Powered by Deep Web Technologies
Note: This page contains sample records for the topic "including radiation effects" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

The Effect of Realistic Radiative Transfer on Potential Vorticity Structures, Including the Influence of Background Shear and Strain  

Science Conference Proceedings (OSTI)

A modified version of the radiation scheme of Shine is used to investigate the decay of small-scale potential vorticity structures characteristic of those observed in the lower and middle stratosphere. Following Fels, effective thermal damping ...

P. H. Haynes; W. E. Ward

1993-10-01T23:59:59.000Z

2

Radiation Effects In Ceramics  

Science Conference Proceedings (OSTI)

RADIATION MATERIALS SCIENCE IN TECHNOLOGY APPLICATIONS II: Radiation Effects in Ceramics. Sponsored by: Jt. SMD/MSD Nuclear Materials ...

3

Radiation effects on humans  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation effects on humans Radiation effects on humans Name: Joe Kemna Location: N/A Country: N/A Date: N/A Question: I am trying to find information on radiation. I need the effects on humans, the damage it causes to the environment, and any extra information you might have on the subject. Thank you for your time. Replies: Your library should be a good place to start, but first you need to narrow your question a bit. "Radiation" means radio waves, heat, light (including the ultraviolet light that causes suntan and sunburn), and what's called "ionizing radiation." By far the major source of the first three is the Sun, while the last I believe comes principally from cosmic rays and various naturally radioactive elements like uranium and radon. The most significant manmade sources of exposure would --- I think --- be household wiring and appliances (radio), engines and heating devices (heat), lamps (light), and X-ray machines, flying at high altitude in airplanes, and living in well-insulated homes built over radon sources (ionizing radiation). Heat, light and ionizing radiation play vital roles in the ecology of the Earth. Radio, light (in particular "tanning" ultraviolet), and ionizing radiation have all been widely assumed at different times to be particularly good or particularly bad for human health. Some recent issues of public concern have been the effect of radio waves from electric transmission lines, the effect on skin cancer incidence from tanning and sunburns, the depletion of the ultraviolet-light-produced ozone in the upper atmosphere by chlorofluorocarbons (CFCs), "global warming" from the increased absorption of heat radiation from the surface by atmospheric carbon dioxide and methane, and the effect of a long exposure to low levels of ionizing radiation as for example the people of Eastern Europe are experiencing from the Chernobyl nuclear power plant accident.

4

ARM: Surface Radiation Measurement Quality Control testing, including climatologically configurable limits  

DOE Data Explorer (OSTI)

Surface Radiation Measurement Quality Control testing, including climatologically configurable limits

Gary Hodges; Tom Stoffel; Mark Kutchenreiter; Bev Kay; Aron Habte; Michael Ritsche; Victor Morris; Mary Anderberg

5

Effects of atomic radiation  

SciTech Connect

This book focuses on the lifelong effects of atomic radiation exposure in language understandable by the concerned layperson or the specialist in another field. The base of knowledge used is the work of the Atomic Bomb Casualty Commission and its successor since 1975 the Radiation Effects Research Foundation. Within the range of Chronic effects on human health the book provides a thorough review, although effects of nonionizing radiation, effects on structures, effects on other living species, and acute effects are not discussed.

Schull, W.J.

1995-12-31T23:59:59.000Z

6

Synchrotron Radiation Effects  

NLE Websites -- All DOE Office Websites (Extended Search)

Synchrotron Radiation Effects in the IR Solenoid Flux Excluder Peter Tenenbaum LCC-Note-0007 Draft 23-September-1998 Abstract We examine the emittance dilution due to synchrotron...

7

An Earth Outgoing Longwave Radiation Climate Model. Part II: Radiation with Clouds Included  

Science Conference Proceedings (OSTI)

An Earth outgoing longwave radiation (OLWR) climate model was constructed for radiation budget studies. The model consists of the upward radiative transfer parameterization of Thompson and Warren, the cloud cover model of Sherr et al., and a ...

Shi-Keng Yang; G. Louis Smith; Fred L. Bartman

1988-10-01T23:59:59.000Z

8

Chronic Low Dose Radiation Effects on Radiation Sensitivity  

NLE Websites -- All DOE Office Websites (Extended Search)

Chronic Low Dose Radiation Effects on Radiation Sensitivity Chronic Low Dose Radiation Effects on Radiation Sensitivity and Chromosome Instability Induction in TK6 Cells Schwartz J.L. 1 , Jordan R. 1 , Slovic J. 1 , Moruzzi A. 1 , Kimmel R. 2 , and Liber, H.L. 3 1 University of Washington, Seattle, WA; 2 Fred Hutchinson Cancer Research Center, Seattle, WA; 3 Colorado State University, Fort Collins, Colorado There are a number of cell responses that can be detected after low dose radiation exposures including the adaptive response, low dose hypersensitivity, and induced genomic instability. The relationship between these different phenomena is unknown. In this study, we measured adaptive responses, low dose hypersensitivity, and induced genomic instability in a human B-lymphoblastoid cell model, TK6, where we could genetically modify radiation responses by either over-expression of BCL-2 or deletion of TP53. TK6

9

Unruh radiation and Interference effect  

E-Print Network (OSTI)

A uniformly accelerated charged particle feels the vacuum as thermally excited and fluctuates around the classical trajectory. Then we may expect additional radiation besides the Larmor radiation. It is called Unruh radiation. In this report, we review the calculation of the Unruh radiation with an emphasis on the interference effect between the vacuum fluctuation and the radiation from the fluctuating motion. Our calculation is based on a stochastic treatment of the particle under a uniform acceleration. The basics of the stochastic equation are reviewed in another report in the same proceeding. In this report, we mainly discuss the radiation and the interference effect.

Iso, Satoshi; Zhang, Sen

2011-01-01T23:59:59.000Z

10

Unruh radiation and Interference effect  

E-Print Network (OSTI)

A uniformly accelerated charged particle feels the vacuum as thermally excited and fluctuates around the classical trajectory. Then we may expect additional radiation besides the Larmor radiation. It is called Unruh radiation. In this report, we review the calculation of the Unruh radiation with an emphasis on the interference effect between the vacuum fluctuation and the radiation from the fluctuating motion. Our calculation is based on a stochastic treatment of the particle under a uniform acceleration. The basics of the stochastic equation are reviewed in another report in the same proceeding. In this report, we mainly discuss the radiation and the interference effect.

Satoshi Iso; Yasuhiro Yamamoto; Sen Zhang

2011-02-23T23:59:59.000Z

11

Radiation-Induced Bystander Effects and Relevance to Human Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation-Induced Bystander Effects and Relevance to Human Radiation Radiation-Induced Bystander Effects and Relevance to Human Radiation Exposures Review of phenomenon appears in Radiation Research Pamela Sykes and Benjamin Blyth One concern of radiobiologists is the effect radiation exposure might have on nearby unirradiated cells. For example, when only a small fraction of cells are directly hit by radiation energy, are the surrounding unirradiated cells also at an increased risk of cancer? The term "radiation-induced bystander effect" is used to describe radiation-induced biological changes that occur in unirradiated cells within an irradiated cell population. Radiation-induced bystander effects have become established in the vernacular and are considered as an authentic radiation response. However, there is still no consensus on a precise definition of the term, which

12

Radiation effects in the environment  

Science Conference Proceedings (OSTI)

Although the Navajo possess substantial resource wealth-coal, gas, uranium, water-this potential wealth has been translated into limited permanent economic or political power. In fact, wealth or potential for wealth has often made the Navajo the victims of more powerful interests greedy for the assets under limited Navajo control. The primary focus for this education workshop on the radiation effects in the environment is to provide a forum where scientists from the nuclear science and technology community can share their knowledge toward the advancement and diffusion of nuclear science and technology issues for the Navajo public. The scientists will make an attempt to consider the following basic questions; what is science; what is mathematics; what is nuclear radiation? Seven papers are included in this report: Navajo view of radiation; Nuclear energy, national security and international stability; ABC`s of nuclear science; Nuclear medicine: 100 years in the making; Radon in the environment; Bicarbonate leaching of uranium; and Computational methods for subsurface flow and transport. The proceedings of this workshop will be used as a valuable reference materials in future workshops and K-14 classrooms in Navajo communities that need to improve basic understanding of nuclear science and technology issues. Results of the Begay-Stevens research has revealed the existence of strange and mysterious concepts in the Navajo Language of nature. With these research results Begay and Stevens prepared a lecture entitled The Physics of Laser Fusion in the Navajo language. This lecture has been delivered in numerous Navajo schools, and in universities and colleges in the US, Canada, and Alaska.

Begay, F.; Rosen, L.; Petersen, D.F.; Mason, C.; Travis, B. [Los Alamos National Lab., NM (United States); Yazzie, A. [Navajo Nation, Window Rock, AZ (United States). Dept. of History; Isaac, M.C.P.; Seaborg, G.T. [Lawrence Berkeley National Lab., CA (United States); Leavitt, C.P. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Physics and Astronomy

1999-04-01T23:59:59.000Z

13

Addressing questions about including environmental effects in the DMSO HLA  

SciTech Connect

The Defense Modeling and Simulation Office (DMSO) is developing a High Level Architecture (HLA) to support the DOD Modeling and Simulation (M and S) community. Many, if not all, of the simulations involve the environment in some fashion. In some applications, the simulation takes place in an acknowledged environment without any environmental functionality being taken into account. The Joint Training Federation Prototype (JTFp) is one of several prototype efforts that have been created to provide a test of the DMSO HLA. In addition to addressing the applicability of the HLA to a training community, the JTFp is also one of two prototype efforts that is explicitly including environmental effects in their simulation effort. These two prototyping efforts are examining the issues associated with the inclusion of the environment in an HLA federation. In deciding whether or not to include an environmental federation in the JTFp effort, a number of questions have been raised about the environment and the HLA. These questions have raised the issue of incompatibility between the environment and the HLA and also shown that there is something unique about including the environment in simulations. The purpose of this White Paper, which was developed with inputs from the National Air and Space [Warfare] Model Program among others, is to address the various questions that have been posed about including environmental effects in an HLA simulation.

Hummel, J.R.

1996-10-01T23:59:59.000Z

14

An Algorithm for Inferring Surface UV Irradiance Including Cloud Effects  

Science Conference Proceedings (OSTI)

Recent extratropical ozone depletion and the concomitant increase in surface ultraviolet (UV) radiation may be expected to adversely influence the biosphere. Since few long-term, high quality datasets of surface UV are available for assessing ...

Greg E. Bodeker; Richard L. McKenzie

1996-10-01T23:59:59.000Z

15

Radiation Effects in Nanoporous Gold  

Science Conference Proceedings (OSTI)

Foams with filament and porous sizes in the range of nanometers could be unusually resistant to radiation because radiation induced point defects cannot ...

16

Computation of Domain-Averaged Irradiance with a Simple Two-Stream Radiative Transfer Model Including Vertical Cloud Property Correlations  

NLE Websites -- All DOE Office Websites (Extended Search)

Computation of Domain-Averaged Irradiance Computation of Domain-Averaged Irradiance with a Simple Two-Stream Radiative Transfer Model Including Vertical Cloud Property Correlations S. Kato Center for Atmospheric Sciences Hampton University Hampton, Virginia Introduction Recent development of remote sensing instruments by Atmospheric Radiation Measurement (ARM?) Program provides information of spatial and temporal variability of cloud structures. However it is not clear what cloud properties are required to express complicated cloud fields in a realistic way and how to use them in a relatively simple one-dimensional (1D) radiative transfer model to compute the domain averaged irradiance. To address this issue, a simple shortwave radiative transfer model that can treat the vertical cloud optical property correlation is developed. The model is based on the gamma-weighted

17

Low Dose Radiation Research Program: Low Dose Radiation Effects in  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation Effects in Differentiating Human Lens Cells Radiation Effects in Differentiating Human Lens Cells E.A. Blakely1, M.P. McNamara1, P.Y. Chang1, K.A. Bjornstad1, D. Sudar1, and A.C. Thompson2 1Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California; 2Advanced Light Source Division, Lawrence Berkeley National Laboratory, Berkeley, California. Introduction The human lens is one of the most radiosensitive organs of the body. Cataract, the opacification of the lens, is a late-appearing response to radiation damage. There are few data available on the late radiation effects of exposure in space flight to charged particle beams, the most prevalent of which are protons. Basic research in this area is needed to integrate the responses of both critical and other representative tissues

18

Third Radiation Effects Research Foundation Board of Councilors Meeting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Third Radiation Effects Research Foundation Board of Councilors Third Radiation Effects Research Foundation Board of Councilors Meeting Held in Hiroshima Third Radiation Effects Research Foundation Board of Councilors Meeting Held in Hiroshima July 22, 2013 - 4:54pm Addthis Third Radiation Effects Research Foundation Board of Councilors Meeting Held in Hiroshima The third Board of Councilors (BOC) meeting was held on June 18-19 at the Hiroshima Radiation Effects Research Foundation (RERF), a bi-national U.S.-Japan research organization. The BOC is the highest decision-making body at RERF, consisting of eight Councilors elected from the United States and Japan. A total of 23 participants, including 8 Councilors from the United States and Japan and officials from the U.S. and Japanese Governments, were present at the meeting. The Office of Health, Safety and

19

Radiation Effects on Structural Ceramics in Fusion  

Science Conference Proceedings (OSTI)

Fusion Materials—Radiation Effects and Activation / Proceedings of the Seveth Topical Meeting on the Technology of Fusion Energy (Reno, Nevada, June 15–19, 1986)

G. R. Hopkins; R. J. Price; P. W. Trester

20

Analytic approximate radiation effects due to Bremsstrahlung  

SciTech Connect

The purpose of this note is to provide analytic approximate expressions that can provide quick estimates of the various effects of the Bremsstrahlung radiation produced relatively low energy electrons, such as the dumping of the beam into the beam stop at the ERL or field emission in superconducting cavities. The purpose of this work is not to replace a dependable calculation or, better yet, a measurement under real conditions, but to provide a quick but approximate estimate for guidance purposes only. These effects include dose to personnel, ozone generation in the air volume exposed to the radiation, hydrogen generation in the beam dump water cooling system and radiation damage to near-by magnets. These expressions can be used for other purposes, but one should note that the electron beam energy range is limited. In these calculations the good range is from about 0.5 MeV to 10 MeV. To help in the application of this note, calculations are presented as a worked out example for the beam dump of the R&D Energy Recovery Linac.

Ben-Zvi I.

2012-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "including radiation effects" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Including the Effects of Electronic Excitations and Electron-Phonon Coupling in Cascade Simulations  

SciTech Connect

Radiation damage has traditionally been modeled using cascade simulations however such simulations generally neglect the effects of electron-ion interactions, which may be significant in high energy cascades. A model has been developed which includes the effects of electronic stopping and electron-phonon coupling in Molecular Dynamics simulations by means of an inhomogeneous Langevin thermostat. The energy lost by the atoms to electronic excitations is gained by the electronic system and the energy evolution of the electronic system is modeled by the heat diffusion equation. Energy is exchanged between the electronic system and the atoms in the Molecular Dynamics simulation by means of a Langevin thermostat, the temperature of which is the local electronic temperature. The model is applied to a 10 keV cascade simulation for Fe. (authors)

Duffy, Dorothy [Physics and Astronomy, UCL, London (United Kingdom)]|[EURATOM/UKAEA Fusion Association, Culham Science Centre, Oxfordshire (United Kingdom); Rutherford, Alexis [Physics and Astronomy, UCL, London (United Kingdom)

2008-07-01T23:59:59.000Z

22

Effects of prenatal exposure to ionizing radiation  

SciTech Connect

Prenatal exposure to ionizing radiation induces some effects that are seen at birth and others that cannot be detected until later in life. Data from A-bomb survivors in Hiroshima and Nagasaki show a diminished number of births after exposure under 4 wk of gestational age. Although a wide array of congenital malformations has been found in animal experimentation after such exposure to x rays, in humans only small head size (exposure at 4-17 wk) and mental retardation (exposure primarily at 8-15 wk) have been observed. In Hiroshima, small head size occurred after doses of 0.10-0.19 Gy or more, and an excess of mental retardation at 0.2-0.4 Gy or more. Intelligence test scores were reduced among A-bomb survivors exposed at 8-15 wk of gestational age by 21-29 IQ points per Gy. Other effects of in-utero exposure to atomic radiation include long-lasting complex chromosome abnormalities.

Miller, R.W. (National Cancer Institute, Bethesda, MD (USA))

1990-07-01T23:59:59.000Z

23

The In-Orbit Radiation Environment and Its Effects on Space-Borne Instrumentation  

E-Print Network (OSTI)

An overview is given on the various components of the radiation environment of the ISO mission, including cosmic rays, geomagnetically trapped protons and electrons, and the solar proton events. Various aspects related to the radiation shielding and to the radiation-induced effects on instrumentation will also be discussed. For the benefit of future missions, relevant lessons learned concerning ISO radiation environment and its effects will finally be summarised. Key words: ISO, space radiation -- macros: L A T E X 1.

P. Nieminen

2001-01-01T23:59:59.000Z

24

Decomposition of radiational effects of model feedbacks  

SciTech Connect

Three separate doubled CO/sub 2/ experiments with the statistical dynamic model are used to illustrate efforts to study the climate dynamics, feedbacks, and interrelationships of meteorological parameters by decomposing and isolating their individual effects on radiation transport.

Ellsaesser, H.W.; MacCracken, M.C.; Potter, G.L.; Mitchell, C.S.

1981-08-01T23:59:59.000Z

25

Radiation effects concerns at a spallation source  

SciTech Connect

Materials used at spallation neutron sources are exposed to energetic particle and photon radiation. Mechanical and physical properties of these materials are altered; radiation damage on the atomic scale leads to radiation effects on the macroscopic scale. Most notable among mechanical-property radiation effects in metals and metal alloys are changes in tensile strength and ductility, changes in rupture strength, dimensional stability and volumetric swelling, and dimensional changes due to stress-induced creep. Physical properties such as electrical resistivity also are altered. The fission-reactor community has accumulated a good deal of data on material radiation effects. However, when the incident particle energy exceeds 50 MeV or so, a new form of radiation damage ensues; spallation reactions lead to more energetic atom recoils and the subsequent temporal and spatial distribution of point defects is much different from that due to a fission-reactor environment. In addition, spallation reactions cause atomic transmutations with these new atoms representing an impurity in the metal. The higher-energy case is of interest at spallation sources; limited detailed data exist for material performance in this environment. 35 refs., 13 figs., 1 tab.

Sommer, W.F.

1990-01-01T23:59:59.000Z

26

Total aerosol effect: forcing or radiative flux perturbation?  

Science Conference Proceedings (OSTI)

Uncertainties in aerosol forcings, especially those associated with clouds, contribute to a large extent to uncertainties in the total anthropogenic forcing. The interaction of aerosols with clouds and radiation introduces feedbacks which can affect the rate of rain formation. Traditionally these feedbacks were not included in estimates of total aerosol forcing. Here we argue that they should be included because these feedbacks act quickly compared with the time scale of global warming. We show that for different forcing agents (aerosols and greenhouse gases) the radiative forcings as traditionally defined agree rather well with estimates from a method, here referred to as radiative flux perturbations (RFP), that takes these fast feedbacks and interactions into account. Thus we propose replacing the direct and indirect aerosol forcing in the IPCC forcing chart with RFP estimates. This implies that it is better to evaluate the total anthropogenic aerosol effect as a whole.

Lohmann, Ulrike; Storelvmo, Trude; Jones, Andy; Rotstayn, Leon; Menon, Surabi; Quaas, Johannes; Ekman, Annica; Koch, Dorothy; Ruedy, Reto

2009-09-25T23:59:59.000Z

27

Coherent Radiation Effects in the LCLS Undulator  

Science Conference Proceedings (OSTI)

For X-ray Free-Electron Lasers such as LCLS and TESLA FEL, a change in the electron energy while amplifying the FEL radiation can shift the resonance condition out of the bandwidth of the FEL. The largest sources of energy loss is the emission of incoherent undulator radiation. Because the loss per electron depends only on the undulator parameters and the beam energy, which are fixed for a given resonant wavelength, the average energy loss can be compensated for by a fixed taper of the undulator. Coherent radiation has a strong enhancement proportional to the number of electrons in the bunch for frequencies comparable to or longer than the bunch dimension. If the emitted coherent energy becomes comparable to that of the incoherent emission, it has to be included in the taper as well. However, the coherent loss depends on the bunch charge and the applied compression scheme and a change of these parameters would require a change of the taper. This imposes a limitation on the practical operation of Free-Electron Lasers, where the taper can only be adjusted manually. In this presentation we analyze the coherent emission of undulator radiation and transition undulator radiation for LCLS, and estimate whether the resulting energy losses are significant for the operation of LCLS.

Reiche, S.; /UCLA; Huang, Z.; /SLAC

2010-12-14T23:59:59.000Z

28

Numerical predictions of railgun performance including the effects of ablation and arc drag  

SciTech Connect

Thermal radiation from plasma armatures in railguns may cause vaporization and partial ionization of the rail and insulator materials. This causes an increase in mass of the arc, which has an adverse effect on projectile velocity. Viscous drag on the arc also has a deleterious effect, particularly at high velocities. These loss mechanisms are modeled in the Los Alamos Railgun Estimator code. Simulations were performed and numerical results were compared with experimental data for a wide range of tests performed at the Los Alamos and Lawrence Livermore National Laboratories, the Ling Temco Vought Aerospace and Defense Company, and the Center for Electromechanics at the University of Texas at Austin. The effects of ablation and arc drag on railgun performance are discussed. Parametric studies illustrate the effects of some design parameters on projectile velocity and launcher efficiency. Some strategies for reducing the effects of ablation are proposed.

Schnurr, N.M.; Kerrisk, J.F.; Parker, J.V.

1986-01-01T23:59:59.000Z

29

Accounting for Unresolved Clouds in a 1D Infrared Radiative Transfer Model. Part I: Solution for Radiative Transfer, Including Cloud Scattering and Overlap  

Science Conference Proceedings (OSTI)

Various aspects of infrared radiative transfer through clouds are investigated. First, three solutions to the IR radiative transfer equation are presented and assessed, each corresponding to a different approximation for the Planck function. It ...

J. Li

2002-12-01T23:59:59.000Z

30

Practical method for including material scattering effects in determining the amount of intercepted sunlight in solar concentrators  

DOE Green Energy (OSTI)

In imaging solar concentrators, the amount of solar radiation incident on a receiver surface depends upon both the overall concentrator shape and the angular distribution of light rays (sunshape) that reach the receiver. Sunshape broadening effects, which include the specular reflectance or transmittance properties of mirrors or glazings, image degradation caused by surface slope errors, and tracking errors are combined into an effective error cone. Broadened sunshapes for a variety of effective error-cone distributions are calculated and presented in graphical form. It is found that when the root-mean-square (RMS) width of the effective error cone is approximately 2 to 3 times the RMS width of the incident sunshape, the broadened sunshape can be adequately described by a circular normal distribution.

Pettit, R.B.; Vittitoe, C.N.; Biggs, F.

1979-01-01T23:59:59.000Z

31

Radiation Effects in the Space Telecommunications Environment  

SciTech Connect

Trapped protons and electrons in the Earth's radiation belts and cosmic rays present significant challenges for electronics that must operate reliably in the natural space environment. Single event effects (SEE) can lead to sudden device or system failure, and total dose effects can reduce the lifetime of a telecommmiications system with significant space assets. One of the greatest sources of uncertainty in developing radiation requirements for a space system is accounting for the small but finite probability that the system will be exposed to a massive solar particle event. Once specifications are decided, standard laboratory tests are available to predict the total dose response of MOS and bipolar components in space, but SEE testing of components can be more challenging. Prospects are discussed for device modeling and for the use of standard commercial electronics in space.

Fleetwood, Daniel M.; Winokur, Peter S.

1999-05-17T23:59:59.000Z

32

Improvements in the Shortwave Cloud-free Radiation Budget Accuracy. Part I: Numerical Study Including Surface Anisotropy  

Science Conference Proceedings (OSTI)

The shortwave radiation field, i.e., in the solar spectral range, emerging at the top of the atmosphere is anisotropic due to the optical properties of the atmosphere and the reflectance characteristics of the underlying surface. Thus, anisotropy ...

P. Koepke; K. T. Kriebel

1987-03-01T23:59:59.000Z

33

Tail terms in gravitational radiation reaction via effective field theory  

E-Print Network (OSTI)

Gravitational radiation reaction affects the dynamics of gravitationally bound binary systems. Here we focus on the leading "tail" term which modifies binary dynamics at fourth post-Newtonian order, as first computed by Blanchet and Damour. We re-produce this result using effective field theory techniques in the framework of the Lagrangian formalism suitably extended to include dissipation effects. We recover the known logarithmic tail term, consistently with the recent interpretation of the logarithmic tail term in the mass parameter as a renormalization group effect of the Bondi mass of the system.

S. Foffa; R. Sturani

2011-11-23T23:59:59.000Z

34

Posters The Effects of Radiative Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

Posters The Effects of Radiative Transfer on Low-Level Cyclogenesis M. J. Leach and S. Raman Department of Marine, Earth and Atmospheric Sciences North Carolina State University Raleigh, North Carolina Introduction Many investigators have documented the role that thermodynamic forcing due to radiative flux divergence plays in the enhancement or generation of circulation. Most of these studies involve large-scale systems (e.g., Slingo et al. 1988), small-scale systems such as thunderstorms (Chen and Cotton 1988), and squall lines (Chin, submitted). The generation of circulation on large scales results from the creation of divergence in the upper troposphere and the maintenance of low-level potentially unstable air, and the maintenance of baroclinicity throughout

35

THE HEALTH EFFECTS IN WOMEN EXPOSED TO LOW-LEVELS OF IONIZING RADIATION  

E-Print Network (OSTI)

and Effects of Ionizing Radiation. New York, United Nations,Effects of Ionizing Radiation (BEIR III). The EffectsLevels of Ionizing Radiation. Washington, D.C. , National

Fabrikant, J.I.

2010-01-01T23:59:59.000Z

36

ARM - Field Campaign - Carbonaceous Aerosol and Radiative Effects Study  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsCarbonaceous Aerosol and Radiative Effects Study (CARES) govCampaignsCarbonaceous Aerosol and Radiative Effects Study (CARES) Campaign Links CARES Website Related Campaigns Carbonaceous Aerosol and Radiation Effects Study (CARES) - Surface Meteorological Sounding 2010.05.26, Zaveri, OSC Carbonaceous Aerosol and Radiation Effects Study (CARES) Photo-Acoustic Aerosol Light Absorption and Scattering 2010.05.26, Arnott, OSC Carbonaceous Aerosol and Radiative Effects Study (CARES): SMPS & CCN counter deployment during CARES/Cal-NEx 2010.05.04, Wang, OSC Carbonaceous Aerosol and Radiative Effects Study (CARES) Ground Based Instruments 2010.04.01, Cziczo, OSC Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Carbonaceous Aerosol and Radiative Effects Study (CARES)

37

The ionizing radiation environment in space and its effects  

Science Conference Proceedings (OSTI)

The ionizing radiation environment in space poses a hazard for spacecraft and space crews. The hazardous components of this environment are reviewed and those which contribute to radiation hazards and effects identified. Avoiding the adverse effects of space radiation requires design, planning, monitoring and management. Radiation effects on spacecraft are avoided largely though spacecraft design. Managing radiation exposures of space crews involves not only protective spacecraft design and careful mission planning. Exposures must be managed in real time. The now-casting and forecasting needed to effectively manage crew exposures is presented. The techniques used and the space environment modeling needed to implement these techniques are discussed.

Adams, Jim; Falconer, David; Fry, Dan [Center for Space Plasma and Aeronomic Research (CSPAR), UA Huntsville (United States); Space Radiation Analysis Group, NASA Johnson Space Center (United States)

2012-11-20T23:59:59.000Z

38

Radiation-Induced Effects on Microstructure  

Science Conference Proceedings (OSTI)

Irradiation of materials with particles that are sufficiently energetic to create atomic displacements can induce significant microstructural alteration, ranging from crystalline-to-amorphous phase transitions to the generation of large concentrations of point defect or solute aggregates in crystalline lattices. These microstructural changes typically cause significant changes in the physical and mechanical properties of the irradiated material. A variety of advanced microstructural characterization tools are available to examine the microstructural changes induced by particle irradiation, including electron microscopy, atom probe field ion microscopy, X-ray scattering and spectrometry, Rutherford backscattering spectrometry, nuclear reaction analysis, and neutron scattering and spectrometry. Numerous reviews, which summarize the microstructural changes in materials associated with electron and heavy ion or neutron irradiation, have been published. These reviews have focused on pure metals as well as model alloys, steels, and ceramic materials. In this chapter, the commonly observed defect cluster morphologies produced by particle irradiation are summarized and an overview is presented on some of the key physical parameters that have a major influence on microstructural evolution of irradiated materials. The relationship between microstructural changes and evolution of physical and mechanical properties is then summarized, with particular emphasis on eight key radiation-induced property degradation phenomena. Typical examples of irradiated microstructures of metals and ceramic materials are presented. Radiation-induced changes in the microstructure of organic materials such as polymers are not discussed in this overview.

Zinkle, Steven J [ORNL

2012-01-01T23:59:59.000Z

39

Radiative Effects of Cloud-Type Variations  

Science Conference Proceedings (OSTI)

Radiative flux changes induced by the occurrence of different cloud types are investigated using International Satellite Cloud Climatology Project cloud data and a refined radiative transfer model from National Aeronautics and Space ...

Ting Chen; William B. Rossow; Yuanchong Zhang

2000-01-01T23:59:59.000Z

40

Radiative Effects on Particle Acceleration via Relativistic Electromagnetic Expansion  

E-Print Network (OSTI)

We study the radiation effect on the diamagnetic relativistic pulse accelerator (DPRA) in two-and-half-dimensional particle-in-cell (PIC) plasma simulation with magnetized electron-positron plasmas. Radiation damping force is self-consistently calculated for each particle, which reduces the acceleration force and converts particle energy to radiation. The emitted radiation is strongly linearly polarized and peaked within few degrees from the direction of Poynting flux due to the relativistic acceleration by the DPRA.

Noguchi, K; Nishimura, K; Noguchi, Koichi; Liang, Edison; Nishimura, Kazumi

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "including radiation effects" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Quantum radiation reaction effects in multiphoton Compton scattering  

E-Print Network (OSTI)

Radiation reaction effects in the interaction of an electron and a strong laser field are investigated in the realm of quantum electrodynamics. We identify quantum radiation reaction with the multiple photon recoils experienced by the laser-driven electron due to consecutive incoherent photon emissions. After determining a quantum radiation dominated regime, we demonstrate how in this regime quantum signatures of radiation reaction strongly affect multiphoton Compton scattering spectra and that they could be measurable in principle with presently available laser technology.

A. Di Piazza; K. Z. Hatsagortsyan; C. H. Keitel

2010-07-28T23:59:59.000Z

42

Radiation Effects on a High Strength, High Conductivity Copper Alloy  

Science Conference Proceedings (OSTI)

Presentation Title, Radiation Effects on a High Strength, High Conductivity Copper ... of Zircaloy during Low Dose Neutron Irradiation at Nominally 375-440° C.

43

Atomistic Simulations of Radiation Effects in Ceramics for Nuclear ...  

Science Conference Proceedings (OSTI)

This work is supported by the DOE Nuclear Energy Advanced Modeling and ... Simulations of Radiation Effects in Ceramics for Nuclear Waste Disposal.

44

Radiation effects in space: The Clementine I mission  

SciTech Connect

The space radiation environment for the CLEMENTINE I mission was investigated using a new calculational model, CHIME, which includes the effects of galactic cosmic rays (GCR), anomalous component (AC) species and solar energetic particle (SEP) events and their variations as a function of time. Unlike most previous radiation environment models, CHIME is based upon physical theory and is {open_quotes}calibrated{close_quotes} with energetic particle measurements made over the last two decades. Thus, CHIME provides an advance in the accuracy of estimating the interplanetary radiation environment. Using this model we have calculated particle energy spectra, fluences and linear energy transfer (LET) spectra for all three major components of the CLEMENTINE I mission during 1994: (1) the spacecraft in lunar orbit, (2) the spacecraft during asteroid flyby, and (3) the interstate adapter USA in Earth orbit. Our investigations indicate that during 1994 the level of solar modulation, which dominates the variation in the GCR and AC flux as a function of time, will be decreasing toward solar minimum levels. Consequently the GCR and AC flux will be increasing during Y, the year and, potentially, will rise to levels seen during previous solar minimums. The estimated radiation environment also indicates that the AC will dominate the energetic particle spectra for energies below 30-50 MeV/nucleon, while the GCR have a peak flux at {approximately}300 MeV/nucleon and maintain a relatively high flux level up to >1000 MeV/nucleon. The AC significantly enhances the integrated flux for LET in the range 1 to 10 MeV/(mg/cm{sup 2}), but due to the steep energy spectra of the AC a relatively small amount of material ({approximately}50 mils of Al) can effectively shield against this component. The GCR are seen to be highly penetrating and require massive amounts of shielding before there is any appreciable decrease in the LET flux.

Guzik, T.G.; Clayton, E.; Wefel, J.P.

1994-12-20T23:59:59.000Z

45

Radiative Effects on Particle Acceleration in Electromagnetic Dominated Outflows  

E-Print Network (OSTI)

Plasma outflows from gamma-ray bursts (GRB), pulsar winds, relativistic jets, and ultra-intense laser targets radiate high energy photons. However, radiation damping is ignored in conventional PIC simulations. In this letter, we study the radiation damping effect on particle acceleration via Poynting fluxes in two-and-half-dimensional particle-in-cell (PIC) plasma simulation of electron-positron plasmas. Radiation damping force is self-consistently calculated for each particle and reduces the net acceleration force. The emitted radiation is peaked within a few degrees from the direction of Poynting flux and strongly linear-polarized.

Koichi Noguchi; Edison Liang; Kazumi Nishimura

2004-12-14T23:59:59.000Z

46

Incorporating the Effects of 3D Radiative Transfer in the Presence of Clouds into Two-Stream Multilayer Radiation Schemes  

Science Conference Proceedings (OSTI)

This paper presents a new method for representing the important effects of horizontal radiation transport through cloud sides in two-stream radiation schemes. Ordinarily, the radiative transfer equations are discretized separately for the clear ...

Robin J. Hogan; Jonathan K. P. Shonk

2013-02-01T23:59:59.000Z

47

Significance of radiation effects in solid radioactive waste  

SciTech Connect

Proposed NRC criteria for disposal of high-level nuclear waste require development of waste packages to contain radionuclide for at least 1000 years, and design of repositories to prevent radionuclide release at an annual rate greater than 1 part in 100,000 of the total activity. The high-level wastes that are now temporarily stored as aqueous salts, sludges, and calcines must be converted to high-integrity solid forms that resist deterioration from radiation and other effects of long-term storage. Spent fuel may be encapsulated for similar long-term storage. Candidate waste forms beside the spent fuel elements themselves, include borosilicate and related glasses, mineral-like crystalline ceramics, concrete formulations, and metal-matrix glass or ceramic composites. these waste forms will sustain damage produced by beta-gamma radiation up to 10/sup 12/ rads, by alpha radiation up to 10/sup 19/ particles/g, by internal helium generation greater than about 0.1 atom percent, and by the atom transmutations accompanying radioactive decay. Current data indicate that under these conditions the glass forms suffer only minor volume changes, stored energy deposition, and leachability effects. The crystalline ceramics appear susceptible to the potentially more severe alterations accompanying metamictization and natural analogs of candidate materials are being examined to establish their suitability as waste forms. Helium concentrations in the waste forms are generally below thresholds for severe damage in either glass or crystalline ceramics at low temperatures, but microstructural effects are not well characterized. Transmutation effects remain to be established.

Permar, P H; McDonell, W R

1980-01-01T23:59:59.000Z

48

Radiation effects in materials for fusion reactors  

DOE Green Energy (OSTI)

The 14-MeV neutrons produced in a fusion reactor result in different irradiation damage than the equivalent fluence in a fast breeded reactor, not only because of the higher defect generation rate, but because of the production of significant concentrations of helium and hydrogen. Although no fusion test reactor exists, the effects of combined displacement damage plus helium can be studied in mixed-spectrum fission reactors for alloys containing nickel (e.g., austenitic stainless steels). The presence of helium appears to modify vacancy and interstitial recombination such that microstructural development in alloys differs between the fusion and fission reactor environments. Since mechanical properties of alloys are related to the microstructure, the simultaneous production of helium and displacement damage impacts upon key design properties such as tensile, fatigue, creep, an crack growth. Through an understanding of the basic phenomena occurring during irradiation and the relationships between microstructure and properties, alloys can be tailored to minimize radiation-induced swelling and improve mechanical properties in fusion reactor service.

Scott, J.L.; Grossbeck, M.L.; Maziasz, P.J.

1981-01-01T23:59:59.000Z

49

Survey of Radiation Effects in Titanium Alloys  

Science Conference Proceedings (OSTI)

Information on radiation effects in titanium alloys has been reviewed. Only sparse experimental data from fission reactor and charged particle irradiations is available, none of which is directly applicable to the SNS. Within this limited data it is found that although mechanical properties are substantially degraded, several Ti alloys may retain acceptable properties to low or moderate doses. Therefore, it is recommended that titanium alloys be examined further for application to the SNS target. Since information directly relevant to the SNS mercury target environment and irradiation conditions is not available, it is recommended that ORNL generate the necessary experimental data using a graded approach. The first testing would be for cavitation erosion resistance using two different test devices. If the material performs acceptably the next tests should be for long term mercury compatibility testing of the most promising alloys. Irradiation tests to anticipated SNS displacement doses followed by mechanical property measurements would be the last stage in determining whether the alloys should be considered for service in the SNS target module.

Mansur, Louis K [ORNL

2008-08-01T23:59:59.000Z

50

Dynamic Effects on the Tropical Cloud Radiative Forcing and Radiation Budget  

Science Conference Proceedings (OSTI)

Vertical velocity is used to isolate the effect of large-scale dynamics on the observed radiation budget and cloud properties in the tropics, using the methodology suggested by Bony et al. Cloud and radiation budget quantities in the tropics show ...

Jian Yuan; Dennis L. Hartmann; Robert Wood

2008-06-01T23:59:59.000Z

51

Errors and Uncertainties in Dose Reconstruction for Radiation Effects Research  

SciTech Connect

Dose reconstruction for studies of the health effects of ionizing radiation have been carried out for many decades. Major studies have included Japanese bomb survivors, atomic veterans, downwinders of the Nevada Test Site and Hanford, underground uranium miners, and populations of nuclear workers. For such studies to be credible, significant effort must be put into applying the best science to reconstructing unbiased absorbed doses to tissues and organs as a function of time. In many cases, more and more sophisticated dose reconstruction methods have been developed as studies progressed. For the example of the Japanese bomb survivors, the dose surrogate “distance from the hypocenter” was replaced by slant range, and then by TD65 doses, DS86 doses, and more recently DS02 doses. Over the years, it has become increasingly clear that an equal level of effort must be expended on the quantitative assessment of uncertainty in such doses, and to reducing and managing uncertainty. In this context, this paper reviews difficulties in terminology, explores the nature of Berkson and classical uncertainties in dose reconstruction through examples, and proposes a path forward for Joint Coordinating Committee for Radiation Effects Research (JCCRER) Project 2.4 that requires a reasonably small level of effort for DOSES-2008.

Strom, Daniel J.

2008-04-14T23:59:59.000Z

52

THE EFFECTS OF RADIATION AND RADIOISOTOPES ON THE LIFE PROCESSES. An Annotated Bibliography  

SciTech Connect

Issued in two books and an Index. A total of 11,944 annotated references is presented to report and published literature concerning the effects of radiation on biological systems. Abstracts are included for many references. Author and subject indexes are included. (C.H.)

Pierce, C.M. comp.

1963-09-01T23:59:59.000Z

53

Effects of Microwave Radiation on Oil Recovery  

Science Conference Proceedings (OSTI)

A variety of oil recovery methods have been developed and applied to mature and depleted reservoirs in order to improve the efficiency. Microwave radiation oil recovery method is a relatively new method and has been of great interest in the recent years. Crude oil is typically co?mingled with suspended solids and water. To increase oil recovery

2011-01-01T23:59:59.000Z

54

COMPARING THE EFFECT OF RADIATIVE TRANSFER SCHEMES ON CONVECTION SIMULATIONS  

Science Conference Proceedings (OSTI)

We examine the effect of different radiative transfer schemes on the properties of three-dimensional (3D) simulations of near-surface stellar convection in the superadiabatic layer, where energy transport transitions from fully convective to fully radiative. We employ two radiative transfer schemes that fundamentally differ in the way they cover the 3D domain. The first solver approximates domain coverage with moments, while the second solver samples the 3D domain with ray integrations. By comparing simulations that differ only in their respective radiative transfer methods, we are able to isolate the effect that radiative efficiency has on the structure of the superadiabatic layer. We find the simulations to be in good general agreement, but they show distinct differences in the thermal structure in the superadiabatic layer and atmosphere.

Tanner, Joel D.; Basu, Sarbani; Demarque, Pierre [Astronomy Department, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States)

2012-11-10T23:59:59.000Z

55

Correction of Marine Air Temperature Observations for Solar Radiation Effects  

Science Conference Proceedings (OSTI)

The effect of incoming solar radiation on merchant ships' observations of air temperature was assessed as part of the Voluntary Observing Ships' Special Observing Project for the North Atlantic (VSOP-NA), The ships' reports were compared with ...

Elizabeth C. Kent; Raoul J. Tiddy; Peter K. Taylor

1993-12-01T23:59:59.000Z

56

Runaway Greenhouse Effect in a Semigray Radiative–Convective Model  

Science Conference Proceedings (OSTI)

The effects of the nongray absorption (i.e., atmospheric opacity varying with wavelength) on the possible upper bound of the outgoing longwave radiation (OLR) emitted by a planetary atmosphere have been examined. This analysis is based on the ...

T. Pujol; G. R. North

2002-10-01T23:59:59.000Z

57

Effects of Penetrative Radiation on the Upper Tropical Ocean Circulation  

Science Conference Proceedings (OSTI)

The effects of penetrative radiation on the upper tropical ocean circulation have been investigated with an ocean general circulation model (OGCM) with attenuation depths derived from remotely sensed ocean color data. The OGCM is a reduced ...

Raghu Murtugudde; James Beauchamp; Charles R. McClain; Marlon Lewis; Antonio J. Busalacchi

2002-03-01T23:59:59.000Z

58

Effective Diameter in Radiation Transfer: General Definition, Applications, and Limitations  

Science Conference Proceedings (OSTI)

Although the use of an effective radius for radiation transfer calculations in water clouds has been common for many years, the export of this concept to ice clouds has been fraught with uncertainty, due to the nonspherical shapes of ice ...

David L. Mitchell

2002-08-01T23:59:59.000Z

59

Numerical simulation of ECRIPAC plasma behaviour with Vlasov equations including electron and ion collective effects  

E-Print Network (OSTI)

976 Numerical simulation of ECRIPAC plasma behaviour with Vlasov equations including electron of 4 MeV energy with very short pulses. (`ompared to ISlectron Ring Accelerators, ECRIPAC presents

Paris-Sud XI, Université de

60

Including Surface Kinetic Effects in Simple Models of Ice Vapor Diffusion  

Science Conference Proceedings (OSTI)

A model for kinetically-limited vapor growth and aspect ratio evolution of atmospheric single ice crystals is presented. The method is based on the adaptive habit model of Chen and Lamb (1994), but is modified to include the deposition ...

Chengzhu Zhang; Jerry Y. Harrington

Note: This page contains sample records for the topic "including radiation effects" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

A Simple Model of Abyssal Circulation, Including Effects of Wind, Buoyancy and Topography  

Science Conference Proceedings (OSTI)

We examine problems of steady abyssal circulation using an inviscid planetary geostrophic layered model. The model includes an active wind-driven upper layer and arbitrary topography; forcing is in the form of specified interlayer mass fluxes ...

Susan L. Hautala; Stephen C. Riser

1989-05-01T23:59:59.000Z

62

Cell type dependent radiation induced signaling and its effect on tissue regulation  

NLE Websites -- All DOE Office Websites (Extended Search)

Cell type dependent radiation induced signaling and its effect on tissue regulation Cell type dependent radiation induced signaling and its effect on tissue regulation Marianne B. Sowa, Claere von Neubeck, R. Joe Robinson, Paula M. Koehler, Norman J. Karin, Xihai Wang, Katrina M. Waters and Harish Shankaran Ionizing radiation exposure triggers a cell signaling program which includes proliferation, the DNA damage response, and tissue remodeling. The activated signaling pathways lead to the induction of both protective effects as well as adverse consequences. A fundamental question is whether signaling cascades initiated by low doses are fundamentally different than those initiated by high doses. To address this question we have applied a systems biology approach to examine the radiation induced temporal responses of an in vitro three dimensional (3D) human skin tissue model. Using microarray-

63

A Simulation of the January Standing Wave Pattern Including the Effects of Transient Eddies  

Science Conference Proceedings (OSTI)

A steady-state, linear, two-level primitive equation model is used to simulate the January standing wave pattern as a response to mountain, diabatic and transient eddy effects. The model equations are linearized around an observed zonal mean ...

J. D. Opsteegh; A. D. Vernekar

1982-04-01T23:59:59.000Z

64

IMPRINTED GENES & TRANSPOSITIONS: EPIGENOMIC TARGETS FOR LOW DOSE RADIATION EFFECTS  

Science Conference Proceedings (OSTI)

The overall hypothesis of this grant application is that low dose ionizing radiation (LDIR) elicits adaptive responses in part by causing heritable DNA methylation changes in the epigenome. This novel postulate was tested by determining if the level of DNA methylation at the Agouti viable yellow (A{sup vy}) metastable locus is altered, in a dose-dependent manner, by low dose radiation exposure (radiation hormesis, bringing into question the assumption that every dose of radiation is harmful. Our findings not only have significant implications concerning the mechanism of hormesis, but they also emphasize the potential importance of this phenomenon in determining human risk at low radiation doses. Since the epigenetic regulation of genes varies markedly between species, the effect of LDIR on other epigenetically labile genes (e.g. imprinted genes) in animals and humans needs to be defined.

Randy Jirtle

2012-10-11T23:59:59.000Z

65

A Flux Parameterization Including the Effects of Capillary Waves and Sea State  

Science Conference Proceedings (OSTI)

An air–sea interaction model that includes turbulent transport due to capillary waves (surface ripples) is developed. The model differs from others in that the physical premises are applicable to low wind speeds (10-m wind speed, U10 < 5 m s?1) ...

Mark A. Bourassa; Dayton G. Vincent; W. L. Wood

1999-05-01T23:59:59.000Z

66

Low Dose Radiation Research Program: Effects of Low Doses of Radiation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Abstract Abstract Title: Effects of Low Doses of Radiation on DNA Repair (PNNL Project # 42699) Authors: Eric J. Ackerman, Ph.D. Institutions: Pacific Northwest National Laboratory Richland, WA We developed a functional assay to measure the effects of LDR on repair of many different lesions representative of those found in cells as consequences of normal oxidative metabolism, as well as those caused by radiation. Currently only 1/10th attomole =105 damaged molecules/cell and 3000 cells/measurement are required. We have found that even low doses (10 rad) exert measurable effects on DNA repair. Interestingly, the amount of DNA repair increases at 10-50 rads, plateaus, and then increases even further at higher doses well below doses where radiation-induced lethality

67

An evaluation of theories concerning the health effects of low-dose radiation exposures  

E-Print Network (OSTI)

The danger of high, acute doses of radiation is well documented, but the effects of low-dose radiation below 100 mSv is still heavily debated. Four theories concerning the effects of lowdose radiation are presented here: ...

Wei, Elizabeth J. (Elizabeth Jay)

2012-01-01T23:59:59.000Z

68

Cycle Analysis of a Stirling Engine Including Void Volumes and Regenerator Effectiveness  

Science Conference Proceedings (OSTI)

The Stirling engine has been widely studied by considerable scientific staff as it has many favorable characteristics, such as less pollution, silent operation, high reliability, simple configuration and multi-fuel capability. Firstly, the basic configuration ... Keywords: Stirling engine, void volumes, regenerator effectiveness, efficiency

Yingxiao Yu; Zhaocheng Yuan; Jiayi Ma; Qing Zhu

2012-04-01T23:59:59.000Z

69

Effect of Ice-Albedo Feedback on Global Sensitivity in a One-Dimensional Radiative-Convective Climate Model  

Science Conference Proceedings (OSTI)

The feedback between ice albedo and temperature is included in a one-dimensional radiative-convective climate model. The effect of this feedback on global sensitivity to changes in solar constant is studied for the current climate conditions. ...

Wei-Chyung Wang; Peter H. Stone

1980-03-01T23:59:59.000Z

70

Effect of multiple scattering on Cerenkov radiation from energetic electrons  

SciTech Connect

Cerenkov radiation can be used as a diagnostic tool to study energetic electrons generated in ultra-intense laser matter interactions. However, electrons suffer scattering with nuclei as they move in a medium. In this article, we theoretically study the effect of multiple scattering on Cerenkov radiation, and obtain analytical formulas under some circumstances. The results show that when the speed of an energetic electron is not close to the light speed in the medium, Cerenkov radiation is just slightly decreased due to multiple scattering. In the case that the electron speed is very close to the light speed in the medium, the effect of multiple scattering becomes significant, and the radiation is dominated by bremsstrahlung.

Zheng Jian [CAS Key Laboratory of Basic Plasma Physics and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

2013-01-15T23:59:59.000Z

71

Numerical simulation of ECRIPAC plasma behaviour with Vlasov equations including electron and ion collective effects  

E-Print Network (OSTI)

ECKIPAC is a new ion-electron accelerator concept using IXX, GYRAC and IUS4I~E effects, which is being studied in a collaboration betweeii (‘EA/l~KI;M ~ (Grenoble), INS (Saclay) and GANII * ((‘am). A 611 Vlasov code using the “particle method ” was dcvelopped to simulate the electron heating process, the plasma compression and the energy transfer from electrons to ions. Two versions are available: the first one allows a precise description of the plasma during small time intervals, at different stages of the process. The second corresponds to an adiabatic approximation of electron motions, where electron superparticles are replaced hy circles obemg special equations coupled with collective effects. Exlernal electromagnetic fields depending on x, y, 7 rind t are accurately computed. while collective fields are calculated using the “cloud in cell ” scheme.

P. Bertrand

2012-01-01T23:59:59.000Z

72

X-ray Thomson scattering for partially ionized plasmas including the effect of bound levels  

E-Print Network (OSTI)

X-ray Thomson scattering is being developed as a method to measure the temperature, electron density, and ionization state of high energy density plasmas such as those used in inertial confinement fusion. Most experiments are currently done at large laser facilities that can create bright X-ray sources, however the advent of the X-ray free electron laser (X-FEL) provides a new bright source to use in these experiments. One challenge with X-ray Thomson scattering experiments is understanding how to model the scattering for partially ionized plasmas in order to include the contributions of the bound electrons in the scattered intensity. In this work we take the existing models of Thomson scattering that include elastic ion-ion scattering and the electron-electron plasmon scattering and add the contribution of the bound electrons in the partially ionized plasmas. We validated our model by analyzing existing beryllium experimental data. We then consider several higher Z materials such as Cr and predict the existe...

Nilsen, J; Cheng, K T

2013-01-01T23:59:59.000Z

73

Low Dose Radiation Exposure: Exploring Bystander Effects In Vivo.  

NLE Websites -- All DOE Office Websites (Extended Search)

Exposure: Exploring Bystander Effects Exposure: Exploring Bystander Effects In Vivo. 1 Blyth, B.J., 1 Sykes, P.J. 1 Department of Haematology and Genetic Pathology, Flinders University and Medical Centre, Bedford Park, South Australia, 5042, The general population is daily exposed to chronic, low doses of ionizing radiation from both natural and artificial sources. The shape of the radiation dose-response curve at these low doses is currently linearly extrapolated from data obtained after high dose exposure due to the low sensitivity of traditional biological assays after near-background exposures. At odds with this Linear No-Threshold model, are the phenomena collectively referred to as the radiation-induced bystander effect. The bystander effect describes a collection of in vitro

74

Japan Program - Radiation Effects Research Foundation (RERF)  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety Safety Home Sub Offices › Worker Safety & Health Policy › Worker Safety & Health Assistance › Illness & Injury Prevention Programs › International Health Studies › Office of Worker Screening and Compensation Support Mission & Functions › Health & Safety › Worker Safety & Health Policy › Worker Safety & Health Assistance › Illness & Injury Prevention Programs › International Health Studies › Worker Screening and Compensation Support Federal Line Management Oversight of DOE Nuclear Facilities Integrated Safety Management (ISM) A-Z Index Directory OSH Regulatory and Policy Response Line Health Resources Policy and Standards Worker Safety Beryllium Chemical Safety Biological Safety Radiation Safety Rules 10 CFR 707 10 CFR 835

75

RADIATION EFFECTS ON EPOXY CARBON FIBER COMPOSITE  

SciTech Connect

Carbon fiber-reinforced bisphenol-A epoxy matrix composite was evaluated for gamma radiation resistance. The composite was exposed to total gamma doses of 50, 100, and 200 Mrad. Irradiated and baseline samples were tested for tensile strength, hardness and evaluated using FTIR (Fourier transform infrared) spectroscopy and DSC (differential scanning calorimetry) for structural changes. Scanning electron microscopy was used to evaluate microstructural behavior. Mechanical testing of the composite bars revealed no apparent change in modulus, strain to failure, or fracture strength after exposures. However, testing of only the epoxy matrix revealed changes in hardness, thermal properties, and FTIR results with increasing gamma irradiation. The results suggest the epoxy within the composite can be affected by exposure to gamma irradiation.

Hoffman, E

2008-05-30T23:59:59.000Z

76

Low Dose Ionizing Radiation and HZE Particle Effects on Adult Hippocampal  

NLE Websites -- All DOE Office Websites (Extended Search)

and HZE Particle Effects on Adult Hippocampal and HZE Particle Effects on Adult Hippocampal Neurogenesis and mRNA Expression Kerry O'Banion University of Rochester School of Medicine & Dentistry Abstract Most of our knowledge about low dose radiation effects relates to DNA damage and chromosomal aberrations that result in cell death or alterations in genetic programs leading to malignancy. In addition To direct DNA damage, there is accumulating evidence that radiation induced alterations in the microenvironment can have significant effects on programs of cell replication and differentiation such as neurogenesis in adult mammalian brain. Adult neurogenesis in the hippocampus is postulated to play an important role in learning and memory and manipulations that alter neurogenesis, including inhibition following radiation exposure, have been

77

Effective dose and several factors of its identification. (Assessment of radiation hazard in space flights)  

E-Print Network (OSTI)

Effective dose and several factors of its identification. (Assessment of radiation hazard in space flights)

Farber, Yu V; Grigoriev, Yu G; Tabakova, L A

1971-01-01T23:59:59.000Z

78

Low Dose Radiation Research Program: Transgenerational Effects...  

NLE Websites -- All DOE Office Websites (Extended Search)

Transgenerational Effects of Chronic Low-Dose Irradiation in a Medaka Fish Model System Colorado State University Why this Project? There are major gaps in our knowledge about...

79

Electric double layer for spherical particles in salt-free concentrated suspensions including ion size effects  

E-Print Network (OSTI)

The equilibrium electric double layer (EDL) that surrounds the colloidal particles is determinant for the response of a suspension under a variety of static or alternating external fields. An ideal salt-free suspension is composed by the charged colloidal particles and the ionic countercharge released by the charging mechanism. The existing macroscopic theoretical models can be improved by incorporating different ionic effects usually neglected in previous mean-field approaches, which are based on the Poisson-Boltzmann equation (PB). The influence of the finite size of the ions seems to be quite promising because it has been shown to predict phenomena like charge reversal, which has been out of the scope of classical PB approximations. In this work we numerically obtain the surface electric potential and the counterions concentration profiles around a charged particle in a concentrated salt-free suspension corrected by the finite size of the counterions. The results show the large importance of such corrections for moderate to high particle charges at every particle volume fraction, specially, when a region of closest approach of the counterions to the particle surface is considered. We conclude that finite ion size considerations are obeyed for the development of new theoretical models to study nonequilibrium properties in concentrated colloidal suspensions, particularly the salt-free ones with small and highly charged particles.

R. Roa; F. Carrique; E. Ruiz-Reina

2011-02-01T23:59:59.000Z

80

1D simulation of polymer flooding including the viscoelastic effect of polymer solution  

Science Conference Proceedings (OSTI)

This paper reports that simple simulation models are constructed to predict the performance of 1D polymer flooding. In the models, two phases of oil and polymer solution were assumed to be immiscible with each other. Because the displacing fluid was non-Newtonian, the Buckley-Leverett equation could be modified and a new approach developed to calculate fractional-flow curves. The rheological behavior of polymer solution was modeled with an Ellis type model and a viscoelastic model. To verify the models, two 1D flooding experiments were carried out on 2.8-cm-diameter, 47-cm-long, unconsolidated cores packed with glass beads (70/100 mesh). Porosities of the cores are about 37% and permeabilities are around 26{mu}m{sup 2}. Two white mineral oils of viscosities 25 and 60 mPa {center dot} s and a 200-ppm polyacrylamide solution were used. In each experiment, polymer flooding was done after waterflooding. Initial water saturation was controlled to be almost the same at the start of each flood. The calculated polymer-flooding performances were compared with experimental data. On the other hand, the viscoelastic model predicted fractional-flow curves, oil recovery performances, and breakthrough times of the experiments very well. The viscoelastic effect of polymer solution is thought to play an important role in the improvement of oil recovery.

Masuda, Y.; Tang, K.C.; Miyazawa, M.; Tanaka, S. (Univ. of Tokyo (JP))

1992-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "including radiation effects" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

A Diagnostic Method for Computing the Surface Wind from the Geostrophic Wind Including the Effects of Baroclinity  

Science Conference Proceedings (OSTI)

A diagnostic procedure to compute the surface wind from the geostrophic wind including the effects of baroclinity is designed and tested. Expressions are derived to calculate the similarity functions A and B for use when only the surface ...

Maurice Danard

1988-12-01T23:59:59.000Z

82

Echolocation-based foraging by harbor porpoises and sperm whales, including effects of noise and acoustic propagation  

E-Print Network (OSTI)

In this thesis, I provide quantitative descriptions of toothed whale echolocation and foraging behavior, including assessment of the effects of noise on foraging behavior and the potential influence of ocean acoustic ...

DeRuiter, Stacy L

2008-01-01T23:59:59.000Z

83

Effects of Radiation on Adaptive Immunity: Contact Hypersensitivity Model  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation on Adaptive Immunity: Contact Hypersensitivity Model Radiation on Adaptive Immunity: Contact Hypersensitivity Model Gregory Nelson Loma Linda University Abstract It has long been appreciated that cells of the immune system are radiosensitive and use apoptosis as the primary mechanism of cell death following injury. The hypervariability of the immunoglobulin superfamily of genes expressed in lymphoid cells also led to the appreciation of the nonhomologous end joining mechanism of DNA repair. Clinically, whole body irradiation is used in treatment of some lymphomas and as an immunosuppressive agent for bone marrow transplants. Inflammation at sites of radiotherapy is a common side effect. Many studies with radiation have addressed the changes in cell populations following radiation exposure and have shown a reproducible pattern of relative sensitivities amongst

84

Low Dose Radiation Research Program: Effects of Low Doses of Radiation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Low Doses of Radiation on DNA Repair Low Doses of Radiation on DNA Repair Eric Ackerman Pacific Northwest National Laboratory Why this Project? Even low doses (0.1 Gy) exert measurable effects on DNA repair. The first-known oxidative lesion repaired only by nucleotide excision repair found in normal cells is cyclo-dA. This lesion is found in normal cells and thought to be a byproduct of oxidative metabolism. When this lesion occurs, it stimulates repair. If repair is stimulated by low dose radiation, there are some implications for human health. For example, do some individuals exhibit a greater, lower, or no stimulation to certain DNA lesions? If there are population polymorphism that influence DNA repair, then it would be possible to use our assay for screening individuals for repair sensitivity.

85

Incorporating Radiation Effects into Edge Plasma Transport Models with Extended Atomic Data Tables  

DOE Green Energy (OSTI)

Plasmas at the tokamak edge can be very optically thick to hydrogen resonance lines. The resulting strong line radiation can significantly affect the ionization and energy balance in these plasmas. One method of account for effects is to self-consistently couple a partially ionized plasma transport model with a nonlocal thermodynamic equilibrium (NLTE) model incorporating line radiation transfer. This approach has been implemented in one dimension, but would be computationally challenging and expensive to implement in multiple dimensions. Approximate treatments of radiation transfer can decrease the computational time, but would still require coupling to a multidimensional plasma transport model to address realistic geometries, e.g. the tokamak divertor. Here, we consider the development of atomic hydrogen data tables that include radiation interactions and can be easily applied to multidimensional geometries.

Scott, H A; Adams, M L

2004-06-14T23:59:59.000Z

86

Effects of Atmospheric Absorption of Incoming Radiation on the Radiation Limit of the Troposphere  

Science Conference Proceedings (OSTI)

The limit of the planetary radiation (longwave radiation) of a planet with oceans on its surface is determined by various mechanisms called “radiation limits,” which can be classified as the Komabayashi–Ingersoll limit and the radiation limit of ...

Hiroyuki Kurokawa; Taishi Nakamoto

2012-01-01T23:59:59.000Z

87

Low Dose Radiation Research Program: Characterizing Bystander Effects  

NLE Websites -- All DOE Office Websites (Extended Search)

Irradiation. Irradiation. Authors: L.A. Braby and J.R. Ford. Institutions: Texas A&M University. Bystander effects, which are typically seen as in increase in the cellular concentration of specific repair related molecules or as cytogenetic changes which appear to be the consequence of DNA damage, may be a significant factor in the risk of long-term health effects of low doses of radiation. These effects clearly increase the effective size of the target for radiation response, from the diameter of a single cell or cell nucleus to something significantly larger, by bringing additional cells into the process. It is unclear whether this larger target will result in an increase or a decrease in the probability of inducing a change which would be detrimental to the health of the organism, but it clearly reduces the

88

System level latchup mitigation for single event and transient radiation effects on electronics  

DOE Patents (OSTI)

A ``blink`` technique, analogous to a person blinking at a flash of bright light, is provided for mitigating the effects of single event current latchup and prompt pulse destructive radiation on a micro-electronic circuit. The system includes event detection circuitry, power dump logic circuitry, and energy limiting measures with autonomous recovery. The event detection circuitry includes ionizing radiation pulse detection means for detecting a pulse of ionizing radiation and for providing at an output terminal thereof a detection signal indicative of the detection of a pulse of ionizing radiation. The current sensing circuitry is coupled to the power bus for determining an occurrence of excess current through the power bus caused by ionizing radiation or by ion-induced destructive latchup of a semiconductor device. The power dump circuitry includes power dump logic circuitry having a first input terminal connected to the output terminal of the ionizing radiation pulse detection circuitry and having a second input terminal connected to the output terminal of the current sensing circuitry. The power dump logic circuitry provides an output signal to the input terminal of the circuitry for opening the power bus and the circuitry for shorting the power bus to a ground potential to remove power from the power bus. The energy limiting circuitry with autonomous recovery includes circuitry for opening the power bus and circuitry for shorting the power bus to a ground potential. The circuitry for opening the power bus and circuitry for shorting the power bus to a ground potential includes a series FET and a shunt FET. The invention provides for self-contained sensing for latchup, first removal of power to protect latched components, and autonomous recovery to enable transparent operation of other system elements. 18 figs.

Kimbrough, J.R.; Colella, N.J.

1997-09-30T23:59:59.000Z

89

System level latchup mitigation for single event and transient radiation effects on electronics  

DOE Patents (OSTI)

A "blink" technique, analogous to a person blinking at a flash of bright light, is provided for mitigating the effects of single event current latchup and prompt pulse destructive radiation on a micro-electronic circuit. The system includes event detection circuitry, power dump logic circuitry, and energy limiting measures with autonomous recovery. The event detection circuitry includes ionizing radiation pulse detection means for detecting a pulse of ionizing radiation and for providing at an output terminal thereof a detection signal indicative of the detection of a pulse of ionizing radiation. The current sensing circuitry is coupled to the power bus for determining an occurrence of excess current through the power bus caused by ionizing radiation or by ion-induced destructive latchup of a semiconductor device. The power dump circuitry includes power dump logic circuitry having a first input terminal connected to the output terminal of the ionizing radiation pulse detection circuitry and having a second input terminal connected to the output terminal of the current sensing circuitry. The power dump logic circuitry provides an output signal to the input terminal of the circuitry for opening the power bus and the circuitry for shorting the power bus to a ground potential to remove power from the power bus. The energy limiting circuitry with autonomous recovery includes circuitry for opening the power bus and circuitry for shorting the power bus to a ground potential. The circuitry for opening the power bus and circuitry for shorting the power bus to a ground potential includes a series FET and a shunt FET. The invention provides for self-contained sensing for latchup, first removal of power to protect latched components, and autonomous recovery to enable transparent operation of other system elements.

Kimbrough, Joseph Robert (Pleasanton, CA); Colella, Nicholas John (Livermore, CA)

1997-01-01T23:59:59.000Z

90

System level latchup mitigation for single event and transient radiation effects on electronics  

DOE Patents (OSTI)

A `blink` technique, analogous to a person blinking at a flash of bright light, is provided for mitigating the effects of single event current latchup and prompt pulse destructive radiation on a micro-electronic circuit. The system includes event detection means, power dump logic means, and energy limiting measures with autonomous recovery. The event detection means includes ionizing radiation pulse detection means for detecting a pulse of ionizing radiation and for providing at an output terminal thereof a detection signal indicative of the detection of a pulse of ionizing radiation or by ion-induced destructive latchup of a semiconductor device. The current sensing means is coupled to the power bus for determining an occurrence of excess current through the power bus caused by ionizing radiation. The power dump means includes power dump logic means having a first input terminal connected to the output terminal of the ionizing radiation pulse detection means and having a second input terminal connected to the output terminal of the current sensing means. The power dump logic means provides an output signal to the input terminal of the means for opening the power bus and the means for shorting the power bus to a ground potential to remove power from the power bus. The energy limiting mean with autonomous recovery includes means for opening the power bus and means for shorting the power bus to a ground potential. The means for opening the power bus and means for shorting the power bus to a ground potential includes a series FET and a shunt FET. The invention provides for self-contained sensing for latchup, first removal of power to protect latched components, and autonomous recovery to enable transparent operation of other system elements.

Kimbrough, J.R.; Colella, N.J.

1994-12-31T23:59:59.000Z

91

Consideration of Dynamical Effects on Parameterization of Clooud radiative Properties  

NLE Websites -- All DOE Office Websites (Extended Search)

Consideration of Dynamical Effects on Consideration of Dynamical Effects on Parameterization of Cloud Radiative Properties P. H. Daum and Y. Liu Environmental Sciences Department Brookhaven National Laboratory Upton, New York Introduction Effective radius (r e ) (defined as the ratio of the third to the second moment of a droplet size distribution) is one of the key variables that are used for calculation of the radiative properties of liquid water clouds (Hansen and Travis 1974). The inclusion and parameterization of r e in climate models has proven to be critical for assessing global climate change (Slingo 1990, Dandin et al. 1997). It has been demonstrated empirically (Pontikis and Hicks 1992, Bower and Choularton 1992, Bower et al. 1994, Martin et al. 1994, Liu and Hallett 1997, Reid et al. 1998, Liu and Daum 2000a), as well theoretically (Liu and

92

Effects of solar UV radiation and climate change on biogeochemical cycling: Interactions and feedbacks  

SciTech Connect

Solar UV radiation, climate and other drivers of global change are undergoing significant changes and models forecast that these changes will continue for the remainder of this century. Here we assess the effects of solar UV radiation on biogeochemical cycles and the interactions of these effects with climate change, including feedbacks on climate. Such interactions occur in both terrestrial and aquatic ecosystems. While there is significant uncertainty in the quantification of these effects, they could accelerate the rate of atmospheric CO{sub 2} increase and subsequent climate change beyond current predictions. The effects of predicted changes in climate and solar UV radiation on carbon cycling in terrestrial and aquatic ecosystems are expected to vary significantly between regions. The balance of positive and negative effects on terrestrial carbon cycling remains uncertain, but the interactions between UV radiation and climate change are likely to contribute to decreasing sink strength in many oceanic regions. Interactions between climate and solar UV radiation will affect cycling of elements other than carbon, and so will influence the concentration of greenhouse and ozone-depleting gases. For example, increases in oxygen-deficient regions of the ocean caused by climate change are projected to enhance the emissions of nitrous oxide, an important greenhouse and ozone-depleting gas. Future changes in UV-induced transformations of aquatic and terrestrial contaminants could have both beneficial and adverse effects. Taken in total, it is clear that the future changes in UV radiation coupled with human-caused global change will have large impacts on biogeochemical cycles at local, regional and global scales.

Erickson III, David J [ORNL

2011-01-01T23:59:59.000Z

93

A research program on radiative, chemical, and dynamical feedback progresses influencing the carbon dioxide and trace gases climate effects: Annual progress report, September 1, 1986--July 15, 1989  

SciTech Connect

This report summarizes the up-to-date progress. The program includes two tasks: atmospheric radiation and climatic effects and their objective is to link quantitatively the radiation forcing changes and the climate responses caused by increasing greenhouse gases. Here, the objective and approach are described. We investigate the combined atmospheric radiation characteristics of the greenhouse gases (H/sub 2/O, CO/sub 2/, CH/sub 4/, N/sub 2/O, CFCs, and O/sub 3/), aerosols and clouds. Since the climatic effect of increasing atmospheric greenhouse gases is initiated by perturabtion to the longwave thermal radiation, it is critical to understand better the radiation characteristics of the greenhouse gases and their relationship to radiatively-important aerosols and clouds; the latter reflect solar radiation (a cooling of the surface) and provide a greenhouse effect (a warming to the surface). Therefore, aerosol and cloud particles are an integral part of the radiation field in the atmosphere. 9 refs.

1989-07-01T23:59:59.000Z

94

Interactions between Vegetation and Climate: Radiative and Physiological Effects of Doubled Atmospheric CO2  

Science Conference Proceedings (OSTI)

The radiative and physiological effects of doubled atmospheric carbon dioxide (CO2) on climate are investigated using a coupled biosphere–atmosphere model. Five 30-yr climate simulations, designed to assess the radiative and physiological effects ...

L. Bounoua; G. J. Collatz; P. J. Sellers; D. A. Randall; D. A. Dazlich; S. O. Los; J. A. Berry; I. Fung; C. J. Tucker; C. B. Field; T. G. Jensen

1999-02-01T23:59:59.000Z

95

THE EFFECT OF CIRCUMSOLAR RADIATION ON THE ACCURACY OF PYRHELIOMETER MEASUREMENTS OF THE DIRECT SOLAR RADIATION  

E-Print Network (OSTI)

Diffuse, and Total Solar Radiation," Solar Energy, vol. 4,r Presented at the Solar Radiation workshop of Solar Rising,MEASUREMENTS OF THE DIRECT SOLAR RADIATION D. Grether, D.

Grether, D.

2012-01-01T23:59:59.000Z

96

Effect of circumsolar radiation on performance of focusing collectors  

Science Conference Proceedings (OSTI)

Circumsolar radiation is one of several factors, along with optical errors (contour, tracking, etc.), that determine the size and shape of the solar image at the receiver of a concentrating collector. The sensitivity of a collector to circumsolar radiation depends on insolation conditions and on collector parameters; it increases with geometrical concentration ratio and decreases with operating threshold. The Lawrence Berkeley Laboratory (LBL) circumsolar data are used to develop fast computational procedures for calculating the effect of circumsolar radiation on both the instantaneous and the long-term average performance of focusing collectors. For predictions of long-term average performance, a standard synthetic circumsolar scan has been developed that describes the brightness distribution of the solar disk (limb darkening) and of the circumsolar region. The radiation intercepted by a receiver is calculated separately for the solar portion and for the circumsolar portion of this standard sun shape, and these two contributions are then weighted according to the long-term average circumsolar ratio for the location and period under study.

Bendt, P.; Rabl, A.

1980-04-01T23:59:59.000Z

97

Space Radiation Effects on Er-Doped, Yb-Doped and Yb/Er Co ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2012. Symposium, Glass and Optical Materials. Presentation Title, Space Radiation Effects on ...

98

A COMPENDIUM OF INFORMATION FOR USE IN CONTROLLING RADIATION EMERGENCIES INCLUDING LECTURE NOTES FROM A TRAINING SESSION AT IDAHO FALLS, IDAHO, FEBRUARY 12-14, 1958  

SciTech Connect

A training course was held to familiarize members of radiological assistance teams from various parts of the U. S. with the origin and nature of situations that might, by the event of an unusual accident. release radioactive materials to a populated environment. The course consisted of a series of lectures and a tour of some of the radiation monitoring, source handling, and transportation facilities at NRTS. A summary of the lecture material is presented. (W.D.M.)

Brodsky, A.; Beard, G.V. comps. and eds.

1960-09-01T23:59:59.000Z

99

Direct and Indirect Shortwave Radiative Effects of Sea Salt Aerosols  

Science Conference Proceedings (OSTI)

Sea salt aerosols play a dual role in affecting the atmospheric radiative balance. Directly, sea salt particles scatter the incoming solar radiation and absorb the outgoing terrestrial radiation. By acting as cloud condensation nuclei, sea salt ...

Tarek Ayash; Sunling Gong; Charles Q. Jia

2008-07-01T23:59:59.000Z

100

RADIATION EFFECTS OF ALPHA PARTICLES ON URANIUM HEXAFLUORIDE  

SciTech Connect

Alpha irradiation of uranium hexafluoride results in the formation of fluorine and intermediate, solid uranium fluorides: these products react with each other, apparently by a radiation-induced process. to reform uranium hexifluoride. The number of molecules of uranium hexafluoride decomposed, excluding recombiapproximately 1 in the temperature range 21 to 87 deg C. Irradiation of a mixture of fluorine and uranium hexafluoride in a vessel containing uranium fluorides substantistes the postulated mechanism. At fluorine pressures of 50 to 100 mm Hg, there is an increase, rather than a decrease, in uranium hexafluoride pressure. Rates of both decomposition and recombination processes appear to depend only on the rates of radiation energy absorption. Equations formnulated to describe the combined decomposition and reformation reactions can be used to calculate equilibrium concentrations of uranium hexfluoride and fluorine when the intensity of the radiation source is defined. The effects of three diluent gases, helium, nitrogen and oxygen, were studied in an attempt to find possible electron transfer processes. (auth)

Bernhardt, H.A.; Davis, W. Jr.; Shiflett, C.H.

1958-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "including radiation effects" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

The Effect of Clouds on the Earth's Solar and Infrared Radiation Budgets  

Science Conference Proceedings (OSTI)

The effect of global cloudiness on the solar and infrared components of the earth's radiation balance is studied in general circulation model experiments. A wintertime simulation is conducted in which the cloud radiative transfer calculations use ...

Gerald F. Herman; Man-Li C. Wu; Winthrop T. Johnson

1980-06-01T23:59:59.000Z

102

Radiative Effects of Airborne Dust on Regional Energy Budgets at the Top of the Atmosphere  

Science Conference Proceedings (OSTI)

The effects of dust on the radiative energy budget at the top of the atmosphere were investigated using model calculations and measurements from the Earth Radiation Budget Experiment (ERBE). Estimates of the dust optical depth were made from ...

Steven A. Ackerman; Hyosang Chung

1992-02-01T23:59:59.000Z

103

The Chemistry of a Dry Cloud: The Effects of Radiation and Turbulence  

Science Conference Proceedings (OSTI)

The combined effect of ultraviolet radiation and turbulent mixing on chemistry in a cloud-topped boundary layer is investigated. The authors study a flow driven by longwave radiative cooling at cloud top. They consider a chemical cycle that is ...

Jordi Vilà-Guerau de Arellano; Joannes W. M. Cuijpers

2000-05-01T23:59:59.000Z

104

An Improved Parameterization for Estimating Effective Atmospheric Emissivity for Use in Calculating Daytime Downwelling Longwave Radiation  

Science Conference Proceedings (OSTI)

An improved parameterization is presented for estimating effective atmospheric emissivity for use in calculating downwelling longwave radiation based on temperature, humidity, pressure, and solar radiation observations. The first improvement is ...

Todd M. Crawford; Claude E. Duchon

1999-04-01T23:59:59.000Z

105

The Effect of Tropospheric Aerosols on the Earth's Radiation Budget: A Parameterization for Climate Models  

Science Conference Proceedings (OSTI)

Guided by the results of doubling-adding solutions to the equation of radiative transfer, we develop a simple technique for incorporating in climate models the effect of the background tropospheric aerosol on solar radiation. Because the ...

James A. Coakley Jr.; Robert D. Cess; Franz B. Yurevich

1983-01-01T23:59:59.000Z

106

A Climatology of Surface Cloud Radiative Effects at the ARM Tropical Western Pacific Sites  

Science Conference Proceedings (OSTI)

Cloud radiative effects on surface downwelling fluxes are investigated using datasets from the Atmospheric Radiation Measurement Program (ARM) sites in the tropical western Pacific Ocean (TWP) region. The Nauru Island (Republic of Nauru) and ...

Sally A. McFarlane; Charles N. Long; Julia Flaherty

2013-04-01T23:59:59.000Z

107

Influence of Ice Particle Surface Roughening on the Global Cloud Radiative Effect  

Science Conference Proceedings (OSTI)

Ice clouds influence the climate system by changing the radiation budget and large-scale circulation. Therefore, climate models need to have an accurate representation of ice clouds and their radiative effects. In this paper, new broadband ...

Bingqi Yi; Ping Yang; Bryan A. Baum; Tristan L'Ecuyer; Lazaros Oreopoulos; Eli J. Mlawer; Andrew J. Heymsfield; Kuo-Nan Liou

2013-09-01T23:59:59.000Z

108

Radiative Effects on Turbulent Temperature Spectra and Budgets in the Planetary Boundary Layer  

Science Conference Proceedings (OSTI)

The effects of radiative energy transfer on turbulent temperature fields are studied, and preliminary estimates show the infrared “radiative dissipation” mechanism to be dominant. Spectral computations for the idealized homogeneous-isotropic case ...

M. Coantic; O. Simonin

1984-09-01T23:59:59.000Z

109

Top-of-Atmosphere Direct Radiative Effect of Aerosols over Global Oceans from Merged CERES and MODIS Observations  

Science Conference Proceedings (OSTI)

The direct radiative effect of aerosols (DREA) is defined as the difference between radiative fluxes in the absence and presence of aerosols. In this study, the direct radiative effect of aerosols is estimated for 46 months (March 2000–December ...

Norman G. Loeb; Natividad Manalo-Smith

2005-09-01T23:59:59.000Z

110

A review of ground-based heavy-ion radiobiology relevant to space radiation risk assessment: Part II. Cardiovascular and immunological effects  

Science Conference Proceedings (OSTI)

The future of manned space flight depends on an analysis of the numerous potential risks of travel into deep space. Currently no radiation dose limits have been established for these exploratory missions. To set these standards more information is needed about potential acute and late effects on human physiology from appropriate radiation exposure scenarios, including pertinent radiation types and dose rates. Cancer risks have long been considered the most serious late effect from chronic daily relatively low-dose exposures to the complex space radiation environment. However, other late effects from space radiation exposure scenarios are under study in ground-based accelerator facilities and have revealed some unique particle radiation effects not observed with conventional radiations. A comprehensive review of pertinent literature that considers tissue effects of radiation leading to functional detriments in specific organ systems has recently been published (NCRP National Council on Radiation Protection and Measurements, Information Needed to Make Radiation Protection Recommendations for Space Missions Beyond Low-Earth Orbit, Report 153, Bethesda, MD, 2006). This paper highlights the review of two non-cancer concerns from this report: cardiovascular and immunological effects.

Blakely, Eleanor A.; Chang, Polly Y.

2007-02-26T23:59:59.000Z

111

Radiators  

SciTech Connect

A heat-exchange radiator is connected to a fluid flow circuit by a connector which provides one member of an interengageable spigot and socket pair for push-fit, fluid-tight, engagement between the connector and the radiator, with latching formations at least one of which is resilient. Preferably the connector carries the spigot which tapers and engages with a socket of corresponding shape, the spigot carrying an O-ring seal and either latching fingers or a resilient latching circlip.

Webster, D. M.

1985-07-30T23:59:59.000Z

112

RADIATION EFFECTS ON EPOXY/CARBON FIBER COMPOSITE  

SciTech Connect

The Department of Energy Savannah River Site vitrifies nuclear waste incident to defense programs through its Defense Waste Processing Facility (DWPF). The piping in the DWPF seal pot jumper configuration must withstand the stresses during an unlikely but potential deflagration event, and maintain its safety function for a 20-year service life. Carbon fiber-reinforced epoxy composites (CFR) were proposed for protection and reinforcement of piping during such an event. The proposed CFR materials have been ASME-approved (Section XI, Code Case N-589-1) for post-construction maintenance and is DOT-compliant per 49CFR 192 and 195. The proposed carbon fiber/epoxy composite reinforcement system was originally developed for pipeline rehabilitation and post-construction maintenance in petrochemical, refineries, DOT applications and other industries. The effects of ionizing radiation on polymers and organic materials have been studied for many years. The majority of available data are based on traditional exposures to gamma irradiation at high dose rates ({approx}10,000 Gy/hr) allowing high total dose within reasonable test periods and general comparison of different materials exposed at such conditions. However, studies in recent years have shown that degradation of many polymers are sensitive to dose rate, with more severe degradation often observed at similar or even lower total doses when exposed to lower dose rates. This behavior has been primarily attributed to diffusion-limited oxidation which is minimized during very high dose rate exposures. Most test standards for accelerated aging and nuclear qualification of components acknowledge these limitations. The results of testing to determine the radiation resistance and microstructural effects of gamma irradiation exposure on a bisphenol-A based epoxy matrix composite reinforced with carbon fibers are presented. This work provides a foundation for a more extensive evaluation of dose rate effects on advanced epoxy reinforced composites.

Hoffman, E; Eric Skidmore, E

2008-12-12T23:59:59.000Z

113

Oxide Multilayer Thermal Radiation Energy Reflection EBCs: Effect ...  

Science Conference Proceedings (OSTI)

Environmental barrier coatings (EBCs) with thermal radiation energy reflection have been developed recently. The EBCs utilize interaction between ...

114

DUCRETE Shielding: A Cost Effective Alternative Radiation Shield  

NLE Websites -- All DOE Office Websites (Extended Search)

Summary Submitted to Spectrum 2000, Sept 24-28, 2000, Chattanooga, TN Summary Submitted to Spectrum 2000, Sept 24-28, 2000, Chattanooga, TN DUCRETE: A Cost Effective Radiation Shielding Material W. J. Quapp, Starmet CMI W. H. Miller, University of Missouri-Columbia James Taylor, Starmet CMI Colin Hundley, Starmet CMI Nancy Levoy, Starmet Corporation 1. INTRODUCTION A consequence of uranium enrichment in the US has been the accumulation of nearly 740,000 metric tons of depleted uranium hexafluoride (UF 6 ) tails. 1 While this material was once considered a feed stock for the United States Breeder Reactor Program, it is no longer needed. Alternative uses of depleted uranium are few. Some have been used for medical isotope transport casks, some for industrial radioactive source shields, some for military anti-tank

115

Effects of stratospheric perturbations on the solar radiation budget  

DOE Green Energy (OSTI)

The changes in solar absorption and in local heating rates due to perturbations to O/sub 3/ and NO/sub 2/ concentrations caused by stratospheric injection of NO/sub x/ and CFM pollutants are assessed. The changes in species concentration profiles are derived from theoretical calculations using a transport-kinetics model. Because of significant changes in our understanding of stratospheric chemistry during the past year, the assessment of the effect of stratospheric perturbations on the solar radiation budget differs from previous assessments. Previously, a reduction in O/sub 3/ due to an NO/sub x/ injection caused a net decrease in the gaseous solar absorption;now the same perturbation leads to a net increase. The implication of these changes on the surface temperature is also discussed.

Luther, F.M.

1978-04-01T23:59:59.000Z

116

Effects of radiation exposure on SRL 131 composition glass in a steam environment  

Science Conference Proceedings (OSTI)

Monoliths of SRL 131 borosilicate glass were irradiated in a saturated air-steam environment, at temperatures of 150{degree}C, to examine the effects of radiation on nuclear waste glass behavior. Half of the tests used actinide and Tc-99 doped glass and were exposed to an external ionizing gamma source, while the remaining glass samples were doped only with uranium and were reacted without any external radiation exposure. The effects of radiation exposure on glass alteration and secondary phase formation were determined by comparing the reaction rates and mineral paragenesis of the two sets of samples. All glass samples readily reacted with the water that condensed on their surfaces, producing a smectite clay layer within the first three days of testing. Additional crystalline phases precipitated on the altered glass surface with increasing reaction times, including zeolites, smectite, calcium and sodium silicates, phosphates, evaporitic salts, and uranyl silicates. Similar phases were produced on both the nonirradiated and irradiated samples; however, the quantity of precipitates was increased and the rate of paragenetic sequence development was accelerated in the latter. After 56 days of testing, the smectite layer developed at an average rate of {approximately}0.16 and 0.63 {mu}m/day for the nonirradiated and irradiated samples, respectively. These comparisons indicate that layer development is accelerated approximately four-fold due to the radiation exposure at high glass surface area/liquid volume (SA/V) conditions. This increase apparently occurs in response to the rapid concentration of radiolytic products, including nitric acid, in the thin films of water contacting the sample monoliths.

Wronkiewicz, D.J.; Bradley, C.R.; Bates, J.K. [Argonne National Lab., IL (United States); Wang, L.M. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Geology

1993-11-01T23:59:59.000Z

117

Activities of the National Academy of Sciences in relation to the Radiation Effects Research Foundation  

SciTech Connect

This progress report relates progress in the various research projects evaluating the late health effects, both somatic and genetic, resulting from radiation exposure of the survivors of the atomic bombs at Hiroshima and Nagasaki, Japan. Considerable progress has been made in the collection and utilization of the various epidemiological data bases. These include the Life Span Study, (LSS) cohort, the Adult Health Study (AHS) cohort, the In Utero cohort, the leukemia registry and the F-1 Study population. Important progress has been made in using RERF Tumor and Tissue Registry records for evaluation of cancer incidence and radiation risk estimates for comparison with cancer mortality and risk in the LSS cohort. At the present time, a manuscript on the incidence of solid tumors (1950-1987) is undergoing internal and external review for publication as an RERF Technical report (TR) and for publication in a peer-reviewed scientific journal. In addition, manuscripts are in preparation on (1) a comprehensive report on the incidence of hematological cancers, including analysis of leukemia by cell type (1950-1987), (2) a general description of Tumor Registry operations and (3) a comparison of incidence- and mortality-based estimates of radiation risk in the LSS cohort.

Edington, C.W.

1992-06-01T23:59:59.000Z

118

Investigation of non-targeted effects of low dose ionizing radiation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Investigation of non-targeted effects of low dose ionizing radiation on the mammary gland utilizing three-dimensional culture models of mammary cells derived from mouse strains...

119

Investigating the Effects of Radiation on Phosphonium-Based Ionic Liquids.  

E-Print Network (OSTI)

??This thesis presents work on the understanding of the effects of ionizing radiation on phosphonium-based ionic liquids (ILs). The capability of ILs to dissolve a… (more)

Howett, Susan

2013-01-01T23:59:59.000Z

120

Radiation protection at CERN  

E-Print Network (OSTI)

This paper gives a brief overview of the general principles of radiation protection legislation; explains radiological quantities and units, including some basic facts about radioactivity and the biological effects of radiation; and gives an overview of the classification of radiological areas at CERN, radiation fields at high-energy accelerators, and the radiation monitoring system used at CERN. A short section addresses the ALARA approach used at CERN.

Forkel-Wirth, Doris; Silari, Marco; Streit-Bianchi, Marilena; Theis, Christian; Vincke, Heinz; Vincke, Helmut

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "including radiation effects" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Atomistic Methods for the Investigation of Radiation Effects  

Science Conference Proceedings (OSTI)

The results will illustrate those aspects of radiation damage production that are unique to iron as well as those that are more generic. A comparison between the  ...

122

Health effects models for nuclear power plant accident consequence analysis: Low LET radiation  

SciTech Connect

This report describes dose-response models intended to be used in estimating the radiological health effects of nuclear power plant accidents. Models of early and continuing effects, cancers and thyroid nodules, and genetic effects are provided. Weibull dose-response functions are recommended for evaluating the risks of early and continuing health effects. Three potentially lethal early effects -- the hematopoietic, pulmonary, and gastrointestinal syndromes -- are considered. In addition, models are included for assessing the risks of several nonlethal early and continuing effects -- including prodromal vomiting and diarrhea, hypothyroidism and radiation thyroiditis, skin burns, reproductive effects, and pregnancy losses. Linear and linear-quadratic models are recommended for estimating cancer risks. Parameters are given for analyzing the risks of seven types of cancer in adults -- leukemia, bone, lung, breast, gastrointestinal, thyroid, and other.'' The category, other'' cancers, is intended to reflect the combined risks of multiple myeloma, lymphoma, and cancers of the bladder, kidney, brain, ovary, uterus and cervix. Models of childhood cancers due to in utero exposure are also developed. For most cancers, both incidence and mortality are addressed. The models of cancer risk are derived largely from information summarized in BEIR III -- with some adjustment to reflect more recent studies. 64 refs., 18 figs., 46 tabs.

Evans, J.S. (Harvard Univ., Boston, MA (USA). School of Public Health)

1990-01-01T23:59:59.000Z

123

The Effect of Directional Radiation Models on the Interpretation of Earth Radiation Budget Measurements  

Science Conference Proceedings (OSTI)

A parameter estimation technique is presented to estimate the radiative flux density distribution over the earn from a set of radiometer measurements at satellite altitude. The technique analyzes measurements from a wide field of view, horizon to ...

Richard N. Green

1980-10-01T23:59:59.000Z

124

Cobalt-60 simulation of LOCA (loss of coolant accident) radiation effects  

Science Conference Proceedings (OSTI)

The consequences of simulating nuclear reactor loss of coolant accident (LOCA) radiation effects with Cobalt-60 gamma ray irradiators have been investigated. Based on radiation induced damage in polymer base materials, it was demonstrated that electron/photon induced radiation damage could be related on the basis of average absorbed radiation dose. This result was used to estimate the relative effectiveness of the mixed beta/gamma LOCA and Cobalt-60 radiation environments to damage both bare and jacketed polymer base electrical insulation materials. From the results obtained, it is concluded that present simulation techniques are a conservative method for simulating LOCA radiation effects and that the practices have probably substantially overstressed both bare and jacketed materials during qualification testing. 9 refs., 8 figs., 5 tabs.

Buckalew, W.H.

1989-07-01T23:59:59.000Z

125

[Treatment of cloud radiative effects in general circulation models  

SciTech Connect

This is a renewal proposal for an on-going project of the Department of Energy (DOE)/Atmospheric Radiation Measurement (ARM) Program. The objective of the ARM Program is to improve the treatment of radiation-cloud in GCMs so that reliable predictions of the timing and magnitude of greenhouse gas-induced global warming and regional responses can be made. The ARM Program supports two research areas: (I) The modeling and analysis of data related to the parameterization of clouds and radiation in general circulation models (GCMs); and (II) the development of advanced instrumentation for both mapping the three-dimensional structure of the atmosphere and high accuracy/precision radiometric observations. The present project conducts research in area (I) and focuses on GCM treatment of cloud life cycle, optical properties, and vertical overlapping. The project has two tasks: (1) Development and Refinement of GCM Radiation-Cloud Treatment Using ARM Data; and (2) Validation of GCM Radiation-Cloud Treatment.

Wang, W.C.

1993-11-01T23:59:59.000Z

126

Overview of fiber radiation effects testing at the Los Alamos National Laboratory  

SciTech Connect

Fiber optics offer potential benefits in diagnostic measurements associated with nuclear testing. Such applications require that optical fibers be located in close proximity to a nuclear test and provide a reliable data transmission path during exposure to intense radiation. The Los Alamos effort has thus concentrated on measurement and understanding of radiation effects in optical fibers at very short times (< 100 ns) after (and during) irradiation. This is in contrast to most other studies that concentrate on times of interest in military, nuclear power, or standard telecommunication applications (1 ms to years). The Los Alamos program has included laboratory tests with intense electron pulse facilities (Febetron 705 and 706) and a fast pulsed electron linac (located at EG and G, Inc. in Santa Barbara, California). In addition, several measurements have been conducted on nuclear tests and some of that data has been released in unclassified publications. This program has used fibers for many data transmission applications. Fibers have also been used as signal transducers by utilizing radiation-to-light conversion processes within the fiber. Past, present, and future activities in this program are discussed.

Lyons, P.B.

1983-01-01T23:59:59.000Z

127

Effect of distance to radiation treatment facility on use of radiation therapy after mastectomy in elderly women  

Science Conference Proceedings (OSTI)

Purpose: We sought to study the effect of distance to the nearest radiation treatment facility on the use of postmastectomy radiation therapy (PMRT) in elderly women. Methods and Materials: Using data from the linked Surveillance, Epidemiology, and End Results-Medicare (SEER-Medicare) database, we analyzed 19,787 women with Stage I or II breast cancer who received mastectomy as definitive surgery during 1991 to 1999. Multivariable logistic regression was used to investigate the association of distance with receipt of PMRT after adjusting for clinical and sociodemographic factors. Results: Overall 2,075 patients (10.5%) treated with mastectomy received PMRT. In addition to cancer and patient characteristics, in our primary analysis, increasing distance to the nearest radiation treatment facility was independently associated with a decreased likelihood of receiving PMRT (OR 0.996 per additional mile, p = 0.01). Secondary analyses revealed that the decline in PMRT use appeared at distances of more than 25 miles and was statistically significant for those patients living more than 75 miles from the nearest radiation facility (odds of receiving PMRT of 0.58 [95% CI 0.34-0.99] vs. living within 25 miles of such a facility). The effect of distance on PMRT appeared to be more pronounced with increasing patient age (>75 years). Variation in the effect of distance on radiation use between regions of the country and nodal status was also identified. Conclusions: Oncologists must be cognizant of the potential barrier to quality care that is posed by travel distance, especially for elderly patients; and policy makers should consider this fact in resource allocation decisions about radiation treatment centers.

Punglia, Rinaa S. [Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA (United States)]. E-mail: rpunglia@lroc.harvard.edu; Weeks, Jane C. [Division of Medical Oncology, Center for Outcomes and Policy Research, Dana-Farber Cancer Institute, Boston, MA (United States); Neville, Bridget A. [Division of Medical Oncology, Center for Outcomes and Policy Research, Dana-Farber Cancer Institute, Boston, MA (United States); Earle, Craig C. [Division of Medical Oncology, Center for Outcomes and Policy Research, Dana-Farber Cancer Institute, Boston, MA (United States)

2006-09-01T23:59:59.000Z

128

THE EFFECT OF RADIATION ON THE CORROSION OF METALS BY WATER. (Problem No. 322 MLC 2213)  

SciTech Connect

Long-time tests have been made on the effect of various types of radiation on the corrosion of 2S aluminum in simulated W water. In no case was any acceleration of corrosion by the radiation observed; the effect of radiation, if any, appeared to be a protective one. Deuteron irradiation did accelerate the corrosion of mild steel at low flow rates in hot water of pH 6 to 7, but no appreciable effect was observed with copper, stainless steel, or tuballoy. The general theory of the effect of radiation on corrosion is discussed, with the conclusion that no acceleration of corrosion by radiation is to be expected in most cases of practical interest. (auth)

Allen, A.O.; Bowman, M.C.; Goldowski, N.; Larson, R.G.; Treiman, L.

1944-07-06T23:59:59.000Z

129

Radiative Cooling Effects within and above the Nocturnal Boundary Layer  

Science Conference Proceedings (OSTI)

For representative tropospheric profiles of water vapor, CO2 and temperature we have calculated in situ longwave radiative flux divergence for use in a simplified second-order closure model of nocturnal boundary-layer evolution. The time ...

J. R. Garratt; R. A. Brost

1981-12-01T23:59:59.000Z

130

Radiation Effects in Ceramic Oxide and Novel LWR Fuels  

Science Conference Proceedings (OSTI)

Jul 31, 2011 ... TMS/ASM: Nuclear Materials Committee ... of radiation response of nuclear fuel through experiment, theory and computational multi-scale modeling. ... test reactors and commercial nuclear power reactors are all of interest.

131

Research Programs on Low-Level Radiation Health Effects Supported by FEPCO  

SciTech Connect

The federation of Electric Power Companies (FEPCO) of Japan has been supporting several research projects on low-level radiation health effects for the purpose of the following: 1. to assist in the establishment of a reasonable system of radiation protection; 2. to release the public from unnecessary fear of ionizing radiation. We present some of the findings and current research programs funded or supported by FEPCO.

Kaneko, Masahito

1999-06-06T23:59:59.000Z

132

Accuracy of Humidity Measurement on Ships: Consideration of Solar Radiation Effects  

Science Conference Proceedings (OSTI)

The effect of heating due to solar radiation on measurements of humidity obtained from ships is examined. Variations in wet- and dry-bulb temperature measured on each side of a research ship are shown to correlate with solar radiation. However, ...

Elizabeth C. Kent; Peter K. Taylor

1996-12-01T23:59:59.000Z

133

Topographic Effects on the Surface Radiation Balance in and around Arizona’s Meteor Crater  

Science Conference Proceedings (OSTI)

The individual components of the slope-parallel surface radiation balance were measured in and around Arizona’s Meteor Crater to investigate the effects of topography on the radiation balance. The crater basin has a diameter of 1.2 km and a depth ...

Sebastian W. Hoch; C. David Whiteman

2010-06-01T23:59:59.000Z

134

Longwave Band-By-Band Cloud Radiative Effect and Its Application in GCM Evaluation  

Science Conference Proceedings (OSTI)

The cloud radiative effect (CRE) of each longwave (LW) absorption band of a GCM’s radiation code is uniquely valuable for GCM evaluation because 1) comparing band-by-band CRE avoids the compensating biases in the broadband CRE comparison and 2) ...

Xianglei Huang; Jason N. S. Cole; Fei He; Gerald L. Potter; Lazaros Oreopoulos; Dongmin Lee; Max Suarez; Norman G. Loeb

2013-01-01T23:59:59.000Z

135

Propagation of femtosecond terawatt laser pulses in N{sub 2} gas including higher-order Kerr effects  

Science Conference Proceedings (OSTI)

Propagation characteristic of femtosecond terawatt laser pulses in N{sub 2} gas with higher-order Kerr effect (HOKE) is investigated. Theoretical analysis shows that HOKE acting as Hamiltonian perturbation can destroy the coherent structure of a laser field and result in the appearance of incoherent patterns. Numerical simulations show that in this case two different types of complex structures can appear. It is found that the high-order focusing terms in HOKE can cause continuous phase shift and off-axis evolution of the laser fields when irregular homoclinic orbit crossings of the field in phase space take place. As the laser propagates, small-scale spatial structures rapidly appear and the evolution of the laser field becomes chaotic. The two complex patterns can switch between each other quasi-periodically. Numerical results show that the two complex patterns are associated with the stochastic evolution of the energy contained in the higher-order shorter-wavelength Fourier modes. Such complex patterns, associated with small-scale filaments, may be typical for laser propagation in a HOKE medium.

Huang, T. W. [HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100871 (China); Zhou, C. T.; He, X. T. [HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100871 (China); Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China)

2012-12-15T23:59:59.000Z

136

Omega-3 Oils: Applications in Functional FoodsChapter 3 Fish Sources of Various Lipids Including n-3 Polyunsaturated Fatty Acids and Their Dietary Effects  

Science Conference Proceedings (OSTI)

Omega-3 Oils: Applications in Functional Foods Chapter 3 Fish Sources of Various Lipids Including n-3 Polyunsaturated Fatty Acids and Their Dietary Effects Health Nutrition Biochemistry eChapters Health - Nutrition - Biochemistry 448930

137

Microsoft PowerPoint - htalk324_radiation_effects09aug051.ppt  

National Nuclear Security Administration (NNSA)

Electrical Effects of Ionizing Electrical Effects of Ionizing Radiation on Insulating Materials Harold P. Hjalmarson, Rudolph E. Magyar and Kenneth E. Kambour Sandia National Laboratories Albuquerque, NM 87185 AMS Conference August 24-28, 2009 Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. 2 Radiation Effects: Evolution from Atomistic to Continuum Phenomena Time-Dependent Density Functional Theory (TDDFT): Rudy Magyar Two-Temperature Molecular Dynamics (MD): Paul Crozier Radiation Effects in Oxides and Semiconductors (REOS): HPH 3 Outline * Overview * Radiation Effects - Electronic cooling (TDDFT & REOS) - Atomic Rearrangement (MD & REOS)

138

Effects of low-dose radiation on immune cell function using genetic and  

NLE Websites -- All DOE Office Websites (Extended Search)

low-dose radiation on immune cell function using genetic and low-dose radiation on immune cell function using genetic and metabolomics approaches Henghong Li Georgetown University Abstract The objectives of this study are to investigate acute and persistent effects of ionizing radiation and space radiation on immune cell subsets and function. The role(s) for p38 MAP kinase in such radiation responses is being investigated using a genetic approach where an engineered mouse line has had one wt p38α gene replaced with a dominantnegative mutant (p38α+/DN). T cells are one of the most radiosensitive cell types in vivo, and radiation is known to impact CD4 T cell function long term. T cells are normally activated by antigen, which triggers differentiation to specific subsets involving various cytokines. In addition, T cells have a

139

Surface effects on the radiation response of nanoporous Au foams  

Science Conference Proceedings (OSTI)

We report on an experimental and simulation campaign aimed at exploring the radiation response of nanoporous Au (np-Au) foams. We find different defect accumulation behavior by varying radiation dose-rate in ion-irradiated np-Au foams. Stacking fault tetrahedra are formed when np-Au foams are irradiated at high dose-rate, but they do not seem to be formed in np-Au at low dose-rate irradiation. A model is proposed to explain the dose-rate dependent defect accumulation based on these results.

Fu, E. G.; Caro, M.; Wang, Y. Q.; Baldwin, K.; Caro, A. [Materials Science in Radiation and Dynamics Extremes, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Zepeda-Ruiz, L. A. [Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Bringa, E. [CONICET and Instituto de Ciencias Basicas, Universidad Nacional de Cuyo, Mendoza 5500 (Argentina); Nastasi, M. [Nebraska Center for Energy Sciences Research, University of Nebraska-Lincoln, Lincoln, Nebraska 68508 (United States)

2012-11-05T23:59:59.000Z

140

BEIR-III report and the health effects of low-level radiation  

SciTech Connect

The present BEIR-III Committee has not highlighted any controversy over the health effects of low-level radiation. In its evaluation of the experimental data and epidemiological surveys, the Committee has carefully reviewed and assessed the value of all the available scientific evidence for estimating numerical risk coefficients for the health hazards to human populations exposed to low levels of ionizing radiation. Responsible public awareness of the possible health effects of ionizing radiations from medical and industrial radiation exposure, centers on three important matters of societal concern: (1) to place into perspective the extent of harm to the health of man and his descendants to be expected in the present and in the future from those societal activities involving ionizing radiation; (2) to develop quantitative indices of harm based on dose-effect relationships; such indices could then be used with prudent caution to introduce concepts of the regulation of population doses on the basis of somatic and genetic risks; and (3) to identify the magnitude and extent of radiation activities which could cause harm, to assess their relative significance, and to provide a framework for recommendations on how to reduce unnecessary radiation exposure to human populations. The main difference of the BEIR Committee Report is not so much from new data or new interpretations of existing data, but rather from a philosophical approach and appraisal of existing and future radiation protection resulting from an atmosphere of constantly changing societal conditions and public attitudes. (PCS)

Fabrikant, J.I.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "including radiation effects" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

An Indirect Effect of Ice Nuclei on Atmospheric Radiation  

Science Conference Proceedings (OSTI)

A three-dimensional cloud-resolving model (CRM) with observed large-scale forcing is used to study how ice nuclei (IN) affect the net radiative flux at the top of the atmosphere (TOA). In all the numerical experiments carried out, the cloud ice ...

Xiping Zeng; Wei-Kuo Tao; Minghua Zhang; Arthur Y. Hou; Shaocheng Xie; Stephen Lang; Xiaowen Li; David O’C. Starr; Xiaofan Li; Joanne Simpson

2009-01-01T23:59:59.000Z

142

Effects of Aerosols on the Radiative Properties of Clouds  

Science Conference Proceedings (OSTI)

The influence of anthropogenic aerosols, in the form of ship exhaust effluent, on the microphysics and radiative properties of marine stratocumulus is studied using data gathered from the U.K. Met. Office C-130 and the University of Washington C-...

Jonathan P. Taylor; Martin D. Glew; James A. Coakley Jr.; William R. Tahnk; Steven Platnick; Peter V. Hobbs; Ronald J. Ferek

2000-08-01T23:59:59.000Z

143

EFFECTS OF triIODOTHYRONINE IN ALTERING THE RESPONSE OF KIDNEYS TO COBALT- 60 RADIATION  

SciTech Connect

The fear of inducing radiation nephritis restricts the amount of radiation delivered to retroperitonieal tumors. If this radiation injury could be modified, the therapist would then be less fearful of possibly inducing this often fatal complication. Since triiodothyronine has proved beneficial in reducing radiation injury of the skin and subcutaneous tissues, the effects of this compound were elvaluated following production of radiation injuiy in rabbit kidneys. Surprisingly, triiodothyronine did not favorably alter the reaction, but made it worse. The reason for this variance with the effects previously reported in skin is not certain. Tissue specificity or difference in vascularity may be important factors. The irradiated skin of the triiodothyroninetreated animals showed slightly less histologic alteration than the irradiated skin of the control animals. This tends to confirm the work of Glicksman and associates. (auth)

Caldwell, W.L.; Thomassen, R.W.; Bosch, A.

1963-10-01T23:59:59.000Z

144

Propagation of CO2 Laser Radiation Through lce Clouds: Microphysical Effects  

Science Conference Proceedings (OSTI)

Preliminary investigation of the effects of irradiating artificial ice crystals with 10.6 ?m CO2, laser radiation reveals that laser beam-ice crystal interactions can be quite disruptive to ice cloud content under some conditions. The responsible ...

Kenneth Sassen; Mike Griffin

1981-07-01T23:59:59.000Z

145

Transport, Radiative, and Dynamical Effects of the Antarctic Ozone Hole: A GFDL “SKYHI” Model Experiment  

Science Conference Proceedings (OSTI)

The GFDL “SKYHI” general circulation model has been used to simulate the effect of the Antarctic “ozone hole” phenomenon on the radiative and dynamical environment of the lower stratosphere. Both the polar ozone destruction and photochemical ...

J. D. Mahlman; L. J. Umscheid; J. P. Pinto

1994-02-01T23:59:59.000Z

146

Radiation and Strain Effects in Silicon-Germanium Bipolar Complementary Metal Oxide Semiconductor Technology .  

E-Print Network (OSTI)

??This work examines the effects of radiation and strain on silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) BiCMOS technology. First, aspects of the various SiGe HBT… (more)

Haugerud, Becca Mary

2005-01-01T23:59:59.000Z

147

Global, Seasonal Cloud Variations from Satellite Radiance Measurements. Part II. Cloud Properties and Radiative Effects  

Science Conference Proceedings (OSTI)

Global, daily, visible and infrared radiance measurements from the NOAA-5 Scanning Radiometer (SR) are analyzed for the months of January, April, July and October 1977 to infer cloud and surface radiative properties and their effects on the Earth ...

William B. Rossow; Andrew A. Lacis

1990-11-01T23:59:59.000Z

148

GCM Aerosol Radiative Effects Using Geographically Varying Aerosol Sizes Deduced from AERONET Measurements  

Science Conference Proceedings (OSTI)

Aerosol optical properties, and hence the direct radiative effects, are largely determined by the assumed aerosol size distribution. In order to relax the fixed aerosol size constraint commonly used in general circulation models (GCMs), ...

Glen Lesins; Ulrike Lohmann

2003-11-01T23:59:59.000Z

149

Experimental methodology for non-thermal effects of electromagnetic radiation on biologics  

E-Print Network (OSTI)

Appropriate equipment is needed for research on the effects of radio-frequency radiation from radio-frequency identification (RF-ID) systems on biological materials. In the present study, a complete test system comprising ...

Cox, Felicia C. A. I

2006-01-01T23:59:59.000Z

150

Radiative Properties of Boundary Layer Clouds: Droplet Effective Radius versus Number Concentration  

Science Conference Proceedings (OSTI)

The plane-parallel model for the parameterization of clouds in global climate models is examined in order to estimate the effects of the vertical profile of the microphysical parameters on radiative transfer calculations for extended boundary ...

Jean-Louis Brenguier; Hanna Pawlowska; Lothar Schüller; Rene Preusker; Jürgen Fischer; Yves Fouquart

2000-03-01T23:59:59.000Z

151

Multiyear Statistics of 2D Shortwave Radiative Effects at Three ARM Sites  

Science Conference Proceedings (OSTI)

This study examines the importance of horizontal photon transport effects, which are not considered in the 1D calculations of solar radiative heating used by most atmospheric dynamical models. In particular, the paper analyzes the difference ...

Tamás Várnai

2010-11-01T23:59:59.000Z

152

Support of Activities of the NAS in Relation to the Radiation Effects Research Foundation  

Science Conference Proceedings (OSTI)

The National Academies (NA) provides support for the activities related to the long-term follow up of the health of the survivors of the atomic bombings of Hiroshima and Nagasaki being conducted by the Radiation Effects Research Foundation (RERF) laboratories in Hiroshima and Nagasaki, Japan. The NA serves as scientific and administrative liaison between the U.S. Department of Energy (DOE) and RERF, and performs tasks in the areas of scientific oversight, information/public interface, fiscal oversight, and personnel management. The project includes recruitment and support of approximately 10 NA employees who work at RERF in Japan. Specific activities are performed consistent with the cooperative agreement’s Statement of Work between DOE and NA and consistent with an Annual Work Plan developed by DOE and NA.

Douple, Evan B.

2006-05-31T23:59:59.000Z

153

Alpha and gamma radiation effects on air-water systems at high gas/liquid ratios  

SciTech Connect

Radiolysis tests were conducted on air-water systems to examine the effects of radiation on liquid phase chemistry under high gas/liquid volume (G/L) ratios that are characteristic of an unsaturated nuclear waste repository setting. Test parameters included temperatures of 25, 90, and 200{degrees}C; gamma vs. alpha radiation; dose rates of {approximately}3500 and 50,000 rad/h; and G/L ratios of 10 and 100. Formate, oxalate, and total organic carbon contents increased during irradiation of the air-water systems in gamma and alpha tests at low-dose rate ({approximately}3500 rad/h). Increases in organic components were not observed for tests run at 200{degrees}C or high-dose rates (50,000 rad/h). In the tests where increases in organics occurred, the formate and oxalate were preferentially enriched in solutions that were rinsed from the test vessel walls. Nitrate (NO{sub 3}{sup {minus}}) is the dominant anion produced during the radiolysis reactions. Significant nitrite (NO{sub 2}{sup {minus}}) also occurs in some high-dose rate tests, with the reduced form of nitrogen possibly resulting from reactions with the test vessels. These results indicate that nitrogen acids are being produced and concentrated in the limited quantities of solution present in the tests. Nitrate + nitrite production varied inversely with temperature, with the lowest quantities being detected for the higher temperature tests. The G(NO{sub 3}{sup {minus}} + NO{sub 2}{sup {minus}}) values for the 25, 90, and 200{degrees}C experiments with gamma radiation are 3.2 {+-} 0.7, 1.3 {+-} 1.0, and 0.4 {+-} 0.3, respectively. Thus, the elevated temperatures expected early in the life of a repository may counteract pH decreases resulting from nitrogen acid production. Little variation was observed in G values as a function of dose rate or gas/liquid ratio.

Wronkiewicz, D.J.; Bates, J.K.

1993-08-01T23:59:59.000Z

154

Radiation Effects on Transport and Bubble Formation in Silicate Glasses  

DOE Green Energy (OSTI)

Using advanced magnetic resonance spectroscopies and small-cluster modeling, atomic structure of radiation-induced point defects in alkali borate, silicate, and borosilicate glasses is fully characterized. It is shown that in boron-containing glasses, most of these point defects are electrons/holes trapped by cation/anion vacancies, such as O1 - - O3 + valence-alternation pairs. In microscopically phase-separated borosilicate glasses, radiation-induced defects are found to cluster at the interface between the borate and silicate phases. Reaction and diffusion dynamics of defect-annealing interstitial hydrogen atoms in boron and silica oxide glasses are studied. The yield of radiolytic O2 is estimated. This oxygen is shown to be the final product of triplet exciton decay. Plausible mechanisms for the oxygen bubble formation are put forward. Two practical conclusions relevant for the EMSP mission are made: First, the yield of radiolytic oxygen is shown to be too low to interfere with the storage of vitrified radioactive waste in the first 10 Kyr. Second, microscopic phase separation is demonstrated to increase both the chemical and radiation stability of borosilicate glass.

Trifunac, A.D.; Shkrob, I.A.; Werst, D.W.

2001-12-31T23:59:59.000Z

155

Effects of gonadal irradiation in clinical radiation therapy: a review  

SciTech Connect

Recent improvements in radiation therapy of some malignancies in lower abdominal sites are leading to prolongation of life in persons of child-bearing age. These successes require an evaluation of the possible undesirable consequences of the unavoidable gonadal irradiation that occurs in these cases. A review of radiobiological data from experimental animal studies and retrospective clinical studies suggests that in most instances human gonadal exposures in both sexes are insufficient to cause permanent sterility, because the exposures are fractionated and the total gonadal dose is much less than 600 rads. As a consequence, return of fertility must be anticipated, and the worrisome questions of radiation-induced genetic damage in subsequent pregnancies must be addressed. This review did not substantiate this fear, because no case reports could be found of malformed infants among the progency of previously irradiated parents. Some experimental studies suggest that radiation-damaged spermatogonia are self-destructive, but any evidence for this phenomenon in the ovary is nonexistent. We suggest that the difference between fact and theory here may be the mathematical result of the interplay of low probability for occurrences and the few patients who until now have survived long enough for study. (auth)

Lushbaugh, C.C.; Casarett, G.W.

1976-02-01T23:59:59.000Z

156

Radiation Cataract  

NLE Websites -- All DOE Office Websites (Extended Search)

radiation including patients undergoing diagnostic CT scans or radiotherapy, atomic bomb survivors, residents of radioactively contaminated buildings, victims of the...

157

Estimating Three-Dimensional Cloudy Radiative Transfer Effects from Time-Height Cross Sections  

NLE Websites -- All DOE Office Websites (Extended Search)

Estimating Three-Dimensional Cloudy Radiative Transfer Estimating Three-Dimensional Cloudy Radiative Transfer Effects from Time-Height Cross Sections C. Hannay and R. Pincus National Oceanic and Atmospheric Administration Climate Diagnostics Center Boulder, Colorado K. F. Evans Program in Atmospheric and Oceanic Sciences University of Colorado Boulder, Colorado Introduction Clouds in the atmosphere are finite in extent and variable in every direction and in time. Long data sets from ground-based profilers, such as lidars or cloud radars, could provide a very valuable set of observations to characterize this variability. We may ask how well such profiling instruments can represent the cloud structure as measured by the magnitude of the three-dimensional (3D) radiative transfer effect. The 3D radiative transfer effect is the difference between the domain average broadband solar surface

158

The Effects of Radiation on Development of Prostate Cancer and Prostatic  

NLE Websites -- All DOE Office Websites (Extended Search)

Effects of Radiation on Development of Prostate Cancer and Prostatic Effects of Radiation on Development of Prostate Cancer and Prostatic Hyperplasia in Canine Model Gayle Woloschak Northwestern University Abstract Purpose/Objective(s): There have been few studies analyzing radiation-induced prostate cancer in humans or animals. Our research attempts to fill this void by determining the effects of cobalt-60 gamma radiation on the incidence of prostate cancer and prostatic hyperplasia in a large cohort of beagle dogs. Material/Methods: The subjects for the experiment were beagle dogs, which were chosen due to physiologic and anatomic similarities to humans (Thompson, 1989). We retrospectively analyzed data from historic irradiation experiments conducted at Argonne National Laboratory on 347 beagles. The cobalt-60 cohort consisted of 268 dogs, which received whole

159

Low Dose Radiation Program: Radiation Biology and the Radiation Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Biology and the Radiation Research Program Biology and the Radiation Research Program The Department of Energy (DOE) and its predecessor organizations, Energy Research and Development Agency (ERDA) and Atomic Energy Commission (AEC), always have been concerned about the health effects of ionizing radiation. Extensive research has been conducted under their sponsorship at all levels of biological organization from molecules to man. Over the past 60 years, studies using every type of radiation source have included exposure to both external radiation sources and to internally deposited radioactive materials. These exposures used different dose patterns and distributions delivered over a wide range of experimental times. This extensive research provided the basis for the new Low Dose Radiation Research Program, linking

160

Radiation Effects on the Cytoskeleton of Endothelial Cells and Endothelial Monolayer Permeability  

Science Conference Proceedings (OSTI)

Purpose: To investigate the effects of radiation on the endothelial cytoskeleton and endothelial monolayer permeability and to evaluate associated signaling pathways, which could reveal potential mechanisms of known vascular effects of radiation. Methods and Materials: Cultured endothelial cells were X-ray irradiated, and actin filaments, microtubules, intermediate filaments, and vascular endothelial (VE)-cadherin junctions were examined by immunofluorescence. Permeability was determined by the passage of fluorescent dextran through cell monolayers. Signal transduction pathways were analyzed using RhoA, Rho kinase, and stress-activated protein kinase-p38 (SAPK2/p38) inhibitors by guanosine triphosphate-RhoA activation assay and transfection with RhoAT19N. The levels of junction protein expression and phosphorylation of myosin light chain and SAPK2/p38 were assessed by Western blotting. The radiation effects on cell death were verified by clonogenic assays. Results: Radiation induced rapid and persistent actin stress fiber formation and redistribution of VE-cadherin junctions in microvascular, but not umbilical vein endothelial cells, and microtubules and intermediate filaments remained unaffected. Radiation also caused a rapid and persistent increase in microvascular permeability. RhoA-guanosine triphosphatase and Rho kinase were activated by radiation and caused phosphorylation of downstream myosin light chain and the observed cytoskeletal and permeability changes. SAPK2/p38 was activated by radiation but did not influence either the cytoskeleton or permeability. Conclusion: This study is the first to show rapid activation of the RhoA/Rho kinase by radiation in endothelial cells and has demonstrated a link between this pathway and cytoskeletal remodeling and permeability. The results also suggest that the RhoA pathway might be a useful target for modulating the permeability and other effects of radiation for therapeutic gain.

Gabrys, Dorota [Department of Radiation Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice (Poland); Greco, Olga [Cancer Research UK Tumour Microcirculation Group, Academic Unit of Surgical Oncology, University of Sheffield, School of Medicine and Biomedical Sciences, Sheffield (United Kingdom); Patel, Gaurang; Prise, Kevin M. [Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland (United Kingdom); Tozer, Gillian M. [Cancer Research UK Tumour Microcirculation Group, Academic Unit of Surgical Oncology, University of Sheffield, School of Medicine and Biomedical Sciences, Sheffield (United Kingdom); Kanthou, Chryso [Cancer Research UK Tumour Microcirculation Group, Academic Unit of Surgical Oncology, University of Sheffield, School of Medicine and Biomedical Sciences, Sheffield (United Kingdom)], E-mail: C.Kanthou@sheffield.ac.uk

2007-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "including radiation effects" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Radiation therapy of pediatric brain tumors : comparison of long-term health effects and costs between proton therapy and IMRT  

E-Print Network (OSTI)

Radiation therapy is an important component of pediatric brain tumor treatment. However, radiation-induced damage can lead to adverse long-term health effects. Proton therapy has the ability to reduce the dose delivered ...

Vu, An T. (An Thien)

2011-01-01T23:59:59.000Z

162

CRaTER: The Cosmic Ray Telescope for the Effects of Radiation Experiment on the Lunar Reconnaissance Orbiter Mission  

E-Print Network (OSTI)

The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaissance Orbiter (LRO) characterizes the radiation environment to be experienced by humans during future lunar missions. CRaTER measures the ...

Spence, H. E.

163

THE COMBINED EFFECT OF RADIATION AND CHEMICAL CARCINOGENS IN FEMALE A x IF MICE  

E-Print Network (OSTI)

Summary.-Groups of mice were exposed to various doses of ionizing radiation on one occasion. In two groups of animals the bladder carcinogens dibutylnitrosamine (DBNA) and 4-ethylsulphonyl-naphthalene-1-sulphonamide (ENS) were administered 48 hours after irradiation. Post mortem and histopathological examinations failed to show any significant lesion in the bladder of animals subjected to radiation per se. Furthermore, radiation did not influence the latent period or incidence of bladder tumours induced by DBNA and ENS. However, radiation shortened the latent period of mammary tumours and, in some groups, increased the incidence of such lesions. When radiation was combined with the chemical carcinogens there was a marked reduction in the incidence of mammary tumours. VARIOUS authors have shown that ionizing radiation, whether by accident or by intention, has been responsible for the induction of tumours (British Medical Bulletin, 1973). The present study was designed to examine firstly the acute and long-term effects of a single dose of ionizing radiation on the bladder and secondly the influence of radiation on the latent period and incidence of bladder tumours caused by two known bladder carcinogens, dibutylnitrosamine (DBNA) and 4-ethylsulphonylnaphthalene- 1- sulphonamide (ENS). DBNA has been reported to induce bladder tumours in the rat (Druckrey et al., 1962, 1964) and in the mouse

A. Flaks; J. M. Hamilton; D. B. Clayson; P. R. J. Burch

1973-01-01T23:59:59.000Z

164

Radioprotective Effect of Lidocaine on Function and Ultrastructure of Salivary Glands Receiving Fractionated Radiation  

Science Conference Proceedings (OSTI)

Purpose: Radiation-induced xerostomia still represents a common side effect after radiotherapy for head-and-neck malignancies. The aim of the present study was to examine the radioprotective effect of lidocaine hydrochloride during fractionated radiation in an experimental animal model. Methods and Materials: To evaluate the influence of different radiation doses on salivary gland function and the radioprotective effect of lidocaine, rabbits were irradiated with 15, 25, 30, and 35 Gy (equivalent doses in 2-Gy fractions equivalent to 24, 40, 48, and 56 Gy, respectively). Lidocaine hydrochloride (10 and 12 mg/kg) was administered before every radiation fraction in the treatment groups. Salivary gland function was assessed by flow sialometry and sialoscintigraphy, and the morphologic changes were evaluated using transmission electron microscopy. Results: Functional impairment was first observed after 35 Gy and pretreatment with lidocaine improved radiation tolerance of both parotid and submandibular glands. The use of 12 mg/kg lidocaine was superior and displayed significant radioprotection with regard to flow sialometry and sialoscintigraphy. The ultrastructure was largely preserved after pretreatment with both lidocaine doses. Conclusions: Lidocaine represents an effective radioprotective agent and a promising approach for clinical application to avoid radiation-induced functional impairment of salivary glands.

Hakim, Samer George, E-mail: samer.hakim@mkg-chir.mu-luebeck.de [Department of Oral and Maxillofacial Surgery, University of Luebeck, Luebeck (Germany); Benedek, Geza Attila [Department of Oral and Maxillofacial Surgery, University of Luebeck, Luebeck (Germany); Su Yuxiong [Department of Oral and Maxillofacial Surgery, University of Luebeck, Luebeck (Germany); Department of Oral and Maxillofacial Surgery, Sun Yat-Sen University, Guanghua School of Stomatology, Guanghua (China); Jacobsen, Hans Christian [Department of Oral and Maxillofacial Surgery, University of Luebeck, Luebeck (Germany); Klinger, Matthias [Institute of Anatomy, University of Luebeck, Luebeck (Germany); Dendorfer, Andreas [Institute of Experimental and Clinical Pharmacology and Toxicology, University of Luebeck, Luebeck (Germany); Hemmelmann, Claudia [Institute of Medical Biometry and Statistics, University of Luebeck, Luebeck (Germany); Meller, Birgit [Department of Radiology and Nuclear Medicine, University of Luebeck, Luebeck (Germany); Nadrowitz, Roger; Rades, Dirk [Department of Radiation Oncology, University of Luebeck, Luebeck (Germany); Sieg, Peter [Department of Oral and Maxillofacial Surgery, University of Luebeck, Luebeck (Germany)

2012-03-15T23:59:59.000Z

165

Failure Mode and Effect Analysis for Delivery of Lung Stereotactic Body Radiation Therapy  

SciTech Connect

Purpose: To improve the quality and safety of our practice of stereotactic body radiation therapy (SBRT), we analyzed the process following the failure mode and effects analysis (FMEA) method. Methods: The FMEA was performed by a multidisciplinary team. For each step in the SBRT delivery process, a potential failure occurrence was derived and three factors were assessed: the probability of each occurrence, the severity if the event occurs, and the probability of detection by the treatment team. A rank of 1 to 10 was assigned to each factor, and then the multiplied ranks yielded the relative risks (risk priority numbers). The failure modes with the highest risk priority numbers were then considered to implement process improvement measures. Results: A total of 28 occurrences were derived, of which nine events scored with significantly high risk priority numbers. The risk priority numbers of the highest ranked events ranged from 20 to 80. These included transcription errors of the stereotactic coordinates and machine failures. Conclusion: Several areas of our SBRT delivery were reconsidered in terms of process improvement, and safety measures, including treatment checklists and a surgical time-out, were added for our practice of gantry-based image-guided SBRT. This study serves as a guide for other users of SBRT to perform FMEA of their own practice.

Perks, Julian R., E-mail: julian.perks@ucdmc.ucdavis.edu [University of California Davis Medical Center, Sacramento, CA (United States); Stanic, Sinisa; Stern, Robin L.; Henk, Barbara; Nelson, Marsha S.; Harse, Rick D.; Mathai, Mathew; Purdy, James A.; Valicenti, Richard K.; Siefkin, Allan D.; Chen, Allen M. [University of California Davis Medical Center, Sacramento, CA (United States)

2012-07-15T23:59:59.000Z

166

Posters Treatment of Cloud Radiative Effects in General Circulation...  

NLE Websites -- All DOE Office Websites (Extended Search)

study the effects of cloudradiation- climate interaction on climate simulations. This report summarizes project progress from March 1993 to March 1994. During this period, four...

167

Total aerosol effect: forcing or radiative flux perturbation?  

E-Print Network (OSTI)

of the ?rst indirect aerosol effect, Atmos. Chem. Phys. , 5,Cloud susceptibility and the ?rst aerosol indirect forcing:to black carbon and aerosol concentrations, J. Geophys.

Lohmann, Ulrike

2010-01-01T23:59:59.000Z

168

Vertical distribution and radiative effects of mineral dust and biomass burning aerosol over West Africa during DABEX  

SciTech Connect

This paper presents measurements of the vertical distribution of aerosol extinction coefficient over West Africa, during the Dust and Biomass burning aerosol Experiment (DABEX) / African Monsoon Multidisciplinary Analysis dry season Special Observing period zero (AMMA-SOP0). In situ aircraft measurements from the UK FAAM aircraft are compared with two ground based lidars (POLIS and ARM MPL) and an airborne lidar on an ultra-light aircraft. In general mineral dust was observed at low altitudes (up to 2km) and a mixture of biomass burning aerosol and dust was observed at altitudes of 2-5km. The study exposes difficulties associated with spatial and temporal variability when inter-comparing aircraft and ground measurements. Averaging over many profiles provided a better means of assessing consistent errors and biases associated with in situ sampling instruments and retrievals of lidar ratios. Shortwave radiative transfer calculations and a 3-year simulation with the HadGEM2-A climate model show that the radiative effect of biomass burning aerosol is somewhat sensitive to the vertical distribution of aerosol. Results show a 15% increase in absorption of solar radiation by elevated biomass burning aerosol when the observed low-level dust layer is included as part of the background atmospheric state in the model. This illustrates that the radiative forcing of anthropogenic absorbing aerosol is sensitive to the treatment of other aerosol species and that care is needed in simulating natural aerosols assumed to exist in the pre-industrial, or natural state of the atmosphere.

Johnson, Ben; Heese, B.; McFarlane, Sally A.; Chazette, P.; Jones, A.; Bellouin, N.

2008-09-12T23:59:59.000Z

169

Radiation effects in MIT Lincoln Lab 3DIC technology  

E-Print Network (OSTI)

We characterized TID effects in MITLL 3DIC technology. We found that the effects were comparable for nFETs on the bottom tier with that on single tier wafers. Less positive charge build-up is observed for wide nFETs on the ...

Gouker, Pascale M.

170

Effect of Cloud Types on the Earth Radiation Budget Calculated with the ISCCP Cl Dataset: Methodology and Initial Results  

Science Conference Proceedings (OSTI)

A method is introduced to derive cloud effects on the earth radiation budget. The ISCCP Cl cloud data for daylight cases are used in combination with a radiative transfer model to estimate the outgoing broadband radiative fluxes at the top of the ...

C. Poetzsch-Heffter; Q. Liu; E. Ruperecht; C. Simmer

1995-04-01T23:59:59.000Z

171

Multi-mutational model for cancer based on age-time patterns of radiation effects: 2. Biological aspects  

SciTech Connect

Biological properties of relevance when modeling cancers induced in the atom bomb survivors include the wide distribution of the induced cancers across all organs, their biological indistinguishability from background cancers, their rates being proportional to background cancer rates, their rates steadily increasing over at least 50 years as the survivors age, and their radiation dose response being linear. We have successfully described this array of properties with a modified Armitage-Doll model using 5 to 6 somatic mutations, no intermediate growth, and the dose-related replacement of any one of these time-driven mutations by a radiation-induced mutation. Such a model is contrasted to prevailing models that use fewer mutations combined with intervening growth. While the rationale and effectiveness of our model is compelling for carcinogenesis in the atom bomb survivors, the lack of a promotional component may limit the generality of the model for other types of human carcinogenesis.

Mendelsohn, M.L.; Pierce, P.A.

1997-09-04T23:59:59.000Z

172

Humidity effects on calibrations of radiation therapy electrometers  

SciTech Connect

Purpose: To eliminate variation in electrometer calibration results caused by high humidity and suboptimal connectors on the standard capacitors and to implement hardware that prevents overloading of the input stage of electrometers during calibration. Methods: A humidity-controlled cabinet was installed to provide a low-humidity environment for the standard capacitors. All of the coaxial BNC connections were replaced with Triax (TRB) connectors with the exception of the output from the voltage source. A three-stage RC filter with cascaded RC low-pass sections was designed and tested. Results: The installation of the humidity cabinet resulted in a major improvement in the stability and reproducibility of the electrometer calibration system. For the three years since this upgrade, the Ionizing Radiation Standards (IRS) electrometer calibration results have been consistent regardless of the ambient relative humidity in the lab. The connector replacements improved grounding in the calibration circuit. The three-stage filter allows the voltage at the output to rise in an S-shaped waveform, resulting in a smooth rise of the current through the isolation resistor from zero and back again, with no abrupt transition. For the filter design chosen, 99.99% of the charge is delivered within 6 s. Conclusions: A three-way improvement to the calibration measurement system was successful in eliminating the observed variations, resulting in an electrometer calibration measurement system that is unaffected by humidity and allowing reliable year-round calibrations of any electrometer encountered since the implementation of these changes.

Downton, B.; Walker, S. [Ionizing Radiation Standards, National Research Council of Canada, Bldg. M35, Ottawa, Ontario K1A 0R6 (Canada)

2012-02-15T23:59:59.000Z

173

The contact-temperature ignition (CTI) criteria for propagating chemical reactions including the effect of moisture and application to Hanford waste  

SciTech Connect

To assure the continued absence of uncontrolled condensed-phase chemical reactions in connection with the Hanford waste materials, efforts have been underway including both theoretical and experimental investigations to clarify the requirements for such reactions. This document defines the differences and requirements for homogeneous runaway and propagating chemical reactions incuding a discussion of general contact-temperature ignition (CTI) condition for propagating reactions that include the effect of moisture. The CTI condition implies that the contact temperature or interface temperature between reacted and unreacted materials must exceed the ignition temperature and is compared to experimental data including both synthetic ferrocyanide and surrogate organic materials. In all cases, the occurrences of ignition accompanied by self-propagating reactions are consistent with the theoretical anticipations of the CTI condition.

Cash, R.J.

1995-09-27T23:59:59.000Z

174

Total aerosol effect: forcing or radiative flux perturbation?  

E-Print Network (OSTI)

heterogeneous ice nucleation in mixed-phase clouds, Environ.interactions with mixed-phase and ice clouds can be comparedice nuclei for the indirect aerosol effect on stratiform mixed-phase

Lohmann, Ulrike

2010-01-01T23:59:59.000Z

175

Low Dose Radiation Research Program: Slide Shows  

NLE Websites -- All DOE Office Websites (Extended Search)

Dose Health Effects of Radiation Health Effects of Radiation Adaptive Response to Low Dose Radiation PDF Background Radiation PDF Bystander Effects PDF Dirty Bombs PDF DNA Damage...

176

Radiative effects of a CO/sub 2/ increase: results of a model comparison  

SciTech Connect

A comparison of infrared radiative transfer models is announced. The initial phase is underway, with other phases scheduled through 1984. The results of the ir model comparison will be included in the state-of-the-art report on climate modeling. Although the time scale for completion of the comparison is a few years, significant preliminary results have already been obtained. (PSB)

Luther, F.M.

1982-10-07T23:59:59.000Z

177

Combined effects of atomic radiation and other agents in Hiroshima and Nagasaki and possible application of fuzzy theory  

Science Conference Proceedings (OSTI)

The survivors of atomic bombings and those who visited Hiroshima and Nagasaki immediately after the atomic bombing could have been subjected to many other possible noxious effects in addition to atomic radiation. Various toxic substances must have been ... Keywords: Hiroshima, Nagasaki, atomic bombing, dose-effects relationships, fuzzy relation, hybrid numbers, lethal dose, radiation effects

Yasushi Nishiwaki; Hiroshi Matsuoka

2002-05-01T23:59:59.000Z

178

The Effect of the Water Vapor and Carbon Dioxide on the Radiation Absorption and Temperature Profile in Troposphere.  

E-Print Network (OSTI)

??The work on this paper focus on the effect of the water vapor and carbon dioxide on the absorption of atmospheric radiation and the temperature… (more)

Li, Chieh

2013-01-01T23:59:59.000Z

179

The whitehouse effect: shortwave radiative forcing of climate by anthropogenic aerosols  

SciTech Connect

Increases in atmospheric concentrations of carbon dioxide and other infrared active gases over the industrial period are thought to have increased the average flux of longwave (thermal infrared) radiation between the surface of the earth and the lower atmosphere, leading to an increase in global mean temperature. Over the same period it is though that concentrations of aerosol particles in the troposphere have similarly increased as a consequence of industrial emissions and that these increased concentrations of particles have increased the earth`s reflectivity of shortwave (solar) radiation incident on the planet both directly, by scattering radiation, and indirectly, by increasing the reflectivity of clouds. The term ``whitehouse effect`` is introduced to refer to this increased scattering of shortwave radiation by analogy to the term ``greenhouse effect,`` which refers to the enhanced trapping of longwave radiation resulting from increased concentrations of infrared active gases. Each of these phenomena is referred to as a ``forcing`` of the earth`s climate, that is a secular change imposed on the system; such a forcing is to be distinguished from a ``response`` of the system, such as a change in global mean temperature or other index of global climate. The forcing due to the direct and indirect effects induced by anthropogenic aerosols has been estimated to be comparable in global- average magnitude to that due to increased concentrations of greenhouse gases, but it is of opposite direction, that is exerting a cooling influence. The shortwave radiative influence of anthropogenic aerosols may thus be considered to be offsetting some, perhaps a great fraction, of the longwave radiative influence of anthropogenic greenhouse gases.

Schwartz, S.E.

1994-12-31T23:59:59.000Z

180

Pretreatment Predictors of Adverse Radiation Effects After Radiosurgery for Arteriovenous Malformation  

SciTech Connect

Purpose: To identify vascular and dosimetric predictors of symptomatic T2 signal change and adverse radiation effects after radiosurgery for arteriovenous malformation, in order to define and validate preexisting risk models. Methods and Materials: A total of 125 patients with arteriovenous malformations (AVM) were treated at our institution between 2005 and 2009. Eighty-five patients have at least 12 months of clinical and radiological follow-up. Any new-onset headaches, new or worsening seizures, or neurological deficit were considered adverse events. Follow-up magnetic resonance images were assessed for new onset T2 signal change and the volume calculated. Pretreatment characteristics and dosimetric variables were analyzed to identify predictors of adverse radiation effects. Results: There were 19 children and 66 adults in the study cohort, with a mean age of 34 (range 6-74). Twenty-three (27%) patients suffered adverse radiation effects (ARE), 9 patients with permanent neurological deficit (10.6%). Of these, 5 developed fixed visual field deficits. Target volume and 12 Gy volume were the most significant predictors of adverse radiation effects on univariate analysis (p < 0.001). Location and cortical eloquence were not significantly associated with the development of adverse events (p = 0.12). No additional vascular parameters were identified as predictive of ARE. There was a significant target volume threshold of 4 cm{sup 3}, above which the rate of ARE increased dramatically. Multivariate analysis target volume and the absence of prior hemorrhage are the only significant predictors of ARE. The volume of T2 signal change correlates to ARE, but only target volume is predictive of a higher volume of T2 signal change. Conclusions: Target volume and the absence of prior hemorrhage is the most accurate predictor of adverse radiation effects and complications after radiosurgery for AVMs. A high percentage of permanent visual field defects in this series suggest the optic radiation is a critical radiosensitive structure.

Hayhurst, Caroline; Monsalves, Eric [Gamma Knife Unit, Division of Neurosurgery, University Health Network, Toronto (Canada); Prooijen, Monique van [Physics Department, Princess Margaret Hospital, Toronto (Canada); Cusimano, Michael [Division of Neurosurgery, St Michael's Hospital, Toronto (Canada); Tsao, May [Radiation Oncology Program, Sunnybrook Hospital, University of Toronto (Canada); Menard, Cynthia [Radiation Oncology Program, Princess Margaret Hospital, University of Toronto (Canada); Kulkarni, Abhaya V. [Division of Neurosurgery, Hospital for Sick Children, University of Toronto (Canada); Schwartz, Michael [Division of Neurosurgery, Sunnybrook Hospital, University of Toronto (Canada); Zadeh, Gelareh, E-mail: gelareh.zadeh@uhn.on.ca [Gamma Knife Unit, Division of Neurosurgery, University Health Network, Toronto (Canada)

2012-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "including radiation effects" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Radiation effects in beryllium used for plasma protection  

SciTech Connect

Beryllium is presently a leading candidate material for fusion reactor first wall coating and divertor applications. This paper reviews the literature on beryllium, emphasizing the effects of irradiation on essential properties. Swelling and embrittlement experiments as a function of irradiation temperature and dose, and as a function of neutron spectrum are described, and the results are quantified, where possible. Effects of impurity content are also reported, from which optimum composition specifications can be defined. Microstructural information has also been obtained to elucidate the processes controlling the property changes. The available information indicates that beryllium divertors can be expected to embrittle quickly and may need frequent replacement.

Gelles, D.S. [Pacific Northwest Lab., Richland, WA (United States); Dalle Donne, M. [Kernforschungszentrum Karlsruhe (Germany); Sernyaev, G.A. [SF NIKIET, Zarechnyi (Russian Federation); Kawamura, H. [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Blanket Irradiation and Analysis Lab.

1993-09-01T23:59:59.000Z

182

Types of Radiation Exposure  

NLE Websites -- All DOE Office Websites (Extended Search)

External Irradiation Contamination Incorporation Biological Effects of Acute, Total Body Irradiation Managing Radiation Emergencies Procedure Demonstration Types of radiation...

183

Investigation of non-targeted effects of low dose ionizing radiation on the mammary gland  

NLE Websites -- All DOE Office Websites (Extended Search)

non-targeted effects of low dose ionizing radiation on the mammary gland non-targeted effects of low dose ionizing radiation on the mammary gland utilizing three-dimensional culture models of mammary cells derived from mouse strains that differ in susceptibility to tumorigenesis Joni D. Mott, Antoine M. Snijders, Alvin Lo, Dinah Levy-Groesser, Bahram Parvin, Andrew J. Wyrobek, Jian-Hua Mao, and Mina J. Bissell Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley CA 94720 Goal: Within the Lawrence Berkeley National Laboratory's SFA, Project 2, our studies focus on utilizing three dimensional (3D) cell culture models as surrogates for in vivo studies to determine how low doses of ionizing radiation influence mammary gland tissue architecture and how this may relate both to tumor progression and/or adaptive response.

184

Developing a Methodology for Characterizing the Effects of Building Materials’ Natural Radiation Background on a Radiation Portal Monitoring System  

E-Print Network (OSTI)

Trafficking of radioactive material, particularly special nuclear material (SNM), has long been a worldwide concern. To interdict this material the US government has installed radiation portal monitors (RPMs) around the globe. Building materials surrounding an RPM can greatly effect the detector’s background radiation levels due to Naturally Occurring Radioactive Material (NORM). In some cases this effect is so great that the initial RPM setup had to be rebuilt. This thesis develops a methodology for quick and efficient determination of the specific activity and composition of building materials surrounding a RPM to predict background levels, therefore determining the minimum detectable quantity (MDQ) of material. This methodology builds on previous work by Ryan et al by generating material and source cards for a detailed Monte Carlo N-Particle (MCNP) deck, based on an experimental RPM setup to predict the overall gamma background at a site. Gamma spectra were acquired from samples of building materials and analyzed to determine the specific activity of the samples. A code was developed to estimate the elemental composition of building materials using the gamma transmission of the samples. These results were compared to previous Neutron Activation Analysis (NAA) on the same samples. It was determined that densitometry provided an elemental approximation within 5% of that found through NAA. Using the specific activity and material composition, an MCNP deck was used to predict the gamma background levels in the detectors of a typical RPM. These results were compared against actual measurements at the RPM site, and shown to be within 10% of each other.

Fitzmaurice, Matthew Blake 1988-

2012-12-01T23:59:59.000Z

185

Effects of solar ultraviolet radiation on photosynthesis of higher plants  

SciTech Connect

Rates of net photosynthesis were measured until 13 different crop species grown under an enhanced UV light regime simulating that which would occur in the event of a 50% atmospheric ozone depletion. Results indicated that a 50% reduction in ozone would dramatically reduce yields of some major crop species. The effects of UV on photosynthesis were also studied; it was found that UV inhibited photosynthesis. 100 references, 6 figures, 15 tables.

Thai, V.K.

1975-01-01T23:59:59.000Z

186

Radiation effects on resins and zeolites at Three Mile Island Unit II  

DOE Green Energy (OSTI)

Radiation effects on resin and zeolite used in the waste cleanup at Three Mile Island Unit II have been examined both experimentally and in-situ. Hydrogen and organic gases are generated due to absorbed radiation as a function of resin material, curie loading and residual water content. Significant oxygen scavaging was demonstrated in the organic resin liners. Hydrogen and oxygen gases in near stoichiometric quantities are generated from irradiation of residual water in inorganic zeolites. Gas generation was determined to be directly proportional to curie content but correlates poorly with residual water content in zeolite vessels. Results of the gas generation analyses of EPICOR II liners show that vessels with less than 166 curies had almost no hydrogen generated during two years of storage and therefore did not require safety measures for shipment or storage. Experimental measurements done at research laboratories predicted similar results associated with hydrogen gas generation and oxygen depletion. X-ray diffraction examinations and ion exchange capacity measurements indicated no evidence of irradiation effects on the structure or cesium exchange capacity for zeolites exposed to 10/sup 10/ rads. Darkening and damage of organic resin due to radiation has been identified. Breaking and agglomeration of the purification demineralizer resin is believed to be the result of temperature effects. No damage was identified from radiation effects on zeolite. Organic and inorganic sorbents used in the processing of contaminated waters at TMI-2 have been shown to be effective in maintaining long-term stability under high radiation conditions. The effects of radiolytic degradation have been shown by direct measurements and simulation tests and are of use in their general application throughout the industry.

Reilly, J.K.; Grant, P.J.; Quinn, G.J.; Hofstetter, K.J.

1984-01-01T23:59:59.000Z

187

Radiation Effects on Low-dimensional Carbon System  

E-Print Network (OSTI)

Ion irradiation has been known to be an effective tool for structure modification with micro/nano-scale precision. Recently, demonstrations have been made for nano-machining, such as the cutting and welding of carbon nanotubes. Understanding the fundamental effects of ion irradiation on carbon nanotubes is critical for advancing this technique as well as for scientific curiosity. Molecular dynamics modeling was performed to study irradiation stability, structural changes, and corresponding thermal properties. In our study, Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) was used to perform atomic scale simulation. In order to understand size and geometry effects on carbon damage creation, the threshold energy of displacement was calculated as a function of recoiling angles for both single-walled and multi-walled nanotubes. A strong directional dependence was found to exist in different shells of multi-walled carbon nanotubes. We found that carbon atoms on the innermost tube were more susceptible to be displaced toward the center of axis. The calculation matrix was further extended to nanotubes having different diameters for a full-scale understanding of the creation of defects. Besides studies on defects creation, thermal properties of carbon nanotubes were studied via a simplified model of the carbon nanotube network. Thermal conductivity, were found to be increased nearly one order of magnitude in carbon nanotube networks after irradiation and subsequent annealing. All the modeling results were compared with experimental observations either obtained from this project as a parallel study or from previous works, for the purpose of verification and validation. For experimental works, atomic scale characterization was performed by using transmission electron microscopy and the thermal conductivity measurement was characterized by using laser flash technique. Through a combination of modeling and experimentation, we proved that ion beam techniques can be used to enhance thermal conductivity in carbon nanotube bundles by inter-tube defects mediated phonon transport.

Wang, Jing

2013-08-01T23:59:59.000Z

188

PAPERS PREPARED FOR RADIATION EFFECTS REVIEW MEETING, CONGRESS HOTEL, CHICAGO, JULY 31-AUGUST 1, 1956  

SciTech Connect

Research in radiation effects on reactor materials is reviewed in ten papers presented by representatives of Oak Ridge National Laboratory, General Electric Company, knolls Atomic Power Laboratory, Dattelle Memorial Institute, Brookhaven Nationaal Laboratory, Argonne National Laboratory, Bettis Plant, and Atomic Power Development Associates. Separate abstracts have been prepared for each paper. (T.R.H.)

1956-08-01T23:59:59.000Z

189

Activities of the National Academy of Sciences in relation to the Radiation Effects Research Foundation  

Science Conference Proceedings (OSTI)

The activities of the National Academy of Sciences (NAS), in relation to the Radiation Effects Research Foundation (RERF), has a long history and the specific time period supported by this contract is but a small piece of the long-term continuing program. As a background, in August 1945, atomic bombs were dropped on Hiroshima (6 August) and Nagasaki (9 August). Shortly after the bombings, US medical teams joined forces with their Japanese counterparts to form a Joint Commission for the Investigation of the Effects of the Atomic Bombs. As a result of the Joint Commission's investigations, it was determined that consideration should be given to the establishment of a long-term study of the potential late health effects of exposure of the survivors to radiation from the bombs. The results obtained from RERF studies contribute the vast majority of information that provides a better understanding of radiation effects on humans. This information has been used extensively by national organizations and international committees for estimating risks associated with radiation exposures. The estimated risks developed by these independent organizations are used by government agencies around the world to establish standards for protection of individuals exposed in the occupational, medical, and general environment. Some of these results are described briefly in this report.

Edington, C.W.

1991-02-01T23:59:59.000Z

190

Carbonaceous Aerosols and Radiative Effects Study (CARES), g1-aircraft, sedlacek sp2  

DOE Data Explorer (OSTI)

The primary objective of the Carbonaceous Aerosol and Radiative Effects Study (CARES) in 2010 was to investigate the evolution of carbonaceous aerosols of different types and their optical and hygroscopic properties in central California, with a focus on the Sacramento urban plume.

Art Sedlacek

191

Carbonaceous Aerosols and Radiative Effects Study (CARES), g1-aircraft, sedlacek sp2  

Science Conference Proceedings (OSTI)

The primary objective of the Carbonaceous Aerosol and Radiative Effects Study (CARES) in 2010 was to investigate the evolution of carbonaceous aerosols of different types and their optical and hygroscopic properties in central California, with a focus on the Sacramento urban plume.

Art Sedlacek

2011-08-30T23:59:59.000Z

192

Experimental study of variations in background radiation and the effect on Nuclear Car Wash sensitivity  

Science Conference Proceedings (OSTI)

Error rates in a cargo screening system such as the Nuclear Car Wash [1-7] depend on the standard deviation of the background radiation count rate. Because the Nuclear Car Wash is an active interrogation technique, the radiation signal for fissile material must be detected above a background count rate consisting of cosmic, ambient, and neutron-activated radiations. It was suggested previously [1,6] that the Corresponding negative repercussions for the sensitivity of the system were shown. Therefore, to assure the most accurate estimation of the variation, experiments have been performed to quantify components of the actual variance in the background count rate, including variations in generator power, irradiation time, and container contents. The background variance is determined by these experiments to be a factor of 2 smaller than values assumed in previous analyses, resulting in substantially improved projections of system performance for the Nuclear Car Wash.

Church, J; Slaughter, D; Norman, E; Asztalos, S; Biltoft, P

2007-02-07T23:59:59.000Z

193

Radiation: Radiation Control (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

It is the policy of the state to encourage the constructive uses of radiation and to control its harmful effects. This section contains regulations pertaining to the manufacture, use,...

194

Integrated Experimental and Computational Approach to Understand the Effects of Heavy Ion Radiation on Skin Homeostasis.  

SciTech Connect

The effects of low dose high linear energy transfer (LET) radiation on human health are of concern for both space and clinical exposures. As epidemiological data for such radiation exposures are scarce for making relevant predictions, we need to understand the mechanism of response especially in normal tissues. Our objective here is to understand the effects of heavy ion radiation on tissue homeostasis in a realistic model system. Towards this end, we exposed an in vitro three dimensional skin equivalent to low fluences of Neon (Ne) ions (300 MeV/u), and determined the differentiation profile as a function of time following exposure using immunohistochemistry. We found that Ne ion exposures resulted in transient increases in the tissue regions expressing the differentiation markers keratin 10, and filaggrin, and more subtle time-dependent effects on the number of basal cells in the epidermis. We analyzed the data using a mathematical model of the skin equivalent, to quantify the effect of radiation on cell proliferation and differentiation. The agent-based mathematical model for the epidermal layer treats the epidermis as a collection of heterogeneous cell types with different proliferation/differentiation properties. We obtained model parameters from the literature where available, and calibrated the unknown parameters to match the observed properties in unirradiated skin. We then used the model to rigorously examine alternate hypotheses regarding the effects of high LET radiation on the tissue. Our analysis indicates that Ne ion exposures induce rapid, but transient, changes in cell division, differentiation and proliferation. We have validated the modeling results by histology and quantitative reverse transcription polymerase chain reaction (qRT-PCR). The integrated approach presented here can be used as a general framework to understand the responses of multicellular systems, and can be adapted to other epithelial tissues.

von Neubeck, Claere; Shankaran, Harish; Geniza, Matthew; Kauer, Paula M.; Robinson, Robert J.; Chrisler, William B.; Sowa, Marianne B.

2013-08-08T23:59:59.000Z

195

Cloud-radiative effects on implied oceanic energy transports as simulated by atmospheric general circulation models  

DOE Green Energy (OSTI)

This paper reports on energy fluxes across the surface of the ocean as simulated by fifteen atmospheric general circulation models in which ocean surface temperatures and sea-ice boundaries are prescribed. The oceanic meridional energy transport that would be required to balance these surface fluxes is computed, and is shown to be critically sensitive to the radiative effects of clouds, to the extent that even the sign of the Southern Hemisphere ocean energy transport can be affected by the errors in simulated cloud-radiation interactions.

Gleckler, P.J. [Lawrence Livermore National Lab., CA (United States); Randall, D.A. [Colorado State Univ., Fort Collins, CO (United States); Boer, G. [Canadian Climate Centre, Victoria (Canada)

1994-03-01T23:59:59.000Z

196

Radiative Forcing of Climate Change  

SciTech Connect

Chapter 6 of the IPCC Third Assessment Report Climate Change 2001: The Scientific Basis. Sections include: Executive Summary 6.1 Radiative Forcing 6.2 Forcing-Response Relationship 6.3 Well-Mixed Greenhouse Gases 6.4 Stratospheric Ozone 6.5 Radiative Forcing By Tropospheric Ozone 6.6 Indirect Forcings due to Chemistry 6.7 The Direct Radiative Forcing of Tropospheric Aerosols 6.8 The Indirect Radiative Forcing of Tropospheric Aerosols 6.9 Stratospheric Aerosols 6.10 Land-use Change (Surface Albedo Effect) 6.11 Solar Forcing of Climate 6.12 Global Warming Potentials hydrocarbons 6.13 Global Mean Radiative Forcings 6.14 The Geographical Distribution of the Radiative Forcings 6.15 Time Evolution of Radiative Forcings Appendix 6.1 Elements of Radiative Forcing Concept References.

Ramaswamy, V.; Boucher, Olivier; Haigh, J.; Hauglustaine, D.; Haywood, J.; Myhre, G.; Nakajima, Takahito; Shi, Guangyu; Solomon, S.; Betts, Robert E.; Charlson, R.; Chuang, C. C.; Daniel, J. S.; Del Genio, Anthony D.; Feichter, J.; Fuglestvedt, J.; Forster, P. M.; Ghan, Steven J.; Jones, A.; Kiehl, J. T.; Koch, D.; Land, C.; Lean, J.; Lohmann, Ulrike; Minschwaner, K.; Penner, Joyce E.; Roberts, D. L.; Rodhe, H.; Roelofs, G.-J.; Rotstayn, Leon D.; Schneider, T. L.; Schumann, U.; Schwartz, Stephen E.; Schwartzkopf, M. D.; Shine, K. P.; Smith, Steven J.; Stevenson, D. S.; Stordal, F.; Tegen, I.; van Dorland, R.; Zhang, Y.; Srinivasan, J.; Joos, Fortunat

2001-10-01T23:59:59.000Z

197

A Climatology of Surface Cloud Radiative Effects at the ARM Tropical Western Pacific Sites  

SciTech Connect

Cloud radiative effects on surface downwelling fluxes are investigated using long-term datasets from the three Atmospheric Radiation Measurement (ARM) sites in the Tropical Western Pacific (TWP) region. The Nauru and Darwin sites show significant variability in sky cover, downwelling radiative fluxes, and surface cloud radiative effect (CRE) due to El Niño and the Australian monsoon, respectively, while the Manus site shows little intra-seasonal or interannual variability. Cloud radar measurement of cloud base and top heights are used to define cloud types so that the effect of cloud type on the surface CRE can be examined. Clouds with low bases contribute 71-75% of the surface shortwave (SW) CRE and 66-74% of the surface longwave (LW) CRE at the three TWP sites, while clouds with mid-level bases contribute 8-9% of the SW CRE and 12-14% of the LW CRE, and clouds with high bases contribute 16-19% of the SW CRE and 15-21% of the LW CRE.

McFarlane, Sally A.; Long, Charles N.; Flaherty, Julia E.

2013-04-01T23:59:59.000Z

198

Multi-Dimensional Effects in Longwave Radiative Forcing of PBL Clouds  

NLE Websites -- All DOE Office Websites (Extended Search)

Multi-Dimensional Effects in Longwave Radiative Forcing of PBL Clouds D. B. Mechem and Y. L. Kogan Cooperative Institute for Mesoscale Meteorological Studies University of Oklahoma Norman, Oklahoma M. Ovtchinnikov Pacific Northwest National Laboratory Richland, Washington K. F. Evans University of Colorado Boulder, Colorado A. B. Davis Los Alamos National Laboratory Los Alamos, New Mexico R. F. Cahalan National Aeronautic and Space Administration Goddard Space Flight Center Greenbelt, Maryland E. E. Takara and R. G. Ellingson Florida State University Tallahassee, Florida 1. Introduction Numerical cloud models nearly universally employ one-dimensional (1D) treatments of radiative transfer (RT). Radiative transfer is typically implemented as a 2- or 4-stream approximation to the

199

DETERMINING THE EFFECTS OF RADIATION ON AGING CONCRETE STRUCTURES OF NUCLEAR REACTORS  

SciTech Connect

The U.S. Department of Energy Office of Environmental Management (DOE-EM) is responsible for the Decontamination and Decommissioning (D&D) of nuclear facilities throughout the DOE Complex. Some of these facilities will be completely dismantled, while others will be partially dismantled and the remaining structure will be stabilized with cementitious fill materials. The latter is a process known as In-Situ Decommissioning (ISD). The ISD decision process requires a detailed understanding of the existing facility conditions, and operational history. System information and material properties are need for aged nuclear facilities. This literature review investigated the properties of aged concrete structures affected by radiation. In particular, this review addresses the Savannah River Site (SRS) isotope production nuclear reactors. The concrete in the reactors at SRS was not seriously damaged by the levels of radiation exposure. Loss of composite compressive strength was the most common effect of radiation induced damage documented at nuclear power plants.

Serrato, M.

2010-01-29T23:59:59.000Z

200

THE BEIR-III REPORT AND THE HEALTH EFFECTS OF LOW-LEVEL RADIATION  

E-Print Network (OSTI)

Protection Against Ionizing Radiation from External Sources,Protection Against Ionizing Radiation from External Sources:induction by ionizing radiation. Brit. J. Radiol. 51: 401-

Fabrikant, J.I.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "including radiation effects" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Cherenkov Radiation from e+e- Pairs and Its Effect on nu e Induced Showers  

E-Print Network (OSTI)

5] J. V. Jelley, Cherenkov Radiation and its applications (calculated the Cherenkov radiation from e + e ? pairs as a? 2 [1?? 2 ?(?)]), the radiation is suppressed compared to

Mandal, Sourav K.; Klein, Spencer R.; Jackson, J. David

2005-01-01T23:59:59.000Z

202

Multimode Radiative Transfer in Finite Optical Media. I: Fundamentals  

Science Conference Proceedings (OSTI)

In this paper we develop a new method for solving the transfer of radiation within a laterally finite optical medium. A new radiative transfer equation, based on a multimode approach, is developed which includes the explicit effects of the sides ...

Rudolph W. Preisendorfer; Graeme L. Stephens

1984-03-01T23:59:59.000Z

203

An option for the coal industry in dealing with the carbon dioxide global greenhouse effect including estimates for reduced CO/sub 2/ emissions technologies  

SciTech Connect

A new technical option for the coal industry in dealing with the carbon dioxide greenhouse effect has been devised. The option concerns a ''hydrogen economy'' based on coal. We have developed a very efficient process called HYDROCARB, which effectively splits coal into carbon and hydrogen. This process produces a clean, pure carbon fuel from coal for application in both mobile and stationary heat engines. We are suggesting that coal refineries be built based on this technology. A co-product of the process is a hydrogen-rich gas. If one is concerned about the greenhouse effect, then either all or part of the carbon can be withheld and either mainly or only the hydrogen is used as fuel. If one desires to attain the ultimate, and eliminate all CO/sub 2/ emissions from coal, then all of the carbon can be stored and only the hydrogen used. The option is still open for utilizing the clean carbon, which would be placed in monitored retrievable storage, not unlike the strategic petroleum reserve (SPR). Should the greenhouse effect be found to be a myth in the future, the carbon would be taken out of storage and utilized as a clean fuel, the impurities having been previously removed. This concept can be valuable to the coal industry in response to the arguments of the anti-coal critics. Total capital cost estimates have been made to replace all conventional coal burning power plants in the US with technologies that eliminate emissions of CO/sub 2/. These include removal, recovery and disposal of CO/sub 2/, nuclear, solar, photovoltaics, biomass, and HYDROCARB. 12 refs., 1 fig. 4 tabs.

Steinberg, M.

1988-12-01T23:59:59.000Z

204

A Three-Dimensional Radiative Transfer Model to Investigate the Solar Radiation within a Cloudy Atmosphere. Part I: Spatial Effects  

Science Conference Proceedings (OSTI)

A new Monte Carlo–based three-dimensional (3D) radiative transfer model of high spectral and spatial resolution is presented. It is used to investigate the difference in broadband solar radiation absorption, top-of-the-atmosphere upwelling, and ...

William O’Hirok; Catherine Gautier

1998-06-01T23:59:59.000Z

205

A Three-Dimensional Radiative Transfer Model to Investigate the Solar Radiation within a Cloudy Atmosphere. Part II: Spectral Effects  

Science Conference Proceedings (OSTI)

In this second part of a two-part paper, the spectral response of the interaction between gases, cloud droplets, and solar radiation is investigated using a Monte Carlo-based three-dimensional (3D) radiative transfer model with a spectral ...

William O’Hirok; Catherine Gautier

1998-10-01T23:59:59.000Z

206

Review and Evaluation of Updated Research on the Health Effects Associated with Low-Dose Ionizing Radiation  

Science Conference Proceedings (OSTI)

Potential health effects of low levels of radiation have predominantly been based on those effects observed at high levels of radiation. The authors have reviewed more than 200 percent publications in radiobiology and epidermiology related to low dose radiation and concluded that recent radiobiological studies at low-doses; that doses low dose radiation research should to holistic, systems-based approaches to develop models that define the shape of the dose-response relationships at low doses; and that these results should be combined with the latest epidermiology to produce a comprehensive understanding of radiation effects that addresses both damage, likely with a linear effect, and response, possibly with non-linear consequences.

Dauer, Lawrence T.; Brooks, Antone L.; Hoel, David G.; Morgan, William F.; Stram, Daniel; Tran, Phung

2010-07-01T23:59:59.000Z

207

Radiation effects at a high power accelerator and applications to advanced energy sources  

Science Conference Proceedings (OSTI)

Many materials are exposed to atom-displacing radiation at high-power accelerators such as the Los Alamos Meson Physics Facility (LAMPF). Beam current densities in the 800-MeV proton beam vary from 12.5 mA cm{sup {minus}2} (8 {times} 10{sup 16} p/cm{sup 2}s) on graphite targets to 20-{mu}A cm{sup {minus}2} (1.3 {times} 10{sup 14} p/cm{sup 2}s) on metal-alloy windows. High-level radiation damage results from these particle fluxes. As a consequence of secondary-particle generation in targets and windows and low-level beam losses that lead to particle interactions with structural material, various components are exposed to low-level proton fluxes, gamma radiation, and neutron fluxes of 10{sup 6}--10{sup 10} n/cm{sup 2}s. These include vacuum seals and vacuum chambers of stainless steel and aluminum alloys, solid-state devices for control, diagnostic, and data acquisition electronics, closed-loop cooling-water systems, and insulators. Properties of these materials are degraded by the radiation exposure. Studies of LAMPF and other accelerators, however, have produced solutions to materials problems, allowing the machines to operate for acceptable times without failure. Nevertheless, additional improvements are being investigated in order to further improve operational reliability and safety. 25 refs., 3 figs., 3 tabs.

Sommer, W.F.; Garner, F.A.; Brown, R.D.; Wechsler, M.S. (Los Alamos National Lab., NM (USA); Battelle Pacific Northwest Lab., Richland, WA (USA); Los Alamos National Lab., NM (USA); Iowa State Univ. of Science and Technology, Ames, IA (USA))

1989-01-01T23:59:59.000Z

208

Silicon field-effect transistors as radiation detectors for the Sub-THz range  

SciTech Connect

The nonresonance response of silicon metal-oxide-semiconductor field-effect transistors (Si-MOSFETs) with a long channel (1-20 {mu}m) to radiation in the frequency range 43-135 GHz is studied. The transistors are fabricated by the standard CMOS technology with 1-{mu}m design rules. The volt-watt sensitivity and the noise equivalent power (NEP) for such detectors are estimated with the calculated effective area of the detecting element taken into account. It is shown that such transistors can operate at room temperature as broadband direct detectors of sub-THz radiation. In the 4-5 mm range of wavelengths, the volt-watt sensitivity can be as high as tens of kV/W and the NEP can amount to 10{sup -11} - 10{sup -12}W/{radical}Hz . The parameters of detectors under study can be improved by the optimization of planar antennas.

But, D. B., E-mail: but.dmitry@gmail.com; Golenkov, O. G.; Sakhno, N. V.; Sizov, F. F.; Korinets, S. V.; Gumenjuk-Sichevska, J. V.; Reva, V. P.; Bunchuk, S. G. [National Academy of Sciences of Ukraine, Lashkaryov Institute of Semiconductor Physics (Ukraine)

2012-05-15T23:59:59.000Z

209

11th International Conference of Radiation Research  

SciTech Connect

Topics discussed in the conference included the following: Radiation Physics, Radiation Chemistry and modelling--Radiation physics and dosimetry; Electron transfer in biological media; Radiation chemistry; Biophysical and biochemical modelling; Mechanisms of DNA damage; Assays of DNA damage; Energy deposition in micro volumes; Photo-effects; Special techniques and technologies; Oxidative damage. Molecular and cellular effects-- Photobiology; Cell cycle effects; DNA damage: Strand breaks; DNA damage: Bases; DNA damage Non-targeted; DNA damage: other; Chromosome aberrations: clonal; Chromosomal aberrations: non-clonal; Interactions: Heat/Radiation/Drugs; Biochemical effects; Protein expression; Gene induction; Co-operative effects; ``Bystander'' effects; Oxidative stress effects; Recovery from radiation damage. DNA damage and repair -- DNA repair genes; DNA repair deficient diseases; DNA repair enzymology; Epigenetic effects on repair; and Ataxia and ATM.

NONE

1999-07-18T23:59:59.000Z

210

Prepulse effect on laser-induced water-window radiation from a liquid nitrogen jet  

E-Print Network (OSTI)

is schematically shown in Fig. 1. A high-purity nitrogen gas was cooled and liquefied through the cooling stagesPrepulse effect on laser-induced water-window radiation from a liquid nitrogen jet J. Son,a M. Cho.3­4.4 nm x ray from a liquid nitrogen jet. It is observed that a prepulse of only 2 mJ enhances

Kim, Jae-Hoon

211

The whitehouse effect: Shortwave radiative forcing of climate by anthropogenic aerosols, an overview  

E-Print Network (OSTI)

Abstraet--Loadings of tropospheric aerosols have increased substantially over the past 150 yr as a consequence of industrial activities. These aerosols enhance reflection of solar radiation by the Earth-atmosphere system both directly, by scattering light in clear air and, indirectly, by increasing the reflectivity of clouds. The magnitude of the resultant decrease in absorption of solar radiation is estimated to be comparable on global average to the enhancement in infrared forcing at the tropopause due to increases in concentrations of CO2 and other greenhouse gases over the same time period. Estimates of the aerosol shortwave forcing are quite uncertain, by more than a factor of two about the current best estimates. This article reviews the atmospheric chemistry and microphysical processes that govern the loading and light scattering properties of the aerosol particles responsible for the direct effect and delineates the basis for the present estimates of the magnitude and uncertainty in the resultant radiative forcing. The principal sources of uncertainty are in the loading of anthropogenic aerosols, which is highly variable spatially and temporally because of the relatively short residence time of these aerosols (ca. 1 week) and the episodic removal in precipitation, and in the dependence of light scattering on particle size, and in turn on relative humidity. Uncertainty in aerosol forcing is the greatest source of uncertainty in radiative forcing of climate

Stephen E. Schwartz

1996-01-01T23:59:59.000Z

212

Program on Technology Innovation: Evaluation of Updated Research on the Health Effects and Risks Associated with Low-Dose Ionizing Radiation  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) has performed a systematic review of recently published, peer-reviewed scientific studies in the fields of epidemiology and radiobiology that discuss health risks associated with exposure to low levels of ionizing radiation. As a result of this study, the EPRI team concludes that there is a need to re-evaluate the magnitude of dose and dose-rate effectiveness factors (DDREF), including the significant body of radiobiology data that suggests non-linear risks at...

2009-11-18T23:59:59.000Z

213

Stochastic modeling of the cell killing effect for low- and high-LET radiation  

E-Print Network (OSTI)

Theoretical modeling of biological response to radiation describes qualitatively and quantitatively the results of radiobiological effects at the molecular, chromosomal, and cellular level. The repair-misrepair (RMR) model is the radiobiological model chosen for our study. It models deoxyribonucleic acid (DNA) damage formation and lesion repair through linear and quadratic processes. Double strand breaks (DSB) are a critical lesion in DNA. With increasing LET, the number of DSB per track traversing the cell nucleus increases. Using a compound Poisson process (CPP), we describe DNA damage formation. Three models were considered: a simple CPP using constant LET, a CPP using a chord length distribution, and a CPP using specific energy distribution. In the two first cases, and for low LET radiation the initial distribution of DSB was well approximated by a Poisson distribution, while for high LET radiation the initial distribution of DSB deviated slightly from a Poisson distribution. In the last case, DSB distribution was much broader than a pure Poisson distribution. Datasets from the literature for seven human cell lines, exhibiting various sensitivities to radiation were analyzed. We compared stochastic, CPP, and CPP using chord length distribution, with deterministic RMR models. For low LET radiation and at high dose rates the stochastic survival results agree well with the deterministic survival results. Also the stochastic model allows for non-linearity at low doses due to the accumulation of sub-lethal damage. At low dose rates deterministic results overestimate the surviving fraction compared to stochastic results. For high LET radiation stochastic and deterministic survival results agree. Stochastic survival results using specific energy distribution diverged from deterministic results by underestimating the surviving fraction at low and high LET radiation. The dose rate sparing curve, representing surviving fraction at a dose of 10Gy vs. dose rate shows that deterministic survival results are consistent with stochastic survival results, using CPP, or CPP with chord length distribution, for low and high dose rate values. Compared to deterministic aspects of DNA damage formation we concluded that stochastic aspects of DNA damage formation and repair using CPP or CPP with chord length distribution are not as prominent as reported in the earlier studies.

Partouche, Julien

2004-12-01T23:59:59.000Z

214

RADIATION SAFETY POLICY Effective Date: April 4, 2012 Originating Office: Office of the  

E-Print Network (OSTI)

radiation exposure "As Low as Reasonably Achievable" "Internal Radiation Permit" ("IRP") means and the general public from unnecessary or potentially harmful levels of radiation exposure. PURPOSE capable of generating X or Gamma radiation "Radiology" involves external exposure of humans to Radiation

Doedel, Eusebius

215

A study of thermal cycling and radiation effects on indium and solder bump bonding  

Science Conference Proceedings (OSTI)

The BTeV hybrid pixel detector is constructed of readout chips and sensor arrays which are developed separately. The detector is assembled by flip-chip mating of the two parts. This method requires the availability of highly reliable, reasonably low cost fine-pitch flip-chip attachment technology. We have tested the quality of two bump-bonding technologies; indium bumps (by Advanced Interconnect Technology Ltd. (AIT) of Hong Kong) and fluxless solder bumps (by MCNC in North Carolina, USA). The results have been presented elsewhere[1]. In this paper we describe tests we performed to further evaluate these technologies. We subjected 15 indium bump-bonded and 15 fluxless solder bump-bonded dummy detectors through a thermal cycle and then a dose of radiation to observe the effects of cooling, heating and radiation on bump-bonds.

Selcuk Cihangir et al.

2001-09-12T23:59:59.000Z

216

Radiation effects on MOS devices: dosimetry, annealing, irradiation sequence and sources  

Science Conference Proceedings (OSTI)

This paper reports on some investigations of dosimetry, annealing, irradiation sequences, and radioactive sources, involved in the determination of radiation effects on MOS devices. Results show that agreement in the experimental and theoretical surface to average doses support the use of thermo-luminescent dosimeters (manganese activated calcium fluoride) in specifying the surface dose delivered to thin gate insulators of MOS devices. Annealing measurements indicate the existence of at least two energy levels, or activation energies, for recovery of soft oxide MOS devices after irradiation by electrons, protons, and gammas. Damage sensitivities of MOS devices were found to be independent of combinations and sequences of radiation type or energies. Comparison of various gamma sources indicated a small dependence of damage sensitivity on the Cobalt facility, but a more significant dependence in the case of the Cesium source. These results were attributed to differences in the spectral content of the several sources.

Stassinopoulos, E.; Brucker, G.; Gunten, O.; Jordan, T.; Knudson, A.

1983-06-01T23:59:59.000Z

217

The Radiative Effects of Aerosols on Photochemical Smog: Measurements and Modeling  

E-Print Network (OSTI)

. High concentrations of both ozone and aerosols are observed in the eastern United States during stagnant weather conditions associated with transport from the W or NW; they show similar spatial and temporal patterns. We discuss a causal mechanism that may contribute to this correlation - the radiative effects of aerosols on photolysis rates. We measured j(NO 2 ), the rate coefficient for nitrogen dioxide photolysis, and column aerosol optical depths at NASA/Goddard Space Flight Center in Greenbelt, MD (39.01 ffi N and 76.87 ffi W) during the smog seasons of 1995 and 1997. Direct measurements and radiative transfer model calculations show that particles can reduce surface j(NO 2 ) by 5 - 60%, depending on solar zenith angle and aerosol loading. Although particle scattering by dense aerosol loading on smoggy days decreases near-surface photolysis rates, it increases the integrated boundary layer photolysis rates by up to 20% and leads to accelerated photochemical smog formation in ...

Kondragunta Dickerson Stenchikov; S. Kondragunta; R. R. Dickerson; G. Stenchikov; W. F. Ryan; B. Holben; R. W. Stewart

2000-01-01T23:59:59.000Z

218

Finite Duration and Energy Effects in Lorentz-Violating Vacuum Cerenkov Radiation  

E-Print Network (OSTI)

Vacuum Cerenkov radiation is possible in certain Lorentz-violating quantum field theories, when very energetic charges move faster than the phase speed of light. In the presence of a CPT-even, Lorentz-violating modification of the photon sector, the character of the Cerenkov process is controlled by the high-frequency behavior of the radiation spectrum. The development of the Cerenkov process can be markedly different, depending on whether the only limits on the emission of very energetic photons come from energy-momentum conservation or whether there are additional effects that cut off the spectrum at high frequencies. Moreover, since the high-frequency cutoff determines the total rate at which an emitting charge loses energy, it also controls all aspects of the emission that are related to the process's finite duration.

Brett Altschul

2007-09-27T23:59:59.000Z

219

SRS Public Involvement in Waste Management Has Resulted in Effective Decisions Supported by the Public Including Disposal Changes and Top-to-Bottom Review Initiative Consensus  

Science Conference Proceedings (OSTI)

In the Savannah River Site's (SRS') Solid Waste Management Program, a key to success is the Public Involvement Program. The Solid Waste Division at SRS manages the site's transuranic, low-level, mixed, and hazardous wastes. All decisions associated with management of this waste are of interest to the public and successful program implementation would be impossible without a vigorous public involvement program. The SRS Solid Waste Division (SWD) and its Department of Energy (DOE) customer developed, implemented, and maintain a comprehensive public participation and communications program. It is staffed by public participation and technical specialists to ensure information is presented in a manner that is technically accurate while being tailored for understanding by people without a technical background. The program provides the public with accurate, complete, timely information and early meaningful participation opportunities. It also fulfills the public participation activities required by laws, regulations, DOE Orders, and negotiated agreements. The primary goal of the SWD Public Participation Program is to fulfill the objectives of the SWD and SRS Strategic Plans to ''build trust and communicate openly, honestly, and responsibly with employees, customers, stakeholders, and regulators,'' and to ''work to extend the support of external stakeholders for the pursuit of SRS and DOE Complex business goals.'' This paper focuses on the public participation program goals, the implementation through formal plans and objectives, targeted waste management programs and specific audiences, and specific effects of the program on waste management activities. A discussion of the DOE and contractor teaming along with how plans are carried out is also included.

Goldston, W. T.; Villasor, H. P.

2003-02-27T23:59:59.000Z

220

Thermal Effects of Rotation in Random Classical Zero-Point Radiation  

E-Print Network (OSTI)

The rotating reference system, two-point correlation functions, and energy density are used as the basis for investigating thermal effects observed by a detector rotating through random classical zero-point radiation. The RS consists of Frenet -Serret orthogonal tetrads where the rotating detector is at rest and has a constant acceleration vector. The CFs and the energy density at the rotating reference system should be periodic with rotation period because CF and energy density measurements is one of the tools the detector can use to justify the periodicity of its motion. The CFs have been calculated for both electromagnetic and massless scalar fields in two cases, with and without taking this periodicity into consideration. It turned out that only periodic CFs have some thermal features and particularly the Planck's factor with the temperature T= h w /k . Regarding to the energy density of both electromagnetic and massless scalar field it is shown that the detector rotating in the zero-point radiation observes not only this original zero-point radiation but, above that, also the radiation which would have been observed by an inertial detector in the thermal bath with the Plank's spectrum at the temperature T. This effect is masked by factor 2/3(4 gamma^2-1) for the electromagnetic field and 2/9 (4 gamma ^2-1) for the massless scalar field, where the Lorentz factor gamma=(1 - v^2 / c^2)^(1/2). Appearance of these masking factors is connected with the fact that rotation is defined by two parameters, angular velocity w and the radius of rotation, in contrast with a uniformly accelerated linear motion which is defined by only one parameter, acceleration a. Our calculations involve classical point of view only and to the best of our knowledge these results have not been reported in quantum theory yet.

Yefim S. Levin

2007-04-27T23:59:59.000Z

Note: This page contains sample records for the topic "including radiation effects" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Microphysical and Radiative Effects of Ice Clouds on Tropical Equilibrium States: A Two-Dimensional Cloud-Resolving Modeling Study  

Science Conference Proceedings (OSTI)

The microphysical and radiative effects of ice clouds on tropical equilibrium states are investigated based on three two-dimensional cloud-resolving simulations imposed by zero vertical velocity and time-invariant zonal wind and sea surface ...

Fan Ping; Zhexian Luo; Xiaofan Li

2007-07-01T23:59:59.000Z

222

The effects of imposed stratospheric cooling on the maximum intensity of tropical cyclones in axisymmetric radiative-convective equilibrium  

Science Conference Proceedings (OSTI)

The effects of stratospheric cooling and sea surface temperature (SST) warming on tropical cyclone (TC) potential intensity (PI) are explored using an axisymmetric cloud-resolving model run to radiative-convective equilibrium (RCE). Almost all ...

Hamish A. Ramsay

223

The Sensitivity of the Radiation Budget in a Climate Simulation to Neglecting the Effect of Small Ice Particles  

Science Conference Proceedings (OSTI)

The sensitivity of the atmospheric radiation budget to ignoring small ice particles (D ? 100 ?m) in parameterization of the mean effective size of ice particles was investigated by using the Canadian Centre for Climate Modelling and Analysis (...

Faisal S. Boudala; George A. Isaac; N. A. McFarlane; J. Li

2007-07-01T23:59:59.000Z

224

Effects of Ionizing Radiation on Digital Single Event Transients in a 180-nm Fully Depleted SOI Process  

E-Print Network (OSTI)

Effects of ionizing radiation on single event transients are reported for Fully Depleted SOI (FDSOI) technology using experiments and simulations. Logic circuits, i.e. CMOS inverter chains, were irradiated with cobalt-60 ...

Keast, Craig L.

225

Determination of the Optical Thickness and Effective Particle Radius of Clouds from Reflected Solar Radiation Measurements. Part I: Theory  

Science Conference Proceedings (OSTI)

A method is presented for determining the optical thickness and effective particle radius of stratiform cloud layers from reflected solar radiation measurements. A detailed study is presented which shows that the cloud optical thickness (?c) and ...

Teruyuki Nakajima; Michael D. King

1990-08-01T23:59:59.000Z

226

Predicting Nonauditory Adverse Radiation Effects Following Radiosurgery for Vestibular Schwannoma: A Volume and Dosimetric Analysis  

SciTech Connect

Purpose: To define clinical and dosimetric predictors of nonauditory adverse radiation effects after radiosurgery for vestibular schwannoma treated with a 12 Gy prescription dose. Methods: We retrospectively reviewed our experience of vestibular schwannoma patients treated between September 2005 and December 2009. Two hundred patients were treated at a 12 Gy prescription dose; 80 had complete clinical and radiological follow-up for at least 24 months (median, 28.5 months). All treatment plans were reviewed for target volume and dosimetry characteristics; gradient index; homogeneity index, defined as the maximum dose in the treatment volume divided by the prescription dose; conformity index; brainstem; and trigeminal nerve dose. All adverse radiation effects (ARE) were recorded. Because the intent of our study was to focus on the nonauditory adverse effects, hearing outcome was not evaluated in this study. Results: Twenty-seven (33.8%) patients developed ARE, 5 (6%) developed hydrocephalus, 10 (12.5%) reported new ataxia, 17 (21%) developed trigeminal dysfunction, 3 (3.75%) had facial weakness, and 1 patient developed hemifacial spasm. The development of edema within the pons was significantly associated with ARE (p = 0.001). On multivariate analysis, only target volume is a significant predictor of ARE (p = 0.001). There is a target volume threshold of 5 cm3, above which ARE are more likely. The treatment plan dosimetric characteristics are not associated with ARE, although the maximum dose to the 5th nerve is a significant predictor of trigeminal dysfunction, with a threshold of 9 Gy. The overall 2-year tumor control rate was 96%. Conclusions: Target volume is the most important predictor of adverse radiation effects, and we identified the significant treatment volume threshold to be 5 cm3. We also established through our series that the maximum tolerable dose to the 5th nerve is 9 Gy.

Hayhurst, Caroline; Monsalves, Eric; Bernstein, Mark; Gentili, Fred [Gamma Knife Unit, Division of Neurosurgery, University Health Network, Toronto (Canada); Heydarian, Mostafa; Tsao, May [Radiation Medicine Program, Princess Margaret Hospital, Toronto (Canada); Schwartz, Michael [Radiation Oncology Program and Division of Neurosurgery, Sunnybrook Hospital, Toronto (Canada); Prooijen, Monique van [Radiation Medicine Program, Princess Margaret Hospital, Toronto (Canada); Millar, Barbara-Ann; Menard, Cynthia [Radiation Oncology Program, Princess Margaret Hospital, Toronto (Canada); Kulkarni, Abhaya V. [Division of Neurosurgery, Hospital for Sick Children, University of Toronto (Canada); Laperriere, Norm [Radiation Oncology Program, Princess Margaret Hospital, Toronto (Canada); Zadeh, Gelareh, E-mail: Gelareh.Zadeh@uhn.on.ca [Gamma Knife Unit, Division of Neurosurgery, University Health Network, Toronto (Canada)

2012-04-01T23:59:59.000Z

227

Cancer risk among children of atomic bomb survivors. A review of RERF epidemiologic studies. Radiation Effects Research Foundation  

Science Conference Proceedings (OSTI)

This article summarizes recent epidemiologic studies of cancer risk among the children of atomic bomb survivors conducted at the Radiation Effects Research Foundation. These children include two groups: (1) the in utero-exposed children (ie, those born to mothers who had been pregnant at the time of the bombings of Hiroshima and Nagasaki) and (2) the F1 population, which was conceived after the atomic-bombings and born to parents of whom one or both were atomic bomb survivors. Although from 1950 to 1984 only 18 cancer cases were identified among the in utero sample, cancer risk did appear to significantly increase as maternal uterine dose increased. However, since the observed cases are too few in number to allow a site-specific review, the increased cancer risk cannot be definitively attributed to atomic bomb radiation, as yet. For those members of the F1 population who were less than 20 years old between 1946 and 1982, cancer risk did not appear to increase significantly as parental gonadal dose increased. Follow-up of this population will continue to determine if the patterns of adult-onset cancer are altered.

Yoshimoto, Y. (Radiation Effects Research Foundation, Hiroshima (Japan))

1990-08-01T23:59:59.000Z

228

Effects of the Mt. Pinatubo eruption on the radiative and chemical processes in the troposphere and stratosphere  

Science Conference Proceedings (OSTI)

The LLNL 2-D zonally averaged chemical-radiative transport model of the global atmosphere was used to study the effects of the June 15, 1991 eruption of the Mt. Pinatubo volcano on stratospheric processes. SAGE-11 time-dependent aerosol surface area density and optical extinction data were used as input into the model. By the winter solstice, 1991, a maximum change in column ozone was observed in the equatorial region of {minus}2% (with heterogeneous chemical reactions on sulfuric acid aerosols) and {minus}5.5% (including heterogeneous reactions plus radiative feedbacks). Maximum local ozone decreases of 12% were derived in the equatorial region, at 25 km, for winter solstice 1991. Column NO{sub 2} peaked ({minus}14%) at 30 S in October 1991. Local concentrations of NO{sub x}, Cl{sub x}, and HO{sub x}, in the lower stratosphere, were calculated to have changed between 30 S and 30 N by {minus}40%, +80%, and +60% respectively.

Kinnison, D.E.; Grant, K.E.; Connell, P.S.; Wuebbles, D.J.

1992-07-05T23:59:59.000Z

229

Research Article Effect of Microwave Radiation on Enzymatic and Chemical Peptide Bond Synthesis on Solid Phase  

E-Print Network (OSTI)

Peptide bond synthesis was performed on PEGA beads under microwave radiations. Classical chemical coupling as well as thermolysin catalyzed synthesis was studied, and the effect of microwave radiations on reaction kinetics, beads ’ integrity, and enzyme activity was assessed. Results demonstrate that microwave radiations can be profitably exploited to improve reaction kinetics in solid phase peptide synthesis when both chemical and biocatalytic strategies are used. Copyright © 2009 Alessandra Basso et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The use of microwave (MW) heating has found successful applications in solid phase organic synthesis (SPOS) [1–7]. As far back as 1992, Wang described the use of a single-mode microwave as a heating source to accelerate the chemical coupling [8] of many amino acids. Reactions on SP often suffer from unsatisfactory reaction kinetics due to slow diffusion. Since microwave energy activates any molecule with dipole moment, a rapid heating at a molecular level is

Ra Basso; Loris Sinigoi; Lucia Gardossi; Sabine Flitsch

2009-01-01T23:59:59.000Z

230

Cancer risk among atomic bomb survivors. The RERF Life Span Study. Radiation Effects Research Foundation  

SciTech Connect

This article summarizes the risk of cancer among the survivors of the atomic bombing of Hiroshima and Nagasaki. We focus primarily on the risk of death from cancer among individuals in the Life Span Study sample of the Radiation Effects Research Foundation from 1950 through 1985 based on recently revised dosimetry procedures. We report the risk of cancer other than leukemia among the atomic bomb survivors. We note that the number of excess deaths of radiation-induced malignant tumors other than leukemia increases with age. Survivors who were exposed in the first or second decade of life have just entered the cancer-prone age and have so far exhibited a high relative risk in association with radiation dose. Whether the elevated risk will continue or will fall with time is not yet clear, although some evidence suggests that the risk may be declining. It is important to continue long-term follow-up of this cohort to document the changes with time since exposure and to provide direct rather than projected risks over the lifetime of an exposed individual.

Shimizu, Y.; Schull, W.J.; Kato, H. (Radiation Effects Research Foundation, Hiroshima (Japan))

1990-08-01T23:59:59.000Z

231

A study of radiation damage effects on the magnetic structure of bulk Iron  

SciTech Connect

Defects, defect interactions, and defect dynamics in solids created by fast neutrons are known to have significant impact on the performance and lifetime of structural materials. A fundamental understanding of the radiation damage effects in solids is therefore of great importance in assisting the development of improved materials - materials with ultrahigh strength, toughness, and radiation resistance. In this presentation, we show our recent theoretical investigation on the magnetic structure evolution of bulk iron in the region of the radiation defects. We applied a linear scaling ab-initio method based on density functional theory with local spin density approximation, namely the locally self-consistent multiple scattering method (LSMS), to the study of magnetic moment distributions in a cascade at the damage peak and for a series of time steps as the interstitials and vacancies recombined. Atomic positions correspond to those in a low energy cascade in a 10|000 atom sample, in which the primary damage state and the evolution of all defects produced were simulated using molecular dynamics with empirical, embedded-atom inter-atomic potentials. We will discuss how a region of affected moments expands and then recedes in response to a cascade evolution.

Wang Yang [Pittsburgh Supercomputing Center, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Nicholson, D. M. C.; Stocks, G. M.; Rusanu, Aurelian; Eisenbach, Markus; Stoller, R. E. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

2011-04-01T23:59:59.000Z

232

A study of radiation damage effects on the magnetic structure of bulk Iron  

Science Conference Proceedings (OSTI)

Defects, defect interactions, and defect dynamics in solids created by fast neutrons are known to have significant impact on the performance and lifetime of structural materials. A fundamental understanding of the radiation damage effects in solids is therefore of great importance in assisting the development of improved materials - materials with ultrahigh strength, toughness, and radiation resistance. In this presentation, we show our recent theoretical investigation on the magnetic structure evolution of bulk iron in the region of the radiation defects. We applied a linear scaling ab-initio method based on density functional theory with local spin density approximation, namely the locally self-consistent multiple scattering method (LSMS), to the study of magnetic moment distributions in a cascade at the damage peak and for a series of time steps as the interstitials and vacancies recombined. Atomic positions correspond to those in a low energy cascade in a 10|000 atom sample, in which the primary damage state and the evolution of all defects produced were simulated using molecular dynamics with empirical, embedded-atom inter-atomic potentials. We will discuss how a region of affected moments expands and then recedes in response to a cascade evolution. VC 2011 American Institute of Physics. [doi:10.1063/1.3553937

Wang, Yang Nmn [ORNL; Nicholson, Don M [ORNL; Stocks, George Malcolm [ORNL; Rusanu, Aurelian [ORNL; Eisenbach, Markus [ORNL; Stoller, Roger E [ORNL

2011-01-01T23:59:59.000Z

233

A study of radiation damage effects on the magnetic structure of bulk Iron  

Science Conference Proceedings (OSTI)

Defects, defect interactions, and defect dynamics in solids created by fast neutrons are known to have significant impact on the performance and lifetime of structural materials. A fundamental understanding of the radiation damage effects in solids is therefore of great importance in assisting the development of improved materials - materials with ultrahigh strength, toughness, and radiation resistance. In this presentation, we show our recent theoretical investigation on the magnetic structure evolution of bulk iron in the region of the radiation defects. We applied a linear scaling ab-initio method based on density functional theory with local spin density approximation, namely the locally self-consistent multiple scattering method (LSMS), to the study of magnetic moment distributions in a cascade at the damage peak and for a series of time steps as the interstitials and vacancies recombined. Atomic positions correspond to those in a low energy cascade in a 10|000 atom sample, in which the primary damage state and the evolution of all defects produced were simulated using molecular dynamics with empirical, embedded-atom inter-atomic potentials. We will discuss how a region of affected moments expands and then recedes in response to a cascade evolution.

Wang, Yang [Pittsburgh Supercomputing Center; Stocks, George Malcolm [ORNL; Stoller, Roger E [ORNL; Nicholson, Don M [ORNL; Rusanu, Aurelian [ORNL; Eisenbach, Markus [ORNL

2011-01-01T23:59:59.000Z

234

Radiation Effects of n-type, Low Resistivity, Spiral Silicon Drift Detector Hybrid Systems  

Science Conference Proceedings (OSTI)

We have developed a new thin-window, n-type, low-resistivity, spiral silicon drift detector (SDD) array - to be used as an extraterrestrial X-ray spectrometer (in varying environments) for NASA. To achieve low-energy response, a thin SDD entrance window was produced using a previously developed method. These thin-window devices were also produced on lower resistivity, thinner, n-type, silicon material, effectively ensuring their radiation hardness in anticipation of operation in potentially harsh radiation environments (such as found around the Jupiter system). Using the Indiana University Cyclotron Facility beam line RERS1, we irradiated a set of suitable diodes up to 5 Mrad and the latest iteration of our ASICs up to 12 Mrad. Then we irradiated two hybrid detectors consisting of newly, such-produced in-house (BNL) SDD chips bonded with ASICs with doses of 0.25 Mrad and 1 Mrad. Also we irradiated another hybrid detector consisting of previously produced (by KETEK) on n-type, high-resistivity SDD chip bonded with BNL's ASICs with a dose of 1 Mrad. The measurement results of radiated diodes (up to 5 Mrad), ASICs (up to 12 Mrad) and hybrid detectors (up to 1 Mrad) are presented here.

Chen W.; De Geronimo G.; Carini, G.A.; Gaskin, J.A.; Keister, J.W.; Li, S.; Li, Z.; Ramsey, B.D.; Siddons, D.P.; Smith, G.C.; Verbitskaya, E.

2011-11-15T23:59:59.000Z

235

Treatment Effects and Sequelae of Radiation Therapy for Orbital Mucosa-Associated Lymphoid Tissue Lymphoma  

SciTech Connect

Purpose: Among extranodal lymphomas, orbital mucosa-associated lymphoid tissue (MALT) lymphoma is a relatively rare presentation. We performed a review to ascertain treatment efficacy and toxicity of radiation therapy for orbital MALT lymphoma. We also evaluated changes in visual acuity after irradiation. Methods and Materials: Thirty patients with orbital MALT lymphoma underwent radiation therapy with curative intent. Clinical stages at diagnosis were stage I{sub E}A in 29 patients and stage II{sub E}A in 1 patient. Total doses of 28.8 to 45.8 Gy (median, 30 Gy) in 15 to 26 fractions (median, 16 fractions) were delivered to the tumors. Results: All irradiated tumors were controlled during the follow-up period of 2 to 157 months (median, 35 months) after treatment. Two patients had relapses that arose in the cervical lymph node and the ipsilateral palpebral conjunctiva outside the radiation field at 15 and 67 months after treatment, respectively. The 5-year local progression-free and relapse-free rates were 100% and 96%, respectively. All 30 patients are presently alive; the overall and relapse-free survival rates at 5 years were 100% and 96%, respectively. Although 5 patients developed cataracts of grade 2 at 8 to 45 months after irradiation, they underwent intraocular lens implantation, and their eyesight recovered. Additionally, there was no marked deterioration in the visual acuity of patients due to irradiation, with the exception of cataracts. No therapy-related toxicity of grade 3 or greater was observed. Conclusions: Radiation therapy was effective and safe for patients with orbital MALT lymphoma. Although some patients developed cataracts after irradiation, visual acuity was well preserved.

Hata, Masaharu, E-mail: mhata@syd.odn.ne.jp [Department of Radiology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa (Japan); Omura, Motoko; Koike, Izumi [Department of Radiology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa (Japan); Tomita, Naoto [Department of Internal Medicine and Clinical Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa (Japan); Iijima, Yasuhito [Department of Ophthalmology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa (Japan); Tayama, Yoshibumi; Odagiri, Kazumasa; Minagawa, Yumiko [Department of Radiology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa (Japan); Ogino, Ichiro [Department of Radiation Oncology, Yokohama City University Medical Center, Yokohama, Kanagawa (Japan); Inoue, Tomio [Department of Radiology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa (Japan)

2011-12-01T23:59:59.000Z

236

Why does the Unruh effect rely on Lorentz invariance, while Hawking radiation does not ?  

E-Print Network (OSTI)

We show that without Lorentz invariance, the Unruh effect does not exist. We use modified dispersion relations and describe in turn: the non-thermal nature of the vacuum (defined in the preferred frame) restricted to the Rindler wedge, the loss of the KMS property of the Wigthman function, the transition amplitudes and transition rates of a uniformaly accelerated detector. This situation seems to contrast with the Hawking radiation of acoustic black holes, which under certain assumptions has been shown to be robust to a breaking of Lorentz symmetry. We explain this discrepancy.

Campo, David

2010-01-01T23:59:59.000Z

237

Effectiveness of a clinical intervention in improving pain control in outpatients with cancer treated by radiation therapy  

SciTech Connect

Purpose: To determine the effectiveness of a multicomponent clinical intervention to reduce pain in outpatients with cancer. Methods and Materials: Sixty-four patients were randomly assigned to receive either a clinical intervention including an information session, the use of a pain diary, and the possibility to contact a physician to adjust the pain medication, or the usual treatment of pain by the staff radiation oncologist. All patients reported their average and worst pain levels at baseline and 2 and 3 weeks after the start of the intervention. Results: The study groups were similar with respect to their baseline characteristics and pain levels at randomization. After 3 weeks, the average and worst pain experienced by patients randomized to the clinical intervention group was significantly inferior to the average pain experienced by patients in the control group (2.9/10 vs. 4.4/10 and 4.2/10 vs. 5.5/10, respectively). Results showed that the experimental group patients decreased their pain levels more than the control group patients did over time. Conclusion: An intervention including patient education, a pain diary, and defining a procedure for therapeutic adjustments can be effective to improve pain relief in outpatients with cancer.

Vallieres, Isabelle [Department of Radiation Oncology, Centre Hospitalier Universitaire de Quebec-Hotel-Dieu de Quebec, Quebec City (Canada)]. E-mail: isabelle.vallieres@mail.chuq.qc.ca; Aubin, Michele [Department of Family Medicine, Laval Hospital, Quebec City, Quebec (Canada); Blondeau, Lucie [Department of Radiation Oncology, Centre Hospitalier Universitaire de Quebec-Hotel-Dieu de Quebec, Quebec City (Canada); Simard, Serge [Research Centre of Laval Hospital, Laval University, Sainte-Foy, Quebec (Canada); Giguere, Anik [Palliative Care Research Team, Laval University, Quebec City, Quebec (Canada)

2006-09-01T23:59:59.000Z

238

Health Risks Associated with Low Doses of Radiation  

Science Conference Proceedings (OSTI)

Despite a wealth of information, there remains uncertainty concerning human radiation effects at low dose levels. This report provides background information and a literature review of research on the potential health hazards associated with exposure to low-level ionizing radiation. Topics include radiation characteristics, protection standards, epidemiologic data and risk models, the nature of human health exposure-related effects, important radiation health studies to date, and the scientific method fo...

1994-09-17T23:59:59.000Z

239

A Cumulus Parameterization Including Mass Fluxes, Convective Vertical Velocities, and Mesoscale Effects: Thermodynamic and Hydrological Aspects in a General Circulation Model  

Science Conference Proceedings (OSTI)

A cumulus parameterization based on mass fluxes, convective-scale vertical velocities, and mesoscale effects has been incorporated in an atmospheric general circulation model (GCM). Most contemporary cumulus parameterizations are based on ...

Leo J. Donner; Charles J. Seman; Richard S. Hemler; Songmiao Fan

2001-08-01T23:59:59.000Z

240

A study of thermal cycling and radiation effects on indium and solder bump bonds  

Science Conference Proceedings (OSTI)

The BTeV hybrid pixel detector is constructed of readout chips and sensor arrays which are developed separately. The detector is assembled by flip-chip mating of the two parts. This method requires the availability of highly reliable, reasonably low cost fine-pitch flip-chip attachment technology. We have tested the quality of two bump-bonding technologies; indium bumps (by Advanced Interconnect Technology Ltd. (AIT) of Hong Kong) and fluxless solder bumps (by MCNC in North Carolina, USA). The results have been presented elsewhere [1]. In this paper we describe tests we performed to further evaluate these technologies. We subjected 15 indium bump-bonded and 15 fluxless solder bump-bonded dummy detectors through a thermal cycle and then a dose of radiation to observe the effects of cooling, heating and radiation on bump-bonds. We also exercised the processes of HDI mounting and wire bonding to some of the dummy detectors to see the effect of these processes on bump bonds.

Simon Kwan et al.

2001-12-11T23:59:59.000Z

Note: This page contains sample records for the topic "including radiation effects" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Effect of internal alpha radiation on borosilicate glass containing Savannah River Plant waste  

DOE Green Energy (OSTI)

Effects of internal alpha radiation on borosilicate glass, a perspective matrix for long-term storage of Savannah River Plant (SRP) radioactive waste, were evaluated in samples containing 45 wt % simulated waste (Fe(OH)/sub 3/--MnO/sub 2/) and either 0.5 wt % /sup 244/Cm or 1 wt % /sup 238/Pu. A glass containing /sup 238/Pu without waste was also studied for comparison. The glasses were examined for changes in physical stability, leachability, and dilatation. Alpha dose rates in the test glasses ranged from 4.5 x 10/sup 14/ to 1.3 x 10/sup 15/ alpha dis/(g-day). After 420 days, microcracks had formed; however, no macrostructural damage to the glasses was observed. Leachabilities for /sup 244/Cm and /sup 238/Pu were <7 x 10/sup -8/ g/(cm/sup 2/-day) and were not affected by the radiation. Continuous leaching by water for 5 days removed <10/sup -5/% of the isotopes. Alpha radiolysis caused expansion of the simulated-waste glasses in proportion to dose. Application of these results to glass containing radioactive Savannah River Plant waste indicated that internal alpha radiolysis will not cause detrimental effects during long-term storage (>10/sup 6/ years) of the waste glass.

Bibler, N.E.; Kelley, J.A.

1978-05-01T23:59:59.000Z

242

Effects of Te inclusions on the performance of CdZnTe radiation detectors  

Science Conference Proceedings (OSTI)

Te inclusions existing at high concentrations in CdZnTe (CZT) material can degrade the performance of CZT detectors. These microscopic defects trap the free electrons generated by incident radiation, so entailing significant fluctuations in the total collected charge and thereby strongly affecting the energy resolution of thick (long-drift) detectors. Such effects were demonstrated in thin planar detectors, and, in many cases, they proved to be the dominant cause of the low performance of thick detectors, wherein the fluctuations in the charge losses accumulate along the charge's drift path. We continued studying this effect using different tools and techniques. We employed a dedicated beamline recently established at BNL's National Synchrotron Light Source for characterizing semiconductor radiation detectors, along with an IR transmission microscope system, the combination of which allowed us to correlate the concentration of defects with the devices performances. We present here our new results from testing over 50 CZT samples grown by different techniques. Our goals are to establish tolerable limits on the size and concentrations of these detrimental Te inclusions in CZT material, and to provide feedback to crystal growers to reduce their numbers in the material.

Bolotnikov,A.E.; Abdul-Jabber, N. M.; Babalola, O. S.; Camarda, G. S.; Cui, Y.; Hossain, A. M.; Jackson, E. M.; Jackson, H. C.; James, J. A.; Kohman, K. T.; Luryi, A. L.; James, R. B.

2008-10-19T23:59:59.000Z

243

Effect of Te Inclusions on the Performance of Cdznte Radiation Detectors  

Science Conference Proceedings (OSTI)

Te inclusions existing at high concentrations in CdZnTe (CZT) material can degrade the performance of CZT detectors. These microscopic defects trap the free electrons generated by incident radiation, so entailing significant fluctuations in the total collected charge and thereby strongly affecting the energy resolution of thick (long-drift) detectors. Such effects were demonstrated in thin planar detectors, and, in many cases, they proved to be the dominant cause of the low performance of thick detectors, wherein the fluctuations in the charge losses accumulate along the charge's drift path. We continued studying this effect using different tools and techniques. We employed a dedicated beamline recently established at BNL's National Synchrotron Light Source for characterizing semiconductor radiation detectors, along with an IR transmission microscope system, the combination of which allowed us to correlate the concentration of defects with the devices' performances. We present here our new results from testing over 50 CZT samples grown by different techniques. Our goals are to establish tolerable limits on the size and concentrations of these detrimental Te inclusions in CZT material, and to provide feedback to crystal growers to reduce their numbers in the material.

Bolotnikov, A.; Abdul-Jabbar, N; Babalola, O; Camarda, G; Cui, Y; Hossain, A; Jackson, E; Jackson, H; James, J; et. al.

2009-01-01T23:59:59.000Z

244

Non-targeted effects of ionising radiation (NOTE) Â… a new European Integrated project, 2006-2010  

NLE Websites -- All DOE Office Websites (Extended Search)

targeted effects of ionising radiation (NOTE) - targeted effects of ionising radiation (NOTE) - a new European Integrated project, 2006-2010 Sisko Salomaa 1 , Eric G. Wright 2 , Guido Hildebrandt 3 , Munira Kadhim 4 , Mark P. Little 5 , Kevin M. Prise 6 , and Oleg V. Belyakov 1 1 Research and Environmental Surveillance, STUK - Radiation and Nuclear Safety Authority, Helsinki FI-00881, Finland 2 University of Dundee, Division of Pathology and Neuroscience, Molecular and Cellular Pathology Laboratories, Ninewells Hospital and Medical School, Dundee DD1 9SY, Scotland, UK 3 Department of Radiotherapy and Radiooncology, University of Leipzig, Leipzig 04103, Germany 4 MRC Radiation and Genome Stability Unit, Harwell, Didcot, Oxfordshire OX11 ORD, UK 5 Department of Epidemiology and Public Health, Imperial College Faculty of Medicine,

245

Low dose radiation effects of multipotent neural stem and progenitor cells  

NLE Websites -- All DOE Office Websites (Extended Search)

effects of multipotent neural stem and progenitor cells effects of multipotent neural stem and progenitor cells Charles L. Limoli, Department of Radiation Oncology, University of California, Irvine 92697-2695 Multipotent neural cells (both stem cells and their precursor cell progeny) retain their capacity to proliferate and differentiate throughout the mammalian lifespan. High numbers of these cells are located within the dentate subgranular zone (SGZ) of the hippocampus and the subventricular (SVZ) zone adjacent to the lateral ventricles, where they produce cells that can migrate away and differentiate into neurons (neurogenesis) and glia (gliogenesis). The realization that the brain contains such cells has sparked intense interest and speculation regarding their potential function. While significant data

246

Aerosol Radiative Effects and Single-Scattering Properties in the Tropical Western Pacific  

NLE Websites -- All DOE Office Websites (Extended Search)

Effects and Single-Scattering Properties Effects and Single-Scattering Properties in the Tropical Western Pacific A. M. Vogelmann and P. J. Flatau Center for Atmospheric Sciences Scripps Institution of Oceanography University of California San Diego, California M. A. Miller, M. J. Bartholomew, and R. M. Reynolds Brookhaven National Laboratory Upton, New York P. J. Flatau University Corporation for Atmospheric Research Naval Research Laboratory Monterey, California K. M. Markowicz Institute of Geophysics University of Warsaw Warsaw, Poland Introduction The Atmospheric Radiation Measurement (ARM) Tropical Western Pacific (TWP) sites are downwind from Southeast Asia where biomass burning occurs and can advect over the tropical warm pool. Previous research (Vogelmann 2001, 2002, 2003) indicates that aerosol forcing was particularly large

247

Symposium-in-Print Interactive Effects of Ultraviolet-B Radiation and Temperature on Cotton Physiology, Growth  

E-Print Network (OSTI)

Current conditions of 2–11 kJ m 22 day 21 of UV-B radiation and temperatures of>308C during flowering in cotton cultivated regions are projected to increase in the future. A controlled environment study was conducted in sunlit growth chambers to determine the effects of UV-B radiation and temperature on physiology, growth, development and leaf hyperspectral reflectance of cotton. Plants were grown in the growth chambers at three day/night temperatures (24/168C, 30/228C and 36/288C) and three levels of UV-B radiation (0, 7 and 14 kJ m 22 day 21) at each temperature from emergence to 79 days under optimum nutrient and water conditions. Increases in main stem node number and the node of first fruiting branch and decrease in duration to first flower bud (square) and flower were recorded with increase in temperature. Main effects of temperature and UV-B radiation were significant for net photosynthetic rates, stomatal conductance, total chlorophyll and carotenoid concentrations of uppermost, fully expanded leaves during squaring and flowering. A significant interaction between temperature and UV-B radiation was detected for total biomass and its components. The UV-B radiation of 7 kJ m 22 day 21 reduced boll yield by 68% and 97 % at 30/228C and 36/288C, respectively, compared with yield at 0 kJ m 22 day 21 and 30/228C. No bolls were produced in the three temperature treatments under 14 kJ m 22 day 21 UV-B radiation. The first-order interactions between temperature, UV-B radiation and leaf age were significant for leaf reflectance. This study suggests a growth- and process-related temperature dependence of sensitivity to UV-B radiation.

Hyperspectral Reflectance; K. Raja Reddy; Vijaya Gopal Kakani; Duli Zhao; Sailaja Koti; Wei Gao

2003-01-01T23:59:59.000Z

248

Analysis of time-dependent radiation-induced conductivity in dielectrics and effect on cable SGEMP  

SciTech Connect

Analytic and numerical solutions are presented for a simple time-dependent solid-state band model of radiation-induced conductivity in polyethelene and Teflon. The analytic solution is found to provide insight to physical processes dominant in various intervals of time throughout the radiation pulse. The numerical solution provides a representation for the dose-dependent proportionality factor F(..gamma..), proposed by van Lint et al, used to calculate prompt conductivity from sigma/rho/ = F(..gamma..)..gamma... At high doses, F(..gamma..) is an order of magnitude smaller than at low doses. This decrease of F(..gamma..) is due to bimolecular recombination, an effect apparently not previously reported experimentally. The reduction in F(..gamma..) at high doses is shown to enhance the short circuit current for a cable SGEMP model of residual gaps by a factor of three. In addition, the dose-dependent behavior of F(..gamma..) can significantly alter the shape and time of occurrence of the peak of the waveform of this short circuit current compared to corresponding results for a dose-independent factor.

Shaeffer, D.L.; Siegel, J.M.

1982-12-01T23:59:59.000Z

249

Simulating 3-D Radiative Transfer Effects over the Sierra Nevada Mountains using WRF  

Science Conference Proceedings (OSTI)

A surface solar radiation parameterization based on deviations between 3-D and conventional plane-parallel radiative transfer models has been incorporated into the Weather Research and Forecasting (WRF) model to understand the solar insolation over mountain/snow areas and to investigate the impact of the spatial and temporal distribution and variation of surface solar fluxes on land-surface processes. Using the Sierra-Nevada in the western United States as a testbed, we show that mountain effect could produce up to ?50 to + 50Wm?2 deviations in the surface solar fluxes over the mountain areas, resulting in a temperature increase of up to 1 °C on the sunny side. Upward surface sensible and latent heat fluxes are modulated accordingly to compensate for the change in surface solar fluxes. Snow water equivalent and surface albedo both show decreases on the sunny side of the mountains, indicating more snowmelt and hence reduced snow albedo associated with more solar insolation due to mountain effect. Soil moisture increases on the sunny side of the mountains due to enhanced snowmelt, while decreases on the shaded side. Substantial differences are found in the morning hours from 8-10 a.m. and in the afternoon around 3-5 p.m., while differences around noon and in the early morning and late afternoon are comparatively smaller. Variation in the surface energy balance can also affect atmospheric processes, such as cloud fields, through the modulation of vertical thermal structure. Negative changes of up to ?40 gm?2 are found in the cloud water path, associated with reductions in the surface insolation over the cloud region. The day-averaged deviations in the surface solar flux are positive over the mountain areas and negative in the valleys, with a range between ?12~12Wm?2. Changes in sensible and latent heat fluxes and surface skin temperature follow the solar insolation pattern. Differences in the domain-averaged diurnal variation over the Sierras show that the mountain area receives more solar insolation during early morning and late afternoon, resulting in enhanced upward sensible heat and latent heat fluxes from the surface and a corresponding increase in surface skin temperature. During the middle of the day, however, the surface insolation and heat fluxes show negative changes, indicating a cooling effect. Hence overall, the diurnal variations of surface temperature and surface fluxes in the Sierra-Nevada are reduced through the interactions of radiative transfer and mountains. The hourly differences of the surface solar insolation in higher elevated regions, however, show smaller magnitude in negative changes during the middle of the day and possibly more solar fluxes received during the whole day.

Gu, Yu; Liou, K. N.; Lee, W- L.; Leung, Lai-Yung R.

2012-10-30T23:59:59.000Z

250

Radiation Transport in Takamak Edge Plasmas  

DOE Green Energy (OSTI)

Plasmas in edge regions of tokamaks can be very optically thick to hydrogen lines. Strong line radiation introduces a non-local coupling between different regions of the plasma and can significantly affect the ionization and energy balance. These effects can be very important, but they are not included in current edge plasma simulations. We report here on progress in self-consistently including the effects of a magnetic field, line radiation and plasma transport in modeling tokamak edge plasmas.

Scott, H; Adams, M

2002-09-30T23:59:59.000Z

251

Irradiators for measuring the biological effects of low dose-rate ionizing radiation fields  

E-Print Network (OSTI)

Biological response to ionizing radiation differs with radiation field. Particle type, energy spectrum, and dose-rate all affect biological response per unit dose. This thesis describes methods of spectral analysis, ...

Davidson, Matthew Allen

2011-01-01T23:59:59.000Z

252

The Effect of Cloud Sides on Reflected Solar Radiation as Deduced from Satellite Observations  

Science Conference Proceedings (OSTI)

We report the observation of a feature that is characteristic of the reflection of solar radiation from absorbing, finite clouds. When absorption takes place, more radiation can be reflected by broken cloud fields than by extensive unbroken cloud ...

James A. Coakley Jr.; Roger Davies

1986-05-01T23:59:59.000Z

253

Potential Aerosol Indirect Effects on Atmospheric Circulation and Radiative Forcing through Deep Convection  

Science Conference Proceedings (OSTI)

Aerosol indirect effects, i.e., the interactions of aerosols with clouds by serving as cloud condensation nuclei (CCN) or ice nuclei (IN), constitute the largest uncertainty in climate forcing and projection. Previous IPCC reported aerosol indirect forcing is negative, which does not account for aerosol-convective cloud interactions because the complex processes involved are poorly understood and represented in climate models. Here we report that aerosol indirect effect on deep convective cloud systems can lead to enhanced regional convergence and a strong top-of atmosphere (TOA) warming. Aerosol invigoration effect on convection can result in a strong radiative warming in the atmosphere (+5.6 W m-2) due to strong night-time warming, a lofted latent heating, and a reduced diurnal temperature difference, all of which could remarkably impact regional circulation and modify weather systems. We further elucidated how aerosols change convective intensity, diabatic heating, and regional circulation under different environmental conditions and concluded that wind shear and cloud base temperature play key roles in determining the significance of aerosol invigoration effect for convective systems.

Fan, Jiwen; Rosenfeld, Daniel; Ding, Yanni; Leung, Lai-Yung R.; Li, Zhanqing

2012-05-10T23:59:59.000Z

254

Specification of CuCrZr Alloy Properties after Various Thermo-Mechanical Treatments and Design Allowables including Neutron Irradiation Effects  

Science Conference Proceedings (OSTI)

Precipitation hardened CuCrZr alloy is a promising heat sink and functional material for various applica- tions in ITER, for example the first wall, blanket electrical attachment, divertor, and heating systems. Three types of thermo-mechanical treatment were identified as most promising for the various applica- tions in ITER: solution annealing, cold working and ageing; solution annealing and ageing; solution annealing and ageing at non-optimal condition due to specific manufacturing processes for engineer- ing-scale components. The available data for these three types of treatments were assessed and mini- mum tensile properties were determined based on recommendation of Structural Design Criteria for the ITER In-vessel Components. The available data for these heat treatments were analyzed for assess- ment of neutron irradiation effect. Using the definitions of the ITER Structural Design Criteria the design allowable stress intensity values are proposed for CuCrZr alloy after various heat treatments.

Barabash, Vladimir [ITER Organization, Saint Paul Lez Durance, France; Kalinin, G. M. [RDIPE, P.O. Box 788, 101000 Moscow, Russia; Fabritsiev, Sergei A. [D.V. Efremov Scientific Research Institute, St. Petersburg, Russia; Zinkle, Steven J [ORNL

2012-01-01T23:59:59.000Z

255

Lack of effects of atomic bomb radiation on genetic instability of tandem-repetitive elements in human germ cells  

Science Conference Proceedings (OSTI)

In a pilot study to detect the potential effects of atomic bomb radiation on germ-line instability, we screened 64 children from 50 exposed families and 60 from 50 control families for mutations at six minisatellite loci by using Southern blot analysis with Pc-1, {lambda}TM-18, ChdTC-15, p{lambda}g3, {lambda}MS-1, and CEB-1 probes. In the exposed families, one or both parents received a radiation dose >0.01 Sv. Among the 64 children, only one child had parents who were both exposed. Thus, of a total of 128 gametes that produced the 64 children, 65 gametes were derived from exposed parents and 63 were from unexposed parents, the latter being included in a group of 183 unexposed gametes used for calculating mutation rates. The average parental gonadal dose for the 65 gametes was 1.9 Sv. We detected a total of 28 mutations at the p{lambda}g3, {lambda}MS-1, and CEB-1 loci, but no mutations at the Pc-1, {lambda}TM-18, and ChdTC-15 loci. We detected 6 mutations in 390 alleles of the 65 exposed gametes and 22 mutations in 1098 alleles of the 183 gametes from the unexposed parents. The mean mutation rate per locus per gamete in these six minisatellite loci was 1.5% in the exposed parents and 2.0% in the unexposed parents. We observed no significant difference in mutation rates in the children of the exposed and the unexposed parents (P = .37, Fisher`s exact probability test). 38 refs., 1 fig., 5 tabs.

Kodaira, Mieko; Satoh, Chiyoko [Radiation Effects Research Foundation, Hiroshima (Japan); Hiyama, Keiko [Radiation Effects Research Foundation, Hiroshima (Japan)]|[Hiroshima Univ. School of Medicine (Japan)] [and others

1995-12-01T23:59:59.000Z

256

Thermovoltaic semiconductor device including a plasma filter  

DOE Patents (OSTI)

A thermovoltaic energy conversion device and related method for converting thermal energy into an electrical potential. An interference filter is provided on a semiconductor thermovoltaic cell to pre-filter black body radiation. The semiconductor thermovoltaic cell includes a P/N junction supported on a substrate which converts incident thermal energy below the semiconductor junction band gap into electrical potential. The semiconductor substrate is doped to provide a plasma filter which reflects back energy having a wavelength which is above the band gap and which is ineffectively filtered by the interference filter, through the P/N junction to the source of radiation thereby avoiding parasitic absorption of the unusable portion of the thermal radiation energy.

Baldasaro, Paul F. (Clifton Park, NY)

1999-01-01T23:59:59.000Z

257

Activities of the National Academy of Sciences in relation to the Radiation Effects Research Foundation. Annual performance report, June 1, 1991--May 31, 1992  

SciTech Connect

This progress report relates progress in the various research projects evaluating the late health effects, both somatic and genetic, resulting from radiation exposure of the survivors of the atomic bombs at Hiroshima and Nagasaki, Japan. Considerable progress has been made in the collection and utilization of the various epidemiological data bases. These include the Life Span Study, (LSS) cohort, the Adult Health Study (AHS) cohort, the In Utero cohort, the leukemia registry and the F-1 Study population. Important progress has been made in using RERF Tumor and Tissue Registry records for evaluation of cancer incidence and radiation risk estimates for comparison with cancer mortality and risk in the LSS cohort. At the present time, a manuscript on the incidence of solid tumors (1950-1987) is undergoing internal and external review for publication as an RERF Technical report (TR) and for publication in a peer-reviewed scientific journal. In addition, manuscripts are in preparation on (1) a comprehensive report on the incidence of hematological cancers, including analysis of leukemia by cell type (1950-1987), (2) a general description of Tumor Registry operations and (3) a comparison of incidence- and mortality-based estimates of radiation risk in the LSS cohort.

Edington, C.W.

1992-06-01T23:59:59.000Z

258

A review of ground-based heavy-ion radiobiology relevant to space radiation risk assessment: Part II. Cardiovascular and immunological effects  

E-Print Network (OSTI)

al. , Late effects of the chernobyl radiation accident on TMortality among the chernobyl emergency workers: estimationcerebrovascular disease in chernobyl emergency workers,

Blakely, Eleanor A.

2008-01-01T23:59:59.000Z

259

Effects of radiation and compression on propagating spherical flames of methane/air mixtures near the lean flammability limit  

SciTech Connect

Large discrepancies between the laminar flame speeds and Markstein lengths measured in experiments and those predicted by simulations for ultra-lean methane/air mixtures bring a great concern for kinetic mechanism validation. In order to quantitatively explain these discrepancies, a computational study is performed for propagating spherical flames of lean methane/air mixtures in different spherical chambers using different radiation models. The emphasis is focused on the effects of radiation and compression. It is found that the spherical flame propagation speed is greatly reduced by the coupling between thermal effect (change of flame temperature or unburned gas temperature) and flow effect (inward flow of burned gas) induced by radiation and/or compression. As a result, for methane/air mixtures near the lean flammability limit, the radiation and compression cause large amounts of under-prediction of the laminar flame speeds and Markstein lengths extracted from propagating spherical flames. Since radiation and compression both exist in the experiments on ultra-lean methane/air mixtures reported in the literature, the measured laminar flame speeds and Markstein lengths are much lower than results from simulation and thus cannot be used for kinetic mechanism validation. (author)

Chen, Zheng [State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Aerospace Engineering, College of Engineering, Peking University, Beijing 100871 (China)

2010-12-15T23:59:59.000Z

260

Assessment of the Effective Dose Equivalent for External Photon Radiation: Volume 2: Calculational Techniques for Estimating Externa l Effective Dose Equivalent from Dosimeter Readings  

Science Conference Proceedings (OSTI)

Recent revisions to the radiation protection standards contained in Title 10 Part 20 of the Code of Federal Regulations require nuclear power plants to assess a worker's "effective dose equivalent" (EDE). This report explains the concept of effective dose equivalent and describes research to improve the dosimetric methods presently used for assessing EDE.

1995-09-28T23:59:59.000Z

Note: This page contains sample records for the topic "including radiation effects" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Radiation in Particle Simulations  

SciTech Connect

Hot dense radiative (HDR) plasmas common to Inertial Confinement Fusion (ICF) and stellar interiors have high temperature (a few hundred eV to tens of keV), high density (tens to hundreds of g/cc) and high pressure (hundreds of megabars to thousands of gigabars). Typically, such plasmas undergo collisional, radiative, atomic and possibly thermonuclear processes. In order to describe HDR plasmas, computational physicists in ICF and astrophysics use atomic-scale microphysical models implemented in various simulation codes. Experimental validation of the models used to describe HDR plasmas are difficult to perform. Direct Numerical Simulation (DNS) of the many-body interactions of plasmas is a promising approach to model validation but, previous work either relies on the collisionless approximation or ignores radiation. We present four methods that attempt a new numerical simulation technique to address a currently unsolved problem: the extension of molecular dynamics to collisional plasmas including emission and absorption of radiation. The first method applies the Lienard-Weichert solution of Maxwell's equations for a classical particle whose motion is assumed to be known. The second method expands the electromagnetic field in normal modes (planewaves in a box with periodic boundary-conditions) and solves the equation for wave amplitudes coupled to the particle motion. The third method is a hybrid molecular dynamics/Monte Carlo (MD/MC) method which calculates radiation emitted or absorbed by electron-ion pairs during close collisions. The fourth method is a generalization of the third method to include small clusters of particles emitting radiation during close encounters: one electron simultaneously hitting two ions, two electrons simultaneously hitting one ion, etc. This approach is inspired by the virial expansion method of equilibrium statistical mechanics. Using a combination of these methods we believe it is possible to do atomic-scale particle simulations of fusion ignition plasmas including the important effects of radiation emission and absorption.

More, R; Graziani, F; Glosli, J; Surh, M

2010-11-19T23:59:59.000Z

262

Project Title: Examine the effect of cropping systems that include canola (Brassica napus L.), yellow mustard (Sinapis alba L.) or oriental mustard (B. juncea L.) on yield of subsequent spring  

E-Print Network (OSTI)

Project Title: Examine the effect of cropping systems that include canola (Brassica napus L crops, canola and yellow mustard have shown good rotational effects when grown with small grain cereals. Traditionally, winter canola or rapeseed (Brassica napus L.) crops were produced only on a small acreage

Brown, Jack

263

Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES)  

Science Conference Proceedings (OSTI)

Substantial uncertainties still exist in the scientific understanding of the possible interactions between urban and natural (biogenic) emissions in the production and transformation of atmospheric aerosol and the resulting impact on climate change. The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Carbonaceous Aerosol and Radiative Effects Study (CARES) carried out in June 2010 in Central Valley, California, was a comprehensive effort designed to improve this understanding. The primary objective of the field study was to investigate the evolution of secondary organic and black carbon aerosols and their climate-related properties in the Sacramento urban plume as it was routinely transported into the forested Sierra Nevada foothills area. Urban aerosols and trace gases experienced significant physical and chemical transformations as they mixed with the reactive biogenic hydrocarbons emitted from the forest. Two heavily-instrumented ground sites - one within the Sacramento urban area and another about 40 km to the northeast in the foothills area - were set up to characterize the evolution of meteorological variables, trace gases, aerosol precursors, aerosol size, composition, and climate-related properties in freshly polluted and 'aged' urban air. On selected days, the DOE G-1 aircraft was deployed to make similar measurements upwind and across the evolving Sacramento plume in the morning and again in the afternoon. The NASA B-200 aircraft, carrying remote sensing instruments, was also deployed to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties within and around the plume. This overview provides: a) the scientific background and motivation for the study, b) the operational and logistical information pertinent to the execution of the study, c) an overview of key observations and initial results from the aircraft and ground-based sampling platforms, and d) a roadmap of planned data analyses and focused modeling efforts that will facilitate the integration of new knowledge into improved representations of key aerosol processes in climate models.

Zaveri, Rahul A.; Shaw, William J.; Cziczo, D. J.; Schmid, Beat; Ferrare, R.; Alexander, M. L.; Alexandrov, Mikhail; Alvarez, R. J.; Arnott, W. P.; Atkinson, D.; Baidar, Sunil; Banta, Robert M.; Barnard, James C.; Beranek, Josef; Berg, Larry K.; Brechtel, Fred J.; Brewer, W. A.; Cahill, John F.; Cairns, Brian; Cappa, Christopher D.; Chand, Duli; China, Swarup; Comstock, Jennifer M.; Dubey, Manvendra K.; Easter, Richard C.; Erickson, Matthew H.; Fast, Jerome D.; Floerchinger, Cody; Flowers, B. A.; Fortner, Edward; Gaffney, Jeffrey S.; Gilles, Mary K.; Gorkowski, K.; Gustafson, William I.; Gyawali, Madhu S.; Hair, John; Hardesty, Michael; Harworth, J. W.; Herndon, Scott C.; Hiranuma, Naruki; Hostetler, Chris A.; Hubbe, John M.; Jayne, J. T.; Jeong, H.; Jobson, Bertram T.; Kassianov, Evgueni I.; Kleinman, L. I.; Kluzek, Celine D.; Knighton, B.; Kolesar, K. R.; Kuang, Chongai; Kubatova, A.; Langford, A. O.; Laskin, Alexander; Laulainen, Nels S.; Marchbanks, R. D.; Mazzoleni, Claudio; Mei, F.; Moffet, Ryan C.; Nelson, Danny A.; Obland, Michael; Oetjen, Hilke; Onasch, Timothy B.; Ortega, Ivan; Ottaviani, M.; Pekour, Mikhail S.; Prather, Kimberly A.; Radney, J. G.; Rogers, Ray; Sandberg, S. P.; Sedlacek, Art; Senff, Christoph; Senum, Gunar; Setyan, Ari; Shilling, John E.; Shrivastava, ManishKumar B.; Song, Chen; Springston, S. R.; Subramanian, R.; Suski, Kaitlyn; Tomlinson, Jason M.; Volkamer, Rainer M.; Wallace, Hoyt A.; Wang, J.; Weickmann, A. M.; Worsnop, Douglas R.; Yu, Xiao-Ying; Zelenyuk, Alla; Zhang, Qi

2012-08-22T23:59:59.000Z

264

Travel for the 2004 American Statistical Association Biannual Radiation Meeting: "Radiation in Realistic Environments: Interactions Between Radiation and Other Factors  

SciTech Connect

The 16th ASA Conference on Radiation and Health, held June 27-30, 2004 in Beaver Creek, CO, offered a unique forum for discussing research related to the effects of radiation exposures on human health in a multidisciplinary setting. The Conference furnishes investigators in health related disciplines the opportunity to learn about new quantitative approaches to their problems and furnishes statisticians the opportunity to learn about new applications for their discipline. The Conference was attended by about 60 scientists including statisticians, epidemiologists, biologists and physicists interested in radiation research. For the first time, ten recipients of Young Investigator Awards participated in the conference. The Conference began with a debate on the question: “Do radiation doses below 1 cGy increase cancer risks?” The keynote speaker was Dr. Martin Lavin, who gave a banquet presentation on the timely topic “How important is ATM?” The focus of the 2004 Conference on Radiation and Health was Radiation in Realistic Environments: Interactions Between Radiation and Other Risk Modifiers. The sessions of the conference included: Radiation, Smoking, and Lung Cancer Interactions of Radiation with Genetic Factors: ATM Radiation, Genetics, and Epigenetics Radiotherapeutic Interactions The Conference on Radiation and Health is held bi-annually, and participants are looking forward to the 17th conference to be held in 2006.

Brenner, David J.

2009-07-21T23:59:59.000Z

265

The Effect of Changes in Cloud Amount on the Net Radiation at the Top of the Atmosphere  

Science Conference Proceedings (OSTI)

Due to the opposing albedo and greenhouse effects of clouds, the possibility exists that the net radiation at the top of the earth-atmosphere system is, in the mean, insensitive to changes in cloud amount. If so, this would have important ...

George Ohring; Philip Clapp

1980-02-01T23:59:59.000Z

266

Radiation dosimeter  

DOE Patents (OSTI)

A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even though the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

Fox, Richard J. (Oak Ridge, TN)

1983-01-01T23:59:59.000Z

267

Radiation dosimeter  

DOE Patents (OSTI)

A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even through the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

Fox, R.J.

1981-09-01T23:59:59.000Z

268

Separating Radiation and Thermal Effects on Lateral PNP Bipolar Junction Transistors Operating in the Space Environment.  

E-Print Network (OSTI)

??Radiation-induced gain degradation in bipolar devices is considered to be the primary threat to linear bipolar circuits operating in the space environment. The damage is… (more)

Campola, Michael Joseph

2011-01-01T23:59:59.000Z

269

Effect of Low Dose Radiation on Antioxidant Levels in Rat Brain  

NLE Websites -- All DOE Office Websites (Extended Search)

Low Dose Radiation on Antioxidant Levels in Rat Brain Mohan Doss Fox Chase Cancer Center Abstract Background: Parkinsons disease (PD) is characterized by progressive...

270

Effects of High Dietary Iron and Gamma Radiation on Oxidative Stress and Bone  

E-Print Network (OSTI)

Astronauts in space flight missions are exposed to increased iron (Fe) stores and galactic cosmic radiation, both of which independently induce oxidative stress. Oxidative stress can result in protein, lipid, and DNA oxidation. Recent evidence has linked oxidative stress to bone loss with aging and estrogen deficiency. Whether the increased iron stores and radiation that astronauts face are exacerbating their extreme bone loss while in space is unclear. We hypothesized that elevated iron levels (induced by feeding a high iron diet) and gamma radiation exposure would independently increase markers of oxidative stress and markers of oxidative damage and result in loss of bone mass, with the combined treatment having additive or synergistic effects. Male Sprague-Dawley rats (15-weeks old, n=32) were randomized to receive an adequate (45 mg Fe/kg diet) or high (650 mg Fe/kg diet) Fe diet for 4 weeks and either 3 Gy (8 fractions, 0.375 Gy each) of 137Cs radiation (?RAD) or sham exposure every other day over 16 days starting on day 14. Serum Fe and catalase and liver Fe and glutathione peroxidase (GPX) were assessed by standard techniques. Immunostaining for 8-hydroxy-2-deoxyguanosine (8-OHdG, marker of DNA adducts) quantified the number of cells with oxidative damage in cortical bone. Bone histomorphometry assessed bone cell activity and cancellous bone microarchitecture in the metaphyseal region. Ex vivo pQCT quantified volumetric bone mineral density (vBMD); bone mechanical strength was assessed by 3-pt bending at the midshaft tibia and compression of the femoral neck. High Fe diet increased liver Fe and decreased volume per total volume (BV/TV). ?RAD decreased osteoid surface per bone surface (OS/BS) and osteocyte density. The combined treatment increased serum catalase, liver GPX, and serum iron and decreased cancellous vBMD and trabecular number (Tb.N). High Fe diet and ?RAD independently increased number of osteocytes stained positive for 8-OHdG, with the combined treatment exhibiting twice as many osteocytes positively stained compared to the control. Higher serum Fe levels were associated with higher oxidative damage (r =0.38) and lower proximal tibial cancellous vBMD (r =–0.38). Higher serum catalase levels were associated with higher oxidative damage (r =0.48), lower BV/TV (r =–0.40) and lower cancellous vBMD (r =–0.39). High dietary iron and fractionated 137Cs ?RAD leads to a moderate elevation in iron stores and results in oxidative damage in bone and are associated with decreased cancellous bone density. Moderate elevations in iron stores are not only found in astronauts, but also naturally occur in healthy human populations. This healthy population with elevated iron stores may also have increased levels of oxidative stress in the body. Elevated levels of oxidative stress not only increase one’s risk for accelerated bone loss, but also the risk of developing other chronic diseases such as insulin resistance, hypertension, dyslipidemia, and metabolic syndrome.

Yuen, Evelyn P

2013-05-01T23:59:59.000Z

271

National Solar Radiation Data Base

The National Solar Radiation...  

Open Energy Info (EERE)

National Solar Radiation Data Base (NSRDB) is the most comprehensive collection of solar data freely available. The 1991 - 2005 NSRDB contains hourly solar radiation (including...

272

Low Dose Radiation Research Program: DOE Lowdose Radiation Program Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Using a Low LET Electron Microbeam to Investigate Non-Targeted Using a Low LET Electron Microbeam to Investigate Non-Targeted Effects of Low Dose Radiation. Authors: William F. Morgan1 and Marianne B. Sowa2 Institutions: 1Radiation Oncology Research Laboratory, University of Maryland, Baltimore MD 21201 2 Chemical Structure and Dynamics, Pacific Northwest National Laboratory, Richland WA 99352 We have recently installed a low LET electron microbeam that generates energetic electrons to mimic radiation damage from gamma and x-ray sources. It has been designed such that high-energy electrons deposit energy in a pre-selected subset of cells leaving neighboring cells unirradiated (Figure 1). In this way it is possible to examine non-targeted effects associated with low dose radiation exposure including induced genomic instability and

273

Hydrogen Water Chemistry Effects on BWR Radiation Buildup: Volume 1: Laboratory Results and Plant Data  

Science Conference Proceedings (OSTI)

Diverse laboratory experiments and a review of the most recent dose rate data from operating plants identify some of the key factors responsible for the increase in shutdown radiation fields at a number of BWRs following implementation of hydrogen water chemistry (HWC). These insights suggest strategies to minimize radiation field increases under HWC and to avoid possible problems during chemical decontamination.

1994-12-29T23:59:59.000Z

274

Effective photoelectric converters of ultraviolet radiation with graded-gap ZnS-based layers  

SciTech Connect

The use of ultrathin ({approx}10 nm) stable p-Cu{sub 1.8}S films as a transparent component of the p-Cu{sub 1.8}S-n-ZnS heterojunction as well as of the graded-gap layers made it possible to obtain effective photoconverters of ultraviolet radiation. The results of examination of the properties of photoactive Cu{sub 1.8}S-ZnS junctions grown on the CdS or CdSe substrates with intermediate graded-gap layers CdS-Zn{sub x}Cd{sub 1-x}S or CdSe-(ZnS){sub x}(CdSe){sub 1-} {sub x}, respectively, are presented. With the correct selection of parameters of the substrates, the graded-gap layers allows one to attain the optimal characteristics of the p-n junction, to realize high electric fields at the Cu{sub 1.8}S-ZnS contact, and to solve the problem of fabrication of the back ohmic contact to ZnS without additional doping of all components of the heterostructure with a foreign impurity. Varying the thickness of a thin ZnS layer, it is possible to control the extension of the space charge in the graded-gap layer and thereby to control the long-wavelength edge of photoconverter sensitivity.

Bobrenko, Yu. N.; Pavelets, S. Yu., E-mail: pavelets@voliacable.com; Pavelets, A. M. [National Academy of Sciences of Ukraine, Lashkarev Institute of Semiconductor Physics (Ukraine)

2009-06-15T23:59:59.000Z

275

"We will die and become science" : the production of invisibility and public knowledge about Chernobyl radiation effects in Belarus  

E-Print Network (OSTI)

radiophobia’(fear of radiation), and their fear was notblamed on radiophobia (fear of radiation), stress followinganxiety and radiophobia (fear of radiation). Methodological

Kuchinskaya, Olga

2007-01-01T23:59:59.000Z

276

DOE Research Contributions to Radiation and Cancer Therapy  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Research Contributions to Radiation and Cancer Therapy Resources with Additional Information Planned radiation treatment Peregrine calculation from Mission Possible: DOE Advanced Biomedical Technology Research, page 10 Over the time span of many years, DOE's research has made many contributions to radiation and cancer therapy, including PEREGRINE and Boron Neutron Capture Therapy (BNCT). 'PEREGRINE, a hardware and software system that addresses the problem of radiation therapy dosage using fundamental physics principles, is a revolutionary new tool for analyzing and planning radiation treatment for cancer patients. About 90 percent of radiation treatment patients receive photon therapy, which is PEREGRINE's principal application. PEREGRINE may also be applied to the less frequently used electron-beam therapy and to brachytherapy, which is radiation therapy from an internally planted radiation source. It is effective for radiography, which predicts the pattern of radiation that is transmitted through a patient or other object.'1

277

Periodicity, Thermal Effects, and Vacuum Force: Rotation in Random Classical Zero-Point Radiation  

E-Print Network (OSTI)

We show that, for a detector rotating in a random classical zero-point electromagnetic or massless scalar field at zero temperature, thermal effects exist. The rotating reference system is constructed as an infinite set of Frenet-Seret tetrads so that the detector is at rest in a tetrad at each proper time. Frequency spectrum of correlation functions contains the Planck thermal factor with temperature $T_{rot} = \\frac{\\hbar \\Omega}{2 \\pi k_B} $. The energy density the rotating detector observes is proportional to the sum of energy densities of Planck's spectrum at the temperature $T_{rot}$ and zero-point radiation. The proportionality factor is $2/3 (4 \\gamma^2 -1)$ for an EMF and $2/9 (4 \\gamma^2 -1)$ for a MSF, where $\\gamma = (1 - (\\frac{\\Omega r}{c})^2)^{-1/2}$, and r is a rotation radius. The origin of these thermal effects is the periodicity of the correlation functions and their discrete spectrum, both following rotation with angular velocity $\\Omega$. The thermal energy can also be interpreted as a source of a vacuum force (VF) applied to the rotating detector from the vacuum field. The VF depends on the size of neither the charge nor the mass, like the force in the Casimir model for a charged particle, but, contrary to the last one, VF is attractive and directed to the center of the circular orbit. VF infinitely grows in magnitude with orbit radius. The orbits with a radius greater than $c/ \\Omega$ do not exist because the returning VF becomes infinite. On the uttermost orbit with the radius $c / \\Omega$, a linear velocity of the rotating particle would have become c. The VF becomes very small and proportional to radius when r is very small. Such VF dependence on radius, at large and small radii, can be associated respectively with so called confinement and asymptotic freedom, known in quantum chromodynamics, and provide a new explanation for them.

Yefim Semenovitch Levin

2010-03-23T23:59:59.000Z

278

Dynamics of Line-Driven Disk Winds in Active Galactic Nuclei II: Effects of Disk Radiation  

E-Print Network (OSTI)

We explore consequences of a radiation driven disk wind model for mass outflows from active galactic nuclei (AGN). We performed axisymmetric time-dependent hydrodynamic calculations using the same computational technique as Proga, Stone and Kallman (2000). We test the robustness of radiation launching and acceleration of the wind for relatively unfavorable conditions. In particular, we take into account the central engine radiation as a source of ionizing photons but neglect its contribution to the radiation force. Additionally, we account for the attenuation of the X-ray radiation by computing the X-ray optical depth in the radial direction assuming that only electron scattering contributes to the opacity. Our new simulations confirm the main result from our previous work: the disk atmosphere can 'shield' itself from external X-rays so that the local disk radiation can launch gas off the disk photosphere. We also find that the local disk force suffices to accelerate the disk wind to high velocities in the radial direction. This is true provided the wind does not change significantly the geometry of the disk radiation by continuum scattering and absorption processes; we discuss plausibility of this requirement. Synthetic profiles of a typical resonance ultraviolet line predicted by our models are consistent with observations of broad absorption line (BAL) QSOs.

D. Proga; T. R. Kallman

2004-08-16T23:59:59.000Z

279

The Effects of Moist Convection and Water Vapor Radiative Processes on Climate Sensitivity  

Science Conference Proceedings (OSTI)

The primary interest of the present study is to examine the sensitivity of climate to radiative perturbations such as increases in CO2 and solar insolation for surface temperatures warmer than present day global averaged values (Ts> 290 K). The ...

M. Lal; V. Ramanathan

1984-07-01T23:59:59.000Z

280

LET dependence of radiation-induced bystander effects using human prostate tumor cells  

E-Print Network (OSTI)

In the past fifteen years, evidence provided by many independent research groups have indicated higher numbers of cells exhibiting damage than expected based on the number of cells traversed by the radiation. This phenomenon ...

Anzenberg, Vered

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "including radiation effects" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Micrometeorological Modeling of Radiative and Convective Effects with a Building-Resolving Code  

Science Conference Proceedings (OSTI)

In many micrometeorological studies with computational fluid dynamics, building-resolving models usually assume a neutral atmosphere. Nevertheless, urban radiative transfers play an important role because of their influence on the energy budget. ...

Yongfeng Qu; Maya Milliez; Luc Musson-Genon; Bertrand Carissimo

2011-08-01T23:59:59.000Z

282

The Effects of Sunshine, Cloudiness and Haze on Received Ultraviolet Radiation in New York  

Science Conference Proceedings (OSTI)

Ultraviolet data from Rochester, Schenectady and Whiteface Mountain, New York, for the period November 1975-December 1977, have been studied to ascertain the importance of extraterrestrial ultraviolet (UV) radiation, sunshine, cloudiness and haze ...

Anita Baker-Blocker

1980-07-01T23:59:59.000Z

283

An Effective, Economic, Aspirated Radiation Shield for Air Temperature Observations and Its Spatial Gradients  

Science Conference Proceedings (OSTI)

This paper presents the design and evaluates the performance of a double-walled electrically aspirated radiation shield for thermometers measuring air temperature and its gradients in the atmospheric surface layer. Tests were performed to quantify ...

Christoph K. Thomas; Alexander R. Smoot

2013-03-01T23:59:59.000Z

284

Overlap of Solar and Infrared Spectra and the Shortwave Radiative Effect of Methane  

Science Conference Proceedings (OSTI)

This paper focuses on two shortcomings of radiative transfer codes commonly used in climate models. The first aspect concerns the partitioning of solar versus infrared spectral energy. In most climate models, the solar spectrum comprises ...

J. Li; C. L. Curry; Z. Sun; F. Zhang

2010-07-01T23:59:59.000Z

285

Effect of Spatial Organization on Solar Radiative Transfer in Three-Dimensional Idealized Stratocumulus Cloud Fields  

Science Conference Proceedings (OSTI)

To relate the error associated with 1D radiative calculations to the geometrical scales of cloud organization and/or in-cloud optical inhomogeneities, a new idealized methodology, based on a Fourier statistical technique, has been developed. ...

F. Di Giuseppe; A. M. Tompkins

2003-08-01T23:59:59.000Z

286

Effects of Ocean Biology on the Penetrative Radiation in a Coupled Climate Model  

Science Conference Proceedings (OSTI)

The influence of phytoplankton on the seasonal cycle and the mean global climate is investigated in a fully coupled climate model. The control experiment uses a fixed attenuation depth for shortwave radiation, while the attenuation depth in the ...

Patrick Wetzel; Ernst Maier-Reimer; Michael Botzet; Johann Jungclaus; Noel Keenlyside; Mojib Latif

2006-08-01T23:59:59.000Z

287

Measuring Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Measurement Activity SI Units and Prefixes Conversions Safety Around Radiation Sources Types of Radiation Exposure Managing Radiation Emergencies Procedure Demonstration...

288

The effects of diet and ionizing radiation on azoxymethane induced colon carcinogenesis  

E-Print Network (OSTI)

The ability of ionizing radiation to enhance colon carcinogenesis and the role of diet in this process has not been documented. We hypothesized that radiation would enhance the formation of aberrant crypt foci, ACF, known precursor lesions to colon cancer, by suppressing apoptosis and upregulating proliferation in colonocytes. Diets contained a combination of fish oil or corn oil and either pectin or cellulose. We exposed 40 male Sprague-Dawley rats to 1 Gy ionizing radiation (1 GeV Fe) 10 d prior to injection with AOM. Colons were resected at the promotion stage of carcinogenesis (7 wk post initial injection) and assayed for ACF and apoptosis. Radiation treatment increased (P=0.0327) the incidence of high multiplicity ACF (foci with four or more aberrant crypts) and decreased (P=0.0340) the apoptotic index compared to non-irradiated rats. Radiation also resulted in an increase (PACF compared to the corn oil treatment. Dietary pectin significantly increased (P=0.0204) the apoptotic index compared to cellulose treatment. These data suggest that ionizing radiation can work synergistically with AOM and increase the formation of high-multiplicity ACF, upregulate cellular proliferation and decrease apoptosis in colonocytes. The data also suggest that diets containing fish oil and pectin may protect against colon cancer by increasing apoptosis and reducing the formation of high multiplicity ACF.

Mann, John Clifford

2005-08-01T23:59:59.000Z

289

12.815 Atmospheric Radiation, Fall 2005  

E-Print Network (OSTI)

Introduction to the physics of atmospheric radiation and remote sensing including use of computer codes. Radiative transfer equation including emission and scattering, spectroscopy, Mie theory, and numerical solutions. ...

Prinn, Ronald G.

290

Periodicity, Thermal Effects, and Vacuum Force: Rotation in Random Classical Zero-Point Radiation  

E-Print Network (OSTI)

We show that for a detector rotating in a random classical zero-point electromagnetic or massless scalar field at T=0 thermal effects exist. The rotating reference system is constructed as an infinite set of Frenet-Seret tetrads defined so that the detector is at rest in a tetrad at each proper time. Correlation functions, more exactly their frequency spectrum, contain the Planck thermal factor, and the energy density the rotating detector observes is proportional to the sum of energy densities of Planck's spectrum at the temperature T_rot = \\hbar \\Omega / (2 \\pi k_B) and zero-point radiation. The proportionality factor is (2/3)(4\\gamma^2 - 1) for an electromagnetic field and (2/9)(4\\gamma^2 - 1) for a massless scalar field, where \\gamma = (1 - (\\Omega r/c)^2)^(-1/2), and r is a detector rotation radius. The origin of these thermal effects is the periodicity of the correlation functions and their discrete spectrum, both following rotation with angular velocity \\Omega. The thermal energy can also be interpreted as a source of a vacuum force, f_vac, applied to the rotating detector from the vacuum field. The f_vac depends on the size of neither the charge nor the mass, like the force in the Casimir model for a charged particle, but, contrary to the last one, it is directed to the center of the circular orbit. The f_vac infinitely grows by magnitude when r \\to r_0 = c/\\Omega, with a fixed \\Omega. The orbits with a radius greater than r_0 do not exist simply because the returning vacuum force becomes infinite. On the uttermost orbit with the radius r_0, a linear velocity of the rotating particle would have become c. The f_vac becomes very small and proportional to r when r is small, r << c/\\aOmega. Such vacuum force dependence on radius, at large and small r, can be associated respectively with so called confinement and asymptotic freedom, known in QCD, and provide a new explanation for them.

Yefim Semenovitch Levin

2010-03-22T23:59:59.000Z

291

The effect of horizontal resolution on cloud radiative forcing in the ECMWF model. PCMDI report No. 22  

SciTech Connect

With expanding computer capability and capacity there has been considerable interest in increasing the resolution in GCMs. The primary driving force behind this are two fold: (1) increased resolution may reduce the systematic errors inherent in parameterization of sub-grid scale processes, and (2) higher resolution may improve confidence in regional scale studies of climatic features that are orographically influenced -- such as the effect of the Tibetan Plateau on the East Asian Monsoon. This study focuses on the effect of horizontal resolution on the spatial and temporal systematic errors of cloud radiative forcing and its components. In this paper, the top-of-the-atmosphere radiation fields are taken from a series of simulations using the European Centre for Medium Range Forecasts (ECMWF) general circulation model (cycle 33), run at four different horizontal resolutions. Section 2 discusses the concept of cloud radiative forcing and describes the simulations from the ECMWF model. The observed global field of cloud forcing from ERBE is presented in section 3 along with the model-produced fields of the net solar and longwave cloud forcing. The seasonal effect of forcing is described in section 4, and the results are summarized in section 5.

Potter, G.L.

1995-05-01T23:59:59.000Z

292

Method of enhancing radiation response of radiation detection materials  

DOE Patents (OSTI)

The present invention is a method of increasing radiation response of a radiation detection material for a given radiation signal by first pressurizing the radiation detection material. Pressurization may be accomplished by any means including mechanical and/or hydraulic. In this application, the term "pressure" includes fluid pressure and/or mechanical stress.

Miller, Steven D. (Richland, WA)

1997-01-01T23:59:59.000Z

293

Sources Of Average Individual Radiation Exposure  

NLE Websites -- All DOE Office Websites (Extended Search)

Of Average Individual Radiation Exposure Of Average Individual Radiation Exposure Natural background Medical Consumer products Industrial, security, educational and research Occupational 0.311 rem 0.300 rem 0.013 rem 0.0003 rem 0.0005 rem Savannah River Nuclear Solutions, LLC, provides radiological protection services and oversight at the Savannah River Site (SRS). These services include radiation dose measurements for persons who enter areas where they may be exposed to radiation or radioactive material. The results are periodically reported to monitored individuals. The results listed are based on a radiation dose system developed by the International Commission on Radiation Protection. The system uses the terms "effective dose," "equivalent dose" and units of rem. You may be more familiar with the term "millirem" (mrem), which is 1/1000 of a rem.

294

radiation.p65  

Office of Legacy Management (LM)

5 5 United States Department of Energy This fact sheet explains the potential health hazards associated with the radioactive decay of uranium and other radioactive elements found in ore and mill tailings. Potential Health Hazards of Radiation Man-made sources of radiation, most notably from medical uses and consumer products, contribute to the remaining radiation dose that individuals receive. A few household products, including smoke detectors, micro- wave ovens, and color televisions, emit small amounts of radiation. For most people, the benefits from using such products far outweigh the radiation risks. Radiation Dose Radiation is measured in various units. Individuals who have been exposed to radiation have received a radiation dose. Radiation dose to people is expressed in

295

Radiation Hydrodynamics  

DOE Green Energy (OSTI)

The discipline of radiation hydrodynamics is the branch of hydrodynamics in which the moving fluid absorbs and emits electromagnetic radiation, and in so doing modifies its dynamical behavior. That is, the net gain or loss of energy by parcels of the fluid material through absorption or emission of radiation are sufficient to change the pressure of the material, and therefore change its motion; alternatively, the net momentum exchange between radiation and matter may alter the motion of the matter directly. Ignoring the radiation contributions to energy and momentum will give a wrong prediction of the hydrodynamic motion when the correct description is radiation hydrodynamics. Of course, there are circumstances when a large quantity of radiation is present, yet can be ignored without causing the model to be in error. This happens when radiation from an exterior source streams through the problem, but the latter is so transparent that the energy and momentum coupling is negligible. Everything we say about radiation hydrodynamics applies equally well to neutrinos and photons (apart from the Einstein relations, specific to bosons), but in almost every area of astrophysics neutrino hydrodynamics is ignored, simply because the systems are exceedingly transparent to neutrinos, even though the energy flux in neutrinos may be substantial. Another place where we can do ''radiation hydrodynamics'' without using any sophisticated theory is deep within stars or other bodies, where the material is so opaque to the radiation that the mean free path of photons is entirely negligible compared with the size of the system, the distance over which any fluid quantity varies, and so on. In this case we can suppose that the radiation is in equilibrium with the matter locally, and its energy, pressure and momentum can be lumped in with those of the rest of the fluid. That is, it is no more necessary to distinguish photons from atoms, nuclei and electrons, than it is to distinguish hydrogen atoms from helium atoms, for instance. There are all just components of a mixed fluid in this case. So why do we have a special subject called ''radiation hydrodynamics'', when photons are just one of the many kinds of particles that comprise our fluid? The reason is that photons couple rather weakly to the atoms, ions and electrons, much more weakly than those particles couple with each other. Nor is the matter-radiation coupling negligible in many problems, since the star or nebula may be millions of mean free paths in extent. Radiation hydrodynamics exists as a discipline to treat those problems for which the energy and momentum coupling terms between matter and radiation are important, and for which, since the photon mean free path is neither extremely large nor extremely small compared with the size of the system, the radiation field is not very easy to calculate. In the theoretical development of this subject, many of the relations are presented in a form that is described as approximate, and perhaps accurate only to order of {nu}/c. This makes the discussion cumbersome. Why are we required to do this? It is because we are using Newtonian mechanics to treat our fluid, yet its photon component is intrinsically relativistic; the particles travel at the speed of light. There is a perfectly consistent relativistic kinetic theory, and a corresponding relativistic theory of fluid mechanics, which is perfectly suited to describing the photon gas. But it is cumbersome to use this for the fluid in general, and we prefer to avoid it for cases in which the flow velocity satisfies {nu} << c. The price we pay is to spend extra effort making sure that the source-sink terms relating to our relativistic gas component are included in the equations of motion in a form that preserves overall conservation of energy and momentum, something that would be automatic if the relativistic equations were used throughout.

Castor, J I

2003-10-16T23:59:59.000Z

296

Nonionizing Radiation and HIV  

NLE Websites -- All DOE Office Websites (Extended Search)

Nonionizing Radiation and HIV Name: Flora R Pitchford Location: NA Country: NA Date: NA Question: What are the effects of nonionizing radiation on DNA , RNA or any other cell...

297

Oxy-fuel combustion of coal and biomass, the effect on radiative and convective heat transfer and burnout  

Science Conference Proceedings (OSTI)

This paper focuses on results of co-firing coal and biomass under oxy-fuel combustion conditions on the RWEn 0.5 MWt Combustion Test Facility (CTF). Results are presented of radiative and convective heat transfer and burnout measurements. Two coals were fired: a South African coal and a Russian Coal under air and oxy-fuel firing conditions. The two coals were also co-fired with Shea Meal at a co-firing mass fraction of 20%. Shea Meal was also co-fired at a mass fraction of 40% and sawdust at 20% with the Russian Coal. An IFRF Aerodynamically Air Staged Burner (AASB) was used. The thermal input was maintained at 0.5 MWt for all conditions studied. The test matrix comprised of varying the Recycle Ratio (RR) between 65% and 75% and furnace exit O{sub 2} was maintained at 3%. Carbon-in-ash samples for burnout determination were also taken. Results show that the highest peak radiative heat flux and highest flame luminosity corresponded to the lowest recycle ratio. The effect of co-firing of biomass resulted in lower radiative heat fluxes for corresponding recycle ratios. Furthermore, the highest levels of radiative heat flux corresponded to the lowest convective heat flux. Results are compared to air firing and the air equivalent radiative and convective heat fluxes are fuel type dependent. Reasons for these differences are discussed in the main text. Burnout improves with biomass co-firing under both air and oxy-fuel firing conditions and burnout is also seen to improve under oxy-fuel firing conditions compared to air. (author)

Smart, John P.; Patel, Rajeshriben; Riley, Gerry S. [RWEnpower, Windmill Hill Business Park, Whitehill Way, Swindon, Wiltshire SN5 6PB, England (United Kingdom)

2010-12-15T23:59:59.000Z

298

Transport and Mixing Patterns over Central California during the Carbonaceous Aerosol and Radiative Effects Study (CARES)  

SciTech Connect

We describe the synoptic and regional-scale meteorological conditions that affected the transport and mixing of trace gases and aerosols in the vicinity of Sacramento, California during June 2010 when the Carbonaceous Aerosol and Radiative Effects Study (CARES) was conducted. The meteorological measurements collected by various instruments deployed during the campaign and the performance of the chemistry version of the Weather Research and Forecasting model (WRF-Chem) are both discussed. WRF-Chem was run daily during the campaign to forecast the spatial and temporal variation of carbon monoxide emitted from 20 anthropogenic source regions in California to guide aircraft sampling. The model is shown to reproduce the overall circulations and boundary-layer characteristics in the region, although errors in the upslope wind speed and boundary-layer depth contribute to differences in the observed and simulated carbon monoxide. Thermally-driven upslope flows that transported pollutants from Sacramento over the foothills of the Sierra Nevada occurred every afternoon, except during three periods when the passage of mid-tropospheric troughs disrupted the regional-scales flow patterns. The meteorological conditions after the passage of the third trough were the most favorable for photochemistry and likely formation of secondary organic aerosols. Meteorological measurements and model forecasts indicate that the Sacramento pollutant plume was likely transported over a downwind site that collected trace gas and aerosol measurements during 23 periods; however, direct transport occurred during only eight of these periods. The model also showed that emissions from the San Francisco Bay area transported by intrusions of marine air contributed a large fraction of the carbon monoxide in the vicinity of Sacramento, suggesting that this source likely affects local chemistry. Contributions from other sources of pollutants, such as those in the Sacramento Valley and San Joaquin Valley, were relatively low. Aerosol layering in the free troposphere was observed during the morning by an airborne Lidar; WRF-Chem forecasts showed that mountain venting processes contributed to aged pollutants aloft in the valley atmosphere which then can be entrained into the growing boundary layer the subsequent day.

Fast, Jerome D.; Gustafson, William I.; Berg, Larry K.; Shaw, William J.; Pekour, Mikhail S.; Shrivastava, ManishKumar B.; Barnard, James C.; Ferrare, R.; Hostetler, Chris A.; Hair, John; Erickson, Matthew H.; Jobson, Tom; Flowers, Bradley; Dubey, Manvendra K.; Springston, Stephen R.; Pirce, Bradley R.; Dolislager, Leon; Pederson, J. R.; Zaveri, Rahul A.

2012-02-17T23:59:59.000Z

299

Transport and mixing patterns over Central California during the carbonaceous aerosol and radiative effects study (CARES)  

SciTech Connect

We describe the synoptic and regional-scale meteorological conditions that affected the transport and mixing of trace gases and aerosols in the vicinity of Sacramento, California during June 2010 when the Carbonaceous Aerosol and Radiative Effects Study (CARES) was conducted. The meteorological measurements collected by various instruments deployed during the campaign and the performance of the chemistry version of the Weather Research and Forecasting model (WRF-Chem) are both discussed. WRF-Chem was run daily during the campaign to forecast the spatial and temporal variation of carbon monoxide emitted from 20 anthropogenic source regions in California to guide aircraft sampling. The model is shown to reproduce the overall circulations and boundary-layer characteristics in the region, although errors in the upslope wind speed and boundary-layer depth contribute to differences in the observed and simulated carbon monoxide. Thermally-driven upslope flows that transported pollutants from Sacramento over the foothills of the Sierra Nevada occurred every afternoon, except during three periods when the passage of mid-tropospheric troughs disrupted the regional-scale flow patterns. The meteorological conditions after the passage of the third trough were the most favorable for photochemistry and likely formation of secondary organic aerosols. Meteorological measurements and model forecasts indicate that the Sacramento pollutant plume was likely transported over a downwind site that collected trace gas and aerosol measurements during 23 time periods; however, direct transport occurred during only eight of these periods. The model also showed that emissions from the San Francisco Bay area transported by intrusions of marine air contributed a large fraction of the carbon monoxide in the vicinity of Sacramento, suggesting that this source likely affects local chemistry. Contributions from other sources of pollutants, such as those in the Sacramento Valley and San Joaquin Valley, were relatively low. Aerosol layering in the free troposphere was observed during the morning by an airborne Lidar. WRF-Chem forecasts showed that mountain venting processes contributed to aged pollutants aloft in the valley atmosphere that are then entrained into the growing boundary layer the subsequent day.

Fast J. D.; Springston S.; Gustafson Jr., W. I.; Berg, L. K.; Shaw, W. J.; Pekour, M.; Shrivastava, M.; Barnard, J. C.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. A.; Erickson, M.; Jobson, B. T.; Flowers, B.; Dubey, M. K.; Pierce, R. B.; Dolislager, L.; Pederson, J.; Zaveri, R. A.

2012-02-17T23:59:59.000Z

300

The Effects of Radiative Cooling in a Cloud-Topped Mixed Layer  

Science Conference Proceedings (OSTI)

The sensitivity of models of cloud-topped mixed layers to various specifications of the radiative cooling rate near the cloud top is investigated. It is found that for the “dry cloud” case an assumed distributed cooling rate leads to a shallower ...

Douglas K. Lilly; Wayne H. Schubert

1980-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "including radiation effects" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Effects of estrogen and gender on cataractogenesis induced by high-LET radiation  

SciTech Connect

Planning for long-duration manned lunar and interplanetary missions requires an understanding of radiation-induced cataractogenesis. Previously, it was demonstrated that low-linear energy transfer (LET) irradiation with 10 Gy of {sup 60}Co {gamma} rays resulted in an increased incidence of cataracts in male rats compared to female rats. This gender difference was not due to differences in estrogen, since male rats treated with the major secreted estrogen 17-{beta}-estradiol (E2) showed an identical increase compared to untreated males. We now compare the incidence and rate of progression of cataracts induced by high-LET radiation in male and female Sprague-Dawley rats. Rats received a single dose of 1 Gy of 600 MeV {sup 56}Fe ions. Lens opacification was measured at 2-4 week intervals with a slit lamp. The incidence and rate of progression of radiation-induced cataracts was significantly increased in the animals in which estrogen was available from endogenous or exogenous sources. Male rats with E2 capsules implanted had significantly higher rates of progression compared to male rats with empty capsules implanted (P = 0.025) but not compared to the intact female rats. These results contrast with data obtained after low-LET irradiation and suggest the possibility that the different types of damage caused by high- and low-LET radiation may be influenced differentially by steroid sex hormones.

Henderson, M.A.; Rusek, A.; Valluri, S.; Garrett, J.; Lopez, J.; Caperell-Grant, A.; Mendonca, M.; Bigsby, R.; Dynlacht, J.

2010-02-01T23:59:59.000Z

302

J. Phycol. 34, 118125 (1998) TEMPERATURE DEPENDENCE OF UV RADIATION EFFECTS ON  

E-Print Network (OSTI)

- rayi West and West isolated from a meltwater pond on the McMurdo Ice Shelf was grown in unialgal batch photosynthesis (Vincent and Roy 1993, Williamson 1995). Solar UV-A radiation (320­ 400 nm) has also been-damage-repair mechanisms (Que- sada et al. 1995). Cold water temperatures are a characteristic fea- ture of the polar

Vincent, Warwick F.

303

Effects of Cloudiness on the High-Latitude Surface Radiation Budget  

Science Conference Proceedings (OSTI)

Ten years of hourly data on radiation, cloud and temperature collected at Resolute, Canada (75°N) show that with respect to clear skies: (i) clouds of all types, heights and extents heat the surface when it is snow-covered; (ii) low clouds ...

J. Graham Cogley; A. Henderson-Sellers

1984-05-01T23:59:59.000Z

304

Radiation effects in 1. 06-. mu. m InGaAs LED's and Si photodiodes  

SciTech Connect

Because of the low-intrinsic and radiation-induced attenuation losses in glass fibers in the wavelength range 1.0--1.3 ..mu..m, emitters and detectors operating in this range are of practical importance for radiation-environment applications. We have studied the effects of both ..gamma.. and neutron irradiation on the properties of InGaAs LED's emitting at 1.06 ..mu..m and Si photodiode detectors optimized for this wavelength. While the preirradiation light output of the InGaAs LED's is low relative to many GaAs LED's, the InGaAs devices exhibit less sensitivity to radiation than the most radiation-hardened GaAs LED's. No significant neutron-induced light-output degradation is observed below 1 x 10/sup 13/ n/cm/sup 2/, while 2 x 10/sup 7/ Co-60 rads are required before any ..gamma..-induced degradation is observed. In addition, a significant portion of the ..gamma..-induced light-output degradation can be recovered by applying forward-bias currents of the order of 50 mA in magnitude. Although ..gamma.. irradiation up to 2 x 10/sup 8/ rads has essentially no effect on the photodiodes, neutron fluences above 2 x 10/sup 14/ n/cm/sup 2/ cause a reduction in responsivity. Analysis of the neutron-induced increases in the photodiode leakage current with the guard ring attached reveals a lifetime-damage constant product of 4 x 10/sup -12/ cm/sup 2//n. Laboratory isolators made up of these emitters and detectors have typical preirradiation current-transfer ratios of 5 x 10/sup -4/ which decrease by a factor of 10 after an irradiation of 1.5 x 10/sup 14/ n/cm/sup 2/.

Barnes, C.E.

1979-08-01T23:59:59.000Z

305

Demonstrating the Potential for First-Class Research in Underdeveloped Countries: Research on Stratospheric Aerosols and Cirrus Clouds Optical Properties, and Radiative Effects in Cuba (1988–2010)  

Science Conference Proceedings (OSTI)

Optical properties of stratospheric aerosols and cirrus clouds and their radiative effects are currently important subjects of research worldwide. Those investigations are typical of developed countries, conducted by several highly specialized groups ...

Juan Carlos Antuña Marrero; René Estevan Arredondo; Boris Barja González

2012-07-01T23:59:59.000Z

306

Introduction and Fundamentals: Course on Advances in Radiation  

E-Print Network (OSTI)

exposure to Ionizing Radiation - is it really necessary?"Sternglass, "Environmental Radiation and Human Health," op.on the Effects of Atomic Radiation Sources and Effects of

Thomas, Ralph H.

2010-01-01T23:59:59.000Z

307

"We will die and become science" : the production of invisibility and public knowledge about Chernobyl radiation effects in Belarus  

E-Print Network (OSTI)

external radiation exposure and internal accumulation ofinternal accumulation), or it might (incorrectly) refer to external radiation exposure.radiation exposure should not be forgotten. Patients, for example, can be checked for their internal

Kuchinskaya, Olga

2007-01-01T23:59:59.000Z

308

Radiation receiver  

SciTech Connect

The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles.

Hunt, Arlon J. (Oakland, CA)

1983-01-01T23:59:59.000Z

309

Radiation receiver  

DOE Patents (OSTI)

The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles. 5 figs.

Hunt, A.J.

1983-09-13T23:59:59.000Z

310

NREL: Solar Radiation Research - Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities NREL's solar radiation research staff provides expertise in renewable energy measurement and instrumentation. Major capabilities include solar resource measurement,...

311

The dissipative effect of thermal radiation loss in high-temperature dense plasmas  

E-Print Network (OSTI)

A dynamical model based on the two-fluid dynamical equations with energy generation and loss is obtained and used to investigate the self-generated magnetic fields in high-temperature dense plasmas such as the solar core. The self-generation of magnetic fields might be looked at as a self-organization-type behavior of stochastic thermal radiation fields, as expected for an open dissipative system according to Prigogine's theory of dissipative structures.

L. H. Li; H. Q. Zhang

1997-11-01T23:59:59.000Z

312

Cloud Scavenging Effects on Aerosol Radiative and Cloud-nucleating Properties - Final Technical Report  

Science Conference Proceedings (OSTI)

The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles’ lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

2009-03-05T23:59:59.000Z

313

Radiation Damage in Nanostructured Metallic Films  

E-Print Network (OSTI)

High energy neutron and charged particle radiation cause microstructural and mechanical degradation in structural metals and alloys, such as phase segregation, void swelling, embrittlement and creep. Radiation induced damages typically limit nuclear materials to a lifetime of about 40 years. Next generation nuclear reactors require materials that can sustain over 60 - 80 years. Therefore it is of great significance to explore new materials with better radiation resistance, to design metals with favorable microstructures and to investigate their response to radiation. The goals of this thesis are to study the radiation responses of several nanostructured metallic thin film systems, including Ag/Ni multilayers, nanotwinned Ag and nanocrystalline Fe. Such systems obtain high volume fraction of boundaries, which are considered sinks to radiation induced defects. From the viewpoint of nanomechanics, it is of interest to investigate the plastic deformation mechanisms of nanostructured films, which typically show strong size dependence. By controlling the feature size (layer thickness, twin spacing and grain size), it is applicable to picture a deformation mechanism map which also provides prerequisite information for subsequent radiation hardening study. And from the viewpoint of radiation effects, it is of interest to explore the fundamentals of radiation response, to examine the microstructural and mechanical variations of irradiated nanometals and to enrich the design database. More importantly, with the assistance of in situ techniques, it is appealing to examine the defect generation, evolution, annihilation, absorption and interaction with internal interfaces (layer interfaces, twin boundaries and grain boundaries). Moreover, well-designed nanostructures can also verify the speculation that radiation induced defect density and hardening show clear size dependence. The focus of this thesis lies in the radiation response of Ag/Ni multilayers and nanotwinned Ag subjected to charged particles. The radiation effects in irradiated nanograined Fe are also investigated for comparison. Radiation responses in these nanostructured metallic films suggest that immiscible incoherent Ag/Ni multilayers are more resistant to radiation in comparison to their monolithic counterparts. Their mechanical properties and radiation response show strong layer thickness dependence in terms of radiation hardening and defect density. Coherent twin boundaries can interact with stacking fault tetrahedral and remove them effectively. Twin boundaries can actively absorb radiation induced defects and defect clusters resulting in boundary migration. Size dependence is also found in nanograins where fewer defects exhibit in films with smaller grains.

Yu, Kaiyuan

2013-05-01T23:59:59.000Z

314

Health effects models for nuclear power plant accident consequence analysis: Modifications of models resulting from recent reports on health effects of ionizing radiation  

Science Conference Proceedings (OSTI)

The Nuclear Regulatory Commission has sponsored several studies to identify and quantify the potential health effects of accidental releases of radionuclides from nuclear power plants. The most recent health effects models resulting from these efforts were published in two reports, NUREG/CR-4214, Rev. 1, Part 1 (1990) and Part 2 (1989). Several major health effects reports have been published recently that may impact the health effects models presented in these reports. This addendum to the Part 2 (1989) report, provides a review of the 1986 and 1988 reports by the United Nations Scientific Committee on the Effects of Atomic Radiation, the National Academy of Sciences/National Research Council BEAR 5 Committee report and Publication 60 of the International Commission on Radiological Protection as they relate to this report. The three main sections of this addendum discuss early occurring and continuing effects, late somatic effects, and genetic effects. The major changes to the NUREG/CR-4214 health effects models recommended in this addendum are for late somatic effects. These changes reflect recent changes in cancer risk factors that have come from longer followup and revised dosimetry in major studies like that on the Japanese A-bomb survivors. The results presented in this addendum should be used with the basic NUREG/CR-4214 reports listed above to obtain the most recent views on the potential health effects of radionuclides released accidentally from nuclear power plants. 48 refs., 4 figs., 24 tabs.

Abrahamson, S. (Wisconsin Univ., Madison, WI (United States)); Bender, M.A. (Brookhaven National Lab., Upton, NY (United States)); Boecker, B.B.; Scott, B.R. (Lovelace Biomedical and Environmental Research Inst., Albuquerque, NM (United States). Inhalation Toxicology Research Inst.); Gilbert, E.S. (Pacific Northwest Lab., Richland, WA (United States))

1991-08-01T23:59:59.000Z

315

A Study of the Solar Radiation Effect on the 4.3-?m Channels of the High-Resolution Infrared Radiation Sounder  

Science Conference Proceedings (OSTI)

Measurements of infrared radiation from the National Oceanic and Atmospheric Administration series of satellites are used to retrieve atmospheric temperature, moisture, and ozone. It is well known that the measurements from the 4.3-?m channels of ...

Larry M. McMillin; David S. Crosby

2000-10-01T23:59:59.000Z

316

High energy atomic chemistry and chemical radiation effects. Progress report, January 1, 1973--December 31, 1973  

SciTech Connect

Research progress is reported on high energy atomic chemistry studies that include stopping power research; classical trajectory calculations; F to HF abstraction reactions; hot substitution reactions; and fast neutron dosimetry. A listing is included of technical publications resulting from the research and manuscripts in preparation. Abstracts of technical papers scheduled for presentation are also included. (DHM)

1973-01-01T23:59:59.000Z

317

EFFECT OF SURFACE PREPARATION TECHNIQUE ON THE RADIATION DETECTOR PERFORMANCEOF CDZNTE  

Science Conference Proceedings (OSTI)

Synthetic CdZnTe (CZT) semiconducting crystals are highly suitable for the room temperature-based detection of gamma radiation. The surface preparation of Au contacts on surfaces of CZT detectors is typically conducted after (1) polishing to remove artifacts from crystal sectioning and (2) chemical etching, which removes residual mechanical surface damage however etching results in a Te rich surface layer that is prone to oxidize. Our studies show that CZT surfaces that are only polished (as opposed to polished and etched) can be contacted with Au and will yield lower surface currents. Due to their decreased dark currents, these as-polished surfaces can be used in the fabrication of gamma detectors exhibiting a higher performance than polished and etched surfaces with relatively less peak tailing and greater energy resolution. CdZnTe or ''CZT'' crystals are attractive to use in homeland security applications because they detect radiation at room temperature and do not require low temperature cooling as with silicon- and germanium-based detectors. Relative to germanium and silicon detectors, CZT is composed of higher Z elements and has a higher density, which gives it greater ''stopping power'' for gamma rays making a more efficient detector. Single crystal CZT materials with high bulk resistivity ({rho}>10{sup 10} {Omega} x cm) and good mobility-lifetime products are also required for gamma-ray spectrometric applications. However, several factors affect the detector performance of CZT are inherent to the as grown crystal material such as the presence of secondary phases, point defects and the presence of impurities (as described in a literature review by R. James and researchers). These and other factors can limit radiation detector performance such as low resistivity, which causes a large electronic noise and the presence of traps and other heterogeneities, which result in peak tailing and poor energy resolution.

Duff, M

2007-05-23T23:59:59.000Z

318

Structural Stability of Human Fibroblast Growth Factor-1 Is Essential for Protective Effects Against Radiation-Induced Intestinal Damage  

Science Conference Proceedings (OSTI)

Purpose: Human fibroblast growth factor-1 (FGF1) has radioprotective effects on the intestine, although its structural instability limits its potential for practical use. Several stable FGF1 mutants were created increasing stability in the order, wild-type FGF1, single mutants (Q40P, S47I, and H93G), Q40P/S47I, and Q40P/S47I/H93G. This study evaluated the contribution of the structural stability of FGF1 to its radioprotective effect. Methods and Materials: Each FGF1 mutant was administered intraperitoneally to BALB/c mice in the absence of heparin 24 h before or after total body irradiation (TBI) with {gamma}-rays at 8-12 Gy. Several radioprotective effects were examined in the jejunum. Results: Q40P/S47I/H93G could activate all subtypes of FGF receptors in vitro much more strongly than the wild-type without endogenous or exogenous heparin. Preirradiation treatment with Q40P/S47I/H93G significantly increased crypt survival more than wild-type FGF1 after TBI at 10 or 12 Gy, and postirradiation treatment with Q40P/S47I/H93G was effective in promoting crypt survival after TBI at 10, 11, or 12 Gy. In addition, crypt cell proliferation, crypt depth, and epithelial differentiation were significantly promoted by postirradiation treatment with Q40P/S47I/H93G. The level of stability of FGF1 mutants correlated with their mitogenic activities in vitro in the absence of heparin; however, preirradiation treatment with the mutants increased the crypt number to almost the same level as Q40P/S47I/H93G. When given 24 h after TBI at 10 Gy, all FGF1 mutants increased crypt survival more than wild-type FGF1, and Q40P/S47I/H93G had the strongest mitogenic effects in intestinal epithelial cells after radiation damage. Moreover, Q40P/S47I/H93G prolonged mouse survival after TBI because of the repair of intestinal damage. Conclusion: These findings suggest that the structural stability of FGF1 can contribute to the enhancement of protective effects against radiation-induced intestinal damage. Therefore, Q40P/S47I/H93G is pharmacologically one of the most promising candidates for clinical applications for radiation-induced gastrointestinal syndrome.

Nakayama, Fumiaki, E-mail: f_naka@nirs.go.jp [Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan)] [Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Umeda, Sachiko [Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan)] [Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Yasuda, Takeshi [Department of Radiation Emergency Medicine, Research Center for Radiation Emergency Medicine, National Institute of Radiological Sciences, Chiba (Japan)] [Department of Radiation Emergency Medicine, Research Center for Radiation Emergency Medicine, National Institute of Radiological Sciences, Chiba (Japan); Asada, Masahiro; Motomura, Kaori; Suzuki, Masashi [Signaling Molecules Research Laboratory, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki (Japan)] [Signaling Molecules Research Laboratory, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki (Japan); Zakrzewska, Malgorzata [Faculty of Biotechnology, University of Wroclaw (Poland)] [Faculty of Biotechnology, University of Wroclaw (Poland); Imamura, Toru [Signaling Molecules Research Laboratory, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki (Japan)] [Signaling Molecules Research Laboratory, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki (Japan); Imai, Takashi [Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan)] [Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan)

2013-02-01T23:59:59.000Z

319

Radiative Heat Transfer between Neighboring Particles  

E-Print Network (OSTI)

The near-field interaction between two neighboring particles is known to produce enhanced radiative heat transfer. We advance in the understanding of this phenomenon by including the full electromagnetic particle response, heat exchange with the environment, and important radiative corrections both in the distance dependence of the fields and in the particle absorption coefficients. We find that crossed terms of electric and magnetic interactions dominate the transfer rate between gold and SiC particles, whereas radiative corrections reduce it by several orders of magnitude even at small separations. Radiation away from the dimer can be strongly suppressed or enhanced at low and high temperatures, respectively. These effects must be taken into account for an accurate description of radiative heat transfer in nanostructured environments.

Alejandro Manjavacas; F. Javier Garcia de Abajo

2012-01-26T23:59:59.000Z

320

Assessment of Uncertainty in Cloud Radiative Effects and Heating Rates through Retrieval Algorithm Differences: Analysis using 3-years of ARM data at Darwin, Australia  

SciTech Connect

Ground-based radar and lidar observations obtained at the Department of Energy’s Atmospheric Radiation Measurement Program’s Tropical Western Pacific site located in Darwin, Australia are used to retrieve ice cloud properties in anvil and cirrus clouds. Cloud microphysical properties derived from four different retrieval algorithms (two radar-lidar and two radar only algorithms) are compared by examining mean profiles and probability density functions of effective radius (Re), ice water content (IWC), extinction, ice number concentration, ice crystal fall speed, and vertical air velocity. Retrieval algorithm uncertainty is quantified using radiative flux closure exercises. The effect of uncertainty in retrieved quantities on the cloud radiative effect and radiative heating rates are presented. Our analysis shows that IWC compares well among algorithms, but Re shows significant discrepancies, which is attributed primarily to assumptions of particle shape. Uncertainty in Re and IWC translates into sometimes-large differences in cloud radiative effect (CRE) though the majority of cases have a CRE difference of roughly 10 W m-2 on average. These differences, which we believe are primarily driven by the uncertainty in Re, can cause up to 2 K/day difference in the radiative heating rates between algorithms.

Comstock, Jennifer M.; Protat, Alain; McFarlane, Sally A.; Delanoe, Julien; Deng, Min

2013-05-22T23:59:59.000Z

Note: This page contains sample records for the topic "including radiation effects" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Carbonaceous Aerosols and Radiative...  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerosols and Radiative Effects Study Science Objective This field campaign is designed to increase scientific knowledge about the evolution of black carbon, primary organic...

322

About Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation What is radiation? Radiation is a form of energy that is a part of our everyday lives. All of us receive a "dose" of radiation each day. Most of the dose comes from...

323

Effects of radiation on frequency of chromosomal aberrations and sister chromatid exchange in the benthic worm Neanthes arenaceodentata  

SciTech Connect

Traditional bioassays are unsuitable for assessing sublethal effects of low levels of radioactivity because mortality and phenotypic responses are not anticipated. We compared the usefulness of chromosomal aberration (CA) and sister chromatid exchange (SCE) induction as measures of low-level radiation effects in a sediment-dwelling marine worm, Neanthes arenaceodentata. Newly hatched larvae were exposed to two radiation exposure regimes. Groups of 100 larvae were exposed to either x rays delivered at high dose rates (0.7 Gy min/sup -1/) or to /sup 60/Co gamma rays delivered at low dose rates (4.8 X 10/sup -5/ to 1.2 X 10/sup -1/ Gy h/sup -1/). After irradiation, the larvae were exposed to 3 X 10/sup -5/M bromodeoxyuridine (BrdUrd) for 28 h (x-ray-irradiated larvae) or for 54 h (/sup 60/Co-irradiated larvae). Slides of larval cells were prepared for observation of CAs and SCEs. Frequencies of CAs were determined in first division cells; frequencies of SCEs were determined in second division cells. Results from x-ray irradiation indicated that dose-related increases occur in chromosome and chromatid deletions, but an x-ray dose greater than or equal to 2 Gy was required to observe a significant increase. Worm larvae receiving /sup 60/Co irradiation showed elevated SCE frequencies; a significant increase in SCE frequency was observed at 0.6 Gy. 49 references, 2 figures.

Harrison, F.L.; Rice, D.W. Jr.; Moore, D.H.; Varela, M.

1983-04-01T23:59:59.000Z

324

In vitro effects of Nd:YAG laser radiation on blood: a quantitative and morphologic analysis  

SciTech Connect

Use of the Neodymium: yttrium -aluminum -garnet (Nd:YAG) laser to recanalize stenosed arteries may require delivery of the beam through blood. To assess the degree of hemolysis and debris formation, 54 samples of citrated whole blood were exposed to Nd:YAG laser radiation of varying powers (10, 20 and 30 watts) and duration (1, 2.5 and 5 seconds). Compared to control samples which were not subjected to laser light, there was no significant decrease in hematocrit (41 to 40.5 +/- 5%), hemoglobin concentration (13.8 to 13.8 +/- .06 g/1OO ml), or increase in free hemoglobin concentration. Debris weight (from .45 +/- .002 to .45 +/- .002 mg), as well as the white blood cell count, was also not significantly changed (from 5,400 to 5,200 +/- 240 WBC/cm). Light microscopy examination of debris from samples of whole blood, washed erythrocytes, and platelet-rich plasma subjected to the laser at 30 watts for five seconds failed to demonstrate the presence of membrane denaturation of blood elements, as compared with the morphologic changes observed in whole blood samples exposed to a hot tip rather than Nd:YAG laser radiation. Nd:YAG laser can be used intravascularly without fear of hemolysis or debris micro-embolization up to a power of 30 watts for five seconds.

Borrero, E.; Rosenthal, D.; Otis, J.B.

1988-01-01T23:59:59.000Z

325

Study of radiation effects on the cell structure and evaluation of the dose delivered by x-ray and {alpha}-particles microscopy  

SciTech Connect

Hard X-ray fluorescence microscopy and magnified phase contrast imaging are combined to study radiation effects on cells. Experiments were performed on freeze-dried cells at the nano-imaging station ID22NI of the European synchrotron radiation facility. Quantitative phase contrast imaging provides maps of the projected mass and is used to evaluate the structural changes due to irradiation during X-ray fluorescence experiments. Complementary to phase contrast imaging, scanning transmission ion microscopy is performed and doses of all the experiments are compared. We demonstrate the sensitivity of the proposed approach to study radiation-induced damage at the sub-cellular level.

Kosior, Ewelina; Cloetens, Peter [European Synchrotron Radiation Facility, F-38000 Grenoble (France); Deves, Guillaume; Ortega, Richard [Univ. Bordeaux, CENBG, UMR 5797, F-33170 Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Bohic, Sylvain [European Synchrotron Radiation Facility, 38000 Grenoble (France); INSERM U-836 (Team 6: Synchrotron Radiation and Medical Research), Grenoble Institut of Neuroscience, F-38000 Grenoble (France)

2012-12-24T23:59:59.000Z

326

Appendix F Cultural Resources, Including  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appendix F Appendix F Cultural Resources, Including Section 106 Consultation STATE OF CALIFORNIA - THE RESOURCES AGENCY EDMUND G. BROWN, JR., Governor OFFICE OF HISTORIC PRESERVATION DEPARTMENT OF PARKS AND RECREATION 1725 23 rd Street, Suite 100 SACRAMENTO, CA 95816-7100 (916) 445-7000 Fax: (916) 445-7053 calshpo@parks.ca.gov www.ohp.parks.ca.gov June 14, 2011 Reply in Reference To: DOE110407A Angela Colamaria Loan Programs Office Environmental Compliance Division Department of Energy 1000 Independence Ave SW, LP-10 Washington, DC 20585 Re: Topaz Solar Farm, San Luis Obispo County, California Dear Ms. Colamaria: Thank you for seeking my consultation regarding the above noted undertaking. Pursuant to 36 CFR Part 800 (as amended 8-05-04) regulations implementing Section

327

WEAPONS EFFECTS FOR PROTECTIVE DESIGN  

SciTech Connect

A lecture intended to provide a general background in weapons effects is presented. Specific areas of nuclear explosion phenomena pertinent to the design of hardened systems discussed include nuclear radiation and shielding, fireball growth and effects, thermal radiation, air blast, cratering and throwout, ground shock effects, fallout, and afterwinds. (J.R.D.)

Brode, H.L.

1960-03-31T23:59:59.000Z

328

Countries Gasoline Prices Including Taxes  

Gasoline and Diesel Fuel Update (EIA)

Countries (U.S. dollars per gallon, including taxes) Countries (U.S. dollars per gallon, including taxes) Date Belgium France Germany Italy Netherlands UK US 01/13/14 7.83 7.76 7.90 8.91 8.76 8.11 3.68 01/06/14 8.00 7.78 7.94 8.92 8.74 8.09 3.69 12/30/13 NA NA NA NA NA NA 3.68 12/23/13 NA NA NA NA NA NA 3.63 12/16/13 7.86 7.79 8.05 9.00 8.78 8.08 3.61 12/9/13 7.95 7.81 8.14 8.99 8.80 8.12 3.63 12/2/13 7.91 7.68 8.07 8.85 8.68 8.08 3.64 11/25/13 7.69 7.61 8.07 8.77 8.63 7.97 3.65 11/18/13 7.99 7.54 8.00 8.70 8.57 7.92 3.57 11/11/13 7.63 7.44 7.79 8.63 8.46 7.85 3.55 11/4/13 7.70 7.51 7.98 8.70 8.59 7.86 3.61 10/28/13 8.02 7.74 8.08 8.96 8.79 8.04 3.64 10/21/13 7.91 7.71 8.11 8.94 8.80 8.05 3.70 10/14/13 7.88 7.62 8.05 8.87 8.74 7.97 3.69

329

Secondary radiation damage as the main cause for unexpected volume effects: A histopathologic study of the parotid gland  

Science Conference Proceedings (OSTI)

Purpose: To elucidate with a histopathological study the mechanism of region-dependent volume effects in the partly irradiated parotid gland of the rat. Methods and Materials: Wistar rats were locally X-irradiated with collimators with conformal radiation portals for 100% volume and 50% cranial/caudal partial volumes. Single doses up to 40 Gy were applied. Parotid saliva samples were collected, and the three lobes of the parotid gland were examined individually on the macro- and micromorphologic level up to 1 year after irradiation. Results: Dose-dependent loss of gland weight was observed 1 year after total or partial X-irradiation. Weight loss of the glands correlated very well with loss of secretory function. Irradiating the cranial 50% volume (implicating a shielded lateral lobe) resulted in substantially more damage in terms of weight loss and loss of secretory function than 50% caudal irradiation (shielding the ventral and dorsal lobe). Histologic examinations of the glands 1 year after irradiation revealed that the shielded lateral lobe was severely affected, in contrast to the shielded ventral and dorsal lobes. Time studies showed that irradiation of the cranial 50% volume caused late development of secondary damage in the shielded lateral lobe, becoming manifest between 240 and 360 days after irradiation. The possible clinical significance of this finding is discussed. Conclusion: It is concluded that the observed region-dependent volume effect for late function loss in the rat parotid gland after partial irradiation is mainly caused by secondary events in the shielded lateral lobe. The most probable first step (primary radiation event) in the development of this secondary damage is radiation exposure to the hilus region (located between the ventral and dorsal lobe). By injuring major excretory ducts and supply routes for blood and nerves in this area, the facility system necessary for proper functioning of the nonexposed lateral lobe is seriously affected. The unexpected volume effect in the rat might have consequences for treatment strategies in radiotherapy, implicating not only salivary glands but also other organs with a seemingly homogeneous distribution of radiosensitive elements, a situation wherein volume effects have not been anticipated up to now.

Konings, Antonius W.T. [Department of Radiation and Stress Cell Biology, University Medical Center Groningen, Groningen (Netherlands)]. E-mail: a.w.t.konings@med.umcg.nl; Faber, Hette [Department of Radiation and Stress Cell Biology, University Medical Center Groningen, Groningen (Netherlands); Cotteleer, Femmy [Department of Radiation and Stress Cell Biology, University Medical Center Groningen, Groningen (Netherlands); Vissink, Arjan [Department of Oral and Maxillofacial Surgery, University Medical Center Groningen, Groningen (Netherlands); Coppes, Rob P. [Department of Radiation and Stress Cell Biology, University Medical Center Groningen, Groningen (Netherlands); Department of Radiation Oncology, University Medical Center Groningen, Groningen (Netherlands)

2006-01-01T23:59:59.000Z

330

Propagation of radiation in fluctuating multiscale plasmas. I. Kinetic theory  

SciTech Connect

A theory for propagation of radiation in a large scale plasma with small scale fluctuations is developed using a kinetic description in terms of the probability distribution function of the radiation in space, time, and wavevector space. Large scale effects associated with spatial variations in the plasma density and refractive index of the plasma wave modes and small scale effects such as scattering of radiation by density clumps in fluctuating plasma, spontaneous emission, damping, and mode conversion are included in a multiscale kinetic description of the radiation. Expressions for the Stokes parameters in terms of the probability distribution function of the radiation are used to enable radiation properties such as intensity and polarization to be calculated.

Tyshetskiy, Yu.; Pal Singh, Kunwar; Thirunavukarasu, A.; Robinson, P. A.; Cairns, Iver H. [School of Physics, University of Sydney, NSW 2006 (Australia)

2012-11-15T23:59:59.000Z

331

Radiation transport phenomena and modeling - part A: Codes  

Science Conference Proceedings (OSTI)

The need to understand how particle radiation (high-energy photons and electrons) from a variety of sources affects materials and electronics has motivated the development of sophisticated computer codes that describe how radiation with energies from 1.0 keV to 100.0 GeV propagates through matter. Predicting radiation transport is the necessary first step in predicting radiation effects. The radiation transport codes that are described here are general-purpose codes capable of analyzing a variety of radiation environments including those produced by nuclear weapons (x-rays, gamma rays, and neutrons), by sources in space (electrons and ions) and by accelerators (x-rays, gamma rays, and electrons). Applications of these codes include the study of radiation effects on electronics, nuclear medicine (imaging and cancer treatment), and industrial processes (food disinfestation, waste sterilization, manufacturing.) The primary focus will be on coupled electron-photon transport codes, with some brief discussion of proton transport. These codes model a radiation cascade in which electrons produce photons and vice versa. This coupling between particles of different types is important for radiation effects. For instance, in an x-ray environment, electrons are produced that drive the response in electronics. In an electron environment, dose due to bremsstrahlung photons can be significant once the source electrons have been stopped.

Lorence, L.J.

1997-06-01T23:59:59.000Z

332

ealth physics is concerned with protecting people from the harmful effects of ionizing radiation while allowing its beneficial use in medicine, science,  

E-Print Network (OSTI)

, particularly from medical exposures and from the atomic-bomb ex- posures in Hiroshima and Nagasaki. DuringH ealth physics is concerned with protecting people from the harmful effects of ionizing radiation effects such as cancer that had been observed in populations of people receiv- ing high doses

Massey, Thomas N.

333

The influence of telomerase on induction and repair of targeted and non-targeted radiation effects.  

E-Print Network (OSTI)

?? The main aim of the project is to investigate the role of the telomere/telomerase system in the bystander effect. Pilot experiments were carried out… (more)

Nuta, Otilia, (Thesis)

2007-01-01T23:59:59.000Z

334

Alpha Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics of Radiation Basics of Radiation Gamma Radiation and X-Rays Beta Radiation Alpha Radiation Irradiation Radioactive Contamination Definitions Detection Measurement Safety Around Radiation Sources Types of Radiation Exposure Managing Radiation Emergencies Basics of Radiation Characteristics of Alpha Radiation 1. Alpha radiation is not able to penetrate skin. 2. Alpha-emitting materials can be harmful to humans if the materials are inhaled, swallowed, or absorbed through open wounds. 3. A variety of instruments have been designed to measure alpha radiation. Special training in use of these instruments is essential for making accurate measurements. 4. A civil defense instrument (CD V-700) cannot detect the presence of radioactive materials that produce alpha radiation unless the radioactive materials also produce beta and/or gamma radiation.

335

A Study on the “Runaway Greenhouse Effect” with a One-Dimensional Radiative–Convective Equilibrium Model  

Science Conference Proceedings (OSTI)

A simple one-dimensional radiative–convective equilibrium model is used to investigate the relationship between the surface temperature and the outgoing infrared radiation at the top of the atmosphere. The model atmosphere has a gray infrared ...

Shinichi Nakajima; Yoshi-Yuki Hayashi; Yutaka Abe

1992-12-01T23:59:59.000Z

336

Apoptosis as a Mechanism for Low Dose Radiation-and Amifostine-Mediated  

NLE Websites -- All DOE Office Websites (Extended Search)

Apoptosis as a Mechanism for Low Dose Radiation- and Amifostine-Mediated Apoptosis as a Mechanism for Low Dose Radiation- and Amifostine-Mediated Chromosomal Inversion Responses Pam Sykes Flinders University and Medical Centre Abstract Low dose radiation and the chemical radioprotector amifostine have both been shown to protect cells from the immediate and delayed effects of radiation exposure. They display a number of distinct similarities including their ability to protect cells against radiation-induced DNA damage, radiation-induced cell death and metastases formation. Amifostine, which protects cells from the toxic effects of ionizing radiation, has a broad range of activities including free radical scavenging, polyamine-like DNA binding, and induction of hypoxia and redox-regulated genes. Amifostine’s ability to protect cells is often

337

Does an accelerated electron radiate Unruh radiation?  

E-Print Network (OSTI)

An accelerated particle sees the Minkowski vacuum as thermally excited, and the particle moves stochastically due to an interaction with the thermal bath. This interaction fluctuates the particle's transverse momenta like the Brownian motion in a heat bath. Because of this fluctuating motion, it has been discussed that the accelerated charged particle emits extra radiation (the Unruh radiation) in addition to the classical Larmor radiation, and experiments are under planning to detect such radiation by using ultrahigh intensity lasers constructed in near future. There are, however, counterarguments that the radiation is canceled by an interference effect between the vacuum fluctuation and the fluctuating motion. In fact, in the case of an internal detector where the Heisenberg equation of motion can be solved exactly, there is no additional radiation after the thermalization is completed. In this paper, we revisit the issue in the case of an accelerated charged particle in the scalar QED. We first prove the e...

Iso, Satoshi; Zhang, Sen

2010-01-01T23:59:59.000Z

338

Radioactivity and Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Radioactivity and Radiation Radioactivity and Radiation Uranium and Its Compounds line line What is Uranium? Chemical Forms of Uranium Properties of Uranium Compounds Radioactivity and Radiation Uranium Health Effects Radioactivity and Radiation Discussion of radioactivity and radiation, uranium and radioactivity, radiological health risks of uranium isotopes and decay products. Radioactivity Radioactivity is the term used to describe the natural process by which some atoms spontaneously disintegrate, emitting both particles and energy as they transform into different, more stable atoms. This process, also called radioactive decay, occurs because unstable isotopes tend to transform into a more stable state. Radioactivity is measured in terms of disintegrations, or decays, per unit time. Common units of radioactivity

339

Radiation delivery system and method  

DOE Patents (OSTI)

A radiation delivery system and method are described. The system includes a treatment configuration such as a stent, balloon catheter, wire, ribbon, or the like, a portion of which is covered with a gold layer. Chemisorbed to the gold layer is a radiation-emitting self-assembled monolayer or a radiation-emitting polymer. The radiation delivery system is compatible with medical catheter-based technologies to provide a therapeutic dose of radiation to a lesion following an angioplasty procedure.

Sorensen, Scott A. (Overland Park, KS); Robison, Thomas W. (Los Alamos, NM); Taylor, Craig M. V. (Jemez Springs, NM)

2002-01-01T23:59:59.000Z

340

RADIATION WAVE DETECTION  

DOE Patents (OSTI)

Radiation waves can be detected by simultaneously measuring radiation- wave intensities at a plurality of space-distributed points and producing therefrom a plot of the wave intensity as a function of time. To this end. a detector system is provided which includes a plurality of nuclear radiation intensity detectors spaced at equal radial increments of distance from a source of nuclear radiation. Means are provided to simultaneously sensitize the detectors at the instant a wave of radiation traverses their positions. the detectors producing electrical pulses indicative of wave intensity. The system further includes means for delaying the pulses from the detectors by amounts proportional to the distance of the detectors from the source to provide an indication of radiation-wave intensity as a function of time.

Wouters, L.F.

1960-08-30T23:59:59.000Z

Note: This page contains sample records for the topic "including radiation effects" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Non-Targeted Effects of Low Dose Ionizing Radiation Act Via TGFβ...  

NLE Websites -- All DOE Office Websites (Extended Search)

effect that mediates microenvironment composition. TGF is activated in mouse mammary gland following whole body exposure to doses of as low as 0.1 Gy and persists in the stroma...

342

Evaluation of the Effect of the Luers–Eskridge Radiation Adjustments on Radiosonde Temperature Homogeneity  

Science Conference Proceedings (OSTI)

The effect of the Luers–Eskridge adjustments on the homogeneity of archived radiosonde temperature observations is evaluated. Using unadjusted and adjusted radiosonde data from the Comprehensive Aerological Reference Dataset (CARDS) as well as ...

Imke Durre; Thomas C. Peterson; Russell S. Vose

2002-06-01T23:59:59.000Z

343

Equatorial Inertial Instability: Effects of Vertical Finite Differencing and Radiative Transfer  

Science Conference Proceedings (OSTI)

The effect of vertical differencing on equatorial inertial instability is studied and explicit results obtained for growth rates as a function of the vertical resolution. It is found that for a basic state independent of height, the form of the ...

P. D. Clark; P. H. Haynes

1994-07-01T23:59:59.000Z

344

Using nitrogen-14 nuclear quadrupole resonance and electric field gradient information for the study of radiation effects  

Science Conference Proceedings (OSTI)

Nitrogen-14 nuclear quadrupole resonance (NQR) was used in an attempt to detect the effects of ionizing radiation on organic material. Previously reported resonances for urea were detected at 2,913.32 {+-} 0.01 kHz and 2,347.88 {+-} 0.08 kHz with associated T{sub 2}* values 780 {+-} 20 {micro}s and 523 {+-} 24 {micro}s, respectively. The previously unreported {nu}{sub {minus}} line for urea-d{sup 4} was detected at 2,381 {+-} 0.04 Khz and used to determine accurately for the first time the values for the nuclear quadrupole coupling constant {chi} (3,548.74 {+-} 0.03 kHz) and the asymmetry parameter {eta} (0.31571 {+-} 0.00007) for urea-d{sup 4}. The inverse linewidth parameter T{sub 2}* for {nu}{sub +} was measured at 928 {+-} 23 {micro}s and for {nu}{sub {minus}} at 721 {+-} 12 {micro}s. Townes and Dailey analysis was performed and urea-d{sup 4} exhibits a 0.004 increase in lone pair electronic density and a slight decrease in N-H bond electronic density, as compared to urea, probably due to the mass difference. A relationship is proposed, referred to as NQR linewidth analysis, between the dynamic spin relaxation times T{sub 2} and T{sub 2}* and the widths of the distributions of the NQR parameters. Linewidth analysis is presented as a tool for possible use in future NQR work in all area, not just radiation effects. This relationship is tested using sodium nitrite T{sub 2} and T{sub 2}* values for {nu}{sub {minus}} and {nu}{sub {minus}} as a function of temperature.

Iselin, L.H.

1995-12-01T23:59:59.000Z

345

Protection Against Ionizing Radiation in Extreme Radiation ...  

Science Conference Proceedings (OSTI)

Protection Against Ionizing Radiation in Extreme Radiation-resistant Microorganisms. ... Elucidated radiation protection by intracellular halides. ...

2013-05-01T23:59:59.000Z

346

Isotope effect in the photochemical decomposition of CO{sub 2} (ice) by Lyman-{alpha} radiation  

SciTech Connect

The photochemical decomposition of CO{sub 2}(ice) at 75 K by Lyman-{alpha} radiation (10.2 eV) has been studied using transmission infrared spectroscopy. An isotope effect in the decomposition of the CO{sub 2} molecule in the ice has been discovered, favoring {sup 12}CO{sub 2} photodecomposition over {sup 13}CO{sub 2} by about 10%. The effect is caused by electronic energy transfer from the excited CO{sub 2} molecule to the ice matrix, which favors quenching of the heavier electronically-excited {sup 13}CO{sub 2} molecule over {sup 12}CO{sub 2}. The effect is similar to the Menzel-Gomer-Redhead isotope effect in desorption from adsorbed molecules on surfaces when electronically excited. An enhancement of the rate of formation of lattice-trapped CO and CO{sub 3} species is observed for the photolysis of the {sup 12}CO{sub 2} molecule compared to the {sup 13}CO{sub 2} molecule in the ice. Only 0.5% of the primary photoexcitation results in O-CO bond dissociation to produce trapped-CO and trapped-CO{sub 3} product molecules and the majority of the electronically-excited CO{sub 2} molecules return to the ground state. Here either vibrational relaxation occurs (majority process) or desorption of CO{sub 2} occurs (minority process) from highly vibrationally-excited CO{sub 2} molecules in the ice. The observation of the {sup 12}C/{sup 13}C isotope effect in the Lyman-{alpha} induced photodecomposition of CO{sub 2} (ice) suggests that over astronomical time scales the isotope enrichment effect may distort historical information derived from isotope ratios in space wherever photochemistry can occur.

Yuan Chunqing; Yates, John T. Jr. [Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904 (United States)

2013-04-21T23:59:59.000Z

347

Health effects models for nuclear power plant accident consequence analysis: Low LET radiation: Part 2, Scientific bases for health effects models  

Science Conference Proceedings (OSTI)

This report provides dose-response models intended to be used in estimating the radiological health effects of nuclear power plant accidents. Models of early and continuing effects, cancers and thyroid nodules, and genetic effects are provided. Two-parameter Weibull hazard functions are recommended for estimating the risks of early and continuing health effects. Three potentially lethal early effects -- the hematopoietic, pulmonary and gastrointestinal syndromes -- are considered. Linear and linear-quadratic models are recommended for estimating cancer risks. Parameters are given for analyzing the risks of seven types of cancer in adults -- leukemia, bone, lung, breast, gastrointestinal, thyroid and ''other''. The category, ''other'' cancers, is intended to reflect the combined risks of multiple myeloma, lymphoma, and cancers of the bladder, kidney, brain, ovary, uterus and cervix. Models of childhood cancers due to in utero exposure are also provided. For most cancers, both incidence and mortality are addressed. Linear and linear-quadratic models are also recommended for assessing genetic risks. Five classes of genetic disease -- dominant, x-linked, aneuploidy, unbalanced translocation and multifactorial diseases --are considered. In addition, the impact of radiation-induced genetic damage on the incidence of peri-implantation embryo losses is discussed. The uncertainty in modeling radiological health risks is addressed by providing central, upper, and lower estimates of all model parameters. Data are provided which should enable analysts to consider the timing and severity of each type of health risk. 22 refs., 14 figs., 51 tabs.

Abrahamson, S.; Bender, M.; Book, S.; Buncher, C.; Denniston, C.; Gilbert, E.; Hahn, F.; Hertzberg, V.; Maxon, H.; Scott, B.

1989-05-01T23:59:59.000Z

348

Global Distribution and Climate Forcing of Marine Organic Aerosol - Part 2: Effects on Cloud Properties and Radiative Forcing  

Science Conference Proceedings (OSTI)

A series of simulations with the Community Atmosphere Model version 5 (CAM5) with a 7-mode Modal Aerosol Model were conducted to assess the changes in cloud microphysical properties and radiative forcing resulting from marine organic aerosols. Model simulations show that the anthropogenic aerosol indirect forcing (AIF) predicted by CAM5 is decreased in absolute magnitude by up to 0.09 Wm{sup -2} (7 %) when marine organic aerosols are included. Changes in the AIF from marine organic aerosols are associated with small global increases in low-level incloud droplet number concentration and liquid water path of 1.3 cm{sup -3} (1.5 %) and 0.22 gm{sup -2} (0.5 %), respectively. Areas especially sensitive to changes in cloud properties due to marine organic aerosol include the Southern Ocean, North Pacific Ocean, and North Atlantic Ocean, all of which are characterized by high marine organic emission rates. As climate models are particularly sensitive to the background aerosol concentration, this small but non-negligible change in the AIF due to marine organic aerosols provides a notable link for ocean-ecosystem marine low-level cloud interactions and may be a candidate for consideration in future earth system models.

Gantt, Brett; Xu, Jun; Meskhidze, N.; Zhang, Yang; Nenes, Athanasios; Ghan, Steven J.; Liu, Xiaohong; Easter, Richard C.; Zaveri, Rahul A.

2012-07-25T23:59:59.000Z

349

Radiation Leukemogenesis: Applying Basic Science of Epidemiological Estimates of Low Dose Risks and Dose-Rate Effects  

SciTech Connect

The next stage of work has been to examine more closely the A-bomb leukemia data which provides the underpinnings of the risk estimation of CML in the above mentioned manuscript. The paper by Hoel and Li (Health Physics 75:241-50) shows how the linear-quadratic model has basic non-linearities at the low dose region for the leukemias including CML. Pierce et. al., (Radiation Research 123:275-84) have developed distributions for the uncertainty in the estimated exposures of the A-bomb cohort. Kellerer, et. al., (Radiation and Environmental Biophysics 36:73-83) has further considered possible errors in the estimated neutron values and with changing RBE values with dose and has hypothesized that the tumor response due to gamma may not be linear. We have incorporated his neutron model and have constricted new A-bomb doses based on his model adjustments. The Hoel and Li dose response analysis has also been applied using the Kellerer neutron dose adjustments for the leukemias. Finally, both Pierce's dose uncertainties and Kellerer neutron adjustments are combined as well as the varying RBE with dose as suggested by Rossi and Zaider and used for leukemia dose-response analysis. First the results of Hoel and Li showing a significantly improved fit of the linear-quadratic dose response by the inclusion of a threshold (i.e. low-dose nonlinearity) persisted. This work has been complete for both solid tumor as well as leukemia for both mortality as well as incidence data. The results are given in the manuscript described below which has been submitted to Health Physics.

Hoel, D. G.

1998-11-01T23:59:59.000Z

350

Lesson 4 - Ionizing Radiation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 - Ionizing Radiation 4 - Ionizing Radiation Lesson 4 - Ionizing Radiation Lesson Three showed that unstable isotopes emit energy as they become more stable. This energy is known as radiation. This lesson explores forms of radiation, where radiation is found, how we detect and measure radiation, what sources of radiation people are exposed to, whether radiation is harmful, and how we can limit our exposure. Specific topics covered in this lesson include: Types of radiation Non-ionizing Ionizing Forms of ionizing radiation Alpha particles Beta particles Gamma rays Radiation Decay chain Half-life Dose Radiation measurements Sources of radiation Average annual exposure Lesson 4 - Ionizing Radiation.pptx More Documents & Publications DOE-HDBK-1130-2008 DOE-HDBK-1130-2008 DOE-HDBK-1130-2007

351

Detailing the policy interactions between the Queensland solar bonus scheme and the small-scale renewable energy scheme, including the solar credits multiplier, while detailing the social, economic and environmental effects of these schemes.  

E-Print Network (OSTI)

??The emergence in the need to evaluate the effectiveness of policies as a whole mix rather than evaluate the effectiveness of policies in isolation is… (more)

Barry, Elise Kristen

2011-01-01T23:59:59.000Z

352

Beta Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Beta Radiation 1. Beta radiation may travel meters in air and is moderately penetrating. 2. Beta radiation can penetrate human skin to the "germinal layer," where new skin cells...

353

RADIATION MONITORING  

E-Print Network (OSTI)

of Monitoring for Radiation Protection of Workers" in ICRPNo. 9, in "Advances in Radiation Protection and Dosimetry inDosimetry f o r Stray Radiation Monitoring on the CERN S i t

Thomas, R.H.

2010-01-01T23:59:59.000Z

354

Low Dose Radiation Program: Links - Agencies with Radiation Regulatory  

NLE Websites -- All DOE Office Websites (Extended Search)

Agencies with Radiation Regulatory Concerns and Involvement Agencies with Radiation Regulatory Concerns and Involvement Biological Effects of Low Level Exposures (BELLE) Canadian Nuclear Safety Commission Center for Risk Excellence Health Protection Agency The Health Risks of Extraterrestrial Environments International Commission on Radiation Units and Measurements, Inc. International Commission on Radiological Protection (ICRP) International Radiation Protection Association (IRPA) NASA Space Radiation Program National Academy of Sciences (NAS) Nuclear and Radiation Studies Board National Aeronautics and Space Administration (NASA) NASA OBRR Task Book Publication National Council on Radiation Protection (NCRP) National Institute of Environmental Health Sciences (NIEHS) National Toxicology Program (NTP) Occupational Safety and Health Administration (OSHA)

355

Limits to the Aerosol Indirect Radiative Effect Derived from Observations of Ship Tracks  

Science Conference Proceedings (OSTI)

One-kilometer Advanced Very High Resolution Radiometer (AVHRR) observations of the effects of ships on low-level clouds off the west coast of the United States are used to derive limits for the degree to which clouds might be altered by increases ...

James A. Coakley Jr.; Christopher D. Walsh

2002-02-01T23:59:59.000Z

356

RELATIVE HUMIDITY, INOSITOL AND THE EFFECT OF RADIATIONS ON AIR-DRIED MICROORGANISMS  

SciTech Connect

Investigations were made on the effects of uv irradiation on E. coli and Pseudomonas aeroginosa and x irradiation on Serratia marcescens and on the influence of relative humidity and inositol on these effects. The effect of relative humidity was the same for all organisms tested. Under the experimental conditions used, little or no uv irradiation damage occurred above 70% relative humidity, nor were there many deaths occurring in unirradiated aerosols. At about 65% there was a rapid change in the sensitivity to both uv and drying alone, with the maximum rate of change taking place between 65 and 55% relative humidity for uv, and 65 and 45% relative humidity for non-irradiated cells. Some organisms showed an equally sharp increase in sensitivity to drying in the dark between 65 and 55% relative humidity. With uv irradiation relative humidity changes below 55% had little or no effect on the death rate and the same was true for non-irradiated cells below 45% relative humidity. Under all experimental conditions, with the possible exception of a relative humidity region around 40%, inositol completely prevented inactivation of the cells or viruses in the dark or under uv irradiation. Under x irradiation the cells were more stable at relative humidity values below 50% than at higher values, and once again the region in which a pronounced change occurred was between 50 and 70% relative humidity. (P.C.H.)

Webb, S.J.; Cormack, D.V.; Morrison, H.G.

1964-03-14T23:59:59.000Z

357

ORISE: REAC/TS Symposium to include sessions on the Fukushima...  

NLE Websites -- All DOE Office Websites (Extended Search)

MEDIA ADVISORY: REACTS International Symposium to include sessions on the Fukushima crisis FOR IMMEDIATE RELEASE Aug. 31, 2011 FY11-42 Who: Radiation Emergency Assistance Center...

358

Direct Detector for Terahertz Radiation - Energy ...  

Patent 7,420,225: Direct detector for terahertz radiation A direct detector for terahertz radiation comprises a grating-gated field-effect transistor ...

359

Radiation Stability of GFR Candidate Ceramics  

Science Conference Proceedings (OSTI)

The radiation stability of these ceramics were examined using transmission electron microscopy (TEM) to understand the effect of radiation on lattice stability,  ...

360

Seasonal variations of aerosol optical properties, vertical distribution and associated radiative effects in the Yangtze Delta Region of China  

Science Conference Proceedings (OSTI)

Four years of columnar aerosol particle optical properties (2006 to 2009) and one year database worth of aerosol particle vertical profile of 527 nm extinction coefficient (June 2008 to May 2009) are analyzed at Taihu in the central Yangtze Delta region in eastern China. Seasonal variations of aerosol optical properties, vertical distribution, and influence on shortwave radiation and heating rates were investigated. Multiyear variations of aerosol optical depths (AOD), Angstrom exponents, single scattering albedo (SSA) and asymmetry factor (ASY) are analyzed, together with the vertical profile of aerosol extinction. AOD is largest in summer and smallest in winter. SSAs exhibit weak seasonal variation with the smallest values occurring during winter and the largest during summer. The vast majority of aerosol particles are below 2 km, and about 62%, 67%, 67% and 83% are confined to below 1 km in spring, summer, autumn and winter, respectively. Five-day back trajectory analyses show that the some aerosols aloft are traced back to northern/northwestern China, as far as Mongolia and Siberia, in spring, autumn and winter. The presence of dust aerosols were identified based on the linear depolarization measurements together with other information (i.e., back trajectory, precipitation, aerosol index). Dust strongly impacts the vertical particle distribution in spring and autumn, with much smaller effects in winter. The annual mean aerosol direct shortwave radiative forcing (efficiency) at the bottom, top and within the atmosphere are -34.8 {+-} 9.1 (-54.4 {+-} 5.3), -8.2 {+-} 4.8 (-13.1 {+-} 1.5) and 26.7 {+-} 9.4 (41.3 {+-} 4.6) W/m{sup 2} (Wm{sup -2} T{sup -1}), respectively. The mean reduction in direct and diffuse radiation reaching surface amount to 109.2 {+-} 49.4 and 66.8 {+-} 33.3 W/m{sup 2}, respectively. Aerosols significantly alter the vertical profile of solar heating, with great implications for atmospheric stability and dynamics within the lower troposphere.

Liu, Jianjun; Zheng, Youfei; Li, Zhanqing; Flynn, Connor J.; Cribb, Maureen

2012-02-09T23:59:59.000Z

Note: This page contains sample records for the topic "including radiation effects" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Electromagnetic radiation detector  

DOE Patents (OSTI)

An electromagnetic radiation detector including a collimating window, a cathode member having a photoelectric emissive material surface angularly disposed to said window whereby radiation is impinged thereon at acute angles, an anode, separated from the cathode member by an evacuated space, for collecting photoelectrons emitted from the emissive cathode surface, and a negatively biased, high transmissive grid disposed between the cathode member and anode.

Benson, Jay L. (Albuquerque, NM); Hansen, Gordon J. (Albuquerque, NM)

1976-01-01T23:59:59.000Z

362

Radiation detection system  

SciTech Connect

A radiation detection system including a radiation-to-light converter and fiber optic wave guides to transmit the light to a remote location for processing. The system utilizes fluors particularly developed for use with optical fibers emitting at wavelengths greater than about 500 nm and having decay times less than about 10 ns.

Franks, Larry A. (Santa Barbara, CA); Lutz, Stephen S. (Santa Barbara, CA); Lyons, Peter B. (Los Alamos, NM)

1981-01-01T23:59:59.000Z

363

Squares of the natural numbers in radiation protection. [Informal history  

SciTech Connect

An informal history of radiation protection is given. The following topics are included: the discovery of x rays and their effects, the formation of the International Committee on X-ray and Radium Protection, the Manhattan Project and its plutonium aspects, dose limits and their origin, the increase in antinuclear writings, the publication of reports on radiation levels and effects, the role of the EPA in medical radiation, and the Oklo phenomenon. Recommendations for NCRP and ICRP actions are given. The publication also contains brief biographies of Lauriston S. Taylor and Herbert M. Parker. (RWR)

Parker, H.M.

1977-01-01T23:59:59.000Z

364

Effects of atomic radiation: A half-century of studies from Hiroshima and Nagasaki  

SciTech Connect

This is a notable book. For the first time, a thoroughly experienced scientist has undertaken, as the author says, {open_quotes}to present the atomic bomb survivor story in all its complexity,{close_quotes} and to aid the reader, Prof. Schull has eschewed the use of technical terms. Where this could not be done, he has defined them in the text or the glossary. The task could only have been done by someone like Prof. Schull, who in various capacities has been involved in the Japanese studies since 1949. The book therefore is not a conventional epidemiological monograph. It is addressed to both the professional and nonprofessional reader, and it includes various elements of biology; it deals with history as well as science; and it considers some of its material as in a personal essay. This is an ambitious, difficult and useful undertaking that provides much information; its writing, however, is not always quite direct and incisive.

Schull, W.J.

1996-11-01T23:59:59.000Z

365

Radiation coloration resistant glass  

SciTech Connect

A radiation coloration resistant glass is disclosed which is used in a radiation environment sufficient to cause coloration in most forms of glass. The coloration resistant glass includes higher proportions by weight of water and has been found to be extremely resistant to color change when exposed to such radiation levels. The coloration resistant glass is free of cerium oxide and has more than about 0.5% by weight water content. Even when exposed to gamma radiation of more than 10.sup.7 rad, the coloration resistant glass does not lose transparency.

Tomozawa, Minoru (Troy, NY); Watson, E. Bruce (Troy, NY); Acocella, John (Troy, NY)

1986-01-01T23:59:59.000Z

366

The effect of the operation modes of a gas discharge low-pressure amalgam lamp on the intensity of generation of 185 nm UV vacuum radiation  

SciTech Connect

The effect of the discharge current, mercury vapor pressure, and the inert gas pressure on the intensity and efficiency of the 185 nm line generation are considered. The spectra of the UV radiation (vacuum ultraviolet) transmission by protective coatings from the oxides of rare earth metals and aluminum are investigated.

Vasilyak, L. M., E-mail: vasilyak@ihed.ras.ru [Russian Academy of Sciences, Joint Institute of High Temperatures (Russian Federation); Drozdov, L. A., E-mail: lit@npo.lit.ru; Kostyuchenko, S. V.; Sokolov, D. V. [ZAO LIT (Russian Federation); Kudryavtsev, N. N.; Sobur, D. A., E-mail: soburda@gmail.com [Moscow Institute for Physics and Technology (Russian Federation)

2011-12-15T23:59:59.000Z

367

Effect of Direct Radiative Forcing of Asian Dust on the Meteorological Fields in East Asia during an Asian Dust Event Period  

Science Conference Proceedings (OSTI)

Coupled and noncoupled models in a grid of 60 × 60 km2 in the eastern Asian domain have been employed to examine the effect of the direct radiative forcing of the Asian dust aerosol on meteorological fields for an intense Asian dust event ...

Hyun-Ju Ahn; Soon-Ung Park; Lim-Seok Chang

2007-10-01T23:59:59.000Z

368

THE REACTIONS OF ENERGETIC CARBON ATOMS IN METHANE OXYGEN AND PHASE DEPENDENCE RADIATION DAMAGE EFFECTS  

DOE Green Energy (OSTI)

Studies were made on the reactions of C/sup 11/ in methane containing oxygen. The nuclear reactions C/sup 12/(n,2n) and C/sup 12/(p,pn) were used to produce C/sup 11/. Concomitant radiolysis of the methane during C/sup 11/ production clearly affected product distribution. C/sup 11/-labeled ethane and propane decreased while methane, ethylene, and acetylene decreased. It was assumed that reduction by hydrogen atoms was probably occurring in the unscavenged system. The effects of oxygen and of phase are discussed. In all cases, in duplicate systems, the product distributions resulting from inducing the C/sup 12/(p,pn) reaction were the same within experimental error as those resulting from the C/sup 12/(n,2n) reaction. (P.C.H.)

Stoecklin, G.; Stangl, H.; Christman, D.R.; Cumming, J.B.; Wolf, A.P.

1963-08-01T23:59:59.000Z

369

Numerical Simulations of Radiative Cooling beneath the Anvils of Supercell Thunderstorms  

Science Conference Proceedings (OSTI)

Numerical simulations of supercell thunderstorms that include parameterized radiative transfer and surface fluxes are performed using the Advanced Regional Prediction System (ARPS) to investigate the effects of anvil shadows on the near-storm ...

Jeffrey Frame; Paul Markowski

2010-08-01T23:59:59.000Z

370

Using ACIS on the Chandra X-ray Observatory as a particle radiation monitor II  

E-Print Network (OSTI)

The Advanced CCD Imaging Spectrometer is an instrument on the Chandra X-ray Observatory. CCDs are vulnerable to radiation damage, particularly by soft protons in the radiation belts and solar storms. The Chandra team has implemented procedures to protect ACIS during high-radiation events including autonomous protection triggered by an on-board radiation monitor. Elevated temperatures have reduced the effectiveness of the on-board monitor. The ACIS team has developed an algorithm which uses data from the CCDs themselves to detect periods of high radiation and a flight software patch to apply this algorithm is currently active on-board the instrument. In this paper, we explore the ACIS response to particle radiation through comparisons to a number of external measures of the radiation environment. We hope to better understand the efficiency of the algorithm as a function of the flux and spectrum of the particles and the time-profile of the radiation event.

Grant, C E; Bautz, M W; O'Dell, S L

2012-01-01T23:59:59.000Z

371

Low Dose Radiation Research Program: Impact of Genetic Factors on the  

NLE Websites -- All DOE Office Websites (Extended Search)

Genetic Factors on the Heritable Effects of Paternal Exposure to Genetic Factors on the Heritable Effects of Paternal Exposure to Low-Dose Radiation Janet E. Baulch University of California, Davis Why This Project? There is concern about the possible genetic effects of low dose radiation exposure. As a result, much effort has gone towards understanding mutation of cells due to radiation exposure. While recognition of the potential for mutation from exposure to ionizing radiation has led to extensive research, less effort has been given to the possible delayed risk of radiation exposure transmitted to the offspring of the exposed parent. Data from animal models show that parental exposures to DNA-damaging agents, such as ionizing radiation, predispose the offspring to serious health effects, including cancer offspring. Additionally, data from both humans and animal

372

Optical Radiation  

Science Conference Proceedings (OSTI)

*. Bookmark and Share. Optical Radiation Measurements. Fees for services are located directly below the technical contacts ...

2013-04-09T23:59:59.000Z

373

Ionizing Radiation  

Science Conference Proceedings (OSTI)

*. Bookmark and Share. Ionizing Radiation Measurements. Fees for services are located directly below the technical contacts ...

2013-04-09T23:59:59.000Z

374

A thermovoltaic semiconductor device including a plasma filter  

DOE Patents (OSTI)

A thermovoltaic energy conversion device and related method for converting thermal energy into an electrical potential are disclosed. An interference filter is provided on a semiconductor thermovoltaic cell to pre-filter black body radiation. The semiconductor thermovoltaic cell includes a P/N junction supported on a substrate which converts incident thermal energy below the semiconductor junction band gap into electrical potential. The semiconductor substrate is doped to provide a plasma filter which reflects back energy having a wavelength which is above the band gap and which is ineffectively filtered by the interference filter, through the P/N junction to the source of radiation thereby avoiding parasitic absorption of the unusable portion of the thermal radiation energy.

Baldasaro, Paul F.

1997-12-01T23:59:59.000Z

375

The radiation bio-effects of gallum-72 on leukemic cells via a gallium-transferrin complex  

E-Print Network (OSTI)

Improved methods for treatment of leukemia would be advantageous for patients and the medical community. This thesis reports results of a study of the cytotoxicity of radiolabeled transferrin in cultured leukemic cells. K-562 cells, from an erythroleukemic cell line, were grown and growth curves were plotted for characterization. K-562 cells grew logarithmically from approximately 250,000 cells mL?¹ to 700,000 cells mL?¹ and display a doubling time of approximately 20-21 hours. K-562 cells were exposed to x rays at an absorbed dose of 0, 1, 2, and 4 gray. Growth curves were plotted to create a dose response curve. Percent-cell survival in this experiment, and all subsequent experiments, was determined based on the extrapolation of the growth curves to time zero, as compared to a control. An absorbed dose of 1, 2, and 4 gray corresponded to a survival of 77([]14)%, 45([]7.4)% and 20([]2.4)%, respectively. This cell line is relatively resistant to radiation. K-562 cells were exposed to a radioactive gallium-72/stable gallium nitrate mixture to determine the effect gallium-72 decay has on cell survival . Simultaneously, K-562 cells were exposed to a concentration of stable gallium nitrate equivalent to the total gallium concentration, radioactive and stable, of the gallium-72/stable gallium mixture. This allowed a comparison of radioactive and chemotoxic effects due to gallium-72 and stable gallium, respectively. Exposures to gallium-72, at an activity of 184.0 kBq mL?¹, and stable gallium nitrate, at a concentration of 116.7 []M, resulted in a cell survival of 61([]10.5)% and 75([]12. 1)%, respectively. The difference is small when error is taken into consideration. Therefore radioactivity had little effect on cell survival at a specific activity of 6.3 MBq mg?¹. To properly assess the cytotoxicity of gallium-72 the specific activity must be increased. To determine the effect of ape-transferrin on the cytotoxicity of gallium nitrate, K-562 cells were exposed to stable gallium nitrate and increasing amounts of apo-transferrin. Cells exposed to 115.0 []M gallium nitrate exhibited an 82([]8.8)% cell survival compared to 54([]6.9)% following exposure to 115.0 []M gallium nitrate and 3.75 []M apo-transferrin. Apo-transferrin presumably increases cellular uptake of gallium nitrate thereby increasing its cyctotoxic effects.

Forbes, Christen Douglas

1999-01-01T23:59:59.000Z

376

RADIATION SAFETY MANUAL  

E-Print Network (OSTI)

RADIATION SAFETY is the responsibility of all faculty, staff and students who are directly or indirectly involved in the use of radioisotopes or radiation-producing machines. In July 1963, the State of Texas granted The University of Texas at Austin a broad radioactive materials license for research, development and instruction. While this means a minimum of controls by the state, it requires that The University establish and pursue an effective Radiation Safety Program. The Radiation Safety Committee is responsible for The University's radiation control program outlined in this manual. The use of radiation in a university, where a large number of people may be unaware of their exposure to radiation hazards, makes strict adherence to procedures established by federal and state authorities of paramount importance for the protection of The University and the safety of its faculty, staff and students. It is the responsibility of all faculty, staff and students involved in radiation work to familiarize themselves thoroughly with The University's radiation control program and to comply with its requirements and all applicable federal and state regulations. I hope you will always keep in mind that radiation safety depends on a continuous awareness of potential hazards and on the acceptance

unknown authors

2005-01-01T23:59:59.000Z

377

Cite as: Lavergne, E., Zajonz, U. & Sellin, L. (2013) Length-weight relationship and seasonal effects of the Summer Monsoon on condition factor of Terapon jarbua (Forsskl, 1775) from the wider Gulf of Aden including  

E-Print Network (OSTI)

effects of the Summer Monsoon on condition factor of Terapon jarbua (Forsskål, 1775) from the wider Gulf-0426.2012.02018.x Length-weight relationship and seasonal effects of the Summer Monsoon on condition factor. This region displays a monsoon climate, with wide seasonal variation affecting estuarine habitats. A total

Paris-Sud XI, Université de

378

About Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation Radiation What is radiation? Radiation is a form of energy that is a part of our everyday lives. All of us receive a "dose" of radiation each day. Most of the dose comes from naturally occurring radioactive materials such as uranium, thorium, radon, and certain forms of potassium and carbon. The air we breathe contains radon, the food we eat contains uranium and thorium from the soil, and our bodies contain radioactive forms of potassium and carbon. Cosmic radiation from the sun also contributes to our natural radiation dose. We also receive radiation doses from man-made sources such as X-rays, nuclear medical procedures, power plants, smoke detectors and older television sets. Some people, such as nuclear plant operators, flight crews, and nuclear medicine staff may also receive an occupational radiation dose.

379

Gamma radiation field intensity meter  

DOE Patents (OSTI)

A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

Thacker, L.H.

1994-08-16T23:59:59.000Z

380

Gamma radiation field intensity meter  

SciTech Connect

A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

Thacker, Louis H. (Knoxville, TN)

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "including radiation effects" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Gamma radiation field intensity meter  

SciTech Connect

A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

Thacker, Louis H. (Knoxville, TN)

1994-01-01T23:59:59.000Z

382

Gamma radiation field intensity meter  

DOE Patents (OSTI)

A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

Thacker, L.H.

1995-10-17T23:59:59.000Z

383

Radiation Physics Portal  

Science Conference Proceedings (OSTI)

NIST Home > Radiation Physics Portal. Radiation Physics Portal. ... more. >> see all Radiation Physics programs and projects ... ...

2013-08-08T23:59:59.000Z

384

Application of Improved Radiation Modeling to General Circulation Models  

SciTech Connect

This research has accomplished its primary objectives of developing accurate and efficient radiation codes, validating them with measurements and higher resolution models, and providing these advancements to the global modeling community to enhance the treatment of cloud and radiative processes in weather and climate prediction models. A critical component of this research has been the development of the longwave and shortwave broadband radiative transfer code for general circulation model (GCM) applications, RRTMG, which is based on the single-column reference code, RRTM, also developed at AER. RRTMG is a rigorously tested radiation model that retains a considerable level of accuracy relative to higher resolution models and measurements despite the performance enhancements that have made it possible to apply this radiation code successfully to global dynamical models. This model includes the radiative effects of all significant atmospheric gases, and it treats the absorption and scattering from liquid and ice clouds and aerosols. RRTMG also includes a statistical technique for representing small-scale cloud variability, such as cloud fraction and the vertical overlap of clouds, which has been shown to improve cloud radiative forcing in global models. This development approach has provided a direct link from observations to the enhanced radiative transfer provided by RRTMG for application to GCMs. Recent comparison of existing climate model radiation codes with high resolution models has documented the improved radiative forcing capability provided by RRTMG, especially at the surface, relative to other GCM radiation models. Due to its high accuracy, its connection to observations, and its computational efficiency, RRTMG has been implemented operationally in many national and international dynamical models to provide validated radiative transfer for improving weather forecasts and enhancing the prediction of global climate change.

Michael J Iacono

2011-04-07T23:59:59.000Z

385

Preprint of: A.H. Nosrat, L.G. Swan, J.M. Pearce, Improved Performance of Hybrid Photovoltaic-Trigeneration Systems Over Photovoltaic-Cogen Systems Including Effects of Battery Storage, Energy 49, pp. 366-374 (2013). http://dx.doi.org/10.1016/j.energy.201  

E-Print Network (OSTI)

-Trigeneration Systems Over Photovoltaic-Cogen Systems Including Effects of Battery Storage, Energy 49, pp. 366-374 (2013). http://dx.doi.org/10.1016/j.energy.2012.11.005 Improved Performance of Hybrid Photovoltaic Photovoltaic-Cogen Systems Including Effects of Battery Storage, Energy 49, pp. 366-374 (2013). http

386

Radiation-hardened microelectronics for accelerators  

Science Conference Proceedings (OSTI)

Ionization and displacement phenomena in semiconducting materials are reviewed. The different classes of radiation discussed include fast neutron, x-rays and gamma rays and heavy charged particles. Both transient and steady state phenomena will be discussed. How these basic effects lead to change in the electrical characteristics of transistors and diodes and the functionality of intergrated circuits are summarized. The fundamental radiation limits for various semiconductor technologies are summarized. Recommendations and precautions are given regarding the applicability of various microelectronic technologies to different accelerator environments. 14 refs., 7 tabs.

Gover, J.E.; Fischer, T.A.

1988-01-01T23:59:59.000Z

387

Effects of Reflection by Natural Surfaces on the Radiation Emerging from the Top of the Earth's Atmosphere  

Science Conference Proceedings (OSTI)

The radiation emerging from the top of the earth's atmosphere is affected by the reflection characteristics of the underlying surface. Laboratory-gathered bidirectional reflectance data were used to characterize the reflection matrix for three ...

Bruce W. Fitch

1981-12-01T23:59:59.000Z

388

Effects of a Spectral Surface Reflectance on Measurements of Backscattered Solar Radiation: Application to the MOPITT Methane Retrieval  

Science Conference Proceedings (OSTI)

The amount of solar radiation emerging from the top of the atmosphere is strongly influenced by the reflectance of the underlying surface. For this reason, some information about the magnitude and the spectral variability of the surface ...

G. Pfister; J. C. Gille; D. Ziskin; G. Francis; D. P. Edwards; M. N. Deeter; E. Abbott

2005-05-01T23:59:59.000Z

389

Impact of Shortwave Radiative Effects of Dust Aerosols on the Summer Season Heat Low over Saudi Arabia  

Science Conference Proceedings (OSTI)

A two-stream scattering scheme based on the delta-Eddington approximation is incorporated into the Florida State University Limited Area Model for computing the shortwave radiative fluxes due to dust aerosols over the Saudi Arabian region and to ...

Saad Mohalfi; H. S. Bedi; T. N. Krishnamurti; Steven D. Cocke

1998-12-01T23:59:59.000Z

390

An Assessment of the Parameterization of Subgrid-Scale Cloud Effects on Radiative Transfer. Part II: Horizontal Inhomogeneity  

Science Conference Proceedings (OSTI)

The role of horizontal inhomogeneity in radiative transfer through cloud fields is investigated within the context of the two-stream approximation. Spatial correlations between cloud optical properties and the radiance field are introduced in the ...

Norman B. Wood; Philip M. Gabriel; Graeme L. Stephens

2005-08-01T23:59:59.000Z

391

The Full-Spectrum Correlated-k Method for Longwave Atmospheric Radiative Transfer Using an Effective Planck Function  

Science Conference Proceedings (OSTI)

The correlated-k-distribution (CKD) method is widely used in the radiative transfer schemes of atmospheric models; it involves dividing the spectrum into a number of bands and then reordering the gaseous absorption coefficients within each one. ...

Robin J. Hogan

2010-06-01T23:59:59.000Z

392

Climatic effects of 1950–2050 changes in US anthropogenic aerosols – Part 1: Aerosol trends and radiative forcing  

E-Print Network (OSTI)

We use the GEOS-Chem chemical transport model combined with the GISS general circulation model to calculate the aerosol direct and indirect (warm cloud) radiative forcings from US anthropogenic sources over the 1950–2050 ...

Leibensperger, Eric Michael

393

Effect of low-dose, low-LET γ-radiation and BaP injection on pulmonary  

NLE Websites -- All DOE Office Websites (Extended Search)

low-dose, low-LET γ-radiation and BaP injection on pulmonary low-dose, low-LET γ-radiation and BaP injection on pulmonary immunity in A/J mice K. Gott Lovelace Respiratory Research Institute Abstract Introduction: Low-dose, low-linear-energy-transfer (LET) radiation (LDR; < 100 mGy) activates the immune response (Nowosielska et al., 2006), presumably via epigenetic pathways (Scott et al., 2009) and has been implicated as suppressing both alpha-radiation-induced and smoking-related lung cancer (Scott et al. 2009). One of the hypothesized adaptive-response mechanisms by which LDR does so is by activating immune cell function in the lung, which would then increase their anti-cancer surveillance function (Liu, 2007; Bogdandi et al., 2010). One measure of activated immune cell function is their expression of markers on their cell surface that are

394

Conduction Effect of Thermal Radiation in a Metal Shield Pipe in a Cryostat for a Cryogenic Interferometric Gravitational Wave Detector  

E-Print Network (OSTI)

A large heat load caused by thermal radiation through a metal shield pipe was observed in a cooling test of a cryostat for a prototype of a cryogenic interferometric gravitational wave detector. The heat load was approximately 1000 times larger than the value calculated by the Stefan-Boltzmann law. We studied this phenomenon by simulation and experiment and found that it was caused by the conduction of thermal radiation in a metal shield pipe.

Takayuki Tomaru; Masao Tokunari; Kazuaki Kuroda; Takashi Uchiyama; Akira Okutomi; Masatake Ohashi; Hiroyuki Kirihara; Nobuhiro Kimura; Yoshio Saito; Nobuaki Sato; Takakazu Shintomi; Toshikazu Suzuki; Tomiyoshi Haruyama; Shinji Miyoki; Kazuhiro Yamamoto; Akira Yamamoto

2007-11-06T23:59:59.000Z

395

Effective Personnel Exposure Control in Shortened Refueling Outages: Final Report: Review of Remote Monitoring Systems in Radiation Protection Applications  

Science Conference Proceedings (OSTI)

Remote monitoring technology (RMT) significantly enhances worker protection and reduces worker radiation exposure, particularly during shortened refueling outages. This report provides a brief description of the hardware and features of remote monitoring systems, then focuses on nuclear plant experiences in applying such systems for enhanced radiation protection. It also discusses EPRI's RMT research program and formation of the RMT Working Group to support research in this area. Such information will gr...

2003-12-02T23:59:59.000Z

396

Cellular and molecular research to reduce uncertainties in estimates of health effects from low-level radiation  

Science Conference Proceedings (OSTI)

A study was undertaken by five radiation scientists to examine the feasibility of reducing the uncertainties in the estimation of risk due to protracted low doses of ionizing radiation. In addressing the question of feasibility, a review was made by the study group: of the cellular, molecular, and mammalian radiation data that are available; of the way in which altered oncogene properties could be involved in the loss of growth control that culminates in tumorigenesis; and of the progress that had been made in the genetic characterizations of several human and animal neoplasms. On the basis of this analysis, the study group concluded that, at the present time, it is feasible to mount a program of radiation research directed at the mechanism(s) of radiation-induced cancer with special reference to risk of neoplasia due to protracted, low doses of sparsely ionizing radiation. To implement a program of research, a review was made of the methods, techniques, and instruments that would be needed. This review was followed by a survey of the laboratories and institutions where scientific personnel and facilities are known to be available. A research agenda of the principal and broad objectives of the program is also discussed. 489 refs., 21 figs., 14 tabs.

Elkind, M.M.; Bedford, J.; Benjamin, S.A.; Waldren, C.A. (Colorado State Univ., Fort Collins, CO (USA)); Gotchy, R.L. (Science Applications International Corp., McLean, VA (USA))

1990-10-01T23:59:59.000Z

397

Fundamentals of health physics for the radiation-protection officer  

SciTech Connect

The contents of this book on health physics include chapters on properties of radioactive materials, radiation instrumentation, radiation protection programs, radiation survey programs, internal exposure, external exposure, decontamination, selection and design of radiation facilities, transportation of radioactive materials, radioactive waste management, radiation accidents and emergency preparedness, training, record keeping, quality assurance, and appraisal of radiation protection programs. (ACR)

Murphy, B.L.; Traub, R.J.; Gilchrist, R.L.; Mann, J.C.; Munson, L.H.; Carbaugh, E.H.; Baer, J.L.

1983-03-01T23:59:59.000Z

398

Radiation Embrittlement Archive Project  

SciTech Connect

The Radiation Embrittlement Archive Project (REAP), which is being conducted by the Probabilistic Integrity Safety Assessment (PISA) Program at Oak Ridge National Laboratory under funding from the U.S. Nuclear Regulatory Commission s (NRC) Office of Nuclear Regulatory Research, aims to provide an archival source of information about the effect of neutron radiation on the properties of reactor pressure vessel (RPV) steels. Specifically, this project is an effort to create an Internet-accessible RPV steel embrittlement database. The project s website, https://reap.ornl.gov, provides information in two forms: (1) a document archive with surveillance capsule(s) reports and related technical reports, in PDF format, for the 104 commercial nuclear power plants (NPPs) in the United States, with similar reports from other countries; and (2) a relational database archive with detailed information extracted from the reports. The REAP project focuses on data collected from surveillance capsule programs for light-water moderated, nuclear power reactor vessels operated in the United States, including data on Charpy V-notch energy testing results, tensile properties, composition, exposure temperatures, neutron flux (rate of irradiation damage), and fluence, (Fast Neutron Fluence a cumulative measure of irradiation for E>1 MeV). Additionally, REAP contains data from surveillance programs conducted in other countries. REAP is presently being extended to focus on embrittlement data analysis, as well. This paper summarizes the current status of the REAP database and highlights opportunities to access the data and to participate in the project.

Klasky, Hilda B [ORNL; Bass, Bennett Richard [ORNL; Williams, Paul T [ORNL; Phillips, Rick [ORNL; Erickson, Marjorie A [ORNL; Kirk, Mark T [ORNL; Stevens, Gary L [ORNL

2013-01-01T23:59:59.000Z

399

Underwater radiation detector  

DOE Patents (OSTI)

A detector apparatus for differentiating between gamma and neutron radiation is provided. The detector includes a pair of differentially shielded Geiger-Mueller tubes. The first tube is wrapped in silver foil and the second tube is wrapped in lead foil. Both the silver and lead foils allow the passage of gamma rays at a constant rate in a gamma ray only field. When neutrons are present, however, the silver activates and emits beta radiation that is also detected by the silver wrapped Geiger-Mueller tube while the radiation detected by the lead wrapped Geiger-Mueller tube remains constant. The amount of radiation impinging on the separate Geiger-Mueller tubes is then correlated in order to distinguish between the neutron and gamma radiations.

Kruse, Lyle W. (Albuquerque, NM); McKnight, Richard P. (Albuquerque, NM)

1986-01-01T23:59:59.000Z

400

Phototoxic effect of conjugates of plasmon-resonance nanoparticles with indocyanine green dye on Staphylococcus aureus induced by IR laser radiation  

Science Conference Proceedings (OSTI)

The effect of IR laser radiation ({lambda} = 805 - 808 nm) on the bacteria of the strain Staphylococcus aureus 209 P, incubated in indocyanine green solutions, is studied, as well as that of colloid gold nanoshells, nanocages and their conjugates with indocyanine green. It is found that the S. aureus 209 P cells are equally subjected to the IR laser radiation ({lambda} = 805 nm) after preliminary sensitisation with indocyanine green and gold nanoparticles separately and with conjugates of nanoparticles and indocyanine green. The enhancement of photodynamic and photothermal effects by 5 % is observed after 30 min of laser illumination ({lambda} = 808 nm) of bacteria, treated with conjugates of indocyanine green and nanocages. (optical technologies in biophysics and medicine)

Tuchina, E S; Tuchin, Valerii V; Khlebtsov, B N; Khlebtsov, Nikolai G

2011-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "including radiation effects" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Oak Ridge Integrated Center for Radiation Materials Science & Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

ORIC Home ORIC Home About ORIC Contacts Specialists Capabilities Irradiation Campaigns Nuclear Fuels Radiation Effects and Defect Modeling Structural Materials Dual Purpose Radiological Characterization Equipment Working with Us Related Links HFIR MSTD NSTD NNFD Comments Welcome to Oak Ridge Integrated Center for Radiation Materials Science & Technology The Oak Ridge National Laboratory ranks among the founding laboratories for the scientific field of radiation materials science. Since the creation of the laboratory, we have maintained strong ties to both the technology and scientific underpinning of nuclear materials research as evidenced by the experience and capabilities across our research divisions. The capabilities at ORNL enjoys include the highest neutron flux nuclear

402

Heat pipe technology development for high temperature space radiator applications  

SciTech Connect

Technology requirements for heat pipe radiators, potentially among the lightest weight systems for space power applications, include flexible elements, and improved specific radiator performance(kg/kW). For these applications a flexible heat pipe capable of continuous operation through an angle of 180/sup 0/ has been demonstrated. The effect of bend angle on the heat pipe temperature distribution is reviewed. An analysis of lightweight membrane heat pipe radiators that use surface tension forces for fluid containment has been conducted. The design analysis of these lightweight heat pipes is described and a potential application in heat rejection systems for space nuclear power plants outlined.

Merrigan, M.A.; Keddy, E.S.; Sena, J.T.; Elder, M.G.

1984-01-01T23:59:59.000Z

403

Using decision analysis to determine the cost-effectiveness of intensity-modulated radiation therapy in the treatment of intermediate risk prostate cancer  

SciTech Connect

Background: The specific aim of this study is to evaluate the cost-effectiveness of intensity-modulated radiation therapy (IMRT) compared with three-dimensional conformal radiation therapy (3D-CRT) in the treatment of a 70-year-old with intermediate-risk prostate cancer. Methods: A Markov model was designed with the following states; posttreatment, hormone therapy, chemotherapy, and death. Transition probabilities from one state to another were calculated from rates derived from the literature for IMRT and 3D-CRT. Utility values for each health state were obtained from preliminary studies of preferences conducted at Fox Chase Cancer Center. The analysis took a payer's perspective. Expected mean costs, cost-effectiveness scatterplots, and cost acceptability curves were calculated with commercially available software. Results: The expected mean cost of patients undergoing IMRT was $47,931 with a survival of 6.27 quality-adjusted life years (QALYs). The expected mean cost of patients having 3D-CRT was $21,865 with a survival of 5.62 QALYs. The incremental cost-effectiveness comparing IMRT with CRT was $40,101/QALYs. Cost-effectiveness acceptability curve analysis revealed a 55.1% probability of IMRT being cost-effective at a $50,000/QALY willingness to pay. Conclusion: Intensity-modulated radiation therapy was found to be cost-effective, however, at the upper limits of acceptability. The results, however, are dependent on the assumptions of improved biochemical disease-free survival with fewer patients undergoing subsequent salvage therapy and improved quality of life after the treatment. In the absence of prospective randomized trials, decision analysis can help inform physicians and health policy experts on the cost-effectiveness of emerging technologies.

Konski, Andre [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States)]. E-mail: andre.konski@fccc.edu; Watkins-Bruner, Deborah [Department of Population Sciences, Fox Chase Cancer Center, Philadelphia, PA (United States); Feigenberg, Steven [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States); Hanlon, Alexandra [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States); Kulkarni, Sachin M.S. [Department of Population Sciences, Fox Chase Cancer Center, Philadelphia, PA (United States); Beck, J. Robert [Department of Information and Science Technologies, Fox Chase Cancer Center, Philadelphia, PA (United States); Horwitz, Eric M. [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States); Pollack, Alan [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States)

2006-10-01T23:59:59.000Z

404

Science Accelerator content now includes multimedia  

Office of Scientific and Technical Information (OSTI)

Science Accelerator content now includes multimedia Science Accelerator has expanded its suite of collections to include ScienceCinema, which contains videos produced by the U.S....

405

Isocurvature perturbations in extra radiation  

E-Print Network (OSTI)

Recent cosmological observations, including measurements of the CMB anisotropy and the primordial helium abundance, indicate the existence of an extra radiation component in the Universe beyond the standard three neutrino species. In this paper we explore the possibility that the extra radiation has isocurvatrue fluctuations. A general formalism to evaluate isocurvature perturbations in the extra radiation is provided in the mixed inflaton-curvaton system, where the extra radiation is produced by the decay of both scalar fields. We also derive constraints on the abundance of the extra radiation and the amount of its isocurvature perturbation. Current observational data favors the existence of an extra radiation component, but does not indicate its having isocurvature perturbation. These constraints are applied to some particle physics motivated models. If future observations detect isocurvature perturbations in the extra radiation, it will give us a hint to the origin of the extra radiation.

Kawasaki, Masahiro; Nakayama, Kazunori; Sekiguchi, Toyokazu

2011-01-01T23:59:59.000Z

406

Liquid cooled fiber thermal radiation receiver  

DOE Patents (OSTI)

A radiation-to-thermal receiver apparatus for collecting radiation and converting it to thermal energy is disclosed. The invention includes a fibrous mat material which captures radiation striking the receiver. Captured radiation is removed from the fibrous mat material by a transparent fluid within which the material is bathed.

Butler, Barry L. (Del Mar, CA)

1987-01-01T23:59:59.000Z

407

Liquid cooled fiber thermal radiation receiver  

DOE Patents (OSTI)

A radiation-to-thermal receiver apparatus for collecting radiation and converting it to thermal energy is disclosed. The invention includes a fibrous mat material which captures radiation striking the receiver. Captured radiation is removed from the fibrous mat material by a transparent fluid within which the material is bathed.

Butler, B.L.

1985-03-29T23:59:59.000Z

408

Multilayer radiation shield  

SciTech Connect

A power generation system including: a generator including a rotor including a superconductive rotor coil coupled to a rotatable shaft; a first prime mover drivingly coupled to the rotatable shaft; and a thermal radiation shield, partially surrounding the rotor coil, including at least a first sheet and a second sheet spaced apart from the first sheet by centripetal force produced by the rotatable shaft. A thermal radiation shield for a generator including a rotor including a super-conductive rotor coil including: a first sheet having at least one surface formed from a low emissivity material; and at least one additional sheet having at least one surface formed from a low emissivity material spaced apart from the first sheet by centripetal force produced by the rotatable shaft, wherein each successive sheet is an incrementally greater circumferential arc length and wherein the centripetal force shapes the sheets into a substantially catenary shape.

Urbahn, John Arthur (Saratoga Springs, NY); Laskaris, Evangelos Trifon (Niskayuna, NY)

2009-06-16T23:59:59.000Z

409

Petroleum Gasoline & Distillate Needs Including the Energy ...  

U.S. Energy Information Administration (EIA)

Petroleum Gasoline & Distillate Needs Including the Energy Independence and Security Act (EISA) Impacts

410

Petroleum Gasoline & Distillate Needs Including the Energy ...  

U.S. Energy Information Administration (EIA)

Home > Petroleum > Analysis > Petroleum Gasoline & Distillate Needs Including the Energy Independence and Security Act (EISA) ...

411

The Effect of Gas Absorption on the Scattered Radiation in the Solar Almucantar: Results of Numerical Simulation  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Absorption on the Gas Absorption on the Scattered Radiation in the Solar Almucantar: Results of Numerical Simulation T. Yu. Chesnokova, K. M. Firsov, I. M. Nasrtdinov, S. M. Sakerin, V. V. Veretennikov, and T. B. Zhuravleva Institute of Atmospheric Optics Tomsk, Russia Introduction The methods for reconstruction of the aerosol optical characteristics (e.g., aerosol size distribution, and single-scattering albedo) from diffuse and direct radiation measured in the solar almucantar has been widely used during the last decade. The photometers with filters in the "atmospheric transparency windows" in the wavelength range 0.4 to 1 m were applied for measurements. Usually it was assumed that one could neglect the molecular absorption of the measured diffuse radiation. Further development

412

Enhanced radiation detectors using luminescent materials  

DOE Patents (OSTI)

A radiation detecting device comprising a radiation sensing element, and a layer of luminescent material to expand the range of wavelengths over which the sensing element can efficiently detect radiation. The luminescent material being selected to absorb radiation at selected wavelengths, causing the luminescent material to luminesce, and the luminescent radiation being detected by the sensing element. Radiation sensing elements include photodiodes (singly and in arrays), CCD arrays, IR detectors and photomultiplier tubes. Luminescent materials include polymers, oligomers, copolymers and porphyrines, Luminescent layers include thin films, thicker layers, and liquid polymers.

Vardeny, Zeev V. (Holladay, UT); Jeglinski, Stefan A. (Durham, NC); Lane, Paul A. (Sheffield, GB)

2001-01-01T23:59:59.000Z

413

Magnetic fields and radiative feedback in the star formation process  

E-Print Network (OSTI)

Star formation is a complex process involving the interplay of many physical effects, including gravity, turbulent gas dynamics, magnetic fields and radiation. Our understanding of the process has improved substantially in recent years, primarily as a result of our increased ability to incorporate the relevant physics in numerical calculations of the star formation process. In this contribution we present an overview of our recent studies of star cluster formation in turbulent, magnetised clouds using self-gravitating radiation-magnetohydrodynamics calculations (Price and Bate 2008, 2009). Our incorporation of magnetic fields and radiative transfer into the Smoothed Particle Hydrodynamics method are discussed. We highlight how magnetic fields and radiative heating of the gas around newborn stars can solve several of the key puzzles in star formation, including an explanation for why star formation is such a slow and inefficient process. However, the presence of magnetic fields at observed strengths in collaps...

Price, Daniel J

2010-01-01T23:59:59.000Z

414

THEORETICAL STUDY OF OPTICAL PROPERTIES. PHOTON ABSORPTION COEFFICIENTS, OPACITIES, AND EQUATIONS OF STATE OF LIGHT ELEMENTS INCLUDING THE EFFECT OF LINES. Final Report. APPENDIX A: THERMODYNAMIC PROPERTIES AND MEAN OPACITIES  

DOE Green Energy (OSTI)

Photon absorption coefficients and mean opacities were calculated for hydrogen, beryllium, carbon, nitrogen, aluminum, and silicon over a temperature range froni l.5 to 34 ev and a density range from about l0/sup -1/g/cm/sup 3/ downward. Contributions to the absorption coefficient from free-free (inverse- bremsstrahlung), bound-free (photoelectric), and bound-bound (line-absorption) processes are included, as is Compton scattering. Certain thermodynamic properties are also given. An improved recipe for pressure ionization was derived which is approximately valid at nondegencrate densities for any ratio of Debye length to ion-sphere radius. Line absorption was evaluated using recent results from pressure-broadening theory and a representation of line series which is computationally as simple as the statistical method. The results show that lines increase the Rosseland mean opacity by a factor which can be nearly ten and which is insensitive to moderate changes in line widths. The code employed generated ionic energy levels internally by isoelectronic interpolation, and is immediately applicable to any- mixture of elements in which no ion has more than 14 bound electrons. The results of the calculations of thermodynamic properties and mean opacities are given in the tables in Appendix A, and the graphs of the monochromatic absorption coefficients are given in Appendix B, which comprises Vols. II and III. (auth)

Stewart, J.C.; Pyatt, K.D. Jr.

1961-09-01T23:59:59.000Z

415

NIST Ionizing Radiation Division 1999 - Current Directions  

Science Conference Proceedings (OSTI)

... effect relationships for radiation-induced stochastic ... validate the EPR dose assessment methods ... Calibration of Low-Energy Photon Brachytherapy ...

416

MATERIALS FOR SPALLATION NEUTRON SOURCES: I: Radiation ...  

Science Conference Proceedings (OSTI)

MATERIALS FOR SPALLATION NEUTRON SOURCES: Session I: Radiation Effects, A. Sponsored by: Jt. SMD/MSD Nuclear Materials Committee Program ...

417

MATERIALS FOR SPALLATION NEUTRON SOURCES: II: Radiation ...  

Science Conference Proceedings (OSTI)

MATERIALS FOR SPALLATION NEUTRON SOURCES: Session II: Radiation Effects, B. Sponsored by: Jt. SMD/MSD Nuclear Materials Committee Program ...

418

Low Dose Radiation Research Program: Current Funded Project Descriptions  

NLE Websites -- All DOE Office Websites (Extended Search)

Funded Project Descriptions Funded Project Descriptions Effects Of Low Doses of Radiation on DNA Repair Jointly funded by NASA and DOE Eric J Ackerman Pacific Northwest National Laboratory Richland, WA 99352 Dr. Ackerman will study the effect of low doses of ionizing radiation on the repair of different types of damage to DNA, including damage from ionizing radiation and that produced by the normal internal operation of the cell. Using a very sensitive technique called host cell reactivation assay (HCR), he will quantitatively measure the repair of each type of DNA damage and thereby measure if the cellular repair system itself has been damaged. He will also determine if unique forms of DNA repair system damage are induced by low doses of cosmic radiation exposure present during space

419

Low Dose Radiation Research Program: Project Descriptions-Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Descriptions-Archive Project Descriptions-Archive Effects Of Low Doses of Radiation on DNA Repair Eric J Ackerman (former PNNL) (Jointly funded by NASA and DOE) Pacific Northwest National Laboratory Richland, WA Dr. Ackerman will study the effect of low doses of ionizing radiation on the repair of different types of damage to DNA, including damage from ionizing radiation and that produced by the normal internal operation of the cell. Using a very sensitive technique called host cell reactivation assay (HCR), he will quantitatively measure the repair of each type of DNA damage and thereby measure if the cellular repair system itself has been damaged. He will also determine if unique forms of DNA repair system damage are induced by low doses of cosmic radiation exposure present during space

420

Models of Procyon A including seismic constraints  

E-Print Network (OSTI)

Detailed models of Procyon A based on new asteroseismic measurements by Eggenberger et al (2004) have been computed using the Geneva evolution code including shellular rotation and atomic diffusion. By combining all non-asteroseismic observables now available for Procyon A with these seismological data, we find that the observed mean large spacing of 55.5 +- 0.5 uHz favours a mass of 1.497 M_sol for Procyon A. We also determine the following global parameters of Procyon A: an age of t=1.72 +- 0.30 Gyr, an initial helium mass fraction Y_i=0.290 +- 0.010, a nearly solar initial metallicity (Z/X)_i=0.0234 +- 0.0015 and a mixing-length parameter alpha=1.75 +- 0.40. Moreover, we show that the effects of rotation on the inner structure of the star may be revealed by asteroseismic observations if frequencies can be determined with a high precision. Existing seismological data of Procyon A are unfortunately not accurate enough to really test these differences in the input physics of our models.

P. Eggenberger; F. Carrier; F. Bouchy

2005-01-14T23:59:59.000Z

Note: This page contains sample records for the topic "including radiation effects" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

The observed relationship between the occurrence of acute radiation effects and leukemia mortality among A-bomb survivors  

SciTech Connect

In an analysis of a follow-up study of a fixed population of 73,330 atomic bomb survivors in Hiroshima and Nagasaki, the slope of an estimated dose response between ionizing radiation and leukemia mortality was found to be steeper (P less than 0.002), by a factor of 2.4, among those who reported epilation within 60 days of the bombings, compared to those who did not experience this sign of acute radiation exposure. The strength of this empirical finding as evidence of biological association in individual radiosensitivity for these two end points is studied here. The major factor complicating the interpretation of this finding as evidence of such an association is the degree of imprecision of the radiation dosimetry system used in assignment of radiation doses to the A-bomb survivors. Using models recently suggested for dealing with dosimetry errors in epidemiological analysis of the A-bomb survivor data, the sensitivity of the apparent association between leukemia mortality and severe epilation to the assumed level of dosimetry error is investigated.

Neriishi, K.; Stram, D.O.; Vaeth, M.; Mizuno, S.; Akiba, S. (Radiation Effects Research Foundation, Hiroshima (Japan))

1991-02-01T23:59:59.000Z

422

Silver Clear Nylon Dressing is Effective in Preventing Radiation-Induced Dermatitis in Patients With Lower Gastrointestinal Cancer: Results From a Phase III Study  

SciTech Connect

Purpose: For patients with anal canal and advanced rectal cancer, chemoradiation therapy is a curative modality or an important adjunct to surgery. Nearly all patients treated with chemoradiation experience some degree of radiation-induced dermatitis (RID). Prevention and effective treatment of RID, therefore, is of considerable clinical relevance. The present phase III randomized trial compared the efficacy of silver clear nylon dressing (SCND) with that of standard skin care for these patients. Methods and Materials: A total of 42 rectal or anal canal cancer patients were randomized to either a SCND or standard skin care group. SCND was applied from Day 1 of radiation therapy (RT) until 2 weeks after treatment completion. In the control arm, sulfadiazine cream was applied at the time of skin dermatitis. Printed digital photographs taken 2 weeks prior to, on the last day, and two weeks after the treatment completion were scored by 10 blinded readers, who used the common toxicity scoring system for skin dermatitis. Results: The radiation dose ranged from 50.4 to 59.4 Gy, and there were no differences between the 2 groups. On the last day of RT, when the most severe RID occurs, the mean dermatitis score was 2.53 (standard deviation [SD], 1.17) for the standard and 1.67 (SD, 1.2; P=.01) for the SCND arm. At 2 weeks after RT, the difference was 0.39 points in favor of SCND (P=.39). There was considerable intraclass correlation among the 10 observers. Conclusions: Silver clear nylon dressing is effective in reducing RID in patients with lower gastrointestinal cancer treated with combined chemotherapy and radiation treatment.

Niazi, Tamim M. [Segal Cancer Centre, Department of Radiation Oncology, Jewish General Hospital, McGill University (Canada)] [Segal Cancer Centre, Department of Radiation Oncology, Jewish General Hospital, McGill University (Canada); Vuong, Te, E-mail: tvuong@jgh.mcgill.ca [Segal Cancer Centre, Department of Radiation Oncology, Jewish General Hospital, McGill University (Canada)] [Segal Cancer Centre, Department of Radiation Oncology, Jewish General Hospital, McGill University (Canada); Azoulay, Laurant [Department of Epidemiology, Jewish General Hospital, McGill University (Canada)] [Department of Epidemiology, Jewish General Hospital, McGill University (Canada); Marijnen, Corrie [Department of Clinical Oncology, Leiden University Medical Center, Amsterdam (Netherlands)] [Department of Clinical Oncology, Leiden University Medical Center, Amsterdam (Netherlands); Bujko, Kryzstof [Department of Radiotherapy, The Maria Sklodowska-Curie Memorial Cancer Centre, Warsaw (Poland)] [Department of Radiotherapy, The Maria Sklodowska-Curie Memorial Cancer Centre, Warsaw (Poland); Nasr, Elie [Department of Radiation Oncology, Hotel-Dieu de France Hospital (Lebanon)] [Department of Radiation Oncology, Hotel-Dieu de France Hospital (Lebanon); Lambert, Christine; Duclos, Marie; Faria, Sergio; David, Marc [Department of Radiation Oncology, Montreal-General-Hospital, McGill University, Montreal (Canada)] [Department of Radiation Oncology, Montreal-General-Hospital, McGill University, Montreal (Canada); Cummings, Bernard [Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto (Canada)] [Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto (Canada)

2012-11-01T23:59:59.000Z

423

Radiation Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation Information << Timeline >> Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player July 31, 1942 The Army Corp of Engineers leases...

424

CRC handbook of laser science and technology. Volume 3. Optical materials, Part 1 - Nonlinear optical properties/radiation damage  

Science Conference Proceedings (OSTI)

This book examines the nonlinear optical properties of laser materials. The physical radiation effects on laser materials are also considered. Topics considered include: nonlinear optical properties; nonlinear and harmonic generation materials; two-photon absorption; nonlinear refractive index; stimulated Raman scattering; radiation damage; crystals; and glasses.

Weber, M.J.

1986-01-01T23:59:59.000Z

425

DOE 2012 Occupational Radiation Exposure October 2013  

SciTech Connect

The U.S. Department of Energy (DOE) Office of Analysis within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE (including the National Nuclear Security Administration [NNSA]). The DOE 2012 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with Title 10, Code of Federal Regulations (C.F.R.), Part 835, Occupational Radiation Protection dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protection of individuals from the adverse health effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. Over the past 5-year period, the occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site. As an indicator of the overall amount of radiation dose received during the conduct of operations at DOE, the report includes information on collective total effective dose (TED). The TED is comprised of the effective dose (ED) from external sources, which includes neutron and photon radiation, and the internal committed effective dose (CED), which results from the intake of radioactive material into the body. The collective ED from photon exposure decreased by 23% between 2011 and 2012, while the neutron dose increased by 5%. The internal dose components of the collective TED decreased by 7%. Over the past 5-year period, 99.99% of the individuals receiving measurable TED have received doses below the 2 roentgen equivalent in man (rems) (20 millisievert [mSv]) TED administrative control level (ACL), which is well below the DOE regulatory limit of 5 rems (50 mSv) TED annually. The occupational radiation exposure records show that in 2012, DOE facilities continued to comply with DOE dose limits and ACLs and worked to minimize exposure to individuals. The DOE collective TED decreased 17.1% from 2011 to 2012. The collective TED decreased at three of the five sites with the largest collective TED. u Idaho Site – Collective dose reductions were achieved as a result of continuing improvements at the Advanced Mixed Waste Treatment Project (AMWTP) through the planning of drum movements that reduced the number of times a container is handled; placement of waste containers that created highradiation areas in a centralized location; and increased worker awareness of high-dose rate areas. In addition, Idaho had the largest decrease in the total number of workers with measurable TED (1,143 fewer workers). u Hanford Site (Hanford) – An overall reduction of decontamination and decommissioning (D&D) activities at the Plutonium Finishing Plant (PFP) and Transuranic (TRU) retrieval activities resulted in collective dose reductions. u Savannah River Site (SRS) – Reductions were achieved through ALARA initiatives employed site wide. The Solid Waste Management Facility used extended specialty tools, cameras and lead shield walls to facilitate removal of drums. These tools and techniques reduce exposure time through improved efficiency, increase distance from the source of radiation by remote monitoring, shield the workers to lower the dose rate, and reduce the potential for contamination and release of material through repacking of waste. Overall, from 2011 to 2012, there was a 19% decrease in the number of workers with measurable dose. Furthermore, due to a slight decrease in both the DOE workforce (7%) and monitored workers (10%), the ratio of workers with measurable doses to monitored workers decreased to 13%. Another primary indicator of the level of radiation exposure covered in this report is the average measurable dose, which normalizes the collective dose over the population of workers who actually received a measurable dose. The average measurable TED in

none,

2012-02-02T23:59:59.000Z

426

ARM - Measurement - Backscattered radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

govMeasurementsBackscattered radiation govMeasurementsBackscattered radiation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Backscattered radiation The scattering of radiant energy into the hemisphere of space bounded by a plane normal to the direction of the incident radiation and lying on the same side as the incident ray. Categories Aerosols, Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AOS : Aerosol Observing System IAP : In-situ Aerosol Profiles (Cessna Aerosol Flights)

427

Amorphous silicon radiation detectors  

DOE Patents (OSTI)

Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

Street, Robert A. (Palo Alto, CA); Perez-Mendez, Victor (Berkeley, CA); Kaplan, Selig N. (El Cerrito, CA)

1992-01-01T23:59:59.000Z

428

Amorphous silicon radiation detectors  

DOE Patents (OSTI)

Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification. 13 figs.

Street, R.A.; Perez-Mendez, V.; Kaplan, S.N.

1992-11-17T23:59:59.000Z

429

Radiation control standards and procedures  

SciTech Connect

This manual contains the Radiation Control Standards'' and Radiation Control Procedures'' at Hanford Operations which have been established to provide the necessary control radiation exposures within Irradiation Processing Department. Provision is also made for including, in the form of Bulletins'', other radiological information of general interest to IPD personnel. The purpose of the standards is to establish firm radiological limits within which the Irradiation Processing Department will operate, and to outline our radiation control program in sufficient detail to insure uniform and consistent application throughout all IPD facilities. Radiation Control Procedures are intended to prescribe the best method of accomplishing an objective within the limitations of the Radiation Control Standards. A procedure may be changed at any time provided the suggested changes is generally agreeable to management involved, and is consistent with department policies and the Radiation Control Standards.

1956-12-14T23:59:59.000Z

430

Safety Around Sources of Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Keeping Exposure Low Keeping Exposure Low Working Safely Around Radioactive Contamination Types of Radiation Exposure Managing Radiation Emergencies Procedure Demonstration Is it safe to be around sources? Too much radiation exposure is harmful. The degree of radiation injury depends on the amount of radiation received and the time involved. In general, the higher the amount, the greater the severity of early effects (occurring within a few weeks) and the greater the possibility of late effects such as cancer. The BEIR V (Biological Effects of Ionizing Radiation) Committee of the National Research Council estimates that among 100,000 people exposed to a one-time dose of 10 rem (10,000 mrem) and followed over their life span, about 790 more would die of cancer than the estimated 20,000 cancer deaths that would be expected among a non-exposed group of the same size. NOTE: 10 rem = 100 millisieverts (100 mSv).

431

The USDA Ultraviolet Radiation Monitoring Program  

Science Conference Proceedings (OSTI)

The U.S. Department of Agriculture's Ultraviolet (UV) Radiation Monitoring Program has been measuring UV radiation since 1994. The initial network of 12 stations employed broadband meters to measure UVB irradiance and included ancillary ...

D. S. Bigelow; J. R. Slusser; A. F. Beaubien; J. H. Gibson

1998-04-01T23:59:59.000Z

432

Surface Radiation in the Tropical Pacific  

Science Conference Proceedings (OSTI)

Monthly surface radiative fluxes in the tropical Pacific between January 1970 and February 1978 have been calculated using a radiative transfer package which includes detailed treatments of the molecular and droplet absorptions and of the surface ...

Ming-Dah Chou

1985-01-01T23:59:59.000Z

433

DOE 2010 Occupational Radiation Exposure November 2011  

Science Conference Proceedings (OSTI)

This report discusses radiation protection and dose reporting requirements, presents the 2010 occupational radiation dose data trended over the past 5 years, and includes instructions to submit successful ALARA projects.

U.S. Department of Energy, Office of Health, Safety and Security, Office of Analysis

2011-11-11T23:59:59.000Z

434

Influence of Extraterrestrial Radiation on Radiation Portal Monitors  

Science Conference Proceedings (OSTI)

Cosmic radiation and solar flares can be a major source of background radiation at the Earth’s surface. This paper examines the relationship between extraterrestrial radiation and the detectable background in radiation portal monitors used for homeland security applications. Background radiation data from 13 radiation portal monitor facilities are examined and compared against external sources of data related to extraterrestrial radiation, including measurements at neutron monitors located at 53 cosmic-ray observatories around the Earth, four polar orbiting satellites, three geostationary satellites, ground-based geomagnetic field data from observatories around the Earth, a solar magnetic index, solar radio flux data, and sunspot activity data. Four-years (January 2003 through December 2006) of data are used in this study, which include the latter part of Solar Cycle 23 as solar activity was on the decline. The analysis shows a significant relationship between some extraterrestrial radiation and the background detected in the radiation portal monitors. A demonstrable decline is shown in the average gamma ray and neutron background at the radiation portal monitors as solar activity declined over the period of the study.

Keller, Paul E.; Kouzes, Richard T.

2009-06-01T23:59:59.000Z

435

Einstein-Hopf drag, Doppler shift of thermal radiation and blackbody friction: A unifying perspective on an intriguing physical effect  

E-Print Network (OSTI)

The thermal friction force acting on an atom moving relative to a thermal photon bath has recently been calculated on the basis of the fluctuation-dissipation theorem. The thermal fluctuations of the electromagnetic field give rise to a drag force on an atom provided one allows for dissipation of the field energy via spontaneous emission. The drag force exists if the atomic polarizability has a nonvanishing imaginary part. Here, we explore alternative derivations. The damping of the motion of a simple harmonic oscillator is described by radiative reaction theory (result of Einstein and Hopf), taking into account the known stochastic fluctuations of the electromagnetic field. Describing the excitations of the atom as an ensemble of damped harmonic oscillators, we identify the previously found expressions as generalizations of the Einstein-Hopf result. In addition, we present a simple explanation for blackbody friction in terms of a Doppler shift of the thermal radiation in the inertial frame of the moving atom...

Lach, G; Jentschura, U D

2011-01-01T23:59:59.000Z

436

EFFECT OF RADIATION ON DYNAMIC PROPERTIES OF HIGH POLYMERS. Progress Report Covering Period July 1, 1957 to June 30, 1958  

SciTech Connect

Progress made during the last year is briefly summarized. Nine additionai technical papers on various aspects of the resesrch work have appeared in print during the last twelve months and these are listed by title and author. A number of additionai polymers were investigated during the year by both dynamnic mechanical techniques and nuclear magnetic resonance techniques. Studies on irradiated polyethylenes were made both for materials subject to Co/ sup 60/ radiation as well as to pile radiation. Apparatus for measuring specific volume from 160 deg K to above the melting point was completed, and a series of branched and irradiated polyethylenes wss investigated. Progress hss also been made in designing and constructing new apparatus for measuremeat of mechanical properties over a frequency range from 1/100 c/s to 20 Mc/s. Dielectric apparatus was assembled and investigations begun, both experimental and theoretical, on determination of the detailed structure of polymer molecules. (auth)

Sauer, J.A.

1958-07-01T23:59:59.000Z

437

Definition of Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Gamma Radiation and X-Rays Beta Radiation Alpha Radiation Irradiation Radioactive Contamination Definitions Detection Measurement Safety Around Radiation Sources Types of...

438

How to Detect Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

How to Detect Radiation How to Survey Measurement Safety Around Radiation Sources Types of Radiation Exposure Managing Radiation Emergencies Procedure Demonstration Detection How...

439

Lens of Eye Dose Limit Changes: Current Status of the Potential Regulatory Changes and Possible Effects on Radiation Protection Programs at Nuclear Power Plants  

Science Conference Proceedings (OSTI)

Recent research suggests that the threshold for cataract formation as a result of exposure to radiation could be lower than previously considered. The International Commission on Radiological Protection (ICRP) is now recommending a dose limit for the lens of the eye of an average of 20 mSv (2 rem) per year, equivalent to their current recommendation for Total Effective Dose Equivalent (TEDE). The Nuclear Regulatory Commission (NRC) is considering reducing the lens of the eye dose limit to 50 mSv/yr ...

2013-10-29T23:59:59.000Z

440

Real-time Molecular Study of Bystander Effects of Low dose Low LET radiation Using Living Cell Imaging and Nanoparticale Optics  

SciTech Connect

In this study two novel approaches are proposed to investigate precisely the low dose low LET radiation damage and its effect on bystander cells in real time. First, a flow shear model system, which would provide us a near in vivo situation where endothelial cells in the presence of extra cellular matrix experiencing continuous flow shear stress, will be used. Endothelial cells on matri-gel (simulated extra cellular matrix) will be subjected to physiological flow shear (that occurs in normal blood vessels). Second, a unique tool (Single nano particle/single live cell/single molecule microscopy and spectroscopy; Figure A) will be used to track the molecular trafficking by single live cell imaging. Single molecule chemical microscopy allows one to single out and study rare events that otherwise might be lost in assembled average measurement, and monitor many target single molecules simultaneously in real-time. Multi color single novel metal nanoparticle probes allow one to prepare multicolor probes (Figure B) to monitor many single components (events) simultaneously and perform multi-complex analysis in real-time. These nano-particles resist to photo bleaching and hence serve as probes for unlimited timeframe of analysis. Single live cell microscopy allows one to image many single cells simultaneously in real-time. With the combination of these unique tools, we will be able to study under near-physiological conditions the cellular and sub-cellular responses (even subtle changes at one molecule level) to low and very low doses of low LET radiation in real time (milli-second or nano-second) at sub-10 nanometer spatial resolution. This would allow us to precisely identify, at least in part, the molecular mediators that are responsible of radiation damage in the irradiated cells and the mediators that are responsible for initiating the signaling in the neighboring cells. Endothelial cells subjected to flow shear (2 dynes/cm2 or 16 dynes/cm2) and exposed to 0.1, 1 and 10 cGy on coverslips will be examined for (a) low LET radiation-induced alterations of cellular function and its physiological relevance in real time; and (b) radiation damage triggered bystander effect on the neighboring unirradiated cells. First, to determine the low LET radiation induced alteration of cellular function we will examine: (i) the real time transformation of single membrane transporters in single living cells; (ii) the pump efficiency of membrane efflux pump of live cells in real time at the molecular level; (iii) the kinetics of single-ligand receptor interaction on single live cell surface (Figure C); and (iv) alteration in chromosome replication in living cell. Second, to study the radiation triggered bystander responses, we will examine one of the key signaling pathway i.e. TNF- alpha/NF-kappa B mediated signaling. TNF-alpha specific nano particle sensors (green) will be developed to detect the releasing dynamics, transport mechanisms and ligand-receptor binding on live cell surface in real time. A second sensor (blue) will be developed to simultaneously monitor the track of NF-kB inside the cell. The proposed nano-particle optics approach would complement our DOE funded study on biochemical mechanisms of TNF-alpha- NF-kappa B-mediated bystander effect.

Natarajan, Mohan [UT Health Science Center at San Antonio; Xu, Nancy R [Old Dominion University; Mohan, Sumathy [UT Health Science Center at San Antonio

2013-06-03T23:59:59.000Z