Cena, R.J. (ed.)

1990-04-01T23:59:59.000Z

392

ADVANCED FRACTURING TECHNOLOGY FOR TIGHT GAS: AN EAST TEXAS FIELD DEMONSTRATION  

Science Conference Proceedings (OSTI)

The primary objective of this research was to improve completion and fracturing practices in gas reservoirs in marginal plays in the continental United States. The Bossier Play in East Texas, a very active tight gas play, was chosen as the site to develop and test the new strategies for completion and fracturing. Figure 1 provides a general location map for the Dowdy Ranch Field, where the wells involved in this study are located. The Bossier and other tight gas formations in the continental Unites States are marginal plays in that they become uneconomical at gas prices below $2.00 MCF. It was, therefore, imperative that completion and fracturing practices be optimized so that these gas wells remain economically attractive. The economic viability of this play is strongly dependent on the cost and effectiveness of the hydraulic fracturing used in its well completions. Water-fracs consisting of proppant pumped with un-gelled fluid is the type of stimulation used in many low permeability reservoirs in East Texas and throughout the United States. The use of low viscosity Newtonian fluids allows the creation of long narrow fractures in the reservoir, without the excessive height growth that is often seen with cross-linked fluids. These low viscosity fluids have poor proppant transport properties. Pressure transient tests run on several wells that have been water-fractured indicate a long effective fracture length with very low fracture conductivity even when large amounts of proppant are placed in the formation. A modification to the water-frac stimulation design was needed to transport proppant farther out into the fracture. This requires suspending the proppant until the fracture closes without generating excessive fracture height. A review of fracture diagnostic data collected from various wells in different areas (for conventional gel and water-fracs) suggests that effective propped lengths for the fracture treatments are sometimes significantly shorter than those predicted by fracture models. There was no accepted optimal method for conducting hydraulic fracturing in the Bossier. Each operator used a different approach. Anadarko, the most active operator in the play, had tested at least four different kinds of fracture treatments. The ability to arrive at an optimal fracturing program was constrained by the lack of adequate fracture models to simulate the fracturing treatment, and an inability to completely understand the results obtained in previous fracturing programs. This research aimed at a combined theoretical, experimental and field-testing program to improve fracturing practices in the Bossier and other tight gas plays.

Mukul M. Sharma

2005-03-01T23:59:59.000Z

393

Pore-scale mechanisms of gas flow in tight sand reservoirs  

Science Conference Proceedings (OSTI)

Tight gas sands are unconventional hydrocarbon energy resource storing large volume of natural gas. Microscopy and 3D imaging of reservoir samples at different scales and resolutions provide insights into the coaredo not significantly smaller in size than conventional sandstones, the extremely dense grain packing makes the pore space tortuous, and the porosity is small. In some cases the inter-granular void space is presented by micron-scale slits, whose geometry requires imaging at submicron resolutions. Maximal Inscribed Spheres computations simulate different scenarios of capillary-equilibrium two-phase fluid displacement. For tight sands, the simulations predict an unusually low wetting fluid saturation threshold, at which the non-wetting phase becomes disconnected. Flow simulations in combination with Maximal Inscribed Spheres computations evaluate relative permeability curves. The computations show that at the threshold saturation, when the nonwetting fluid becomes disconnected, the flow of both fluids is practically blocked. The nonwetting phase is immobile due to the disconnectedness, while the permeability to the wetting phase remains essentially equal to zero due to the pore space geometry. This observation explains the Permeability Jail, which was defined earlier by others. The gas is trapped by capillarity, and the brine is immobile due to the dynamic effects. At the same time, in drainage, simulations predict that the mobility of at least one of the fluids is greater than zero at all saturations. A pore-scale model of gas condensate dropout predicts the rate to be proportional to the scalar product of the fluid velocity and pressure gradient. The narrowest constriction in the flow path is subject to the highest rate of condensation. The pore-scale model naturally upscales to the Panfilov's Darcy-scale model, which implies that the condensate dropout rate is proportional to the pressure gradient squared. Pressure gradient is the greatest near the matrix-fracture interface. The distinctive two-phase flow properties of tight sand imply that a small amount of gas condensate can seriously affect the recovery rate by blocking gas flow. Dry gas injection, pressure maintenance, or heating can help to preserve the mobility of gas phase. A small amount of water can increase the mobility of gas condensate.

Silin, D.; Kneafsey, T.J.; Ajo-Franklin, J.B.; Nico, P.

2010-11-30T23:59:59.000Z

394

Numerical Modeling of Fractured Shale-Gas and Tight-Gas Reservoirs Using Unstructured Grids  

E-Print Network (OSTI)

Various models featuring horizontal wells with multiple induced fractures have been proposed to characterize flow behavior over time in tight gas and shale gas systems. Currently, there is little consensus regarding the effects of non-ideal fracture geometries and coupled primary-secondary fracture interactions on reservoir performance in these unconventional gas reservoirs. This thesis provides a grid construction tool to generate high-resolution unstructured meshes using Voronoi grids, which provides the flexibility required to accurately represent complex geologic domains and fractures in three dimensions. Using these Voronoi grids, the interaction between propped hydraulic fractures and secondary "stress-release" fractures were evaluated. Additionally, various primary fracture configurations were examined, where the fractures may be non-planar or non-orthogonal. For this study, a numerical model was developed to assess the potential performance of tight gas and shale gas reservoirs. These simulations utilized up to a half-million grid-blocks and consider a period of up to 3,000 years in some cases. The aim is to provide very high-definition reference numerical solutions that will exhibit virtually all flow regimes we can expect in these unconventional gas reservoirs. The simulation results are analyzed to identify production signatures and flow regimes using diagnostic plots, and these interpretations are confirmed using pressure maps where useful. The coupled primary-secondary fracture systems with the largest fracture surface areas are shown to give the highest production in the traditional "linear flow" regime (which occurs for very high conductivity vertical fracture cases). The non-ideal hydraulic fracture geometries are shown to yield progressively lower production as the angularity of these fractures increases. Hence, to design optimum fracture completions, we should endeavor to keep the fractures as orthogonal to the horizontal well as possible. This work expands the current understanding of flow behavior in fractured tight-gas and shale-gas systems and may be used to optimize fracture and completion design, to validate analytical models and to facilitate more accurate reserves estimation.

Olorode, Olufemi Morounfopefoluwa

2011-12-01T23:59:59.000Z

395

Characterization of Tight Gas Reservoir Pore Structure Using USANS/SANS and Gas Adsorption Analysis  

SciTech Connect

Small-angle and ultra-small-angle neutron scattering (SANS and USANS) measurements were performed on samples from the Triassic Montney tight gas reservoir in Western Canada in order to determine the applicability of these techniques for characterizing the full pore size spectrum and to gain insight into the nature of the pore structure and its control on permeability. The subject tight gas reservoir consists of a finely laminated siltstone sequence; extensive cementation and moderate clay content are the primary causes of low permeability. SANS/USANS experiments run at ambient pressure and temperature conditions on lithologically-diverse sub-samples of three core plugs demonstrated that a broad pore size distribution could be interpreted from the data. Two interpretation methods were used to evaluate total porosity, pore size distribution and surface area and the results were compared to independent estimates derived from helium porosimetry (connected porosity) and low-pressure N{sub 2} and CO{sub 2} adsorption (accessible surface area and pore size distribution). The pore structure of the three samples as interpreted from SANS/USANS is fairly uniform, with small differences in the small-pore range (< 2000 {angstrom}), possibly related to differences in degree of cementation, and mineralogy, in particular clay content. Total porosity interpreted from USANS/SANS is similar to (but systematically higher than) helium porosities measured on the whole core plug. Both methods were used to estimate the percentage of open porosity expressed here as a ratio of connected porosity, as established from helium adsorption, to the total porosity, as estimated from SANS/USANS techniques. Open porosity appears to control permeability (determined using pressure and pulse-decay techniques), with the highest permeability sample also having the highest percentage of open porosity. Surface area, as calculated from low-pressure N{sub 2} and CO{sub 2} adsorption, is significantly less than surface area estimates from SANS/USANS, which is due in part to limited accessibility of the gases to all pores. The similarity between N{sub 2} and CO{sub 2}-accessible surface area suggests an absence of microporosity in these samples, which is in agreement with SANS analysis. A core gamma ray profile run on the same core from which the core plug samples were taken correlates to profile permeability measurements run on the slabbed core. This correlation is related to clay content, which possibly controls the percentage of open porosity. Continued study of these effects will prove useful in log-core calibration efforts for tight gas.

Clarkson, Christopher R [ORNL; He, Lilin [ORNL; Agamalian, Michael [ORNL; Melnichenko, Yuri B [ORNL; Mastalerz, Maria [Indiana Geological Survey; Bustin, Mark [University of British Columbia, Vancouver; Radlinski, Andrzej Pawell [ORNL; Blach, Tomasz P [ORNL

2012-01-01T23:59:59.000Z

396

Industrial Oil Products Newsletter April 2013  

Science Conference Proceedings (OSTI)

Read the Industrial Oil Products Newsletter April 2013. Industrial Oil Products Newsletter April 2013 Industrial Oil Products Newsletter April 2013 ...

397

Oil shale retorting: Part 2, variation in product oil chemistry during retorting of an oil shale block  

DOE Green Energy (OSTI)

This report discusses the variation in composition of oil as it is evolved during the pyrolysis of oil shale. Thirteen shale oil fractions collected during pyrolysis of an 18- x 18-cm cylindrical shale block have been analyzed by measurements of density, viscosity, elemental composition, simulated distillation, GLC, /sup 1/H and /sup 13/C NMR, and infrared spectroscopy. The results show a striking change in the composition of oil collected early during retorting, as compared with that collected during the middle or latter part of retorting. In particular, the early oil fractions contain a predominance of naturally occurring isoprenoid compounds, whereas later fractions contain larger amounts of paraffin compounds. Less dramatic changes include variations in the amounts of olefins, aromatics, and degree of aromatic substitution, changes in amount of nitrogen-containing compounds, and variations in density and viscosity. The results of these analyses are used to form a picture of the changes in shale oil composition during retorting in the hope that a clearer understanding of the system's chemistry may eventually provide a way to optimize the shale oil retorting process.

Coburn, T.T.; Campbell, J.H.

1977-09-08T23:59:59.000Z

398

Interstate Oil and Gas Conservation Compact (Maryland) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Interstate Oil and Gas Conservation Compact (Maryland) Interstate Oil and Gas Conservation Compact (Maryland) Interstate Oil and Gas Conservation Compact (Maryland) < Back Eligibility Commercial Construction Fed. Government Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Tribal Government Utility Program Info State Maryland Program Type Siting and Permitting Provider Interstate Oil and Gas Compact Commission This legislation authorizes the State to join the Interstate Compact for the Conservation of Oil and Gas. The Compact is an agreement that has been entered into by 30 oil- and gas-producing states, as well as eight associate states and 10 international affiliates (including seven Canadian provinces). Members participate in the Interstate Oil and Gas Compact

399

Crude Oil, Heating Oil, and Propane Market Outlook  

Gasoline and Diesel Fuel Update (EIA)

Oil, Heating Oil, and Propane Market Outlook Oil, Heating Oil, and Propane Market Outlook 8/13/01 Click here to start Table of Contents Crude Oil, Heating Oil, and Propane Market Outlook Short-Term World Oil Price Forecast Price Movements Related to Supply/Demand Balance OPEC Production Likely To Remain Low U.S. Reflects World Market Crude Oil Outlook Conclusions Distillate Prices Increase With Crude Oil Distillate Stocks on the East Coast Were Very Low Entering Last Winter Distillate Demand Strong Last Winter More Supply Possible This Fall than Forecast Distillate Fuel Oil Imports Could Be Available - For A Price Distillate Supply/Demand Balance Reflected in Spreads Distillate Stocks Expected to Remain Low Winter Crude Oil and Distillate Price Outlook Heating Oil Outlook Conclusion Propane Prices Follow Crude Oil

400

Catalyst regeneration process including metal contaminants removal  

DOE Patents (OSTI)

Spent catalysts removed from a catalytic hydrogenation process for hydrocarbon feedstocks, and containing undesired metals contaminants deposits, are regenerated. Following solvent washing to remove process oils, the catalyst is treated either with chemicals which form sulfate or oxysulfate compounds with the metals contaminants, or with acids which remove the metal contaminants, such as 5-50 W % sulfuric acid in aqueous solution and 0-10 W % ammonium ion solutions to substantially remove the metals deposits. The acid treating occurs within the temperature range of 60.degree.-250.degree. F. for 5-120 minutes at substantially atmospheric pressure. Carbon deposits are removed from the treated catalyst by carbon burnoff at 800.degree.-900.degree. F. temperature, using 1-6 V % oxygen in an inert gas mixture, after which the regenerated catalyst can be effectively reused in the catalytic process.

Ganguli, Partha S. (Lawrenceville, NJ)

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "including tight oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Gulf Coast (PADD 3) Crude Oil Imports - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

PAD District Imports by Country of Origin ... Crude oil includes imports for storage in the Stategic Petroleum Reserve. The Persian Gulf includes Bahrain, ...

402

East Coast (PADD 1) Crude Oil Imports - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

PAD District Imports by Country of Origin ... Crude oil includes imports for storage in the Stategic Petroleum Reserve. The Persian Gulf includes Bahrain, ...

403

Crude Oil Analysis Database  

DOE Data Explorer (OSTI)

The composition and physical properties of crude oil vary widely from one reservoir to another within an oil field, as well as from one field or region to another. Although all oils consist of hydrocarbons and their derivatives, the proportions of various types of compounds differ greatly. This makes some oils more suitable than others for specific refining processes and uses. To take advantage of this diversity, one needs access to information in a large database of crude oil analyses. The Crude Oil Analysis Database (COADB) currently satisfies this need by offering 9,056 crude oil analyses. Of these, 8,500 are United States domestic oils. The database contains results of analysis of the general properties and chemical composition, as well as the field, formation, and geographic location of the crude oil sample. [Taken from the Introduction to COAMDATA_DESC.pdf, part of the zipped software and database file at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the zipped file to your PC. When opened, it will contain PDF documents and a large Excel spreadsheet. It will also contain the database in Microsoft Access 2002.

Shay, Johanna Y.

404

Crude Oil Watch - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Crude Oil Watch April 19, 2000 Energy Information Administration Office of Oil & Gas A large stockbuild in crude oil inventories contributed to blunt crude oil inputs ...

405

Anyon-Fermion Mapping and Applications to Ultracold Gases in Tight Waveguides  

SciTech Connect

The Fermi-Bose mapping method for one-dimensional Bose and Fermi gases with zero-range interactions is generalized to an anyon-fermion mapping and applied to exact solution of several models of ultracold gases with anyonic exchange symmetry in tight waveguides: anyonic Calogero-Sutherland model, anyons with point hard-core interaction (anyonic Tonks-Girardeau gas), and spin-aligned anyon gas with infinite zero-range odd-wave attractions (attractive anyonic Tonks-Girardeau, or AATG, gas). It is proved that for even N{>=}4 there are states of the AATG gas on A, with anyonic phase slips which are odd integral multiples of {pi}/(N-1), of energy lower than that of the corresponding fermionic ground state. A generalization to a spinor Fermi gas state with anyonic symmetry under purely spatial exchange enables energy lowering by the same mechanism.

Girardeau, M. D. [College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 (United States)

2006-09-08T23:59:59.000Z

406

Soluble Models of Strongly Interacting Ultracold Gas Mixtures in Tight Waveguides  

Science Conference Proceedings (OSTI)

A Fermi-Bose mapping method is used to determine the exact ground states of several models of mixtures of strongly interacting ultracold gases in tight waveguides, which are generalizations of the Tonks-Girardeau (TG) gas (1D Bose gas with point hard cores) and fermionic Tonks-Girardeau (FTG) gas (1D spin-aligned Fermi gas with infinitely strong zero-range attractions). We detail the case of a Bose-Fermi mixture with TG boson-boson (BB) and boson-fermion (BF) interactions. Exact results are given for density profiles in a harmonic trap, single-particle density matrices, momentum distibutions, and density-density correlations. Since the ground state is highly degenerate, we analyze the splitting of the ground manifold for large but finite BB and BF repulsions.

Girardeau, M. D. [College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 (United States); Minguzzi, A. [Laboratoire de Physique et Modelisation des Mileux Condenses, C.N.R.S., B.P. 166, 38042 Grenoble (France)

2007-12-07T23:59:59.000Z

407

The Formation of Systems with Tightly-packed Inner Planets (STIPs) via Aerodynamic Drift  

E-Print Network (OSTI)

The NASA Kepler mission has revealed an abundant class of Systems with Tightly-packed Inner Planets (STIPs). The current paradigm for planet formation suggests that small planetesimals will quickly spiral into the host star due to aerodynamic drag, preventing rocky planet formation. In contrast, we find that aerodynamic drift, when acting on an ensemble of solids, can concentrate mass at short orbital periods in gaseous disks. Sublimation fronts may further aid this process. Kepler data suggest that the innermost known planets are found near the silicate sublimation zone. STIP planets should have a wide range of volatile fractions due to aerodynamic drift and H2 dissociation-driven gas accretion. We further propose that the low mass of Mars is evidence that the Solar System was once a proto-STIP.

Boley, Aaron C

2013-01-01T23:59:59.000Z

408

Electron acceleration by a tightly focused Hermite-Gaussian beam: higher-order corrections  

SciTech Connect

Taking the TEM{sub 1,0}-mode Hermite-Gaussian (H-G) beam as a numerical calculation example, and based on the method of the perturbation series expansion, the higher-order field corrections of H-G beams are derived and used to study the electron acceleration by a tightly focused H-G beam in vacuum. For the case of the off-axis injection the field corrections to the terms of order f{sup 3} (f=1/kw{sub 0}, k and w{sub 0} being the wavenumber and waist width, respectively) are considered, and for the case of the on-axis injection the contributions of the terms of higher orders are negligible. By a suitable optimization of injection parameters the energy gain in the giga-electron-volt regime can be achieved.

Zhao Zhiguo [Department of Physics, Luoyang Normal College, Luoyang 471022 (China); Institute of Laser Physics and Chemistry, Sichuan University, Chengdu 610064 (China); Yang Dangxiao; Lue Baida [Institute of Laser Physics and Chemistry, Sichuan University, Chengdu 610064 (China)

2008-03-15T23:59:59.000Z

409

Hybrid Monte-Carlo simulation of interacting tight-binding model of graphene  

E-Print Network (OSTI)

In this work, results are presented of Hybrid-Monte-Carlo simulations of the tight-binding Hamiltonian of graphene, coupled to an instantaneous long-range two-body potential which is modeled by a Hubbard-Stratonovich auxiliary field. We present an investigation of the spontaneous breaking of the sublattice symmetry, which corresponds to a phase transition from a conducting to an insulating phase and which occurs when the effective fine-structure constant $\\alpha$ of the system crosses above a certain threshold $\\alpha_C$. Qualitative comparisons to earlier works on the subject (which used larger system sizes and higher statistics) are made and it is established that $\\alpha_C$ is of a plausible magnitude in our simulations. Also, we discuss differences between simulations using compact and non-compact variants of the Hubbard field and present a quantitative comparison of distinct discretization schemes of the Euclidean time-like dimension in the Fermion operator.

Dominik Smith; Lorenz von Smekal

2013-11-05T23:59:59.000Z

410

Discovery of a tight correlation among the prompt emission properties of long Gamma Ray Bursts  

E-Print Network (OSTI)

We report the discovery of a correlation among three prompt emission properties of GRBs. These are the isotropic peak luminosity L_iso, the peak energy of the time-integrated prompt emission spectrum E_pk, and the ``high signal" timescale T_0.45, previously used to characterize the variability behavior of bursts. In the rest frame of the source the found correlation reads L_iso\\propto E_pk^1.62 T_0.45^-0.49. We find other strong correlations, but at the cost of increasing the number of variables, involving the variability and the isotropic energy of the prompt emission. With respect to the previous tight correlations found in GRBs the newly found correlation does not require any information from the afterglow phase of the bursts, nor any model-dependent assumption. In the popular scenario in which we are receiving beamed radiation originating in a fireball pointing at us, the found correlation preserves its form in the comoving frame. This helps to explain the small scatter of the correlation, and underlines the role of the local brightness (i.e. the brightness of the visible fraction of the fireball surface). This correlation has been found for 19 objects, and it is hard to establish if any selection bias affects it. Its connection with the prompt local brightness is promising, but a solid physical understanding is still to be found. Despite all that, we find that some properties of the correlation, which we discuss, support its true existence, and this has important implications for the GRB physics. Furthermore, it is possible to use such correlation as an accurate redshift estimator, and its tightness will allow us to use it as a tool to constrain the cosmological parameters (abridged)

C. Firmani; G. Ghisellini; V. Avila-Reese; G. Ghirlanda

2006-05-02T23:59:59.000Z

411

Biodiesel production using waste frying oil  

SciTech Connect

Research highlights: {yields} Waste sunflower frying oil is successfully converted to biodiesel using lipase as catalyst. {yields} Various process parameters that affects the conversion of transesterification reaction such as temperature, enzyme concentration, methanol: oil ratio and solvent are optimized. {yields} Inhibitory effect of methanol on lipase is reduced by adding methanol in three stages. {yields} Polar solvents like n-hexane and n-heptane increases the conversion of tranesterification reaction. - Abstract: Waste sunflower frying oil is used in biodiesel production by transesterification using an enzyme as a catalyst in a batch reactor. Various microbial lipases have been used in transesterification reaction to select an optimum lipase. The effects of various parameters such as temperature, methanol:oil ratio, enzyme concentration and solvent on the conversion of methyl ester have been studied. The Pseudomonas fluorescens enzyme yielded the highest conversion. Using the P. fluorescens enzyme, the optimum conditions included a temperature of 45 deg. C, an enzyme concentration of 5% and a methanol:oil molar ratio 3:1. To avoid an inhibitory effect, the addition of methanol was performed in three stages. The conversion obtained after 24 h of reaction increased from 55.8% to 63.84% because of the stage-wise addition of methanol. The addition of a non-polar solvent result in a higher conversion compared to polar solvents. Transesterification of waste sunflower frying oil under the optimum conditions and single-stage methanol addition was compared to the refined sunflower oil.

Charpe, Trupti W. [Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai 400 019 (India); Rathod, Virendra K., E-mail: vk.rathod@ictmumbai.edu.in [Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai 400 019 (India)

2011-01-15T23:59:59.000Z

412

Compositional changes in heavy oil steamflood simulators  

E-Print Network (OSTI)

The numerical simulation of heavy oil steamfloods has generally been conducted assuming that the oil is non-volatile. Reservoir simulation has traditionally ignored compositional effect s due to heat and steam and assumed that the hydrocarbon phase is non-volatile. This is equivalent to assuming that the equilibrium ratios, K-values, are zero. In order to properly model the mechanism of steamflooding, however, compositional effects need to be taken into account. In this study, laboratory data including distillation, vapor pressure, steam distillation and viscosity measurements, along with a commercial PVT simulator are used to tune equation-of-state (EOS) and viscosity parameters to properly model the PVT properties of the oil. The Peng-Robinson equation-of-state (PR-EOS) was used for all phase behavior calculations. Viscosity as a function of temperature and composition was modeled with the Pedersen correlation for heavy oils. Once a tuned equation-of-state, compositional fluid description was developed for the heavy oil, one-dimensional numerical simulations of the steamflooding process were performed. These simulations demonstrated the utility of the equation-of-state approach. In addition, it was concluded that compositional effects are essential for the proper modeling of low residual oil saturations seen in the field and the formation of an in-situ solvent bank at the steam-oil interface.

Lolley, Christopher Scott

1995-01-01T23:59:59.000Z

413

High efficiency shale oil recovery  

SciTech Connect

The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated at bench-scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although a batch oil shale sample will be sealed in the batch kiln from the start until the end of the run, the process conditions for the batch will be the same as the conditions that an element of oil shale would encounter in a large continuous process kiln. For example, similar conditions of heat-up rate (20 deg F/min during the pyrolysis), oxidation of the residue and cool-down will prevail for the element in both systems. This batch kiln is a unit constructed in a 1987 Phase I SBIR tar sand retorting project. The kiln worked fairly well in that project; however, the need for certain modifications was observed. These modifications are now underway to simplify the operation and make the data and analysis more exact. The agenda for the first three months of the project consisted of the first of nine tasks and was specified as the following four items: 1. Sample acquisition and equipment alteration: Obtain seven oil shale samples, of varying grade each 10 lb or more, and samples of quartz sand. Order equipment for kiln modification. 3. Set up and modify kiln for operation, including electric heaters on the ends of the kiln. 4. Connect data logger and make other repairs and changes in rotary batch kiln.

Adams, D.C.

1992-01-01T23:59:59.000Z

414

Shale oil: process choices  

SciTech Connect

The four broad categories of shale-oil processing are discussed. All of these processes share the basic function of retorting oil-shale rock at high temperature so that the kerogen material in the rocks is thermally decomposed to shale oil and gaseous products. The technologies and the organizations working on their development are: solids-to-solids heating, The Oil Shale Co. (TOSCO) and Lurgi-Rhur; gas-to-solids heating with internal gas combustion, U. S. Bureau of Mines, Development Engineering Inc. and Union Oil of California; gas-to-solid heating with external heat generation, Development Engineering, Union Oil, Petrobas, and Institute of Gas Technology; and in-situ retorting, Occidental Petroleum Corp. The TOSCO II process is considered proven and on the verge of commercialization. (BLM)

1974-05-13T23:59:59.000Z

415

U.S. Distribution and Production of Oil and Gas Wells Distribution...  

Open Energy Info (EERE)

Distribution and Production of Oil and Gas Wells Distribution tables of oil and gas wells by production rate for all wells, including marginal wells, are available from the EIA for...

416

Downstream Petroleum Mergers and Acquisitions by U.S. Major Oil Companies  

Reports and Publications (EIA)

A summary presentation of mergers and acquisitions by U.S. major oil companies (including the U.S. affiliates of foreign major oil companies). The presentation focuses on petroleum refining over the last several years through late 2009.

Neal Davis

2009-12-02T23:59:59.000Z

417

Physical and Chemical Characteristics of Oils, Fats, & Waxes, 3rd Edition  

Science Conference Proceedings (OSTI)

The third edition of Physical and Chemical Characteristics of Oils, Fats, and Waxes includes updated material as well as 25% more new content. Physical and Chemical Characteristics of Oils, Fats, & Waxes, 3rd Edition Methods - Analyses Books Soft Bound B

418

OIL SHALE RESEARCH. CHAPTER FROM THE ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1979  

E-Print Network (OSTI)

oil and grease is determined by passing a knoVln quantity ofOil shales contain organic material in a matrix which includes significant quantitiesoil shale retorting processes indicate that signifi·~· cant quantities

,

2012-01-01T23:59:59.000Z

419

World Oil: Market or Mayhem?  

E-Print Network (OSTI)

The world oil market is regarded by many as a puzzle. Why are oil prices so volatile? What is OPEC and what does OPEC do? Where are oil prices headed in the long run? Is “peak oil” a genuine concern? Why did oil prices ...

Smith, James L.

2008-01-01T23:59:59.000Z

420

Process of treating oil shale  

SciTech Connect

A process of destructively distilling oil shale is described consisting in subjecting the oil shale containing aluminum to the action of heat and pressure to destructively distill it and separate the light oil constituents. Chlorine gas is simultaneously passed through the hot oil shale countercurrent to the direction of movement of the oil shale.

Egloff, G.

1927-05-03T23:59:59.000Z

Note: This page contains sample records for the topic "including tight oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

2 World Oil Market  

E-Print Network (OSTI)

www.eia.gov Crude oil prices react to a variety of geopolitical and economic events price per barrel (real 2010 dollars, quarterly average) 140 120 imported refiner acquisition cost of crude oil WTI crude oil price Global financial collapse 100 80 60 U.S. spare capacity exhausted Iran-Iraq War Saudis abandon swing producer role Asian financial crisis 9-11 attacks Low spare capacity

Adam Sieminski Administrator; Adam Sieminski; Adam Sieminski

2012-01-01T23:59:59.000Z

422

Appraisal of the tight sands potential of the Sand Wash and Great Divide Basins. Final report, June 1989--June 1991  

Science Conference Proceedings (OSTI)

The volume of future tight gas reserve additions is difficult to estimate because of uncertainties in the characterization and extent of the resource and the performance and cost-effectiveness of stimulation and production technologies. Ongoing R&D by industry and government aims to reduce the risks and costs of producing these tight resources, increase the certainty of knowledge of their geologic characteristics and extent, and increase the efficiency of production technologies. Some basins expected to contain large volumes of tight gas are being evaluated as to their potential contribution to domestic gas supplies. This report describes the results of one such appraisal. This analysis addresses the tight portions of the Eastern Greater Green River Basin (Sand Wash and Great Divide Subbasins in Northwestern Colorado and Southwestern Wyoming, respectively), with respect to estimated gas-in-place, technical recovery, and potential reserves. Geological data were compiled from public and proprietary sources. The study estimated gas-in-place in significant (greater than 10 feet net sand thickness) tight sand intervals for six distinct vertical and 21 areal units of analysis. These units of analysis represent tight gas potential outside current areas of development. For each unit of analysis, a ``typical`` well was modeled to represent the costs, recovery and economics of near-term drilling prospects in that unit. Technically recoverable gas was calculated using reservoir properties and assumptions about current formation evaluation and extraction technology performance. Basin-specific capital and operating costs were incorporated along with taxes, royalties and current regulations to estimate the minimum required wellhead gas price required to make the typical well in each of unit of analysis economic.

Not Available

1993-08-01T23:59:59.000Z

423

Hydraulically actuated fuel injector including a pilot operated spool valve assembly and hydraulic system using same  

DOE Patents (OSTI)

The present invention relates to hydraulic systems including hydraulically actuated fuel injectors that have a pilot operated spool valve assembly. One class of hydraulically actuated fuel injectors includes a solenoid driven pilot valve that controls the initiation of the injection event. However, during cold start conditions, hydraulic fluid, typically engine lubricating oil, is particularly viscous and is often difficult to displace through the relatively small drain path that is defined past the pilot valve member. Because the spool valve typically responds slower than expected during cold start due to the difficulty in displacing the relatively viscous oil, accurate start of injection timing can be difficult to achieve. There also exists a greater difficulty in reaching the higher end of the cold operating speed range. Therefore, the present invention utilizes a fluid evacuation valve to aid in displacement of the relatively viscous oil during cold start conditions.

Shafer, Scott F. (Morton, IL)

2002-01-01T23:59:59.000Z

424

Improved oil refinery operations and cheaper crude oil to help...  

Annual Energy Outlook 2012 (EIA)

Improved oil refinery operations and cheaper crude oil to help reduce gasoline prices U.S. gasoline prices are expected to fall as more oil refineries come back on line and crude...

425

Crude Oil Exports  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

426

Understanding Crude Oil Prices  

E-Print Network (OSTI)

disruptions, and the peak in U.S. oil production account foroil increased 81.1% (logarithmically) between January 1979 and the peak

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

427

Global Oil Geopolitics  

U.S. Energy Information Administration (EIA)

Iran-Iraq War . Iranian revolution . Arab Oil Embargo . Asian financial crisis . capacity exhausted . Global financial collapse . 9-11 attacks . OPEC cuts targets 1.7 ...

428

Crude Oil Prices  

Annual Energy Outlook 2012 (EIA)

Information AdministrationPetroleum Marketing Annual 1999 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

429

Oil and Gas (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

This division of the Indiana Department of Natural Resources provides information on the regulation of oil and gas exploration, wells and well spacings, drilling, plugging and abandonment, and...

430

Crude Oil Prices  

Annual Energy Outlook 2012 (EIA)

Information AdministrationPetroleum Marketing Annual 2000 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

431

Crude Oil Prices  

Annual Energy Outlook 2012 (EIA)

Information AdministrationPetroleum Marketing Annual 1998 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

432

Crude Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

Information AdministrationPetroleum Marketing Annual 2001 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

433

Residual Fuel Oil Exports  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

434

Oil spill response resources  

E-Print Network (OSTI)

Pollution has become one of the main problems being faced by humanity. Preventing pollution from occurring might be the best idea but is not possible in this fast developing world. So the next best thing to do would be to respond to the pollution source in an effective manner. Oil spills are fast becoming pollution sources that are causing the maximum damage to the environment. This is owing to the compounds that are released and the way oil spreads in both water and land. Preventing the oil spill would be the best option. But once the oil has been spilled, the next best thing to do is to respond to the spill effectively. As a result, time becomes an important factor while responding to an oil spill. Appropriate response to contain and cleanup the spill is required to minimize its potential damage to the ecosystem. Since time and money play a very important role in spill response, it would be a great idea if decisions can be made in such a way that a quick response can be planned. The first part of this study deals with the formation of an 'Oil Spill Resources Handbook', which has information on all the important Oil Spill Contractors. The second and the main part of the study, deals with creating a database in Microsoft Access of the Oil Spill Contractors. The third portion of the study deals with planning an oil spill response using a systems approach.

Muthukrishnan, Shankar

1996-01-01T23:59:59.000Z

435

China's Global Oil Strategy  

E-Print Network (OSTI)

Industry analysts and academics agree that China’s domestic oil supply will peak, and demand Robert Ebel, China’s Energy

Thomas, Bryan G

2009-01-01T23:59:59.000Z

436

Crude Oil Price Forecast  

U.S. Energy Information Administration (EIA)

We believe crude oil prices will strengthen somewhat, but prices will rise much more slowly than they fell, and they are expected to remain lower in ...

437

Oil And The Macroeconomy.  

E-Print Network (OSTI)

?? This paper examines the oil price-macro economy relationship by means of analyzing the impact ofoil price on Industrial production, real effective exchange rate, long… (more)

Al-Ameri, Leyth

2012-01-01T23:59:59.000Z

438

California Crude Oil Prices  

U.S. Energy Information Administration (EIA)

... of different quality crudes vary over time based on the value the market places on such quality attributes. A heavy crude oil has more heavy, ...

439

INHIBITORY EFFECT OF ESSENTIAL OILS ON EXTRACELLULAR  

E-Print Network (OSTI)

Pityriasis capitis is a common scalp disorder caused by a fungus Malassezia globosa. The mechanism of Pityriasis capitis includes Malassezia-induced fatty acid metabolism, particularly lipase-mediated breakdown of sebaceous lipids and release of irritating free fatty acids. We report that extracellular lipase activity was detected in Malassezia globosa. The presence of lipase enzyme was performed in specific media on Petri dishes for formation of a zone.In this article, the effect of Cymbopogon citratus and Zingiber officinale essential oils on the extracellular lipase activity of Malassezia globosa had been studied by titrametric method. At the end of titration 4 µmol fatty acid/ml of reaction mixture was released in the presence of Cymbopogon citratus oil and 7µmol of fatty acid/ml of reaction mixture was liberated in the presence of Zingiber officinale oil. It was found that both essential oils strongly inhibit the lipase activity of M. globosa at a lower concentration.

Shubhangi Mugal; Ranjana Verma; Renu Mishra; Shikha Mandloi

2013-01-01T23:59:59.000Z

440

Fuel oil and kerosene sales 1992  

SciTech Connect

This publication contains the 1992 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the fourth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA) for reference year 1988 and the Petroleum Marketing Monthly (PMM for reference years 1984 through 1987. The 1992 edition marks the ninth annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the products supplied volumes published in the Petroleum Supply Annual (PSA).

Not Available

1993-10-29T23:59:59.000Z

Note: This page contains sample records for the topic "including tight oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Fuel oil and kerosene sales 1993  

Science Conference Proceedings (OSTI)

This publication contains the 1993 survey results of the ``Annual Fuel Oil and Kerosene, Sales Report`` (Form EIA-821). This is the fifth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA) for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. The 1993 edition marks the 10th annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the products supplied volumes published in the Petroleum Supply Annual (PSA).

Not Available

1994-10-03T23:59:59.000Z

442

Oil production by Candida curvata and extraction, composition and properties of the oil  

Science Conference Proceedings (OSTI)

A strain of the yeast C. curvata was grown in cheese whey permeate under conditions that allowed for oil production. The N-C ratio of the fermentation medium influenced the amount of oil produced. Concentrated permeate could be used as a substrate, but the efficiency of conversion to oil was reduced. The yeast grew well and produced oil in several different types of whey and milk permeates and also in nonsterile systems. The lipid of C. curvata amounted to approximately 50% of its dry weight and could be extracted by sequential treatment with ethanol, hexane, and benzene. The extraction with benzene was necessary for good yields even though nearly all the material extracted with benzene was soluble in hexane. The lipid was 80-90% triglyceride, contained little free fatty acid, and could be degummed by traditional methods. The triglyceride was 30.4% palmitic, 0.84% palmitoleic acid, 11.4% stearic, 51.0% oleic, 6.2% linoleic, and 0.4% linolenic acid. The saturated acyl groups were almost completely on the sn-1 and 3 positions of the glycerol. The oil melting point was -10 to 22 degrees. No tocopherol was detected and the oil oxidized at a rate similar to that for soybean oil at 55 degrees. The oil contained a variety of linear hydrocarbons and 4 sterols. The polar lipids include phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, and phosphatidic acid.

Hammond, E.G.; Glatz, B.A.; Choi, Y.; Teasdale, M.T.

1981-01-01T23:59:59.000Z

443

Analysis of Critical Permeabilty, Capillary Pressure and Electrical Properties for Mesaverde Tight Gas Sandstones from Western U.S. Basins  

Science Conference Proceedings (OSTI)

Although prediction of future natural gas supply is complicated by uncertainty in such variables as demand, liquefied natural gas supply price and availability, coalbed methane and gas shale development rate, and pipeline availability, all U.S. Energy Information Administration gas supply estimates to date have predicted that Unconventional gas sources will be the dominant source of U.S. natural gas supply for at least the next two decades (Fig. 1.1; the period of estimation). Among the Unconventional gas supply sources, Tight Gas Sandstones (TGS) will represent 50-70% of the Unconventional gas supply in this time period (Fig. 1.2). Rocky Mountain TGS are estimated to be approximately 70% of the total TGS resource base (USEIA, 2005) and the Mesaverde Group (Mesaverde) sandstones represent the principal gas productive sandstone unit in the largest Western U.S. TGS basins including the basins that are the focus of this study (Washakie, Uinta, Piceance, northern Greater Green River, Wind River, Powder River). Industry assessment of the regional gas resource, projection of future gas supply, and exploration programs require an understanding of reservoir properties and accurate tools for formation evaluation. The goal of this study is to provide petrophysical formation evaluation tools related to relative permeability, capillary pressure, electrical properties and algorithms for wireline log analysis. Detailed and accurate moveable gas-in-place resource assessment is most critical in marginal gas plays and there is need for quantitative tools for definition of limits on gas producibility due to technology and rock physics and for defining water saturation. The results of this study address fundamental questions concerning: (1) gas storage; (2) gas flow; (3) capillary pressure; (4) electrical properties; (5) facies and upscaling issues; (6) wireline log interpretation algorithms; and (7) providing a web-accessible database of advanced rock properties. The following text briefly discusses the nature of these questions. Section I.2 briefly discusses the objective of the study with respect to the problems reviewed.

Alan Byrnes; Robert Cluff; John Webb; John Victorine; Ken Stalder; Daniel Osburn; Andrew Knoderer; Owen Metheny; Troy Hommertzheim; Joshua Byrnes; Daniel Krygowski; Stefani Whittaker

2008-06-30T23:59:59.000Z

444

Oil and Gas Field Code Master List 1998 Updates  

Reports and Publications (EIA)

The Oil and Gas Field Code Master List Updates 1998 is an addendum to the 1997 edition of the EIA publication Oil and Gas Field Code Master List, an annual listing of all identified oil and gas fields in the United States. These updates represent the addition of new fields to the list and changes to the records of previously listed fields, including deletions. The current publication is based on field information collected through October 1998.

Robert F. King

1999-01-01T23:59:59.000Z

445

Oil and Gas Field Code Master List 1999 Updates  

Reports and Publications (EIA)

The Oil and Gas Field Code Master List Updates 1999 is an addendum to the 1998 edition of the EIA publication Oil and Gas Field Code Master List, an annual listing of all identified oil and gas fields in the United States. These updates represent the addition of new fields to the list and changes to the records of previously listed fields, including deletions. The current publication is based on field information collected through November 1999.

Robert F. King

2000-01-01T23:59:59.000Z

446

Oil-shale mining, Rifle, Colorado, 1944-1956  

SciTech Connect

The Rifle, Colorado, oil-shale project of the Bureau of Mines included three major divisions: (1) mining, (2) retorting, and (3) refining. The major functions of the mining program were to supply oil shale to the retorts, to devise mining procedures, and to develop an underground-mining method by which oil shale could be produced safely at an unusually low cost per ton. The selected mining procedures and direct mining costs were demonstrated by sustained test runs.

East, J.H. Jr.; Gardner, E.D.

1964-01-01T23:59:59.000Z

447

Oil and Gas Supply Module  

Gasoline and Diesel Fuel Update (EIA)

States, acquire natural gas from foreign producers for resale States, acquire natural gas from foreign producers for resale in the United States, or sell U.S. gas to foreign consumers. OGSM encompasses domestic crude oil and natural gas supply by both conventional and nonconventional recovery techniques. Nonconventional recovery includes unconventional gas recovery from low permeability formations of sandstone and shale, and coalbeds. Foreign gas transactions may occur via either pipeline (Canada or Mexico) or transport ships as liquefied natural gas (LNG). Energy Information Administration/Assumptions to the Annual Energy Outlook 2006 89 Figure 7. Oil and Gas Supply Model Regions Source: Energy Information Administration, Office of Integrated Analysis and Forecasting. Report #:DOE/EIA-0554(2006) Release date: March 2006

448

Determination of Aluminum Rolling Oil and Machinery Oil Residues ...  

Science Conference Proceedings (OSTI)

Presentation Title, Determination of Aluminum Rolling Oil and Machinery Oil Residues on Aluminum Sheet and Foil by Using Elemental Analysis and Fourier  ...

449

Relaxation studies on oil, pressboard and oil impregnated pressboard.  

E-Print Network (OSTI)

??In this thesis, a laboratory relaxation study with FDS and RVM was carried out for a period of 3 years with the fabricated oil (OIL),… (more)

Cao, Hongyan.

2008-01-01T23:59:59.000Z

450

Why solar oil shale retorting produces more oil  

DOE Green Energy (OSTI)

A solar oil shale retorting process may produce higher oil yield than conventional processing. High oil yield is obtained for three reasons: oil carbonization inside of the shale is reduced, oil cracking outside of the shale is reduced, and oil oxidation is essentially eliminated. Unique capabilities of focused solar energy produce these advantages. An increase in yield will reduce the cost of mining and shale transportation per barrel of oil produced. These cost reductions may justify the increased processing costs that will probably be associated with solar oil shale retorting.

Aiman, W.R.

1981-05-20T23:59:59.000Z

451

NETL: Oil and Natural Gas: Enhanced Oil Recovery  

NLE Websites -- All DOE Office Websites (Extended Search)

that have unconventional characteristics (e.g., oil in fractured shales, kerogen in oil shale, bitumen in tar sands) constitute an enormous potential domestic supply of energy....

452

Consumer Winter Heating Oil Costs  

Gasoline and Diesel Fuel Update (EIA)

7 of 18 Notes: Using the Northeast as an appropriate regional focus for heating oil, the typical oil-heated household consumes about 680 gallons of oil during the winter, assuming...

453

Distillate and Crude Oil Price  

Gasoline and Diesel Fuel Update (EIA)

fuel and residential heating oil prices on the East Coast is being driven by higher crude oil prices than last year and higher spreads. Crude oil is projected to average almost...

454

NETL: Oil & Natural Gas Events  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Technologies > Oil and Natural Gas Supply > Events Oil and Natural Gas Supply Events The following is a listing of events of interest to the oil and natural gas community....

455

The Legacy of Oil Spills  

E-Print Network (OSTI)

010-0527-5 The Legacy of Oil Spills J. T. Trevors & M. H.workers were killed, and oil has been gushing out everday. It is now June, and oil continues to spew forth into

Trevors, J. T.; Saier, M. H.

2010-01-01T23:59:59.000Z

456

Handbook of Australasian Edible Oils  

Science Conference Proceedings (OSTI)

This book highlights various aspects of Australasian edible oils. Handbook of Australasian Edible Oils Food Science Health Nutrition Biochemistry Food Science & Technology Health - Nutrition - Biochemistry Soft Bound Books Oils and Fats Specialist

457

Making and breaking of water in crude oil emulsions  

E-Print Network (OSTI)

An understanding of the processes involved in oil spills, and how they interact to alter the composition and behavior of the oil with respect to time is essential to determine an effective oil spill response. The review of past research has shown more focus on the laboratory methods and computerized modeling schemes to estimate the formation and breaking of emulsions after an oil spill. However, relatively less effort has gone into the study of emulsions corresponding to actual field conditions. This research aims to simulate an oil spill at sea by developing a new technique to make water in oil emulsions, without disturbing the marine wildlife. Further, this research also attempts to analyze the viscosities of water in oil emulsions and determine appropriate emulsion breakers for different crude oil emulsions. The overall test design for the study includes a test apparatus for spreading and evaporation, three different crude oils, a mixing chamber to form the emulsion, and emulsion breakers. Experiments in this research attempt to gain a better understanding of the processes that occur after oil spills at sea. In particular, the rate of evaporation of different crude oils and the formation of crude oil emulsions on the sea surface have been investigated. It was observed that different crude oils behave differently when subjected to the same weathering procedure. Results indicate that the behavior of the crude oil on the sea surface, subjected to spreading, evaporation, and emulsification, can be predicted by using the new technique developed in this research. This technique can also assist the development of effective recovery equipments and materials.

Mehta, Shweta D.

2005-12-01T23:59:59.000Z

458

Method for closing a drift between adjacent in-situ oil shale retorts  

SciTech Connect

A row of horizontally spaced-apart in situ oil shale retorts is formed in a subterranean formation containing oil shale. Each row of retorts is formed by excavating development drifts at different elevations through opposite side boundaries of a plurality of retorts in the row of retorts. Each retort is formed by explosively expanding formation toward one or more voids within the boundaries of the retort site to form a fragmented permeable mass of formation particles containing oil shale in each retort. Following formation of each retort, the retort development drifts on the advancing side of the retort are closed off by covering formation particles within the development drift with a layer of crushed oil shale particles having a particle size smaller than the average particle size of oil shale particles in the adjacent retort. In one embodiment, the crushed oil shale particles are pneumatically loaded into the development drift to pack the particles tightly all the way to the top of the drift and throughout the entire cross section of the drift. The closure between adjacent retorts provided by the finely divided oil shale provides sufficient resistance to gas flow through the development drift to effectively inhibit gas flow through the drift during subsequent retorting operations.

Hines, A.E.

1984-04-10T23:59:59.000Z

459

Method for closing a drift between adjacent in situ oil shale retorts  

DOE Patents (OSTI)

A row of horizontally spaced-apart in situ oil shale retorts is formed in a subterranean formation containing oil shale. Each row of retorts is formed by excavating development drifts at different elevations through opposite side boundaries of a plurality of retorts in the row of retorts. Each retort is formed by explosively expanding formation toward one or more voids within the boundaries of the retort site to form a fragmented permeable mass of formation particles containing oil shale in each retort. Following formation of each retort, the retort development drifts on the advancing side of the retort are closed off by covering formation particles within the development drift with a layer of crushed oil shale particles having a particle size smaller than the average particle size of oil shale particles in the adjacent retort. In one embodiment, the crushed oil shale particles are pneumatically loaded into the development drift to pack the particles tightly all the way to the top of the drift and throughout the entire cross section of the drift. The closure between adjacent retorts provided by the finely divided oil shale provides sufficient resistance to gas flow through the development drift to effectively inhibit gas flow through the drift during subsequent retorting operations.

Hines, Alex E. (Grand Junction, CO)

1984-01-01T23:59:59.000Z

460

Industrial Uses of Vegetable OilsChapter 3 Vegetable Oil-Based Engine Oils: Are They Practical?  

Science Conference Proceedings (OSTI)

Industrial Uses of Vegetable Oils Chapter 3 Vegetable Oil-Based Engine Oils: Are They Practical? Processing eChapters Processing Press Downloadable pdf of Chapter 3 Vegetable Oil-Based Engine Oils: Are They Practi

Note: This page contains sample records for the topic "including tight oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Oil price analysis  

Science Conference Proceedings (OSTI)

The transport has been in the whole history of mankind the basic and determining mover of the human society shape. It determined not only the position of towns, but also their inner design and it was also last but not least the basic element of the economic ... Keywords: GDP, deposit, fuels, history, market equilibrium, oil, oil reserves, price

Zdenek Riha; Viktorie Jirova; Marek Honcu

2011-12-01T23:59:59.000Z

462

Menhaden Fish Oil  

Science Conference Proceedings (OSTI)

Physical Characteristics of Oils, Fats, and Waxes Menhaden Oil Specific Gravity (SG) 15.5/15.5°C. . . . . . . . . . . . . . .0.912– 0.930 25/25°C Other SG Refractive Index (RI) 25°C 40°C Other RI. . . . . . . . . . . . . . . (65) 1

463

Refining of shale oil  

DOE Green Energy (OSTI)

The refining of shale oil is reviewed to assess the current state-of-the-art, especially as to the avaiability of technology suitable for operation on a commercial scale. Oil shale retorting processes as they affect the quality of the crude shale oil for refining, exploratory research on the character and refining of shale oil, and other published refining background leading to the present status are discussed. The initial refining of shale oil requires the removal of a large concentration of nitrogen, an added step not required for typical petroleum crude oils, and recently published estimates show that the total cost of refining will be high. Specific technoloy is reported by industry to be technically proven and available for commercial-scale refining. Although the refining will be more costly than that of petroleum, the viability of a shale oil industry will also be affected greatly by the technology and costs of producing the crude shale oil, environmental costs, and future price and tax treatment, and these are outside the scope of this study of refining.

Lanning, W.C.

1978-05-01T23:59:59.000Z

464

Materials Characterization Paper In Support of the Proposed Rulemaking: Identification of Nonhazardous Secondary Materials That Are Solid Waste – Used Oil  

E-Print Network (OSTI)

EPA defines used oil as any oil that has been refined from crude oil, or any synthetic oil, that has been used and as a result of such use is contaminated by physical or chemical impurities. 1 EPA’s criteria for used oil: • Origin: Used oil must have been refined from crude oil or made from synthetic materials (i.e., derived from coal, shale, or polymers). Examples of crude-oil derived oils and synthetic oils are motor oil, mineral oil, laminating surface agents, and metal working oils. Thus, animal and vegetable oils are not included. Bottom clean-out from virgin fuel oil storage tanks or virgin oil recovered from a spill, as well as products solely used as cleaning agents or for their solvent properties, and certain petroleum-derived products such as antifreeze and kerosene are also not included. Use: The oil must have been used as a lubricant, coolant, heat (non-contact) transfer fluid, hydraulic fluid, heat transfer fluid or for a similar use. Lubricants include, but are not limited to, used motor oil, metal working lubricants, and emulsions. An example of a hydraulic fluid is transmission fluid. Heat transfer fluids can be materials such as coolants, heating media, refrigeration oils, and electrical insulation oils. Authorized states or regions determine what is considered a “similar use ” on a site-specific basis according to whether the material is used and managed in a manner consistent with Part 279 (e.g., used as a buoyant). Contaminants: The used oil must be contaminated by physical (e.g., high water content, metal shavings, or dirt) or chemical (e.g., lead, halogens, solvents or other hazardous constituents) impurities as a result of use. 2. Annual Quantities of Used Oil Generated and Used

unknown authors

2010-01-01T23:59:59.000Z

465

Peak oil: diverging discursive pipelines.  

E-Print Network (OSTI)

??Peak oil is the claimed moment in time when global oil production reaches its maximum rate and henceforth forever declines. It is highly controversial as… (more)

Doctor, Jeff

2012-01-01T23:59:59.000Z

466

Oil and Natural Gas - Search  

NLE Websites -- All DOE Office Websites (Extended Search)

Search Search NETL Oil and Natural Gas Document Information Oil & Natural Gas Document Repository Results will be shown in two categories. "Document Database Results" provides...

467

Balancing oil and environment... responsibly.  

Science Conference Proceedings (OSTI)

Balancing Oil and Environment…Responsibly As the price of oil continues to skyrocket and global oil production nears the brink, pursuing unconventional oil supplies, such as oil shale, oil sands, heavy oils, and oils from biomass and coal has become increasingly attractive. Of particular significance to the American way is that our continent has significant quantities of these resources. Tapping into these new resources, however, requires cutting-edge technologies for identification, production, processing and environmental management. This job needs a super hero or two for a job of this size and proportion…

Weimer, Walter C.; Teske, Lisa

2007-01-25T23:59:59.000Z

468

oil | OpenEI  

Open Energy Info (EERE)

oil oil Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 134, and contains only the reference case. The data is broken down into Crude oil, dry natural gas. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA end-of-year reserves gas oil Data application/vnd.ms-excel icon AEO2011: Oil and Gas End-of-Year Reserves and Annual Reserve Additions- Reference Case (xls, 58.4 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset

469

Heavy crude oil recovery  

SciTech Connect

The oil crisis of the past decade has focused most of the attention and effort of researchers on crude oil resources, which are accepted as unrecoverable using known technology. World reserves are estimated to be 600-1000 billion metric tons, and with present technology 160 billion tons of this total can be recovered. This book is devoted to the discussion of Enhanced Oil Recovery (EOR) techniques, their mechanism and applicability to heavy oil reservoirs. The book also discusses some field results. The use of numerical simulators has become important, in addition to laboratory research, in analysing the applicability of oil recovery processes, and for this reason the last section of the book is devoted to simulators used in EOR research.

Okandan, E.

1984-01-01T23:59:59.000Z

470

Hybrid derivative-free extended Kalman filter for unknown lever arm estimation in tightly coupled DGPS/INS integration  

Science Conference Proceedings (OSTI)

Differential carrier phase observations from GPS (Global Positioning System) integrated with high-rate sensor measurements, such as those from an inertial navigation system (INS) or an inertial measurement unit (IMU), in a tightly coupled approach can ... Keywords: Global positioning system (GPS), Inertial measurement unit (IMU), Kalman filter, Lever arm

Yanrui Geng; Richard Deurloo; Luisa Bastos

2011-04-01T23:59:59.000Z

471

Chemical Methods for Ugnu Viscous Oils  

SciTech Connect

The North Slope of Alaska has large (about 20 billion barrels) deposits of viscous oil in Ugnu, West Sak and Shraeder Bluff reservoirs. These shallow reservoirs overlie existing productive reservoirs such as Kuparuk and Milne Point. The viscosity of the Ugnu reservoir on top of Milne Point varies from 200 cp to 10,000 cp and the depth is about 3300 ft. The same reservoir extends to the west on the top of the Kuparuk River Unit and onto the Beaufort Sea. The depth of the reservoir decreases and the viscosity increases towards the west. Currently, the operators are testing cold heavy oil production with sand (CHOPS) in Ugnu, but oil recovery is expected to be low (< 10%). Improved oil recovery techniques must be developed for these reservoirs. The proximity to the permafrost is an issue for thermal methods; thus nonthermal methods must be considered. The objective of this project is to develop chemical methods for the Ugnu reservoir on the top of Milne Point. An alkaline-surfactant-polymer (ASP) formulation was developed for a viscous oil (330 cp) where as an alkaline-surfactant formulation was developed for a heavy oil (10,000 cp). These formulations were tested in one-dimensional and quarter five-spot Ugnu sand packs. Micromodel studies were conducted to determine the mechanisms of high viscosity ratio displacements. Laboratory displacements were modeled and transport parameters (such as relative permeability) were determined that can be used in reservoir simulations. Ugnu oil is suitable for chemical flooding because it is biodegraded and contains some organic acids. The acids react with injected alkali to produce soap. This soap helps in lowering interfacial tension between water and oil which in turn helps in the formation of macro and micro emulsions. A lower amount of synthetic surfactant is needed because of the presence of organic acids in the oil. Tertiary ASP flooding is very effective for the 330 cp viscous oil in 1D sand pack. This chemical formulation includes 1.5% of an alkali, 0.4% of a nonionic surfactant, and 0.48% of a polymer. The secondary waterflood in a 1D sand pack had a cumulative recovery of 0.61 PV in about 3 PV injection. The residual oil saturation to waterflood was 0.26. Injection of tertiary alkaline-surfactant-polymer slug followed by tapered polymer slugs could recover almost 100% of the remaining oil. The tertiary alkali-surfactant-polymer flood of the 330 cp oil is stable in three-dimensions; it was verified by a flood in a transparent 5-spot model. A secondary polymer flood is also effective for the 330 cp viscous oil in 1D sand pack. The secondary polymer flood recovered about 0.78 PV of oil in about 1 PV injection. The remaining oil saturation was 0.09. The pressure drops were reasonable (<2 psi/ft) and depended mainly on the viscosity of the polymer slug injected. For the heavy crude oil (of viscosity 10,000 cp), low viscosity (10-100 cp) oil-in-water emulsions can be obtained at salinity up to 20,000 ppm by using a hydrophilic surfactant along with an alkali at a high water-to-oil ratio of 9:1. Very dilute surfactant concentrations (~0.1 wt%) of the synthetic surfactant are required to generate the emulsions. It is much easier to flow the low viscosity emulsion than the original oil of viscosity 10,000 cp. Decreasing the WOR reverses the type of emulsion to water-in-oil type. For a low salinity of 0 ppm NaCl, the emulsion remained O/W even when the WOR was decreased. Hence a low salinity injection water is preferred if an oil-in-water emulsion is to be formed. Secondary waterflood of the 10,000 cp heavy oil followed by tertiary injection of alkaline-surfactants is very effective. Waterflood has early water breakthrough, but recovers a substantial amount of oil beyond breakthrough. Waterflood recovers 20-37% PV of the oil in 1D sand pack in about 3 PV injection. Tertiary alkali-surfactant injection increases the heavy oil recovery to 50-70% PV in 1D sand packs. As the salinity increased, the oil recovery due to alkaline surfactant flood increased, but water-in-oil emulsion was p

Kishore Mohanty

2012-03-31T23:59:59.000Z

472

Corrosivity Of Pyrolysis Oils  

SciTech Connect

Pyrolysis oils from several sources have been analyzed and used in corrosion studies which have consisted of exposing corrosion coupons and stress corrosion cracking U-bend samples. The chemical analyses have identified the carboxylic acid compounds as well as the other organic components which are primarily aromatic hydrocarbons. The corrosion studies have shown that raw pyrolysis oil is very corrosive to carbon steel and other alloys with relatively low chromium content. Stress corrosion cracking samples of carbon steel and several low alloy steels developed through-wall cracks after a few hundred hours of exposure at 50 C. Thermochemical processing of biomass can produce solid, liquid and/or gaseous products depending on the temperature and exposure time used for processing. The liquid product, known as pyrolysis oil or bio-oil, as produced contains a significant amount of oxygen, primarily as components of water, carboxylic acids, phenols, ketones and aldehydes. As a result of these constituents, these oils are generally quite acidic with a Total Acid Number (TAN) that can be around 100. Because of this acidity, bio-oil is reported to be corrosive to many common structural materials. Despite this corrosive nature, these oils have the potential to replace some imported petroleum. If the more acidic components can be removed from this bio-oil, it is expected that the oil could be blended with crude oil and then processed in existing petroleum refineries. The refinery products could be transported using customary routes - pipelines, barges, tanker trucks and rail cars - without a need for modification of existing hardware or construction of new infrastructure components - a feature not shared by ethanol.

Keiser, James R [ORNL; Bestor, Michael A [ORNL; Lewis Sr, Samuel Arthur [ORNL; Storey, John Morse [ORNL

2011-01-01T23:59:59.000Z

473

Gas storage materials, including hydrogen storage materials  

DOE Patents (OSTI)

A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

2013-02-19T23:59:59.000Z

474

Processing of Soybean Oil into Fuels  

DOE Green Energy (OSTI)

Abundant and easily refined, petroleum has provided high energy density liquid fuels for a century. However, recent price fluctuations, shortages, and concerns over the long term supply and greenhouse gas emissions have encouraged the development of alternatives to petroleum for liquid transportation fuels (Van Gerpen, Shanks et al. 2004). Plant-based fuels include short chain alcohols, now blended with gasoline, and biodiesels, commonly derived from seed oils. Of plant-derived diesel feedstocks, soybeans yield the most of oil by weight, up to 20% (Mushrush, Willauer et al. 2009), and so have become the primary source of biomass-derived diesel in the United States and Brazil (Lin, Cunshan et al. 2011). Worldwide ester biodiesel production reached over 11,000,000 tons per year in 2008 (Emerging Markets 2008). However, soybean oil cannot be burned directly in modern compression ignition vehicle engines as a direct replacement for diesel fuel because of its physical properties that can lead to clogging of the engine fuel line and problems in the fuel injectors, such as: high viscosity, high flash point, high pour point, high cloud point (where the fuel begins to gel), and high density (Peterson, Cook et al. 2001). Industrial production of biodiesel from oil of low fatty-acid content often follows homogeneous base-catalyzed transesterification, a sequential reaction of the parent triglyceride with an alcohol, usually methanol, into methyl ester and glycerol products. The conversion of the triglyceride to esterified fatty acids improves the characteristics of the fuel, allowing its introduction into a standard compression engine without giving rise to serious issues with flow or combustion. Commercially available biodiesel, a product of the transesterification of fats and oils, can also be blended with standard diesel fuel up to a maximum of 20 vol.%. In the laboratory, the fuel characteristics of unreacted soybean oil have also been improved by dilution with petroleum based fuels, or by aerating and formation of microemulsions. However, it is the chemical conversion of the oil to fuel that has been the area of most interest. The topic has been reviewed extensively (Van Gerpen, Shanks et al. 2004), so this aspect will be the focus in this chapter. Important aspects of the chemistry of conversion of oil into diesel fuel remain the same no matter the composition of the triglyceride. Hence, although the focus in this book is on soybean oil, studies on other plant based oils and simulated oils have occasional mention in this chapter. Valuable data can be taken on systems that are simpler than soybean based oils, with fewer or shorter chain components. Sometimes the triglycerides will behave differently under reaction conditions, and when relevant, these have been noted in the text. Although the price of diesel fuel has increased, economical production of biodiesel is a challenge because of (1) the increasing price of soybean oil feedstocks and reagent methanol, (2) a distributed supply of feedstocks that reduces the potential for economies of scale, (3) processing conditions that include pressures and temperatures above ambient, and (4) multiple processing steps needed to reduce contaminant levels to ASTM specification D6751 limits (Vasudevan & Briggs 2008). Much of the cost of biodiesel production is related to the conversion of the oil to the methyl ester and so there has been an emphasis to research improved methods of converting soybean oil to biodiesel. However, most of these studies have taken place at the bench scale, and have not demonstrated a marked improvement in yield or reduced oil-to-methanol ratio in comparison with standard base-catalyzed transesterification. One aspect that has a short term chance of implementation is the improvement of the conversion process by the use of a continuous rather than batch process, with energy savings generated by combined reaction and separation, online analysis, and reagent methanol added by titration as needed to produce ASTM specification grade fuel. By adapting process intensif

McFarlane, Joanna [ORNL

2011-01-01T23:59:59.000Z

475

Laser-induced fluorescence fiber optic probe measurement of oil dilution by fuel  

DOE Patents (OSTI)

Apparatus for detecting fuel in oil includes an excitation light source in optical communication with an oil sample for exposing the oil sample to excitation light in order to excite the oil sample from a non-excited state to an excited state and a spectrally selective device in optical communication with the oil sample for detecting light emitted from the oil sample as the oil sample returns from the excited state to a non-excited state to produce spectral indicia that can be analyzed to determine the presence of fuel in the oil sample. A method of detecting fuel in oil includes the steps of exposing a oil sample to excitation light in order to excite the oil sample from a non-excited state to an excited state, as the oil sample returns from the excited state to a non-excited state, detecting light emitted from the oil sample to produce spectral indicia; and analyzing the spectral indicia to determine the presence of fuel in the oil sample.

Parks, II, James E. (Knoxville, TN); Partridge, Jr., William P. (Oak Ridge, TN)

2010-11-23T23:59:59.000Z

476

Vegetable oils: liquid coolants for solar heating and cooling applications  

DOE Green Energy (OSTI)

It has been proposed that vegetable oils, renewable byproducts of agriculture processes, be investigated for possible use as liquid coolants. The major thrust of the project was to investigate several thermophysical properties of the four vegetable oils selected. Vapor pressures, specific heat, viscosity, density, and thermal conductivity were determined over a range of temperatures for corn, soybean, peanut, and cottonseed oil. ASTM standard methods were used for these determinations. In addition, chemical analyses were performed on samples of each oil. The samples were collected before and after each experiment so that any changes in composition could be noted. The tests included iodine number, fatty acid, and moisture content determination. (MHR)

Ingley, H A

1980-02-01T23:59:59.000Z

477

NETL: Natural Gas Resources, Enhanced Oil Recovery, Deepwater Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

and Natural Gas Projects and Natural Gas Projects Index of Research Project Summaries Use the links provided below to access detailed DOE/NETL project information, including project reports, contacts, and pertinent publications. Search Natural Gas and Oil Projects Current Projects Natural Gas Resources Shale Gas Environmental Other Natural Gas Resources Ehanced Oil Recovery CO2 EOR Environmental Other EOR & Oil Resources Deepwater Technology Offshore Architecture Safety & Environmental Other Deepwater Technology Methane Hydrates DOE/NETL Projects Completed Projects Completed Natural Gas Resources Completed Enhanced Oil Recovery Completed Deepwater Technology Completed E&P Technologies Completed Environmental Solutions Completed Methane Hydrates Completed Transmission & Distribution

478

ACT sup 2 project report: Ventilation and air tightness measurement of the Sunset Building  

Science Conference Proceedings (OSTI)

This report presents the results of ventilation and air tightness measurements made on the test section of the Sunset Building as part of the ACT{sup 2} project. Real-time measurements were made over a two-week period in July 1991 to determine the building's performance; most of the results derive from intensive measurements made during (unoccupied) weekend periods. The ventilation rate of the entire building was measured to be about 2 air changes per hour of outdoor air which exceeds ASHRAE Standard 62-1989 design requirements by over a factor of two. Ventilation in all specific locations was found to be adequate, except for conference rooms -- some of which were significantly under ventilated. Opportunities exist for energy savings with better control of the ventilation. Ventilation efficiency was measured for the test section and selected sub-sections as well. In order to account for interzonal and intrazonal interactions, axillary information was collected and used to adjust the data. The implications of this data may be important for future interpretation of the building's performance.

Sherman, M.; Dickerhoff, D.

1991-10-01T23:59:59.000Z

479

ACT{sup 2} project report: Ventilation and air tightness measurement of the Sunset Building  

Science Conference Proceedings (OSTI)

This report presents the results of ventilation and air tightness measurements made on the test section of the Sunset Building as part of the ACT{sup 2} project. Real-time measurements were made over a two-week period in July 1991 to determine the building`s performance; most of the results derive from intensive measurements made during (unoccupied) weekend periods. The ventilation rate of the entire building was measured to be about 2 air changes per hour of outdoor air which exceeds ASHRAE Standard 62-1989 design requirements by over a factor of two. Ventilation in all specific locations was found to be adequate, except for conference rooms -- some of which were significantly under ventilated. Opportunities exist for energy savings with better control of the ventilation. Ventilation efficiency was measured for the test section and selected sub-sections as well. In order to account for interzonal and intrazonal interactions, axillary information was collected and used to adjust the data. The implications of this data may be important for future interpretation of the building`s performance.

Sherman, M.; Dickerhoff, D.

1991-10-01T23:59:59.000Z

480

U.S. Imports of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA)

History; Total: 10,076: 10,052: 9,790: 10,243: 10,197: 9,979: 1973-2013: Crude Oil: 7,726: 7,737: 7,730: ... Notes: Crude oil includes imports for storage in the ...

Note: This page contains sample records for the topic "including tight oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Fuel and fuel blending components from biomass derived pyrolysis oil  

DOE Patents (OSTI)

A process for the conversion of biomass derived pyrolysis oil to liquid fuel components is presented. The process includes the production of diesel, aviation, and naphtha boiling point range fuels or fuel blending components by two-stage deoxygenation of the pyrolysis oil and separation of the products.

McCall, Michael J.; Brandvold, Timothy A.; Elliott, Douglas C.

2012-12-11T23:59:59.000Z

482

Economic Effects of High Oil Prices (released in AEO2006)  

Reports and Publications (EIA)

The AEO2006 projections of future energy market conditions reflect the effects of oil prices on the macroeconomic variables that affect oil demand, in particular, and energy demand in general. The variables include real GDP growth, inflation, employment, exports and imports, and interest rates.

Information Center

2006-02-01T23:59:59.000Z

483

RDI forecasts oil price increase impact on electric consumers  

SciTech Connect

According to a publication by Resource Data International, Inc. (RDI), Boulder, Colorado, the current oil price increases will effect electricity consumers nationwide. While the direct use of fuel oil and natural gas as boiler fuels is expected to decline with rising prices, the cost of alternative energy sources including coal, nuclear, and hydro are also expected to rise, RDI said.

Not Available

1990-10-25T23:59:59.000Z

484

Proceedings of the 1998 oil heat technology conference  

DOE Green Energy (OSTI)

The 1998 Oil Heat Technology Conference was held on April 7--8 at Brookhaven National Laboratory (BNL) under sponsorship by the US Department of Energy, Office of Building Technologies, State and Community Programs (DOE/BTS). The meeting was held in cooperation with the Petroleum Marketers Association of America (PMAA). Fourteen technical presentations was made during the two-day program, all related to oil-heat technology and equipment, these will cover a range of research, developmental, and demonstration activities being conducted within the United States and Canada, including: integrated oil heat appliance system development in Canada; a miniature heat-actuated air conditioner for distributed space conditioning; high-flow fan atomized oil burner (HFAB) development; progress in the development of self tuning oil burners; application of HFAB technology to the development of a 500 watt; thermophotovoltaic (TPV) power system; field tests of the Heat Wise Pioneer oil burner and Insight Technologies AFQI; expanded use of residential oil burners to reduce ambient ozone and particulate levels by conversion of electric heated homes to oilheat; PMAA`s Oil Heat Technician`s Manual (third edition); direct venting concept development; evolution of the chimney; combating fuel related problems; the effects of red dye and metal contamination on fuel oil stability; new standard for above ground and basement residential fuel oil storage; plastic and steel composite secondary contained tanks; and money left on the table: an economic analysis of tank cleaning.

McDonald, R.J.

1998-04-01T23:59:59.000Z

485

Environmental control costs for oil shale processes  

SciTech Connect

The studies reported herein are intended to provide more certainty regarding estimates of the costs of controlling environmental residuals from oil shale technologies being readied for commercial application. The need for this study was evident from earlier work conducted by the Office of Environment for the Department of Energy Oil Shale Commercialization Planning, Environmental Readiness Assessment in mid-1978. At that time there was little reliable information on the costs for controlling residuals and for safe handling of wastes from oil shale processes. The uncertainties in estimating costs of complying with yet-to-be-defined environmental standards and regulations for oil shale facilities are a critical element that will affect the decision on proceeding with shale oil production. Until the regulatory requirements are fully clarified and processes and controls are investigated and tested in units of larger size, it will not be possible to provide definitive answers to the cost question. Thus, the objective of this work was to establish ranges of possible control costs per barrel of shale oil produced, reflecting various regulatory, technical, and financing assumptions. Two separate reports make up the bulk of this document. One report, prepared by the Denver Research Institute, is a relatively rigorous engineering treatment of the subject, based on regulatory assumptions and technical judgements as to best available control technologies and practices. The other report examines the incremental cost effect of more conservative technical and financing alternatives. An overview section is included that synthesizes the products of the separate studies and addresses two variations to the assumptions.

1979-10-01T23:59:59.000Z

486

What Drives the Oil-Dollar Correlation?  

E-Print Network (OSTI)

Preliminary- comments welcome, please do not quote Oil prices and the US Dollar tend to move together: while the correlation between the WTI spot price and the US Dollar trade-weighted exchange rate has historically ‡uctuated between positive and negative values, it turned persistently negative in recent years. What explains this comovement? This paper investigates the relationship between oil prices and the US Dollar nominal e¤ective exchange rate using a structural model that is fully identi…ed by exploiting the heteroskedasticity in the data, following Rigobon (2003). We control for e¤ects of US and global economic developments on oil prices and exchange rates by including measures of the surprise component of economic news releases. The results indicate that higher oil prices depreciate the Dollar both in the short run and over longer horizons. We also …nd that that Dollar depreciation is associated with higher oil prices in the short run. US short-term interest rates explain much of the long-run variation in oil prices and and the Dollar exchange rate.

Christian Grisse

2010-01-01T23:59:59.000Z

487

Plan for addressing issues relating to oil shale plant siting  

SciTech Connect

The Western Research Institute plan for addressing oil shale plant siting methodology calls for identifying the available resources such as oil shale, water, topography and transportation, and human resources. Restrictions on development are addressed: land ownership, land use, water rights, environment, socioeconomics, culture, health and safety, and other institutional restrictions. Descriptions of the technologies for development of oil shale resources are included. The impacts of oil shale development on the environment, socioeconomic structure, water availability, and other conditions are discussed. Finally, the Western Research Institute plan proposes to integrate these topics to develop a flow chart for oil shale plant siting. Western Research Institute has (1) identified relative topics for shale oil plant siting, (2) surveyed both published and unpublished information, and (3) identified data gaps and research needs. 910 refs., 3 figs., 30 tabs.

Noridin, J.S.; Donovan, R.; Trudell, L.; Dean, J.; Blevins, A.; Harrington, L.W.; James, R.; Berdan, G.

1987-09-01T23:59:59.000Z

488

Acidity of biomass fast pyrolysis bio-oils  

Science Conference Proceedings (OSTI)

The use of the TAN method for measuring the acidity of biomass fast pyrolysis bio-oil was evaluated. Suggestions for carrying out the analysis have been made. The TAN method by ASTM D664 or D3339 can be used for measuring the acidity of fast pyrolysis bio-oils and their hydrotreating products. The main difference between the methods is that ASTM D664 is specified for higher TAN values than ASTM D3339. Special focus should be placed on the interpretation of the TAN curves because they differ significantly from those of mineral oils. The curve for bio-oils is so gentle that the automatic detection may not observe the end point properly and derivatization should be used. The acidity of fast pyrolysis bio-oils is mainly derived (60-70%) from volatile acids. Other groups of compounds in fast pyrolysis bio-oils that influence acidity include phenolics, fatty and resin acids, and hydroxy acids.

Oasmaa, Anja; Elliott, Douglas C.; Korhonen, Jaana

2010-12-17T23:59:59.000Z

489

In situ noncombustive microwave processing of oil shale. Final report  

SciTech Connect

A unified analytical examination of the products of microwave oil shale has been completed. A sample of subituminous Colorado coal was also included. Analysis systems have been planned, constructed and placed into operation so as to provide a definitive profile of the composition of gases, oil, and water released by the microwave heated oil shale and coal samples. In a previous NSF study, it was reported that microwave retorted oil shale produced large quantities of high BTU content gas. In the data presented in this report, using a modular microcoulometric analysis system, a definitive profile of the composition of the gases, oil, and water, released by the microwave retorted oil shale and coal show that the previous results are confirmed.

Wall, E.T.

1979-08-31T23:59:59.000Z

490

Chemical Methods for Ugnu Viscous Oils  

Science Conference Proceedings (OSTI)

The North Slope of Alaska has large (about 20 billion barrels) deposits of viscous oil in Ugnu, West Sak and Shraeder Bluff reservoirs. These shallow reservoirs overlie existing productive reservoirs such as Kuparuk and Milne Point. The viscosity of the Ugnu reservoir on top of Milne Point varies from 200 cp to 10,000 cp and the depth is about 3300 ft. The same reservoir extends to the west on the top of the Kuparuk River Unit and onto the Beaufort Sea. The depth of the reservoir decreases and the viscosity increases towards the west. Currently, the operators are testing cold heavy oil production with sand (CHOPS) in Ugnu, but oil recovery is expected to be low (polymer (ASP) formulation was developed for a viscous oil (330 cp) where as an alkaline-surfactant formulation was developed for a heavy oil (10,000 cp). These formulations were tested in one-dimensional and quarter five-spot Ugnu sand packs. Micromodel studies were conducted to determine the mechanisms of high viscosity ratio displacements. Laboratory displacements were modeled and transport parameters (such as relative permeability) were determined that can be used in reservoir simulations. Ugnu oil is suitable for chemical flooding because it is biodegraded and contains some organic acids. The acids react with injected alkali to produce soap. This soap helps in lowering interfacial tension between water and oil which in turn helps in the formation of macro and micro emulsions. A lower amount of synthetic surfactant is needed because of the presence of organic acids in the oil. Tertiary ASP flooding is very effective for the 330 cp viscous oil in 1D sand pack. This chemical formulation includes 1.5% of an alkali, 0.4% of a nonionic surfactant, and 0.48% of a polymer. The secondary waterflood in a 1D sand pack had a cumulative recovery of 0.61 PV in about 3 PV injection. The residual oil saturation to waterflood was 0.26. Injection of tertiary alkaline-surfactant-polymer slug followed by tapered polymer slugs could recover almost 100% of the remaining oil. The tertiary alkali-surfactant-polymer flood of the 330 cp oil is stable in three-dimensions; it was verified by a flood in a transparent 5-spot model. A secondary polymer flood is also effective for the 330 cp viscous oil in 1D sand pack. The secondary polymer flood recovered about 0.78 PV of oil in about 1 PV injection. The remaining oil saturation was 0.09. The pressure drops were reasonable (polymer slug injected. For the heavy crude oil (of viscosity 10,000 cp), low viscosity (10-100 cp) oil-in-water emulsions can be obtained at salinity up to 20,000 ppm by using a hydrophilic surfactant along with an alkali at a high water-to-oil ratio of 9:1. Very dilute surfactant concentrations (~0.1 wt%) of the synthetic surfactant are required to generate the emulsions. It is much easier to flow the low viscosity emulsion than the original oil of viscosity 10,000 cp. Decreasing the WOR reverses the type of emulsion to water-in-oil type. For a low salinity of 0 ppm NaCl, the emulsion remained O/W even when the WOR was decreased. Hence a low salinity injection water is preferred if an oil-in-water emulsion is to be formed. Secondary waterflood of the 10,000 cp heavy oil followed by tertiary injection of alkaline-surfactants is very effective. Waterflood has early water breakthrough, but recovers a substantial amount of oil beyond breakthrough. Waterflood recovers 20-37% PV of the oil in 1D sand pack in about 3 PV injection. Tertiary alkali-surfactant injection increases the heavy oil recovery to 50-70% PV in 1D sand packs. As the salinity increased, the oil recovery due to alkaline surfactant flood increased, but water-in-oil emulsion was p

Kishore Mohanty

2012-03-31T23:59:59.000Z

491

Non-OPEC oil supply gains to outpace demand in 1997  

SciTech Connect

Rising oil supplies in 1997 will relax some of the market tightness that drove up crude prices last year. Worldwide demand for petroleum products in 1996 rose faster than anticipated and faster than supply from outside the Organization of Petroleum Exporting Countries. This increased demand for OPEC oil and pushed up prices for crude. At year end, the world export price of crude was up more than 25% from the same period a year earlier. Market conditions will change in 1997. While worldwide economic growth will continue to boost demand for energy and petroleum, non-OPEC petroleum supply will grow even more. Increases in North Sea and Latin American production will help boost non-OPEC output by 1.9 million b/d. And revenues from 1996 production gains will make additional investment possible in exploration and production. The paper discusses world economic growth, world oil demand, worldwide supply, supply outlook, prices and international drilling.

Beck, R.J.

1997-01-27T23:59:59.000Z

492

Fuel Oil Prepared by Blending Heavy Oil and Coal Tar  

Science Conference Proceedings (OSTI)

The effect of temperature, harmonic ration, surfactant and shearing to fuel oil prepared by blending heavy oil and coal tar were detailedly studied. The results show that the viscosity of the blended oil increases gradually with the increase of harmonic ... Keywords: coal tar, heavy oil, blending, surfactant

Guojie Zhang; Xiaojie Guo; Bo Tian; Yaling Sun; Yongfa Zhang

2009-10-01T23:59:59.000Z

493

An informal description of Standard OIL and Instance OIL  

E-Print Network (OSTI)

An informal description of Standard OIL and Instance OIL 28 November 2000 Sean Bechhofer (1) Jeen to be specified in some language. This paper introduces the newest version of OIL ­ the ontology inference layer of the DAML language, with working name DAML-OIL, was proposed in a message to the rdf-logic mailing list

Ohlbach, Hans JĂĽrgen

494

Diesel fuel oils, 1983  

Science Conference Proceedings (OSTI)

Properties of diesel fuels produced during 1983 were submitted for study and compilation under a cooperative agreement between the National Institute for Petroleum and Energy Research (NIPER), Bartlesville, Oklahoma and the American Petroleum Institute (API). Tests of 192 samples of diesel fuel oils from 87 refineries throughout the country were made by 31 petroleum groups according to type of diesel fuel. Each group of analyses is subdivided into five tabulations according to five general regions of the country where the fuels are marketed. The regions, containing a total of 16 districts, are shown on a map in the report. Data from 13 laboratory tests on each individual diesel fuel sample are listed and arranged by geographic marketing districts in decreasing order of sales volumes. Charts are included showing trends of averages of certain properties for the two grades of diesel fuels. Summaries of the results of the 1983 survey, compared with similar data for 1982, are shown in Tables 1 and 2 of the report. 3 figures, 4 tables.

Shelton, E.M.

1983-11-01T23:59:59.000Z

495

Diesel fuel oils, 1982  

Science Conference Proceedings (OSTI)

Properties of diesel fuels produced during 1982 were submitted for study and compilation under a cooperative agreement between the Department of Energy (DOE), Bartlesville Energy Technology Center (BETC), Bartlesville, Oklahoma and the American Petroleum Institute (API). Tests of 184 samples of diesel fuel oils from 83 refineries throughout the country were made by 27 petroleum groups according to type of diesel fuel. Each group of analyses is subdivided into five tabulations according to five general regions of the country where the fuels are marketed. The regions, containing a total of 16 districts, are shown on a map in the report. Data from 13 laboratory tests on each individual diesel fuel sample are listed and arranged by geographic marketing districts in decreasing order of sales volumes. Charts are included showing trends of averages of certain properties for the four types of diesel fuels for the years 1960 to 1982. Summaries of the results of the 1982 survey, compared with similar data for 1981, are shown in Tables 1 through 4 of the report. A summary of 1-D and 2-D fuels are presented in Tables 5 and 6 respectively.

Shelton, E.M.

1982-11-01T23:59:59.000Z

496

Internal combuston engine having separated cylinder head oil drains and crankcase ventilation passages  

DOE Patents (OSTI)

An internal combustion engine includes separated oil drain-back and crankcase ventilation passages. The oil drain-back passages extend from the cylinder head to a position below the top level of oil in the engine's crankcase. The crankcase ventilation passages extend from passages formed in the main bearing bulkheads from positions above the oil level in the crankcase and ultimately through the cylinder head. Oil dams surrounding the uppermost portions of the crankcase ventilation passages prevent oil from running downwardly through the crankcase ventilation passages.

Boggs, David Lee (Bloomfield Hills, MI); Baraszu, Daniel James (Plymouth, MI); Foulkes, David Mark (Erfstadt, DE); Gomes, Enio Goyannes (Ann Arbor, MI)

1998-01-01T23:59:59.000Z

497

Table 5.2 Crude Oil Production and Crude Oil Well ...  

U.S. Energy Information Administration (EIA)

Table 5.2 Crude Oil Production and Crude Oil Well Productivity, 1954-2011: Year: Crude Oil Production: Crude Oil Well 1 Productivity: 48 States 2: ...

498

South Dakota Residual Fuel Oil Adj Sales/Deliveries to Oil Company ...  

U.S. Energy Information Administration (EIA)

Referring Pages: Adjusted Sales of Residual Fuel Oil for Oil Company Use ; Adjusted Sales of Residual Fuel Oil for Oil Company Use ; South Dakota Adjusted Distillate ...

499

Intentionally Including - Engaging Minorities in Physics Careers |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Intentionally Including - Engaging Minorities in Physics Careers Intentionally Including - Engaging Minorities in Physics Careers Intentionally Including - Engaging Minorities in Physics Careers April 24, 2013 - 4:37pm Addthis Joining Director Dot Harris (second from left) were Marlene Kaplan, the Deputy Director of Education and director of EPP, National Oceanic and Atmospheric Administration, Claudia Rankins, a Program Officer with the National Science Foundation and Jim Stith, the past Vice-President of the American Institute of Physics Resources. Joining Director Dot Harris (second from left) were Marlene Kaplan, the Deputy Director of Education and director of EPP, National Oceanic and Atmospheric Administration, Claudia Rankins, a Program Officer with the National Science Foundation and Jim Stith, the past Vice-President of the

500

EXECUTIVE SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 CHAPTER 1: WORLD OIL TRENDS  

E-Print Network (OSTI)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 CHAPTER 1: WORLD OIL TRENDS Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Onshore Oil Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Offshore Oil Production