Powered by Deep Web Technologies
Note: This page contains sample records for the topic "including fuel ethanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Alternative Fuels Data Center: Ethanol Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Stations on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Ethanol Fueling Stations Photo of an ethanol fueling station. Thousands of ethanol fueling stations are available in the United States.

2

Ethanol-blended Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Ethanol-Blended Ethanol-Blended Fuels A Study Guide and Overview of: * Ethanol's History in the U.S. and Worldwide * Ethanol Science and Technology * Engine Performance * Environmental Effects * Economics and Energy Security The Curriculum This curriculum on ethanol and its use as a fuel was developed by the Clean Fuels Development Coalition in cooperation with the Nebraska Ethanol Board. This material was developed in response to the need for instructional materials on ethanol and its effects on vehicle performance, the environment, and the economy. As a renewable alternative energy source made from grain and other biomass resources, ethanol study serves as an excellent learning opportunity for students to use in issue clarification and problem-solving activities. Ethanol illustrates that science and technology can provide us with new

3

Alternative Fuels Data Center: Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Ethanol to someone by E-mail Share Alternative Fuels Data Center: Ethanol on Facebook Tweet about Alternative Fuels Data Center: Ethanol on Twitter Bookmark Alternative Fuels Data Center: Ethanol on Google Bookmark Alternative Fuels Data Center: Ethanol on Delicious Rank Alternative Fuels Data Center: Ethanol on Digg Find More places to share Alternative Fuels Data Center: Ethanol on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Fuel Prices Find ethanol fuel prices and trends. Ethanol is a renewable fuel made from corn and other plant materials. The use of ethanol is widespread-almost all gasoline in the U.S. contains

4

Chief Ethanol Fuels Inc | Open Energy Information  

Open Energy Info (EERE)

Chief Ethanol Fuels Inc Jump to: navigation, search Name Chief Ethanol Fuels Inc Place Hastings, Nebraska Product Ethanol producer and supplier References Chief Ethanol Fuels...

5

Alternative Fuels Data Center: Ethanol Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Basics to Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Basics on AddThis.com... More in this section... Ethanol Basics Blends Specifications Production & Distribution Feedstocks Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Fuel Basics Related Information National Biofuels Action Plan Ethanol is a renewable fuel made from various plant materials collectively

6

U.S. ethanol production and the Renewable Fuel Standard ...  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium. Uranium fuel, nuclear reactors, generation, spent fuel. ...

7

Chief Ethanol Fuels | Open Energy Information  

Open Energy Info (EERE)

Chief Ethanol Fuels Jump to: navigation, search Name Chief Ethanol Fuels Place Hastings, NE Website http:www.chiefethanolfuels.c References Chief Ethanol Fuels1 Information...

8

Alternative Fuels Data Center: Ethanol  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

| Diesel Vehicles Electricity | Hybrid & Plug-In Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas | Natural Gas Vehicles Propane |...

9

Emissions from ethanol and LPG fueled vehicles  

DOE Green Energy (OSTI)

This paper addresses the environmental concerns of using neat ethanol and liquified petroleum gas (LPG) as transportation fuels in the US Low-level blends of ethanol (10%) with gasoline have been used as fuels in the US for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the US, but its use has been limited primarily to converted fleet vehicles. Increasing US interest in alternative fuels has raised the possibility of introducing neat ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles and increased production and consumption of fuel ethanol and LPG will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural emissions from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG compared to other transportation fuels. The environmental concerns are reviewed and summarized, but the only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat ethanol fueled vehicles or the increase in LPG fueled vehicles.

Pitstick, M.E.

1992-12-31T23:59:59.000Z

10

Emissions from ethanol and LPG fueled vehicles  

DOE Green Energy (OSTI)

This paper addresses the environmental concerns of using neat ethanol and liquified petroleum gas (LPG) as transportation fuels in the US Low-level blends of ethanol (10%) with gasoline have been used as fuels in the US for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the US, but its use has been limited primarily to converted fleet vehicles. Increasing US interest in alternative fuels has raised the possibility of introducing neat ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles and increased production and consumption of fuel ethanol and LPG will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural emissions from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG compared to other transportation fuels. The environmental concerns are reviewed and summarized, but the only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat ethanol fueled vehicles or the increase in LPG fueled vehicles.

Pitstick, M.E.

1992-01-01T23:59:59.000Z

11

Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Fuel Blend Ethanol Fuel Blend Dispensing Regulations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Fuel Blend Dispensing Regulations

12

Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Flexible Fuel Ethanol Flexible Fuel Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on AddThis.com... Ethanol Flexible Fuel Vehicle Conversions Updated July 29, 2011 Rising gasoline prices and concerns about climate change have greatly

13

Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Fueling Ethanol Fueling Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Fueling Infrastructure Grants The Minnesota Corn Research & Promotion Council and the Minnesota

14

Alternative Fuels Data Center: Ethanol Production Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Production Tax Ethanol Production Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Tax Credit on Google Bookmark Alternative Fuels Data Center: Ethanol Production Tax Credit on Delicious Rank Alternative Fuels Data Center: Ethanol Production Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Tax Credit An ethanol producer located in Indiana is entitled to a credit of $0.125 per gallon of ethanol produced, including cellulosic ethanol. The Indiana

15

Alternative Fuels Data Center: Ethanol Related Links  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Ethanol Related Links to someone by E-mail Share Alternative Fuels Data Center: Ethanol Related Links on Facebook Tweet about Alternative Fuels Data Center: Ethanol Related Links on Twitter Bookmark Alternative Fuels Data Center: Ethanol Related Links on Google Bookmark Alternative Fuels Data Center: Ethanol Related Links on Delicious Rank Alternative Fuels Data Center: Ethanol Related Links on Digg Find More places to share Alternative Fuels Data Center: Ethanol Related Links on AddThis.com... More in this section... Ethanol Basics Blends Specifications Production & Distribution Feedstocks Related Links Benefits & Considerations Stations Vehicles Laws & Incentives

16

Fuel Ethanol Oxygenate Production  

Gasoline and Diesel Fuel Update (EIA)

Product: Fuel Ethanol Methyl Tertiary Butyl Ether Merchant Plants Captive Plants Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Product: Fuel Ethanol Methyl Tertiary Butyl Ether Merchant Plants Captive Plants Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History U.S. 27,197 26,722 26,923 26,320 25,564 27,995 1981-2013 East Coast (PADD 1) 628 784 836 842 527 636 2004-2013 Midwest (PADD 2) 25,209 24,689 24,786 24,186 23,810 26,040 2004-2013 Gulf Coast (PADD 3) 523 404 487 460 431 473 2004-2013 Rocky Mountain (PADD 4) 450 432 430 432 415 429 2004-2013 West Coast (PADD 5)

17

Stripping Ethanol from Ethanol-Blended Diesel Fuels for Reductant ...  

Stripping Ethanol from Ethanol-Blended Diesel Fuels for Reductant Use in N0x Catalytic Reduction Note: The technology described above is an early stage opportunity.

18

Platte Valley Fuel Ethanol | Open Energy Information  

Open Energy Info (EERE)

search Name Platte Valley Fuel Ethanol Place Central City, Nebraska Product Bioethanol producer using corn as feedstock References Platte Valley Fuel Ethanol1 LinkedIn...

19

Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Locations Infrastructure Development Business Case Equipment Options

20

Alternative Fuels Data Center: Ethanol Feedstocks  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Feedstocks to Feedstocks to someone by E-mail Share Alternative Fuels Data Center: Ethanol Feedstocks on Facebook Tweet about Alternative Fuels Data Center: Ethanol Feedstocks on Twitter Bookmark Alternative Fuels Data Center: Ethanol Feedstocks on Google Bookmark Alternative Fuels Data Center: Ethanol Feedstocks on Delicious Rank Alternative Fuels Data Center: Ethanol Feedstocks on Digg Find More places to share Alternative Fuels Data Center: Ethanol Feedstocks on AddThis.com... More in this section... Ethanol Basics Blends Specifications Production & Distribution Feedstocks Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Feedstocks Map of the United States BioFuels Atlas Use this interactive map to compare biomass feedstocks and biofuels by

Note: This page contains sample records for the topic "including fuel ethanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Alternative Fuels Data Center: Ethanol Blended Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Blended Fuel Ethanol Blended Fuel Definition to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blended Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blended Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blended Fuel Definition on Google Bookmark Alternative Fuels Data Center: Ethanol Blended Fuel Definition on Delicious Rank Alternative Fuels Data Center: Ethanol Blended Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blended Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blended Fuel Definition Ethanol blended fuel, such as gasohol, is defined as any gasoline blended with 10% or more of anhydrous ethanol. (Reference Idaho Statutes 63-240

22

Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Fuel Blend Tax Ethanol Fuel Blend Tax Rate to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Fuel Blend Tax Rate The tax rate on fuel containing ethanol is $0.06 per gallon less than the tax rate on other motor fuels in certain geographic areas. This reduced

23

Alternative Fuels Data Center: Ethanol Fuel Blend Standard  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Fuel Blend Ethanol Fuel Blend Standard to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Blend Standard on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Blend Standard on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Standard on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Standard on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Blend Standard on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Blend Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Fuel Blend Standard At least 85% of gasoline supplied to a retailer or sold in Hawaii must contain a minimum of 10% ethanol (E10), unless the Director determines that

24

Alternative Fuels Data Center: Ethanol Labeling Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Labeling Ethanol Labeling Requirement to someone by E-mail Share Alternative Fuels Data Center: Ethanol Labeling Requirement on Facebook Tweet about Alternative Fuels Data Center: Ethanol Labeling Requirement on Twitter Bookmark Alternative Fuels Data Center: Ethanol Labeling Requirement on Google Bookmark Alternative Fuels Data Center: Ethanol Labeling Requirement on Delicious Rank Alternative Fuels Data Center: Ethanol Labeling Requirement on Digg Find More places to share Alternative Fuels Data Center: Ethanol Labeling Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Labeling Requirement All gasoline containing 1% or more ethanol by volume offered for sale must be conspicuously identified as "with ethanol" or "containing ethanol."

25

Alternative Fuels Data Center: Ethanol Production Incentive  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Production Ethanol Production Incentive to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Incentive on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Incentive on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Incentive on Google Bookmark Alternative Fuels Data Center: Ethanol Production Incentive on Delicious Rank Alternative Fuels Data Center: Ethanol Production Incentive on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Incentive on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Incentive The Ethanol Production Incentive provides qualified ethanol producers with quarterly payments based on production volume during times when ethanol

26

Alternative Fuels Data Center: Ethanol Blend Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Blend Mandate Ethanol Blend Mandate to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Mandate on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Mandate on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Mandate on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Mandate on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Mandate on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Mandate All gasoline offered for sale at retail stations within the state must contain 10% ethanol (E10). This requirement is waived only if a distributor is unable to purchase ethanol or ethanol-blended gasoline at the same or

27

Alternative Fuels Data Center: Ethanol Vehicle Emissions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Vehicle Ethanol Vehicle Emissions to someone by E-mail Share Alternative Fuels Data Center: Ethanol Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Ethanol Vehicle Emissions on Twitter Bookmark Alternative Fuels Data Center: Ethanol Vehicle Emissions on Google Bookmark Alternative Fuels Data Center: Ethanol Vehicle Emissions on Delicious Rank Alternative Fuels Data Center: Ethanol Vehicle Emissions on Digg Find More places to share Alternative Fuels Data Center: Ethanol Vehicle Emissions on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives Ethanol Vehicle Emissions When blended with gasoline for use as a vehicle fuel, ethanol can offer some emissions benefits over gasoline, depending on vehicle type, engine

28

Alternative Fuels Data Center: Ethanol Infrastructure Funding  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Infrastructure Ethanol Infrastructure Funding to someone by E-mail Share Alternative Fuels Data Center: Ethanol Infrastructure Funding on Facebook Tweet about Alternative Fuels Data Center: Ethanol Infrastructure Funding on Twitter Bookmark Alternative Fuels Data Center: Ethanol Infrastructure Funding on Google Bookmark Alternative Fuels Data Center: Ethanol Infrastructure Funding on Delicious Rank Alternative Fuels Data Center: Ethanol Infrastructure Funding on Digg Find More places to share Alternative Fuels Data Center: Ethanol Infrastructure Funding on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Infrastructure Funding The Ethanol Infrastructure Incentive Program provides funding to offset the cost of installing ethanol blender pumps at retail fueling stations

29

Alternative Fuels Data Center: Ethanol Fueling Station Locations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Station Locations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Station Locations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Station Locations on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Ethanol Fueling Station Locations Find ethanol (E85) fueling stations near an address or ZIP code or along a

30

Alternative Fuels Data Center: Ethanol Labeling Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Labeling Ethanol Labeling Requirement to someone by E-mail Share Alternative Fuels Data Center: Ethanol Labeling Requirement on Facebook Tweet about Alternative Fuels Data Center: Ethanol Labeling Requirement on Twitter Bookmark Alternative Fuels Data Center: Ethanol Labeling Requirement on Google Bookmark Alternative Fuels Data Center: Ethanol Labeling Requirement on Delicious Rank Alternative Fuels Data Center: Ethanol Labeling Requirement on Digg Find More places to share Alternative Fuels Data Center: Ethanol Labeling Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Labeling Requirement Motor fuel containing more than 1% ethanol or methanol may not be sold or offered for sale from a motor fuel dispenser unless the individual selling

31

Ethanol Fuel Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ethanol Fuel Basics Ethanol Fuel Basics Ethanol Fuel Basics July 30, 2013 - 12:00pm Addthis biomass in beekers Ethanol is a renewable fuel made from various plant materials, which collectively are called "biomass." Ethanol contains the same chemical compound (C2H5OH) found in alcoholic beverages. Studies have estimated that ethanol and other biofuels could replace 30% or more of U.S. gasoline demand by 2030. Nearly half of U.S. gasoline contains ethanol in a low-level blend to oxygenate the fuel and reduce air pollution. Ethanol is also increasingly available in E85, an alternative fuel that can be used in flexible fuel vehicles. Several steps are required to make ethanol available as a vehicle fuel. Biomass feedstocks are grown and transported to ethanol production

32

Alternative Fuels Data Center: Ethanol Fuel Blend Use Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Fuel Blend Use Ethanol Fuel Blend Use Requirement to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Blend Use Requirement on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Blend Use Requirement on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Use Requirement on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Use Requirement on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Blend Use Requirement on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Blend Use Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Fuel Blend Use Requirement State government agencies and universities owning or operating motor

33

Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Advanced Ethanol Fuel Advanced Ethanol Fuel Blend Research Grants to someone by E-mail Share Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants on Facebook Tweet about Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants on Twitter Bookmark Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants on Google Bookmark Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants on Delicious Rank Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants on Digg Find More places to share Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Advanced Ethanol Fuel Blend Research Grants

34

Experiences from Introduction of Ethanol Buses and Ethanol Fuel Station |  

Open Energy Info (EERE)

Experiences from Introduction of Ethanol Buses and Ethanol Fuel Station Experiences from Introduction of Ethanol Buses and Ethanol Fuel Station Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Experiences from Introduction of Ethanol Buses and Ethanol Fuel Station Agency/Company /Organization: BioEthanol for Sustainable Transport Focus Area: Fuels & Efficiency Topics: Best Practices Website: www.best-europe.org/upload/BEST_documents/info_documents/Best%20report Ethanol buses were demonstrated within BioEthanol for Sustainable Transport (BEST). This report describes the problems at the sites and how they were solved. The aim of the report is to guide other local transport authorities on how to deal with the questions raised when a bus demonstration begins. How to Use This Tool This tool is most helpful when using these strategies:

35

Alternative Fuels Data Center: Ethanol Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Tax Exemption Ethanol Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Ethanol Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Ethanol Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Ethanol Tax Exemption on Google Bookmark Alternative Fuels Data Center: Ethanol Tax Exemption on Delicious Rank Alternative Fuels Data Center: Ethanol Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Ethanol Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Tax Exemption Sales and use taxes apply to 80% of the proceeds from the sale of fuels containing 10% ethanol (E10) made between July 1, 2003, and December 31, 2018. If at any time these taxes are imposed at a rate of 1.25%, the tax on

36

Alternative Fuels Data Center: Ethanol Labeling Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Labeling Ethanol Labeling Requirement to someone by E-mail Share Alternative Fuels Data Center: Ethanol Labeling Requirement on Facebook Tweet about Alternative Fuels Data Center: Ethanol Labeling Requirement on Twitter Bookmark Alternative Fuels Data Center: Ethanol Labeling Requirement on Google Bookmark Alternative Fuels Data Center: Ethanol Labeling Requirement on Delicious Rank Alternative Fuels Data Center: Ethanol Labeling Requirement on Digg Find More places to share Alternative Fuels Data Center: Ethanol Labeling Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Labeling Requirement Any motor vehicle fuel sold at retail containing more than 1% ethanol or methanol must be labeled according to Connecticut Department of Consumer

37

Alternative Fuels Data Center: Ethanol Fuel Retailer Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Retailer Fuel Retailer Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Retailer Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Retailer Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Retailer Tax Credit on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Retailer Tax Credit on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Retailer Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Retailer Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Fuel Retailer Tax Credit Retailers that sell fuel blends of gasoline containing up to 15% ethanol by

38

Alternative Fuels Data Center: Ethanol Blending Regulation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Blending Ethanol Blending Regulation to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blending Regulation on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blending Regulation on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blending Regulation on Google Bookmark Alternative Fuels Data Center: Ethanol Blending Regulation on Delicious Rank Alternative Fuels Data Center: Ethanol Blending Regulation on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blending Regulation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blending Regulation Gasoline suppliers who provide fuel to distributors in the state must offer gasoline that is suitable for blending with fuel alcohol. Suppliers may not

39

Alternative Fuels Data Center: Ethanol Blend Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Blend Ethanol Blend Requirement to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Requirement on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Requirement on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Requirement on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Requirement on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Requirement on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Requirement Suppliers that import gasoline for sale in North Carolina must offer fuel that is not pre-blended with fuel alcohol but that is suitable for future

40

Alternative Fuels Data Center: Ethanol License  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol License to Ethanol License to someone by E-mail Share Alternative Fuels Data Center: Ethanol License on Facebook Tweet about Alternative Fuels Data Center: Ethanol License on Twitter Bookmark Alternative Fuels Data Center: Ethanol License on Google Bookmark Alternative Fuels Data Center: Ethanol License on Delicious Rank Alternative Fuels Data Center: Ethanol License on Digg Find More places to share Alternative Fuels Data Center: Ethanol License on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol License Anyone who imports, exports, or supplies ethanol in the state of Wyoming must obtain an annual license from the Wyoming Department of Transportation. The fee for each license is $25. (Reference Wyoming

Note: This page contains sample records for the topic "including fuel ethanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Alternative Fuels Data Center: Ethanol Production Incentive  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Production Ethanol Production Incentive to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Incentive on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Incentive on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Incentive on Google Bookmark Alternative Fuels Data Center: Ethanol Production Incentive on Delicious Rank Alternative Fuels Data Center: Ethanol Production Incentive on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Incentive on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Incentive Ethanol producers may qualify for an income tax credit equal to 30% of production facility nameplate capacity between 500,000 and 15 million

42

Alternative Fuels Data Center: Ethanol Infrastructure Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Infrastructure Ethanol Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Ethanol Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Ethanol Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Ethanol Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Ethanol Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Ethanol Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Ethanol Infrastructure Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Infrastructure Grants The Colorado Corn Blender Pump Pilot Program provides funding assistance for each qualified station dispensing mid-level ethanol blends. Projects

43

Alternative Fuels Data Center: Ethanol Production Incentive  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Production Ethanol Production Incentive to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Incentive on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Incentive on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Incentive on Google Bookmark Alternative Fuels Data Center: Ethanol Production Incentive on Delicious Rank Alternative Fuels Data Center: Ethanol Production Incentive on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Incentive on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Incentive The Missouri Department of Agriculture manages the Missouri Ethanol Producer Incentive Fund (Fund), which provides monthly grants to qualified

44

Alternative Fuels Data Center: Ethanol Blends  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Blends to Blends to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blends on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blends on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blends on Google Bookmark Alternative Fuels Data Center: Ethanol Blends on Delicious Rank Alternative Fuels Data Center: Ethanol Blends on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blends on AddThis.com... More in this section... Ethanol Basics Blends E15 E85 Specifications Production & Distribution Feedstocks Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Blends Ethanol is blended with gasoline in various amounts for use in vehicles. E10 E10 is a low-level blend composed of 10% ethanol and 90% gasoline. It is

45

Alternative Fuels Data Center: Ethanol Production Incentive  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Production Ethanol Production Incentive to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Incentive on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Incentive on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Incentive on Google Bookmark Alternative Fuels Data Center: Ethanol Production Incentive on Delicious Rank Alternative Fuels Data Center: Ethanol Production Incentive on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Incentive on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Incentive Qualified ethanol producers are eligible for a production incentive payable from the Kansas Qualified Agricultural Ethyl Alcohol Producer Fund. An

46

Alternative Fuels Data Center: Ethanol Production  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Production to Production to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production on Google Bookmark Alternative Fuels Data Center: Ethanol Production on Delicious Rank Alternative Fuels Data Center: Ethanol Production on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production on AddThis.com... More in this section... Ethanol Basics Blends Specifications Production & Distribution Feedstocks Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Production and Distribution Ethanol is a domestically produced alternative fuel that's most commonly made from corn. It can also be made from cellulosic feedstocks, such as

47

Alternative Fuels Data Center: Ethanol Infrastructure Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Infrastructure Ethanol Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Ethanol Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Ethanol Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Ethanol Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Ethanol Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Ethanol Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Ethanol Infrastructure Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Infrastructure Grants The Kentucky Corn Growers' Association (KyCGA) offers grants of $5,000 per pump to retailers installing new E85 dispensers in Kentucky. For more

48

Alternative Fuels Data Center: Ethanol Production Incentive  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Production Production Incentive to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Incentive on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Incentive on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Incentive on Google Bookmark Alternative Fuels Data Center: Ethanol Production Incentive on Delicious Rank Alternative Fuels Data Center: Ethanol Production Incentive on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Incentive on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Incentive Montana-based ethanol producers are eligible for a tax incentive of $0.20 per gallon of ethanol produced solely from Montana agricultural products or

49

Alternative Fuels Data Center: Ethanol Blend Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Blend Mandate Blend Mandate to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Mandate on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Mandate on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Mandate on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Mandate on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Mandate on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Mandate Within one year after the Montana Department of Transportation has certified that ethanol producers in the state have produced a total of 40 million gallons of denatured ethanol and have maintained that level of

50

Alternative Fuels Data Center: Ethanol Production Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Production Ethanol Production Credit to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Credit on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Credit on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Credit on Google Bookmark Alternative Fuels Data Center: Ethanol Production Credit on Delicious Rank Alternative Fuels Data Center: Ethanol Production Credit on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Credit County governments are eligible to receive waste reduction credits for using yard clippings, clean wood waste, or paper waste as feedstock for the

51

Alternative Fuels Data Center: Ethanol Blend Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Blend Blend Definition to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Definition on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Definition on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Definition on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Definition on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Definition on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Definition An ethanol blend is defined as a blended motor fuel containing ethyl alcohol that is at least 99% pure, derived from agricultural products, and

52

Emissions from ethanol- and LPG-fueled vehicles  

SciTech Connect

This paper addresses the environmental concerns of using neat ethanol and liquefied petroleum gas (LPG) as transportation fuels in the United States. Low-level blends of ethanol (10%) with gasoline have been used as fuels in the United States for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the United States, but its use has been limited primarily to converted fleet vehicles. Increasing U.S. interest in alternative fuels has raised the possibility of introducing neat-ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles, and increased production and consumption of fuel ethanol and LPG, will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat-ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural impacts from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG as compared with other transportation fuels. The environmental concerns are reviewed and summarized, but only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat-ethanol-fueled vehicles or the increase in LPG-fueled vehicles.

Pitstick, M.E.

1995-06-01T23:59:59.000Z

53

Stocks of Fuel Ethanol  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Stocks include those ...

54

Low-Level Ethanol Fuel Blends  

DOE Green Energy (OSTI)

This fact sheet addresses: (a) why Clean Cities promotes ethanol blends; (b) how these blends affect emissions; (c) fuel performance and availability; and (d) cost, incentives, and regulations.

Not Available

2005-04-01T23:59:59.000Z

55

Fueling Infrastructure Polymer Materials Compatibility to Ethanol...  

Open Energy Info (EERE)

Fueling Infrastructure Polymer Materials Compatibility to Ethanol-blended Gasoline These data files contain volume, mass, and hardness changes of elastomers and plastics...

56

Alternative Fuels Data Center: Ethanol Benefits and Considerations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Benefits and Benefits and Considerations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Benefits and Considerations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Benefits and Considerations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Benefits and Considerations on Google Bookmark Alternative Fuels Data Center: Ethanol Benefits and Considerations on Delicious Rank Alternative Fuels Data Center: Ethanol Benefits and Considerations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Benefits and Considerations on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Benefits and Considerations Ethanol is a renewable, domestically produced transportation fuel. Whether

57

Effects of Fuel Ethanol Use on Fuel-Cycle Energy and Greenhouse Gas Emissions  

DOE Green Energy (OSTI)

We estimated the effects on per-vehicle-mile fuel-cycle petroleum use, greenhouse gas (GHG) emissions, and energy use of using ethanol blended with gasoline in a mid-size passenger car, compared with the effects of using gasoline in the same car. Our analysis includes petroleum use, energy use, and emissions associated with chemicals manufacturing, farming of corn and biomass, ethanol production, and ethanol combustion for ethanol; and petroleum use, energy use, and emissions associated with petroleum recovery, petroleum refining, and gasoline combustion for gasoline. For corn-based ethanol, the key factors in determining energy and emissions impacts include energy and chemical usage intensity of corn farming, energy intensity of the ethanol plant, and the method used to estimate energy and emissions credits for co-products of corn ethanol. The key factors in determining the impacts of cellulosic ethanol are energy and chemical usage intensity of biomass farming, ethanol yield per dry ton of biomass, and electricity credits in cellulosic ethanol plants. The results of our fuel-cycle analysis for fuel ethanol are listed below. Note that, in the first half of this summary, the reductions cited are per-vehicle-mile traveled using the specified ethanol/gasoline blend instead of conventional (not reformulated) gasoline. The second half of the summary presents estimated changes per gallon of ethanol used in ethanol blends. GHG emissions are global warming potential (GWP)-weighted, carbon dioxide (CO2)-equivalent emissions of CO2, methane (CH4), and nitrous oxide (N2O).

C. Saricks; D. Santini; M. Wang

1999-02-08T23:59:59.000Z

58

Alternative Fuels Data Center: Ethanol Production Equipment Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Production Ethanol Production Equipment Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Equipment Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Equipment Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Equipment Tax Exemption on Google Bookmark Alternative Fuels Data Center: Ethanol Production Equipment Tax Exemption on Delicious Rank Alternative Fuels Data Center: Ethanol Production Equipment Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Equipment Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Equipment Tax Exemption

59

Alternative Fuels Data Center: Ethanol and Biobutanol Production Incentive  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol and Biobutanol Ethanol and Biobutanol Production Incentive to someone by E-mail Share Alternative Fuels Data Center: Ethanol and Biobutanol Production Incentive on Facebook Tweet about Alternative Fuels Data Center: Ethanol and Biobutanol Production Incentive on Twitter Bookmark Alternative Fuels Data Center: Ethanol and Biobutanol Production Incentive on Google Bookmark Alternative Fuels Data Center: Ethanol and Biobutanol Production Incentive on Delicious Rank Alternative Fuels Data Center: Ethanol and Biobutanol Production Incentive on Digg Find More places to share Alternative Fuels Data Center: Ethanol and Biobutanol Production Incentive on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol and Biobutanol Production Incentive

60

Alternative Fuels Data Center: Ethanol Production Investment Tax Credits  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Production Ethanol Production Investment Tax Credits to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Investment Tax Credits on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Investment Tax Credits on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Investment Tax Credits on Google Bookmark Alternative Fuels Data Center: Ethanol Production Investment Tax Credits on Delicious Rank Alternative Fuels Data Center: Ethanol Production Investment Tax Credits on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Investment Tax Credits on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Investment Tax Credits

Note: This page contains sample records for the topic "including fuel ethanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Blend Ethanol Blend Infrastructure Grant Program to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Infrastructure Grant Program

62

Fueling Infrastructure Polymer Materials Compatibility to Ethanol-blended  

Open Energy Info (EERE)

Fueling Infrastructure Polymer Materials Compatibility to Ethanol-blended Fueling Infrastructure Polymer Materials Compatibility to Ethanol-blended Gasoline Dataset Summary Description These data files contain volume, mass, and hardness changes of elastomers and plastics representative exposed to gasoline containing various levels of ethanol. These materials are representative of those used in gasoline fuel storage and dispensing hardware. All values are compared to the original untreated condition. The data sets include results from specimens exposed directly to the fuel liquid and also a set of specimens exposed only to the fuel vapors. Source Mike Kass, Oak Ridge National Laboratory Date Released August 16th, 2012 (2 years ago) Date Updated August 16th, 2012 (2 years ago) Keywords compatibility elastomers ethanol gasoline

63

Mixed waste paper to ethanol fuel  

DOE Green Energy (OSTI)

The objectives of this study were to evaluate the use of mixed waste paper for the production of ethanol fuels and to review the available conversion technologies, and assess developmental status, current and future cost of production and economics, and the market potential. This report is based on the results of literature reviews, telephone conversations, and interviews. Mixed waste paper samples from residential and commercial recycling programs and pulp mill sludge provided by Weyerhauser were analyzed to determine the potential ethanol yields. The markets for ethanol fuel and the economics of converting paper into ethanol were investigated.

Not Available

1991-01-01T23:59:59.000Z

64

Food for fuel: The price of ethanol  

E-Print Network (OSTI)

Conversion of corn to ethanol in the US since 2005 has been a major cause of global food price increases during that time and has been shown to be ineffective in achieving US energy independence and reducing environmental impact. We make three key statements to enhance understanding and communication about ethanol production's impact on the food and fuel markets: (1) The amount of corn used to produce the ethanol in a gallon of regular gas would feed a person for a day, (2) The production of ethanol is so energy intensive that it uses only 20% less fossil fuel than gasoline, and (3) The cost of gas made with ethanol is actually higher per mile because ethanol reduces gasoline's energy per gallon.

Albino, Dominic K; Bar-Yam, Yaneer

2012-01-01T23:59:59.000Z

65

Alternative Fuels Data Center: Ethanol Production Facility Environmental  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Production Ethanol Production Facility Environmental Assessment Exemption to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Facility Environmental Assessment Exemption on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Facility Environmental Assessment Exemption on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Facility Environmental Assessment Exemption on Google Bookmark Alternative Fuels Data Center: Ethanol Production Facility Environmental Assessment Exemption on Delicious Rank Alternative Fuels Data Center: Ethanol Production Facility Environmental Assessment Exemption on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Facility Environmental Assessment Exemption on AddThis.com...

66

Alternative Fuels Data Center: Underwriters Laboratories Ethanol Dispenser  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Underwriters Underwriters Laboratories Ethanol Dispenser Safety Testing to someone by E-mail Share Alternative Fuels Data Center: Underwriters Laboratories Ethanol Dispenser Safety Testing on Facebook Tweet about Alternative Fuels Data Center: Underwriters Laboratories Ethanol Dispenser Safety Testing on Twitter Bookmark Alternative Fuels Data Center: Underwriters Laboratories Ethanol Dispenser Safety Testing on Google Bookmark Alternative Fuels Data Center: Underwriters Laboratories Ethanol Dispenser Safety Testing on Delicious Rank Alternative Fuels Data Center: Underwriters Laboratories Ethanol Dispenser Safety Testing on Digg Find More places to share Alternative Fuels Data Center: Underwriters Laboratories Ethanol Dispenser Safety Testing on AddThis.com... Underwriters Laboratories Ethanol Dispenser Safety Testing

67

Alternative Fuels Data Center: Pennsylvania's Ethanol Corridor Project  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Pennsylvania's Ethanol Pennsylvania's Ethanol Corridor Project Surpasses 1 Million Gallons to someone by E-mail Share Alternative Fuels Data Center: Pennsylvania's Ethanol Corridor Project Surpasses 1 Million Gallons on Facebook Tweet about Alternative Fuels Data Center: Pennsylvania's Ethanol Corridor Project Surpasses 1 Million Gallons on Twitter Bookmark Alternative Fuels Data Center: Pennsylvania's Ethanol Corridor Project Surpasses 1 Million Gallons on Google Bookmark Alternative Fuels Data Center: Pennsylvania's Ethanol Corridor Project Surpasses 1 Million Gallons on Delicious Rank Alternative Fuels Data Center: Pennsylvania's Ethanol Corridor Project Surpasses 1 Million Gallons on Digg Find More places to share Alternative Fuels Data Center: Pennsylvania's Ethanol Corridor Project Surpasses 1 Million Gallons on

68

Alternative Fuels Data Center: Biodiesel and Ethanol Definitions and Retail  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel and Ethanol Biodiesel and Ethanol Definitions and Retail Requirements to someone by E-mail Share Alternative Fuels Data Center: Biodiesel and Ethanol Definitions and Retail Requirements on Facebook Tweet about Alternative Fuels Data Center: Biodiesel and Ethanol Definitions and Retail Requirements on Twitter Bookmark Alternative Fuels Data Center: Biodiesel and Ethanol Definitions and Retail Requirements on Google Bookmark Alternative Fuels Data Center: Biodiesel and Ethanol Definitions and Retail Requirements on Delicious Rank Alternative Fuels Data Center: Biodiesel and Ethanol Definitions and Retail Requirements on Digg Find More places to share Alternative Fuels Data Center: Biodiesel and Ethanol Definitions and Retail Requirements on AddThis.com... More in this section...

69

Alternative Fuels Data Center: Cellulosic Ethanol Research and Development  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Cellulosic Ethanol Cellulosic Ethanol Research and Development Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Cellulosic Ethanol Research and Development Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Cellulosic Ethanol Research and Development Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Cellulosic Ethanol Research and Development Tax Credit on Google Bookmark Alternative Fuels Data Center: Cellulosic Ethanol Research and Development Tax Credit on Delicious Rank Alternative Fuels Data Center: Cellulosic Ethanol Research and Development Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Cellulosic Ethanol Research and Development Tax Credit on AddThis.com... More in this section... Federal State

70

Alternative Fuels Data Center: Ethanol Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol » Laws & Incentives Ethanol » Laws & Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center: Ethanol Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Ethanol Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Ethanol Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Ethanol Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Ethanol Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Ethanol Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Ethanol Laws and Incentives on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Laws and Incentives

71

Alternative Fuels Data Center: Ethanol Production Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Production Tax Ethanol Production Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Tax Credit on Google Bookmark Alternative Fuels Data Center: Ethanol Production Tax Credit on Delicious Rank Alternative Fuels Data Center: Ethanol Production Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Tax Credit Qualified ethanol producers are eligible for an income tax credit of $1.00 per gallon of corn- or cellulosic-based ethanol that meets ASTM

72

Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Blend Ethanol Blend Dispenser Requirement to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Dispenser Requirement An ethanol retailer selling a blend of 10% ethanol by volume or higher must

73

Alternative Fuels Data Center: Ethanol Blend Retailer Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Blend Retailer Ethanol Blend Retailer Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Retailer Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Retailer Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Retailer Tax Credit on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Retailer Tax Credit on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Retailer Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Retailer Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Retailer Tax Credit The Ethanol Promotion Tax Credit is available to any fuel retailer for up

74

Alternative Fuels Data Center: Ethanol and Biodiesel Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol and Biodiesel Ethanol and Biodiesel Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Ethanol and Biodiesel Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Ethanol and Biodiesel Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Ethanol and Biodiesel Tax Exemption on Google Bookmark Alternative Fuels Data Center: Ethanol and Biodiesel Tax Exemption on Delicious Rank Alternative Fuels Data Center: Ethanol and Biodiesel Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Ethanol and Biodiesel Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol and Biodiesel Tax Exemption Motor fuels sold to an ethanol or biodiesel production facility and motor

75

Alternative Fuels Data Center: Ethanol Sales Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Sales Tax Ethanol Sales Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Ethanol Sales Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Ethanol Sales Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Ethanol Sales Tax Exemption on Google Bookmark Alternative Fuels Data Center: Ethanol Sales Tax Exemption on Delicious Rank Alternative Fuels Data Center: Ethanol Sales Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Ethanol Sales Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Sales Tax Exemption The portion of ethanol (ethyl alcohol) sold and blended with motor fuel is exempt from sales tax. (Reference Oklahoma Statutes 68-500.10-1 and

76

Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Blend Ethanol Blend Dispenser Requirement to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Dispenser Requirement A retail motor fuel dispenser that dispenses fuel containing more than 10%

77

Alternative Fuels Data Center: Ethanol Production Facility Fee  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Production Ethanol Production Facility Fee to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Facility Fee on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Facility Fee on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Facility Fee on Google Bookmark Alternative Fuels Data Center: Ethanol Production Facility Fee on Delicious Rank Alternative Fuels Data Center: Ethanol Production Facility Fee on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Facility Fee on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Facility Fee The cost to submit an air quality permit application for an ethanol production plant is $1,000. An annual renewal fee is also required for the

78

Alternative Fuels Data Center: Ethanol Blend Labeling Requirements  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Blend Labeling Ethanol Blend Labeling Requirements to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Labeling Requirements on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Labeling Requirements on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Labeling Requirements on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Labeling Requirements on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Labeling Requirements on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Labeling Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Labeling Requirements Pumps that dispense ethanol-blended gasoline available for purchase must be

79

Alternative Fuels Data Center: Biodiesel and Ethanol Specifications  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

and Ethanol and Ethanol Specifications to someone by E-mail Share Alternative Fuels Data Center: Biodiesel and Ethanol Specifications on Facebook Tweet about Alternative Fuels Data Center: Biodiesel and Ethanol Specifications on Twitter Bookmark Alternative Fuels Data Center: Biodiesel and Ethanol Specifications on Google Bookmark Alternative Fuels Data Center: Biodiesel and Ethanol Specifications on Delicious Rank Alternative Fuels Data Center: Biodiesel and Ethanol Specifications on Digg Find More places to share Alternative Fuels Data Center: Biodiesel and Ethanol Specifications on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel and Ethanol Specifications Ethanol-blended gasoline must conform to ASTM D4814, E85 must conform to

80

Alternative Fuels Data Center: Status Update: Clarification of Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Clarification of Ethanol Certification Limits for Legacy Equipment Clarification of Ethanol Certification Limits for Legacy Equipment (December 2008) to someone by E-mail Share Alternative Fuels Data Center: Status Update: Clarification of Ethanol Certification Limits for Legacy Equipment (December 2008) on Facebook Tweet about Alternative Fuels Data Center: Status Update: Clarification of Ethanol Certification Limits for Legacy Equipment (December 2008) on Twitter Bookmark Alternative Fuels Data Center: Status Update: Clarification of Ethanol Certification Limits for Legacy Equipment (December 2008) on Google Bookmark Alternative Fuels Data Center: Status Update: Clarification of Ethanol Certification Limits for Legacy Equipment (December 2008) on Delicious Rank Alternative Fuels Data Center: Status Update: Clarification of

Note: This page contains sample records for the topic "including fuel ethanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Thermally efficient PEM fuel cell that runs on ethanol  

PEM fuel cell with onboard conversion of ethanol into hydrogen fuel Liquid ethanol feedstock eliminates problems with storage and transportation of gaseous hydrogen Control of temperature maximizes selectivity of reformation process and prevents ...

82

Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Pennsylvania Laws and Incentives for Ethanol The list below contains summaries of all Pennsylvania laws and incentives

83

Alternative Fuels Data Center: Oklahoma Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Oklahoma Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Oklahoma Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Oklahoma Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Oklahoma Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Oklahoma Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Oklahoma Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Oklahoma Laws and Incentives for Ethanol The list below contains summaries of all Oklahoma laws and incentives

84

Alternative Fuels Data Center: Ethanol Production Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Production Tax Production Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Tax Credit on Google Bookmark Alternative Fuels Data Center: Ethanol Production Tax Credit on Delicious Rank Alternative Fuels Data Center: Ethanol Production Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Tax Credit An ethanol facility is eligible for a credit of $0.075 per gallon of ethanol, before denaturing, for new production for up to 36 consecutive

85

Alternative Fuels Data Center: Georgia Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Georgia Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Georgia Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Georgia Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Georgia Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Georgia Laws and Incentives for Ethanol The list below contains summaries of all Georgia laws and incentives

86

Alternative Fuels Data Center: Idaho Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Idaho Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Idaho Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Idaho Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Idaho Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Idaho Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Idaho Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idaho Laws and Incentives for Ethanol The list below contains summaries of all Idaho laws and incentives related

87

Alternative Fuels Data Center: Florida Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Florida Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Florida Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Florida Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Florida Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Florida Laws and Incentives for Ethanol The list below contains summaries of all Florida laws and incentives

88

Alternative Fuels Data Center: Mississippi Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Mississippi Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Mississippi Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Mississippi Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Mississippi Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Mississippi Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Mississippi Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Mississippi Laws and Incentives for Ethanol The list below contains summaries of all Mississippi laws and incentives

89

Alternative Fuels Data Center: Colorado Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Colorado Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Colorado Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Colorado Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Colorado Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Colorado Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Colorado Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Colorado Laws and Incentives for Ethanol The list below contains summaries of all Colorado laws and incentives

90

Alternative Fuels Data Center: Alaska Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Alaska Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Alaska Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Alaska Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Alaska Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alaska Laws and Incentives for Ethanol The list below contains summaries of all Alaska laws and incentives related

91

Alternative Fuels Data Center: Wisconsin Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Wisconsin Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Wisconsin Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Wisconsin Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Wisconsin Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Wisconsin Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Wisconsin Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Wisconsin Laws and Incentives for Ethanol The list below contains summaries of all Wisconsin laws and incentives

92

Alternative Fuels Data Center: Virginia Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Virginia Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Virginia Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Virginia Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Virginia Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Virginia Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Virginia Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Virginia Laws and Incentives for Ethanol The list below contains summaries of all Virginia laws and incentives

93

Alternative Fuels Data Center: Arkansas Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Arkansas Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Arkansas Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Arkansas Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Arkansas Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Arkansas Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Arkansas Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Arkansas Laws and Incentives for Ethanol The list below contains summaries of all Arkansas laws and incentives

94

Alternative Fuels Data Center: Cellulosic Ethanol Investment Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Cellulosic Ethanol Cellulosic Ethanol Investment Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Cellulosic Ethanol Investment Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Cellulosic Ethanol Investment Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Cellulosic Ethanol Investment Tax Credit on Google Bookmark Alternative Fuels Data Center: Cellulosic Ethanol Investment Tax Credit on Delicious Rank Alternative Fuels Data Center: Cellulosic Ethanol Investment Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Cellulosic Ethanol Investment Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Cellulosic Ethanol Investment Tax Credit A qualified investor may receive a tax credit of up to 40% of an

95

Alternative Fuels Data Center: Oregon Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Oregon Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Oregon Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Oregon Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Oregon Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Oregon Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Oregon Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Oregon Laws and Incentives for Ethanol The list below contains summaries of all Oregon laws and incentives related

96

Alternative Fuels Data Center: Texas Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Texas Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Texas Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Texas Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Texas Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Texas Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Texas Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Texas Laws and Incentives for Ethanol The list below contains summaries of all Texas laws and incentives related

97

Alternative Fuels Data Center: California Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: California Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: California Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: California Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: California Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: California Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: California Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type California Laws and Incentives for Ethanol The list below contains summaries of all California laws and incentives

98

Alternative Fuels Data Center: Cellulosic Ethanol Investment Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Cellulosic Ethanol Cellulosic Ethanol Investment Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Cellulosic Ethanol Investment Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Cellulosic Ethanol Investment Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Cellulosic Ethanol Investment Tax Credit on Google Bookmark Alternative Fuels Data Center: Cellulosic Ethanol Investment Tax Credit on Delicious Rank Alternative Fuels Data Center: Cellulosic Ethanol Investment Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Cellulosic Ethanol Investment Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Cellulosic Ethanol Investment Tax Credit A tax credit is available for investments in a qualified small business

99

Alternative Fuels Data Center: Tennessee Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Tennessee Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Tennessee Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Tennessee Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Tennessee Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Tennessee Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Tennessee Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Tennessee Laws and Incentives for Ethanol The list below contains summaries of all Tennessee laws and incentives

100

Alternative Fuels Data Center: Minnesota Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Minnesota Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Minnesota Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Minnesota Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Minnesota Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Minnesota Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Minnesota Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Minnesota Laws and Incentives for Ethanol The list below contains summaries of all Minnesota laws and incentives

Note: This page contains sample records for the topic "including fuel ethanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Alternative Fuels Data Center: Kentucky Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Kentucky Laws and Incentives for Ethanol The list below contains summaries of all Kentucky laws and incentives

102

Alternative Fuels Data Center: Delaware Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Delaware Laws and Incentives for Ethanol The list below contains summaries of all Delaware laws and incentives

103

Alternative Fuels Data Center: Nevada Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Nevada Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Nevada Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Nevada Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Nevada Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Nevada Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Nevada Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Nevada Laws and Incentives for Ethanol The list below contains summaries of all Nevada laws and incentives related

104

Alternative Fuels Data Center: Cellulosic Ethanol Production Financing  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Cellulosic Ethanol Cellulosic Ethanol Production Financing to someone by E-mail Share Alternative Fuels Data Center: Cellulosic Ethanol Production Financing on Facebook Tweet about Alternative Fuels Data Center: Cellulosic Ethanol Production Financing on Twitter Bookmark Alternative Fuels Data Center: Cellulosic Ethanol Production Financing on Google Bookmark Alternative Fuels Data Center: Cellulosic Ethanol Production Financing on Delicious Rank Alternative Fuels Data Center: Cellulosic Ethanol Production Financing on Digg Find More places to share Alternative Fuels Data Center: Cellulosic Ethanol Production Financing on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Cellulosic Ethanol Production Financing The Kansas Development Finance Authority may issue revenue bonds to cover

105

Alternative Fuels Data Center: Illinois Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Illinois Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Illinois Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Illinois Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Illinois Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Illinois Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Illinois Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Illinois Laws and Incentives for Ethanol The list below contains summaries of all Illinois laws and incentives

106

Alternative Fuels Data Center: Michigan Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Michigan Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Michigan Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Michigan Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Michigan Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Michigan Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Michigan Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Michigan Laws and Incentives for Ethanol The list below contains summaries of all Michigan laws and incentives

107

Alternative Fuels Data Center: Montana Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Montana Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Montana Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Montana Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Montana Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Montana Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Montana Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Montana Laws and Incentives for Ethanol The list below contains summaries of all Montana laws and incentives

108

Alternative Fuels Data Center: Nebraska Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Nebraska Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Nebraska Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Nebraska Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Nebraska Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Nebraska Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Nebraska Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Nebraska Laws and Incentives for Ethanol The list below contains summaries of all Nebraska laws and incentives

109

Alternative Fuels Data Center: Kansas Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Kansas Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Kansas Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Kansas Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Kansas Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Kansas Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Kansas Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Kansas Laws and Incentives for Ethanol The list below contains summaries of all Kansas laws and incentives related

110

Alternative Fuels Data Center: Louisiana Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Louisiana Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Louisiana Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Louisiana Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Louisiana Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Louisiana Laws and Incentives for Ethanol The list below contains summaries of all Louisiana laws and incentives

111

Alternative Fuels Data Center: Indiana Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Indiana Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Indiana Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Indiana Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Indiana Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Indiana Laws and Incentives for Ethanol The list below contains summaries of all Indiana laws and incentives

112

Alternative Fuels Data Center: Missouri Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Missouri Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Missouri Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Missouri Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Missouri Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Missouri Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Missouri Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Missouri Laws and Incentives for Ethanol The list below contains summaries of all Missouri laws and incentives

113

Alternative Fuels Data Center: Utah Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Utah Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Utah Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Utah Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Utah Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Utah Laws and Incentives for Ethanol The list below contains summaries of all Utah laws and incentives related

114

Alternative Fuels Data Center: Iowa Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Iowa Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Iowa Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Iowa Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Iowa Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Iowa Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Iowa Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Iowa Laws and Incentives for Ethanol The list below contains summaries of all Iowa laws and incentives related

115

Alternative Fuels Data Center: Ohio Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Ohio Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Ohio Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Ohio Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Ohio Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Ohio Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Ohio Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ohio Laws and Incentives for Ethanol The list below contains summaries of all Ohio laws and incentives related

116

Alternative Fuels Data Center: Connecticut Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Connecticut Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Connecticut Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Connecticut Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Connecticut Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Connecticut Laws and Incentives for Ethanol The list below contains summaries of all Connecticut laws and incentives

117

Alternative Fuels Data Center: Vermont Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vermont Laws and Incentives for Ethanol The list below contains summaries of all Vermont laws and incentives

118

Alternative Fuels Data Center: Maryland Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Maryland Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Maryland Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Maryland Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Maryland Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Maryland Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Maryland Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maryland Laws and Incentives for Ethanol The list below contains summaries of all Maryland laws and incentives

119

Alternative Fuels Data Center: Washington Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Washington Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Washington Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Washington Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Washington Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Washington Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Washington Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Washington Laws and Incentives for Ethanol The list below contains summaries of all Washington laws and incentives

120

Alternative Fuels Data Center: Hawaii Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Hawaii Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Hawaii Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Hawaii Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Hawaii Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Hawaii Laws and Incentives for Ethanol The list below contains summaries of all Hawaii laws and incentives related

Note: This page contains sample records for the topic "including fuel ethanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Alternative Fuels Data Center: Arizona Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Arizona Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Arizona Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Arizona Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Arizona Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Arizona Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Arizona Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Arizona Laws and Incentives for Ethanol The list below contains summaries of all Arizona laws and incentives

122

Alternative Fuels Data Center: Alabama Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Alabama Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Alabama Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Alabama Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Alabama Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alabama Laws and Incentives for Ethanol The list below contains summaries of all Alabama laws and incentives

123

Alternative Fuels Data Center: Wyoming Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Wyoming Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Wyoming Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Wyoming Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Wyoming Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Wyoming Laws and Incentives for Ethanol The list below contains summaries of all Wyoming laws and incentives

124

Alternative Fuels Data Center: Federal Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Federal Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Federal Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Federal Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Federal Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Federal Laws and Incentives for Ethanol The list below contains summaries of all Federal laws and incentives

125

Alternative Fuels Data Center: Maine Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for Ethanol The list below contains summaries of all Maine laws and incentives related

126

Alternative Fuels Data Center: Ethanol and Methanol Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

and Methanol and Methanol Tax to someone by E-mail Share Alternative Fuels Data Center: Ethanol and Methanol Tax on Facebook Tweet about Alternative Fuels Data Center: Ethanol and Methanol Tax on Twitter Bookmark Alternative Fuels Data Center: Ethanol and Methanol Tax on Google Bookmark Alternative Fuels Data Center: Ethanol and Methanol Tax on Delicious Rank Alternative Fuels Data Center: Ethanol and Methanol Tax on Digg Find More places to share Alternative Fuels Data Center: Ethanol and Methanol Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol and Methanol Tax Ethyl alcohol and methyl alcohol motor fuels are taxed at a rate of $0.08 per gallon when used as a motor fuel. Ethyl alcohol is defined as a motor

127

Alternative Fuels Data Center: Ethanol and Hydrogen Production Facility  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol and Hydrogen Ethanol and Hydrogen Production Facility Permits to someone by E-mail Share Alternative Fuels Data Center: Ethanol and Hydrogen Production Facility Permits on Facebook Tweet about Alternative Fuels Data Center: Ethanol and Hydrogen Production Facility Permits on Twitter Bookmark Alternative Fuels Data Center: Ethanol and Hydrogen Production Facility Permits on Google Bookmark Alternative Fuels Data Center: Ethanol and Hydrogen Production Facility Permits on Delicious Rank Alternative Fuels Data Center: Ethanol and Hydrogen Production Facility Permits on Digg Find More places to share Alternative Fuels Data Center: Ethanol and Hydrogen Production Facility Permits on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

128

Alternative Fuels Data Center: Ethanol Production Facility Property Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Production Ethanol Production Facility Property Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Facility Property Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Facility Property Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Facility Property Tax Exemption on Google Bookmark Alternative Fuels Data Center: Ethanol Production Facility Property Tax Exemption on Delicious Rank Alternative Fuels Data Center: Ethanol Production Facility Property Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Facility Property Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

129

Alternative Fuels Data Center: Ethanol Infrastructure Grants and Loan  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Infrastructure Ethanol Infrastructure Grants and Loan Guarantees to someone by E-mail Share Alternative Fuels Data Center: Ethanol Infrastructure Grants and Loan Guarantees on Facebook Tweet about Alternative Fuels Data Center: Ethanol Infrastructure Grants and Loan Guarantees on Twitter Bookmark Alternative Fuels Data Center: Ethanol Infrastructure Grants and Loan Guarantees on Google Bookmark Alternative Fuels Data Center: Ethanol Infrastructure Grants and Loan Guarantees on Delicious Rank Alternative Fuels Data Center: Ethanol Infrastructure Grants and Loan Guarantees on Digg Find More places to share Alternative Fuels Data Center: Ethanol Infrastructure Grants and Loan Guarantees on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

130

Alternative Fuels Data Center: Status Update: Ethanol Blender Pump  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Ethanol Blender Pump Dispenser Certified (August 2010) to someone by E-mail Share Alternative Fuels Data Center: Status Update: Ethanol Blender Pump Dispenser Certified (August 2010) on Facebook Tweet about Alternative Fuels Data Center: Status Update: Ethanol Blender Pump Dispenser Certified (August 2010) on Twitter Bookmark Alternative Fuels Data Center: Status Update: Ethanol Blender Pump Dispenser Certified (August 2010) on Google Bookmark Alternative Fuels Data Center: Status Update: Ethanol Blender Pump Dispenser Certified (August 2010) on Delicious Rank Alternative Fuels Data Center: Status Update: Ethanol Blender Pump Dispenser Certified (August 2010) on Digg Find More places to share Alternative Fuels Data Center: Status Update: Ethanol Blender Pump Dispenser Certified (August 2010) on

131

Thermally efficient PEM fuel cell that runs on ethanol  

onboard conversion of ethanol into hydrogen fuel Liquid ethanol feedstock eliminates problems with storage and transportation of gaseous hydrogen Control of temperature maximizes selectivity of reformation process and prevents membrane fouling ...

132

Experiences from Ethanol Buses and Fuel Station Report - Nanyang | Open  

Open Energy Info (EERE)

Experiences from Ethanol Buses and Fuel Station Report - Nanyang Experiences from Ethanol Buses and Fuel Station Report - Nanyang Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Experiences from Ethanol Buses and Fuel Station Report - Nanyang Agency/Company /Organization: BioEthanol for Sustainable Transport Focus Area: Fuels & Efficiency Topics: Best Practices Website: www.best-europe.org/upload/BEST_documents/info_documents/Best%20report This report addresses the experience of introducing ethanol buses and fuel stations in Nanyang (China). Though the demonstration met initial obstacles, significant data and information was collected. The responses from drivers and passengers show that the ethanol buses were well accepted, and the function and performance of the ethanol buses was satisfactory. How to Use This Tool

133

U.S. Fuel Ethanol Plant Production Capacity  

Gasoline and Diesel Fuel Update (EIA)

U.S. Fuel Ethanol Plant Production Capacity U.S. Fuel Ethanol Plant Production Capacity Release Date: May 20, 2013 | Next Release Date: May 2014 Previous Issues Year: 2013 2012 2011 Go Notice: Changes to Petroleum Supply Survey Forms for 2013 This is the third release of U.S. Energy Information Administration data on fuel ethanol production capacity. EIA first reported fuel ethanol production capacities as of January 1, 2011 on November 29, 2011. This new report contains production capacity data for all operating U.S. fuel ethanol production plants as of January 1, 2013. U.S. Nameplate Fuel Ethanol Plant Production Capacity as of January 1, 2013 PAD District Number of Plants 2013 Nameplate Capacity 2012 Nameplate Capacity (MMgal/year) (mb/d) (MMgal/year) (mb/d) PADD 1 4 360 23 316 21

134

Ford Taurus Ethanol-Fueled Sedan  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) is encouraging the use of alternative fuels and alternative fuel vehicles (AFVs). To support this activity, DOE has directed the National Renewable Energy Laboratory (NREL) to conduct projects to evaluate the performance and acceptability of light-duty AFVs. In this study, we tested a pair of 1998 Ford Tauruses: one E85 (85% gasoline/15% ethanol) model (which was tested on both E85 and gasoline) and a gasoline model as closely matched as possible. Each vehicle was run through a series of tests to evaluate acceleration, fuel economy, braking, and cold-start capabilities, as well as more subjective performance indicators such as handling, climate control, and noise.

Eudy, L.

1999-06-24T23:59:59.000Z

135

Table 10.3 Fuel Ethanol Overview, 1981-2011  

U.S. Energy Information Administration (EIA)

6 A negative value indicates a decrease in stocks and a positive value indicates an increase. 7 Consumption of fuel ethanol minus denaturant.

136

Table 10.3 Fuel Ethanol Overview, 1981-2011  

U.S. Energy Information Administration (EIA)

6 A negative value indicates a decrease in stocks and a positive value indicates an increase. Sources: Feedstock: Calculated as fuel ethanol ...

137

Microbial fuel cell treatment of ethanol fermentation process water  

DOE Patents (OSTI)

The present invention relates to a method for removing inhibitor compounds from a cellulosic biomass-to-ethanol process which includes a pretreatment step of raw cellulosic biomass material and the production of fermentation process water after production and removal of ethanol from a fermentation step, the method comprising contacting said fermentation process water with an anode of a microbial fuel cell, said anode containing microbes thereon which oxidatively degrade one or more of said inhibitor compounds while producing electrical energy or hydrogen from said oxidative degradation, and wherein said anode is in electrical communication with a cathode, and a porous material (such as a porous or cation-permeable membrane) separates said anode and cathode.

Borole, Abhijeet P. (Knoxville, TN)

2012-06-05T23:59:59.000Z

138

U.S. Fuel Ethanol Plant Production Capacity  

U.S. Energy Information Administration (EIA)

U.S. Nameplate Fuel Ethanol Plant Production Capacity as of January 1, 2013 PAD District: Number of Plants: 2013 Nameplate Capacity: 2012 Nameplate Capacity

139

Ethanol fuel modification for highway vehicle use. Final report  

DOE Green Energy (OSTI)

A number of problems that might occur if ethanol were used as a blending stock or replacement for gasoline in present cars are identified and characterized as to the probability of occurrence. The severity of their consequences is contrasted to those found with methanol in a previous contract study. Possibilities for correcting several problems are reported. Some problems are responsive to fuel modifications but others require or are better dealt with by modification of vehicles and the bulk fuel distribution system. In general, problems with ethanol in blends with gasoline were found to be less severe than those with methanol. Phase separation on exposure to water appears to be the major problem with ethanol/gasoline blends. Another potentially serious problem with blends is the illict recovery of ethanol for beverage usage, or bootlegging, which might be discouraged by the use of select denaturants. Ethanol blends have somewhat greater tendency to vapor lock than base gasoline but less than methanol blends. Gasoline engines would require modification to operate on fuels consisting mostly of ethanol. If such modifications were made, cold starting would still be a major problem, more difficult with ethanol than methanol. Startability can be provided by adding gasoline or light hydrocarbons. Addition of gasoline also reduces the explosibility of ethanol vapor and furthermore acts as denaturant.

Not Available

1980-01-01T23:59:59.000Z

140

Greenhouse gases in the corn-to-fuel ethanol pathway.  

DOE Green Energy (OSTI)

Argonne National Laboratory (ANL) has applied its Greenhouse gas, Regulated Emissions and Energy in Transportation (GREET) full-fuel-cycle analysis model to examine greenhouse gas (GHG) emissions of corn-feedstock ethanol, given present and near-future production technology and practice. On the basis of updated information appropriate to corn farming and processing operations in the four principal corn- and ethanol-producing states (Illinois, Iowa, Minnesota, and Nebraska), the model was used to estimate energy requirements and GHG emissions of corn farming; the manufacture, transportation to farms, and field application of fertilizer and pesticide; transportation of harvested corn to ethanol plants; nitrous oxide emissions from cultivated cornfields; ethanol production in current average and future technology wet and dry mills; and operation of cars and light trucks using ethanol fuels. For all cases examined on the basis of mass emissions per travel mile, the corn-to-ethanol fuel cycle for Midwest-produced ethanol used in both E85 and E10 blends with gasoline outperforms conventional (current) and reformulated (future) gasoline with respect to energy use and GHG production. Also, GHG reductions (but not energy use) appear surprisingly sensitive to the value chosen for combined soil and leached N-fertilizer conversion to nitrous oxide. Co-product energy-use attribution remains the single key factor in estimating ethanol's relative benefits because this value can range from 0 to 50%, depending on the attribution method chosen.

Wang, M. Q.

1998-06-18T23:59:59.000Z

Note: This page contains sample records for the topic "including fuel ethanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Alternative Fuels Data Center: Corn-to-Ethanol Research Pilot Plant  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Corn-to-Ethanol Corn-to-Ethanol Research Pilot Plant to someone by E-mail Share Alternative Fuels Data Center: Corn-to-Ethanol Research Pilot Plant on Facebook Tweet about Alternative Fuels Data Center: Corn-to-Ethanol Research Pilot Plant on Twitter Bookmark Alternative Fuels Data Center: Corn-to-Ethanol Research Pilot Plant on Google Bookmark Alternative Fuels Data Center: Corn-to-Ethanol Research Pilot Plant on Delicious Rank Alternative Fuels Data Center: Corn-to-Ethanol Research Pilot Plant on Digg Find More places to share Alternative Fuels Data Center: Corn-to-Ethanol Research Pilot Plant on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Corn-to-Ethanol Research Pilot Plant The Illinois Ethanol Research Advisory Board manages and operates the

142

Ohio's First Ethanol-Fueled Light-Duty Fleet: Final Study Results  

DOE Green Energy (OSTI)

In 1996, the State of Ohio established a project to demonstrate the use of an ethanol blend (E85, which is 85% transportation-grade ethanol and 15% gasoline) as a transportation fuel in flexible-fuel vehicles (FFVs). The study included ten FFVs and three gasoline vehicles (used as control vehicles) operated by five state agencies. The project included 24 months of data collection on vehicle operations. This report presents the data collection and analysis from the study, with a focus on the last year.

Battelle

1998-10-01T23:59:59.000Z

143

Ohio's First Ethanol-Fueled Light-Duty Fleet: Final Study Results  

SciTech Connect

In 1996, the State of Ohio established a project to demonstrate the use of an ethanol blend (E85, which is 85% transportation-grade ethanol and 15% gasoline) as a transportation fuel in flexible-fuel vehicles (FFVs). The study included ten FFVs and three gasoline vehicles (used as control vehicles) operated by five state agencies. The project included 24 months of data collection on vehicle operations. This report presents the data collection and analysis from the study, with a focus on the last year.

Battelle

1998-10-01T23:59:59.000Z

144

Stripping ethanol from ethanol-blended fuels for use in NO.sub.x SCR  

DOE Patents (OSTI)

A method to use diesel fuel alchohol micro emulsions (E-diesel) to provide a source of reductant to lower NO.sub.x emissions using selective catalytic reduction. Ethanol is stripped from the micro emulsion and entered into the exhaust gasses upstream of the reducing catalyst. The method allows diesel (and other lean-burn) engines to meet new, lower emission standards without having to carry separate fuel and reductant tanks.

Kass, Michael Delos (Oak Ridge, TN); Graves, Ronald Lee (Knoxville, TN); Storey, John Morse Elliot (Oak Ridge, TN); Lewis, Sr., Samuel Arthur (Andersonville, TN); Sluder, Charles Scott (Knoxville, TN); Thomas, John Foster (Powell, TN)

2007-08-21T23:59:59.000Z

145

U.S. Oxygenate Plant Production of Fuel Ethanol (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Oxygenate Plant Production of Fuel Ethanol (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ... Fuel Ethanol Oxygenate Production;

146

Alternative Fuels Data Center: New Jersey Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: New Jersey Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: New Jersey Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: New Jersey Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: New Jersey Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: New Jersey Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: New Jersey Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type New Jersey Laws and Incentives for Ethanol The list below contains summaries of all New Jersey laws and incentives

147

Alternative Fuels Data Center: Rhode Island Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Rhode Island Laws and Incentives for Ethanol The list below contains summaries of all Rhode Island laws and incentives

148

Alternative Fuels Data Center: New York Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: New York Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: New York Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: New York Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: New York Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: New York Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: New York Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type New York Laws and Incentives for Ethanol The list below contains summaries of all New York laws and incentives

149

Alternative Fuels Data Center: North Dakota Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: North Dakota Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: North Dakota Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: North Dakota Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: North Dakota Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: North Dakota Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: North Dakota Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type North Dakota Laws and Incentives for Ethanol The list below contains summaries of all North Dakota laws and incentives

150

Alternative Fuels Data Center: New Mexico Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: New Mexico Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: New Mexico Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: New Mexico Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: New Mexico Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: New Mexico Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: New Mexico Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type New Mexico Laws and Incentives for Ethanol The list below contains summaries of all New Mexico laws and incentives

151

Alternative Fuels Data Center: South Dakota Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: South Dakota Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: South Dakota Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: South Dakota Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: South Dakota Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: South Dakota Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: South Dakota Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type South Dakota Laws and Incentives for Ethanol The list below contains summaries of all South Dakota laws and incentives

152

Ethanol Production for Automotive Fuel Usage  

SciTech Connect

The conceptual design of the 20 million gallon per year anhydrous ethanol facility a t Raft River has been completed. The corresponding geothermal gathering, extraction and reinjection systems to supply the process heating requirement were also completed. The ethanol facility operating on sugar beets, potatoes and wheat will share common fermentation and product recovery equipment. The geothermal fluid requirement will be approximately 6,000 gpm. It is anticipated that this flow will be supplied by 9 supply wells spaced at no closer than 1/4 mile in order to prevent mutual interferences. The geothermal fluid will be flashed in three stages to supply process steam at 250 F, 225 F and 205 F for various process needs. Steam condensate plus liquid remaining after the third flash will all be reinjected through 9 reinjection wells. The capital cost estimated for this ethanol plant employing all three feedstocks is $64 million. If only a single feedstock were used (for the same 20 mm gal/yr plant) the capital costs are estimated at $51.6 million, $43.1 million and $40. 5 million for sugar beets, potatoes and wheat respectively. The estimated capital cost for the geothermal system is $18 million.

Lindemuth, T.E.; Stenzel, R.A.; Yim, Y.J.; Yu, J.

1980-01-31T23:59:59.000Z

153

Dynamics of Evolution in the Global Fuel-Ethanol Industry  

E-Print Network (OSTI)

noticed that their pre-entry backgrounds are very diverse. They come from not only agricultural and fossil fuel chains but also technology companies and de novo firms of new entrepreneurial start-ups as illustrated in Figure 5. We investigate... Dynamics of Evolution in the Global Fuel-Ethanol Industry Jin Hooi Chan and David Reiner March 2011 CWPE 1129 & EPRG 1111 www.eprg.group.cam.ac.uk EP RG W OR KI NG P AP ER Abstract Dynamics...

Chan, Jin Hooi; Reiner, David

154

NMOG Emissions Characterizations and Estimation for Vehicles Using Ethanol-Blended Fuels  

DOE Green Energy (OSTI)

Ethanol is a biofuel commonly used in gasoline blends to displace petroleum consumption; its utilization is on the rise in the United States, spurred by the biofuel utilization mandates put in place by the Energy Independence and Security Act of 2007 (EISA). The United States Environmental Protection Agency (EPA) has the statutory responsibility to implement the EISA mandates through the promulgation of the Renewable Fuel Standard. EPA has historically mandated an emissions certification fuel specification that calls for ethanol-free fuel, except for the certification of flex-fuel vehicles. However, since the U.S. gasoline marketplace is now virtually saturated with E10, some organizations have suggested that inclusion of ethanol in emissions certification fuels would be appropriate. The test methodologies and calculations contained in the Code of Federal Regulations for gasoline-fueled vehicles have been developed with the presumption that the certification fuel does not contain ethanol; thus, a number of technical issues would require resolution before such a change could be accomplished. This report makes use of the considerable data gathered during the mid-level blends testing program to investigate one such issue: estimation of non-methane organic gas (NMOG) emissions. The data reported in this paper were gathered from over 600 cold-start Federal Test Procedure (FTP) tests conducted on 68 vehicles representing 21 models from model year 2000 to 2009. Most of the vehicles were certified to the Tier-2 emissions standard, but several older Tier-1 and national low emissions vehicle program (NLEV) vehicles were also included in the study. Exhaust speciation shows that ethanol, acetaldehyde, and formaldehyde dominate the oxygenated species emissions when ethanol is blended into the test fuel. A set of correlations were developed that are derived from the measured non-methane hydrocarbon (NMHC) emissions and the ethanol blend level in the fuel. These correlations were applied to the measured NMHC emissions from the mid-level ethanol blends testing program and the results compared against the measured NMOG emissions. The results show that the composite FTP NMOG emissions estimate has an error of 0.0015 g/mile {+-}0.0074 for 95% of the test results. Estimates for the individual phases of the FTP are also presented with similar error levels. A limited number of tests conducted using the LA92, US06, and highway fuel economy test cycles show that the FTP correlation also holds reasonably well for these cycles, though the error level relative to the measured NMOG value increases for NMOG emissions less than 0.010 g/mile.

Sluder, Scott [ORNL; West, Brian H [ORNL

2011-10-01T23:59:59.000Z

155

NMOG Emissions Characterization and Estimation for Vehicles Using Ethanol-Blended Fuels  

Science Conference Proceedings (OSTI)

Ethanol is a biofuel commonly used in gasoline blends to displace petroleum consumption; its utilization is on the rise in the United States, spurred by the biofuel utilization mandates put in place by the Energy Independence and Security Act of 2007 (EISA). The United States Environmental Protection Agency (EPA) has the statutory responsibility to implement the EISA mandates through the promulgation of the Renewable Fuel Standard. EPA has historically mandated an emissions certification fuel specification that calls for ethanol-free fuel, except for the certification of flex-fuel vehicles. However, since the U.S. gasoline marketplace is now virtually saturated with E10, some organizations have suggested that inclusion of ethanol in emissions certification fuels would be appropriate. The test methodologies and calculations contained in the Code of Federal Regulations for gasoline-fueled vehicles have been developed with the presumption that the certification fuel does not contain ethanol; thus, a number of technical issues would require resolution before such a change could be accomplished. This report makes use of the considerable data gathered during the mid-level blends testing program to investigate one such issue: estimation of non-methane organic gas (NMOG) emissions. The data reported in this paper were gathered from over 600 cold-start Federal Test Procedure (FTP) tests conducted on 68 vehicles representing 21 models from model year 2000 to 2009. Most of the vehicles were certified to the Tier-2 emissions standard, but several older Tier-1 and national low emissions vehicle program (NLEV) vehicles were also included in the study. Exhaust speciation shows that ethanol, acetaldehyde, and formaldehyde dominate the oxygenated species emissions when ethanol is blended into the test fuel. A set of correlations were developed that are derived from the measured non-methane hydrocarbon (NMHC) emissions and the ethanol blend level in the fuel. These correlations were applied to the measured NMHC emissions from the mid-level ethanol blends testing program and the results compared against the measured NMOG emissions. The results show that the composite FTP NMOG emissions estimate has an error of 0.0015 g/mile {+-}0.0074 for 95% of the test results. Estimates for the individual phases of the FTP are also presented with similar error levels. A limited number of tests conducted using the LA92, US06, and highway fuel economy test cycles show that the FTP correlation also holds reasonably well for these cycles, though the error level relative to the measured NMOG value increases for NMOG emissions less than 0.010 g/mile.

Sluder, Scott [ORNL; West, Brian H [ORNL

2012-01-01T23:59:59.000Z

156

U.S. Ending Stocks of Fuel Ethanol (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Ending Stocks of Fuel Ethanol (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1993: 2,059: 1,946: 1,929: 2,152: 2,441: 2,627: 2,706 ...

157

FRACTIONATION OF LIGNOCELLULOSIC BIOMASS FOR FUEL-GRADE ETHANOL PRODUCTION  

SciTech Connect

PureVision Technology, Inc. (PureVision) of Fort Lupton, Colorado is developing a process for the conversion of lignocellulosic biomass into fuel-grade ethanol and specialty chemicals in order to enhance national energy security, rural economies, and environmental quality. Lignocellulosic-containing plants are those types of biomass that include wood, agricultural residues, and paper wastes. Lignocellulose is composed of the biopolymers cellulose, hemicellulose, and lignin. Cellulose, a polymer of glucose, is the component in lignocellulose that has potential for the production of fuel-grade ethanol by direct fermentation of the glucose. However, enzymatic hydrolysis of lignocellulose and raw cellulose into glucose is hindered by the presence of lignin. The cellulase enzyme, which hydrolyzes cellulose to glucose, becomes irreversibly bound to lignin. This requires using the enzyme in reagent quantities rather than in catalytic concentration. The extensive use of this enzyme is expensive and adversely affects the economics of ethanol production. PureVision has approached this problem by developing a biomass fractionator to pretreat the lignocellulose to yield a highly pure cellulose fraction. The biomass fractionator is based on sequentially treating the biomass with hot water, hot alkaline solutions, and polishing the cellulose fraction with a wet alkaline oxidation step. In September 2001 PureVision and Western Research Institute (WRI) initiated a jointly sponsored research project with the U.S. Department of Energy (DOE) to evaluate their pretreatment technology, develop an understanding of the chemistry, and provide the data required to design and fabricate a one- to two-ton/day pilot-scale unit. The efforts during the first year of this program completed the design, fabrication, and shakedown of a bench-scale reactor system and evaluated the fractionation of corn stover. The results from the evaluation of corn stover have shown that water hydrolysis prior to alkaline hydrolysis may be beneficial in removing hemicellulose and lignin from the feedstock. In addition, alkaline hydrolysis has been shown to remove a significant portion of the hemicellulose and lignin. The resulting cellulose can be exposed to a finishing step with wet alkaline oxidation to remove the remaining lignin. The final product is a highly pure cellulose fraction containing less than 1% of the native lignin with an overall yield in excess of 85% of the native cellulose. This report summarizes the results from the first year's effort to move the technology to commercialization.

F.D. Guffey; R.C. Wingerson

2002-10-01T23:59:59.000Z

158

Alternative fuel trucks case studies: Running line-haul trucks on ethanol  

DOE Green Energy (OSTI)

This bulletin describes case studies of trucks operating on ethanol fuel. Cost, maintenance and repair, as well as fuel economy are discussed.

Norton, P.; Kelly, K.J.; Marek, N.J.

1996-10-01T23:59:59.000Z

159

Analysis of Fuel Ethanol Transportation Activity and Potential Distribution Constraints  

SciTech Connect

This paper provides an analysis of fuel ethanol transportation activity and potential distribution constraints if the total 36 billion gallons of renewable fuel use by 2022 is mandated by EPA under the Energy Independence and Security Act (EISA) of 2007. Ethanol transport by domestic truck, marine, and rail distribution systems from ethanol refineries to blending terminals is estimated using Oak Ridge National Laboratory s (ORNL s) North American Infrastructure Network Model. Most supply and demand data provided by EPA were geo-coded and using available commercial sources the transportation infrastructure network was updated. The percentage increases in ton-mile movements by rail, waterways, and highways in 2022 are estimated to be 2.8%, 0.6%, and 0.13%, respectively, compared to the corresponding 2005 total domestic flows by various modes. Overall, a significantly higher level of future ethanol demand would have minimal impacts on transportation infrastructure. However, there will be spatial impacts and a significant level of investment required because of a considerable increase in rail traffic from refineries to ethanol distribution terminals.

Das, Sujit [ORNL; Peterson, Bruce E [ORNL; Chin, Shih-Miao [ORNL

2010-01-01T23:59:59.000Z

160

Alternative Fuels Data Center: Goss' Garage Provides Tips for Using Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Goss' Garage Provides Goss' Garage Provides Tips for Using Ethanol in Classic Cars to someone by E-mail Share Alternative Fuels Data Center: Goss' Garage Provides Tips for Using Ethanol in Classic Cars on Facebook Tweet about Alternative Fuels Data Center: Goss' Garage Provides Tips for Using Ethanol in Classic Cars on Twitter Bookmark Alternative Fuels Data Center: Goss' Garage Provides Tips for Using Ethanol in Classic Cars on Google Bookmark Alternative Fuels Data Center: Goss' Garage Provides Tips for Using Ethanol in Classic Cars on Delicious Rank Alternative Fuels Data Center: Goss' Garage Provides Tips for Using Ethanol in Classic Cars on Digg Find More places to share Alternative Fuels Data Center: Goss' Garage Provides Tips for Using Ethanol in Classic Cars on AddThis.com...

Note: This page contains sample records for the topic "including fuel ethanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Prohibition of the Prohibition of the Sale of Ethanol-Blended Gasoline to someone by E-mail Share Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on Facebook Tweet about Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on Twitter Bookmark Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on Google Bookmark Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on Delicious Rank Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on Digg Find More places to share Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

162

The Food Crises: A quantitative model of food prices including speculators and ethanol conversion  

E-Print Network (OSTI)

Recent increases in basic food prices are severely impacting vulnerable populations worldwide. Proposed causes such as shortages of grain due to adverse weather, increasing meat consumption in China and India, conversion of corn to ethanol in the US, and investor speculation on commodity markets lead to widely differing implications for policy. A lack of clarity about which factors are responsible reinforces policy inaction. Here, for the first time, we construct a dynamic model that quantitatively agrees with food prices. The results show that the dominant causes of price increases are investor speculation and ethanol conversion. Models that just treat supply and demand are not consistent with the actual price dynamics. The two sharp peaks in 2007/2008 and 2010/2011 are specifically due to investor speculation, while an underlying upward trend is due to increasing demand from ethanol conversion. The model includes investor trend following as well as shifting between commodities, equities and bonds to take ad...

Lagi, Marco; Bertrand, Karla Z; Bar-Yam, Yaneer

2011-01-01T23:59:59.000Z

163

Experimental and Modeling Study of the Flammability of Fuel Tank Headspace Vapors from High Ethanol Content Fuels  

DOE Green Energy (OSTI)

Study determined the flammability of fuel tank headspace vapors as a function of ambient temperature for seven E85 fuel blends, two types of gasoline, and denatured ethanol at a low tank fill level.

Gardiner, D.; Bardon, M.; Pucher, G.

2008-10-01T23:59:59.000Z

164

Feasibility of converting a sugar beet plant to fuel ethanol production  

DOE Green Energy (OSTI)

This study was performed to assess the feasibility of producing fuel ethanol from sugar beets. Sugar beets are a major agricultural crop in the area and the beet sugar industry is a major employer. There have been some indications that increasing competition from imported sugar and fructose sugar produced from corn may lead to lower average sugar prices than have prevailed in the past. Fuel ethanol might provide an attractive alternative market for beets and ethanol production would continue to provide an industrial base for labor. Ethanol production from beets would utilize much of the same field and plant equipment as is now used for sugar. It is logical to examine the modification of an existing sugar plant from producing sugar to ethanol. The decision was made to use Great Western Sugar Company's plant at Mitchell as the example plant. This plant was selected primarily on the basis of its independence from other plants and the availability of relatively nearby beet acreage. The potential feedstocks assessed included sugar beets, corn, hybrid beets, and potatoes. Markets were assessed for ethanol and fermentation by-products saleability. Investment and operating costs were determined for each prospective plant. Plants were evaluated using a discounted cash flow technique to obtain data on full production costs. Environmental, health, safety, and socio-economic aspects of potential facilities were examined. Three consulting engineering firms and 3 engineering-construction firms are considered capable of providing the desired turn-key engineering design and construction services. It was concluded that the project is technically feasible. (DMC)

Hammaker, G.S.; Pfost, H.B.; David, M.L.; Marino, M.L.

1981-04-01T23:59:59.000Z

165

Fuel ethanol produced from U.S. Midwest corn : help or hindrance to the vision of Kyoto?  

SciTech Connect

In this study, we examined the role of corn-feedstock ethanol in reducing greenhouse gas (GHG) emissions, given present and near-future technology and practice for corn farming and ethanol production. We analyzed the full-fuel-cycle GHG effects of corn-based ethanol using updated information on corn operations in the upper Midwest and existing ethanol production technologies. Information was obtained from representatives of the U.S. Department of Agriculture, faculty of midwestern universities with expertise in corn production and animal feed, and acknowledged authorities in the field of ethanol plant engineering, design, and operations. Cases examined included use of E85 (85% ethanol and 15% gasoline by volume) and E10 (10% ethanol and 90% gasoline). Among key findings is that Midwest-produced ethanol outperforms conventional (current) and reformulated (future) gasoline with respect to energy use and GHG emissions (on a mass emission per travel mile basis). The superiority of the energy and GHG results is well outside the range of model noise. An important facet of this work has been conducting sensitivity analyses. These analyses let us rank the factors in the corn-to-ethanol cycle that are most important for limiting GHG generation. These rankings could help ensure that efforts to reduce that generation are targeted more effectively.

Wang, M.; Saricks, C.; Wu, M.; Energy Systems

1999-07-01T23:59:59.000Z

166

1 DISTILLERS BY-PRODUCTS AND CORN STOVER AS FUELS FOR ETHANOL PLANTS  

E-Print Network (OSTI)

Abstract. Dry-grind ethanol plants have the potential to reduce their operating costs and improve their net energy balances by using biomass as the source of process heat and electricity. We utilized ASPEN PLUS software to model various technology bundles of equipment, fuels and operating activities that are capable of supplying energy and satisfying emissions requirements for dry-grind ethanol plants of 50 and 100 million gallons per year capacity using corn stover, distillers dried grains and solubles (DDGS), or a mixture of corn stover and syrup (the solubles portion of DDGS). In addition to their own requirements, plants producing 50 and 100 million gallons of ethanol are capable of supplying 5-7 or 10-14 MegaWatts of electricity to the grid, respectively. Economic analysis showed favorable rates of return for biomass alternatives compared to conventional plants using natural gas and purchased electricity over a range of conditions. The mixture of corn stover and syrup provided the highest rates of return in general. Factors favoring biomass included a higher premium for low carbon footprint ethanol, higher natural gas prices, lower DDGS prices, lower ethanol

Douglas G. Tiffany; R. Vance Morey; Matt De Kam; Douglas G. Tiffany; R. Vance Morey; Matt De Kam

2008-01-01T23:59:59.000Z

167

Experimental and Modeling Study of the Flammability of Fuel Tank Headspace Vapors from Ethanol/Gasoline Fuels; Phase 3: Effects of Winter Gasoline Volatility and Ethanol Content on Blend Flammability; Flammability Limits of Denatured Ethanol  

DOE Green Energy (OSTI)

This study assessed differences in headspace flammability for summertime gasolines and new high-ethanol content fuel blends. The results apply to vehicle fuel tanks and underground storage tanks. Ambient temperature and fuel formulation effects on headspace vapor flammability of ethanol/gasoline blends were evaluated. Depending on the degree of tank filling, fuel type, and ambient temperature, fuel vapors in a tank can be flammable or non-flammable. Pure gasoline vapors in tanks generally are too rich to be flammable unless ambient temperatures are extremely low. High percentages of ethanol blended with gasoline can be less volatile than pure gasoline and can produce flammable headspace vapors at common ambient temperatures. The study supports refinements of fuel ethanol volatility specifications and shows potential consequences of using noncompliant fuels. E85 is flammable at low temperatures; denatured ethanol is flammable at warmer temperatures. If both are stored at the same location, one or both of the tanks' headspace vapors will be flammable over a wide range of ambient temperatures. This is relevant to allowing consumers to splash -blend ethanol and gasoline at fueling stations. Fuels compliant with ASTM volatility specifications are relatively safe, but the E85 samples tested indicate that some ethanol fuels may produce flammable vapors.

Gardiner, D. P.; Bardon, M. F.; Clark, W.

2011-07-01T23:59:59.000Z

168

Impacts of ethanol fuel level on emissions of regulated and unregulated pollutants from a fleet of gasoline light-duty vehicles  

SciTech Connect

The study investigated the impact of ethanol blends on criteria emissions (THC, NMHC, CO, NOx), greenhouse gas (CO2), and a suite of unregulated pollutants in a fleet of gasoline-powered light-duty vehicles. The vehicles ranged in model year from 1984 to 2007 and included one Flexible Fuel Vehicle (FFV). Emission and fuel consumption measurements were performed in duplicate or triplicate over the Federal Test Procedure (FTP) driving cycle using a chassis dynamometer for four fuels in each of seven vehicles. The test fuels included a CARB phase 2 certification fuel with 11% MTBE content, a CARB phase 3 certification fuel with a 5.7% ethanol content, and E10, E20, E50, and E85 fuels. In most cases, THC and NMHC emissions were lower with the ethanol blends, while the use of E85 resulted in increases of THC and NMHC for the FFV. CO emissions were lower with ethanol blends for all vehicles and significantly decreased for earlier model vehicles. Results for NOx emissions were mixed, with some older vehicles showing increases with increasing ethanol level, while other vehicles showed either no impact or a slight, but not statistically significant, decrease. CO2 emissions did not show any significant trends. Fuel economy showed decreasing trends with increasing ethanol content in later model vehicles. There was also a consistent trend of increasing acetaldehyde emissions with increasing ethanol level, but other carbonyls did not show strong trends. The use of E85 resulted in significantly higher formaldehyde and acetaldehyde emissions than the specification fuels or other ethanol blends. BTEX and 1,3-butadiene emissions were lower with ethanol blends compared to the CARB 2 fuel, and were almost undetectable from the E85 fuel. The largest contribution to total carbonyls and other toxics was during the cold-start phase of FTP.

Karavalakis, Georgios; Durbin, Thomas; Shrivastava, ManishKumar B.; Zheng, Zhongqing; Villella, Phillip M.; Jung, Hee-Jung

2012-03-30T23:59:59.000Z

169

Experiences from Ethanol Buses and Fuel Station Report - La Spezia | Open  

Open Energy Info (EERE)

Experiences from Ethanol Buses and Fuel Station Report - La Spezia Experiences from Ethanol Buses and Fuel Station Report - La Spezia Jump to: navigation, search Tool Summary Name: Experiences from Ethanol Buses and Fuel Station Report - La Spezia Agency/Company /Organization: BioEthanol for Sustainable Transport Focus Area: Fuels & Efficiency Topics: Best Practices Website: www.best-europe.org/upload/BEST_documents/info_documents/Best%20report This report summarizes the introduction and utilization of E95 buses and E95 pumps in the region of La Spezia (Italy) within the framework of the BioEthanol for Sustainable Transport (BEST) project. How to Use This Tool This tool is most helpful when using these strategies: Avoid - Cut the need for travel Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies

170

Alternative Fuels Data Center: Status Update: New Mid-Level Ethanol Blends  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

New New Mid-Level Ethanol Blends Certification Path, UL Meeting, and Mid-Level Blends Testing (August 2009) to someone by E-mail Share Alternative Fuels Data Center: Status Update: New Mid-Level Ethanol Blends Certification Path, UL Meeting, and Mid-Level Blends Testing (August 2009) on Facebook Tweet about Alternative Fuels Data Center: Status Update: New Mid-Level Ethanol Blends Certification Path, UL Meeting, and Mid-Level Blends Testing (August 2009) on Twitter Bookmark Alternative Fuels Data Center: Status Update: New Mid-Level Ethanol Blends Certification Path, UL Meeting, and Mid-Level Blends Testing (August 2009) on Google Bookmark Alternative Fuels Data Center: Status Update: New Mid-Level Ethanol Blends Certification Path, UL Meeting, and Mid-Level Blends Testing

171

Mixed waste paper to ethanol fuel. A technology, market, and economic assessment for Washington  

DOE Green Energy (OSTI)

The objectives of this study were to evaluate the use of mixed waste paper for the production of ethanol fuels and to review the available conversion technologies, and assess developmental status, current and future cost of production and economics, and the market potential. This report is based on the results of literature reviews, telephone conversations, and interviews. Mixed waste paper samples from residential and commercial recycling programs and pulp mill sludge provided by Weyerhauser were analyzed to determine the potential ethanol yields. The markets for ethanol fuel and the economics of converting paper into ethanol were investigated.

Not Available

1991-01-01T23:59:59.000Z

172

Modeling the Effect of Fuel Ethanol Concentration on Cylinder Pressure Evolution in Direct-Injection Flex-Fuel Engines  

E-Print Network (OSTI)

the compression stroke. The residues calculated from the proposed model were validated with those generated from to detect the fuel ethanol concentration by placing them in the tank or in the fuel line. However by means of the closed-loop air/fuel ratio correction signal based on the Exhaust Gas Oxygen (EGO) sensor

Stefanopoulou, Anna

173

Fuel-Cycle Fossil Energy Use and Greenhouse Gas Emissions of Fuel Ethanol Produced from U.S. Midwest Corn  

E-Print Network (OSTI)

#12;Fuel-Cycle Fossil Energy Use and Greenhouse Gas Emissions of Fuel Ethanol Produced from U national estimates of energy intensities and greenhouse gas (GHG) production are of less relevance than the ANL Greenhouse gas, Regulated Emissions and Energy in Transportation (GREET) full-fuel-cycle analysis

Patzek, Tadeusz W.

174

Opportunities for Utility-Owned CHP at Dry-Mill Fuel Ethanol Plants  

Science Conference Proceedings (OSTI)

This report quantifies opportunities to co-locate natural-gas-fueled combined heat and power (CHP) facilities with corn dry-mill fuel ethanol plants in the upper Midwest. It also evaluates the opportunity to generate renewable power by fueling the CHP plants with biogas produced by anaerobic digestion of the byproducts of the corn wet-milling process.

2008-09-23T23:59:59.000Z

175

Italy (including San Marino) Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Western Europe » Italy Western Europe » Italy (including San Marino) Italy (including San Marino) Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends As occurred in many industrialized nations, CO2 emissions from Italy rose steeply since the late 1940's until the growth was abruptly terminated in 1974. Since 1974, emissions from liquid fuels have vacillated, dropping from 76% to 46% of a static but varying total. Significant increases in natural gas consumption have compensated for the drop in oil consumption. In 2008, 35.8% of Italy's fossil-fuel CO2 emissions were due to natural gas consumption. Coal usage grew steadily until 1985 when CO2 emissions from coal consumption reached 16 million metric tons of carbon. Not until 2004 did coal usage exceed 1985 levels and now accounts for 13.9% of Italy's

176

Assessment of Technologies for Compliance with the Low Carbon Fuel Standard  

E-Print Network (OSTI)

GREET Pathway for Corn Ethanol. Version 2.1. Stationarygasoline fuel, 6%from corn ethanol, and 17% from diesel. Webased biofuels including corn ethanol, Brazilian sugarcane

Yeh, Sonia; Lutsey, Nicholas P.; Parker, Nathan C.

2009-01-01T23:59:59.000Z

177

Clean Cities: Ethanol Basics, Fact Sheet, October 2008  

DOE Green Energy (OSTI)

Document answers frequently asked questions about ethanol as a transportation fuel, including those on production, environmental effects, and vehicles.

Not Available

2008-10-01T23:59:59.000Z

178

Emissions and efficiency of agricultural diesels using low-proof ethanol as supplement fuel. [Tractor engines  

Science Conference Proceedings (OSTI)

Experimental investigations were made to evaluate the potential of using low-proof ethanol to supplement diesel fuel in agricultural engines. Fumigation, mechanical emulsification, and chemical emulsifiers were used to introduce a significant amount of alcohol with diesel fuel for engine operation. A total of five diesel tractor engines were tested using each of the fuel systems. Exhaust products and fuel usage were determined at various engine speed/load conditions. 5 references, 12 figures, 14 tables.

Allsup, J.R.; Clingenpeel, J.M.

1984-01-01T23:59:59.000Z

179

Fuel grade ethanol by solvent extraction: Final subcontract report  

DOE Green Energy (OSTI)

This report summarizes final results for ethanol recovery by solvent extraction and extractive distillation. At conclusion this work can be summarized as ethanol dehydration and recovery dilute fermentates is feasible using liquid/liquid extraction and extractive distillation. Compared to distillation, the economics are more attractive for less than 5 wt % ethanol. However, an economic bias in favor of SEED appears to exist even for 10 wt % feeds. It is of particular interest to consider the group extraction of ethanol and acetic acid followed by conversion to a mixture of ethanol and ethyl acetate. The latter species is a more valuable commodity and group extraction of inhibitory species is one feature of liquid/liquid extraction that is not easily accomodated using distillation. Upflow immobilized reactors offer the possibility of achieving high substrate conversion while also maintaining low metabolite concentrations. However, many questions remain to be answered with such a concept. 135 refs., 42 figs., 61 tabs.

Tedder, D.W.

1987-04-01T23:59:59.000Z

180

Final Environmental Assessment for Construction and Operation of a Proposed Ethanol Cellulosic Ethanol Plant, Range Fuels, Inc.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

i i n a l E n v i r o n m e n t a l A s s e s s m e n t Construction and Operation of a Proposed Cellulosic Ethanol Plant, Range Fuels, Inc. Treutlen County, Georgia DOE/EA 1597 Prepared for U.S. Department of Energy October 2007 Contents Section Page Contents........................................................................................................................................iii Acronyms and Abbreviations .................................................................................................vii 1.0 Introduction......................................................................................................................1 1.1 Background ..........................................................................................................1

Note: This page contains sample records for the topic "including fuel ethanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Ohio's First Ethanol-Fueled Light-Duty Fleet: Final Study Results  

DOE Green Energy (OSTI)

In 1996, the State of Ohio established a project to demonstrate the use of an ethanol blend transportation fuel in flexible-fuel vehicles. This report presents the data collection and analysis from this project, with particular focus on vehicle performance, cost of operation and limited emissions testing.

Whalen, P.; Poole, L.; Howard, R.

1998-12-31T23:59:59.000Z

182

Ohio's First Ethanol-Fueled Light-Duty Fleet: Final Study Results  

SciTech Connect

In 1996, the State of Ohio established a project to demonstrate the use of an ethanol blend transportation fuel in flexible-fuel vehicles. This report presents the data collection and analysis from this project, with particular focus on vehicle performance, cost of operation and limited emissions testing.

Whalen, P.; Poole, L.; Howard, R.

1998-12-31T23:59:59.000Z

183

Cold start characteristics of ethanol as an automobile fuel  

DOE Patents (OSTI)

An alcohol fuel burner and decomposer in which one stream of fuel is preheated by passing it through an electrically heated conduit to vaporize the fuel, the fuel vapor is mixed with air, the air-fuel mixture is ignited and combusted, and the combustion gases are passed in heat exchange relationship with a conduit carrying a stream of fuel to decompose the fuel forming a fuel stream containing hydrogen gas for starting internal combustion engines, the mass flow of the combustion gas being increased as it flows in heat exchange relationship with the fuel carrying conduit, is disclosed.

Greiner, Leonard (2750-C Segerstrom, Santa Ana, CA 92704)

1982-01-01T23:59:59.000Z

184

Alternative Fuels Data Center: Advanced Ethanol Industry Initiative  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

yield of at least 600 gallons of ethanol per acre. Requires no more than 50% of the water required to grow corn. Is tolerant to high temperatures and waterlogging. Is resistant...

185

An E85 Ethanol Fuel Impact Study for Wake County, North Carolina Addressing Economical, Operational, Environmental, and Social Issues.  

E-Print Network (OSTI)

??The value of ethanol as an alternative fuel has recently been a highly debated topic. There have been many strong opinions for and against its (more)

Roy, Bryan Erik

2005-01-01T23:59:59.000Z

186

Energy Basics: Ethanol  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Photo of several beakers of gold and orange liquid ethanol. Ethanol is a renewable fuel made from various plant materials, which collectively are called "biomass." Ethanol...

187

Renewable utility-scale electricity production differs by fuel ...  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium. Uranium fuel, nuclear reactors, generation, spent fuel. Total Energy.

188

RINs and RVOs are used to implement the Renewable Fuel ...  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium. Uranium fuel, nuclear reactors, generation, spent fuel. ...

189

The mix of fuels used for electricity generation in the ...  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium. Uranium fuel, nuclear reactors, generation, spent fuel. ... ...

190

Susceptibility of Aluminum Alloys to Corrosion in Simulated Fuel Blends Containing Ethanol  

Science Conference Proceedings (OSTI)

The compatibility of aluminum and aluminum alloys with synthetic fuel blends comprised of ethanol and reference fuel C (a 50/50 mix of toluene and iso-octane) was examined as a function of water content and temperature. Commercially pure wrought aluminum and several cast aluminum alloys were observed to be similarly susceptible to substantial corrosion in dry (ethanol. Corrosion rates of all the aluminum materials examined was accelerated by increased temperature and ethanol content in the fuel mixture, but inhibited by increased water content. Pretreatments designed to stabilize passive films on aluminum increased the incubation time for onset of corrosion, suggesting film stability is a significant factor in the mechanism of corrosion.

Thomson, Jeffery K [ORNL; Pawel, Steven J [ORNL; Wilson, Dane F [ORNL

2013-01-01T23:59:59.000Z

191

Potential impacts on air quality of the use of ethanol as an alternative fuel. Final report  

DOE Green Energy (OSTI)

The use of ethanol/gasoline mixtures in motor vehicles has been proposed as an alternative fuel strategy that might improve air quality while minimizing US dependence on foreign oil. New enzymatic production methodologies are being explored to develop ethanol as a viable, economic fuel. In an attempt to reduce urban carbon monoxide (CO) and ozone levels, a number of cities are currently mandating the use of ethanol/gasoline blends. However, it is not at all clear that these blended fuels will help to abate urban pollution. In fact, the use of these fuels may lead to increased levels of other air pollutants, specifically aldehydes and peroxyacyl nitrates. Although these pollutants are not currently regulated, their potential health and environmental impacts must be considered when assessing the impacts of alternative fuels on air quality. Indeed, formaldehyde has been identified as an important air pollutant that is currently being considered for control strategies by the State of California. This report focuses on measurements taken in Albuquerque, New Mexico during the summer of 1993 and the winter of 1994 as an initial attempt to evaluate the air quality effects of ethanol/gasoline mixtures. The results of this study have direct implications for the use of such fuel mixtures as a means to reduce CO emissions and ozone in a number of major cities and to bring these urban centers into compliance with the Clean Air Act.

Gaffney, J.S.; Marley, N.A. [Argonne National Lab., IL (United States)

1994-09-01T23:59:59.000Z

192

Legacy Vehicle Fuel System Testing with Intermediate Ethanol Blends  

DOE Green Energy (OSTI)

The effects of E10 and E17 on legacy fuel system components from three common mid-1990s vintage vehicle models (Ford, GM, and Toyota) were studied. The fuel systems comprised a fuel sending unit with pump, a fuel rail and integrated pressure regulator, and the fuel injectors. The fuel system components were characterized and then installed and tested in sample aging test rigs to simulate the exposure and operation of the fuel system components in an operating vehicle. The fuel injectors were cycled with varying pulse widths during pump operation. Operational performance, such as fuel flow and pressure, was monitored during the aging tests. Both of the Toyota fuel pumps demonstrated some degradation in performance during testing. Six injectors were tested in each aging rig. The Ford and GM injectors showed little change over the aging tests. Overall, based on the results of both the fuel pump testing and the fuel injector testing, no major failures were observed that could be attributed to E17 exposure. The unknown fuel component histories add a large uncertainty to the aging tests. Acquiring fuel system components from operational legacy vehicles would reduce the uncertainty.

Davis, G. W.; Hoff, C. J.; Borton, Z.; Ratcliff, M. A.

2012-03-01T23:59:59.000Z

193

Compatibility Study for Plastic, Elastomeric, and Metallic Fueling Infrastructure Materials Exposed to Aggressive Formulations of Ethanol-blended Gasoline  

SciTech Connect

In 2008 Oak Ridge National Laboratory began a series of experiments to evaluate the compatibility of fueling infrastructure materials with intermediate levels of ethanol-blended gasoline. Initially, the focus was elastomers, metals, and sealants, and the test fuels were Fuel C, CE10a, CE17a and CE25a. The results of these studies were published in 2010. Follow-on studies were performed with an emphasis on plastic (thermoplastic and thermoset) materials used in underground storage and dispenser systems. These materials were exposed to test fuels of Fuel C and CE25a. Upon completion of this effort, it was felt that additional compatibility data with higher ethanol blends was needed and another round of experimentation was performed on elastomers, metals, and plastics with CE50a and CE85a test fuels. Compatibility of polymers typically relates to the solubility of the solid polymer with a solvent. It can also mean susceptibility to chemical attack, but the polymers and test fuels evaluated in this study are not considered to be chemically reactive with each other. Solubility in polymers is typically assessed by measuring the volume swell of the polymer exposed to the solvent of interest. Elastomers are a class of polymers that are predominantly used as seals, and most o-ring and seal manufacturers provide compatibility tables of their products with various solvents including ethanol, toluene, and isooctane, which are components of aggressive oxygenated gasoline as described by the Society of Automotive Engineers (SAE) J1681. These tables include a ranking based on the level of volume swell in the elastomer associated with exposure to a particular solvent. Swell is usually accompanied by a decrease in hardness (softening) that also affects performance. For seal applications, shrinkage of the elastomer upon drying is also a critical parameter since a contraction of volume can conceivably enable leakage to occur. Shrinkage is also indicative of the removal of one or more components of the elastomers (by the solvent). This extraction of additives can negatively change the properties of the elastomer, leading to reduced performance and durability. For a seal application, some level of volume swell is acceptable, since the expansion will serve to maintain a seal. However, the acceptable level of swell is dependent on the particular application of the elastomer product. It is known that excessive swell can lead to unacceptable extrusion of the elastomer beyond the sealed interface, where it becomes susceptible to damage. Also, since high swell is indicative of high solubility, there is a heightened potential for fluid to seep through the seal and into the environment. Plastics, on the other hand, are used primarily in structural applications, such as solid components, including piping and fluid containment. Volume change, especially in a rigid system, will create internal stresses that may negatively affect performance. In order to better understand and predict the compatibility for a given polymer type and fuel composition, an analysis based on Hansen solubility theory was performed for each plastic and elastomer material. From this study, the solubility distance was calculated for each polymer material and test fuel combination. Using the calculated solubility distance, the ethanol concentration associated with peak swell and overall extent of swell can be predicted for each polymer. The bulk of the material discussion centers on the plastic materials, and their compatibility with Fuel C, CE25a, CE50a, and CE85a. The next section of this paper focuses on the elastomer compatibility with the higher ethanol concentrations with comparison to results obtained previously for the lower ethanol levels. The elastomers were identical to those used in the earlier study. Hansen solubility theory is also applied to the elastomers to provide added interpretation of the results. The final section summarizes the performance of the metal coupons.

Kass, Michael D [ORNL; Pawel, Steven J [ORNL; Theiss, Timothy J [ORNL; Janke, Christopher James [ORNL

2012-07-01T23:59:59.000Z

194

Fuel cycle evaluations of biomass-ethanol and reformulated gasoline. Volume 1  

DOE Green Energy (OSTI)

The US Department of Energy (DOE) is using the total fuel cycle analysis (TFCA) methodology to evaluate energy choices. The National Energy Strategy (NES) identifies TFCA as a tool to describe and quantify the environmental, social, and economic costs and benefits associated with energy alternatives. A TFCA should quantify inputs and outputs, their impacts on society, and the value of those impacts that occur from each activity involved in producing and using fuels, cradle-to-grave. New fuels and energy technologies can be consistently evaluated and compared using TFCA, providing a sound basis for ranking policy options that expand the fuel choices available to consumers. This study is limited to creating an inventory of inputs and outputs for three transportation fuels: (1) reformulated gasoline (RFG) that meets the standards of the Clean Air Act Amendments of 1990 (CAAA) using methyl tertiary butyl ether (MTBE); (2) gasohol (E10), a mixture of 10% ethanol made from municipal solid waste (MSW) and 90% gasoline; and (3) E95, a mixture of 5% gasoline and 95% ethanol made from energy crops such as grasses and trees. The ethanol referred to in this study is produced from lignocellulosic material-trees, grass, and organic wastes -- called biomass. The biomass is converted to ethanol using an experimental technology described in more detail later. Corn-ethanol is not discussed in this report. This study is limited to estimating an inventory of inputs and outputs for each fuel cycle, similar to a mass balance study, for several reasons: (1) to manage the size of the project; (2) to provide the data required for others to conduct site-specific impact analysis on a case-by-case basis; (3) to reduce data requirements associated with projecting future environmental baselines and other variables that require an internally consistent scenario.

Tyson, K.S.

1993-11-01T23:59:59.000Z

195

Hydrogen & Fuel Cells - Hydrogen - Distributed Ethanol Reforming  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen from Bio-Derived Liquids Hydrogen from Bio-Derived Liquids Bio-derived liquid fuels can be produced from renewable agricultural products, such as wood chips. Background Bio-derived renewable fuels are attractive for their high energy density and ease of transport. One scenario for a sustainable hydrogen economy considers that these bio-derived liquid fuels will be produced at plants close to the biomass resource, and then transported to distributed hydrogen production centers (e.g., hydrogen refueling stations), where the fuels will be reformed via the steam reforming process, similar to the current centralized production of hydrogen by the steam reforming of natural gas. Hydrogen produced by reforming these fuels must first be purified and compressed to appropriate storage and dispensing pressures. Compressing

196

Waste fuels are a significant energy source for U.S ...  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium. Uranium fuel, nuclear reactors, generation, spent fuel. ...

197

Fuel Economy and Emissions of the Ethanol-Optimized Saab 9-5 Biopower  

Science Conference Proceedings (OSTI)

Saab Automobile recently released the BioPower engines, advertised to use increased turbocharger boost and spark advance on ethanol fuel to enhance performance. Specifications for the 2.0 liter turbocharged engine in the Saab 9-5 Biopower 2.0t report 150 hp on gasoline and a 20% increase to 180 hp on E85 (nominally 85% ethanol, 15% gasoline). While FFVs sold in the U.S. must be emissions certified on Federal Certification Gasoline as well as on E85, the European regulations only require certification on gasoline. Owing to renewed and growing interest in increased ethanol utilization in the U.S., a European-specification 2007 Saab 9-5 Biopower 2.0t was acquired by the Department of Energy and Oak Ridge National Laboratory (ORNL) for benchmark evaluations. Results show that the BioPower vehicle's gasoline equivalent fuel economy on the Federal Test Procedure (FTP) and the Highway Fuel Economy Test (HFET) are on par with similar U.S.-legal flex-fuel vehicles. Regulated and unregulated emissions measurements on the FTP and the US06 aggressive driving test (part of the supplemental FTP) show that despite the lack of any certification testing requirement in Europe on E85 or on the U.S. cycles, the BioPower is within Tier 2, Bin 5 emissions levels (note that full useful life emissions have not been measured) on the FTP, and also within the 4000 mile US06 emissions limits. Emissions of hydrocarbon-based hazardous air pollutants are higher on Federal Certification Gasoline while ethanol and aldehyde emissions are higher on ethanol fuel. The advertised power increase on E85 was confirmed through acceleration tests on the chassis dyno as well as on-road.

West, Brian H [ORNL; Lopez Vega, Alberto [ORNL; Theiss, Timothy J [ORNL; Graves, Ronald L [ORNL; Storey, John Morse [ORNL; Lewis Sr, Samuel Arthur [ORNL

2007-01-01T23:59:59.000Z

198

Fuel-Cycle Fossil Energy Use and Greenhouse Gas Emissions of Fuel Ethanol Produced from U.S. Midwest Corn  

E-Print Network (OSTI)

this report was peer reviewed by these contributors and their comments have been incorporated. Among key findings is that, for all cases examined on a mass emission per travel mile basis, the corn-to-ethanol fuel cycle for Midwest-produced ethanol utilized as both E85 and E10 outperforms that of conventional (current) and of reformulated (future) gasoline with respect to energy use and greenhouse gas production. In many cases, the superiority of the energy and GHG result is quite pronounced (i.e., well outside the range of model "noise")

Michael Wang Christopher; Michael Wang; Christopher Saricks

1997-01-01T23:59:59.000Z

199

Intermediate-scale, semicontinuous solid-phase fermentation process for production of fuel ethanol from sweet sorghum. [Saccharomyces cerevisiae  

Science Conference Proceedings (OSTI)

A novel, semicontinuous solid-phase fermentation system was used to produce fuel ethanol from sweet sorghum. The process was at an intermediate scale. In the process, dried and shredded sweet sorghum was rehydrated to 70% moisture, acidified to pH 2.0 to 3.0, and either pasteurized (12 h at 70 to 80/sup 0/C) or not pasteurized before spray inoculation with a broth culture of Saccharomyces cerevisiae. Fermented pulp exited the semicontinuous fermentor after a retention time of 72 h and contained approximately 6% (vol/vol) ethanol. Ethanol yields from dry sweet sorghum were 176 to 179 liters/10/sup 3/kg (85% of theoretical). Production costs for a greatly scaled-up (x1400) conceptual version of this system were projected by calculation to average $0.47/liter for 95% ethanol. The calculated energy balance (energy output/energy input ratio) was estimated to be 1.05 when pasteurization was included and 1.31 when pasteurization was omitted. In calculating the energy balances, the output energy of the protein feed byproduct and the input energy for growing the sweet sorghum were not considered. A design for the scaled-up plant (farm scale) is provided.

Gibbons, W.R.; Westby, C.A.; Dobbs, T.L.

1986-01-01T23:59:59.000Z

200

Exhaust emission testing of two ethanol variable fueled 1992 Chevrolet Luminas. Test results - 1993. Technical report  

SciTech Connect

The report describes the exhaust emission testing results for two 1992 low-mileage Chevrolet Lumina ethanol variable fuel vehicles. The vehicles were tested on both Indolene and E85 fuel using the Federal Test Procedure (FTP) for exhaust emissions. In the future, the EPA will retest the Luminas at future mileage accumulations of 20,000, 50,000 and possibly 100,000. At these future mileage accumulations, the vehicles will also be tested using intermediate fuel blends for both exhaust and evaporative emissions.

Samulski, M.

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "including fuel ethanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Feasibility studies of a fuel cell for cogeneration of homogeneously catalyzed acetaldehyde and electricity from ethanol  

Science Conference Proceedings (OSTI)

The development and feasibility of a novel fuel cell for simultaneously generating electricity and homogeneously catalyzed acetaldehyde from ethanol are reported. The fuel cell is based on the supported molten-salt electrocatalysis technique that allows use of homogeneous (liquid-phase) catalysts in fuel cells for the first time. The electrocatalytic reaction combines the chemistry of the Wacker process conventionally used for acetaldehyde production from the partial oxidation of ethylene and that of the Veba-Chemie method. Nafion membranes impregnated with different electrolytic materials were used in the fuel cell as electrolytes to allow operation at reaction temperatures up to 165 C. Results obtained are comparable to those reported in the literature on partial oxidation of ethylene to acetaldehyde in a fuel cell based on conventional heterogeneous electrocatalysts.

Malhotra, S.; Datta, R. [Univ. of Iowa, Iowa City, IA (United States). Dept. of Chemical and Biochemical Engineering

1996-10-01T23:59:59.000Z

202

Ohio's first ethanol-fueled light-duty fleet: Clean cities alternative fuel information series case study  

DOE Green Energy (OSTI)

In 1996, the State of Ohio established a project to demonstrate the effectiveness of ethanol as an alternative to gasoline in its fleet operations. All vehicles in the study were 1996 model year Ford Tauruses: ten were flexible-fuel vehicles (FFVs) and three were standard gasoline models. Overall, the State of Ohio's staff has been pleased with the Taurus FFVs. The vehicles perform well and meet the operators' needs.

Whalen, P.

1999-05-21T23:59:59.000Z

203

Ohio's first ethanol-fueled light-duty fleet: Clean cities alternative fuel information series case study  

SciTech Connect

In 1996, the State of Ohio established a project to demonstrate the effectiveness of ethanol as an alternative to gasoline in its fleet operations. All vehicles in the study were 1996 model year Ford Tauruses: ten were flexible-fuel vehicles (FFVs) and three were standard gasoline models. Overall, the State of Ohio's staff has been pleased with the Taurus FFVs. The vehicles perform well and meet the operators' needs.

Whalen, P.

1999-05-21T23:59:59.000Z

204

Isotopic Tracing of Particulate Matter from a Compression Ignition Engine Fueled with Ethanol-in-Diesel Blends  

DOE Green Energy (OSTI)

Accelerator Mass Spectrometry (AMS) was used to investigate the relative contribution to diesel engine particulate matter (PM) from the ethanol and diesel fractions of blended fuels. Four test fuels along with a diesel fuel baseline were investigated. The test fuels were comprised of {sup 14}C depleted diesel fuel mixed with contemporary grain ethanol (>400 the {sup 14}C concentration of diesel). An emulsifier (Span 85) or cosolvent (butyl alcohol) was used to facilitate mixing. The experimental test engine was a 1993 Cummins B5.9 diesel rated at 175 hp at 2500 rpm. Test fuels were run at steady-state conditions of 1600 rpm and 210 ft-lbs, and PM samples were collected on quartz filters following dilution of engine exhaust in a mini-dilution tunnel. AMS analysis of the filter samples showed that the ethanol contributed less to PM relative to its fraction in the fuel blend. For the emulsified blends, 6.4% and 10.3% contributions to PM were observed for 11.5% and 23.0% ethanol fuels, respectively. For the cosolvent blends, even lower contributions were observed (3.8% and 6.3% contributions to PM for 12.5% and 25.0% ethanol fuels, respectively).

Cheng, A.S.; Dibble, R.W.; Buchholz, B.

1999-11-22T23:59:59.000Z

205

Assessing deployment strategies for ethanol and flex fuel vehicles in the U.S. light-duty vehicle fleet  

E-Print Network (OSTI)

Within the next 3-7 years the US light duty fleet and fuel supply will encounter what is commonly referred to as the "blend wall". This phenomenon describes the situation when more ethanol production has been mandated than ...

McAulay, Jeffrey L. (Jeffrey Lewis)

2009-01-01T23:59:59.000Z

206

Clean air program: Design guidelines for bus transit systems using alcohol fuel (methanol and ethanol) as an alternative fuel. Final report, July 1995-April 1996  

Science Conference Proceedings (OSTI)

This report provides design guidelines for the safe use of alcohol fuel (Methanol or Ethanol). It is part of a series of individual monographs being published by the FTA providing guidelines for the safe use of Compressed Natural Gas (CNG), Liquefied Natural Gas (LNG), Liquefied Petroleum Gas (LPG) and alcohol fuels (Methanol and Ethanol). Each report in this series describes, for the subject fuel, the important fuel properties, guidelines for the design and operation of bus fueling, storage and maintenance facilities, issues on personnel training and emergency preparedness.

Raj, P.K.; DeMarco, V.R.; Hathaway, W.T.; Kangas, R.

1996-08-01T23:59:59.000Z

207

Geothermal Energy Market Study on the Atlantic Coastal Plain: Technical Feasibility of use of Eastern Geothermal Energy in Vacuum Distillation of Ethanol Fuel  

DOE Green Energy (OSTI)

The DOE is studying availability, economics, and uses of geothermal energy. These studies are being conducted to assure maximum cost-effective use of geothermal resources. The DOE is also aiding development of a viable ethanol fuel industry. One important point of the ethanol program is to encourage use of non-fossil fuels, such as geothermal energy, as process heat to manufacture ethanol. Geothermal waters available in the eastern US tend to be lower in temperature (180 F or less) than those available in the western states (above 250 F). Technically feasible use of eastern geothermal energy for ethanol process heat requires use of technology that lowers ethanol process temperature requirements. Vacuum (subatmospheric) distillation is one such technology. This study, then, addresses technical feasibility of use of geothermal energy to provide process heat to ethanol distillation units operated at vacuum pressures. They conducted this study by performing energy balances on conventional and vacuum ethanol processes of ten million gallons per year size. Energy and temperature requirements for these processes were obtained from the literature or were estimated (for process units or technologies not covered in available literature). Data on available temperature and energy of eastern geothermal resources was obtained from the literature. These data were compared to ethanol process requirements, assuming a 150 F geothermal resource temperature. Conventional ethanol processes require temperatures of 221 F for mash cooking to 240 F for stripping. Fermentation, conducted at 90 F, is exothermic and requires no process heat. All temperature requirements except those for fermentation exceed assumed geothermal temperatures of 150 F. They assumed a 130 millimeter distillation pressure for the vacuum process. It requires temperatures of 221 F for mash cooking and 140 F for distillation. Data indicate lower energy requirements for the vacuum ethanol process (30 million BTUs per hour) than for the conventional process (36 million BTUs per hour). Lower energy requirements result from improved process energy recovery. Data examined in this study indicate feasible use of eastern geothermal heated waters (150 F) to provide process heat for vacuum (130 mm Hg) ethanol distillation units. Data indicate additional heat sources are needed to raise geothermal temperatures to the 200 F level required by mash cooking. Data also indicate potential savings in overall process energy use through use of vacuum distillation technology. Further study is needed to confirm conclusions reached during this study. Additional work includes obtaining energy use data from vacuum ethanol distillation units currently operating in the 130 millimeter pressure range; economic analysis of different vacuum pressures to select an optimum; and operation of a pilot geothermally heated vacuum column to produce confirmatory process data.

None

1981-04-01T23:59:59.000Z

208

EERE SBIR Case Study: Improving Hybrid Poplars as a Renewable Source of Ethanol Fuel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GreenWood Resources to advance GreenWood Resources to advance scientific understanding of the ways chemical traits are inherited in hybrid poplars and the extent of variations in characteristics such as lignin content and forms of lignin-enabling the best traits to be developed and significantly advancing the potential of hybrid poplars to provide a substantial, renewable source of ethanol fuel. GreenWood Resources (Portland,

209

Environmental Assessment for the Design and Construction of a Fuel Ethanol Plant, Jasper County, Indiana DOE/EA 1517  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

517 517 ENVIRONMENTAL ASSESSMENT Design and Construction of a Proposed Fuel Ethanol Plant, Jasper County, Indiana April 2005 U.S. Department of Energy Golden Field Office 1617 Cole Blvd. Golden, CO 80401 1 2 3 4 5 6 7 Environmental Assessment Design and Construction of a Proposed Fuel Ethanol Plant, Jasper County, Indiana TABLE OF CONTENTS ACRONYMS AND ABBREVIATIONS ...................................................................................................IV GLOSSARY ................................................................................................................................................ V UNITS OF MEASUREMENT ................................................................................................................. VII

210

Fuel from farms: a guide to small-scale ethanol production  

DOE Green Energy (OSTI)

A guide on fermentation processes with emphasis on small-scale production of ethanol using farm crops as a source of raw material is published. The current status of on-farm ethanol production as well as an overview of some of the technical and economic factors is presented. Decision and planning worksheets and a sample business plan for use in decision making are included. Specifics in production including information on the raw materials, system components, and operational requirements are also provided. Diagrams of fermentors and distilling apparatus are included. (DC)

None

1980-02-01T23:59:59.000Z

211

DOT Motor-fuel use statistics summary to 1995 The data included...  

Open Energy Info (EERE)

Motor-fuel use statistics summary to 1995 The data included in this submission is United States Department of Transportation (DOT) data up to 1995. The data includes motor-fuel...

212

Experimental and Modeling Study of the Flammability of Fuel Tank Headspace Vapors from Ethanol/Gasoline Fuels, Phase 2: Evaluations of Field Samples and Laboratory Blends  

DOE Green Energy (OSTI)

Study to measure the flammability of gasoline/ethanol fuel vapors at low ambient temperatures and develop a mathematical model to predict temperatures at which flammable vapors were likely to form.

Gardiner, D. P.; Bardon, M. F.; LaViolette, M.

2010-04-01T23:59:59.000Z

213

U.S. Fuel Ethanol Plant Production Capacity  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

214

Stocks of Conventional Gasoline Blended with Fuel Ethanol  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Stocks include those ...

215

ethanol | OpenEI  

Open Energy Info (EERE)

ethanol ethanol Dataset Summary Description These data files contain volume, mass, and hardness changes of elastomers and plastics representative exposed to gasoline containing various levels of ethanol. These materials are representative of those used in gasoline fuel storage and dispensing hardware. All values are compared to the original untreated condition. The data sets include results from specimens exposed directly to the fuel liquid and also a set of specimens exposed only to the fuel vapors. Source Mike Kass, Oak Ridge National Laboratory Date Released August 16th, 2012 (2 years ago) Date Updated August 16th, 2012 (2 years ago) Keywords compatibility elastomers ethanol gasoline plastics polymers Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon plastics_dma_results_san.xlsx (xlsx, 4.9 MiB)

216

UPDATE February 2012 - The Food Crises: Predictive validation of a quantitative model of food prices including speculators and ethanol conversion  

E-Print Network (OSTI)

Increases in global food prices have led to widespread hunger and social unrest---and an imperative to understand their causes. In a previous paper published in September 2011, we constructed for the first time a dynamic model that quantitatively agreed with food prices. Specifically, the model fit the FAO Food Price Index time series from January 2004 to March 2011, inclusive. The results showed that the dominant causes of price increases during this period were investor speculation and ethanol conversion. The model included investor trend following as well as shifting between commodities, equities and bonds to take advantage of increased expected returns. Here, we extend the food prices model to January 2012, without modifying the model but simply continuing its dynamics. The agreement is still precise, validating both the descriptive and predictive abilities of the analysis. Policy actions are needed to avoid a third speculative bubble that would cause prices to rise above recent peaks by the end of 2012.

Lagi, Marco; Bertrand, Karla Z; Bar-Yam, Yaneer

2012-01-01T23:59:59.000Z

217

Fuel from farms: A guide to small-scale ethanol production: Second edition  

DOE Green Energy (OSTI)

This guide presents the current status of on-farm fermentation ethanol production as well as an overview of some of the technical and economic factors. Tools such as decision and planning worksheets and a sample business plan for use in exploring whether or not to go into ethanol production are given. Specifics in production including information on the raw materials, system components, and operational requirements are also provided. Recommendation of any particular process is deliberately avoided because the choice must be tailored to the needs and resources of each individual producer. The emphasis is on providing the facts necessary to make informed judgments. 98 refs., 14 figs., 9 tabs.

Not Available

1982-05-01T23:59:59.000Z

218

UW Madison Fleet Fiscal Year 2010 Rates: Fuel, maintenance and insurance costs are included. If fuel prices exceed the budgeted  

E-Print Network (OSTI)

UW Madison Fleet Fiscal Year 2010 Rates: Fuel, maintenance and insurance costs are included. If fuel prices exceed the budgeted amount by a significant margin, the rates will be amended with a fuel surcharge at that time and the change notice will be posted in the fleet web site, rates page. Some rate

Sheridan, Jennifer

219

Appendix F Item 237-4: Handbook 130, Engine Fuels and ...  

Science Conference Proceedings (OSTI)

... at 2. 75 The "aggressive ethanol" used in the study contained impurities found in fuel grade ethanol including sulfuric acid, acetic acid, water, and ...

2011-12-13T23:59:59.000Z

220

Fermentation guide for potatoes. A step-by-step procedure for small-scale ethanol fuel production  

Science Conference Proceedings (OSTI)

This guide describes the steps involved in the successful batch starch conversion and fermentation of potatoes for the production of fuel grade ethanol. The first part of this manual provides an overview of ethanol production from feedstock to fermentation. The second part of the manual is a recipe section that gives step-by-step procedures necessary for successful fermentation. Chapter titles are: major steps in ethanol production; equipment and chemicals; water testing and treatment; feedstock cleaning and crushing; precooking; hydration and dextrinization; cooking; choosing the best enzymes; fermentation; core and cleaning, step-by-step procedure; refinements; and supplies. (DMC)

Not Available

1981-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "including fuel ethanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Fuel-Cycle energy and emission impacts of ethanol-diesel blends in urban buses and farming tractors.  

DOE Green Energy (OSTI)

About 2.1 billion gallons of fuel ethanol was used in the United States in 2002, mainly in the form of gasoline blends containing up to 10% ethanol (E10). Ethanol use has the potential to increase in the U.S. blended gasoline market because methyl tertiary butyl ether (MTBE), formerly the most popular oxygenate blendstock, may be phased out owing to concerns about MTBE contamination of the water supply. Ethanol would remain the only viable near-term option as an oxygenate in reformulated gasoline production and to meet a potential federal renewable fuels standard (RFS) for transportation fuels. Ethanol may also be blended with additives (co-solvents) into diesel fuels for applications in which oxygenation may improve diesel engine emission performance. Numerous studies have been conducted to evaluate the fuel-cycle energy and greenhouse gas (GHG) emission effects of ethanol-gasoline blends relative to those of gasoline for applications in spark-ignition engine vehicles (see Wang et al. 1997; Wang et al. 1999; Levelton Engineering et al. 1999; Shapouri et al. 2002; Graboski 2002). Those studies did not address the energy and emission effects of ethanol-diesel (E-diesel or ED) blends relative to those of petroleum diesel fuel in diesel engine vehicles. The energy and emission effects of E-diesel could be very different from those of ethanol-gasoline blends because (1) the energy use and emissions generated during diesel production (so-called ''upstream'' effects) are different from those generated during gasoline production; and (2) the energy and emission performance of E-diesel and petroleum diesel fuel in diesel compression-ignition engines differs from that of ethanol-gasoline blends in spark-ignition (Otto-cycle-type) engine vehicles. The Illinois Department of Commerce and Community Affairs (DCCA) commissioned Argonne National Laboratory to conduct a full fuel-cycle analysis of the energy and emission effects of E-diesel blends relative to those of petroleum diesel when used in the types of diesel engines that will likely be targeted first in the marketplace. This report documents the results of our study. The draft report was delivered to DCCA in January 2003. This final report incorporates revisions by the sponsor and by Argonne.

Wang, M.; Saricks, C.; Lee, H.

2003-09-11T23:59:59.000Z

222

Federal Test Procedure Emissions Test Results from Ethanol Variable-Fuel Vehicle Chevrolet Luminas  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Federal Test Procedure Emissions Test Results from Federal Test Procedure Emissions Test Results from Ethanol Variable-Fuel Vehicle Chevrolet Luminas Kenneth J. Kelly, Brent K. Bailey, and Timothy C. Coburn National Renewable Energy Laboratory Wendy Clark Automotive Testing Laboratories, Inc. Peter Lissiuk Environmental Research and Development Corp. Presented at Society for Automotive Engineers International Spring Fuels and Lubricants Meeting Dearborn, MI May 6-8, 1996 The work described here was wholly funded by the U.S. Department of Energy, a U.S. government agency. As such, this information is in the public domain, may be copied and otherwise accessed freely, and is not subject to copyright laws. These papers were previously published in hard copy form by the Society of Automotive Engineers, Inc. (Telephone: 412.776.4970; E-mail: publications@sae.org)

223

Feasibility study for fuel grade ethanol complex, Kennewick, Washington. Volume II of V. Market evaluation  

SciTech Connect

Midwestern corn prices are projected to increase continuously over the next five years, while Distillers Dried Grains (DDGS) prices are projected to decline and not recover until 1985. If midwestern shippers are successful in negotiating favorable freight rates for DDGS, local prices could also decline during the period from 1981 to 1985. If they are not successful and freight rates continue to increase over the period, adequate regional and export markets will be available for all the DDGS produced by Omega Fuels, at prices competitive with other regional feed supplements. Large volumes of midwestern corn are currently exported from Seattle-Tacoma. Rail lines serving this port pass near the Omega Fuels' plant site in Kennewick, Washington. Therefore, start-up of the plant using midwestern corn should not be difficult. The corn oil by-product can be easily marketed in the region at prices competitive with soy oil. As production becomes established, the corn oil may be able to command its traditional premium price. Coal ash, mineral sludge, and CO/sub 2/ by-products may find local markets - if they are actively marketed by Omega Fuels. These by-products are not expected to produce significant revenues. However, if markets are not sought, conventional disposal methods will be a net cost to the operation of the plant. The market for ethanol in the region will have to be expanded significantly to absorb Omega Fuels' production. Unleaded regular is gasohol's major competitor. As such, the wholesale price of unleaded regular gasoline will control the selling price of ethanol.

1981-07-01T23:59:59.000Z

224

The Fuels and Lubricants Research Division of Southwest Research includes extensive engines, fuels and lubricants research,  

E-Print Network (OSTI)

Caterpillar 1K Lubricant Test This test evaluates the piston deposits, liner wear, and oil consumption and oil consumption. The test is proposed for inclusion in the PC-10 category. Mack T8/T8A/T8E Lubricant of Mack engine oil specification EON+ 03, CI-4+ and will be included in PC-10. Mack T12 Lubricant Test

Chapman, Clark R.

225

Cellulosic Ethanol Technology on Track to Being Competitive With Other Transportation Fuels (Fact Sheet)  

DOE Green Energy (OSTI)

Researchers at the National Renewable Energy Laboratory (NREL) have been driving down the cost of cellulosic ethanol and overcoming the technical challenges that surround it-major milestones toward the Department of Energy (DOE) goal of making cellulosic ethanol cost-competitive by 2012.

Not Available

2011-02-01T23:59:59.000Z

226

NREL: Vehicles and Fuels Research - Regulatory Support  

NLE Websites -- All DOE Office Websites (Extended Search)

can run on nonpetroleum fuels, including natural gas, electricity, ethanol, biodiesel, propane, and hydrogen. Under EPAct, a certain percentage of a fleet's annual new light-duty...

227

Hydraulically actuated fuel injector including a pilot operated spool valve assembly and hydraulic system using same  

DOE Patents (OSTI)

The present invention relates to hydraulic systems including hydraulically actuated fuel injectors that have a pilot operated spool valve assembly. One class of hydraulically actuated fuel injectors includes a solenoid driven pilot valve that controls the initiation of the injection event. However, during cold start conditions, hydraulic fluid, typically engine lubricating oil, is particularly viscous and is often difficult to displace through the relatively small drain path that is defined past the pilot valve member. Because the spool valve typically responds slower than expected during cold start due to the difficulty in displacing the relatively viscous oil, accurate start of injection timing can be difficult to achieve. There also exists a greater difficulty in reaching the higher end of the cold operating speed range. Therefore, the present invention utilizes a fluid evacuation valve to aid in displacement of the relatively viscous oil during cold start conditions.

Shafer, Scott F. (Morton, IL)

2002-01-01T23:59:59.000Z

228

High Ethanol Fuel Endurance: A Study of the Effects of Running Gasoline with 15% Ethanol Concentration in Current Production Outboard Four-Stroke Engines and Conventional Two-Stroke Outboard Marine Engines  

DOE Green Energy (OSTI)

Three Mercury Marine outboard marine engines were evaluated for durability using E15 fuel -- gasoline blended with 15% ethanol. Direct comparison was made to operation on E0 (ethanol-free gasoline) to determine the effects of increased ethanol on engine durability. Testing was conducted using a 300-hour wide-open throttle (WOT) test protocol, a typical durability cycle used by the outboard marine industry. Use of E15 resulted in reduced CO emissions, as expected for open-loop, non-feedback control engines. HC emissions effects were variable. Exhaust gas and engine operating temperatures increased as a consequence of leaner operation. Each E15 test engine exhibited some deterioration that may have been related to the test fuel. The 9.9 HP, four-stroke E15 engine exhibited variable hydrocarbon emissions at 300 hours -- an indication of lean misfire. The 300HP, four-stroke, supercharged Verado engine and the 200HP, two-stroke legacy engine tested with E15 fuel failed to complete the durability test. The Verado engine failed three exhaust valves at 285 endurance hours while the 200HP legacy engine failed a main crank bearing at 256 endurance hours. All E0-dedicated engines completed the durability cycle without incident. Additional testing is necessary to link the observed engine failures to ethanol in the test fuel.

Hilbert, D.

2011-10-01T23:59:59.000Z

229

Feasibility study for a 10 MM GPY fuel ethanol plant, Brady Hot Springs, Nevada. Volume II. Geothermal resource, agricultural feedstock, markets and economic viability  

DOE Green Energy (OSTI)

The issues of the geothermal resource at Brady's Hot Springs are dealt with: the prospective supply of feedstocks to the ethanol plant, the markets for the spent grain by-products of the plant, the storage, handling and transshipment requirements for the feedstocks and by-products from a rail siding facility at Fernley, the probable market for fuel ethanol in the region, and an assessment of the economic viability of the entire undertaking.

Not Available

1980-09-01T23:59:59.000Z

230

Ethanol supply chain and industry overview : more harm than good?  

E-Print Network (OSTI)

This thesis is a comprehensive study that aggregates the key aspects of ethanol including its supply chain, government legislation that impacts the use of, and the inherent material characteristics of the fuel as well as ...

Bruce, Sarah L

2013-01-01T23:59:59.000Z

231

NIST Finds That Ethanol-Loving Bacteria Accelerate Cracking ...  

Science Conference Proceedings (OSTI)

... US production of ethanol for fuel has been rising quickly, topping 13 ... and reliably transport ethanol fuel in repurposed oil and gas pipelines.". ...

2012-10-15T23:59:59.000Z

232

Definition: Ethanol | Open Energy Information  

Open Energy Info (EERE)

Ethanol Ethanol A colorless, flammable liquid produced by fermentation of sugars. While it is also the alcohol found in alcoholic beverages, it can be denatured for fuel use. Fuel ethanol is used principally for blending in low concentrations with motor gasoline as an oxygenate or octane enhancer. In high concentrations, it is used to fuel alternative-fuel vehicles specially designed for its use.[1][2][3] View on Wikipedia Wikipedia Definition Ethanol fuel is ethanol (ethyl alcohol), the same type of alcohol found in alcoholic beverages. It is most often used as a motor fuel, mainly as a biofuel additive for gasoline. World ethanol production for transport fuel tripled between 2000 and 2007 from 17 billion to more than 52 billion liters. From 2007 to 2008, the share of ethanol in global gasoline type

233

Industrial application of nonlinear model predictive control technology for fuel ethanol fermentation process  

Science Conference Proceedings (OSTI)

There are currently 134 ethanol biorefineries in the United States with a production capacity of nearly 7.2 billion gallons per year, with an additional 6.2 billion gals per year capacity under the construction [1]. Approximately two thirds of these ...

James Bartee; Patrick Noll; Celso Axelrud; Carl Schweiger; Bijan Sayyar-Rodsari

2009-06-01T23:59:59.000Z

234

Decision-maker's guide to wood fuel for small industrial energy users. Final report. [Includes glossary  

DOE Green Energy (OSTI)

The technology and economics of various wood energy systems available to the small industrial and commercial energy user are considered. This book is designed to help a plant manager, engineer, or others in a decision-making role to become more familiar with wood fuel systems and make informed decisions about switching to wood as a fuel. The following subjects are discussed: wood combustion, pelletized wood, fuel storage, fuel handling and preparation, combustion equipment, retrofitting fossil-fueled boilers, cogeneration, pollution abatement, and economic considerations of wood fuel use. (MHR)

Levi, M. P.; O'Grady, M. J.

1980-02-01T23:59:59.000Z

235

DOE News Release - DOE Funds 23 Alternative Fuel Vehicle Infrastructur...  

NLE Websites -- All DOE Office Websites (Extended Search)

alternative fuel infrastructure projects include 11 E85 (85 percent ethanol) projects, 8 CNG (compressed natural gas) projects, and 4 B20 (20 percent biodiesel) projects. The 12...

236

Energy Basics: Vehicles and Fuels  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

more about: Alternative Fuels Alternative Vehicles For more information on fuels made from biomass, such as ethanol or biodiesel fuels, see the Biomass section: Biodiesel Ethanol...

237

Workshop on the Increased Use of Ethanol and Alkylates in Automotive Fuels in California  

SciTech Connect

The goals of the Workshop are to: (1) Review the existing state of knowledge on (a) physicochemical properties, multi-media transport and fate, exposure mechanisms and (b) release scenarios associated with the production, distribution, and use of ethanol and alkylates in gasoline; (2) Identify key regulatory, environmental, and resource management issues and knowledge gaps associated with anticipated changes in gasoline formulation in California; and (3) Develop a roadmap for addressing issues/knowledge gaps.

Rice, D W

2001-05-04T23:59:59.000Z

238

How much ethanol is in gasoline and how does it affect fuel ...  

U.S. Energy Information Administration (EIA)

How many alternative fuel and hybrid vehicles are there in the U.S.? How much U.S. energy consumption and electricity generation comes from renewable sources?

239

Ethanol production for automotive fuel usage. Final technical report, July 1979-August 1980  

DOE Green Energy (OSTI)

Production of ethanol from potatoes, sugar beets, and wheat using geothermal resources in the Raft River area of Idaho was evaluated. The south-central region of Idaho produces approximately 18 million bushels of wheat, 1.3 million tons of sugar beets, and 27 million cwt potatoes annually. A 20-million-gallon-per-year ethanol facility has been selected as the largest scale plant that can be supported with the current agricultural resources. The conceptual plant was designed to operate on each of these three feedstocks for a portion of the year, but could operate year-round on any of them. The processing facility uses conventional alcohol technology and uses geothermal energy for all process heating. There are three feedstock preparation sections, although the liquefaction and saccharification steps for potatoes and wheat involve common equipment. The fermentation, distillation, and by-product handling sections are common to all three feedstocks. Maximum geothermal fluid requirements are approximately 6000 gpm. It is anticipated that this flow will be supplied by nine production wells located on private and BLM lands in the Raft River KGRA. The geothermal fluid will be flashed from 280/sup 0/F in three stages to supply process steam at 250/sup 0/F, 225/sup 0/F, and 205/sup 0/F for various process needs. Steam condensate plus liquid remaining after the third flash will be returned to receiving strata through six injection wells.

Stenzel, R.A.; Yu, J.; Lindemuth, T.E.; Soo-Hoo, R.; May, S.C.; Yim, Y.J.; Houle, E.H.

1980-08-01T23:59:59.000Z

240

Iridium?Ruthenium Alloyed Nanoparticles for the Ethanol Oxidation Fuel Cell Reactions  

DOE Green Energy (OSTI)

In this study, carbon supported Ir-Ru nanoparticles with average sizes ranging from 2.9 to 3.7 nm were prepared using a polyol method. The combined characterization techniques, that is, scanning transmission electron microscopy equipped with electron energy loss spectroscopy, high resolution transmission electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction, were used to determine an Ir-Ru alloy nanostructure. Both cyclic voltammetry and chronoamperometry (CA) results demonstrate that Ir{sub 77}Ru{sub 23}/C bears superior catalytic activities for the ethanol oxidation reaction compared to Ir/C and commercial Pt/C catalysts. In particular, the Ir{sub 77}Ru{sub 23}/C catalyst shows more than 21 times higher mass current density than that of Pt/C after 2 h reaction at a potential of 0.2 V vs Ag/AgCl in CA measurement. Density functional theory simulations also demonstrate the superiority of Ir-Ru alloys compared to Ir for the ethanol oxidation reaction.

Su D.; Du, W.; Deskins, N.A.; Teng, X.

2012-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "including fuel ethanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Ethanol Production, Distribution, and Use: Discussions on Key Issues (Presentation)  

Science Conference Proceedings (OSTI)

From production to the environment, presentation discusses issues surrounding ethanol as a transportation fuel.

Harrow, G.

2008-05-14T23:59:59.000Z

242

Performance of Trasuranic-Loaded Fully Ceramic Micro-Encapsulated Fuel in LWRs Interim Report, Including Void Reactivity Evaluation  

Science Conference Proceedings (OSTI)

The current focus of the Deep Burn Project is on once-through burning of transuranice (TRU) in light water reactors (LWRs). The fuel form is called Fully-Ceramic Micro-encapsulated (FCM) fuel, a concept that borrows the tri-isotropic (TRISO) fuel particle design from high-temperature reactor technology. In the Deep Burn LWR (DB-LWR) concept, these fuel particles would be pressed into compacts using SiC matrix material and loaded into fuel pins for use in conventional LWRs. The TRU loading comes from the spent fuel of a conventional LWR after 5 years of cooling. Unit cell calculations have been performed using the DRAGON-4 code in order assess the physics attributes of TRU-only FCM fuel in an LWR lattice. Depletion calculations assuming an infinite lattice condition were performed with calculations of various reactivity coefficients performed at each step. Unit cells containing typical UO2 and MOX fuel were analyzed in the same way to provide a baseline against which to compare the TRU-only FCM fuel. Loading of TRU-only FCM fuel into a pin without significant quantities of uranium challenges the design from the standpoint of several key reactivity parameters, particularly void reactivity, and to some degree, the Doppler coefficient. These unit cells, while providing an indication of how a whole core of similar fuel would behave, also provide information of how individual pins of TRU-only FCM fuel would influence the reactivity behavior of a heterogeneous assembly. If these FCM fuel pins are included in a heterogeneous assembly with LEU fuel pins, the overall reactivity behavior would be dominated by the uranium pins while attractive TRU destruction performance of the TRU-only FCM fuel pins may be preserved. A configuration such as this would be similar to CONFU assemblies analyzed in previous studies. Analogous to the plutonium content limits imposed on MOX fuel, some amount of TRU-only FCM pins in an otherwise-uranium fuel assembly may give acceptable reactivity performance. Assembly calculations will be performed in future work to explore the design options for heterogeneous assemblies of this type and their impact on reactivity coefficients.

Michael A. Pope; Brian Boer; Gilles Youinou; Abderrafi M. Ougouag

2011-03-01T23:59:59.000Z

243

Ethanol Tolerant Yeast for Improved Production of Ethanol from ...  

Inventors: Audrey Gasch, Jeffrey Lewis Ethanol production from cellulosic biomass can make a significant contribution toward decreasing our dependence on fossil fuels.

244

Vehicle Technologies Office: Intermediate Ethanol Blends  

NLE Websites -- All DOE Office Websites (Extended Search)

Intermediate Ethanol Intermediate Ethanol Blends to someone by E-mail Share Vehicle Technologies Office: Intermediate Ethanol Blends on Facebook Tweet about Vehicle Technologies Office: Intermediate Ethanol Blends on Twitter Bookmark Vehicle Technologies Office: Intermediate Ethanol Blends on Google Bookmark Vehicle Technologies Office: Intermediate Ethanol Blends on Delicious Rank Vehicle Technologies Office: Intermediate Ethanol Blends on Digg Find More places to share Vehicle Technologies Office: Intermediate Ethanol Blends on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Fuel Effects on Combustion Lubricants Natural Gas Research Biofuels End-Use Research

245

8. Biomass-Derived Liquid Fuels  

U.S. Energy Information Administration (EIA)

8. Biomass-Derived Liquid Fuels B. Fuel Ethanol Production and Market Conditions Ethanol is consumed as fuel in the United States primarily as "gasohol"--a blend ...

246

Three essays on biofuel's and fossil fuel's stochastic prices.  

E-Print Network (OSTI)

??The dissertation consists of three essays on biofuel's and fossil fuel's stochastic prices focusing on the U.S. corn-based fuel-ethanol market. The research objectives include investigating (more)

Zhang, Zibin

2009-01-01T23:59:59.000Z

247

Preliminary Compatibility Assessment of Metallic Dispenser Materials for Service in Ethanol Fuel Blends  

Science Conference Proceedings (OSTI)

The compatibility of selected metals representative of those commonly used in dispensing systems was evaluated in an aggressive E20 formulation (CE20a) and in synthetic gasoline (Reference Fuel C) in identical testing to facilitate comparison of results. The testing was performed at modestly elevated temperature (nominally 60 C) and with constant fluid flow in an effort to accelerate potential interactions in the screening test. Based on weight change, the general corrosion of all individual coupons exposed in the vapor phase above Reference Fuel C and CE20a as well as all coupons immersed in Reference Fuel C was essentially nil (brass and phosphor bronze), but the associated corrosion films were quite thin and apparently protective. For coupons immersed in CE20a, four different materials exhibited net weight loss over the entire course of the experiment: cartridge brass, phosphor bronze, galvanized steel, and terne-plated steel. None of these exhibited substantial incompatibility with the test fluid, with the largest general corrosion rate calculated from coupon weight loss to be approximately 4 {micro}m/y for the cartridge brass specimens. Selective leaching of zinc (from brass) and tin (from bronze) was observed, as well as the presence of sulfide surface films rich in these elements, suggesting the importance of the role of sulfuric acid in the CE20a formulation. Analysis of weight loss data for the slightly corroded metals indicated that the corrosivity of the test environment decreased with exposure time for brass and bronze and increased for galvanized and terne-plated steel. Other materials immersed in CE20a - type 1020 mild steel, type 1100 aluminum, type 201 nickel, and type 304 stainless steel - each appeared essentially immune to corrosion at the test conditions.

Pawel, Steven J [ORNL; Kass, Michael D [ORNL; Janke, Christopher James [ORNL

2009-11-01T23:59:59.000Z

248

Preliminary Compatibility Assessment of Metallic Dispenser Materials for Service in Ethanol Fuel Blends  

SciTech Connect

The compatibility of selected metals representative of those commonly used in dispensing systems was evaluated in an aggressive E20 formulation (CE20a) and in synthetic gasoline (Reference Fuel C) in identical testing to facilitate comparison of results. The testing was performed at modestly elevated temperature (nominally 60 C) and with constant fluid flow in an effort to accelerate potential interactions in the screening test. Based on weight change, the general corrosion of all individual coupons exposed in the vapor phase above Reference Fuel C and CE20a as well as all coupons immersed in Reference Fuel C was essentially nil (<0.3 {micro}m/y), with no evidence of localized corrosion such as pitting/crevice corrosion or selective leaching at any location. Modest discoloration was observed on the copper-based alloys (cartridge brass and phosphor bronze), but the associated corrosion films were quite thin and apparently protective. For coupons immersed in CE20a, four different materials exhibited net weight loss over the entire course of the experiment: cartridge brass, phosphor bronze, galvanized steel, and terne-plated steel. None of these exhibited substantial incompatibility with the test fluid, with the largest general corrosion rate calculated from coupon weight loss to be approximately 4 {micro}m/y for the cartridge brass specimens. Selective leaching of zinc (from brass) and tin (from bronze) was observed, as well as the presence of sulfide surface films rich in these elements, suggesting the importance of the role of sulfuric acid in the CE20a formulation. Analysis of weight loss data for the slightly corroded metals indicated that the corrosivity of the test environment decreased with exposure time for brass and bronze and increased for galvanized and terne-plated steel. Other materials immersed in CE20a - type 1020 mild steel, type 1100 aluminum, type 201 nickel, and type 304 stainless steel - each appeared essentially immune to corrosion at the test conditions.

Pawel, Steven J [ORNL; Kass, Michael D [ORNL; Janke, Christopher James [ORNL

2009-11-01T23:59:59.000Z

249

U.S. ethanol production and the Renewable Fuel Standard RIN ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

250

How much ethanol is in gasoline and how does it affect fuel ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

251

EIA releases U.S. fuel ethanol production capacity data - Today in ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

252

Fuel Ethanol Imports by Area of Entry - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil includes ...

253

Integrated capture of fossil fuel gas pollutants including CO.sub.2 with energy recovery  

DOE Patents (OSTI)

A method of reducing pollutants exhausted into the atmosphere from the combustion of fossil fuels. The disclosed process removes nitrogen from air for combustion, separates the solid combustion products from the gases and vapors and can capture the entire vapor/gas stream for sequestration leaving near-zero emissions. The invention produces up to three captured material streams. The first stream is contaminant-laden water containing SO.sub.x, residual NO.sub.x particulates and particulate-bound Hg and other trace contaminants. The second stream can be a low-volume flue gas stream containing N.sub.2 and O.sub.2 if CO2 purification is needed. The final product stream is a mixture comprising predominantly CO.sub.2 with smaller amounts of H.sub.2O, Ar, N.sub.2, O.sub.2, SO.sub.X, NO.sub.X, Hg, and other trace gases.

Ochs, Thomas L. (Albany, OR); Summers, Cathy A. (Albany, OR); Gerdemann, Steve (Albany, OR); Oryshchyn, Danylo B. (Philomath, OR); Turner, Paul (Independence, OR); Patrick, Brian R. (Chicago, IL)

2011-10-18T23:59:59.000Z

254

Fuel-Cycle Fossil Energy Use and Greenhouse Gas Emissions of Corn Ethanol. Paper presented at the 8 th Bio-Energy Conference  

E-Print Network (OSTI)

This study has been undertaken at the request of the Illinois Department of Commerce and Community Affairs (DCCA) on the twin premises that (1) data and information essential to an informed choice about the corn-to-ethanol cycle are in need of updating, thanks to scientific and technological advances in both corn farming and ethanol production; and (2) generalized national estimates of energy intensities and greenhouse gas (GHG) production are of less relevance than estimates based specifically on activities and practices in the principal domestic corn production and milling region-- the upper Midwest. Argonne National Laboratory (ANL) contracted with DCCA to apply the ANL Greenhouse gas, Regulated Emissions and Energy in Transportation (GREET) full-fuel-cycle analysis model with updated information appropriate to corn operations in Americas heartland in an effort to examine the role of corn-feedstock ethanol with respect to GHG emissions given present and near future production technology and practice. Information about these technologies and practices has been obtained from a panel of outside experts consisting of representatives of the U.S. Department of Agriculture, midwestern universities with expertise in corn production and soil emissions, and acknowledged authorities in the field of ethanol plant

Michael Wang; Christopher Saricks

1997-01-01T23:59:59.000Z

255

List of Ethanol Incentives | Open Energy Information  

Open Energy Info (EERE)

Ethanol Incentives Ethanol Incentives Jump to: navigation, search The following contains the list of 67 Ethanol Incentives. CSV (rows 1 - 67) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AlabamaSAVES Revolving Loan Program (Alabama) State Loan Program Alabama Commercial Industrial Institutional Building Insulation Doors Energy Mgmt. Systems/Building Controls Lighting Lighting Controls/Sensors Steam-system upgrades Water Heaters Windows Biodiesel Biomass CHP/Cogeneration Ethanol Fuel Cells using Renewable Fuels Geothermal Electric Hydroelectric energy Landfill Gas Photovoltaics Renewable Fuels Solar Water Heat Commercial Refrigeration Equipment Natural Gas Yes Alcohol Fuel Credit (Federal) Corporate Tax Credit United States Commercial Industrial Ethanol

256

A Low-Carbon Fuel Standard for California, Part 2: Policy Analysis  

E-Print Network (OSTI)

conversion from soybean to corn ethanol production in theproduced in the US: corn ethanol and soybean biodiesel. USDAdifferent fuels such as corn ethanol, cellulosic ethanol,

Sperling, Daniel; Farrell, Alexander

2007-01-01T23:59:59.000Z

257

A Low-Carbon Fuel Standard for California Part 2: Policy Analysis  

E-Print Network (OSTI)

conversion from soybean to corn ethanol production in theproduced in the US: corn ethanol and soybean biodiesel. USDAdifferent fuels such as corn ethanol, cellulosic ethanol,

2007-01-01T23:59:59.000Z

258

MN Center for Renewable Energy: Cellulosic Ethanol, Optimization of Bio-fuels in Internal Combustion Engines, & Course Development for Technicians in These Areas  

DOE Green Energy (OSTI)

This final report for Grant #DE-FG02-06ER64241, MN Center for Renewable Energy, will address the shared institutional work done by Minnesota State University, Mankato and Minnesota West Community and Technical College during the time period of July 1, 2006 to December 30, 2008. There was a no-cost extension request approved for the purpose of finalizing some of the work. The grant objectives broadly stated were to 1) develop educational curriculum to train technicians in wind and ethanol renewable energy, 2) determine the value of cattails as a biomass crop for production of cellulosic ethanol, and 3) research in Optimization of Bio-Fuels in Internal Combustion Engines. The funding for the MN Center for Renewable Energy was spent on specific projects related to the work of the Center.

John Frey

2009-02-22T23:59:59.000Z

259

Alternative Fuels Data Center: Natural Gas Fuel Rate Reduction...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

& Plug-In Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas | Natural Gas Vehicles Propane | Propane Vehicles Emerging Fuels Fuel Prices...

260

Alternative Fuels Data Center: Natural Gas Fuel Fleet Services  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

& Plug-In Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas | Natural Gas Vehicles Propane | Propane Vehicles Emerging Fuels Fuel Prices...

Note: This page contains sample records for the topic "including fuel ethanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Electrolytic/fuel cell bundles and systems including a current collector in communication with an electrode thereof  

DOE Patents (OSTI)

Electrolytic/fuel cell bundles and systems including such bundles include an electrically conductive current collector in communication with an anode or a cathode of each of a plurality of cells. A cross-sectional area of the current collector may vary in a direction generally parallel to a general direction of current flow through the current collector. The current collector may include a porous monolithic structure. At least one cell of the plurality of cells may include a current collector that surrounds an outer electrode of the cell and has at least six substantially planar exterior surfaces. The planar surfaces may extend along a length of the cell, and may abut against a substantially planar surface of a current collector of an adjacent cell. Methods for generating electricity and for performing electrolysis include flowing current through a conductive current collector having a varying cross-sectional area.

Hawkes, Grant L.; Herring, James S.; Stoots, Carl M.; O& #x27; Brien, James E.

2013-03-05T23:59:59.000Z

262

Vehicle Technology and Fuel Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

more about: Alternative Fuels Alternative Vehicles For more information on fuels made from biomass, such as ethanol or biodiesel fuels, see the Biomass section: Biodiesel Ethanol...

263

Use of alcohol fuel: engine-conversion demonstration. Final report  

DOE Green Energy (OSTI)

The use of ethanol as a fuel extender when mixed with gasoline, and the use of both hydrated and anhydrous ethanol as a fuel in gasoline and diesel engines are discussed. Required engine modifications for efficient use of ethanol are described, and include engine compression alterations, carburetor adjustments, and arrangement for fuel preheating. In 1981 and 1982 a demonstration of ethanol use in spark ignition engines was conducted at a major public park in South Carolina. The demonstration included a controlled road test with a pick-up truck and a demonstration of ethanol use in small, air cooled gasoline engines. One problem that was identified was that of contaminated fuel that clogged the fuel system after a few days' operation. (LEW)

Marsh, W.K. (ed.)

1982-01-01T23:59:59.000Z

264

Review of the Research Strategy for Biomass-Derived Transportation Fuels  

SciTech Connect

The report is a review of the R and D strategy for the production of transportation fuel from biomass. Its focus is on ethanol and biodiesel. Its review includes the DG's Office of Fuels Program Development Program.

1999-11-16T23:59:59.000Z

265

Imports of Fuel Ethanol  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: RBOB with Ether and RBOB ...

266

Stocks of Fuel Ethanol  

Annual Energy Outlook 2012 (EIA)

Weekly Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 080913 081613 082313 083013...

267

Fuel Ethanol Exports  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

268

DOE/EA-1647: Supplemental Environmental Assessment for the Construction and Operation of a Proposed Cellulosic Ethanol Plant, Range Fuels Soperton Plant, LLC (January 2009)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

S S u p p l e m e n t a l E n v i r o n m e n t a l A s s e s s m e n t a n d N o t i c e o f W e t l a n d s I n v o l v e m e n t Construction and Operation of a Proposed Cellulosic Ethanol Plant, Range Fuels Soperton Plant, LLC (formerly Range Fuels Inc.) Treutlen County, Georgia DOE/EA 1647 Prepared for U.S. Department of Energy January 2009 Contents Section Page Acronyms and Abbreviations ................................................................................................... v 1.0 Introduction......................................................................................................................1 1.1 Background ..........................................................................................................1 1.2 Purpose and Need for Proposed Action ..........................................................2

269

An Analysis of Ethanol Investment Decisions in Thailand1 Nisal Herath Mudiyanselage, C.-Y. Cynthia Lin and Fujin Yi  

E-Print Network (OSTI)

, biofuels, investment, dynamic discrete choice model, structural model JEL codes: Q16, Q42, L10 1 Lin would require a minimum production of 1.9 billion liters of fuel ethanol. The actual production of fuel federal programs that promote a domestic renewable fuel industry, including the EcoEnergy for Biofuels

Lin, C.-Y. Cynthia

270

High Speed/ Low Effluent Process for Ethanol  

Science Conference Proceedings (OSTI)

n this project, BPI demonstrated a new ethanol fermentation technology, termed the High Speed/ Low Effluent (HS/LE) process on both lab and large pilot scale as it would apply to wet mill and/or dry mill corn ethanol production. The HS/LE process allows very rapid fermentations, with 18 to 22% sugar syrups converted to 9 to 11% ethanol beers in 6 to 12 hours using either a consecutive batch or continuous cascade implementation. This represents a 5 to 8X increase in fermentation speeds over conventional 72 hour batch fermentations which are the norm in the fuel ethanol industry today. The consecutive batch technology was demonstrated on a large pilot scale (4,800 L) in a dry mill corn ethanol plant near Cedar Rapids, IA (Xethanol Biofuels). The pilot demonstrated that 12 hour fermentations can be accomplished on an industrial scale in a non-sterile industrial environment. Other objectives met in this project included development of a Low Energy (LE) Distillation process which reduces the energy requirements for distillation from about 14,000 BTU/gal steam ($0.126/gal with natural gas @ $9.00 MCF) to as low as 0.40 KW/gal electrical requirements ($0.022/gal with electricity @ $0.055/KWH). BPI also worked on the development of processes that would allow application of the HS/LE fermentation process to dry mill ethanol plants. A High-Value Corn ethanol plant concept was developed to produce 1) corn germ/oil, 2) corn bran, 3) ethanol, 4) zein protein, and 5) nutritional protein, giving multiple higher value products from the incoming corn stream.

M. Clark Dale

2006-10-30T23:59:59.000Z

271

Feasibility study for a 10-MM-GPY fuel ethanol plant, Brady Hot Springs, Nevada. Volume 1. Process and plant design  

DOE Green Energy (OSTI)

An investigation was performed to determine the technical and economic viability of constructing and operating a geothermally heated, biomass, motor fuel alcohol plant at Brady's Hot Springs. The results of the study are positive, showing that a plant of innovative, yet proven design can be built to adapt current commerical fermentation-distillation technology to the application of geothermal heat energy. The specific method of heat production from the Brady's Hot Spring wells has been successful for some time at an onion drying plant. Further development of the geothermal resource to add the capacity needed for an ethanol plant is found to be feasible for a plant sized to produce 10 million gallons of motor fuel grade ethanol per year. A very adequate supply of feedgrains is found to be available for use in the plant without impact on the local or regional feedgrain market. The effect of diverting supplies from the animal feedlots in Northern Nevada and California will be mitigated by the by-product output of high-protein feed supplements that the plant will produce. The plant will have a favorable impact on the local farming economies of Fallon, Lovelock, Winnemucca and Elko, Nevada. It will make a positive and significant socioeconomic contribution to Churchill County, providing direct employment for an additional 61 persons. Environmental impact will be negligible, involving mostly a moderate increase in local truck traffic and railroad siding activity. The report is presented in two volumes. Volume 1 deals with the technical design aspects of the plant. The second volume addresses the issue of expanded geothermal heat production at Brady's Hot Springs, goes into the details of feedstock supply economics, and looks at the markets for the plant's primary ethanol product, and the markets for its feed supplement by-products. The report concludes with an analysis of the economic viability of the proposed project.

Not Available

1980-09-01T23:59:59.000Z

272

Feasibility study for fuel-grade-ethanol complex, Kennewick, Washington. Volume III of V. Technical report. Appendix A, Book 1. Equipment and material specifications  

DOE Green Energy (OSTI)

Books 1 and 2 of Appendix A to Volume III, Technical Report, contain copies of major equipment and material specifications used in the preliminary design and engineering of the Ethanol Complex. These specifications are used in securing vendor quotations which are the basis of the plant definitive cost estimate. Section 3 contains copies of all equipment and material, process, and mechanical outline specifications. Included in this part are: cooling towers and mechanical equipment.

Not Available

1981-07-01T23:59:59.000Z

273

Reduced carbon intensity of corn ethanol may increase its ...  

U.S. Energy Information Administration (EIA)

tags: biofuels California ethanol ILUC (indirect land use change) LCFS (low carbon fuel standard) liquid fuels policy renewable states. Email Updates.

274

Alternative Fuels Data Center: Flexible Fuel Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

| Diesel Vehicles Electricity | Hybrid & Plug-In Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas | Natural Gas Vehicles Propane |...

275

Blender Pump Fuel Survey: CRC Project E-95  

DOE Green Energy (OSTI)

To increase the number of ethanol blends available in the United States, several states have 'blender pumps' that blend gasoline with flex-fuel vehicle (FFV) fuel. No specification governs the properties of these blended fuels, and little information is available about the fuels sold at blender pumps. No labeling conventions exist, and labeling on the blender pumps surveyed was inconsistent.; The survey samples, collected across the Midwestern United States, included the base gasoline and FFV fuel used in the blends as well as the two lowest blends offered at each station. The samples were tested against the applicable ASTM specifications and for critical operability parameters. Conventional gasoline fuels are limited to 10 vol% ethanol by the U.S. EPA. The ethanol content varied greatly in the samples. Half the gasoline samples contained some ethanol, while the other half contained none. The FFV fuel samples were all within the specification limits. No pattern was observed for the blend content of the higher ethanol content samples at the same station. Other properties tested were specific to higher-ethanol blends. This survey also tested the properties of fuels containing ethanol levels above conventional gasoline but below FFV fuels.

Alleman, T. L.

2011-07-01T23:59:59.000Z

276

Development of a dedicated ethanol ultra-low emission vehicle (ULEV) -- Phase 2 report  

DOE Green Energy (OSTI)

The objective of this 3.5-year project is to develop a commercially competitive vehicle powered by ethanol (or an ethanol blend) that can meet California`s ultra-low emission vehicle (ULEV) standards and equivalent corporate average fuel economy (CAFE) energy efficiency for a light-duty passenger car application. The definition of commercially competitive is independent of fuel cost, but does include technical requirements for competitive power, performance, refueling times, vehicle range, driveability, fuel handling safety, and overall emissions performance. This report summarizes the second phase of this project, which lasted 12 months. This report documents two baseline vehicles, the engine modifications made to the original equipment manufacturer (OEM) engines, advanced aftertreatment testing, and various fuel tests to evaluate the flammability, lubricity, and material compatibility of the ethanol fuel blends.

Dodge, L.G.; Bourn, G.; Callahan, T.J.; Naegeli, D.W.; Shouse, K.R.; Smith, L.R.; Whitney, K.A. [Southwest Research Inst., San Antonio, TX (United States)

1995-09-01T23:59:59.000Z

277

Ethanol Facts : BioEnergy Science Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Ethanol Facts Ethanol Facts In 2005, the U.S. produced about 4 billion gallons of ethanol from corn grain, equaling approximately 2% of the 140 billion gallons of gasoline consumed. Ethanol is widely used as a fuel additive. The oxygen contained in ethanol improves gasoline combustibility. The Energy Policy Act of 2005 has established a renewable fuels standard which requires using 7.5 billion gallons of ethanol by 2012. E85 (85% ethanol and 15% gasoline blend) can be used as a substitute for gasoline in vehicles that have been modified to use E85. Energy content of E85 is 70% that of gasoline, so about 1.4 gallons of E85 are needed to displace one gallon of gasoline. Starch in corn grain is readily degraded into glucose sugar molecules that are fermented to ethanol. The complex structural

278

Technoeconomic Comparison of Biofuels: Ethanol, Methanol, and Gasoline from Gasification of Woody Residues (Presentation)  

DOE Green Energy (OSTI)

This presentation provides a technoeconomic comparison of three biofuels - ethanol, methanol, and gasoline - produced by gasification of woody biomass residues. The presentation includes a brief discussion of the three fuels evaluated; discussion of equivalent feedstock and front end processes; discussion of back end processes for each fuel; process comparisons of efficiencies, yields, and water usage; and economic assumptions and results, including a plant gate price (PGP) for each fuel.

Tarud, J.; Phillips, S.

2011-08-01T23:59:59.000Z

279

New Energy Corporation of Indiana final study report on construction of a fuel-grade ethanol plant. Attachment VI. Bid tabulations  

DOE Green Energy (OSTI)

The bid tabulations and engineering bid analysis are presented for each system in the ethanol plant.

Not Available

1981-09-30T23:59:59.000Z

280

Alternative Fuels Data Center: Maps and Data  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas | Natural Gas Vehicles Propane | Propane Vehicles Emerging Fuels Fuel Prices Clean...

Note: This page contains sample records for the topic "including fuel ethanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Performance of Transuranic-Loaded Fully Ceramic Micro-Encapsulated Fuel in LWRs Final Report, Including Void Reactivity Evaluation  

SciTech Connect

The current focus of the Deep Burn Project is on once-through burning of transuranics (TRU) in light-water reactors (LWRs). The fuel form is called Fully-Ceramic Micro-encapsulated (FCM) fuel, a concept that borrows the tri-isotropic (TRISO) fuel particle design from high-temperature reactor technology. In the Deep Burn LWR (DB-LWR) concept, these fuel particles are pressed into compacts using SiC matrix material and loaded into fuel pins for use in conventional LWRs. The TRU loading comes from the spent fuel of a conventional LWR after 5 years of cooling. Unit cell and assembly calculations have been performed using the DRAGON-4 code to assess the physics attributes of TRU-only FCM fuel in an LWR lattice. Depletion calculations assuming an infinite lattice condition were performed with calculations of various reactivity coefficients performed at each step. Unit cells and assemblies containing typical UO2 and mixed oxide (MOX) fuel were analyzed in the same way to provide a baseline against which to compare the TRU-only FCM fuel. Then, assembly calculations were performed evaluating the performance of heterogeneous arrangements of TRU-only FCM fuel pins along with UO2 pins.

Michael A. Pope; R. Sonat Sen; Brian Boer; Abderrafi M. Ougouag; Gilles Youinou

2011-09-01T23:59:59.000Z

282

Enhancing dry-grind corn ethanol production with fungal cultivation and ozonation.  

E-Print Network (OSTI)

??Public opinion of the U.S. fuel ethanol industry has suffered in recent years despite record ethanol production. Debates sparked over the environmental impacts of corn (more)

Rasmussen, Mary

2009-01-01T23:59:59.000Z

283

Modeling scaleup effects on a small pilot-scale fluidized-bed reactor for fuel ethanol production  

DOE Green Energy (OSTI)

Domestic ethanol use and production are presently undergoing significant increases along with planning and construction of new production facilities. Significant efforts are ongoing to reduce ethanol production costs by investigating new inexpensive feedstocks (woody biomass) and by reducing capital and energy costs through process improvements. A key element in the development of advanced bioreactor systems capable of very high conversion rates is the retention of high biocatalyst concentrations within the bioreactor and a reaction environment that ensures intimate contact between substrate and biocatalyst. One very effective method is to use an immobilized biocatalyst that can be placed into a reaction environment that provides effective mass transport, such as a fluidized bed. Mathematical descriptions are needed based on fundamental principles and accepted correlations that describe important physical phenomena. We describe refinements and semi-quantitatively extend the predictive model of Petersen and Davison to a multiphase fluidized-bed reactor (FBR) that was scaled-up for ethanol production. Axial concentration profiles were evaluated by solving coupled differential equations for glucose and carbon dioxide. The pilot-scale FBR (2 to 5 m tall, 10.2-cm ID, and 23,000 L month{sup -1} capacity) was scaled up from bench-scale reactors (91 to 224 cm long, 2.54 to 3.81 cm ID, and 400 to 2,300 L month{sup -1} capacity). Significant improvements in volumetric productivites (50 to 200 g EtOH h{sup -1} L{sup -1} compared with 40 to 110 for bench-scale experiments and 2 to 10 for reported industrial benchmarks) and good operability were demonstrated.

Webb, O.F.; Davison, B.H.; Scott, T.C.

1995-09-01T23:59:59.000Z

284

US Ethanol Production and Use Under Alternative  

E-Print Network (OSTI)

gasoline as a motor fuel, use of ethanol-blended gasoline results in lower carbon monoxide emission encourages ethanol production. Two prominent policy instruments are currently employed: a federal excise tax are currently employed: a federal excise tax credit on each gallon produced and a "renewable fuel standard" (RFS

285

Alternative Fueling Station Locator  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Go Fuel: All Fuels Biodiesel (B20 and above) Compressed Natural Gas Electric Ethanol (E85) Hydrogen Liquefied Natural Gas (LNG) Liquefied Petroleum Gas (Propane) more search...

286

Fuel cell integral bundle assembly including ceramic open end seal and vertical and horizontal thermal expansion control  

Science Conference Proceedings (OSTI)

A plurality of integral bundle assemblies contain a top portion with an inlet fuel plenum and a bottom portion containing a base support, the base supports a dense, ceramic air exhaust manifold having four supporting legs, the manifold is below and connects to air feed tubes located in a recuperator zone, the air feed tubes passing into the center of inverted, tubular, elongated, hollow electrically connected solid oxide fuel cells having an open end above a combustion zone into which the air feed tubes pass and a closed end near the inlet fuel plenum, where the open end of the fuel cells rest upon and within a separate combination ceramic seal and bundle support contained in a ceramic support casting, where at least one flexible cushion ceramic band seal located between the recuperator and fuel cells protects and controls horizontal thermal expansion, and where the fuel cells operate in the fuel cell mode and where the base support and bottom ceramic air exhaust manifolds carry from 85% to all of the weight of the generator.

Zafred, Paolo R. (Murrysville, PA); Gillett, James E. (Greensburg, PA)

2012-04-24T23:59:59.000Z

287

PEMFC Power System on EthanolPEMFC Power System on Ethanol Caterpillar Inc.Caterpillar Inc.  

E-Print Network (OSTI)

represents a carbon cycle, where plants absorb carbon dioxide during growth, "recycling" the carbon released #12;Program ObjectivesProgram Objectives Integrated PEM Fuel Cell System Ethanol based Power Plant 10PEMFC Power System on EthanolPEMFC Power System on Ethanol Caterpillar Inc.Caterpillar Inc. Thomas

288

Ethanol Plant Production of Fuel Ethanol  

Gasoline and Diesel Fuel Update (EIA)

Weekly 4-Week Average Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 080913 081613...

289

The Role of Cellulosic Ethanol in Transportation  

Science Conference Proceedings (OSTI)

Petroleum provides essentially all of the energy used today in the transportation sector. To reduce this dependence on fossil energy, other fuels are beginning to be used, notably ethanol and biodiesel. Almost all fuel ethanol is produced by the conversion of corn grain to starch with subsequent fermentation to ethanol. In 2006, almost 5 billion gallons of fuel ethanol were produced, which used 17% of domestic corn production. The DOE has a goal to displace 30% of motor gasoline demand or 60 billion gallons per year by 2030. To achieve this goal, production of ethanol from lignocellulosic sources (e.g., agricultural residues, forest residues, and dedicated energy crops) is needed. This paper will describe the production of cellulosic ethanol as well as the issues and benefits associated with its production.

Robert M. Neilson, Jr.

2007-10-01T23:59:59.000Z

290

Enabling High Efficiency Ethanol Engines  

Science Conference Proceedings (OSTI)

Delphi Automotive Systems and ORNL established this CRADA to explore the potential to improve the energy efficiency of spark-ignited engines operating on ethanol-gasoline blends. By taking advantage of the fuel properties of ethanol, such as high compression ratio and high latent heat of vaporization, it is possible to increase efficiency with ethanol blends. Increasing the efficiency with ethanol-containing blends aims to remove a market barrier of reduced fuel economy with E85 fuel blends, which is currently about 30% lower than with petroleum-derived gasoline. The same or higher engine efficiency is achieved with E85, and the reduction in fuel economy is due to the lower energy density of E85. By making ethanol-blends more efficient, the fuel economy gap between gasoline and E85 can be reduced. In the partnership between Delphi and ORNL, each organization brought a unique and complementary set of skills to the project. Delphi has extensive knowledge and experience in powertrain components and subsystems as well as overcoming real-world implementation barriers. ORNL has extensive knowledge and expertise in non-traditional fuels and improving engine system efficiency for the next generation of internal combustion engines. Partnering to combine these knowledge bases was essential towards making progress to reducing the fuel economy gap between gasoline and E85. ORNL and Delphi maintained strong collaboration throughout the project. Meetings were held regularly, usually on a bi-weekly basis, with additional reports, presentations, and meetings as necessary to maintain progress. Delphi provided substantial hardware support to the project by providing components for the single-cylinder engine experiments, engineering support for hardware modifications, guidance for operational strategies on engine research, and hardware support by providing a flexible multi-cylinder engine to be used for optimizing engine efficiency with ethanol-containing fuels.

Szybist, J.; Confer, K. (Delphi Automotive Systems)

2011-03-01T23:59:59.000Z

291

Fuel-cycle assessment of selected bioethanol production.  

Science Conference Proceedings (OSTI)

A large amount of corn stover is available in the U.S. corn belt for the potential production of cellulosic bioethanol when the production technology becomes commercially ready. In fact, because corn stover is already available, it could serve as a starting point for producing cellulosic ethanol as a transportation fuel to help reduce the nation's demand for petroleum oil. Using the data available on the collection and transportation of corn stover and on the production of cellulosic ethanol, we have added the corn stover-to-ethanol pathway in the GREET model, a fuel-cycle model developed at Argonne National Laboratory. We then analyzed the life-cycle energy use and emission impacts of corn stover-derived fuel ethanol for use as E85 in flexible fuel vehicles (FFVs). The analysis included fertilizer manufacturing, corn farming, farming machinery manufacturing, stover collection and transportation, ethanol production, ethanol transportation, and ethanol use in light-duty vehicles (LDVs). Energy consumption of petroleum oil and fossil energy, emissions of greenhouse gases (carbon dioxide [CO{sub 2}], nitrous oxide [N{sub 2}O], and methane [CH{sub 4}]), and emissions of criteria pollutants (carbon monoxide [CO], volatile organic compounds [VOCs], nitrogen oxide [NO{sub x}], sulfur oxide [SO{sub x}], and particulate matter with diameters smaller than 10 micrometers [PM{sub 10}]) during the fuel cycle were estimated. Scenarios of ethanol from corn grain, corn stover, and other cellulosic feedstocks were then compared with petroleum reformulated gasoline (RFG). Results showed that FFVs fueled with corn stover ethanol blends offer substantial energy savings (94-95%) relative to those fueled with RFG. For each Btu of corn stover ethanol produced and used, 0.09 Btu of fossil fuel is required. The cellulosic ethanol pathway avoids 86-89% of greenhouse gas emissions. Unlike the life cycle of corn grain-based ethanol, in which the ethanol plant consumes most of the fossil fuel, farming consumes most of the fossil fuel in the life cycle of corn stover-based ethanol.

Wu, M.; Wang, M.; Hong, H.; Energy Systems

2007-01-31T23:59:59.000Z

292

Integrated fuel processor development.  

DOE Green Energy (OSTI)

The Department of Energy's Office of Advanced Automotive Technologies has been supporting the development of fuel-flexible fuel processors at Argonne National Laboratory. These fuel processors will enable fuel cell vehicles to operate on fuels available through the existing infrastructure. The constraints of on-board space and weight require that these fuel processors be designed to be compact and lightweight, while meeting the performance targets for efficiency and gas quality needed for the fuel cell. This paper discusses the performance of a prototype fuel processor that has been designed and fabricated to operate with liquid fuels, such as gasoline, ethanol, methanol, etc. Rated for a capacity of 10 kWe (one-fifth of that needed for a car), the prototype fuel processor integrates the unit operations (vaporization, heat exchange, etc.) and processes (reforming, water-gas shift, preferential oxidation reactions, etc.) necessary to produce the hydrogen-rich gas (reformate) that will fuel the polymer electrolyte fuel cell stacks. The fuel processor work is being complemented by analytical and fundamental research. With the ultimate objective of meeting on-board fuel processor goals, these studies include: modeling fuel cell systems to identify design and operating features; evaluating alternative fuel processing options; and developing appropriate catalysts and materials. Issues and outstanding challenges that need to be overcome in order to develop practical, on-board devices are discussed.

Ahmed, S.; Pereira, C.; Lee, S. H. D.; Krumpelt, M.

2001-12-04T23:59:59.000Z

293

Intermediate Ethanol Blends Catalyst Durability Program  

Science Conference Proceedings (OSTI)

In the summer of 2007, the U.S. Department of Energy (DOE) initiated a test program to evaluate the potential impacts of intermediate ethanol blends (also known as mid-level blends) on legacy vehicles and other engines. The purpose of the test program was to develop information important to assessing the viability of using intermediate blends as a contributor to meeting national goals for the use of renewable fuels. Through a wide range of experimental activities, DOE is evaluating the effects of E15 and E20 - gasoline blended with 15% and 20% ethanol - on tailpipe and evaporative emissions, catalyst and engine durability, vehicle driveability, engine operability, and vehicle and engine materials. This report provides the results of the catalyst durability study, a substantial part of the overall test program. Results from additional projects will be reported separately. The principal purpose of the catalyst durability study was to investigate the effects of adding up to 20% ethanol to gasoline on the durability of catalysts and other aspects of the emissions control systems of vehicles. Section 1 provides further information about the purpose and context of the study. Section 2 describes the experimental approach for the test program, including vehicle selection, aging and emissions test cycle, fuel selection, and data handling and analysis. Section 3 summarizes the effects of the ethanol blends on emissions and fuel economy of the test vehicles. Section 4 summarizes notable unscheduled maintenance and testing issues experienced during the program. The appendixes provide additional detail about the statistical models used in the analysis, detailed statistical analyses, and detailed vehicle specifications.

West, Brian H; Sluder, Scott; Knoll, Keith; Orban, John; Feng, Jingyu

2012-02-01T23:59:59.000Z

294

A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials  

E-Print Network (OSTI)

treatment emissions from corn/ethanol and wood bio- fuelMulti-modal emissions Corn-ethanol production, energy use:biodiesel fuel cycles, and corn/ ethanol fuel cycles. GHGCH

Delucchi, Mark

2003-01-01T23:59:59.000Z

295

Alternative Fuels Data Center: Flexible Fuel Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Flexible Fuel Vehicles to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicles on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicles on Twitter Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Google Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Delicious Rank Alternative Fuels Data Center: Flexible Fuel Vehicles on Digg Find More places to share Alternative Fuels Data Center: Flexible Fuel Vehicles on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives Flexible Fuel Vehicles Photo of a flexible fuel vehicle.

296

Alcohol as a fuel for farm and construction equipment  

DOE Green Energy (OSTI)

Work in three areas dealing with the utilization of ethanol as fuel for farm and construction diesels is summarized. The first part is a review of what is known about the retrofitting of diesels for use of ethanol and the combustion problems involved. The second part is a discussion of the work that has been done under the contract on the performance of a single-cylinder, open-chamber diesel using solutions and emulsions of diesel fuel with ethanol. Data taken include performance, emissions and cylinder pressure-time for diesel fuel with zero to forty percent ethanol by volume. Analysis of the data includes calculation of heat release rates using a single zone model. The third part is a discussion of work done retrofitting a multicylinder turbocharged farm tractor diesel to use ethanol by fumigation. Three methods of ethanol introduction are discussed; spraying ethanol upstream and downstream of the compressor and prevaporization of the ethanol. Data on performance and emissions are given for the last two methods. A three zone heat release model is described and results from the model are given. A correlation of the ignition delay using prevaporized ethanol fumigation data is also given. Comparisons are made between fumigation in DI and IDI engines.

Borman, G L; Foster, D E; Meyers, P S; Uyehara, O A

1982-06-01T23:59:59.000Z

297

Life Cycle Regulation of Transportation Fuels: Uncertainty and its Policy Implications  

E-Print Network (OSTI)

81 Contribution to variance for corn ethanol, including80 Contribution to variance for corn ethanol . . . . . . .anhydrous corn ethanol . . . . . . . . . . . . . . 63 Range

Plevin, Richard Jay

2010-01-01T23:59:59.000Z

298

Alternative Fuels Data Center: Low Emission Vehicle Electricity...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Help Alternative Fuels Data Center Fuels & Vehicles Biodiesel | Diesel Vehicles Electricity | Hybrid & Plug-In Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel...

299

Alternative Fuels Data Center: Natural Gas Fleet Services  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

& Plug-In Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas | Natural Gas Vehicles Propane | Propane Vehicles Emerging Fuels Fuel Prices...

300

Alternative Fuels Data Center: Mississippi Laws and Incentives...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas | Natural Gas Vehicles Propane | Propane Vehicles Emerging Fuels Fuel Prices Clean...

Note: This page contains sample records for the topic "including fuel ethanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Alternative Fuels Data Center: New Mexico Laws and Incentives...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas | Natural Gas Vehicles Propane | Propane Vehicles Emerging Fuels Fuel Prices Clean...

302

Alternative Fuels Data Center: Missouri Laws and Incentives for...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas | Natural Gas Vehicles Propane | Propane Vehicles Emerging Fuels Fuel Prices Clean...

303

Alternative Fuels Data Center: Arkansas Laws and Incentives for...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas | Natural Gas Vehicles Propane | Propane Vehicles Emerging Fuels Fuel Prices Clean...

304

Alternative Fuels Data Center: Kansas Laws and Incentives for...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas | Natural Gas Vehicles Propane | Propane Vehicles Emerging Fuels Fuel Prices Clean...

305

EIA - Federal Fuels Taxes and Tax Credits  

U.S. Energy Information Administration (EIA)

Ethanol Import Tariff . Currently, two duties are imposed on imported ethanol. ... Defense Energy Support Center, Compilation of United States Fuel Taxes ...

306

Separation of toxic metal ions, hydrophilic hydrocarbons, hydrophobic fuel and halogenated hydrocarbons and recovery of ethanol from a process stream  

DOE Patents (OSTI)

This invention provides a process to tremendously reduce the bulk volume of contaminants obtained from an effluent stream produced subsurface remediation. The chemicals used for the subsurface remediation are reclaimed for recycling to the remediation process. Additional reductions in contaminant bulk volume are achieved by the ultra-violet light destruction of halogenated hydrocarbons, and the complete oxidation of hydrophobic fuel hydrocarbons and hydrophilic hydrocarbons. The contaminated bulk volume will arise primarily from the disposal of the toxic metal ions. The entire process is modular, so if there are any technological breakthroughs in one or more of the component process modules, such modules can be readily replaced. 3 figs.

Kansa, E.J.; Anderson, B.L.; Wijesinghe, A.M.; Viani, B.E.

1999-05-25T23:59:59.000Z

307

Separation of toxic metal ions, hydrophilic hydrocarbons, hydrophobic fuel and halogenated hydrocarbons and recovery of ethanol from a process stream  

DOE Patents (OSTI)

This invention provides a process to tremendously reduce the bulk volume of contaminants obtained from an effluent stream produced subsurface remediation. The chemicals used for the subsurface remediation are reclaimed for recycling to the remediation process. Additional reductions in contaminant bulk volume are achieved by the ultra-violet light destruction of halogenated hydrocarbons, and the complete oxidation of hydrophobic fuel hydrocarbons and hydrophilic hydrocarbons. The contaminated bulk volume will arise primarily from the disposal of the toxic metal ions. The entire process is modular, so if there are any technological breakthroughs in one or more of the component process modules, such modules can be readily replaced.

Kansa, Edward J. (Livermore, CA); Anderson, Brian L. (Lodi, CA); Wijesinghe, Ananda M. (Tracy, CA); Viani, Brian E. (Oakland, CA)

1999-01-01T23:59:59.000Z

308

DOE/EA-1517: Environmental Assessment for the Design and Construction of a Fuel Ethanol Plant, Jasper County, Indiana (April 2005)  

DOE Green Energy (OSTI)

Based on action by the U.S. Congress, the U.S. Department of Energy (DOE) has funding available to support a proposal by the Iroquois Bio-energy Company (IBEC), an Indiana limited liability company, to construct a fuel ethanol plant in Jasper County, Indiana (the proposed plant). Congress has acknowledged the merit of this project by providing specific funding through DOE. Consequently, DOE proposes to provide partial funding to IBEC to subsidize the design and construction of the proposed plant (the Proposed Action). In accordance with DOE and National Environmental Policy Act (NEPA) implementing regulations, DOE is required to evaluate the potential environmental impacts of DOE facilities, operations, and related funding decisions. The proposal to use Federal funds to support the project requires DOE to address NEPA requirements and related environmental documentation and permitting requirements. In compliance with NEPA (42 U.S.C. {section} 4321 et seq.) and DOE's NEPA implementing regulations (10 CFR section 1021.330) and procedures, this environmental assessment (EA) examines the potential environmental impacts of DOE's Proposed Action and a No Action Alternative.

N /A

2005-04-29T23:59:59.000Z

309

Alternative Fuels Incentive Grant Fund (AFIG) (Pennsylvania)...  

Open Energy Info (EERE)

motor fuels and fuel systems are compressed and liquefied natural gas, ethanol (E85), methanol (M85), hydrogen, hythane, electricity, fuels from biological materials or...

310

Alternative Fuels Data Center: Maps and Data  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Search Help Alternative Fuels Data Center Fuels & Vehicles Biodiesel | Diesel Vehicles Electricity | Hybrid & Plug-In Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen |...

311

Fuel Economy and Emissions of a Vehicle Equipped with an Aftermarket Flexible-Fuel Conversion Kit  

DOE Green Energy (OSTI)

The U.S. Environmental Protection Agency (EPA) grants Certificates of Conformity for alternative fuel conversion systems and also offers other forms of premarket registration of conversion kits for use in vehicles more than two model years old. Use of alternative fuels such as ethanol, natural gas, and propane are encouraged by the Energy Policy Act of 1992. Several original equipment manufacturers (OEMs) produce emissions-certified vehicles capable of using alternative fuels, and several alternative fuel conversion system manufacturers produce EPA-approved conversion systems for a variety of alternative fuels and vehicle types. To date, only one manufacturer (Flex Fuel U.S.) has received EPA certifications for ethanol fuel (E85) conversion kits. This report details an independent evaluation of a vehicle with a legal installation of a Flex Fuel U.S. conversion kit. A 2006 Dodge Charger was baseline tested with ethanol-free certification gasoline (E0) and E20 (gasoline with 20 vol % ethanol), converted to flex-fuel operation via installation of a Flex Box Smart Kit from Flex Fuel U.S., and retested with E0, E20, E50, and E81. Test cycles included the Federal Test Procedure (FTP or city cycle), the highway fuel economy test (HFET), and the US06 test (aggressive driving test). Averaged test results show that the vehicle was emissions compliant on E0 in the OEM condition (before conversion) and compliant on all test fuels after conversion. Average nitrogen oxide (NOx) emissions exceeded the Tier 2/Bin 5 intermediate life NO{sub X} standard with E20 fuel in the OEM condition due to two of three test results exceeding this standard [note that E20 is not a legal fuel for non-flexible-fuel vehicles (non-FFVs)]. In addition, one E0 test result before conversion and one E20 test result after conversion exceeded the NOX standard, although the average result in these two cases was below the standard. Emissions of ethanol and acetaldehyde increased with increasing ethanol, while nonmethane organic gas and CO emissions remained relatively unchanged for all fuels and cycles. Higher fraction ethanol blends appeared to decrease NO{sub X} emissions on the FTP and HFET (after conversion). As expected, fuel economy (miles per gallon) decreased with increasing ethanol content in all cases.

Thomas, John F [ORNL; Huff, Shean P [ORNL; West, Brian H [ORNL

2012-04-01T23:59:59.000Z

312

Proceedings of the 1995 SAE alternative fuels conference. P-294  

Science Conference Proceedings (OSTI)

This volume contains 32 papers and five panel discussions related to the fuel substitution of trucks, automobiles, buses, cargo handling equipment, diesel passenger cars, and pickup trucks. Fuels discussed include liquefied natural gas, natural gas, ethanol fuels, methanol fuels, dimethyl ether, methyl esters from various sources (rape oil, used cooking oils, soya, and canola oils), hydrogen fuels, and biodiesel. Other topics include fuel cell powered vehicles, infrastructure requirements for fuel substitution, and economics. Papers have been processed separately for inclusion on the data base.

NONE

1995-12-31T23:59:59.000Z

313

Alternative Fuels Data Center: Alternative Fuels and Advanced...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

| Diesel Vehicles Electricity | Hybrid & Plug-In Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas | Natural Gas Vehicles Propane |...

314

Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum  

Science Conference Proceedings (OSTI)

Clostridium thermocellum is a model microorganism for converting cellulosic biomass into fuels and chemicals via consolidated bioprocessing. One of the challenges for industrial application of this organism is its low ethanol tolerance, typically 1-2% (w/v) in wild-type strains. In this study, we report the development and characterization of mutant C. thermocellum strains that can grow in the presence of high ethanol concentrations. Starting from a single colony, wild-type C. thermocellum ATCC 27405 was sub-cultured and adapted for growth in up to 50 g/L ethanol using either cellobiose or crystalline cellulose as the growth substrate. Both the adapted strains retained their ability to grow on either substrate and displayed a higher growth rate and biomass yield than the wild-type strain in the absence of ethanol. With added ethanol in the media, the mutant strains displayed an inverse correlation between ethanol concentration and growth rate or biomass yield. Genome sequencing revealed six common mutations in the two ethanol-tolerant strains including an alcohol dehydrogenase gene and genes involved in arginine/pyrimidine biosynthetic pathway. The potential role of these mutations in ethanol tolerance phenotype is discussed.

Shao, Xiongjun [Thayer School of Engineering at Dartmouth; Raman, Babu [ORNL; Zhu, Mingjun [South China University of Technology, Guangzhou, PR China; Mielenz, Jonathan R [ORNL; Brown, Steven D [ORNL; Guss, Adam M [ORNL; Lynd, Lee R [Thayer School of Engineering at Dartmouth

2011-01-01T23:59:59.000Z

315

Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum  

Science Conference Proceedings (OSTI)

Clostridium thermocellum is a model microorganism for converting cellulosic biomass into fuels and chemicals via consolidated bioprocessing. One of the challenges for industrial application of this organism is its low ethanol tolerance, typically 1 2% (w/v) in wild-type strains. In this study, we report the development and characterization of mutant C. thermocellum strains that can grow in the presence of high ethanol concentrations. Starting from a single colony, wild-type C. thermocellum ATCC 27405 was sub-cultured and adapted for growth in up to 50 g/L ethanol using either cellobiose or crystalline cellulose as the growth substrate. Both the adapted strains retained their ability to grow on either substrate and displayed a higher growth rate and biomass yield than the wild-type strain in the absence of ethanol. With added ethanol in the media, the mutant strains displayed an inverse correlation between ethanol concentration and growth rate or biomass yield. Genome sequencing revealed six common mutations in the two ethanol-tolerant strains including an alcohol dehydrogenase gene and genes involved in arginine/pyrimidine biosynthetic pathway. The potential role of these mutations in ethanol tolerance phenotype is discussed.

Lynd, Lee R [Thayer School of Engineering at Dartmouth; Shao, Xiongjun [Thayer School of Engineering at Dartmouth; Raman, Babu [Dow Chemical Company, The; Mielenz, Jonathan R [ORNL; Brown, Steven D [ORNL; Guss, Adam M [ORNL; Zhu, Mingjun [South China University of Technology, Guangzhou, PR China

2011-01-01T23:59:59.000Z

316

Dissolution Kinetics of Ethanol Droplets in Passenger Car Motor Oil.  

E-Print Network (OSTI)

??The use of ethanol as an additive to gasoline fuel is becoming a common phenomenon. It helps solve the energy crisis and environmental issues that (more)

Guan, Bo

2013-01-01T23:59:59.000Z

317

NEW INSIGHTS ON THE USE OF ETHANOL IN AUTOMOTIVE ...  

Science Conference Proceedings (OSTI)

... Atmospheric ethanol has been receiving increased attention due to its use as a biofuel or fuel additive and because of the alcohol's potential impact ...

318

Biomass to ethanol : potential production and environmental impacts.  

E-Print Network (OSTI)

??This study models and assesses the current and future fossil fuel consumption and greenhouse gas impacts of ethanol produced from three feedstocks; corn grain, corn (more)

Groode, Tiffany Amber, 1979-

2008-01-01T23:59:59.000Z

319

Parametric combustion modeling for ethanol-gasoline fuelled spark ignition engines.  

E-Print Network (OSTI)

?? Ethanol-gasoline fuel blends are increasingly being used in spark ignition (SI) engines due to continued growth in renewable fuels as part of a growing (more)

Yeliana

2011-01-01T23:59:59.000Z

320

TransForum v3n2 - Ethanol Additive for Diesel  

NLE Websites -- All DOE Office Websites (Extended Search)

ETHANOL FUEL ADDITIVE MAY HELP SOLVE THE DIESEL EMISSIONS PUZZLE The quest to reduce atmospheric emissions associated with diesel-fueled vehicles has faced a longstanding...

Note: This page contains sample records for the topic "including fuel ethanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol » Laws & Incentives Ethanol » Laws & Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Vehicles Laws & Incentives Federal Laws and Incentives for Ethanol The list below contains summaries of all Federal laws and incentives related to Ethanol. Incentives Alternative Fuel Infrastructure Tax Credit Fueling equipment for natural gas, liquefied petroleum gas (propane),

322

Ethanol Distribution, Dispensing, and Use: Analysis of a Portion of the Biomass-to-Biofuels Supply Chain Using System Dynamics  

DOE Green Energy (OSTI)

The Energy Independence and Security Act of 2007 targets use of 36 billion gallons of biofuels per year by 2022. Achieving this may require substantial changes to current transportation fuel systems for distribution, dispensing, and use in vehicles. The U.S. Department of Energy and the National Renewable Energy Laboratory designed a system dynamics approach to help focus government action by determining what supply chain changes would have the greatest potential to accelerate biofuels deployment. The National Renewable Energy Laboratory developed the Biomass Scenario Model, a system dynamics model which represents the primary system effects and dependencies in the biomass-to-biofuels supply chain. The model provides a framework for developing scenarios and conducting biofuels policy analysis. This paper focuses on the downstream portion of the supply chain-represented in the distribution logistics, dispensing station, and fuel utilization, and vehicle modules of the Biomass Scenario Model. This model initially focused on ethanol, but has since been expanded to include other biofuels. Some portions of this system are represented dynamically with major interactions and feedbacks, especially those related to a dispensing station owner's decision whether to offer ethanol fuel and a consumer's choice whether to purchase that fuel. Other portions of the system are modeled with little or no dynamics; the vehicle choices of consumers are represented as discrete scenarios. This paper explores conditions needed to sustain an ethanol fuel market and identifies implications of these findings for program and policy goals. A large, economically sustainable ethanol fuel market (or other biofuel market) requires low end-user fuel price relative to gasoline and sufficient producer payment, which are difficult to achieve simultaneously. Other requirements (different for ethanol vs. other biofuel markets) include the need for infrastructure for distribution and dispensing and widespread use of high ethanol blends in flexible-fuel vehicles.

Vimmerstedt, L. J.; Bush, B.; Peterson, S.

2012-05-01T23:59:59.000Z

323

Ethanol production using corn, switchgrass, and wood; Biodiesel production using soybean and sunflower  

E-Print Network (OSTI)

Energy outputs from ethanol produced using corn, switchgrass, and wood biomass were each less than the respective fossil energy inputs. The same was true for producing biodiesel using soybeans and sunflower, however, the energy cost for producing soybean biodiesel was only slightly negative compared with ethanol production. Findings in terms of energy outputs compared with the energy inputs were: Ethanol production using corn grain required 29% more fossil energy than the ethanol fuel produced. Ethanol production using switchgrass required 50 % more fossil energy than the ethanol fuel produced. Ethanol production using wood biomass required 57 % more fossil energy than the ethanol fuel produced. Biodiesel production using soybean required 27 % more fossil energy than the biodiesel fuel produced (Note, the energy yield from soy oil per hectare is far lower than the ethanol yield from corn). Biodiesel production using sunflower required 118 % more fossil energy than the biodiesel fuel produced.

David Pimentel; Tad W. Patzek

2005-01-01T23:59:59.000Z

324

Chemical transformations are essential to all living organisms--and also to the manufacture of many products including fuels,  

E-Print Network (OSTI)

interests include plasma waste gasification, plasma torches, spectroscopy, plasma medicine, and holographic2512 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 36, NO. 5, OCTOBER 2008 Experimental Investigation-power microwave breakdown based on measured laser breakdown observations. Comparison of 193-nm laser

Kemner, Ken

325

Alternative Fuels Data Center: Biobutanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biobutanol to someone Biobutanol to someone by E-mail Share Alternative Fuels Data Center: Biobutanol on Facebook Tweet about Alternative Fuels Data Center: Biobutanol on Twitter Bookmark Alternative Fuels Data Center: Biobutanol on Google Bookmark Alternative Fuels Data Center: Biobutanol on Delicious Rank Alternative Fuels Data Center: Biobutanol on Digg Find More places to share Alternative Fuels Data Center: Biobutanol on AddThis.com... More in this section... Biobutanol Drop-In Biofuels Methanol P-Series Renewable Natural Gas xTL Fuels Biobutanol Biobutanol is a 4-carbon alcohol (butyl alcohol) produced from the same feedstocks as ethanol including corn, sugar beets, and other biomass feedstocks. Butanol is generally used as an industrial solvent in products such as lacquers and enamels, but it also can be blended with other fuels

326

NREL Proves Cellulosic Ethanol Can Be Cost Competitive (Fact Sheet)  

SciTech Connect

Ethanol from non-food sources - known as "cellulosic ethanol" - is a near-perfect transportation fuel: it is clean, domestic, abundant, and renewable, and it can potentially replace 30% of the petroleum consumed in the United States, but its relatively high cost has limited its market. That changed in 2012, when the National Renewable Energy Laboratory (NREL) demonstrated the technical advances needed to produce cellulosic ethanol at a minimum ethanol selling price of $2.15/gallon (in 2007 dollars). Through a multi-year research project involving private industry, NREL has proven that cellulosic ethanol can be cost competitive with other transportation fuels.

Not Available

2013-11-01T23:59:59.000Z

327

Alternative Fueling Station Locator | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alternative Fueling Station Locator Alternative Fueling Station Locator Alternative Fueling Station Locator Find Stations Plan a Route Location: Go Start: End: Go Fuel: All Fuels Biodiesel (B20 and above) Compressed Natural Gas Electric Ethanol (E85) Hydrogen Liquefied Natural Gas (LNG) Liquefied Petroleum Gas (Propane) more search options close × More Search Options Include private stations Include planned stations Owner All Private Federal State Local Utility Payment All American Express Discover MasterCard VISA Cash Checks CFN Clean Energy Fuel Man Gas Card PHH Services Voyager WEX Electric charger types Include level 1 Include level 2 Include DC fast Include legacy chargers Limit results to within 5 miles Limit results to within 5 miles 12,782 alternative fuel stations in the United States Excluding private stations

328

Exhaust particle characterization for lean and stoichiometric DI vehicles operating on ethanol-gasoline blends  

DOE Green Energy (OSTI)

Gasoline direct injection (GDI) engines can offer better fuel economy and higher performance over their port fuel-injected (PFI) counterparts, and are now appearing in increasingly more U.S. and European vehicles. Small displacement, turbocharged GDI engines are replacing large displacement engines, particularly in light-duty trucks and sport utility vehicles, in order for manufacturers to meet the U.S. fuel economy standards for 2016. Furthermore, lean-burn GDI engines can offer even higher fuel economy than stoichiometric GDI engines and have overcome challenges associated with cost-effective aftertreatment for NOx control. Along with changes in gasoline engine technology, fuel composition may increase in ethanol content beyond the current 10% due to the recent EPA waiver allowing 15% ethanol. In addition, the Renewable Fuels Standard passed as part of the 2007 Energy Independence and Security Act (EISA) mandates the use of biofuels in upcoming years. GDI engines are of environmental concern due to their high particulate matter (PM) emissions relative to port-fuel injected (PFI) gasoline vehicles; widespread market penetration of GDI vehicles may result in additional PM from mobile sources at a time when the diesel contribution is declining. In this study, we characterized particulate emissions from a European certified lean-burn GDI vehicle operating on ethanol-gasoline blends. Particle mass and particle number concentration emissions were measured for the Federal Test Procedure urban driving cycle (FTP 75) and the more aggressive US06 driving cycle. Particle number-size distributions and organic to elemental carbon ratios (OC/EC) were measured for 30 MPH and 80 MPH steady-state operation. In addition, particle number concentration was measured during wide open throttle accelerations (WOTs) and gradual accelerations representative of the FTP 75. Fuels included certification gasoline and 10% (E10) and 20% (E20) ethanol blends from the same supplier. The particle mass emissions were approximately 3 and 7 mg/mile for the FTP75 and US06, respectively, with lower emissions for the ethanol blends. The data are compared to a previous study on a U.S.-legal stoichiometric GDI vehicle operating on the same ethanol blends. The lean-burn GDI vehicle emitted a higher number of particles, but had an overall smaller average size. Particle number per mile decreased with increasing ethanol content for the transient tests. For the 30 and 80 mph tests, particle number concentration decreased with increasing ethanol content, although the shape of the particle size distribution remained the same. Engine-out OC/EC ratios were highest for the stoichiometric GDI vehicle with E20, but tailpipe OC/EC ratios were similar for all vehicles.

Storey, John Morse [ORNL; Barone, Teresa L [ORNL; Thomas, John F [ORNL; Huff, Shean P [ORNL

2012-01-01T23:59:59.000Z

329

Ethanol Production Tax Credit (Kentucky) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ethanol Production Tax Credit (Kentucky) Ethanol Production Tax Credit (Kentucky) Ethanol Production Tax Credit (Kentucky) < Back Eligibility Agricultural Program Info State Kentucky Program Type Corporate Tax Incentive Qualified ethanol producers are eligible for an income tax credit of $1 per gallon of corn- or cellulosic-based ethanol that meets ASTM standard D4806. The total credit amount available for all corn and cellulosic ethanol producers is $5 million for each taxable year. Unused ethanol credits from one ethanol-based cap, such as corn, may be applied to another ethanol-based cap, such as cellulosic, in the same taxable year. Unused credits may not be carried forward. Kentucky statute information regarding alternative fuel producer tax credits can be found within KRS Chapters 141.422-141.430

330

National Ethanol Vehicle Coalition NEVC | Open Energy Information  

Open Energy Info (EERE)

Ethanol Vehicle Coalition NEVC Ethanol Vehicle Coalition NEVC Jump to: navigation, search Name National Ethanol Vehicle Coalition (NEVC) Place Jefferson City, Missouri Zip 65109 Product The National Ethanol Vehicle Coalition is a non-profit membership organisation serving as a primary advocacy group promoting the use of 85% ethanol in the US as a form of alternative transportation fuel. References National Ethanol Vehicle Coalition (NEVC)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. National Ethanol Vehicle Coalition (NEVC) is a company located in Jefferson City, Missouri . References ↑ "National Ethanol Vehicle Coalition (NEVC)" Retrieved from "http://en.openei.org/w/index.php?title=National_Ethanol_Vehicle_Coalition_NEVC&oldid=349065

331

Development of a dedicated ethanol ultra-low emission vehicle (ULEV) system design  

DOE Green Energy (OSTI)

The objective of this 3.5 year project is to develop a commercially competitive vehicle powered by ethanol (or ethanol blend) that can meet California`s ultra-low emission vehicle (ULEV) standards and equivalent corporate average fuel economy (CAFE) energy efficiency for a light-duty passenger car application. The definition of commercially competitive is independent of fuel cost, but does include technical requirements for competitive power, performance, refueling times, vehicle range, driveability, fuel handling safety, and overall emissions performance. This report summarizes a system design study completed after six months of effort on this project. The design study resulted in recommendations for ethanol-fuel blends that shall be tested for engine low-temperature cold-start performance and other criteria. The study also describes three changes to the engine, and two other changes to the vehicle to improve low-temperature starting, efficiency, and emissions. The three engine changes are to increase the compression ratio, to replace the standard fuel injectors with fine spray injectors, and to replace the powertrain controller. The two other vehicle changes involve the fuel tank and the aftertreatment system. The fuel tank will likely need to be replaced to reduce evaporative emissions. In addition to changes in the main catalyst, supplemental aftertreatment systems will be analyzed to reduce emissions before the main catalyst reaches operating temperature.

Bourn, G.; Callahan, T.; Dodge, L.; Mulik, J.; Naegeli, D.; Shouse, K.; Smith, L.; Whitney, K. [Southwest Research Inst., San Antonio, TX (United States)

1995-02-01T23:59:59.000Z

332

Fuels and Lubricants Subcommittee  

Science Conference Proceedings (OSTI)

... State Fuel Quality Laws for Ethanol Blended Gasoline changes to promote and protect but not impede e10 presented" by Marathon Petroleum Co. ...

2011-08-30T23:59:59.000Z

333

Pacific Ethanol, Inc | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pacific Ethanol, Inc Pacific Ethanol, Inc Pacific Ethanol, Inc More Documents & Publications Pacific Ethanol, Inc Pacific Ethanol, Inc Pacific Ethanol, Inc...

334

Oxygenates (excl. Fuel Ethanol) Exports  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

335

Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Safety...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Data Center Fuels & Vehicles Biodiesel | Diesel Vehicles Electricity | Hybrid & Plug-In Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas |...

336

Elastomer Compatibility Testing of Renewable Diesel Fuels  

DOE Green Energy (OSTI)

In this study, the integrity and performance of six elastomers were tested with ethanol-diesel and biodiesel fuel blends.

Frame, E.; McCormick, R. L.

2005-11-01T23:59:59.000Z

337

Ethanol and Classic Cars  

NLE Websites -- All DOE Office Websites (Extended Search)

have ethanol in them; the typical one is E10 which is 10% ethanol. But there's also E85 which is 85% ethanol. The basic rule is E10 is ok for everything, but E85 can only be...

338

Alternative Liquid Fuels Simulation Model (AltSim).  

Science Conference Proceedings (OSTI)

The Alternative Liquid Fuels Simulation Model (AltSim) is a high-level dynamic simulation model which calculates and compares the production costs, carbon dioxide emissions, and energy balances of several alternative liquid transportation fuels. These fuels include: corn ethanol, cellulosic ethanol, biodiesel, and diesels derived from natural gas (gas to liquid, or GTL) and coal (coal to liquid, or CTL). AltSim allows for comprehensive sensitivity analyses on capital costs, operation and maintenance costs, renewable and fossil fuel feedstock costs, feedstock conversion efficiency, financial assumptions, tax credits, CO{sub 2} taxes, and plant capacity factor. This paper summarizes the preliminary results from the model. For the base cases, CTL and cellulosic ethanol are the least cost fuel options, at $1.60 and $1.71 per gallon, respectively. Base case assumptions do not include tax or other credits. This compares to a $2.35/gallon production cost of gasoline at September, 2007 crude oil prices ($80.57/barrel). On an energy content basis, the CTL is the low cost alternative, at $12.90/MMBtu, compared to $22.47/MMBtu for cellulosic ethanol. In terms of carbon dioxide emissions, a typical vehicle fueled with cellulosic ethanol will release 0.48 tons CO{sub 2} per year, compared to 13.23 tons per year for coal to liquid.

Baker, Arnold Barry; Williams, Ryan (Hobart and William Smith Colleges, Geneva, NY); Drennen, Thomas E.; Klotz, Richard (Hobart and William Smith Colleges, Geneva, NY)

2007-10-01T23:59:59.000Z

339

Alternative Fuels Data Center: Alternative Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Definition to someone by E-mail Definition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Definition Alternative fuel is defined as compressed natural gas, propane, ethanol, or any mixture containing 85% or more ethanol (E85) with gasoline or other

340

Renewable Fuels (incl. Fuel Ethanol) Exports  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

Note: This page contains sample records for the topic "including fuel ethanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Issues and Methods for Estimating the Percentage Share of Ethanol ...  

U.S. Energy Information Administration (EIA)

Together, these vehicles are estimated to account for ... Many interested parties, including auto manufacturers, ethanol producers, petroleum refiners, and

342

Energy Corn for Cellulosic Ethanol - National Renewable Energy ...  

edenspace. Edenspace: A Track Record of Success Improved crop feedstocks for cellulosic ethanol Superb development team includes NREL,

343

Lousiana Green Fuels LLC | Open Energy Information  

Open Energy Info (EERE)

Lousiana Green Fuels LLC Jump to: navigation, search Name Lousiana Green Fuels LLC Place Louisiana Sector Biomass Product Developing a cellulosic biomass-to-ethanol plant in...

344

EERE: Alternative Fuels Data Center Home Page  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

| Diesel Vehicles Electricity | Hybrid & Plug-In Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas | Natural Gas Vehicles Propane |...

345

Alternative Fuels Data Center: Vehicle Conversions  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

| Diesel Vehicles Electricity | Hybrid & Plug-In Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas | Natural Gas Vehicles Propane |...

346

Alternative Fuels Data Center: E15  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

| Diesel Vehicles Electricity | Hybrid & Plug-In Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas | Natural Gas Vehicles Propane |...

347

Calgren Renewable Fuels LLC | Open Energy Information  

Open Energy Info (EERE)

Renewable Fuels LLC Place Newport Beach, California Zip 92660 Product Developer of bio-ethanol plants in US, particularly California. References Calgren Renewable Fuels LLC1...

348

Energy optimization for the design of cornbased ethanol plants  

E-Print Network (OSTI)

In this work we address the problem of optimizing corn-based bioethanol plants through the use of heat integration and mathematical programming techniques. The goal is to reduce the operating costs of the plant. Capital cost, energy usage, and yields all contribute to prduction cost. Yield and energy use also influence the viability of cornbased ethanol as a sustainable fuel. We first propose a limited superstructure of alternative designs including the various process units and utility streams involved in ethanol production. Our objective is to determine the connections in the network and the flow in each stream in the network such that we minimize the energy requirement of the overall plant. This is accomplished through the formulation of a mixed integer nonlinear programming problem involving mass and energy balances for all the units in the system, where the model is solved through two nonlinear programming subproblems. We then perform a heat integration study on the resulting flowsheet; the modified flowsheet includes multieffect distillation columns and further reduces energy consumption. The results indicate that it is possible to reduce the current steam consumption required in the transformation of corn into fuel grade ethanol by more than 40 % compared to initial basic design.

Andreas Peschel; Mariano Martn; Ignacio E. Grossmann; Wade Martinson; Luca Zullo

2008-01-01T23:59:59.000Z

349

Running Line-Haul Trucks on Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

I I magine driving a 55,000-pound tractor- trailer that runs on corn! If you find it difficult to imagine, you can ask the truck drivers for Archer Daniels Midland (ADM) what it's like. For the past 4 years, they have been piloting four trucks powered by ethyl alcohol, or "ethanol," derived from corn. Several advantages to operating trucks on ethanol rather than on conventional petro- leum diesel fuel present themselves. Because ethanol can be produced domestically, unlike most of our petroleum supply, the price and supply of ethanol is not subject to the whims of potentially unstable foreign governments. And domestic production translates into domestic jobs. In addition, ethanol has the potential to reduce harmful emissions, such as particulate matter and oxides of nitrogen

350

RAW MATERIALS EVALUATION AND PROCESS DEVELOPMENT STUDIES FOR CONVERSION OF BIOMASS TO SUGARS AND ETHANOL  

E-Print Network (OSTI)

Symposium on Fuels from Biomass. DOE meeting, Troy, New ~orkSTUDIES FOR CONVERSION OF BIOMASS TO SUGARS AND ETHANOL C.STUDIES FOR CONVERSION OF BIOMASS TO SUGARS AND ETHANOL* by

Wilke, C.R.

2011-01-01T23:59:59.000Z

351

Multi-fuel reformers for fuel cells used in transportation. Multi-fuel reformers: Phase 1 -- Final report  

DOE Green Energy (OSTI)

DOE has established the goal, through the Fuel Cells in Transportation Program, of fostering the rapid development and commercialization of fuel cells as economic competitors for the internal combustion engine. Central to this goal is a safe feasible means of supplying hydrogen of the required purity to the vehicular fuel cell system. Two basic strategies are being considered: (1) on-board fuel processing whereby alternative fuels such as methanol, ethanol or natural gas stored on the vehicle undergo reformation and subsequent processing to produce hydrogen, and (2) on-board storage of pure hydrogen provided by stationary fuel processing plants. This report analyzes fuel processor technologies, types of fuel and fuel cell options for on-board reformation. As the Phase 1 of a multi-phased program to develop a prototype multi-fuel reformer system for a fuel cell powered vehicle, the objective of this program was to evaluate the feasibility of a multi-fuel reformer concept and to select a reforming technology for further development in the Phase 2 program, with the ultimate goal of integration with a DOE-designated fuel cell and vehicle configuration. The basic reformer processes examined in this study included catalytic steam reforming (SR), non-catalytic partial oxidation (POX) and catalytic partial oxidation (also known as Autothermal Reforming, or ATR). Fuels under consideration in this study included methanol, ethanol, and natural gas. A systematic evaluation of reforming technologies, fuels, and transportation fuel cell applications was conducted for the purpose of selecting a suitable multi-fuel processor for further development and demonstration in a transportation application.

Not Available

1994-05-01T23:59:59.000Z

352

Knock limits in spark ignited direct injected engines using gasoline/ethanol blends  

E-Print Network (OSTI)

Direct Fuel Injection (DI) extends engine knock limits compared to Port Fuel Injection (PFI) by utilizing the in-cylinder charge cooling effect due to fuel evaporation. The use of gasoline/ethanol blends in DI is therefore ...

Kasseris, Emmanuel P

2011-01-01T23:59:59.000Z

353

Softwood Biomass to Ethanol Feasibility Study; Final Report: June 14, 1999  

DOE Green Energy (OSTI)

Results of design and project evaluation work studying various aspects of ethanol related projects including a conceptual ethanol plant located in Martell California.

Not Available

2004-08-01T23:59:59.000Z

354

Investigation of materials performances in high moisture environments including corrosive contaminants typical of those arising by using alternative fuels in gas turbines  

NLE Websites -- All DOE Office Websites (Extended Search)

materials performances in high moisture materials performances in high moisture environments including corrosive contaminants typical of those arising by using alternative fuels in gas turbines Gerald Meier, Frederick Pettit and Keeyoung Department of Materials Science and Engineering, Jung University of Pittsburgh Pittsburgh, PA 15260 Peer review Workshop III UTSR Project 04 01 SR116 October 18-20, 2005 Project Approach Task I Selection and Preparation of Specimens Task II Selection of Test Conditions Specimens : GTD111+CoNiCrAlY and Pt Aluminides, N5+Pt Aluminides Deposit : No Deposit, CaO, CaSO 4 , Na 2 SO 4 1150℃ Dry 1150℃ Wet 950℃ Wet 750℃ SO 3 950℃ Dry Selection of Test Temperature, T 1 , Gas Environment and Deposit Composition, D

355

The ethanol heavy-duty truck fleet demonstration project  

DOE Green Energy (OSTI)

This project was designed to test and demonstrate the use of a high- percentage ethanol-blended fuel in a fleet of heavy-duty, over-the- road trucks, paying particular attention to emissions, performance, and repair and maintenance costs. This project also represents the first public demonstration of the use of ethanol fuels as a viable alternative to conventional diesel fuel in heavy-duty engines.

NONE

1997-06-01T23:59:59.000Z

356

A Kinetic Modeling study on the Oxidation of Primary Reference Fuel?Toluene Mixtures Including Cross Reactions between Aromatics and Aliphatics  

DOE Green Energy (OSTI)

A detailed chemical kinetic model for the mixtures of Primary Reference Fuel (PRF: n-heptane and iso-octane) and toluene has been proposed. This model is divided into three parts; a PRF mechanism [T. Ogura et al., Energy & Fuels 21 (2007) 3233-3239], toluene sub-mechanism and cross reactions between PRF and toluene. Toluene sub-mechanism includes the low temperature kinetics relevant to engine conditions. A chemical kinetic mechanism proposed by Pitz et al. [Proc. the 2nd Joint Meeting of the U.S. Combust. Institute (2001)] was used as a starting model and modified by updating rate coefficients. Theoretical estimations of rate coefficients were performed for toluene and benzyl radical reactions important at low temperatures. Cross-reactions between alkane, alkene, and aromatics were also included in order to account for the acceleration by the addition of toluene into iso-octane recently found in the shock tube study of the ignition delay [Y. Sakai et al, SAE 2007-01-4014 (2007)]. Validations of the model were performed with existing shock tube and flow tube data. The model well predicts the ignition characteristics of toluene and PRF/Toluene mixtures under the wide range of temperatures (500-1700 K) and pressures (2-50 atm). It is found that reactions of benzyl radical with oxygen molecule determine the reactivity of toluene at low temperature. Although the effect of toluene addition to iso-octane is not fully resolved, the reactions of alkene with benzyl radical have the possibility to account for the kinetic interactions between PRF and toluene.

Sakai, Y; Miyoshi, A; Koshi, M; Pitz, W J

2008-01-09T23:59:59.000Z

357

Vehicle Technologies Office: Fuels and Lubricants Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuels and Lubricants Research Fuels and Lubricants Research As transportation accounts for two-thirds of the nearly $1 billion the U.S. spends daily on foreign oil, it is vital to increase our use of alternative fuels. Increasing the fuels available to drivers reduces price volatility, supports domestic industries, and increases environmental sustainability. The DOE's Alternative Fuels Data Center provides basic information on alternative fuels, including Biodiesel, Ethanol, Natural Gas, Propane, and Hydrogen. The Vehicle Technologies Office (VTO) supports research to improve how vehicles use these many of these fuels in the future, as well as activities to increase their availability today. It also researches how new petroleum-based fuels affect advanced combustion systems and how lubricants can improve the efficiency of vehicles currently on the road.

358

Clostridium thermocellum ATCC27405 transcriptomic, metabolomic and proteomic profiles after ethanol stress  

Science Conference Proceedings (OSTI)

Clostridium thermocellum is a candidate consolidated bioprocessing biocatalyst, which is a microorganism that expresses enzymes for both cellulose hydrolysis and its fermentation to produce fuels such as lignocellulosic ethanol. However, C. thermocellum is relatively sensitive to ethanol compared to ethanologenic microorganisms such as yeast and Zymomonas mobilis that are used in industrial fermentations but do not possess native enzymes for industrial cellulose hydrolysis. In this study, C. thermocellum was grown to mid-exponential phase and then treated with ethanol to a final concentration of 3.9 g/L to investigate its physiological and regulatory responses to ethanol stress. Samples were taken pre-shock and 2, 12, 30, 60, 120, and 240 min post-shock, and from untreated control fermentations for systems biology analyses. Cell growth was arrested by ethanol supplementation with intracellular accumulation of carbon sources such as cellobiose, and sugar phosphates, including fructose-6-phosphate and glucose-6-phosphate. The largest response of C. thermocellum to ethanol shock treatment was in genes and proteins related to nitrogen uptake and metabolism, which is likely important for redirecting the cells physiology to overcome inhibition and allow growth to resume. This study suggests possible avenues for metabolic engineering and provides comprehensive, integrated systems biology datasets that will be useful for future metabolic modeling and strain development endeavors.

Yang, Shihui [ORNL; Giannone, Richard J [ORNL; Dice, Lezlee T [ORNL; Yang, Zamin Koo [ORNL; Engle, Nancy L [ORNL; Tschaplinski, Timothy J [ORNL; Hettich, Robert {Bob} L [ORNL; Brown, Steven D [ORNL

2012-01-01T23:59:59.000Z

359

Alternative Fuels Data Center: Alabama City Leads With Biodiesel and  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alabama City Leads Alabama City Leads With Biodiesel and Ethanol to someone by E-mail Share Alternative Fuels Data Center: Alabama City Leads With Biodiesel and Ethanol on Facebook Tweet about Alternative Fuels Data Center: Alabama City Leads With Biodiesel and Ethanol on Twitter Bookmark Alternative Fuels Data Center: Alabama City Leads With Biodiesel and Ethanol on Google Bookmark Alternative Fuels Data Center: Alabama City Leads With Biodiesel and Ethanol on Delicious Rank Alternative Fuels Data Center: Alabama City Leads With Biodiesel and Ethanol on Digg Find More places to share Alternative Fuels Data Center: Alabama City Leads With Biodiesel and Ethanol on AddThis.com... July 21, 2012 Alabama City Leads With Biodiesel and Ethanol L earn how the City of Hoover uses biodiesel and ethanol to fuel municipal

360

Alternative Fuels Data Center: Alternative Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Definition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Definition The following fuels are defined as alternative fuels by the Energy Policy Act (EPAct) of 1992: pure methanol, ethanol, and other alcohols; blends of

Note: This page contains sample records for the topic "including fuel ethanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

High ethanol producing derivatives of Thermoanaerobacter ethanolicus  

DOE Patents (OSTI)

Derivatives of the newly discovered microorganism Thermoanaerobacter ethanolicus which under anaerobic and thermophilic conditions continuously ferment substrates such as starch, cellobiose, glucose, xylose and other sugars to produce recoverable amounts of ethanol solving the problem of fermentations yielding low concentrations of ethanol using the parent strain of the microorganism Thermoanaerobacter ethanolicus are disclosed. These new derivatives are ethanol tolerant up to 10% (v/v) ethanol during fermentation. The process includes the use of an aqueous fermentation medium, containing the substrate at a substrate concentration greater than 1% (w/v).

Ljungdahl, Lars G. (Athens, GA); Carriera, Laura H. (Athens, GA)

1983-01-01T23:59:59.000Z

362

High ethanol producing derivatives of Thermoanaerobacter ethanolicus  

DOE Patents (OSTI)

Derivatives of the newly discovered microorganism Thermoanaerobacter ethanolicus which under anaerobic and thermophilic conditions continuously ferment substrates such as starch, cellobiose, glucose, xylose and other sugars to produce recoverable amounts of ethanol solving the problem of fermentations yielding low concentrations of ethanol using the parent strain of the microorganism Thermoanaerobacter ethanolicus are disclosed. These new derivatives are ethanol tolerant up to 10% (v/v) ethanol during fermentation. The process includes the use of an aqueous fermentation medium, containing the substrate at a substrate concentration greater than 1% (w/v).

Ljungdahl, L.G.; Carriera, L.H.

1983-05-24T23:59:59.000Z

363

MotorWeek Video Transcript: Ethanol Preferred by Indy Racing  

NLE Websites -- All DOE Office Websites (Extended Search)

Ethanol Preferred by Indy Racing Ethanol Preferred by Indy Racing John Davis: In an age where drivers switch sponsor allegiances as quickly as they change hats, Team Ethanol Indy Car driver Paul Dana was a rarity: A driver who not only believed in his sponsor's product, he took a personal interest in promoting it. Tragically, a collision during practice killed Paul just hours before the season's first green flag. Although his life was cut short before he ever won a race in the IRL, he leaves behind a champion's legacy no less powerful. We know ethanol is a clean-burning, renewable and American-made alternative to imported petroleum as a fuel for our street cars, but ethanol is also well-suited as a performance fuel. Tim Tom Slunecka: "The ethanol industry has been trying to communicate

364

Sorghum to Ethanol Research Initiative: Cooperative Research and Development Final Report, CRADA Number CRD-08-291  

Science Conference Proceedings (OSTI)

The goal of this project was to investigate the feasibility of using sorghum to produce ethanol. The work performed included a detailed examination of the agronomics and composition of a large number of sorghum varieties, laboratory experiments to convert sorghum to ethanol, and economic and life-cycle analyses of the sorghum-to-ethanol process. This work showed that sorghum has a very wide range of composition, which depended on the specific sorghum cultivar as well as the growing conditions. The results of laboratory- and pilot-scale experiments indicated that a typical high-biomass sorghum variety performed very similarly to corn stover during the multi-step process required to convert biomass feedstocks to ethanol; yields of ethanol for sorghum were very similar to the corn stover used as a control in these experiments. Based on multi-year agronomic data and theoretical ethanol production, sorghum can achieve more than 1,300 gallons of ethanol per acre given the correct genetics and environment. In summary, sorghum may be a compelling dedicated bioenergy crop that could help provide a portion of the feedstocks required to produce renewable domestic transportation fuels.

Wolfrum, E.

2011-10-01T23:59:59.000Z

365

Alternative Fuels Data Center: E85: An Alternative Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

E85: An Alternative E85: An Alternative Fuel to someone by E-mail Share Alternative Fuels Data Center: E85: An Alternative Fuel on Facebook Tweet about Alternative Fuels Data Center: E85: An Alternative Fuel on Twitter Bookmark Alternative Fuels Data Center: E85: An Alternative Fuel on Google Bookmark Alternative Fuels Data Center: E85: An Alternative Fuel on Delicious Rank Alternative Fuels Data Center: E85: An Alternative Fuel on Digg Find More places to share Alternative Fuels Data Center: E85: An Alternative Fuel on AddThis.com... More in this section... Ethanol Basics Blends E15 E85 Specifications Production & Distribution Feedstocks Related Links Benefits & Considerations Stations Vehicles Laws & Incentives E85 Photo of an E85 pump. E85 is a high-level gasoline-ethanol blend containing 51% to 83% ethanol,

366

Market penetration of biodiesel and ethanol  

E-Print Network (OSTI)

This dissertation examines the influence that economic and technological factors have on the penetration of biodiesel and ethanol into the transportation fuels market. This dissertation focuses on four aspects. The first involves the influence of fossil fuel prices, because biofuels are substitutes and have to compete in price. The second involves biofuel manufacturing technology, principally the feedstock-to-biofuel conversion rates, and the biofuel manufacturing costs. The third involves prices for greenhouse gas offsets. The fourth involves the agricultural commodity markets for feedstocks, and biofuel byproducts. This dissertation uses the Forest and Agricultural Sector Optimization Model-Greenhouse Gas (FASOM-GHG) to quantitatively examine these issues and calculates equilibrium prices and quantities, given market interactions, fossil fuel prices, carbon dioxide equivalent prices, government biofuel subsidies, technological improvement, and crop yield gains. The results indicate that for the ranges studied, gasoline prices have a major impact on aggregate ethanol production but only at low prices. At higher prices, one runs into a capacity constraint that limits expansion on the capacity of ethanol production. Aggregate biodiesel production is highly responsive to gasoline prices and increases over time. (Diesel fuel price is proportional to the gasoline price). Carbon dioxide equivalent prices expand the biodiesel industry, but have no impact on ethanol aggregate production when gasoline prices are high again because of refinery capacity expansion. Improvement of crop yields shows a similar pattern, expanding ethanol production when the gasoline price is low and expanding biodiesel. Technological improvement, where biorefinery production costs decrease over time, had minimal impact on aggregate ethanol and biodiesel production. Finally, U.S. government subsidies have a large expansionary impact on aggregate biodiesel production, but only expand the ethanol industry at low gasoline prices. All of these factors increase agricultural welfare with most expanding producer surplus and mixed effects on consumers.

Szulczyk, Kenneth Ray

2003-05-01T23:59:59.000Z

367

Alternatives to traditional transportation fuels 1994. Volume 1  

DOE Green Energy (OSTI)

In this report, alternative and replacement fuels are defined in accordance with the EPACT. Section 301 of the EPACT defines alternative fuels as: methanol, denatured ethanol, and other alcohols; mixtures containing 85% or more (or such other percentage, but not less than 70%, as determined by the Secretary of Energy, by rule, to provide for requirements relating to cold start, safety, or vehicle functions) by volume of methanol, denatured ethanol, and other alcohols with gasoline or other fuels; natural gas; liquefied petroleum gas; hydrogen; coal-derived liquid fuels; fuels (other than alcohol) derived from biological materials; electricity (including electricity from solar energy); and any other fuel the Secretary determines, by rule, is substantially not petroleum and would yield substantial energy security benefits and substantial environmental benefits. The EPACT defines replacement fuels as the portion of any motor fuel that is methanol, ethanol, or other alcohols, natural gas, liquefied petroleum gas, hydrogen, coal-derived liquid fuels, fuels (other than alcohol) derived from biological materials, electricity (including electricity from solar energy), ethers, or any other fuel the Secretary of Energy determines, by rule, is substantially not petroleum and would yield substantial energy security benefits and substantial environmental benefits. This report covers only those alternative and replacement fuels cited in the EPACT that are currently commercially available or produced in significant quantities for vehicle demonstration purposes. Information about other fuels, such as hydrogen and biodiesel, will be included in later reports as those fuels become more widely used. Annual data are presented for 1992 to 1996. Data for 1996 are based on plans or projections for 1996.

NONE

1996-02-01T23:59:59.000Z

368

A stochastic feasibility study of Texas ethanol production: analysis of Texas Legislature ethanol subsidy proposal  

E-Print Network (OSTI)

The recent resurgence of interest in ethanol production has prompted the Texas State Legislature to investigate the feasibility of ethanol production in Texas. The reasons for the increased interest in ethanol production could possibly relate to depressed commodity prices, gasoline price volatility, environmental regulations and a renewed push towards increased fuel sufficiently given national and world events following September 11, 2001. Past feasibility studies have failed to incorporate the risk of input and output prices in their analyses. Furthermore, it is evident from the literature, that unrealistic values were used in many of the studies, to perhaps, entice prospective investors in providing capital for the construction and operation of the ethanol facilities. This study provides an unbiased, stochastic simulation feasibility study incorporating the risks of ethanol, corn, dry distillers grains (DDGS), soybean meal, electricity, and natural gas prices on three size facilities in Texas. In addition, four different scenarios were included incorporating four levels of the proposed Texas State Producer Grant into the feasibility study. Those levels were the $0.00, $0.10, $0.20, and $0.30/gal on the first 30 million gallons per year (MMGPY) of production for each registered plant. Rather than assuming point values for input variables and providing a deterministic analysis, the advantage of this study is that it provides a feasibility study that includes risks of input and output prices in its results. For each of the three size facilities analyzed (15, 30, and 80 MMGPY) the results of probability of negative cash flows and simple statistics, probability of dividend payments and simple statistics, present value of ending owners equity in 2022, net present value, certainty equivalents and absolute certainty equivalents risk premiums of net present value are described in the study. The study found that neither the 15, 30, or the 80 MMGPY facilities would be feasible in Texas. The facilities have little chance of economic success under the best scenario ($0.30/gal) and all have a zero percent chance of maintaining beginning equity.

Gill, Robert Chope

2002-01-01T23:59:59.000Z

369

TransForum v6n1 - Hydrogen + Advances in Fuel Cell Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

available, fuel cells could operate on conventional fuels, such as natural gas, propane, gasoline, and diesel, or alternative fuels, such as methanol, ethanol, and...

370

Improving the bioconversion yield of carbohydrates and ethanol from lignocellulosic biomass.  

E-Print Network (OSTI)

??Improving the efficiency of lignocellulosic ethanol production is of the utmost importance if cellulosic bioethanol is to be competitive with fossil fuels and first generation (more)

Ewanick, Shannon

2012-01-01T23:59:59.000Z

371

Enriching and characterizing an aerotolerant mixed microbial community capable of cellulose hydrolysis and ethanol production.  

E-Print Network (OSTI)

??Cellulosic ethanol produced via consolidated bioprocessing may one day be a viable alternative to fossil fuels However, efforts must focus on streamlining and simplifying its (more)

Ronan, Patrick

2011-01-01T23:59:59.000Z

372

THE ETHANOL MARKET: AN ECONOMETRIC INQUIRY INTO THE MARKET FOR E85.  

E-Print Network (OSTI)

??This study analyzes the ethanol market in order to determine if E85 can replace gasoline as the United States primary fuel. After presenting the history (more)

Tatum, Shaun

2007-01-01T23:59:59.000Z

373

What caused the run-up in ethanol RIN prices during early 2013 ...  

U.S. Energy Information Administration (EIA)

Before 2013, Renewable Identification Number (RIN) prices for corn ethanol, which can be used to meet only the overall target for biofuels under the Renewable Fuel ...

374

What caused the run-up in ethanol RIN prices during early 2013 ...  

U.S. Energy Information Administration (EIA)

Before 2013, Renewable Identification Number (RIN) prices for corn ethanol, which can be used to meet only the overall target for biofuels under the Renewable Fuel ...

375

Enzymatic Enhancement of Water Removal In the Dry Grind Corn to Ethanol Process.  

E-Print Network (OSTI)

??The removal of water from coproducts in the fuel ethanol process requires a significant energy input. The drying of the coproducts is responsible for as (more)

Thomas, Ana Beatriz

2009-01-01T23:59:59.000Z

376

Greenhouse gas emissions related to ethanol produced from corn  

DOE Green Energy (OSTI)

This report confers the details of a panel meeting discussion on greenhouse gases. The topic of this discussion was ethanol. Members discussed all aspects of growing corn and producing ethanol. Then the question was raised as to whether or not this is a suitable substitute to fossil fuel usage in the reduction of greenhouse gas emissions.

Marland, G.

1994-04-01T23:59:59.000Z

377

Biofuel derived from Microalgae Corn-based Ethanol  

E-Print Network (OSTI)

Biofuel derived from Microalgae Corn-based Ethanol #12;Outline · Production processes for each source of biofuel · Potential for environmental impacts · Comparative results · Conclusions #12;Definitions Biofuel: clean fuel made from animal and plant fats and tissues (Hollebone, 2008) Ethanol

Blouin-Demers, Gabriel

378

Ethanol Can Contribute to Energy and Environmental Goals  

E-Print Network (OSTI)

in the future because of two federal policies: a /0.51 tax credit per gallon of ethanol used as motor fuel studies indicated that current corn ethanol technologies are much less petroleum-intensive than gasoline but have greenhouse gas emissions similar to those of gasoline. However, many important environmental

Kammen, Daniel M.

379

Ethanol | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

that ethanol and other biofuels could replace 30% or more of U.S. gasoline demand by 2030. Nearly half of U.S. gasoline contains ethanol in a low-level blend to oxygenate the...

380

Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Goals > Fuels Goals > Fuels XMAT for nuclear fuels XMAT is ideally suited to explore all of the radiation processes experienced by nuclear fuels.The high energy, heavy ion accleration capability (e.g., 250 MeV U) can produce bulk damage deep in the sample, achieving neutron type depths (~10 microns), beyond the range of surface sputtering effects. The APS X-rays are well matched to the ion beams, and are able to probe individual grains at similar penetrations depths. Damage rates to 25 displacements per atom per hour (DPA/hr), and doses >2500 DPA can be achieved. MORE» Fuels in LWRs are subjected to ~1 DPA per day High burn-up fuel can experience >2000 DPA. Traditional reactor tests by neutron irradiation require 3 years in a reactor and 1 year cool down. Conventional accelerators (>1 MeV/ion) are limited to <200-400 DPAs, and

Note: This page contains sample records for the topic "including fuel ethanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Mobile Alternative Fueling Station Locator  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fueling Station Locator Alternative Fueling Station Locator Fuel Type Biodiesel (B20 and above) Compressed Natural Gas Electric Ethanol (E85) Hydrogen Liquefied Natural Gas (LNG) Liquefied Petroleum Gas (Propane) Location Enter a city, postal code, or address Include private stations Not all stations are open to the public. Choose this option to also search private fueling stations. Search Caution: The AFDC recommends that users verify that stations are open, available to the public, and have the fuel prior to making a trip to that location. Some stations in our database have addresses that could not be located by the Station Locator application. This may result in the station appearing in the center of the zip code area instead of the actual location. If you're having difficulty, please contact the technical response team at

382

Alternative Fuels Data Center: South Carolina Laws and Incentives for  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: South Carolina Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: South Carolina Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: South Carolina Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: South Carolina Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: South Carolina Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: South Carolina Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type South Carolina Laws and Incentives for Ethanol

383

Alternative Fuels Data Center: Massachusetts Laws and Incentives for  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Massachusetts Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Massachusetts Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Massachusetts Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Massachusetts Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Massachusetts Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Massachusetts Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Massachusetts Laws and Incentives for Ethanol

384

Alternative Fuels Data Center: West Virginia Laws and Incentives for  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: West Virginia Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: West Virginia Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: West Virginia Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: West Virginia Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: West Virginia Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: West Virginia Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type West Virginia Laws and Incentives for Ethanol

385

Alternative Fuels Data Center: North Carolina Laws and Incentives for  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: North Carolina Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: North Carolina Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: North Carolina Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: North Carolina Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: North Carolina Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: North Carolina Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type North Carolina Laws and Incentives for Ethanol

386

Alternative Fuels Data Center: New Hampshire Laws and Incentives for  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: New Hampshire Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: New Hampshire Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: New Hampshire Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: New Hampshire Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: New Hampshire Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: New Hampshire Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type New Hampshire Laws and Incentives for Ethanol

387

Western Ethanol Company LLC | Open Energy Information  

Open Energy Info (EERE)

Ethanol Company LLC Ethanol Company LLC Jump to: navigation, search Name Western Ethanol Company LLC Place Placentia, California Zip 92871 Product California-based fuel ethanol distribution and marketing company. Coordinates 33.871124°, -117.861401° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.871124,"lon":-117.861401,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

388

Energy Utilization in Fermentation Ethanol Production  

E-Print Network (OSTI)

The fuel ethanol industry has put into practice several techniques for minimizing energy requirements for ethanol manufacture. Thermal energy usage in fermentation grain ethanol plants has been reduced from the prior practice of 80,900 Btu per gallon ethanol to current demonstrated practice of 49,700 Btu per gallon. Future, state-of-the-art improvements are expected to reduce usage further to 37,000 Btu per gallon or less. The total energy input is projected at 52,000 Btu per gallon after adding in the electrical power. Energy savings have been achieved primarily by flash vapor reuse, pressure cascading of distillation units, and use of more efficient byproduct drying methods. These energy saving techniques should also be useful in other commercial processing applications.

Easley, C. E.

1987-09-01T23:59:59.000Z

389

Automotive Fuel Processor Development and Demonstration with Fuel Cell Systems  

DOE Green Energy (OSTI)

The potential for fuel cell systems to improve energy efficiency and reduce emissions over conventional power systems has generated significant interest in fuel cell technologies. While fuel cells are being investigated for use in many applications such as stationary power generation and small portable devices, transportation applications present some unique challenges for fuel cell technology. Due to their lower operating temperature and non-brittle materials, most transportation work is focusing on fuel cells using proton exchange membrane (PEM) technology. Since PEM fuel cells are fueled by hydrogen, major obstacles to their widespread use are the lack of an available hydrogen fueling infrastructure and hydrogen's relatively low energy storage density, which leads to a much lower driving range than conventional vehicles. One potential solution to the hydrogen infrastructure and storage density issues is to convert a conventional fuel such as gasoline into hydrogen onboard the vehicle using a fuel processor. Figure 2 shows that gasoline stores roughly 7 times more energy per volume than pressurized hydrogen gas at 700 bar and 4 times more than liquid hydrogen. If integrated properly, the fuel processor/fuel cell system would also be more efficient than traditional engines and would give a fuel economy benefit while hydrogen storage and distribution issues are being investigated. Widespread implementation of fuel processor/fuel cell systems requires improvements in several aspects of the technology, including size, startup time, transient response time, and cost. In addition, the ability to operate on a number of hydrocarbon fuels that are available through the existing infrastructure is a key enabler for commercializing these systems. In this program, Nuvera Fuel Cells collaborated with the Department of Energy (DOE) to develop efficient, low-emission, multi-fuel processors for transportation applications. Nuvera's focus was on (1) developing fuel processor subsystems (fuel reformer, CO cleanup, and exhaust cleanup) that were small enough to integrate on a vehicle and (2) evaluating the fuel processor system performance for hydrogen production, efficiency, thermal integration, startup, durability and ability to integrate with fuel cells. Nuvera carried out a three-part development program that created multi-fuel (gasoline, ethanol, natural gas) fuel processing systems and investigated integration of fuel cell / fuel processor systems. The targets for the various stages of development were initially based on the goals of the DOE's Partnership for New Generation Vehicles (PNGV) initiative and later on the Freedom Car goals. The three parts are summarized below with the names based on the topic numbers from the original Solicitation for Financial Assistance Award (SFAA).

Nuvera Fuel Cells

2005-04-15T23:59:59.000Z

390

Alternative Fuels Data Center: Flexible Fuel Vehicle Availability  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Flexible Fuel Vehicle Flexible Fuel Vehicle Availability to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicle Availability on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicle Availability on Twitter Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicle Availability on Google Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicle Availability on Delicious Rank Alternative Fuels Data Center: Flexible Fuel Vehicle Availability on Digg Find More places to share Alternative Fuels Data Center: Flexible Fuel Vehicle Availability on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives Flexible Fuel Vehicle Availability Flexible fuel vehicles (FFVs)-which can run on E85 (a gasoline-ethanol

391

Understanding the Growth of the Cellulosic Ethanol Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

grow from 1.5M in 2006 to 30M in 2017 Fuel Market * Oil price based on "AEO 2006 High Oil Price Projection" * ORNL refinery model analysis used to predict ethanol blending...

392

Ethanol production capacity little changed in past year - Today in ...  

U.S. Energy Information Administration (EIA)

U.S. fuel ethanol production capacity was 13.9 billion gallons per year (903,000 barrels per day), as of January 1, 2013, according to a report released by EIA on May ...

393

Biomass to ethanol : potential production and environmental impacts  

E-Print Network (OSTI)

This study models and assesses the current and future fossil fuel consumption and greenhouse gas impacts of ethanol produced from three feedstocks; corn grain, corn stover, and switchgrass. A life-cycle assessment approach ...

Groode, Tiffany Amber, 1979-

2008-01-01T23:59:59.000Z

394

Effects of Intermediate Ethanol Blends on Legacy Vehicles and...  

NLE Websites -- All DOE Office Websites (Extended Search)

The law puts a 15-billion-gallon limit on credits available for the amount of corn ethanol that can contribute to the renewable fuel standard. Less than 1% of the...

395

Ethanol production method and system  

DOE Patents (OSTI)

Ethanol is selectively produced from the reaction of methanol with carbon monoxide and hydrogen in the presence of a transition metal carbonyl catalyst. Methanol serves as a solvent and may be accompanied by a less volatile co-solvent. The solution includes the transition metal carbonyl catalysts and a basic metal salt such as an alkali metal or alkaline earth metal formate, carbonate or bicarbonate. A gas containing a high carbon monoxide to hydrogen ratio, as is present in a typical gasifer product, is contacted with the solution for the preferential production of ethanol with minimal water as a byproduct. Fractionation of the reaction solution provides substantially pure ethanol product and allows return of the catalysts for reuse.

Chen, M.J.; Rathke, J.W.

1983-05-26T23:59:59.000Z

396

Alternative Fuels Data Center: Fuel Quality Standards  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Quality Standards Fuel Quality Standards to someone by E-mail Share Alternative Fuels Data Center: Fuel Quality Standards on Facebook Tweet about Alternative Fuels Data Center: Fuel Quality Standards on Twitter Bookmark Alternative Fuels Data Center: Fuel Quality Standards on Google Bookmark Alternative Fuels Data Center: Fuel Quality Standards on Delicious Rank Alternative Fuels Data Center: Fuel Quality Standards on Digg Find More places to share Alternative Fuels Data Center: Fuel Quality Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel Quality Standards The South Dakota Department of Public Safety may promulgate rules establishing: Standards for the maximum volume percentages of ethanol and methanol

397

Alternative Fuels Data Center: Renewable Fuels Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Mandate to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Mandate on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Mandate on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Mandate on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Mandate One year after in-state production has reached 350 million gallons of cellulosic ethanol and sustained this volume for three months, all gasoline

398

Alternative Fuels Data Center: Renewable Fuels Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Mandate to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Mandate on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Mandate on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Mandate on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Mandate All gasoline sold in the state must be blended with 10% ethanol (E10). Gasoline with an octane rating of 91 or above is exempt from this mandate,

399

Alternative Fuels Data Center: Renewable Fuels Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Promotion to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Promotion on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Promotion on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Promotion on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Promotion on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Promotion on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Promotion Recognizing that biofuels such as ethanol and biodiesel will be an important part of the state's energy economy and advanced research in

400

Alternative Fuels Data Center: Renewable Fuel Standard  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Standard to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Standard on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Standard on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Standard on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Standard Within six months following the point at which monthly production of denatured ethanol produced in Louisiana equals or exceeds a minimum annualized production volume of 50 million gallons, at least 2% of the

Note: This page contains sample records for the topic "including fuel ethanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Development of a dedicated ethanol ultra-low emission vehicle (ULEV): Final report  

DOE Green Energy (OSTI)

The objective of this project was to develop a commercially competitive vehicle powered by ethanol (or an ethanol blend) that can meet California`s ultra-low emission vehicle (ULEV) standards and equivalent corporate average fuel economy (CAFE) energy efficiency for a light-duty passenger car application. The definition of commercially competitive is independent of fuel cost, but does include technical requirements for competitive power, performance, refueling times, vehicle range, driveability, fuel handling safety, and overall emissions performance. This report summarizes the fourth and final phase of this project, and also the overall project. The focus of this report is the technology used to develop a dedicated ethanol-fueled ULEV, and the emissions results documenting ULV performance. Some of the details for the control system and hardware changes are presented in two appendices that are SAE papers. The demonstrator vehicle has a number of advanced technological features, but it is currently configured with standard original equipment manufacturer (OEM) under-engine catalysts. Close-coupled catalysts would improve emissions results further, but no close-coupled catalysts were available for this testing. Recently, close-coupled catalysts were obtained, but installation and testing will be performed in the future. This report also briefly summarizes work in several other related areas that supported the demonstrator vehicle work.

Dodge, L.; Bourn, G.; Callahan, T.; Grogan, J.; Leone, D.; Naegeli, D.; Shouse, K.; Thring, R.; Whitney, K. [Southwest Research Inst., San Antonio, TX (United States)

1998-09-01T23:59:59.000Z

402

Alternative Fuels Data Center: County Fleet Goes Big on Idle Reduction,  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

County Fleet Goes Big County Fleet Goes Big on Idle Reduction, Ethanol Use, Fuel Efficiency to someone by E-mail Share Alternative Fuels Data Center: County Fleet Goes Big on Idle Reduction, Ethanol Use, Fuel Efficiency on Facebook Tweet about Alternative Fuels Data Center: County Fleet Goes Big on Idle Reduction, Ethanol Use, Fuel Efficiency on Twitter Bookmark Alternative Fuels Data Center: County Fleet Goes Big on Idle Reduction, Ethanol Use, Fuel Efficiency on Google Bookmark Alternative Fuels Data Center: County Fleet Goes Big on Idle Reduction, Ethanol Use, Fuel Efficiency on Delicious Rank Alternative Fuels Data Center: County Fleet Goes Big on Idle Reduction, Ethanol Use, Fuel Efficiency on Digg Find More places to share Alternative Fuels Data Center: County Fleet Goes Big on Idle Reduction, Ethanol Use, Fuel Efficiency on

403

Alternative Fuels Data Center: Pennsylvania Laws and Incentives...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Dealer. Laws and Regulations Renewable Fuels Mandate One year after in-state production has reached 350 million gallons of cellulosic ethanol and sustained this volume for...

404

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Wisconsin Incentives and Laws Wisconsin Incentives and Laws The following is a list of expired, repealed, and archived incentives, laws, regulations, funding opportunities, or other initiatives related to alternative fuels and vehicles, advanced technologies, or air quality. Regional Biofuels Promotion Plan Archived: 01/01/2012 Wisconsin joined Indiana, Iowa, Kansas, Michigan, Minnesota, Ohio, and South Dakota in adopting the Energy Security and Climate Stewardship Platform Plan (Platform), which establishes shared goals for the Midwest region, including increased biofuels production and use. Download Adobe Reader. Specifically, the Platform sets the following goals: Produce commercially available cellulosic ethanol and other low carbon fuels in the region by 2012; Increase E85 availability at retail fueling stations in the region

405

Development of a dedicated ethanol ultra-low-emissions vehicle (ULEV): Phase 3 report  

DOE Green Energy (OSTI)

The objective of the 3.5 year project discussed in this report was to develop a commercially competitive vehicle powered by ethanol (or an ethanol blend) that can meet California`s Ultra Low Emissions Vehicle (ULEV) standards and equivalent Corporate Average Fuel Economy (CAFE) energy efficiency for a light duty passenger car application. This particular report summarizes the third phase of the project, which lasted 12 months. Emissions tests were conducted with advanced after-treatment devices on one of the two, almost identical, test vehicles, a 1993 Ford Taurus flexible fuel vehicle. The report also covers tests on the engine removed from the second Taurus vehicle. This engine was modified for an increased compression ratio, fitted with air assist injectors, and included an advanced engine control system with model-based control.

Dodge, L.; Callahan, T.; Leone, D.; Naegeli, D.; Shouse, K.; Smith, L.; Whitney, K. [Southwest Research Inst., San Antonio, TX (United States)] [Southwest Research Inst., San Antonio, TX (United States)

1998-04-01T23:59:59.000Z

406

Engines - Fuel Injection and Spray Research - Alternative Fuel...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sprays Alternative fuel sprays Non-petroleum fuels are gaining popularity in the U.S. Ethanol is being blended with gasoline in varying proportions, and biodiesel is being sold at...

407

Life-cycle energy and greenhouse gas emission impacts of different corn ethanol plant types.  

Science Conference Proceedings (OSTI)

Since the United States began a program to develop ethanol as a transportation fuel, its use has increased from 175 million gallons in 1980 to 4.9 billion gallons in 2006. Virtually all of the ethanol used for transportation has been produced from corn. During the period of fuel ethanol growth, corn farming productivity has increased dramatically, and energy use in ethanol plants has been reduced by almost by half. The majority of corn ethanol plants are powered by natural gas. However, as natural gas prices have skyrocketed over the last several years, efforts have been made to further reduce the energy used in ethanol plants or to switch from natural gas to other fuels, such as coal and wood chips. In this paper, we examine nine corn ethanol plant types--categorized according to the type of process fuels employed, use of combined heat and power, and production of wet distiller grains and solubles. We found that these ethanol plant types can have distinctly different energy and greenhouse gas emission effects on a full fuel-cycle basis. In particular, greenhouse gas emission impacts can vary significantly--from a 3% increase if coal is the process fuel to a 52% reduction if wood chips are used. Our results show that, in order to achieve energy and greenhouse gas emission benefits, researchers need to closely examine and differentiate among the types of plants used to produce corn ethanol so that corn ethanol production would move towards a more sustainable path.

Wang, M.; Wu, M.; Huo, H.; Energy Systems

2007-04-01T23:59:59.000Z

408

Low and intermediate temperature oxidation of ethanol and ethanol-PRF blends: An experimental and modeling study  

SciTech Connect

In this brief communication, we present new experimental species profile measurements for the low and intermediate temperature oxidation of ethanol under knock-prone conditions. These experiments show that ethanol exhibits no global low temperature reactivity at these conditions, although we note the heterogeneous decomposition of ethanol to ethylene and water. Similar behavior is reported for an E85 blend in n-heptane. Kinetic modeling results are presented to complement these experiments and elucidate the interaction of ethanol and primary reference fuels undergoing cooxidation. (author)

Haas, Francis M.; Chaos, Marcos; Dryer, Frederick L. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States)

2009-12-15T23:59:59.000Z

409

Energy Basics: Flexible Fuel Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Flexible Fuel Vehicles Photo of a gray van with 'E85 Ethanol' written on the side. Flexible fuel vehicles (FFVs) are capable of operating on gasoline, E85 (85%...

410

Secretary Bodman Touts Importance of Cellulosic Ethanol at Georgia  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Touts Importance of Cellulosic Ethanol at Georgia Touts Importance of Cellulosic Ethanol at Georgia Biorefinery Groundbreaking Secretary Bodman Touts Importance of Cellulosic Ethanol at Georgia Biorefinery Groundbreaking October 6, 2007 - 4:21pm Addthis SOPERTON, GA - U.S. Secretary of Energy Samuel W. Bodman today attended a groundbreaking ceremony for Range Fuels' biorefinery - one of the nation's first commercial-scale cellulosic ethanol biorefineries - and made the following statement. "Together, the Department of Energy and private sector pioneers, such as Range Fuels, are blending science and technology to advance the President's goal of reducing our dependence on foreign oil," U.S. Secretary of Energy Samuel W. Bodman said. "The production of cost-competitive cellulosic ethanol is a significant part of America's energy future. This new

411

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network (OSTI)

in the Manufacture of Corn Ethanol. St. Louis, National CornWetcake is a form of corn ethanol co-product that requiresTypical dry-grind corn ethanol facilities burn fossil fuels

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

412

Study concerning the utilization of the ocean spreading center environment for the conversion of biomass to a liquid fuel. (Includes Appendix A: hydrothermal petroleum genesis). [Supercritical water  

SciTech Connect

This document contains a report on the feasibility of utilizing energy obtained from ocean spreading centers as process heat for the conversion of municipal solid wastes to liquid fuels. The appendix contains a paper describing hydrothermal petroleum genesis. Both have been indexed separately for inclusion in the Energy Data Base. (DMC)

Steverson, M.; Stormberg, G.

1985-01-01T23:59:59.000Z

413

Preface : the 2000 ethanol vehicle challenge.  

DOE Green Energy (OSTI)

The technical papers presented in this special publication represent the efforts of students from 16 colleges and universities across North America. Over 600 students have participated in the Ethanol Vehicle Challenge since its inception in 1998. The 2000 Ethanol Vehicle Challenge was the final year of this successful 3-year advanced vehicle competition series. The papers presented are enhanced and expanded versions of those prepared in advance of the competition by the participating student engineers. They describe the design elements, construction details, and performance of the dedicated ethanol vehicles brought to the Challenge by the participating universities. The goal of this competition was to demonstrate the potential of E85 (85% denatured ethanol and 15% hydrocarbon primer) to significantly lower emissions and improve the performance, fuel efficiency and cold starting of vehicles fueled by ethanol. The competition series began with a Request for Proposals in January 1997. A letter announcing and soliciting interest in the competition (Notice of Interest) was sent to all accredited engineering programs and two-year technical schools in the US and Canada. The Notice described the competition and the requirements for the conversion of a 1997 Chevrolet Malibu to dedicated E85 operation. On the basis of the submitted proposals, 14 schools were selected to participate in the first competition in 1998. Those schools were invited to participate again in 1999. Two additional schools collaborated with the existing teams for the 2000 competition; these two teams participated in the competition, but they were not eligible for the competition awards.

LeBlanc, N. M.; Larsen, R. P.

2000-12-11T23:59:59.000Z

414

Biological production of ethanol from coal  

DOE Green Energy (OSTI)

Due to the abundant supply of coal in the United States, significant research efforts have occurred over the past 15 years concerning the conversion of coal to liquid fuels. Researchers at the University of Arkansas have concentrated on a biological approach to coal liquefaction, starting with coal-derived synthesis gas as the raw material. Synthesis gas, a mixture of CO, H[sub 2], CO[sub 2], CH[sub 4] and sulfur gases, is first produced using traditional gasification techniques. The CO, CO[sub 2] and H[sub 2] are then converted to ethanol using a bacterial culture of Clostridium 1jungdahlii. Ethanol is the desired product if the resultant product stream is to be used as a liquid fuel. However, under normal operating conditions, the wild strain'' produces acetate in favor of ethanol in conjunction with growth in a 20:1 molar ratio. Research was performed to determine the conditions necessary to maximize not only the ratio of ethanol to acetate, but also to maximize the concentration of ethanol resulting in the product stream.

Not Available

1992-12-01T23:59:59.000Z

415

NREL: Vehicles and Fuels Research - News  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicles and Fuels Research News Vehicles and Fuels Research News The following news stories highlight vehicles and fuels research at NREL. December 23, 2013 NREL and Thought Leaders Gather at Electric Vehicle Battery Management Summit NREL researchers will gather with U.S. Department of Energy program directors and technology managers, and other thought leaders to exchange strategies for maximizing the performance, safety, and lifespan of electric-drive vehicle batteries. November 7, 2013 NREL Developed Mobile App for Alternative Fueling Station Locations Released iPhone users now have access to a free application that locates fueling stations offering alternative fuels, including electricity, natural gas, biodiesel, e85 Ethanol, propane and hydrogen. The Energy Department's (DOE) National Renewable Energy Laboratory (NREL) developed the new mobile

416

NREL: Vehicles and Fuels Research - Biofuels Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Biofuels Projects Biofuels Projects NREL biofuels projects help overcome technical barriers and expand markets for renewable, biodegradable vehicle fuels. These new liquid fuels include higher-level ethanol blends, butanol, biodiesel, renewable diesel, and other biomass-derived fuels. NREL's biofuels research and development helps improve engine efficiency, reduce polluting emissions, and improve U.S. energy security by reducing petroleum dependency. Biofuels for Diesel Engines NREL's diesel biofuels research and development focuses on developing fuel quality standards and demonstrating compatibility with engines and emission control systems. Highly efficient heavy-duty diesel truck engines are the primary power source for global transportation of freight. Light-duty diesel-fueled passenger vehicles have much higher fuel economy than

417

Hennepin County`s experience with heavy-duty ethanol vehicles  

DOE Green Energy (OSTI)

From November 1993 to October 1996, Hennepin County, which includes Minneapolis, field-tested two heavy-duty snowplow/road maintenance trucks fueled by ethanol. The overall objective of this program was to collect data from original equipment manufacturer alternative fuel heavy-duty trucks, along with comparable data from a similarly configured diesel-powered vehicle, to establish economic, emissions, performance, and durability data for the alternative fuel technology. These ethanol trucks, along with an identical third truck equipped with a diesel engine, were operated year round to maintain the Hennepin county roads. In winter, the trucks were run in 8-hour shifts plowing and hauling snow from urban and suburban roads. For the rest of the year, the three trucks were used to repair and maintain these same roads. As a result of this project, a considerable amount of data was collected on E95 fuel use, as well as maintenance, repair, emissions, and operational characteristics. Maintenance and repair costs of the E95 trucks were considerably higher primarily due to fuel filter and fuel pump issues. From an emissions standpoint, the E95 trucks emitted less particulate matter and fewer oxides of nitrogen but more carbon monoxide and hydrocarbons. Overall, the E95 trucks operated as well as the diesel, as long as the fuel filters were changed frequently. This project was a success in that E95, a domestically produced fuel from a renewable energy source, was used in a heavy-duty truck application and performed the same rigorous tasks as the diesel counterparts. The drawbacks to E95 as a heavy-duty fuel take the form of higher operational costs, higher fuel costs, shorter range, and the lack of over-the-road infrastructure.

NONE

1998-01-01T23:59:59.000Z

418

Sioux River Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

River Ethanol LLC Jump to: navigation, search Name Sioux River Ethanol LLC Place Hudson, South Dakota Zip 57034 Product Farmer owned ethanol producer, Sioux River Ethanol is...

419

Alternative Fuels Data Center: Alternative Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Definition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Definition The definition of an alternative fuel includes natural gas, liquefied petroleum gas, electricity, hydrogen, fuel mixtures containing not less

420

Fermentation method producing ethanol  

DOE Patents (OSTI)

Ethanol is the major end product of an anaerobic, thermophilic fermentation process using a mutant strain of bacterium Clostridium thermosaccharolyticum. This organism is capable of converting hexose and pentose carbohydrates to ethanol, acetic and lactic acids. Mutants of Clostridium thermosaccharolyticum are capable of converting these substrates to ethanol in exceptionally high yield and with increased productivity. Both the mutant organism and the technique for its isolation are provided.

Wang, Daniel I. C. (Belmont, MA); Dalal, Rajen (Chicago, IL)

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "including fuel ethanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Fuel  

E-Print Network (OSTI)

heavy-water-moderated, light-water-moderated and liquid-metal cooled fast breeder reactors fueled with natural or low-enriched uranium and containing thorium mixed with the uranium or in separate target channels. U-232 decays with a 69-year half-life through 1.9-year half-life Th-228 to Tl-208, which emits a 2.6 MeV gamma ray upon decay. We find that pressurized light-water-reactors fueled with LEU-thorium fuel at high burnup (70 MWd/kg) produce U-233 with U-232 contamination levels of about 0.4 percent. At this contamination level, a 5 kg sphere of U-233 would produce a gammaray dose rate of 13 and 38 rem/hr at 1 meter one and ten years after chemical purification respectively. The associated plutonium contains 7.5 percent of the undesirable heat-generating 88-year half-life isotope Pu-238. However, just as it is possible to produce weapon-grade plutonium in low-burnup fuel, it is also practical to use heavy-water reactors to produce U-233 containing only a few ppm of U-232 if the thorium is segregated in target channels and discharged a few times more frequently than the natural-uranium driver fuel. The dose rate from a 5-kg solid sphere of U-233 containing 5 ppm U-232 could be reduced by a further factor of 30, to about 2 mrem/hr, with a close-fitting lead sphere weighing about 100 kg. Thus the proliferation resistance of thorium fuel cycles depends very much upon how they are implemented. The original version of this manuscript was received by Science & Global Security on

Jungmin Kang A

2001-01-01T23:59:59.000Z

422

Direct use geothermal energy utilization for ethanol production and commercial mushroom growing at Brady's Hot Springs, Nevada. Volume 1. Technical feasibility  

DOE Green Energy (OSTI)

The report is concerned with the technical and economic viability of constructing and operating two geothermally cascaded facilities, a bio-mass fuel ethanol production facility and a mushroom growing facility, where Geothermal Food Processors presently operates the world's largest direct-use geothermal vegetable dehydration facility. A review and analysis of the data generated from the various project tasks indicates that existing, state-of-the-art, ethanol production and mushroom growing technologies can be successfully adapted to include the use of geothermal energy. Additionally, a carefully performed assessment of the geothermal reservoir indicates that this resource is capable of supporting the yearly production of 10 million gallons of fuel ethanol and 1.5 million pounds of mushrooms, in addition to the demands of the dehydration plant. Further, data indicates that the two facilities can be logistically supported from existing agricultural and commerce sources located within economical distances from the geothermal source.

Not Available

1981-09-01T23:59:59.000Z

423

17th European Biomass Conference and Exhibition 2009, Hamburg, Germany Lignocellulosic Ethanol: The Path to Market  

E-Print Network (OSTI)

17th European Biomass Conference and Exhibition 2009, Hamburg, Germany Lignocellulosic Ethanol of transport fuels from biomass is essential if the EU aspiration to substitute 10% of transport fuels investment in R&D in the US, Europe and Asia. The production of ethanol from lignocellulosic biomass

424

OpenEI - ethanol  

Open Energy Info (EERE)

biodiesel CNG compressed natural gas E85 Electricity ethanol hydrogen liquefied natural gas LNG liquefied petroleum gas LPG propane station locations Tue, 14 Dec 2010...

425

Energy Basics: Ethanol  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biodiesel Biofuel Conversion Processes Biopower Bio-Based Products Biomass Resources Geothermal Hydrogen Hydropower Ocean Solar Wind Ethanol Photo of several beakers of gold and...

426

Ethanol | Open Energy Information  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Ethanol Jump to: navigation, search TODO: Add description and move this content to a more...

427

Pacific Ethanol, Inc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

enzyme complexes to convert a potentially wide range of lignocellulosic feedstocks to ethanol and other vendible products. CEO or Equivalent: Dr. Pearse Lyons, Alltech Inc Founder...

428

Driving "Back to the Future": Flex-Fuel Vehicle Awareness | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

"Back to the Future": Flex-Fuel Vehicle Awareness "Back to the Future": Flex-Fuel Vehicle Awareness Driving "Back to the Future": Flex-Fuel Vehicle Awareness March 18, 2011 - 9:41am Addthis Paul Bryan Biomass Program Manager, Office of Energy Efficiency & Renewable Energy The 1908 Model-T Ford was the first vehicle designed to run on ethanol-which Henry Ford termed "the fuel of the future." Today, about 8 million Flexible Fuel Vehicles (FFVs) on our roads are capable of running on either gasoline or gasoline blended with up to 85 percent ethanol (E85). By using E85, these flex fuel vehicles help to decrease our reliance on imported oil and reduce carbon pollution. The "Big Three" U.S. auto makers (Ford, General Motors, and Chrysler) recently announced that half of their entire 2012 vehicle line will be FFVs-including the

429

Santa Clara County Planar Solid Oxide Fuel Cell Demonstration Project  

DOE Green Energy (OSTI)

The Santa Clara County Planar Solid Oxide Fuel Cell (PSOFC) project demonstrated the technical viability of pre-commercial PSOFC technology at the County 911 Communications headquarters, as well as the input fuel flexibility of the PSOFC. PSOFC operation was demonstrated on natural gas and denatured ethanol. The Santa Clara County Planar Solid Oxide Fuel Cell (PSOFC) project goals were to acquire, site, and demonstrate the technical viability of a pre-commercial PSOFC technology at the County 911 Communications headquarters. Additional goals included educating local permit approval authorities, and other governmental entities about PSOFC technology, existing fuel cell standards and specific code requirements. The project demonstrated the Bloom Energy (BE) PSOFC technology in grid parallel mode, delivering a minimum 15 kW over 8760 operational hours. The PSOFC system demonstrated greater than 81% electricity availability and 41% electrical efficiency (LHV net AC), providing reliable, stable power to a critical, sensitive 911 communications system that serves geographical boundaries of the entire Santa Clara County. The project also demonstrated input fuel flexibility. BE developed and demonstrated the capability to run its prototype PSOFC system on ethanol. BE designed the hardware necessary to deliver ethanol into its existing PSOFC system. Operational parameters were determined for running the system on ethanol, natural gas (NG), and a combination of both. Required modeling was performed to determine viable operational regimes and regimes where coking could occur.

Fred Mitlitsky; Sara Mulhauser; David Chien; Deepak Shukla; David Weingaertner

2009-11-14T23:59:59.000Z

430

Bioethanol: Fueling sustainable transportation  

Science Conference Proceedings (OSTI)

Ethanol made from biomass, or bioethanol, can positively impact the national energy security, the economy, and the environment. Producing and using bioethanol can help alleviate some of the negative impacts of the dependence on fossil fuels.

Neufeld, S.

2000-05-25T23:59:59.000Z

431

Vehicle Technologies Office: Fact #588: September 14, 2009 Fuel Economy  

NLE Websites -- All DOE Office Websites (Extended Search)

8: September 14, 8: September 14, 2009 Fuel Economy Changes Due to Ethanol Content to someone by E-mail Share Vehicle Technologies Office: Fact #588: September 14, 2009 Fuel Economy Changes Due to Ethanol Content on Facebook Tweet about Vehicle Technologies Office: Fact #588: September 14, 2009 Fuel Economy Changes Due to Ethanol Content on Twitter Bookmark Vehicle Technologies Office: Fact #588: September 14, 2009 Fuel Economy Changes Due to Ethanol Content on Google Bookmark Vehicle Technologies Office: Fact #588: September 14, 2009 Fuel Economy Changes Due to Ethanol Content on Delicious Rank Vehicle Technologies Office: Fact #588: September 14, 2009 Fuel Economy Changes Due to Ethanol Content on Digg Find More places to share Vehicle Technologies Office: Fact #588: September 14, 2009 Fuel Economy Changes Due to Ethanol Content on

432

Finding of No Significant Impact for the Proposed Construction and Operation of a Cellulosic Ethanol Plant, Treutlen County, Georgia  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

05 05 October 15, 2007 FINDING OF NO SIGNIFICANT IMPACT for the PROPOSED CONSTRUCTION AND OPERATION OF A CELLULOSIC ETHANOL PLANT, TREUTLEN COUNTY, GEORGIA SUMMARY: The U. S. Department of Energy (DOE) conducted an environmental assessment (EA) that analyzed the potential impacts associated with the construction and operation of a proposed cellulosic ethanol plant in Treutlen County, Georgia. DOE, through its Golden Field Office, in Golden, Colorado, would provide funding to Range Fuels, Inc., a Colorado based corporation, to support the construction and initial operation of the proposed plant. All discussion, analysis and findings related to the potential impacts of construction and operation ofthe proposed cellulosic ethanol plant (including the applicant-committed practices presented in the Proposed Action) are contained in the Final EA. The Final EA is hereby incorporated

433

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Carolina Incentives and Laws Carolina Incentives and Laws The following is a list of expired, repealed, and archived incentives, laws, regulations, funding opportunities, or other initiatives related to alternative fuels and vehicles, advanced technologies, or air quality. Biofuels Retail Incentive Expired: 06/30/2012 Ethanol retailers selling fuel blends of at least 70% ethanol (E70) are eligible for a $0.05 incentive per gallon of ethanol blended fuel sold, provided that the fuel is subject to the South Carolina motor fuel user fee. Additionally, biodiesel retailers are eligible for a $0.25 incentive per gallon of biodiesel (B100) sold as pure biodiesel or as part of a biodiesel blend, provided that the blend contains at least 2% biodiesel (B2). These incentives apply only to fuel sold before July 1, 2012.

434

Brazilian experience with self-adjusting fuel system for variable alcohol-gasoline blends  

DOE Green Energy (OSTI)

A fuel control system has been developed which allows fuels of various stoichiometries to be used interchangeably without suffering a fuel consumption penalty, allowing a more efficient use of the combustion energy. This Adaptive Lean Limit Control system uses a single, digital sensor and an electronic circuit to detect lean limit engine operation, and feeds back information to the fuel system to maintain the best economy mixture, regardless of the fuel blend being used. The hardware is described, and the results of extensive vehicle testing, using 20% and 50% ethanol-gasoline blends, are included.

Leshner, M.D.; Luengo, C.A.; Calandra, F.

1980-01-01T23:59:59.000Z

435

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tools Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Fuel Properties Search Fuel Properties Comparison Create a custom chart comparing fuel properties and characteristics for multiple fuels. Select the fuel and properties of interest. Select Fuels Clear all All Fuels Gasoline Diesel (No. 2) Biodiesel Compressed Natural Gas (CNG) Electricity Ethanol Hydrogen Liquefied Natural Gas (LNG) Propane (LPG)

436

Ethanol annual report FY 1990  

DOE Green Energy (OSTI)

This report summarizes the research progress and accomplishments of the US Department of Energy (DOE) Ethanol from Biomass Program, field managed by the Solar Energy Research Institute, during FY 1990. The report includes an overview of the entire program and summaries of individual research projects. These projects are grouped into the following subject areas: technoeconomic analysis; pretreatment; cellulose conversion; xylose fermentation; and lignin conversion. Individual papers have been indexed separately for inclusion on the data base.

Texeira, R.H.; Goodman, B.J. (eds.)

1991-01-01T23:59:59.000Z

437

Missouri Renewable Fuel Standard Brochure  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

The Missouri Renewable Fuel Standard The Missouri Renewable Fuel Standard requires ethanol in most gasoline beginning January 1, 2008. ARE YOU READY? TEN THINGS MISSOURI TANK OWNERS AND OPERATORS NEED TO KNOW ABOUT ETHANOL 1. Ethanol is a type of alcohol made usually from corn in Missouri and other states. 2. E10 is a blend of 10% ethanol and 90% unleaded gasoline. E85 is a blend of 75% to 85% fuel ethanol and 25% to 15% unleaded gasoline. Blends between E10 and E85 are not allowed to be sold at retail. 3. Any vehicle or small engine should run fine on E10, but only specially designed vehicles can use E85. 4. You are not required to label your dispensers disclosing the ethanol content if you are selling E10. However, you are required to label your dispensers if you are selling E85.

438

LAMINAR BURNING VELOCITY OF GASOLINES WITH ADDITION OF ETHANOL  

E-Print Network (OSTI)

1 LAMINAR BURNING VELOCITY OF GASOLINES WITH ADDITION OF ETHANOL P. Dirrenberger1 , P.A. Glaude*1 (2014) 162-169" DOI : 10.1016/j.fuel.2013.07.015 #12;2 LAMINAR BURNING VELOCITY OF GASOLINES, Sweden Abstract The adiabatic laminar burning velocities of a commercial gasoline and of a model fuel (n

439

Sunnyside Ethanol | Open Energy Information  

Open Energy Info (EERE)

Sunnyside Ethanol Jump to: navigation, search Name Sunnyside Ethanol Place Pittsburgh, Pennsylvania Zip PA 15237 Product Pennsylvania based company created for the specific purpose...

440

Ethanol India | Open Energy Information  

Open Energy Info (EERE)

to: navigation, search Name Ethanol India Place Kolhapur, Maharashtra, India Sector Biofuels Product Maharashtra-based biofuels consultancy firm. References Ethanol India1...

Note: This page contains sample records for the topic "including fuel ethanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Northstar Ethanol | Open Energy Information  

Open Energy Info (EERE)

Northstar Ethanol Jump to: navigation, search Name Northstar Ethanol Place Lake Crystal, Minnesota Zip 56055 Product Corn-base bioethanol producer in Minnesotta References...

442

Advanced Vehicle Testing Activity: Alternative Fuel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

are vehicles designed to operate on alternative fuels such as compressed and liquefied natural gas, liquefied petroleum gas (propane), ethanol, biodiesel, electricity, and...

443

Flex-Fuel Vehicle (FFV) Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Acrobat Icon Brochure presenting a colorful story of the complete energy lifecycle of ethanol from corn to fuel (Argonne National Laboratory's Center for Transportation...

444

NREL: Technology Deployment - Fuels, Vehicles, and Transportation...  

NLE Websites -- All DOE Office Websites (Extended Search)

in-depth information about biodiesel, electricity, ethanol, hydrogen, natural gas, and propane, as well as the vehicles that use these fuels and the infrastructure used to deliver...

445

State-Level Workshops on Ethanol for Transportation: Final Report  

DOE Green Energy (OSTI)

Final report on subcontract for holding four state-level workshops (Hawaii, Kentucky, Nevada, California) to facilitate development of ethanol production facilities in those states. In 2002/2003, under contract to the National Renewable Energy Laboratory, BBI International conducted state-level workshops ethanol in Hawaii, Nevada, Kentucky and California. These four workshops followed over 30 other workshops previous held under the Ethanol Workshop Series program sponsored by the U.S. Department of Energy. Two other workshops were conducted by BBI International during 2003, Oklahoma and Kansas, under contract to the Western Regional Biomass Energy Program. The Ethanol Workshop Series (EWS) was intended to provide a forum for interest groups to gather and discuss what needs to be accomplished to facilitate ethanol production in-state using local biomass resources. In addition, the EWS was to provide a promotional and educational forum for policy makers, community leaders, media and potential stakeholders. It was recognized that to eventually achieve biomass-ethanol production, it was necessary to support grain-ethanol production as a bridge. The long-term goal of the Workshops was to facilitate the development of biomass ethanol plants at a state-level. The near-term goal was to provide correct and positive information for education, promotion, production and use of fuel ethanol. The EWS drew from 65 to over 200 attendees and were deemed by the local organizers to have served the objectives set out by the U.S. Department of Energy.

Graf, A.

2004-01-01T23:59:59.000Z

446

Pacific Ethanol, Inc | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pacific Ethanol, Inc Pacific Ethanol, Inc RSE Pulp & Chemical, LLC (Subsidiary of Red Shield Environmental, LLC)...

447

Technoeconomic Analysis of a Lignocellulosic Biomass Indirect Gasification Process to Make Ethanol via Mixed Alcohols Synthesis  

Science Conference Proceedings (OSTI)

A technoeconomic analysis of a 2000 tonne/day lignocellulosic biomass conversion process to make mixed alcohols via gasification and catalytic synthesis was completed. The process, modeled using ASPEN Plus process modeling software for mass and energy calculations, included all major process steps to convert biomass into liquid