Powered by Deep Web Technologies
Note: This page contains sample records for the topic "including distributed generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Application of honey-bee mating optimization on state estimation of a power distribution system including distributed generators  

Science Journals Connector (OSTI)

We present a new approach based on honey-bee mating optimization to estimate the state variables in distribution networks including distributed generators. The proposed method considers practical models of...

Taher Niknam

2008-12-01T23:59:59.000Z

2

Distributed Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Untapped Value of Backup Generation Untapped Value of Backup Generation While new guidelines and regulations such as IEEE (Institute of Electrical and Electronics Engineers) 1547 have come a long way in addressing interconnection standards for distributed generation, utilities have largely overlooked the untapped potential of these resources. Under certain conditions, these units (primarily backup generators) represent a significant source of power that can deliver utility services at lower costs than traditional centralized solutions. These backup generators exist today in large numbers and provide utilities with another option to reduce peak load, relieve transmission congestion, and improve power reliability. Backup generation is widely deployed across the United States. Carnegie Mellon's Electricity

3

Modeling, control, and power management of a power electrical system including two distributed generators based on fuel cell and supercapacitor  

Science Journals Connector (OSTI)

This paper focuses on Distributed Generator (DG) integration in Power Electrical System (PES) for dispersed nodes. The main objective of the DG use can be classified into two aspects: a load following service and ancillary service systems. In this study the DG system contains a Fuel cell and a Supercapacitor storage device. A gas turbine system is modeled in order to estimate the PES frequency behavior under a variable power demand. The main goal of this work is to develop a DG control strategy with the aim to smooth the frequency and the voltage peak variations. To assess the different management stages the power flow exchanged between DGs and PES is depicted and discussed for different power demand variations. The results found with the DGs integration strategy confirm the frequency and voltage regulations and also prove the well power flow management.

L. Krichen

2013-01-01T23:59:59.000Z

4

CONSULTANT REPORT DISTRIBUTED GENERATION  

E-Print Network (OSTI)

Energy Jobs Plan, Governor Brown established a 2020 goal of 12,000 megawatts of localized renewable energy development, or distributed generation, in California. In May 2012, Southern California Edison, renewables, interconnection, integration, electricity, distribution, transmission, costs. Please use

5

Power generation method including membrane separation  

DOE Patents (OSTI)

A method for generating electric power, such as at, or close to, natural gas fields. The method includes conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas by means of a membrane separation step. This step creates a leaner, sweeter, drier gas, which is then used as combustion fuel to run a turbine, which is in turn used for power generation.

Lokhandwala, Kaaeid A. (Union City, CA)

2000-01-01T23:59:59.000Z

6

GASIFICATION FOR DISTRIBUTED GENERATION  

SciTech Connect

A recent emphasis in gasification technology development has been directed toward reduced-scale gasifier systems for distributed generation at remote sites. The domestic distributed power generation market over the next decade is expected to be 5-6 gigawatts per year. The global increase is expected at 20 gigawatts over the next decade. The economics of gasification for distributed power generation are significantly improved when fuel transport is minimized. Until recently, gasification technology has been synonymous with coal conversion. Presently, however, interest centers on providing clean-burning fuel to remote sites that are not necessarily near coal supplies but have sufficient alternative carbonaceous material to feed a small gasifier. Gasifiers up to 50 MW are of current interest, with emphasis on those of 5-MW generating capacity. Internal combustion engines offer a more robust system for utilizing the fuel gas, while fuel cells and microturbines offer higher electric conversion efficiencies. The initial focus of this multiyear effort was on internal combustion engines and microturbines as more realistic near-term options for distributed generation. In this project, we studied emerging gasification technologies that can provide gas from regionally available feedstock as fuel to power generators under 30 MW in a distributed generation setting. Larger-scale gasification, primarily coal-fed, has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries. Commercial-scale gasification activities are under way at 113 sites in 22 countries in North and South America, Europe, Asia, Africa, and Australia, according to the Gasification Technologies Council. Gasification studies were carried out on alfalfa, black liquor (a high-sodium waste from the pulp industry), cow manure, and willow on the laboratory scale and on alfalfa, black liquor, and willow on the bench scale. Initial parametric tests evaluated through reactivity and product composition were carried out on thermogravimetric analysis (TGA) equipment. These tests were evaluated and then followed by bench-scale studies at 1123 K using an integrated bench-scale fluidized-bed gasifier (IBG) which can be operated in the semicontinuous batch mode. Products from tests were solid (ash), liquid (tar), and gas. Tar was separated on an open chromatographic column. Analysis of the gas product was carried out using on-line Fourier transform infrared spectroscopy (FT-IR). For selected tests, gas was collected periodically and analyzed using a refinery gas analyzer GC (gas chromatograph). The solid product was not extensively analyzed. This report is a part of a search into emerging gasification technologies that can provide power under 30 MW in a distributed generation setting. Larger-scale gasification has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries, and it is probable that scaled-down applications for use in remote areas will become viable. The appendix to this report contains a list, description, and sources of currently available gasification technologies that could be or are being commercially applied for distributed generation. This list was gathered from current sources and provides information about the supplier, the relative size range, and the status of the technology.

Ronald C. Timpe; Michael D. Mann; Darren D. Schmidt

2000-05-01T23:59:59.000Z

7

Distributively generated lattices Grigore Calugareanu  

E-Print Network (OSTI)

Distributively generated lattices Grigore Calugareanu Abstract In 1938 [6] Ore proved the following and distributive is equivalent to locally cyclic (i.e. each finite set of elements generates a cyclic group). A lattice is called distributively generated [resp. cycle generated] if every element is a join

Cãlugãreanu, Grigore

8

Arnold Schwarzenegger DISTRIBUTED GENERATION DRIVETRAIN  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor DISTRIBUTED GENERATION DRIVETRAIN FOR WINDPOWER APPLICATION Prepared in this report. #12;ENERGY INNOVATIONS SMALL GRANT (EISG) PROGRAM INDEPENDENT ASSESSMENT REPORT (IAR) DISTRIBUTED GENERATION DRIVETRAIN FOR WINDPOWER APPLICATION EISG AWARDEE Dehlsen Associates, LLC 7985 Armas Canyon Road

9

DISTRIBUTED GENERATION AND COGENERATION POLICY  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION DISTRIBUTED GENERATION AND COGENERATION POLICY ROADMAP FOR CALIFORNIA to the development of this report by the Energy Commission's Distributed Generation Policy Advisory Team; Melissa;ABSTRACT This report defines a year 2020 policy vision for distributed generation and cogeneration

10

EIA - Distributed Generation in Buildings  

Gasoline and Diesel Fuel Update (EIA)

Previous reports Previous reports Distributed Generation in Buildings - AEO2005 Modeling Distributed Electricity Generation in the NEMS Buildings Models - July 2002 Modeling Distributed Generation in the Buildings Sectors Supplement to the Annual Energy Outlook 2013 - Release date: August 29, 2013 Distributed and dispersed generation technologies generate electricity near the particular load they are intended to serve, such as a residential home or commercial building. EIA defines distributed generation (DG) as being connected to the electrical grid and intended to directly offset retail sales, and dispersed generation as being off-grid and often used for remote applications where grid-connected electricity is cost-prohibitive. Dispersed generation in the buildings sector is not currently gathered by

11

Distributed Generation Status Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 DOE Peer Review Presentation 0 DOE Peer Review Presentation © Chevron 2010 CERTS Microgrid Demonstration with Large scale Energy Storage & Renewable Generation November 5, 2010 Presented By: Craig Gee, Project Manager (for Mr. Eduardo Alegria - Principal Investigator) Energy Solutions November 2010 DOE Peer Review Presentation © Chevron 2010 Agenda * Introduction - Who we are * Project Team & Site * Project Purpose & Objectives * Project Impacts * System Elements * Project Status * Research Elements * Recent Developments in California * Questions & Comments November 2010 DOE Peer Review Presentation © Chevron 2010 Chevron Energy Solutions Designed & Implemented over 900 Projects in the U.S.  Chevron ES, a division of Chevron USA, Inc. is committed to delivering economically & environmentally advantageous green

12

Renewable Energy: Distributed Generation Policies and Programs...  

Energy Savers (EERE)

Distributed Generation Policies and Programs Distributed generation is the term used when electricity is generated from sources, often renewable energy sources, near the point of...

13

Distributions: generators of observations What about reality?  

E-Print Network (OSTI)

Distributions: generators of observations What about reality? An example: homeopathy Conclusion Models, Estimation and Reality #12;Distributions: generators of observations What about reality? An example: homeopathy Conclusion 1. Distributions: generators of observations Statistical modelling is based

Hennig, Christian

14

GENERATING TEXT DESCRIPTIONS FOR GEOGRAPHICALLY DISTRIBUTED SENSORS  

E-Print Network (OSTI)

GENERATING TEXT DESCRIPTIONS FOR GEOGRAPHICALLY DISTRIBUTED SENSORS Martin Molina and Javier generation of geographic descriptions in natural language for geographically distributed sensors. We describe generation of geographic descriptions in natural language for geographically distributed sensors. We describe

Molina, Martín

15

Other Distributed Generation Technologies | Open Energy Information  

Open Energy Info (EERE)

Generation Technologies Incentives Retrieved from "http:en.openei.orgwindex.php?titleOtherDistributedGenerationTechnologies&oldid267183...

16

Definition: Distributed generation | Open Energy Information  

Open Energy Info (EERE)

generation generation Jump to: navigation, search Dictionary.png Distributed generation A term used by the power industry to describe localized or on-site power generation[1] View on Wikipedia Wikipedia Definition Distributed generation, also called on-site generation, dispersed generation, embedded generation, decentralized generation, decentralized energy or distributed energy, generates electricity from many small energy sources. Most countries generate electricity in large centralized facilities, such as fossil fuel, nuclear, large solar power plants or hydropower plants. These plants have excellent economies of scale, but usually transmit electricity long distances and can negatively affect the environment. Distributed generation allows collection of energy from many

17

Network Reconfiguration at the Distribution System with Distributed Generators  

Science Journals Connector (OSTI)

This article proposes a novel model for distribution network reconfiguration to meet current distribution system operating demands. In the model the connection of distributed generators to distribution system is ...

Gao Xiaozhi; Li Linchuan; Xue Hailong

2010-01-01T23:59:59.000Z

18

Pseudoabsence Generation Strategies for Species Distribution Models  

E-Print Network (OSTI)

Pseudoabsence Generation Strategies for Species Distribution Models Brice B. Hanberry1 *, Hong S: Pseudoabsence generation strategy completely affected the area predicted as present for species distribution) Pseudoabsence Generation Strategies for Species Distribution Models. PLoS ONE 7(8): e44486. doi:10.1371/ journal

He, Hong S.

19

Air Quality Impact of Distributed Generation of Electricity  

E-Print Network (OSTI)

Distributed Generators .from a typical distributed generator. Therefore, there is aStations 3.3.1 Distributed Generators The physical

Jing, Qiguo

2011-01-01T23:59:59.000Z

20

Impacts of distributed generation on Smart Grid.  

E-Print Network (OSTI)

??With the concept of Smart Grid, there are high possibilities that the interconnection of distributed generation issues can be solved and minimised. This thesis discusses (more)

Hidayatullah, Nur Asyik

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "including distributed generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Distributed Generation Dispatch Optimization under Various Electricity Tariffs  

E-Print Network (OSTI)

Distributed Generation Dispatch Optimization Under Various Electricity Tariffs which generatorsDistributed Generation Dispatch Optimization Under Various Electricity Tariffs no-DG The generator

Firestone, Ryan; Marnay, Chris

2007-01-01T23:59:59.000Z

22

Reliability modeling of transmission and distribution systems including dependent failures  

E-Print Network (OSTI)

is considered. Therefore, the trans i t ion rate mat r i x of the entire system need not be generated. Th i s method is compared wi th the sequential method for normal and stormy weather condit ions, and is then extended to include m weather conditions... . 9 E . Cut -Set Equations 10 III M A R K O V C U T - S E T M E T H O D 13 A . Basic Approach 13 B . Markov Cut -Set Me thod 13 C . Examp le 18 D . Compar ison wi th the Sequential Me thod 22 E . Cut-Sets w i th m Weather States 24 F . Extens...

Beydoun, Rami Sami

2012-06-07T23:59:59.000Z

23

A reliability assessment methodology for distribution systems with distributed generation  

E-Print Network (OSTI)

Generation and Micro-Grid Networks. v TABLE OF CONTENTS CHAPTER Page I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1 A. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1 B. Distribution System Reliability... Generation and Micro-Grid Networks. v TABLE OF CONTENTS CHAPTER Page I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1 A. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1 B. Distribution System Reliability...

Duttagupta, Suchismita Sujaya

2006-08-16T23:59:59.000Z

24

Distributed Generation and Grid Interconnection  

Science Journals Connector (OSTI)

Thus far we have considered point compensation and the correction of the voltage or current at a particular location in the network. This chapter considers the voltage profile of lines with distributed loads a...

Arindam Ghosh; Gerard Ledwich

2002-01-01T23:59:59.000Z

25

Abatement of Air Pollution: Distributed Generators (Connecticut) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Distributed Generators (Connecticut) Distributed Generators (Connecticut) Abatement of Air Pollution: Distributed Generators (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Connecticut Program Type Environmental Regulations Provider Department of Energy and Environmental Protection

26

Nonlinear DSTATCOM controller design for distribution network with distributed generation to enhance voltage stability  

E-Print Network (OSTI)

Nonlinear DSTATCOM controller design for distribution network with distributed generation Accepted 19 June 2013 Keywords: Distributed generation Distribution network DSATACOM Partial feedback connected to a distribution network with distributed generation (DG) to regulate the line voltage

Pota, Himanshu Roy

27

Distributed Generation Investment by a Microgrid Under Uncertainty  

E-Print Network (OSTI)

option on natural gas generation, which increases in valueL ABORATORY Distributed Generation Investment by a MicrogridORMMES06 Distributed Generation Investment by a Microgrid

Siddiqui, Afzal; Marnay, Chris

2006-01-01T23:59:59.000Z

28

Modeling distributed generation in the buildings sectors  

Gasoline and Diesel Fuel Update (EIA)

Modeling distributed generation Modeling distributed generation in the buildings sectors August 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Modeling distributed generation in the buildings sectors i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. July 2013 U.S. Energy Information Administration | Modeling distributed generation in the buildings sectors 1

29

Integration of Demand Side Management, Distributed Generation...  

Open Energy Info (EERE)

States. Annex 8 provides a list of software tools for analysing various aspects of demand response, distributed generation, smart grid and energy storage. Annex 9 is a list of...

30

Distributed generation - the fuel processing example  

SciTech Connect

The increased costs of transportation and distribution are leading many commercial and industrial firms to consider the on-site generation for energy and other commodities used in their facilities. This trend has been accelerated by the development of compact, efficient processes for converting basic raw materials into finished services at the distributed sites. Distributed generation with the PC25{trademark} fuel cell power plant is providing a new cost effective technology to meet building electric and thermal needs. Small compact on-site separator systems are providing nitrogen and oxygen to many industrial users of these gases. The adaptation of the fuel processing section of the PC25 power plant for on-site hydrogen generation at industrial sites extends distributed generation benefits to the users of industrial hydrogen.

Victor, R.A. [Praxair, Inc., Tonawanda, NY (United States); Farris, P.J.; Maston, V. [International Fuel Cells Corp., South Windsor, CT (United States)

1996-12-31T23:59:59.000Z

31

Implementation of a Distributed Pseudorandom Number Generator  

Science Journals Connector (OSTI)

In parallel Monte Carlo simulations, it is highly desirable to have a system of pseudo-random number generators that has good statistical properties and allows ... processes. In this work, we discuss a distributed

Jian Chen; Paula Whitlock

1995-01-01T23:59:59.000Z

32

Regulatory Considerations for Developing Distributed Generation Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regulatory Considerations for Developing Distributed Generation Regulatory Considerations for Developing Distributed Generation Projects Webinar Regulatory Considerations for Developing Distributed Generation Projects Webinar May 23, 2012 11:30AM to 1:00PM MDT The purpose of this webinar is to educate NRECA and APPA members, Tribes, and federal energy managers about a few of the regulatory issues that should be considered in developing business plans for distributed generation projects. This webinar is sponsored by the DOE Office of Indian Energy Policy and Programs, DOE Energy Efficiency and Renewable Energy Tribal Energy Program, Western Area Power Administration, DOE Federal Energy Management Program, DOE Office of Electricity Delivery and Energy Reliability, National Rural Electric Cooperative Association, and the American Public Power

33

Distributed Generation Systems Inc | Open Energy Information  

Open Energy Info (EERE)

Distributed Generation Systems Inc Distributed Generation Systems Inc Name Distributed Generation Systems Inc Address 200 Union Blvd Place Lakewood, Colorado Zip 80228 Sector Wind energy Product Developer of electricity generation wind power facilities Website http://www.disgenonline.com/ Coordinates 39.718048°, -105.1324055° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.718048,"lon":-105.1324055,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

34

FCT Technology Validation: Stationary/Distributed Generation Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Stationary/Distributed Stationary/Distributed Generation Projects to someone by E-mail Share FCT Technology Validation: Stationary/Distributed Generation Projects on Facebook Tweet about FCT Technology Validation: Stationary/Distributed Generation Projects on Twitter Bookmark FCT Technology Validation: Stationary/Distributed Generation Projects on Google Bookmark FCT Technology Validation: Stationary/Distributed Generation Projects on Delicious Rank FCT Technology Validation: Stationary/Distributed Generation Projects on Digg Find More places to share FCT Technology Validation: Stationary/Distributed Generation Projects on AddThis.com... Home Transportation Projects Stationary/Distributed Generation Projects DOE Projects Non-DOE Projects Integrated Projects Quick Links Hydrogen Production

35

Next-Generation Distributed Power Management for Photovoltaic Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Next-Generation Distributed Power Management for Photovoltaic Systems Next-Generation Distributed Power Management for Photovoltaic Systems Speaker(s): Jason Stauth Date: July 29, 2011 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Steven Lanzisera In recent years, the balance of systems (BOS) side of photovoltaic (PV) energy has become a major focus in the effort to drive solar energy towards grid parity. The power management architecture has expanded to include a range of distributed solutions, including microinverters and 'micro' DC-DC converters to solve problems with mismatch (shading), expand networking and control, and solve critical BOS issues such as fire safety. This talk will introduce traditional and distributed approaches for PV systems, and will propose a next-generation architecture based on a new

36

Distributed Generation System Characteristics and Costs in the Buildings  

Gasoline and Diesel Fuel Update (EIA)

1.6 mb) 1.6 mb) Appendix A - Photovoltaic (PV) Cost and Performance Characteristics for Residential and Commercial Applications (1.0 mb) Appendix B - The Cost and Performance of Distributed Wind Turbines, 2010-35 (0.5 mb) Distributed Generation System Characteristics and Costs in the Buildings Sector Release date: August 7, 2013 Distributed generation in the residential and commercial buildings sectors refers to the on-site generation of energy, often electricity from renewable energy systems such as solar photovoltaics (PV) and small wind turbines. Many factors influence the market for distributed generation, including government policies at the local, state, and federal level, and project costs, which vary significantly depending on time, location, size, and application.

37

Distributed Generation Investment by a Microgrid under Uncertainty++++ Afzal Siddiqui  

E-Print Network (OSTI)

1 Distributed Generation Investment by a Microgrid under Uncertainty++++ Afzal Siddiqui University's decision to invest in a distributed generation (DG) unit fuelled by natural gas. While the long. KEYWORDS. OR in Energy; Distributed Generation; Real Options; Optimal Investment. 1. INTRODUCTION

Guillas, Serge

38

Consequences of Fault Currents Contributed by Distributed Generation  

E-Print Network (OSTI)

Consequences of Fault Currents Contributed by Distributed Generation Intermediate Project Report Currents Contributed by Distributed Generation Intermediate Report for the Project "New Implications in systems with distributed generation. The main concept described is that fault current throughout power

39

Distributed Generation Investment by a Microgrid Under Uncertainty  

E-Print Network (OSTI)

flexibility. The DG investment opportunity is similar to aDistributed Generation Investment by a Microgrid Under06 Distributed Generation Investment by a Microgrid Under

Siddiqui, Afzal; Marnay, Chris

2006-01-01T23:59:59.000Z

40

Fuel Cell Comparison of Distributed Power Generation Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cell Comparison of Distributed Power Generation Technologies Fuel Cell Comparison of Distributed Power Generation Technologies This report examines backup power and prime power...

Note: This page contains sample records for the topic "including distributed generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Worst Case Scenario for Large Distribution Networks with Distributed Generation  

E-Print Network (OSTI)

, tides, and geothermal heat, is the best choice as alternative source of energy. The interconnection and distribution networks, finally to the electric energy consumers. The life style of a nation is measured of these renewable energy sources and other forms of small generation such as combined heat and power (CHP) units

Pota, Himanshu Roy

42

Efficient Generation of PH-distributed Random Gabor Horvath2  

E-Print Network (OSTI)

Efficient Generation of PH-distributed Random Variates G´abor Horv´ath2 , Philipp Reinecke1 , Mikl approaches. Simulations require the efficient generation of random variates from PH distributions. PH generation of PH distributed variates. Key words: PH distribution, pseudo random number generation. 1

Telek, Miklós

43

Property:Distributed Generation System Power Application | Open Energy  

Open Energy Info (EERE)

Application Application Jump to: navigation, search This is a property of type Page. Pages using the property "Distributed Generation System Power Application" Showing 21 pages using this property. D Distributed Generation Study/10 West 66th Street Corp + Based Load + Distributed Generation Study/Aisin Seiki G60 at Hooligans Bar and Grille + Based Load + Distributed Generation Study/Arrow Linen + Based Load + Distributed Generation Study/Dakota Station (Minnegasco) + Based Load +, Backup + Distributed Generation Study/Elgin Community College + Based Load +, Backup + Distributed Generation Study/Emerling Farm + Based Load + Distributed Generation Study/Floyd Bennett + Based Load + Distributed Generation Study/Harbec Plastics + Based Load + Distributed Generation Study/Hudson Valley Community College + Based Load +

44

Automatically Generating Symbolic Prefetches for Distributed Transactional Memories  

E-Print Network (OSTI)

Automatically Generating Symbolic Prefetches for Distributed Transactional Memories Alokika Dash static compiler analysis that can automatically generate symbolic prefetches for distributed applications and Brian Demsky University of California, Irvine Abstract. Developing efficient distributed applications

Boyer, Edmond

45

Compiler Techniques for Determining Data Distribution and Generating Communication Sets on DistributedMemory Multicomputers 1  

E-Print Network (OSTI)

Compiler Techniques for Determining Data Distribution and Generating Communication Sets and generating communication sets on distributed memory multicomputers. First, we propose a dynamic programming; 1 Introduction Arrays distribution and communication sets generation are two problems we must solve

Chen, Sheng-Wei

46

An Optimized Adaptive Protection Scheme for Distribution Systems Penetrated with Distributed Generators  

Science Journals Connector (OSTI)

An intelligent adaptive protection scheme for distribution systems penetrated with distributed generators is proposed in this chapter. The scheme...

Ahmed H. Osman; Mohamed S. Hassan

2014-01-01T23:59:59.000Z

47

Property:Distributed Generation System Enclosure | Open Energy Information  

Open Energy Info (EERE)

System Enclosure System Enclosure Jump to: navigation, search This is a property of type String. The allowed values for this property are: Indoor Outdoor Dedicated Shelter Pages using the property "Distributed Generation System Enclosure" Showing 22 pages using this property. D Distributed Generation Study/10 West 66th Street Corp + Indoor + Distributed Generation Study/615 kW Waukesha Packaged System + Outdoor + Distributed Generation Study/Aisin Seiki G60 at Hooligans Bar and Grille + Outdoor + Distributed Generation Study/Arrow Linen + Outdoor + Distributed Generation Study/Dakota Station (Minnegasco) + Outdoor + Distributed Generation Study/Elgin Community College + Indoor + Distributed Generation Study/Emerling Farm + Dedicated Shelter + Distributed Generation Study/Floyd Bennett + Outdoor +

48

Consequences of Fault Currents Contributed by Distributed Generation  

E-Print Network (OSTI)

Consequences of Fault Currents Contributed by Distributed Generation Supplemental Project Report Currents Contributed by Distributed Generation Natthaphob Nimpitiwan Gerald Heydt Research Project Team distributed generation (DG) is growing in the over- all generation mix due in part to state and national

49

Reducing the Cost of Generating APH-distributed Random Numbers  

E-Print Network (OSTI)

Reducing the Cost of Generating APH-distributed Random Numbers Philipp Reinecke1 , Mikl´os Telek2 for generating PH-distributed random numbers. In this work, we discuss algorithms for generating random numbers from PH distributions and propose two algorithms for reducing the cost associated with generating

Telek, Miklós

50

Advanced Distributed Generation LLC | Open Energy Information  

Open Energy Info (EERE)

LLC LLC Jump to: navigation, search Name Advanced Distributed Generation LLC Address 200 West Scott Park Drive, MS # 410 Place Toledo, Ohio Zip 43607 Sector Solar Product Agriculture; Consulting; Installation; Maintenance and repair; Retail product sales and distribution Phone number 419-725-3401 Website http://www.advanced-dg.com Coordinates 41.6472294°, -83.5975882° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6472294,"lon":-83.5975882,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

51

Integrated, Automated Distributed Generation Technologies Demonstration  

SciTech Connect

The purpose of the NETL Project was to develop a diverse combination of distributed renewable generation technologies and controls and demonstrate how the renewable generation could help manage substation peak demand at the ATK Promontory plant site. The Promontory plant site is located in the northwestern Utah desert approximately 25 miles west of Brigham City, Utah. The plant encompasses 20,000 acres and has over 500 buildings. The ATK Promontory plant primarily manufactures solid propellant rocket motors for both commercial and government launch systems. The original project objectives focused on distributed generation; a 100 kW (kilowatt) wind turbine, a 100 kW new technology waste heat generation unit, a 500 kW energy storage system, and an intelligent system-wide automation system to monitor and control the renewable energy devices then release the stored energy during the peak demand time. The original goal was to reduce peak demand from the electrical utility company, Rocky Mountain Power (RMP), by 3.4%. For a period of time we also sought to integrate our energy storage requirements with a flywheel storage system (500 kW) proposed for the Promontory/RMP Substation. Ultimately the flywheel storage system could not meet our project timetable, so the storage requirement was switched to a battery storage system (300 kW.) A secondary objective was to design/install a bi-directional customer/utility gateway application for real-time visibility and communications between RMP, and ATK. This objective was not achieved because of technical issues with RMP, ATK Information Technology Departments stringent requirements based on being a rocket motor manufacturing facility, and budget constraints. Of the original objectives, the following were achieved: Installation of a 100 kW wind turbine. Installation of a 300 kW battery storage system. Integrated control system installed to offset electrical demand by releasing stored energy from renewable sources during peak hours of the day. Control system also monitors the wind turbine and battery storage system health, power output, and issues critical alarms. Of the original objectives, the following were not achieved: 100 kW new technology waste heat generation unit. Bi-directional customer/utility gateway for real time visibility and communications between RMP and ATK. 3.4% reduction in peak demand. 1.7% reduction in peak demand was realized instead.

Jensen, Kevin

2014-09-30T23:59:59.000Z

52

Property:Distributed Generation System Application | Open Energy  

Open Energy Info (EERE)

System Application System Application Jump to: navigation, search This is a property of type Page. Pages using the property "Distributed Generation System Application" Showing 22 pages using this property. D Distributed Generation Study/10 West 66th Street Corp + Combined Heat and Power + Distributed Generation Study/615 kW Waukesha Packaged System + Combined Heat and Power + Distributed Generation Study/Aisin Seiki G60 at Hooligans Bar and Grille + Combined Heat and Power + Distributed Generation Study/Arrow Linen + Combined Heat and Power + Distributed Generation Study/Dakota Station (Minnegasco) + Combined Heat and Power + Distributed Generation Study/Elgin Community College + Combined Heat and Power + Distributed Generation Study/Emerling Farm + Combined Heat and Power +

53

Property:Distributed Generation Prime Mover | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Distributed Generation Prime Mover Jump to: navigation, search Property Name Distributed Generation Prime Mover Property Type Page Description Make and model of power sources. Pages using the property "Distributed Generation Prime Mover" Showing 22 pages using this property. D Distributed Generation Study/10 West 66th Street Corp + Ingersoll Rand I-R PowerWorks 70 + Distributed Generation Study/615 kW Waukesha Packaged System + Waukesha VGF 36GLD + Distributed Generation Study/Aisin Seiki G60 at Hooligans Bar and Grille + Aisin Seiki G60 + Distributed Generation Study/Arrow Linen + Coast Intelligen 150-IC with ECS + Distributed Generation Study/Dakota Station (Minnegasco) + Capstone C30 +

54

Distributed Generation with Heat Recovery and Storage  

E-Print Network (OSTI)

selection of on-site power generation with combined heat andTotal Electricity Generation Figure 13. Small MercantileWeekday Total Electricity Generation (No Storage Adoption

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

55

A DISTRIBUTED SHARED KEY GENERATION PROCEDURE USING FRACTIONAL KEYS  

E-Print Network (OSTI)

A DISTRIBUTED SHARED KEY GENERATION PROCEDURE USING FRACTIONAL KEYS R. Poovendran, M. S. Corson, J}@isr.umd.edu ABSTRACT W e present a new class of distributed key generation and recovery algorithms suitable for group) with a Group Con- troller (GC) which can generate and distribute the keys. However, in these approaches

Baras, John S.

56

Generating Probability Distributions using Multivalued Stochastic Relay Circuits  

E-Print Network (OSTI)

Generating Probability Distributions using Multivalued Stochastic Relay Circuits David Lee Dept as well as for generating arbitrary distributions from unbiased bits. An equally interesting, but less networks that generate arbitrary probability distributions in an optimal way? In this paper, we study

Bruck, Jehoshua (Shuki)

57

Learning to model sequences generated by switching distributions Yoav Freund  

E-Print Network (OSTI)

Learning to model sequences generated by switching distributions Yoav Freund AT&T Bell Labs 600 distributions learning problem. A sequence S = oe 1 oe 2 : : : oe n , over a finite alphabet \\Sigma is generated run is generated by independent random draws from a distribution ~ p i over \\Sigma, where ~p i

Freund, Yoav

58

ON RANDOM VARIATE GENERATION FOR THE GENERALIZED HYPERBOLIC SECANT DISTRIBUTIONS  

E-Print Network (OSTI)

ON RANDOM VARIATE GENERATION FOR THE GENERALIZED HYPERBOLIC SECANT DISTRIBUTIONS Luc Devroye School distribution. Finally, we give a generator for the nef--ghs distribution. There are, of course, two things we of Computer Science McGill University Abstract. We give random variate generators for the generalized

Devroye, Luc

59

A FULLY DISTRIBUTED PRIME NUMBERS GENERATION USING THE WHEEL SIEVE  

E-Print Network (OSTI)

A FULLY DISTRIBUTED PRIME NUMBERS GENERATION USING THE WHEEL SIEVE Gabriel Paillard Laboratoire d distributed approach for generating all prime numbers up to a given limit. From Er- atosthenes, who elaborated. In this work, we propose a new distributed algorithm which generates all prime num- bers in a given finite

Paris-Sud XI, Université de

60

Practical Stability Assessement of Distributed Synchronous Generators Under Load Variations  

E-Print Network (OSTI)

Practical Stability Assessement of Distributed Synchronous Generators Under Load Variations Roman the practical stability of distribution systems with synchronous generators subject to changes in the system a mathematical model of the distribution system with synchronous generators in the form of a switched affine

Pota, Himanshu Roy

Note: This page contains sample records for the topic "including distributed generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Poisson Distributed Noise Generation for Spiking Neural Applications  

E-Print Network (OSTI)

Poisson Distributed Noise Generation for Spiking Neural Applications Katherine Cameron, Thomas neural networks. However, it can be difficult to generate large truly random spike distributions which as randomly firing and a matlab generated Poisson distributed noise source. A hazard function shows

Cameron, Katherine

62

Our Data, Ourselves: Privacy via Distributed Noise Generation  

E-Print Network (OSTI)

Our Data, Ourselves: Privacy via Distributed Noise Generation Cynthia Dwork1 , Krishnaram of the noise generation is to create a distributed implemen- tation of the privacy-preserving statistical. The generation of Gaussian noise introduces a technique for distributing shares of many unbiased coins with fewer

Chang, Edward Y.

63

Distributed Generation Technologies DGT | Open Energy Information  

Open Energy Info (EERE)

DGT DGT Jump to: navigation, search Name Distributed Generation Technologies (DGT) Place Ithaca, New York Zip 14850 Product Commercializing a technology to convert organic waste into pure and compressed methane gas via anaerobic digestion. Coordinates 39.93746°, -84.553194° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.93746,"lon":-84.553194,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

64

SOFC combined cycle systems for distributed generation  

SciTech Connect

The final phase of the tubular SOFC development program will focus on the development and demonstration of pressurized solid oxide fuel cell (PSOFC)/gas turbine (GT) combined cycle power systems for distributed power applications. The commercial PSOFC/GT product line will cover the power range 200 kWe to 50 MWe, and the electrical efficiency for these systems will range from 60 to 75% (net AC/LHV CH4), the highest of any known fossil fueled power generation technology. The first demonstration of a pressurized solid oxide fuel cell/gas turbine combined cycle will be a proof-of-concept 250 kWe PSOFC/MTG power system consisting of a single 200 kWe PSOFC module and a 50 kWe microturbine generator (MTG). The second demonstration of this combined cycle will be 1.3 MWe fully packaged, commercial prototype PSOFC/GT power system consisting of two 500 kWe PSOFC modules and a 300 kWe gas turbine.

Brown, R.A.

1997-05-01T23:59:59.000Z

65

Design of improved controller for thermoelectric generator used in distributed generation  

Science Journals Connector (OSTI)

This paper investigates the application of thermal generation based on solid-state devices such as thermoelectric generators (TEGs) as a novel technological alternative of distributed generation (DG). The full detailed modeling and the dynamic simulation of a three-phase grid-connected TEG used as a dispersed generator is studied. Moreover, a new control scheme of the TEG is proposed, which consists of a multi-level hierarchical structure and incorporates a maximum power point tracker (MPPT) for better use of the thermal resource. In addition, reactive power compensation of the electric grid is included, operating simultaneously and independently of the active power generation. Validation of models and control schemes is performed by using the MATLAB/Simulink environment. Moreover, a small-scale TEG experimental set-up was employed to demonstrate the accuracy of proposed models.

M.G. Molina; L.E. Juanic; G.F. Rinalde; E. Taglialavore; S. Gortari

2010-01-01T23:59:59.000Z

66

Property:Distributed Generation System Heating-Cooling Application | Open  

Open Energy Info (EERE)

Heating-Cooling Application Heating-Cooling Application Jump to: navigation, search This is a property of type Page. Pages using the property "Distributed Generation System Heating-Cooling Application" Showing 21 pages using this property. D Distributed Generation Study/10 West 66th Street Corp + Domestic Hot Water +, Space Heat and/or Cooling + Distributed Generation Study/Aisin Seiki G60 at Hooligans Bar and Grille + Domestic Hot Water + Distributed Generation Study/Arrow Linen + Domestic Hot Water + Distributed Generation Study/Dakota Station (Minnegasco) + Space Heat and/or Cooling +, Other + Distributed Generation Study/Elgin Community College + Space Heat and/or Cooling +, Domestic Hot Water + Distributed Generation Study/Emerling Farm + Domestic Hot Water +, Process Heat and/or Cooling +

67

Voltage Control of Distribution Networks with Distributed Generation using Reactive Power  

E-Print Network (OSTI)

Voltage Control of Distribution Networks with Distributed Generation using Reactive Power. Nasiruzzaman Abstract--Voltage profile of distribution networks with dis- tributed generation are affected significantly due to the integra- tion of distributed generation (DG) on it. This paper presents a way

Pota, Himanshu Roy

68

Enhancing reliability in passive anti-islanding protection schemes for distribution systems with distributed generation.  

E-Print Network (OSTI)

??This thesis introduces a new approach to enhance the reliability of conventional passive anti-islanding protection scheme in distribution systems embedding distributed generation. This approach uses (more)

Sheikholeslamzadeh, Mohsen

2012-01-01T23:59:59.000Z

69

Optimal Algorithms for Generating Discrete Random Variables with Changing Distributions  

E-Print Network (OSTI)

Optimal Algorithms for Generating Discrete Random Variables with Changing Distributions T. Hagerup arithmetic and the floor function, 3. generating a uniformly distributed real number between 0 and 1 K. Mehlhorn I. Munro Abstract We give optimal algorithms for generating discrete random variables

Mehlhorn, Kurt

70

Marking in Combinatorial Constructions: Generating Functions and Limiting Distributions  

E-Print Network (OSTI)

Marking in Combinatorial Constructions: Generating Functions and Limiting Distributions Michael generating function y(x) = P ynx n for the numbers yn of objects of size n and the bivariate generating of this paper is to provide general methods to obtain the asymptotic limiting distribution of this additional

Drmota, Michael

71

Distributions of permutations generated by inhomogeneous Markov chains  

E-Print Network (OSTI)

Distributions of permutations generated by inhomogeneous Markov chains Diplomarbeit von Thomas 72 C Matlab - code for MCIT generated distributions 74 D Maple - code for the number of non for distributions of Bernoulli trials . . . . . . . . . . . . . . . 4 2.2.2 MCIT for quality control schemes

Neininger, Ralph

72

Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation  

SciTech Connect

This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the July 2003 to December 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

Faress Rahman; Nguyen Minh

2004-01-04T23:59:59.000Z

73

Optimal Allocation of Distributed Generators in a Distribution Network Using Adaptive Multi-Objective Particle Swarm Optimization  

Science Journals Connector (OSTI)

This study presents the optimal allocation of distributed generators (DGs) in distribution network based on...

Shan Cheng; Min-You Chen; Peter J. Fleming

2012-01-01T23:59:59.000Z

74

Distributed Generation with Heat Recovery and Storage  

E-Print Network (OSTI)

of fossil fuel sources of waste heat and other lossesthat this is only the waste heat from fossil generation,an estimate of the total waste heat from fossil generation

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

75

Impact of Distributed Generation and Series Compensation on Distribution Network  

E-Print Network (OSTI)

are investigated. A doubly-fed induction generator (DFIG)-based DG unit and a series capacitor (SC) and a thyristor DFIG units. The converter of the DFIG is modeled as an unbalanced harmonic-generating source

Pota, Himanshu Roy

76

On Optimization of Reliability of Distributed Generation-Enhanced Feeders  

Science Journals Connector (OSTI)

Placement of protection devices in a conventionalfeeder (without distributed generation) is often performedso as to minimize traditional reliability indices (SAIDI,SAIFI, MAIFIe...), assuming the sole source(s) of energyat substation(s). Distributed ...

A. Pregelj; M. Begovic; A. Rohatgi; D. Novosel

2003-01-01T23:59:59.000Z

77

Distributed Renewable Energy Generation and Landscape Architecture: A Critical Review.  

E-Print Network (OSTI)

??Governments and utility organizations around the world have mandated and provided incentives for new distributed renewable energy generation (DREG) capacity, and market projections indicate strong (more)

Beck, Osmer DeVon

2010-01-01T23:59:59.000Z

78

Distributed Generation Study/Patterson Farms CHP System Using...  

Open Energy Info (EERE)

Biogas < Distributed Generation Study Jump to: navigation, search Study Location Auburn, New York Site Description Agricultural Study Type Field Test Technology Internal Combustion...

79

CleanDistributedGeneration.pdf | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

anDistributedGeneration.pdf More Documents & Publications Output-Based Regulations: A Handbook for Air Regulators (U.S. EPA), August 2004 CHP Assessment, California Energy...

80

Distributed Generation Investment by a Microgrid under Uncertainty  

E-Print Network (OSTI)

KM. Distributed generation investment and upgrade underin gas fired power plant investments. Review of Financial13] Dixit AK, Pindyck RS. Investment under uncertainty.

Siddiqui, Afzal

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "including distributed generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Stationary/Distributed Generation Projects | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for fuel cells. Stationary fuel cell units are used for backup power, power for remote locations, stand-alone power plants for towns and cities, distributed generation...

82

Distributed Generation with Heat Recovery and Storage  

E-Print Network (OSTI)

most commercial buildings, electricity costs far exceed heatoffset by lower electricity costs from on- site generation (as much from lower electricity costs as it does from lower

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

83

Renewable Energy: Distributed Generation Policies and Programs...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

resources. Net Metering State net metering policies allow customers to produce onsite electricity and sell excess generation to the utility at a set price, which creates an...

84

Distributed Generation Lead-by-Example Resources  

Energy.gov (U.S. Department of Energy (DOE))

State governments can lead by example by promoting renewable energy programs and policies. Efforts to lead by example include using renewable energy resources (including alternative fuel for...

85

Low-cost distributed solar-thermal-electric power generation  

E-Print Network (OSTI)

Low-cost distributed solar-thermal-electric power generation A. Der Minassians, K. H. Aschenbach and feasibility study of a low-cost solar thermal electricity generation technology, suitable for distributed: Solar Thermal Collectors, Solar Thermal Electricity, Stirling Engine 1. INTRODUCTION In this paper, we

Sanders, Seth

86

Generating Efficient Tiled Code for Distributed Memory Machines and Jingling Xue  

E-Print Network (OSTI)

Generating Efficient Tiled Code for Distributed Memory Machines Peiyi Tang and Jingling Xue issues are addressed: computation and data distribution, message-passing code generation, memory man Generate SPMD Code Computation Distribution Data Distribution Message-Passing Code Generation

Tang, Peiyi

87

Distributed Generation with Heat Recovery and Storage  

E-Print Network (OSTI)

power generation with combined heat and power applications,of carbon tax on combined heat and power adoption by a131(1), 2-25. US Combined Heat and Power Association (

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

88

Synthesis of Droop-Based Distributed Generators in a Micro Grid System  

Science Journals Connector (OSTI)

Distributed Generation (DG) systems are being increasingly favored for meeting the ever-growing demands of electrical energy and smart grids. Todays DG technologies include energy sources such as conventional...

Mahesh S. Illindala

2012-01-01T23:59:59.000Z

89

Distributed Generation in Buildings (released in AEO2005)  

Reports and Publications (EIA)

Currently, distributed generation provides a very small share of residential and commercial electricity requirements in the United States. The Annual Energy Outlook 2005 reference case projects a significant increase in electricity generation in the buildings sector, but distributed generation is expected to remain a small contributor to the sectors energy needs. Although the advent of higher energy prices or more rapid improvement in technology could increase the use of distributed generation relative to the reference case projection, the vast majority of electricity used in buildings is projected to continue to be purchased from the grid.

2008-01-01T23:59:59.000Z

90

ARPA-E Announces $30 Million for Distributed Generation Technologies |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30 Million for Distributed Generation 30 Million for Distributed Generation Technologies ARPA-E Announces $30 Million for Distributed Generation Technologies November 25, 2013 - 1:00pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - Today, the Department of Energy announced up to $30 million in Advanced Research Projects Agency - Energy (ARPA-E) funding for a new program focused on the development of transformational electrochemical technologies to enable low-cost distributed power generation. ARPA-E's Reliable Electricity Based on ELectrochemical Systems (REBELS) program will develop fuel cell technology for distributed power generation to improve grid stability, increase energy security, and balance intermittent renewable technologies while reducing CO2 emissions associated with current

91

The Value of Distributed Generation (DG) under Different Tariff Structures  

Open Energy Info (EERE)

The Value of Distributed Generation (DG) under Different Tariff Structures The Value of Distributed Generation (DG) under Different Tariff Structures Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Value of Distributed Generation (DG) under Different Tariff Structures Focus Area: Renewable Energy Topics: Socio-Economic Website: eetd.lbl.gov/ea/emp/reports/60589.pdf Equivalent URI: cleanenergysolutions.org/content/value-distributed-generation-dg-under Language: English Policies: "Regulations,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. Regulations: Utility/Electricity Service Costs This report examines the standby tariff structures recently implemented in New York as a result of utilities feelings toward distributed generation

92

Distributed Medium Access Control for Next Generation CDMA Wireless Networks  

E-Print Network (OSTI)

Distributed Medium Access Control for Next Generation CDMA Wireless Networks Hai Jiang, Princeton wireless networks are expected to have a simple infrastructure with distributed control. In this article, we consider a generic distributed network model for future wireless multi- media communications

Zhuang, Weihua

93

Distributed Generation Financial Incentives and Programs Resources  

Energy.gov (U.S. Department of Energy (DOE))

There are various programs in place that offer financial incentives to the residential, commercial, industrial, utility, education, and/or government sectors for renewable energy. Programs include...

94

Notice of Study Availability - Potential Benefits of Distributed Generation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Study Availability - Potential Benefits of Distributed Study Availability - Potential Benefits of Distributed Generation and Rate-Related Issues That May Impede Their Expansion: Federal Register Notice Volume 72, No. 40 - Mar. 1, 2007 Notice of Study Availability - Potential Benefits of Distributed Generation and Rate-Related Issues That May Impede Their Expansion: Federal Register Notice Volume 72, No. 40 - Mar. 1, 2007 Federal Register Notice of availability of a study of the potential benefits of distributed generation and rate-related issues that may impede their expansion, and request for public comment. Study of the Potential Benefits of Distributed Generation and Rate- Related Issues That May Impede Their Expansion More Documents & Publications Notice of inquiry and request for Information - Study of the potential

95

Options for Control of Reactive Power by Distributed Photovoltaic Generators  

E-Print Network (OSTI)

High penetration levels of distributed photovoltaic(PV) generation on an electrical distribution circuit present several challenges and opportunities for distribution utilities. Rapidly varying irradiance conditions may cause voltage sags and swells that cannot be compensated by slowly responding utility equipment resulting in a degradation of power quality. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We discuss and compare via simulation various design options for control systems to manage the reactive power generated by these inverters. An important design de...

Sulc, Petr; Backhaus, Scott; Chertkov, Michael

2010-01-01T23:59:59.000Z

96

Optimal allocation of stochastically dependent renewable energy based distributed generators in unbalanced distribution networks  

Science Journals Connector (OSTI)

Abstract This paper proposes an algorithm for modeling stochastically dependent renewable energy based distributed generators for the purpose of proper planning of unbalanced distribution networks. The proposed algorithm integrate the diagonal band Copula and sequential Monte Carlo method in order to accurately consider the multivariate stochastic dependence between wind power, photovoltaic power and the system demand. Secondly, an efficient algorithm based on modification of the traditional Big Bang-Big crunch method is proposed for optimal placement of renewable energy based distributed generators in the presence of dispatchable distributed generation. The proposed optimization algorithm aims to minimize the energy loss in unbalanced distribution systems by determining the optimal locations of non-dispatchable distributed generators and the optimal hourly power schedule of dispatchable distributed generators. The proposed algorithms are implemented in MATLAB environment and tested on the IEEE 37-node feeder. Several case studies are done and the subsequent discussions show the effectiveness of the proposed algorithms.

A.Y. Abdelaziz; Y.G. Hegazy; Walid El-Khattam; M.M. Othman

2015-01-01T23:59:59.000Z

97

Review of anti-islanding techniques in distributed generators  

Science Journals Connector (OSTI)

In this paper a revision about different techniques for islanding detection in distributed generators is presented. On one hand, remote techniques, not integrated in the distributed generators, are discussed. On the other hand, local techniques, integrated in the distributed generator, are described. Furthermore, it is discussed how the local techniques are divided into passive techniques, based on exclusively monitoring some electrical parameters, and active techniques, which intentionally introduce disturbances at the output of the inverter, in order to determine if some parameters are affected.

D. Velasco; C.L. Trujillo; G. Garcer; E. Figueres

2010-01-01T23:59:59.000Z

98

Network Capacity Assessment of CHP-based Distributed Generation on Urban Energy Distribution Networks.  

E-Print Network (OSTI)

??The combined heat and power (CHP)-based distributed generation (DG) or dis-tributed energy resources (DERs) are mature options available in the present energy mar-ket, considered to (more)

Zhang, Xianjun

2013-01-01T23:59:59.000Z

99

Smart Grids Operation with Distributed Generation and Demand Side Management  

Science Journals Connector (OSTI)

The integration of Distributed Generation (DG) based on renewable sources in the Smart Grids (SGs) is considered a challenging task because of the problems arising for the intermittent nature of the sources (e.g....

C. Cecati; C. Citro; A. Piccolo; P. Siano

2012-01-01T23:59:59.000Z

100

Future of Distributed Generation and IEEE 1547 (Presentation)  

SciTech Connect

This presentation discusses the background on IEEE 1547, including its purpose, changes, new boundary issues and requirements, islanding issues, and how it impacts distributed wind.

Preus, R.

2014-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "including distributed generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Characteristics of Vector Surge Relays for Distributed Synchronous Generator Protection  

SciTech Connect

This work presented a detailed investigation on the performance characteristics if vector surge relays to detect islanding of distributed synchronous generators. A detection time versus active power imbalance curve is proposed to evaluate the relay performance. Computer simulations are used to obtain the performance curves. The concept of critical active power imbalance is introduced based on these curves. Main factors affecting the performance of the relays are analyzed. The factors investigated are voltage-dependent loads, load power factor, inertia constant of the generator, generator excitation system control mode, feeder length and R/X ratio as well as multi-distributed generators. The results are a useful guideline to evaluate the effectiveness of anti-islanding schemes based on vector surge relays for distributed generation applications.

Freitas, Walmir; Xu, Wilsun; Huang, Zhenyu; Vieira, Jose C.

2007-02-28T23:59:59.000Z

102

Distributed Generation Investment by a Microgrid Under Uncertainty  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Generation Investment by a Microgrid Under Uncertainty Distributed Generation Investment by a Microgrid Under Uncertainty Speaker(s): Afzal Siddiqui Date: July 24, 2006 - 12:00pm Location: 90-3122 This study examines a California-based microgrid's decision to invest in a distributed generation (DG) unit that operates on natural gas. While the long-term natural gas generation cost is stochastc, we initially assume that the microgrid may purchase electricity at a fixed retail rate from its utility. Using the real options approach, we find natural gas generation cost thresholds that trigger DG investment. Furthermore, the consideration of operational flexibility by the microgrid accelerates DG investment, while the option to disconnect entirely from the utility is not attractive. By allowing the electricity price to be stochastic, we next determine an

103

Local Control of Reactive Power by Distributed Photovoltaic Generators  

E-Print Network (OSTI)

High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We suggest a local control scheme that dispatches reactive power from each PV inverter based on local instantaneous measurements of the real and reactive components of the consumed power and the re...

Turitsyn, Konstantin S; Backhaus, Scott; Chertkov, Misha

2010-01-01T23:59:59.000Z

104

Local control of reactive power by distributed photovoltaic generators  

SciTech Connect

High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We suggest a local control scheme that dispatches reactive power from each PV inverter based on local instantaneous measurements of the real and reactive components of the consumed power and the real power generated by the PVs. Using one adjustable parameter per circuit, we balance the requirements on power quality and desire to minimize thermal losses. Numerical analysis of two exemplary systems, with comparable total PV generation albeit a different spatial distribution, show how to adjust the optimization parameter depending on the goal. Overall, this local scheme shows excellent performance; it's capable of guaranteeing acceptable power quality and achieving significant saving in thermal losses in various situations even when the renewable generation in excess of the circuit own load, i.e. feeding power back to the higher-level system.

Chertkov, Michael [Los Alamos National Laboratory; Turitsyn, Konstantin [Los Alamos National Laboratory; Sulc, Petr [Los Alamos National Laboratory; Backhaus, Scott [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

105

Unified theory for inhomogeneous thermoelectric generators and coolers including multistage devices  

Science Journals Connector (OSTI)

A novel generalized Lagrange multiplier method for functional optimization with inclusion of subsidiary conditions is presented and applied to the optimization of material distributions in thermoelectric converters. Multistaged devices are considered within the same formalism by inclusion of position-dependent electric current in the legs leading to a modified thermoelectric equation. Previous analytical solutions for maximized efficiencies for generators and coolers obtained by Sherman [J. Appl. Phys. 31, 1 (1960)], Snyder [Phys. Rev. B 86, 045202 (2012)], and Seifert et al. [Phys. Status Solidi A 207, 760 (2010)] by a method of local optimization of reduced efficiencies are recovered by independent proof. The outstanding maximization problems for generated electric power and cooling power can be solved swiftly numerically by solution of a differential equation-system obtained within the new formalism. As far as suitable materials are available, the inhomogeneous TE converters can have increased performance by use of purely temperature-dependent material properties in the thermoelectric legs or by use of purely spatial variation of material properties or by a combination of both. It turns out that the optimization domain is larger for the second kind of device which can, thus, outperform the first kind of device.

York Christian Gerstenmaier and Gerhard Wachutka

2012-11-05T23:59:59.000Z

106

Cogeneration and Distributed Generation1 This appendix describes cogeneration and distributed generating resources. Also provided is an  

E-Print Network (OSTI)

reinforcement, remote loads more economically served by small-scale generation than by distribution system. · Reliability upgrade for systems susceptible to outages. · Alternative to the expansion of transmission

107

Investment and Upgrade in Distributed Generation under Uncertainty  

NLE Websites -- All DOE Office Websites (Extended Search)

Investment and Upgrade in Distributed Generation under Uncertainty Investment and Upgrade in Distributed Generation under Uncertainty Speaker(s): Afzal Siddiqui Karl Maribu Date: September 4, 2008 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Galen Barbose The ongoing deregulation of electricity industries worldwide is providing incentives for microgrids to use small-scale distributed generation (DG) and combined heat and power (CHP) applications via heat exchangers (HXs) to meet local energy loads. Although the electric-only effciency of DG is lower than that of central-station production, relatively high tariff rates and the potential for CHP applications increase the attractiveness of on-site generation. Nevertheless, a microgrid contemplating the installation of gas-fired DG has to be aware of the uncertainty in the

108

A new HBMO algorithm for multiobjective daily Volt/Var control in distribution systems considering Distributed Generators  

Science Journals Connector (OSTI)

In recent years, Distributed Generators (DGs) connected to the distribution network have received increasing attention. The connection of enormous \\{DGs\\} into existing distribution network changes the operation of distribution systems. Because of the small X/R ratio and radial structure of distribution systems, \\{DGs\\} affect the daily Volt/Var control. This paper presents a new algorithm for multiobjective daily Volt/Var control in distribution systems including Distributed Generators (DGs). The objectives are costs of energy generation by \\{DGs\\} and distribution companies, electrical energy losses and the voltage deviations for the next day. A new optimization algorithm based on a Chaotic Improved Honey Bee Mating Optimization (CIHBMO) is proposed to determine the active power values of DGs, reactive power values of capacitors and tap positions of transformers for the next day. Since objectives are not the same, a fuzzy system is used to calculate the best solution. The plausibility of the proposed algorithm is demonstrated and its performance is compared with other methods on a 69-bus distribution feeder. Simulation results illustrate that the proposed algorithm has better outperforms the other algorithms.

Taher Niknam

2011-01-01T23:59:59.000Z

109

A multistage model for distribution expansion planning with distributed generation in a deregulated electricity market  

Science Journals Connector (OSTI)

Distribution systems management is becoming an increasingly complicated issue due to the introduction of new technologies, new energy trading strategies and a new deregulated environment. In the new deregulated energy market and considering the incentives ... Keywords: GAMS-MATLAB interface, distributed generation (DG), distribution company (DISCO), investment payback time, microturbine, social welfare

S. Porkar; A. Abbaspour-Tehrani-Fard; P. Poure; S. Saadate

2010-06-01T23:59:59.000Z

110

A Model of U.S. Commercial Distributed Generation Adoption  

SciTech Connect

Small-scale (100 kW-5 MW) on-site distributed generation (DG) economically driven by combined heat and power (CHP) applications and, in some cases, reliability concerns will likely emerge as a common feature of commercial building energy systems over the next two decades. Forecasts of DG adoption published by the Energy Information Administration (EIA) in the Annual Energy Outlook (AEO) are made using the National Energy Modeling System (NEMS), which has a forecasting module that predicts the penetration of several possible commercial building DG technologies over the period 2005-2025. NEMS is also used for estimating the future benefits of Department of Energy research and development used in support of budget requests and management decisionmaking. The NEMS approach to modeling DG has some limitations, including constraints on the amount of DG allowed for retrofits to existing buildings and a small number of possible sizes for each DG technology. An alternative approach called Commercial Sector Model (ComSeM) is developed to improve the way in which DG adoption is modeled. The approach incorporates load shapes for specific end uses in specific building types in specific regions, e.g., cooling in hospitals in Atlanta or space heating in Chicago offices. The Distributed Energy Resources Customer Adoption Model (DER-CAM) uses these load profiles together with input cost and performance DG technology assumptions to model the potential DG adoption for four selected cities and two sizes of five building types in selected forecast years to 2022. The Distributed Energy Resources Market Diffusion Model (DER-MaDiM) is then used to then tailor the DER-CAM results to adoption projections for the entire U.S. commercial sector for all forecast years from 2007-2025. This process is conducted such that the structure of results are consistent with the structure of NEMS, and can be re-injected into NEMS that can then be used to integrate adoption results into a full forecast.

LaCommare, Kristina Hamachi; Ryan Firestone; Zhou, Nan; Maribu,Karl; Marnay, Chris

2006-01-10T23:59:59.000Z

111

Integration of Demand Side Management, Distributed Generation, Renewable  

Open Energy Info (EERE)

Integration of Demand Side Management, Distributed Generation, Renewable Integration of Demand Side Management, Distributed Generation, Renewable Energy Sources, and Energy Storages: State-of-the-Art Report, Volume 2, Annexes Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Integration of Demand Side Management, Distributed Generation, Renewable Energy Sources, and Energy Storages: State-of-the-Art Report, Volume 2, Annexes Focus Area: Renewable Energy Topics: Policy, Deployment, & Program Impact Website: www.ieadsm.org/Files/Tasks/Task%20XVII%20-%20Integration%20of%20Demand Equivalent URI: cleanenergysolutions.org/content/integration-demand-side-management-di Language: English Policies: Regulations Regulations: Resource Integration Planning This report provides Annexes 1 through 7, which are country reports from

112

Distributed Generation System Characteristics and Costs in the Buildings Sector  

Gasoline and Diesel Fuel Update (EIA)

Distributed Generation System Distributed Generation System Characteristics and Costs in the Buildings Sector August 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Distributed Generation System Characteristics and Costs in the Buildings Sector i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the U.S. Department of Energy or other Federal agencies.

113

Integration of Demand Side Management, Distributed Generation, Renewable  

Open Energy Info (EERE)

Integration of Demand Side Management, Distributed Generation, Renewable Integration of Demand Side Management, Distributed Generation, Renewable Energy Sources, and Energy Storages: State-of-the-Art Report, Volume 1, Main Report Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Integration of Demand Side Management, Distributed Generation, Renewable Energy Sources, and Energy Storages: State-of-the-Art Report, Volume 1, Main Report Focus Area: Renewable Energy Topics: Policy, Deployment, & Program Impact Website: www.ieadsm.org/Files/Tasks/Task%20XVII%20-%20Integration%20of%20Demand Equivalent URI: cleanenergysolutions.org/content/integration-demand-side-management-di Language: English Policies: Regulations Regulations: Resource Integration Planning This task of the International Energy Agency's (IEA's) Demand-Side

114

Determining the Adequate Level of Distributed Generation Penetration in  

NLE Websites -- All DOE Office Websites (Extended Search)

Determining the Adequate Level of Distributed Generation Penetration in Determining the Adequate Level of Distributed Generation Penetration in Future Grids Speaker(s): Johan Driesen Date: March 18, 2004 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Kristina LaCommare In this talk, Johan will discuss the technical barriers met while deploying distributed generation (DG) technology in the grid. These are related to voltage quality, reliability, stability of the grid, but also safety, environmental and economic issues are important. Eventually, the question 'how far can you go ?' is addressed. The range from small-scale local DG such as photovoltaics to large-scale (off-shore) wind farms are dealt with, each with their specific issues. The talk is illustrated with examples from research projects at the KULeuven financied by national and European

115

Poland - Economic and Financial Benefits of Distributed Generation  

Open Energy Info (EERE)

Poland - Economic and Financial Benefits of Distributed Generation Poland - Economic and Financial Benefits of Distributed Generation Small-Scale, Gas-Fired CHP Jump to: navigation, search Name Poland - Economic and Financial Benefits of Distributed Generation Small-Scale, Gas-Fired CHP Agency/Company /Organization Argonne National Laboratory Sector Energy Topics Background analysis Website http://www.dis.anl.gov/pubs/41 Country Poland Eastern Europe References http://www.dis.anl.gov/pubs/41763.pdf This article is a stub. You can help OpenEI by expanding it. The Polish energy markets have recently been restructured, opening the door to new players with access to new products and instruments. In response to this changed environment, the Government of Poland and the Polish Power Grid Company were interested in analyzing the competitiveness of

116

Distributed Generation Study/SUNY Buffalo | Open Energy Information  

Open Energy Info (EERE)

Distributed Generation Study/SUNY Buffalo Distributed Generation Study/SUNY Buffalo < Distributed Generation Study Jump to: navigation, search Study Location Buffalo, New York Site Description Institutional-School/University Study Type Long-term Monitoring Technology Microturbine Prime Mover Capstone C60 Heat Recovery Systems Built-in Fuel Natural Gas System Installer Gerster Trane System Enclosure Outdoor System Application Combined Heat and Power Number of Prime Movers 2 Stand-alone Capability None Power Rating 120 kW0.12 MW 120,000 W 120,000,000 mW 1.2e-4 GW 1.2e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 600000 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Factory Integrated Start Date 2002/12/11 Monitoring Termination Date 2004/08/11

117

Distributed Generation: Which technologies? How fast will they emerge?  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Generation: Which technologies? How fast will they emerge? Distributed Generation: Which technologies? How fast will they emerge? Speaker(s): Tony DeVuono Date: March 16, 2000 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Julie Osborn Utility deregulation, environmental issues, increases in electricity demand, natural gas/electricity rate changes, new technologies, and several other key drivers are stimulating distributed generation globally. The technologies that have pushed ahead of the pack are micro turbines and fuel cells. Since Modine is a world leader in the manufacturing of heat transfer equipment, we are eager to play in this new, emerging market. Are the market drivers real? Will these technologies survive or even thrive? What are the pitfalls? If you had the responsibility in your company to spend millions and direct dozens of people down the DG path,

118

Acceptance-rejection methods for generating random variates from matrix exponential distributions and rational  

E-Print Network (OSTI)

Acceptance-rejection methods for generating random variates from matrix exponential distributions generation, Simulation, Matrix Exponential Distributions, Rational Arrival Processes. 1. INTRODUCTION Despite on the efficient generation of random variates of matrix exponential (ME) distributions [10] and rational arrival

Telek, Miklós

119

List of Other Distributed Generation Technologies Incentives | Open Energy  

Open Energy Info (EERE)

Incentives Incentives Jump to: navigation, search The following contains the list of 123 Other Distributed Generation Technologies Incentives. CSV (rows 1 - 123) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat Solar Water Heat Wind energy Yes Alternative Energy Portfolio Standard (Pennsylvania) Renewables Portfolio Standard Pennsylvania Investor-Owned Utility Retail Supplier Building Insulation Ceiling Fan

120

A 10 GS/s Distributed Waveform Generator for Sub-Nanosecond Pulse Generation and Modulation in Standard Digital CMOS  

E-Print Network (OSTI)

A 10 GS/s Distributed Waveform Generator for Sub-Nanosecond Pulse Generation and Modulation, Email:hwu@ece.rochester.edu Abstract-- A distributed waveform generator is presented for sub a distributed waveform generator (DWG) circuit in a time-interleaved architecture suitable for standard CMOS

Wu, Hui

Note: This page contains sample records for the topic "including distributed generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

GENERATING SYNCHRONIZABLE TEST SEQUENCES BASED ON FINITE STATE MACHINE WITH DISTRIBUTED PORTS 1  

E-Print Network (OSTI)

GENERATING SYNCHRONIZABLE TEST SEQUENCES BASED ON FINITE STATE MACHINE WITH DISTRIBUTED PORTS 1 with several distributed interfaces, called ports. A test generation method is developed for generating test generation and fault detectability. Several types of such interfaces have been standardized

von Bochmann, Gregor

122

A Game Strategy for Power Flow Control of Distributed Generators in Smart Grids  

Science Journals Connector (OSTI)

We consider the distributed power control problem of distributed generators(DGs) in smart grid. In order...

Jianliang Zhang; Donglian Qi; Guoyue Zhang

2014-01-01T23:59:59.000Z

123

Clean Distributed Generation for Slum Electrification: The Case of Mumbai  

E-Print Network (OSTI)

the lack of electrification in slums in India, focussing on the slums in the city of Mumbai as a case studyClean Distributed Generation for Slum Electrification: The Case of Mumbai This paper discusses the city's 16 million inhabitants in 2335 distinct settlements, are used as a case-study throughout

Mauzerall, Denise

124

Iowa Distributed Wind Generation Project | Open Energy Information  

Open Energy Info (EERE)

Generation Project Generation Project Jump to: navigation, search Name Iowa Distributed Wind Generation Project Facility Iowa Distributed Wind Generation Project Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Consortium -- Cedar Falls leads with 2/3 ownership Developer Iowa Distributed Wind Generation Project Energy Purchaser Consortium -- Cedar Falls leads with 2/3 ownership Location Algona IA Coordinates 43.0691°, -94.2255° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0691,"lon":-94.2255,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

125

NREL: Energy Analysis - Distributed Generation Energy Technology Capital  

NLE Websites -- All DOE Office Websites (Extended Search)

Capital Costs Capital Costs Transparent Cost Database Button The following charts indicate recent capital cost estimates for distributed generation (DG) renewable energy technologies. The estimates are shown in dollars per installed kilowatt of generating capacity or thermal energy capacity for thermal technologies. The charts provide a compilation of available national-level cost data from a variety of sources. Costs in your specific location will vary. The red horizontal lines represent the first standard deviation of the mean. The U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) sponsored the distributed generation data used within these charts. If you are seeking utility-scale technology capital cost estimates, please visit the Transparent Cost Database website for NREL's information

126

NREL: Energy Analysis - Distributed Generation Energy Technology Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

Operations and Maintenance Costs Operations and Maintenance Costs Transparent Cost Database Button The following charts indicate recent operations and maintenance (O&M) cost estimates for distributed generation (DG) renewable energy technologies. The charts provide a compilation of available national-level cost data from a variety of sources. Costs in your specific location will vary. The red horizontal lines represent the first standard deviation of the mean. The U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) sponsored the distributed generation data used within these charts. If you are seeking utility-scale technology operations and maintenance estimates, please visit the Transparent Cost Database website for NREL's information regarding vehicles, biofuels, and electricity generation.

127

Introduction to Distributed Generation and the CERTS Microgrid  

NLE Websites -- All DOE Office Websites (Extended Search)

Introduction to Distributed Generation and the CERTS Microgrid Introduction to Distributed Generation and the CERTS Microgrid Speaker(s): Chris Marnay Date: December 3, 2002 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Kristina LaCommare This is a first in a series of at least 5 seminars around the winter break to survey Distributed Energy Resources (DER) research questions and various Berkeley capabilities available to address them. The electricity industry in industrialized countries may be about to reverse a century long trend towards ever larger scale, ever more centrally controlled power systems. The emergence of technologies that are competitive at small scales, close to loads, in large part because of the opportunities created to capture waste heat and locally control power quality might signal a radical

128

A Radical Distributed Architecture for Local Energy Generation,  

NLE Websites -- All DOE Office Websites (Extended Search)

A Radical Distributed Architecture for Local Energy Generation, A Radical Distributed Architecture for Local Energy Generation, Distribution, and Sharing Speaker(s): Randy Katz Date: April 25, 2008 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Galen Barbose The LoCal Project is developing Information Age solutions to the limiting resource of this century: energy. One hundred fifty years ago, humanity was transformed by harnessing energy for machinery and work. Toil by hand became routinely mechanized, inconceivable constructions became reality, and powered transport shrunk the world. A century later, computers brought an equally profound transformation, replacing mundane bookkeeping and obviating libraries, simulating the imperceptible, and placing knowledge at our fingertips. Information processing has sustained a 50-100% annualized

129

Bearing options, including design and testing, for direct drive linear generators in wave energy converters.  

E-Print Network (OSTI)

??The key focus of this research was to investigate the bearing options most suited to operation in a novel direct drive linear generator. This was (more)

Caraher, Sarah

2011-01-01T23:59:59.000Z

130

Bearing options, including design and testing, for direct drive linear generators in wave energy converters  

E-Print Network (OSTI)

The key focus of this research was to investigate the bearing options most suited to operation in a novel direct drive linear generator. This was done through bearing comparisons, modelling and testing. It is fundamental ...

Caraher, Sarah

2011-11-22T23:59:59.000Z

131

Laboratories for the 21st Century Best Practices: Onsite Distributed Generation Systems For Laboratories  

Energy.gov (U.S. Department of Energy (DOE))

Guide describes general information on implementing onsite distributed generation systems in laboratory environments.

132

Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings  

SciTech Connect

The motivation and objective of this research is to determine the role of distributed generation (DG) in greenhouse gas reductions by: (1) applying the Distributed Energy Resources Customer Adoption Model (DER-CAM); (2) using the California Commercial End-Use Survey (CEUS) database for commercial buildings; (3) selecting buildings with electric peak loads between 100 kW and 5 MW; (4) considering fuel cells, micro-turbines, internal combustion engines, gas turbines with waste heat utilization, solar thermal, and PV; (5) testing of different policy instruments, e.g. feed-in tariff or investment subsidies.

Marnay, Chris; Stadler, Michael; Lipman, Tim; Lai, Judy; Cardoso, Goncalo; Megel, Olivier

2009-09-01T23:59:59.000Z

133

transmission april may 2003 re-gen56 Privately-owned distributed generation  

E-Print Network (OSTI)

transmission grid to Distributed renewable energy systems, such as mini- hydro, can significantly affect, including mini-hydro. Mini- hydro resources are commonly found in areas with low population and load new techniques that could facilitate a greater capacity of mini- hydro generation. The first allows

Harrison, Gareth

134

Apply: Small Business Funding Opportunity for Lighting, Integrated Storage, and Distributed Generation  

Energy.gov (U.S. Department of Energy (DOE))

Closed Application Deadline: February 3, 2015 The Small Business Innovation Research program has announced its FY 2015 Phase 1 Release 2 topics, which include buildings-related topics: energy efficient solid-state lighting luminaires, products, and systems; and integrated storage and distributed generation for buildings.

135

Distributed Generation Study/Harbec Plastics | Open Energy Information  

Open Energy Info (EERE)

< Distributed Generation Study < Distributed Generation Study Jump to: navigation, search Study Location Ontario, New York Site Description Industrial-Plastics Processing Study Type Long-term Monitoring Technology Microturbine Prime Mover Capstone C30 Heat Recovery Systems Built-in Fuel Natural Gas System Installer Northern Development System Enclosure Indoor System Application Combined Heat and Power Number of Prime Movers 25 Stand-alone Capability None Power Rating 750 kW0.75 MW 750,000 W 750,000,000 mW 7.5e-4 GW 7.5e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 3750000 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Factory Integrated Start Date 2005/10/06 Monitoring Termination Date 1969/12/31 Primary Power Application Based Load

136

Most Viewed Documents - Power Generation and Distribution | OSTI, US Dept  

Office of Scientific and Technical Information (OSTI)

Most Viewed Documents - Power Generation and Distribution Most Viewed Documents - Power Generation and Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; et al. (1994) ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) Systems and economic analysis of microalgae ponds for conversion of CO{sub 2} to biomass. Quarterly technical progress report, September 1993--December 1993 Benemann, J.R.; Oswald, W.J. (1994) Load flow analysis: Base cases, data, diagrams, and results Portante, E.C.; Kavicky, J.A.; VanKuiken, J.C.; et al. (1997) Multilevel converters -- A new breed of power converters Lai, J.S. [Oak Ridge National Lab., TN (United States). Engineering Technology Div.]; Peng, F.Z. [Univ. of Tennessee, Knoxville, TN (United

137

April 2013 Most Viewed Documents for Power Generation And Distribution |  

Office of Scientific and Technical Information (OSTI)

April 2013 Most Viewed Documents for Power Generation And Distribution April 2013 Most Viewed Documents for Power Generation And Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 719 Seventh Edition Fuel Cell Handbook NETL (2004) 628 ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 343 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 290 Load flow analysis: Base cases, data, diagrams, and results Portante, E.C.; Kavicky, J.A.; VanKuiken, J.C.; Peerenboom, J.P. (1997) 248 Controlled low strength materials (CLSM), reported by ACI Committee 229 Rajendran, N. (1997) 106 Micro-CHP Systems for Residential Applications Timothy DeValve; Benoit Olsommer (2007)

138

September 2013 Most Viewed Documents for Power Generation And Distribution  

Office of Scientific and Technical Information (OSTI)

Power Generation And Distribution Power Generation And Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 200 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 103 ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 76 Feed-pump hydraulic performance and design improvement, Phase I: research program design. Final report Brown, W.H.; Gopalakrishnan, S.; Fehlau, R.; Thompson, W.E.; Wilson, D.G. (1982) 69 Seventh Edition Fuel Cell Handbook NETL (2004) 65 Load flow analysis: Base cases, data, diagrams, and results Portante, E.C.; Kavicky, J.A.; VanKuiken, J.C.; Peerenboom, J.P. (1997) 52 Controlled low strength materials (CLSM), reported by ACI Committee

139

Distributed Generation Study/Sea Rise 2 | Open Energy Information  

Open Energy Info (EERE)

Distributed Generation Study Distributed Generation Study Jump to: navigation, search Study Location Brooklyn, New York Site Description Residential-Multifamily-Single Building Study Type Long-term Monitoring Technology Internal Combustion Engine Prime Mover Coast Intelligen CI60 Heat Recovery Systems Built-in Fuel Natural Gas System Installer Grenadier Realty System Enclosure Indoor System Application Combined Heat and Power Number of Prime Movers 2 Stand-alone Capability None Power Rating 120 kW0.12 MW 120,000 W 120,000,000 mW 1.2e-4 GW 1.2e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 1300000 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Factory Integrated Start Date 2006/08/30 Monitoring Termination Date 1969/12/31

140

Distributed Generation Study/Sea Rise 1 | Open Energy Information  

Open Energy Info (EERE)

Distributed Generation Study Distributed Generation Study Jump to: navigation, search Study Location Brooklyn, New York Site Description Residential-Multifamily-Single Building Study Type Long-term Monitoring Technology Internal Combustion Engine Prime Mover Coast Intelligen CI60 Heat Recovery Systems Built-in Fuel Natural Gas System Installer Grenadier Realty System Enclosure Indoor System Application Combined Heat and Power Number of Prime Movers 2 Stand-alone Capability None Power Rating 120 kW0.12 MW 120,000 W 120,000,000 mW 1.2e-4 GW 1.2e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 1300000 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Factory Integrated Start Date 2006/08/30 Monitoring Termination Date 1969/12/31

Note: This page contains sample records for the topic "including distributed generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Optimal Power Sharing for Microgrid with Multiple Distributed Generators  

Science Journals Connector (OSTI)

Abstract This paper describes the active power sharing of multiple distributed generators (DGs) in a microgrid. The operating modes of a microgrid are 1) a grid-connected mode and 2) an autonomous mode. During islanded operation, one DG unit should share its output power with other DG units in exact accordance with the load. Unit output power control (UPC) is introduced to control the active power of DGs. The viability of the proposed power control mode is simulated by MATLAB/SIMULINK.

V. Logeshwari; N. Chitra; A. Senthil Kumar; Josiah Munda

2013-01-01T23:59:59.000Z

142

Application of particle swarm optimization for distribution feeder reconfiguration considering distributed generators  

Science Journals Connector (OSTI)

In many countries the power systems are going to move toward creating a competitive structure for selling and buying electrical energy. These changes and the numerous advantages of the distributed generation units (DGs) in term of their technology enhancement and economical considerations have created more incentives to use these kinds of generators than before. Therefore, it is necessary to study the impact of \\{DGs\\} on the power systems, especially on the distribution networks. The distribution feeder reconfiguration (DFR) is one of the most important control schemes in the distribution networks, which can be affected by DGs. This paper presents a new approach to DFR at the distribution networks considering DGs. The main objective of the DFR is to minimize the deviation of the bus voltage, the number of switching operations and the total cost of the active power generated by \\{DGs\\} and distribution companies. Since the DFR is a nonlinear optimization problem, we apply the particle swarm optimization (PSO) approach to solve it. The feasibility of the proposed approach is demonstrated and compared with other evolutionary methods such as genetic algorithm (GA), Tabu search (TS) and differential evolution (DE) over a realistic distribution test system.

J. Olamaei; T. Niknam; G. Gharehpetian

2008-01-01T23:59:59.000Z

143

Fuel cycle comparison of distributed power generation technologies.  

SciTech Connect

The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions.

Elgowainy, A.; Wang, M. Q.; Energy Systems

2008-12-08T23:59:59.000Z

144

Property:Distributed Generation/Site Description | Open Energy Information  

Open Energy Info (EERE)

Generation/Site Description Generation/Site Description Jump to: navigation, search This is a property of type String. The allowed values for this property are: Agricultural Commercial-Hotel Commercial-Ice Arena Commercial-High Rise Office Commercial-Low Rise Office Commercial-Refrigerated Warehouse Commercial-Restaurant Commercial-Retail Store Commercial-Supermarket Commercial-Theater Commercial-Other Institutional-Hospital/Health Care Institutional-Nursing Home Institutional-School/University Institutional-Other Residential-Multifamily-Single Building Residential-Multifamily-Multibuilding Residential-Single Family Industrial-Food Processing Industrial-Plastics Processing Industrial-Wood Products Industrial-Other Testing Laboratory Water Utility Other Utility Other Pages using the property "Distributed Generation/Site Description"

145

Efficiency and Air Quality Implications of Distributed Generation and Combined Heat  

E-Print Network (OSTI)

Efficiency and Air Quality Implications of Distributed Generation and Combined Heat and Power March 2011 The Issue Distributed generation generates electricity from many small energy sources near where the electricity is used. The use of distributed generation in urban areas, however, can

146

SYSTEM WIDE ECONOMIC BENEFITS OF DISTRIBUTED GENERATION IN THE NEW ENGLAND  

E-Print Network (OSTI)

SYSTEM WIDE ECONOMIC BENEFITS OF DISTRIBUTED GENERATION IN THE NEW ENGLAND ENERGY MARKET-1027 © Copyright by CEERE #12;1. INTRODUCTION Distributed generation (DG) is generation of electricity close was to evaluate the benefits and costs associated with a distributed generation unit from the perspectives

Massachusetts at Amherst, University of

147

On Linear Independence of Generators of FSI Distribution Spaces on IR  

E-Print Network (OSTI)

On Linear Independence of Generators of FSI Distribution Spaces on IR Jianzhong Wang Abstract. A distribution space is called finitely shift invariant (FSI) if it is generated by a vector-valued distribution of an FSI distribution space and presents a way to find the generators with linear independent shifts

Wang, Jianzhong

148

On the Cost of Generating PH-distributed Random Philipp Reinecke, Katinka Wolter  

E-Print Network (OSTI)

On the Cost of Generating PH-distributed Random Numbers Philipp Reinecke, Katinka Wolter Humboldt systems. The use of these distributions in simulation studies requires efficient methods for generating PH-distributed random numbers. In this work, we consider the cost of PH-distributed random-number generation. I

Telek, Miklós

149

RANDOM VARIATE GENERATION FOR THE DIGAMMA AND TRIGAMMA DISTRIBUTIONS Luc Devroye  

E-Print Network (OSTI)

RANDOM VARIATE GENERATION FOR THE DIGAMMA AND TRIGAMMA DISTRIBUTIONS Luc Devroye School of Computer these distributions and selected generalized hypergeometric distributions. The generators can also be used. Keywords and phrases. Digamma distribution. Random variate generation. Trigamma dis­ tribution. Probability

Devroye, Luc

150

Tone signal generator for producing multioperator tone signals using an operator circuit including a waveform generator, a selector and an enveloper  

DOE Patents (OSTI)

A frequency modulation (FM) tone signal generator for generating a FM tone signal is disclosed. The tone signal generator includes a waveform generator having a plurality of wave tables, a selector and an enveloper. The waveform generator furnishes a waveform signal in response to a phase angle address signal. Each wave table stores a different waveform. The selector selects one of the wave tables in response to a plurality of selection signals such that the selected wave table largely provides the waveform signal upon being addressed largely by the phase angle address signal. Selection of the selected wave table varies with each selection signal. The enveloper impresses an envelope signal on the waveform signal. The envelope signal is used as a carrier or modulator for generating the FM tone signal.

Dong, Qiujie (Austin, TX); Jenkins, Michael V. (Austin, TX); Bernadas, Salvador R. (Austin, TX)

1997-01-01T23:59:59.000Z

151

Tone signal generator for producing multioperator tone signals using an operator circuit including a waveform generator, a selector and an enveloper  

DOE Patents (OSTI)

A frequency modulation (FM) tone signal generator for generating a FM tone signal is disclosed. The tone signal generator includes a waveform generator having a plurality of wave tables, a selector and an enveloper. The waveform generator furnishes a waveform signal in response to a phase angle address signal. Each wave table stores a different waveform. The selector selects one of the wave tables in response to a plurality of selection signals such that the selected wave table largely provides the waveform signal upon being addressed largely by the phase angle address signal. Selection of the selected wave table varies with each selection signal. The enveloper impresses an envelope signal on the waveform signal. The envelope signal is used as a carrier or modulator for generating the FM tone signal. 17 figs.

Dong, Q.; Jenkins, M.V.; Bernadas, S.R.

1997-09-09T23:59:59.000Z

152

Distributed Generation Systems Inc DISGEN | Open Energy Information  

Open Energy Info (EERE)

DISGEN DISGEN Jump to: navigation, search Name Distributed Generation Systems Inc (DISGEN) Place Lakewood, Colorado Zip 80228 Sector Wind energy Product Developer of Green Mountain (10.4 MW) and Ponnequin (16 MW) wind generation projects in the US. Manages everything from site selection through construction. Coordinates 45.300538°, -88.522572° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.300538,"lon":-88.522572,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

153

Time series power flow analysis for distribution connected PV generation.  

SciTech Connect

Distributed photovoltaic (PV) projects must go through an interconnection study process before connecting to the distribution grid. These studies are intended to identify the likely impacts and mitigation alternatives. In the majority of the cases, system impacts can be ruled out or mitigation can be identified without an involved study, through a screening process or a simple supplemental review study. For some proposed projects, expensive and time-consuming interconnection studies are required. The challenges to performing the studies are twofold. First, every study scenario is potentially unique, as the studies are often highly specific to the amount of PV generation capacity that varies greatly from feeder to feeder and is often unevenly distributed along the same feeder. This can cause location-specific impacts and mitigations. The second challenge is the inherent variability in PV power output which can interact with feeder operation in complex ways, by affecting the operation of voltage regulation and protection devices. The typical simulation tools and methods in use today for distribution system planning are often not adequate to accurately assess these potential impacts. This report demonstrates how quasi-static time series (QSTS) simulation and high time-resolution data can be used to assess the potential impacts in a more comprehensive manner. The QSTS simulations are applied to a set of sample feeders with high PV deployment to illustrate the usefulness of the approach. The report describes methods that can help determine how PV affects distribution system operations. The simulation results are focused on enhancing the understanding of the underlying technical issues. The examples also highlight the steps needed to perform QSTS simulation and describe the data needed to drive the simulations. The goal of this report is to make the methodology of time series power flow analysis readily accessible to utilities and others responsible for evaluating potential PV impacts.

Broderick, Robert Joseph; Quiroz, Jimmy Edward; Ellis, Abraham; Reno, Matthew J. [Georgia Institute of Technology, Atlanta, GA; Smith, Jeff [Electric Power Research Institute, Knoxville, TN; Dugan, Roger [Electric Power Research Institute, Knoxville, TN

2013-01-01T23:59:59.000Z

154

LO Generation and Distribution for 60GHz Phased Array Transceivers  

E-Print Network (OSTI)

goal of the LO distribution network design was minimizing7. Given a distribution impedance, Z o , design an input5. LO DISTRIBUTION Mixer LO Buffer Design Methodology The

Marcu, Cristian

2011-01-01T23:59:59.000Z

155

Siting and sizing of distributed generation units using GA and OPF  

Science Journals Connector (OSTI)

This paper deals with the important task of finding the optimal siting and sizing of Distributed Generation (DG) units for a given distribution network so that the cost of active and reactive power generation can be minimized. The optimization technique ... Keywords: distributed generation, genetic alghorithm(GA), optimal power flow(OPF)

M. Hosseini Aliabadi; M. Mardaneh; B. Behbahan

2008-01-01T23:59:59.000Z

156

Load Distributed Whole-body Motion Generation Method for Humanoids by  

E-Print Network (OSTI)

1 Load Distributed Whole-body Motion Generation Method for Humanoids by Minimizing Average Joint. Keywords. Humanoid robot, Load distribution, Whole-body motion generation method, Joint Torque, Environment generation method under whole-body coor- dination, it is very important to consider a load distribution

Yamamoto, Hirosuke

157

Distributed clock generator for synchronous SoC using ADPLL network  

E-Print Network (OSTI)

Distributed clock generator for synchronous SoC using ADPLL network E. Zianbetov1 , D. Galayko1 , F, as well as suffering from reduced communication speed. Distributed clock generators are based on the local. The latter is a good candidate for on-chip distributed clock generation, because of better compatibility

Paris-Sud XI, Université de

158

Published in IET Generation, Transmission & Distribution Received on 5th October 2012  

E-Print Network (OSTI)

Published in IET Generation, Transmission & Distribution Received on 5th October 2012 Revised on 31 are small scale power systems that facilitate the effective integration of distributed generators (DG) [1 of multiple photovoltaic generators in a power distribution system [16]. Networked multi-agent systems have

Qu, Zhihua

159

Efficient protocols for generating bipartite classical distributions and quantum Zhaohui Wei  

E-Print Network (OSTI)

Efficient protocols for generating bipartite classical distributions and quantum states Rahul Jain in optimization, convex geometry, and information theory. 1. To generate a classical distribution P(x, y), we an approximation of is allowed to generate a distribution (X, Y ) P, we present a classical protocol

Jain, Rahul

160

Reactive power management of distribution networks with wind generation for improving voltage stability  

E-Print Network (OSTI)

Reactive power management of distribution networks with wind generation for improving voltage February 2013 Available online Keywords: Composite load Distributed generation D-STATCOM Q with distributed wind generation. Firstly, the impact of high wind penetration on the static voltage stability

Pota, Himanshu Roy

Note: This page contains sample records for the topic "including distributed generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

A Brief History of Generative Models for Power Law and Lognormal Distributions  

E-Print Network (OSTI)

A Brief History of Generative Models for Power Law and Lognormal Distributions Michael Mitzenmacher generative models that lead to these distributions. One #12;nding is that lognormal and power law of an underlying generative model which suggested that #12;le sizes were better modeled by a lognormal distribution

Mitzenmacher, Michael

162

The Plausibility of Semantic Properties Generated by a Distributional Model: Evidence from a Visual World Experiment  

E-Print Network (OSTI)

The Plausibility of Semantic Properties Generated by a Distributional Model: Evidence from a Visual the plausibility of the properties generated by a distributional model using data from a visual world experiment, recently, a distributional model has been proposed that is able to generate properties associated

Koehn, Philipp

163

Subsystem Interaction Analysis in Power Distribution Systems of Next Generation Airlifters  

E-Print Network (OSTI)

1 Subsystem Interaction Analysis in Power Distribution Systems of Next Generation Airlifters Sriram power distribution system of a next generation transport aircraft is addressed. Detailed analysis with the analysis of subsystem integration in power distribution systems of next generation transport aircraft

Lindner, Douglas K.

164

UK scenario of islanded operation of active distribution networks with renewable distributed generators  

Science Journals Connector (OSTI)

This paper reports on the current UK scenario of islanded operation of active distribution networks with renewable distributed generators (RDGs). Different surveys indicate that the present scenario does not economically justify islanding operation of active distribution networks with RDGs. With rising DG penetration, much benefit would be lost if the \\{DGs\\} are not allowed to island only due to conventional operational requirement of utilities. Technical studies clearly indicate the need to review parts of the Electricity Safety, Quality and Continuity Regulations (ESQCR) for successful islanded operations. Commercial viability of islanding operation must be assessed in relation to enhancement of power quality, system reliability and supply of potential ancillary services through network support. Demonstration projects under Registered Power Zone and Technical Architecture Projects should be initiated to investigate the utility of DG islanding. However these efforts should be compounded with a realistic judgement of the associated technical and economic issues for the development of future power networks beyond 2010.

S.P. Chowdhury; S. Chowdhury; P.A. Crossley

2011-01-01T23:59:59.000Z

165

Distributed Generation Study/Dakota Station (Minnegasco) | Open Energy  

Open Energy Info (EERE)

Station (Minnegasco) Station (Minnegasco) < Distributed Generation Study Jump to: navigation, search Study Location Burnsville, Minnesota Site Description Other Utility Study Type Case Study Technology Microturbine Prime Mover Capstone C30 Heat Recovery Systems Unifin Fuel Natural Gas System Installer Capstone Turbine Corp System Enclosure Outdoor System Application Combined Heat and Power Number of Prime Movers 1 Stand-alone Capability None Power Rating 30 kW0.03 MW 30,000 W 30,000,000 mW 3.0e-5 GW 3.0e-8 TW Nominal Voltage (V) 0 Heat Recovery Rating (BTU/hr) 290000 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Customer Assembled Start Date 2000/03/13 Monitoring Termination Date 2002/03/31 Primary Power Application Based Load

166

Distributed Generation Study/Emerling Farm | Open Energy Information  

Open Energy Info (EERE)

Emerling Farm Emerling Farm < Distributed Generation Study Jump to: navigation, search Study Location Perry, New York Site Description Agricultural Study Type Long-term Monitoring Technology Internal Combustion Engine Prime Mover Caterpillar G379 Heat Recovery Systems Built-in Fuel Biogas System Installer RCM Digesters System Enclosure Dedicated Shelter System Application Combined Heat and Power Number of Prime Movers 1 Stand-alone Capability Seamless Power Rating 200 kW0.2 MW 200,000 W 200,000,000 mW 2.0e-4 GW 2.0e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 2000000 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Factory Integrated Start Date 2006/06/07 Monitoring Termination Date 1969/12/31 Primary Power Application Based Load

167

Distributed Generation Study/Hudson Valley Community College | Open Energy  

Open Energy Info (EERE)

Valley Community College Valley Community College < Distributed Generation Study Jump to: navigation, search Study Location Troy, New York Site Description Institutional-School/University Study Type Long-term Monitoring Technology Internal Combustion Engine Prime Mover Caterpillar G3516, Caterpillar DM5498, Caterpillar DM7915 Heat Recovery Systems Built-in Fuel Natural Gas System Installer Siemens Building Technologies System Enclosure Dedicated Shelter System Application Combined Heat and Power Number of Prime Movers 6 Stand-alone Capability Seamless Power Rating 7845 kW7.845 MW 7,845,000 W 7,845,000,000 mW 0.00785 GW 7.845e-6 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 32500000 Cooling Capacity (Refrig/Tons) Origin of Controller 3rd Party Custom Made Component Integration Factory Integrated

168

Distributed Generation Study/Floyd Bennett | Open Energy Information  

Open Energy Info (EERE)

Bennett Bennett < Distributed Generation Study Jump to: navigation, search Study Location Brooklyn, New York Site Description Other Study Type Long-term Monitoring Technology Microturbine Prime Mover Capstone C60 Heat Recovery Systems Built-in Fuel Natural Gas System Installer Montreal Construction System Enclosure Outdoor System Application Combined Heat and Power Number of Prime Movers 2 Stand-alone Capability Seamless Power Rating 120 kW0.12 MW 120,000 W 120,000,000 mW 1.2e-4 GW 1.2e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 230000 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Factory Integrated Start Date 2005/07/21 Monitoring Termination Date 1969/12/31 Primary Power Application Based Load

169

Distributed Generation Study/Arrow Linen | Open Energy Information  

Open Energy Info (EERE)

Study/Arrow Linen Study/Arrow Linen < Distributed Generation Study Jump to: navigation, search Study Location Brooklyn, New York Site Description Commercial-Other Study Type Long-term Monitoring Technology Internal Combustion Engine Prime Mover Coast Intelligen 150-IC with ECS Heat Recovery Systems Built-in Fuel Natural Gas System Installer Energy Concepts System Enclosure Outdoor System Application Combined Heat and Power Number of Prime Movers 2 Stand-alone Capability None Power Rating 300 kW0.3 MW 300,000 W 300,000,000 mW 3.0e-4 GW 3.0e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 3000000 Cooling Capacity (Refrig/Tons) Origin of Controller 3rd Party Off-the-Shelf Component Integration Customer Assembled Start Date 2005/03/01 Monitoring Termination Date 1969/12/31

170

Distributed Generation Study/Elgin Community College | Open Energy  

Open Energy Info (EERE)

Elgin Community College Elgin Community College < Distributed Generation Study Jump to: navigation, search Study Location Elgin, Illinois Site Description Institutional-School/University Study Type Case Study Technology Internal Combustion Engine Prime Mover Waukesha VHP5108GL Heat Recovery Systems Beaird Maxim Model TRP-12 Fuel Natural Gas System Installer Morse Electric Company System Enclosure Indoor System Application Combined Heat and Power Number of Prime Movers 4 Stand-alone Capability Manual Power Rating 3220 kW3.22 MW 3,220,000 W 3,220,000,000 mW 0.00322 GW 3.22e-6 TW Nominal Voltage (V) 4160 Heat Recovery Rating (BTU/hr) 11200000 Cooling Capacity (Refrig/Tons) 550 Origin of Controller 3rd Party Off-the-Shelf Component Integration Customer Assembled Start Date 1997/05/01

171

Distributed Generation Study/Wyoming County Community Hospital | Open  

Open Energy Info (EERE)

Wyoming County Community Hospital Wyoming County Community Hospital < Distributed Generation Study Jump to: navigation, search Study Location Warsaw, New York Site Description Institutional-Hospital/Health Care Study Type Long-term Monitoring Technology Internal Combustion Engine Prime Mover Waukesha VGF L36GSID Heat Recovery Systems Built-in Fuel Natural Gas System Installer Gerster Trane System Enclosure Indoor System Application Combined Heat and Power Number of Prime Movers 1 Stand-alone Capability Seamless Power Rating 560 kW0.56 MW 560,000 W 560,000,000 mW 5.6e-4 GW 5.6e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 1000000 Cooling Capacity (Refrig/Tons) Origin of Controller 3rd Party Off-the-Shelf Component Integration Customer Assembled Start Date 2001/09/26

172

Distributed Generation Study/Patterson Farms CHP System Using Renewable  

Open Energy Info (EERE)

Farms CHP System Using Renewable Farms CHP System Using Renewable Biogas < Distributed Generation Study Jump to: navigation, search Study Location Auburn, New York Site Description Agricultural Study Type Field Test Technology Internal Combustion Engine Prime Mover Caterpillar G379 Heat Recovery Systems Built-in Fuel Biogas System Installer Martin Machinery System Enclosure Dedicated Shelter System Application Combined Heat and Power Number of Prime Movers 1 Stand-alone Capability None Power Rating 200 kW0.2 MW 200,000 W 200,000,000 mW 2.0e-4 GW 2.0e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 1366072 Cooling Capacity (Refrig/Tons) Origin of Controller 3rd Party Custom Made Component Integration Customer Assembled Start Date 2007/05/02 Monitoring Termination Date 2007/05/26

173

Distributed Generation Study/Tudor Gardens | Open Energy Information  

Open Energy Info (EERE)

Tudor Gardens Tudor Gardens < Distributed Generation Study Jump to: navigation, search Study Location New York, New York Site Description Residential-Multifamily-Single Building Study Type Long-term Monitoring Technology Internal Combustion Engine Prime Mover Tecogen CM-75 Heat Recovery Systems Built-in Fuel Natural Gas System Installer Aegis Energy System Enclosure Indoor System Application Combined Heat and Power Number of Prime Movers 2 Stand-alone Capability None Power Rating 150 kW0.15 MW 150,000 W 150,000,000 mW 1.5e-4 GW 1.5e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 980000 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Factory Integrated Start Date 2005/07/01 Monitoring Termination Date 1969/12/31

174

Distributed Generation Study/Patterson Farms | Open Energy Information  

Open Energy Info (EERE)

Farms Farms < Distributed Generation Study Jump to: navigation, search Study Location Auburn, New York Site Description Agricultural Study Type Long-term Monitoring Technology Internal Combustion Engine Prime Mover Caterpillar G3508 Heat Recovery Systems Built-in Fuel Biogas System Installer RCM Digesters System Enclosure Outdoor System Application Combined Heat and Power Number of Prime Movers 1 Stand-alone Capability Seamless Power Rating 180 kW0.18 MW 180,000 W 180,000,000 mW 1.8e-4 GW 1.8e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 2000 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Factory Integrated Start Date 2006/03/10 Monitoring Termination Date 1969/12/31 Primary Power Application Based Load

175

Distributed Generation Study/Oakwood Health Care Center | Open Energy  

Open Energy Info (EERE)

Oakwood Health Care Center Oakwood Health Care Center < Distributed Generation Study Jump to: navigation, search Study Location Williamsville, New York Site Description Institutional-Hospital/Health Care Study Type Long-term Monitoring Technology Internal Combustion Engine Prime Mover Waukesha VGF 18GLD Heat Recovery Systems Built-in Fuel Natural Gas System Installer Gerster Trane System Enclosure Indoor System Application Combined Heat and Power Number of Prime Movers 2 Stand-alone Capability Seamless Power Rating 600 kW0.6 MW 600,000 W 600,000,000 mW 6.0e-4 GW 6.0e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 2800000 Cooling Capacity (Refrig/Tons) Origin of Controller 3rd Party Off-the-Shelf Component Integration Customer Assembled Start Date 2001/12/20 Monitoring Termination Date 2003/01/03

176

Distributed Generation Study/Matlink Farm | Open Energy Information  

Open Energy Info (EERE)

Matlink Farm Matlink Farm < Distributed Generation Study Jump to: navigation, search Study Location Clymers, New York Site Description Agricultural Study Type Long-term Monitoring Technology Internal Combustion Engine Prime Mover Waukesha 145 Heat Recovery Systems Built-in Fuel Biogas System Installer Martin Machine System Enclosure Outdoor System Application Combined Heat and Power Number of Prime Movers 1 Stand-alone Capability None Power Rating 145 kW0.145 MW 145,000 W 145,000,000 mW 1.45e-4 GW 1.45e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 1500000 Cooling Capacity (Refrig/Tons) Origin of Controller 3rd Party Off-the-Shelf Component Integration Customer Assembled Start Date 2004/10/28 Monitoring Termination Date 2005/07/16 Primary Power Application Based Load

177

Distributed Generation Study/Modern Landfill | Open Energy Information  

Open Energy Info (EERE)

Landfill Landfill < Distributed Generation Study Jump to: navigation, search Study Location Model City, New York Site Description Other Utility Study Type Long-term Monitoring Technology Internal Combustion Engine Prime Mover Caterpillar G3516 Heat Recovery Systems Built-in Fuel Biogas System Installer Innovative Energy Systems System Enclosure Dedicated Shelter System Application Combined Heat and Power Number of Prime Movers 7 Stand-alone Capability Seamless Power Rating 5600 kW5.6 MW 5,600,000 W 5,600,000,000 mW 0.0056 GW 5.6e-6 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 28000000 Cooling Capacity (Refrig/Tons) Origin of Controller 3rd Party Off-the-Shelf Component Integration Customer Assembled Start Date 2004/12/31 Monitoring Termination Date 1969/12/31

178

Distributed Generation Study/VIP Country Club | Open Energy Information  

Open Energy Info (EERE)

VIP Country Club VIP Country Club < Distributed Generation Study Jump to: navigation, search Study Location New Rochelle, New York Site Description Commercial-Other Study Type Long-term Monitoring Technology Microturbine Prime Mover Capstone C60 Heat Recovery Systems Built-in Fuel Natural Gas System Installer Advanced Power Systems System Enclosure Indoor System Application Combined Heat and Power Number of Prime Movers 3 Stand-alone Capability Seamless Power Rating 180 kW0.18 MW 180,000 W 180,000,000 mW 1.8e-4 GW 1.8e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 750000 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Factory Integrated Start Date 2006/01/24 Monitoring Termination Date 1969/12/31 Primary Power Application Based Load

179

Distributed Generation Study/Waldbaums Supermarket | Open Energy  

Open Energy Info (EERE)

Waldbaums Supermarket Waldbaums Supermarket < Distributed Generation Study Jump to: navigation, search Study Location Hauppauge, New York Site Description Commercial-Supermarket Study Type Long-term Monitoring Technology Microturbine Prime Mover Capstone C60 Heat Recovery Systems Unifin HX Fuel Natural Gas System Installer CDH Energy Corp. System Enclosure Outdoor System Application Combined Heat and Power Number of Prime Movers 1 Stand-alone Capability None Power Rating 60 kW0.06 MW 60,000 W 60,000,000 mW 6.0e-5 GW 6.0e-8 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 500000 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Factory Integrated Start Date 2002/08/02 Monitoring Termination Date 2006/07/21 Primary Power Application Based Load

180

SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION  

SciTech Connect

This report summarizes the work performed by Honeywell during the July 2001 to September 2001 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. An internal program kickoff was held at Honeywell in Torrance, CA. The program structure was outlined and the overall technical approach for the program was presented to the team members. Detail program schedules were developed and detailed objectives were defined. Initial work has begun on the system design and pressurized SOFC operation.

Unknown

2002-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "including distributed generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation  

SciTech Connect

This report summarizes the work performed by Honeywell during the January 2002 to March 2002 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. For this reporting period the following activities have been carried out: {lg_bullet} Conceptual system design trade studies were performed {lg_bullet} System-level performance model was created {lg_bullet} Dynamic control models are being developed {lg_bullet} Mechanical properties of candidate heat exchanger materials were investigated {lg_bullet} SOFC performance mapping as a function of flow rate and pressure was completed

Nguyen Minh

2002-03-31T23:59:59.000Z

182

Advanced Distributed Generation LLC ADG | Open Energy Information  

Open Energy Info (EERE)

LLC ADG LLC ADG Jump to: navigation, search Name Advanced Distributed Generation LLC (ADG) Place Toledo, Ohio Zip OH 43607 Product ADG is a general contracting company specializing in the design and installation of photovoltaic (PV) systems. Coordinates 46.440613°, -122.847838° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.440613,"lon":-122.847838,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

183

Distributed generation capabilities of the national energy modeling system  

SciTech Connect

This report describes Berkeley Lab's exploration of how the National Energy Modeling System (NEMS) models distributed generation (DG) and presents possible approaches for improving how DG is modeled. The on-site electric generation capability has been available since the AEO2000 version of NEMS. Berkeley Lab has previously completed research on distributed energy resources (DER) adoption at individual sites and has developed a DER Customer Adoption Model called DER-CAM. Given interest in this area, Berkeley Lab set out to understand how NEMS models small-scale on-site generation to assess how adequately DG is treated in NEMS, and to propose improvements or alternatives. The goal is to determine how well NEMS models the factors influencing DG adoption and to consider alternatives to the current approach. Most small-scale DG adoption takes place in the residential and commercial modules of NEMS. Investment in DG ultimately offsets purchases of electricity, which also eliminates the losses associated with transmission and distribution (T&D). If the DG technology that is chosen is photovoltaics (PV), NEMS assumes renewable energy consumption replaces the energy input to electric generators. If the DG technology is fuel consuming, consumption of fuel in the electric utility sector is replaced by residential or commercial fuel consumption. The waste heat generated from thermal technologies can be used to offset the water heating and space heating energy uses, but there is no thermally activated cooling capability. This study consists of a review of model documentation and a paper by EIA staff, a series of sensitivity runs performed by Berkeley Lab that exercise selected DG parameters in the AEO2002 version of NEMS, and a scoping effort of possible enhancements and alternatives to NEMS current DG capabilities. In general, the treatment of DG in NEMS is rudimentary. The penetration of DG is determined by an economic cash-flow analysis that determines adoption based on the n umber of years to a positive cash flow. Some important technologies, e.g. thermally activated cooling, are absent, and ceilings on DG adoption are determined by some what arbitrary caps on the number of buildings that can adopt DG. These caps are particularly severe for existing buildings, where the maximum penetration for any one technology is 0.25 percent. On the other hand, competition among technologies is not fully considered, and this may result in double-counting for certain applications. A series of sensitivity runs show greater penetration with net metering enhancements and aggressive tax credits and a more limited response to lowered DG technology costs. Discussion of alternatives to the current code is presented in Section 4. Alternatives or improvements to how DG is modeled in NEMS cover three basic areas: expanding on the existing total market for DG both by changing existing parameters in NEMS and by adding new capabilities, such as for missing technologies; enhancing the cash flow analysis but incorporating aspects of DG economics that are not currently represented, e.g. complex tariffs; and using an external geographic information system (GIS) driven analysis that can better and more intuitively identify niche markets.

LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Marnay, Chris

2003-01-01T23:59:59.000Z

184

Quantifying the Air Pollution Exposure Consequences of Distributed Electricity Generation  

E-Print Network (OSTI)

Solar Turbines Inc Olinda Generating Plant Marina Landfill GasSolar Turbines Inc Olinda Generating Plant Marina Landfill Gas

Heath, Garvin A.; Granvold, Patrick W.; Hoats, Abigail S.; Nazaroff, William W

2005-01-01T23:59:59.000Z

185

GENERATING SYNCHRONIZABLE TEST SEQUENCES BASED ON FINITE STATE MACHINE WITH DISTRIBUTED PORTS1  

E-Print Network (OSTI)

GENERATING SYNCHRONIZABLE TEST SEQUENCES BASED ON FINITE STATE MACHINE WITH DISTRIBUTED PORTS1 Gang with several distributed interfaces, called ports. A test generation method is developed for generating test generation and fault detectability. Several types of such interfaces have been standardized

von Bochmann, Gregor

186

Extension of thermonuclear functions through the pathway model including Maxwell-Boltzmann and Tsallis distributions  

E-Print Network (OSTI)

The Maxwell-Boltzmannian approach to nuclear reaction rate theory is extended to cover Tsallis statistics (Tsallis, 1988) and more general cases of distribution functions. An analytical study of respective thermonuclear functions is being conducted with the help of statistical techniques. The pathway model, recently introduced by Mathai (2005), is utilized for thermonuclear functions and closed-form representations are obtained in terms of H-functions and G-functions. Maxwell-Boltzmannian thermonuclear functions become particular cases of the extended thermonuclear functions. A brief review on the development of the theory of analytic representations of nuclear reaction rates is given.

H. J. Haubold; D. Kumar

2007-08-16T23:59:59.000Z

187

Economical load distribution in power networks that include hybrid solar power plants  

Science Journals Connector (OSTI)

With respect to the growing share of renewable resources in secure provision of electrical energy, proper utilization of hybrid power plants is of great importance. Therefore, an optimal production planning for operation of these power plants is evidently necessary. Generally, economical load distribution refers to determination of an optimal point in production that fully provides for the total network load. In other words, the economical load distribution refers to cost minimization of the produced electrical power for satisfying the total network demand, with consideration of the actual constraints in the power system. To serve this purpose, several methods have been in use, but with the entry of power plants that use renewable energy resources, necessary steps should be taken to ensure their optimal use. However, economical optimization and sufficient reliability in serving concurrent demands are the two-fold objectives of the electrical power system and need to be considered simultaneously. Therefore, in analyzing the share of renewable energy resources in the total electrical power network, both their economical advantages and their reliable level of production should be considered. Presently, many countries show interest in using hybrid solar power plants and fossil fuel power plants. In this research, the problem of augmenting power networks with solar power plants and finding their optimal production point is dealt with. Some models for the production cost functions of these power plants are presented and discussed.

Mohammad Taghi Ameli; Saeid Moslehpour; Mehdi Shamlo

2008-01-01T23:59:59.000Z

188

GRR/Section 8-TX-c - Distributed Generation Interconnection | Open Energy  

Open Energy Info (EERE)

GRR/Section 8-TX-c - Distributed Generation Interconnection GRR/Section 8-TX-c - Distributed Generation Interconnection < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 8-TX-c - Distributed Generation Interconnection 8-TX-c - Distributed Generation Interconnection.pdf Click to View Fullscreen Contact Agencies Public Utility Commission of Texas Regulations & Policies PUCT Substantive Rule 25.211 PUCT Substantive Rule 25.212 Triggers None specified Click "Edit With Form" above to add content 8-TX-c - Distributed Generation Interconnection.pdf 8-TX-c - Distributed Generation Interconnection.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the process for distributed generation (DG)

189

S & P Opines on Securitizing Distributed Generation | OpenEI Community  

Open Energy Info (EERE)

S & P Opines on Securitizing Distributed Generation S & P Opines on Securitizing Distributed Generation Home > Groups > OpenEI Community Central Graham7781's picture Submitted by Graham7781(1992) Super contributor 10 July, 2012 - 14:04 imported OpenEI Article originally published at NREL's Renewable Energy Project Finance website Renewable energy-related asset securitization has been gaining a lot of traction lately as a number of key stakeholders from both the private and public sectors have been stepping up their collaborative efforts (including NREL's finance team). To help frame the discussion and facilitate the creation of ratings-quality renewable energy asset pools, Standard and Poor's (S&P) rating agency has recently produced high-level guidance on various possible risk factors in the potential securitization

190

Distributed Generation Investment by a Microgrid under Uncertainty  

E-Print Network (OSTI)

Cost of Natural Gas Generation, p Figure 6. Normalised NetCost of Natural Gas Generation, p Figure 7. Wait InvestCost of Natural Gas Generation (US$/kWh e ), C Figure 8.

Siddiqui, Afzal

2008-01-01T23:59:59.000Z

191

The Potential Benefits of Distributed Generation and the Rate-Related  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Potential Benefits of Distributed Generation and the The Potential Benefits of Distributed Generation and the Rate-Related Issues That May Impede Its Expansion The Potential Benefits of Distributed Generation and the Rate-Related Issues That May Impede Its Expansion The Potential Benefits of Distributed Generation and the Rate-Related Issues That May Impede Its Expansion. Report Pursuant to Section 1817 of the Energy Policy Act of 2005. The Potential Benefits of Distributed Generation and the Rate-Related Issues That May Impede Its Expansion More Documents & Publications The potential benefits of distributed deneration and rate-related issues that may impede issues its expansion. June 2007 Notice of inquiry and request for Information - Study of the potential benefits of distributed generation: Federal Register Notice Volume 71, No.

192

Fuel cell power plants in a distributed generator application  

SciTech Connect

ONSI`s (a subsidiary of International Fuel Cells Corporation) world wide fleet of 200-kW PC25{trademark} phosphoric acid fuel cell power plants which began operation early in 1992 has shown excellent performance and reliability in over 1 million hours of operation. This experience has verified the clean, quiet, reliable operation of the PC25 and confirmed its application as a distributed generator. Continuing product development efforts have resulted in a one third reduction of weight and volume as well as improved installation and operating characteristics for the PC25 C model. Delivery of this unit began in 1995. International Fuel Cells (IFC) continues its efforts to improve product design and manufacturing processes. This progress has been sustained at a compounded rate of 10 percent per year since the late 1980`s. These improvements will permit further reductions in the initial cost of the power plant and place increased emphasis on market development as the pacing item in achieving business benefits from the PC25 fuel cell. Derivative product opportunities are evolving with maturation of the technologies in a commercial environment. The recent announcement of Praxair, Inc., and IFC introducing a non-cryogenic hydrogen supply system utilizing IFC`s steam reformer is an example. 11 figs.

Smith, M.J. [International Fuel Cells Corp., South Windsor, CT (United States)

1996-12-31T23:59:59.000Z

193

Optimal planning of distributed generation systems in distribution system: A review  

Science Journals Connector (OSTI)

This paper attempts to present the state of art of research work carried out on the optimal planning of distributed generation (DG) systems under different aspects. There are number of important issues to be considered while carrying out studies related to the planning and operational aspects of DG. The planning of the electric system with the presence of DG requires the definition of several factors, such as: the best technology to be used, the number and the capacity of the units, the best location, the type of network connection, etc. The impact of DG in system operating characteristics, such as electric losses, voltage profile, stability and reliability needs to be appropriately evaluated. For that reason, the use of an optimization method capable of indicating the best solution for a given distribution network can be very useful for the system planning engineer, when dealing with the increase of DG penetration that is happening nowadays. The selection of the best places for installation and the preferable size of the DG units in large distribution systems is a complex combinatorial optimization problem. This paper aims at providing a review of the relevant aspects related to DG and its impact that DG might have on the operation of distributed networks. This paper covers the review of basics of DG, DG definition, current status of DG technologies, potential advantages and disadvantages, review for optimal placement of DG systems, optimizations techniques/methodologies used in optimal planning of DG in distribution systems. An attempt has been made to judge that which methodologies/techniques are suitable for optimal placement of DG systems based on the available literature and detail comparison(s) of each one.

Rajkumar Viral; D.K. Khatod

2012-01-01T23:59:59.000Z

194

Regional Distribution of the Locomotor Pattern-Generating Network in the Neonatal Rat Spinal Cord  

E-Print Network (OSTI)

Regional Distribution of the Locomotor Pattern-Generating Network in the Neonatal Rat Spinal Cord K/NMA, and was evidence of a distributed organization of unit generators inmonitored via hindlimb flexor (peroneal, Winnipeg, Manitoba R3E 0W3, Canada Cowley, K. C. and B. J. Schmidt. Regional distribution of the rhythmic

Manitoba, University of

195

GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER WITH DISTRIBUTED GENERATION PRIME MOVERS - ASME 2012  

SciTech Connect

Pending or recently enacted greenhouse gas regulations and mandates are leading to the need for current and feasible GHG reduction solutions including combined heat and power (CHP). Distributed generation using advanced reciprocating engines, gas turbines, microturbines and fuel cells has been shown to reduce greenhouse gases (GHG) compared to the U.S. electrical generation mix due to the use of natural gas and high electrical generation efficiencies of these prime movers. Many of these prime movers are also well suited for use in CHP systems which recover heat generated during combustion or energy conversion. CHP increases the total efficiency of the prime mover by recovering waste heat for generating electricity, replacing process steam, hot water for buildings or even cooling via absorption chilling. The increased efficiency of CHP systems further reduces GHG emissions compared to systems which do not recover waste thermal energy. Current GHG mandates within the U.S Federal sector and looming GHG legislation for states puts an emphasis on understanding the GHG reduction potential of such systems. This study compares the GHG savings from various state-of-the- art prime movers. GHG reductions from commercially available prime movers in the 1-5 MW class including, various industrial fuel cells, large and small gas turbines, micro turbines and reciprocating gas engines with and without CHP are compared to centralized electricity generation including the U.S. mix and the best available technology with natural gas combined cycle power plants. The findings show significant GHG saving potential with the use of CHP. Also provided is an exploration of the accounting methodology for GHG reductions with CHP and the sensitivity of such analyses to electrical generation efficiency, emissions factors and most importantly recoverable heat and thermal recovery efficiency from the CHP system.

Curran, Scott [ORNL; Theiss, Timothy J [ORNL; Bunce, Michael [ORNL

2012-01-01T23:59:59.000Z

196

Generators for Synthesis of QoS Adaptation in Distributed Real-Time Embedded Systems  

Science Journals Connector (OSTI)

This paper presents a model-driven approach for generating Quality-of-Service (QoS) adaptation in Distributed Real-Time Embedded (DRE) systems. The ... - the Adaptive Quality Modeling Language. Multiple generators

Sandeep Neema; Ted Bapty; Jeff Gray

2002-01-01T23:59:59.000Z

197

Artificial Neural Network Based Approach for Anti-islanding Protection of Distributed Generators  

Science Journals Connector (OSTI)

The anti-islanding protection of synchronous generators is typically performed by voltage and frequency ... is possible to recognize existent patterns on the distributed generator voltage waveform, which makes po...

Victor Luiz Merlin

2014-06-01T23:59:59.000Z

198

Methods of calculating currents of induction, self-excited generators with two distributed windings  

Science Journals Connector (OSTI)

A simplified way of calculating the current frequency of induction self-excited generator with two distributed windings on the stator is suggested. It ... do not influence the current frequency of the generator; ...

S. I. Kitsis; D. N. Pautov

2009-04-01T23:59:59.000Z

199

Methodology The electricity generation and distribution network in the Western United States is  

E-Print Network (OSTI)

Methodology The electricity generation and distribution network in the Western United States is comprised of power plants, electric utilities, electrical transformers, transmission and distribution infrastructure, etc. We conceptualize the system as a transportation network with resources (electricity

Hall, Sharon J.

200

Micro-grid operation of inverter based distributed generation with voltage and frequency dependent loads  

E-Print Network (OSTI)

Distribution systems are experiencing increasing penetration of distributed generation (DG). One attractive option is to use the available DG capacity during utility outages by forming planned micro-grids. Load sharing ...

Zeineldin, H. H.

Note: This page contains sample records for the topic "including distributed generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

A Study of Distributed Generation System Characteristics and Protective Load Control Strategy  

E-Print Network (OSTI)

turbines: Doubly-fed Induction Generator (DFIG) and Fixed-speed Wind Turbine (FSWT) are compared), Distributed Generation System (DGS), Doubly- fed Induction Generator (DFIG), Fixed-speed Wind Turbine (FSWT (FSWT) and doubly-fed induction generator wind turbine (DFIG) have different characteristics, when

Chen, Zhe

202

A distributed parameter model for the torsional vibration analysis of turbine-generator shafts  

Science Journals Connector (OSTI)

A distributed parameter model is presented for the calculation of torsional vibrations of large turbine-generator shafts, on the basis of electrical analogy...

A. Deri; L. Kiss; G. Toth

1987-01-01T23:59:59.000Z

203

Intelligent Power Management of a Hybrid Fuel Cell/Energy Storage Distributed Generator  

Science Journals Connector (OSTI)

This book chapter addresses the intelligent power management of a hybrid ( fuel cell/energy storage( distributed generator connected to a power grid. It presents...

Amin Hajizadeh; Ali Feliachi; Masoud Aliakbar Golkar

2012-01-01T23:59:59.000Z

204

Making the Economic Case for Small-Scale Distributed Wind -- A Screening for Distributed Generation Wind Opportunities: Preprint  

SciTech Connect

This study was an offshoot of a previous assessment, which examined the potential for large-scale, greater than 50 MW, wind development on occupied federal agency lands. The study did not find significant commercial wind development opportunities, primarily because of poor wind resource on available and appropriately sized land areas or land use or aesthetic concerns. The few sites that could accommodate a large wind farm failed to have transmission lines in optimum locations required to generate power at competitive wholesale prices. The study did identify a promising but less common distributed generation (DG) development option. This follow-up study documents the NREL/Global Energy Concepts team efforts to identify economic DG wind projects at a select group of occupied federal sites. It employs a screening strategy based on project economics that go beyond quantity of windy land to include state and utility incentives as well as the value of avoided power purchases. It attempts to account for the extra costs and difficulties associated with small projects through the use of project scenarios that are more compatible with federal facilities and existing land uses. These benefits and barriers of DG are discussed, and the screening methodology and results are included. The report concludes with generalizations about the screening method and recommendations for improvement and other potential applications for this methodology.

Kandt, A.; Brown, E.; Dominick, J.; Jurotich, T.

2007-06-01T23:59:59.000Z

205

Is The Distributed Generation Revolution Coming: A Federal Perspective  

Office of Environmental Management (EM)

generation and transmission construction and retirements, energy efficiency and demand response programs, regional system plans, and the implications of federal and state...

206

Distributed Generation Investment by a Microgrid Under Uncertainty  

E-Print Network (OSTI)

DG) and combined heat and power (CHP) applications matchedpower generation with combined heat and power applications,tax on microgrid combined heat and power adoption, Journal

Siddiqui, Afzal; Marnay, Chris

2006-01-01T23:59:59.000Z

207

Most Viewed Documents for Power Generation and Distribution:...  

Office of Scientific and Technical Information (OSTI)

Methods for Power Distribution Systems: Final Report Tom McDermott (2010) 34 Industrial Power Factor Analysis Guidebook. Electrotek Concepts. (1995) 29 Recovery of Water from...

208

Spatial distribution of very low?frequency wind?generated noise in the ocean  

Science Journals Connector (OSTI)

We have adapted our model of surface?generated noise in a stratified lossy ocean to the case of low?frequency wind?generated noise produced in deep water by turbulentpressure fluctuations in the atmosphere. The model assumes a random pressure distribution at the surface and includes the effects of sound?speed profile and bottom characteristics. Using Wilson's source levels [J. H. Wilson J. Acoust. Soc. Am. 66 14991507 (1979)] we have calculated the noise level as functions of frequency and depth and compared the results with measured data. We show these results along with calculations of the spatial coherence function which differs significantly from the standard deep?water result. Finally we present calculations of the effective surface area that is the area of the surface centered above the receiver which contributes most of the noise intensity. We show that this quantity is dependent on receiver depth.

F. Ingenito; W. A. Kuperman

1980-01-01T23:59:59.000Z

209

A genetic algorithm approach to voltage-VAR control in systems with distributed generation  

Science Journals Connector (OSTI)

This paper presents a case study that highlights the influences which the connection of distributed generation sources may have over the solutions of reactive power compensation and voltage control already existing in a given network. The problem of ... Keywords: distributed generation, genetic algorithms, renewable sources, voltage-var control

Iulia Coroama; Mihai Gavrilas; Ovidiu Ivanov

2010-10-01T23:59:59.000Z

210

Bulk ACCVD Generation of SWNTs with Narrow Chirality Distribution Shigeo Maruyama1)  

E-Print Network (OSTI)

Bulk ACCVD Generation of SWNTs with Narrow Chirality Distribution Shigeo Maruyama1) , Yuhei-1, Sonoyama 1-chome, Otsu, Shiga 520-8558, Japan By scaling up the alcohol CCVD (ACCVD) generation technique to determine the chirality distribution of SWNTs, dispersed and centrifuged SWNTs in NaDDBS/D2O was examined

Maruyama, Shigeo

211

Generation of high-resolution surface temperature distributions Anton A. Darhuber and Sandra M. Troiana)  

E-Print Network (OSTI)

Generation of high-resolution surface temperature distributions Anton A. Darhuber and Sandra M have performed numerical calculations to study the generation of arbitrary temperature profiles with high spatial resolution on the surface of a solid. The characteristics of steady-state distributions

Troian, Sandra M.

212

Autonomous Control of Inverter-Interfaced Distributed Generation Units for Harmonic Current Filtering and  

E-Print Network (OSTI)

Autonomous Control of Inverter-Interfaced Distributed Generation Units for Harmonic Current-interfaced Distributed Generation (DG) units, which can autonomously share harmonic currents and resonance damping, such that harmonic resonances and voltage distortions can be damped. To autonomously share harmonic currents, a droop

Chen, Zhe

213

Integrating Small Scale Distributed Generation into a Deregulated Market: Control Strategies and Price Feedback  

E-Print Network (OSTI)

Small scale power generating technologies, such as gas turbines, small hydro turbines, photovoltaics, wind turbines and fuel cells, are gradually replacing conventional generating technologies, for various applications, in the electric power system. The industry restructuring process in the United States is exposing the power sector to market forces, which is creating competitive structures for generation and alternative regulatory structures for the transmission and distribution systems. The potentially conflicting economic and technical demands of the new, independent generators introduce a set of significant uncertainties. What balance between market forces and centralized control will be found to coordinate distribution system operations? How will the siting of numerous small scale generators in distribution feeders impact the technical operations and control of the distribution system? Who will provide ancillary services (such as voltage support and spinning reserves) in the new competitive environment? This project investigates both the engineering and market integration of distributed generators into the distribution system. On the technical side, this project investigates the frequency performance of a distribution system that has multiple small scale generators. Using IEEE sample distribution systems and new dynamic generator models, this project develops general methods for

Judith Cardell; Marija Ili?; Richard D. Tabors

1997-01-01T23:59:59.000Z

214

Distributed Private-Key Generators for Identity-Based Cryptography  

Science Journals Connector (OSTI)

An identity-based encryption (IBE) scheme can greatly reduce the complexity of sending encrypted messages. However, an IBE scheme necessarily requires a private-key generator (PKG), which can create private keys ...

Aniket Kate; Ian Goldberg

2010-01-01T23:59:59.000Z

215

Distributed Generation Investment by a Microgrid under Uncertainty  

E-Print Network (OSTI)

power generation with combined heat and power applications.tax on microgrid combined heat and power adoption. JournalCHP Application Center. Combined heat and power in a dairy.

Siddiqui, Afzal

2008-01-01T23:59:59.000Z

216

Distributed Online Learning of Central Pattern Generators in Modular Robots  

Science Journals Connector (OSTI)

In this paper we study distributed online learning of locomotion gaits for modular robots. The learning is based on a stochastic approximation method, SPSA, which optimizes the parameters of coupled oscillator...

David Johan Christensen; Alexander Sprwitz

2010-01-01T23:59:59.000Z

217

Onsite Distributed Generation Systems For Laboratories, Laboratories for the 21st Century: Best Practices (Brochure)  

SciTech Connect

This guide provides general information on implementing onsite distributed generation systems in laboratory environments. Specific technology applications, general performance information, and cost data are provided to educate and encourage laboratory energy managers to consider onsite power generation or combined heat and power (CHP) systems for their facilities. After conducting an initial screening, energy managers are encouraged to conduct a detailed feasibility study with actual cost and performance data for technologies that look promising. Onsite distributed generation systems are small, modular, decentralized, grid-connected, or off-grid energy systems. These systems are located at or near the place where the energy is used. These systems are also known as distributed energy or distributed power systems. DG technologies are generally considered those that produce less than 20 megawatts (MW) of power. A number of technologies can be applied as effective onsite DG systems, including: (1) Diesel, natural gas, and dual-fuel reciprocating engines; (2) Combustion turbines and steam turbines; (3) Fuel cells; (4) Biomass heating; (5) Biomass combined heat and power; (6) Photovoltaics; and (7) Wind turbines. These systems can provide a number of potential benefits to an individual laboratory facility or campus, including: (1) High-quality, reliable, and potentially dispatchable power; (2) Low-cost energy and long-term utility cost assurance, especially where electricity and/or fuel costs are high; (3) Significantly reduced greenhouse gas (GHG) emissions. Typical CHP plants reduce onsite GHG by 40 to 60 percent; (4) Peak demand shaving where demand costs are high; (5) CHP where thermal energy can be used in addition to electricity; (6) The ability to meet standby power needs, especially where utility-supplied power is interrupted frequently or for long periods and where standby power is required for safety or emergencies; and (7) Use for standalone or off-grid systems where extending the grid is too expensive or impractical. Because they are installed close to the load, DG systems avoid some of the disadvantages of large, central power plants, such as transmission and distribution losses over long electric lines.

Not Available

2011-09-01T23:59:59.000Z

218

Design optimization of a fuzzy distributed generation (DG) system with multiple renewable energy sources  

Science Journals Connector (OSTI)

The global rise in energy demands brings major obstacles to many energy organizations in providing adequate energy supply. Hence many techniques to generate cost effective reliable and environmentally friendly alternative energy source are being explored. One such method is the integration of photovoltaic cells wind turbine generators and fuel-based generators included with storage batteries. This sort of power systems are known as distributed generation (DG) power system. However the application of DG power systems raise certain issues such as cost effectiveness environmental impact and reliability. The modelling as well as the optimization of this DG power system was successfully performed in the previous work using Particle Swarm Optimization (PSO). The central idea of that work was to minimize cost minimize emissions and maximize reliability (multi-objective (MO) setting) with respect to the power balance and design requirements. In this work we introduce a fuzzy model that takes into account the uncertain nature of certain variables in the DG system which are dependent on the weather conditions (such as; the insolation and wind speed profiles). The MO optimization in a fuzzy environment was performed by applying the Hopfield Recurrent Neural Network (HNN). Analysis on the optimized results was then carried out.

2012-01-01T23:59:59.000Z

219

Uncertainty Analysis of the Adequacy Assessment Model of a Distributed Generation System  

E-Print Network (OSTI)

of evidence theory, the hybrid propagation approach is introduced. A demonstration is given on a DG system enables end-users to install renewable generators (e.g. solar generators and wind turbines) on1 Uncertainty Analysis of the Adequacy Assessment Model of a Distributed Generation System Yanfu Li

Paris-Sud XI, Université de

220

hal-00015991,version2-14Nov2006 Gibbs distributions for random partitions generated by a  

E-Print Network (OSTI)

hal-00015991,version2-14Nov2006 Gibbs distributions for random partitions generated) distribution is obtained by sampling uniformly among such partitions with k clusters. We provide conditions has the Gibbs (n, k, w) distribution, so the partition is subject to irreversible fragmentation

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "including distributed generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

OPTIMAL DISTRIBUTED POWER GENERATION UNDER NETWORK LOAD CONSTRAINTS,  

E-Print Network (OSTI)

-producers. Decentralized Power Generation (DPG) refers to an electric power source such as solar, wind or combined heat (the approach used in the traditional electric power paradigm), DPG systems employ numerous, but small¨EL BLOEMHOF, JOOST BOSMAN§, DAAN CROMMELIN¶, JASON FRANK , AND GUANGYUAN YANG Abstract. In electrical power

Frank, Jason

222

Distributed State Space Generation of Discrete-State Stochastic Models  

E-Print Network (OSTI)

of the numerical approach, since the size of the state space can easily be orders of magnitude larger than the main charts [17], and ad hoc textual languages [14], the correct logical behavior can, in principle--it makes sense to distribute the state-space principally when one has to in order to avoid paging overhead

Ciardo, Gianfranco

223

Quantifying the Air Pollution Exposure Consequences of Distributed Electricity Generation  

E-Print Network (OSTI)

fuels, including oil, landfill gas, and diesel. For most ofopportunity fuels" such as landfill gas) and fuel cells withconsumed (natural gas, landfill gas, digester gas, diesel

Heath, Garvin A.; Granvold, Patrick W.; Hoats, Abigail S.; Nazaroff, William W

2005-01-01T23:59:59.000Z

224

Distributed Generation versus Centralised Supply: a Social Cost-Benefit Analysis  

E-Print Network (OSTI)

, regulators and legislators in distributed generation (DG), namely, the integrated or stand-alone use of small, modular power generation close to the point of consumption as an alternative to large power generation and electricity transport over long distances... condensing boiler providing heat for space heating and sanitary uses (hot water). A conventional compressing refrigerator supplies cold for air conditioning. Imported electricity is assumed to be generated by a combined cycle-gas turbine plant (CCGT), with 51...

Gulli, Francesco

2004-06-16T23:59:59.000Z

225

Distributed Generation and Renewable Energy in the Electric Cooperative Sector  

NLE Websites -- All DOE Office Websites (Extended Search)

Generation and Generation and Renewable Energy in the Electric Cooperative Sector Ed Torrero Cooperative Research Network (CRN) National Rural Electric Cooperative Association September 22, 2004 Co-op Basics  Customer owned  Serve 35 million people in 47 states  75 percent of nation's area  2.3 million miles of line is close to half of nation's total  Growth rate twice that of IOU Electrics  Six customers per line-mile vs 33 for IOU  Co-ops view DP as a needed solution; not as a "problem" Broad Range of Technologies Chugach EA 1-MW Fuel Cell Installation Post Office in Anchorage, AK Chugach EA Microturbine Demo Unit at Alaska Village Electric Co-op CRN Transportable 200kW Fuel Cell at Delta- Montrose EA in Durango, CO Plug Power Fuel Cell at Fort Jackson, SC

226

Integrated operation of electric vehicles and renewable generation in a smart distribution system  

Science Journals Connector (OSTI)

Abstract Distribution system complexity is increasing mainly due to technological innovation, renewable Distributed Generation (DG) and responsive loads. This complexity makes difficult the monitoring, control and operation of distribution networks for Distribution System Operators (DSOs). In order to cope with this complexity, a novel method for the integrated operational planning of a distribution system is presented in this paper. The method introduces the figure of the aggregator, conceived as an intermediate agent between end-users and DSOs. In the proposed method, energy and reserve scheduling is carried out by both aggregators and DSO. Moreover, Electric Vehicles (EVs) are considered as responsive loads that can participate in ancillary service programs by providing reserve to the system. The efficiency of the proposed method is evaluated on an 84-bus distribution test system. Simulation results show that the integrated scheduling of \\{EVs\\} and renewable generators can mitigate the negative effects related to the uncertainty of renewable generation.

Alireza Zakariazadeh; Shahram Jadid; Pierluigi Siano

2015-01-01T23:59:59.000Z

227

A 2D finite element with through the thickness parabolic temperature distribution for heat transfer simulations including welding  

Science Journals Connector (OSTI)

Abstract The arc welding process involves thermal cycles that cause the appearance of undesirable residual stresses. The determination of this thermal cycle is the first step to a thermomechanical analysis that allows the numerical calculation of residual stresses. This study describes the formulation of a 2D finite element with through the thickness parabolic temperature distribution, including an element estabilization procedure. The 2D element described in this paper can be used to perform thermal analysis more economically than 3D elements, especially in plates, because the number of degrees of freedom through the thickness will always be three. A numerical model of a tungsten arc welding (GTAW) setup was made based on published experimental results. Size and distribution of the heat source input, thermal properties dependent on temperature, surface heat losses by convection and latent heat during phase change were considered. In parallel the same setup was modeled using ANSYS software with 3D elements (SOLID70) to compare against 2D numerical results. The results obtained by 2D model, 3D model and experimental data showed good agreement.

Darlesson Alves do Carmo; Alfredo Rocha de Faria

2015-01-01T23:59:59.000Z

228

A new approach based on ant colony optimization for daily Volt/Var control in distribution networks considering distributed generators  

Science Journals Connector (OSTI)

This paper presents a new approach to daily Volt/Var control in distribution systems with regard to distributed generators (DGs). Due to the small X/R ratio and radial configuration of distribution systems, \\{DGs\\} have much impact on this problem. A cost-based compensation methodology is proposed as a proper signal to encourage owners of \\{DGs\\} in active and reactive power generation. An evolutionary method based on ant colony optimization (ACO) is used to determine the active and reactive power values of DGs, reactive power values of capacitors and tap positions of transformers for the next day. The results indicate that the proposed encouraging factor has improved the performance of distribution networks on a large scale.

Taher Niknam

2008-01-01T23:59:59.000Z

229

Solar Valuation and the Modern Utility's Expansion into Distributed Generation  

Science Journals Connector (OSTI)

Residential solar's diffusion across the U.S. power grid is inspiring concern in the utility industry. Of particular debate have been net energy metering policies (NEM), which engender revenue losses and lead to cross-subsidization of solar customers by non-solar customers. An emerging alternative to NEM is the value of solar tariff (VOST), which is designed to pay residential solar generation based on a more nuanced benefit-cost analysis to determine the actual value of residential solar to utility operations.

Griselda Blackburn; Clare Magee; Varun Rai

2014-01-01T23:59:59.000Z

230

Novel Control of PV Solar and Wind Farm Inverters as STATCOM for Increasing Connectivity of Distributed Generators.  

E-Print Network (OSTI)

??The integration of distributed generators (DGs) such as wind farms and PV solar farms in distribution networks is getting severely constrained due to problems of (more)

AC, Mahendra

2013-01-01T23:59:59.000Z

231

Generation of Initial Kinetic Distributions for Simulation of Long-Pulse Charged Particle Beams with High Space-Charge intensity  

SciTech Connect

Self-consistent Vlasov-Poisson simulations of beams with high space-charge intensity often require specification of initial phase-space distributions that reflect properties of a beam that is well adapted to the transport channel--both in terms of low-order rms (envelope) properties as well as the higher-order phase-space structure. Here, we first review broad classes of kinetic distributions commonly in use as initial Vlasov distributions in simulations of unbunched or weakly bunched beams with intense space-charge fields including: the Kapchinskij-Vladimirskij (KV) equilibrium, continuous-focusing equilibria with specific detailed examples, and various non-equilibrium distributions, such as the semi-Gaussian distribution and distributions formed from specified functions of linear-field Courant-Snyder invariants. Important practical details necessary to specify these distributions in terms of usual accelerator inputs are presented in a unified format. Building on this presentation, a new class of approximate initial kinetic distributions are constructed using transformations that preserve linear-focusing single-particle Courant-Snyder invariants to map initial continuous-focusing equilibrium distributions to a form more appropriate for non-continuous focusing channels. Self-consistent particle-in-cell simulations are employed to show that the approximate initial distributions generated in this manner are better adapted to the focusing channels for beams with high space-charge intensity. This improved capability enables simulation applications that more precisely probe intrinsic stability properties and machine performance.

Lund, Steven M.; Kikuchi, Takashi; Davidson, Ronald C.

2007-04-03T23:59:59.000Z

232

Generation of initial Vlasov distributions for simulation of charged particle beams with high space-charge intensity  

SciTech Connect

Self-consistent Vlasov simulations of beams with high space-charge intensity often require specification of initial phase-space distributions that reflect properties of a beam that is well adapted to the transport channel, both in terms of low-order rms (envelope) properties as well as the higher-order phase-space structure. Here, we first review broad classes of distributions commonly in use as initial Vlasov distributions in simulations of beams with intense space-charge fields including: the Kapchinskij-Vladimirskij (KV) equilibrium, continuous-focusing equilibria with specific detailed examples, and various non-equilibrium distributions, such as the semi-Gaussian distribution and distributions formed from specified functions of linear-field Courant-Snyder invariants. Important practical details necessary to specify these distributions in terms of usual accelerator inputs are presented in a unified format. Building on this presentation, a new class of approximate initial distributions are constructed using transformations that preserve linear-focusing single-particle Courant-Snyder invariants to map initial continuous-focusing equilibrium distributions to a form more appropriate for non-continuous focusing channels. Self-consistent particle-in-cell simulations are employed to show that the approximate initial distributions generated in this manner are better adapted to the focusing channels for beams with high space-charge intensity. This improved capability enables simulation applications that more precisely probe intrinsic stability properties and machine performance.

Lund, S M; Kikuchi, T; Davidson, R C

2007-04-12T23:59:59.000Z

233

PhotoVoltaic distributed generation for Lanai power grid real-time simulation and control integration scenario.  

SciTech Connect

This paper discusses the modeling, analysis, and testing in a real-time simulation environment of the Lanai power grid system for the integration and control of PhotoVoltaic (PV) distributed generation. The Lanai Island in Hawaii is part of the Hawaii Clean Energy Initiative (HCEI) to transition to 30% renewable green energy penetration by 2030. In Lanai the primary loads come from two Castle and Cook Resorts, in addition to residential needs. The total peak load profile is 12470 V, 5.5 MW. Currently there are several diesel generators that meet these loading requirements. As part of the HCEI, Lanai has initially installed 1.2 MW of PV generation. The goal of this study has been to evaluate the impact of the PV with respect to the conventional carbon-based diesel generation in real time simulation. For intermittent PV distributed generation, the overall stability and transient responses are investigated. A simple Lanai 'like' model has been developed in the Matlab/Simulink environment (see Fig. 1) and to accommodate real-time simulation of the hybrid power grid system the Opal-RT Technologies RT-Lab environment is used. The diesel generators have been modelled using the SimPowerSystems toolbox swing equations and a custom Simulink module has been developed for the High level PV generation. All of the loads have been characterized primarily as distribution lines with series resistive load banks with one VAR load bank. Three-phase faults are implemented for each bus. Both conventional and advanced control architectures will be used to evaluate the integration of the PV onto the current power grid system. The baseline numerical results include the stable performance of the power grid during varying cloud cover (PV generation ramping up/down) scenarios. The importance of assessing the real-time scenario is included.

Robinett, Rush D., III; Kukolich, Keith (Opal RT Technologies, Montreal, Quebec, Canada); Wilson, David Gerald; Schenkman, Benjamin L.

2010-06-01T23:59:59.000Z

234

Distributed Central Pattern Generator Model for Robotics Application Based on Phase Sensitivity Analysis  

Science Journals Connector (OSTI)

A method is presented to predict phase relationships between coupled phase oscillators. As an illustration of how the method can be applied, a distributed Central Pattern Generator (CPG) model based on amplitude ...

Jonas Buchli; Auke Jan Ijspeert

2004-01-01T23:59:59.000Z

235

Applying epoch-era analysis for homeowner selection of distributed generation power systems  

E-Print Network (OSTI)

The current shift from centralized energy generation to a more distributed model has opened a number of choices for homeowners to provide their own power. While there are a number of systems to purchase, there are no tools ...

Pia, Alexander L

2014-01-01T23:59:59.000Z

236

Multivariate distributed ensemble generator: A new scheme for ensemble radar precipitation estimation over temperate maritime climate  

Science Journals Connector (OSTI)

Summary It is broadly recognized that large uncertainties are associated with radar rainfall (RR) estimates, which could propagate in the hydrologic forecast system and contaminate its final outcomes. Ensemble generation of probable true rainfall is an elegant and practical solution to characterize the uncertainty of RR estimates and behavior in the hydrologic forecast system. In this study, we have proposed a fully formulated uncertainty model that can statistically quantify the characteristics of the RR errors and their spatial and temporal structure, which is a novel method of its kind in the radar data uncertainty field. The error model is established based on the distribution of gauge rainfall conditioned on radar rainfall (GR|RR). Its spatial and temporal dependencies are simulated based on the t-copula function. With this proposed error model, a Multivariate Distributed Ensemble Generator (MDEG) driven by the copula and autoregressive filter is designed and applied in the Brue catchment (135km2), an extensively gauged site in the United Kingdom. The products from MDEG include a time series of ensemble rainfall fields with each of them representing a probable true rainfall. A series of tests show that the ensemble fields generated by MDEG have realistically maintained the spatial and temporal structure of the random error in RR as they have relatively low mean absolute errors (MAEs) of spatio-temporal correlation towards the observed ones. In addition, the results show that the simulated uncertainty bands derived by the 500 realizations of ensemble rainfall encompass most of the reference rain gauge measurements, indicating that the proposed scheme is statistically reliable.

Qiang Dai; Dawei Han; Miguel Rico-Ramirez; Prashant K. Srivastava

2014-01-01T23:59:59.000Z

237

Connecting to the Grid: A Guide to Distributed Generation Interconnection Issues, 6th Edition, 2009  

Energy.gov (U.S. Department of Energy (DOE))

This guide addresses issues relevant to all DG technologies, including net excess generation, third-party ownership, energy storage and networks

238

Generating multipartite entangled states of qubits distributed in different cavities  

E-Print Network (OSTI)

Cavity-based large-scale quantum information processing (QIP) needs a large number of qubits and placing all of them in a single cavity quickly runs into many fundamental and practical problems such as the increase of cavity decay rate and decrease of qubit-cavity coupling strength. Therefore, future QIP most likely will require quantum networks consisting of a large number of cavities, each hosting and coupled to multiple qubits. In this work, we propose a way to prepare a $W$-class entangled state of spatially-separated multiple qubits in different cavities, which are connected to a coupler qubit. Because no cavity photon is excited, decoherence caused by the cavity decay is greatly suppressed during the entanglement preparation. This proposal needs only one coupler qubit and one operational step, and does not require using a classical pulse, so that the engineering complexity is much reduced and the operation is greatly simplified. As an example of the experimental implementation, we further give a numerical analysis, which shows that high-fidelity generation of the $W$ state using three superconducting phase qubits each embedded in a one-dimensional transmission line resonator is feasible within the present circuit QED technique. The proposal is quite general and can be applied to accomplish the same task with other types of qubits such as superconducting flux qubits, charge qubits, quantum dots, nitrogen-vacancy centers and atoms.

Xiao-Ling He; Qi-Ping Su; Feng-Yang Zhang; Chui-Ping Yang

2014-10-12T23:59:59.000Z

239

A distributed data storage and processing framework for next-generation residential distribution systems  

Science Journals Connector (OSTI)

Abstract As the number of smart meters/sensors increases to more than hundreds of thousands, it is rather intuitive that the state-of-the-art centralized information processing architecture will no longer be sustainable under such a big data explosion. Hence, an innovative data management system is urgently needed to facilitate the real-world deployment of a future residential distribution system. In this paper, we investigate a radically different approach through distributed software agents to translate the legacy centralized data storage and processing scheme to a completely distributed cyber-physical architecture. We further substantiate the proposed distributed data storage and processing framework on a proof-of-concept testbed using a cluster of low-cost and credit-card-sized single-board computers. Finally, we evaluate the proposed distributed framework and proof-of-concept testbed with a comprehensive set of performance measures.

Ni Zhang; Yu Yan; Shengyao Xu; Wencong Su

2014-01-01T23:59:59.000Z

240

Distributed Load Demand Scheduling in Smart Grid to Minimize Electricity Generation Cost  

E-Print Network (OSTI)

is to perform demand side management (DSM) [1], which aims at matching the consum- ers' electricity demand between electricity consumption and generation. On the consumption side, electric demand ramps upDistributed Load Demand Scheduling in Smart Grid to Minimize Electricity Generation Cost Siyu Yue

Pedram, Massoud

Note: This page contains sample records for the topic "including distributed generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Modeling and Generating Daily Changes in Market Variables Using A Multivariate Mixture of Normal Distributions  

E-Print Network (OSTI)

Modeling and Generating Daily Changes in Market Variables Using A Multivariate Mixture of Normal Distributions Jin Wang Department of Mathematics and Computer Science Valdosta State University Valdosta, GA 31698-0040 January 28, 2000 Abstract The mixture of normal distributions provides a useful extension

Wang, Jin

242

Assessment of the Distributed Generation Market Potential for Solid Oxide Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

the Distributed the Distributed Generation Market Potential for Solid Oxide Fuel Cells September 29, 2013 DOE/NETL- 342/093013 NETL Contact: Katrina Krulla Analysis Team: Arun Iyengar, Dale Keairns, Dick Newby Contributors: Walter Shelton, Travish Shulltz, Shailesh Vora OFFICE OF FOSSIL ENERGY Table of Contents Executive Summary .........................................................................................................................1 1 Introduction ...................................................................................................................................2 2 DG Market Opportunity ................................................................................................................3 3 SOFC Technology Development Plan ..........................................................................................6

243

A 10.9 GS/s, 64 Taps Distributed Waveform Generator with DAC-Assisted Current-Steering Pulse Generators in  

E-Print Network (OSTI)

A 10.9 GS/s, 64 Taps Distributed Waveform Generator with DAC-Assisted Current-Steering Pulse Generators in ¢¡¤£¦¥¨§© Digital CMOS Yunliang Zhu , Jonathan D. Zuegel , John R. Marciante , and Hui Wu, Email:hwu@ece.rochester.edu Abstract-- A distributed waveform generator (DWG) with DAC-assisted pulse

Wu, Hui

244

Performance Enhancement of Radial Distributed System with Distributed Generators by Reconfiguration Using Binary Firefly Algorithm  

Science Journals Connector (OSTI)

The extent of real power loss and voltage deviation associated with overloaded feeders in radial distribution system can be reduced by reconfiguration. Reconfiguration is normally achieved by changing the open/cl...

N. Rajalakshmi; D. Padma Subramanian

2014-08-01T23:59:59.000Z

245

Shut-down margin study for the next generation VVER-1000 reactor including 13נ13 hexagonal annular assemblies  

Science Journals Connector (OSTI)

Shut-Down Margin (SDM) for the next generation annular fuel core of typical VVER-1000, 13נ13 assemblies are calculated as the main aim of the present research. We have applied the MCNP-5 code for many cases with different values of core burn up at various core temperatures, and therefore their corresponding coolant densities and boric acid concentrations. There is a substantial drop in SDM in the case of annular fuel for the same power level. Specifically, SDM for our proposed VVER-1000 annular pins is calculated when the average fuel burn up values at the BOC, MOC, and EOC are 0.531, 11.5, and 43MW-days/kg-U, respectively.

Farshad Faghihi; S. Mohammad Mirvakili

2011-01-01T23:59:59.000Z

246

Laying the Groundwork: Lessons Learned from the Telecommunications Industry for Distributed Generation; Preprint  

SciTech Connect

The telecommunications industry went through growing pains in the past that hold some interesting lessons for the growing distributed generation (DG) industry. The technology shifts and stakeholders involved with the historic market transformation of the telecommunications sector mirror similar factors involved in distributed generation today. An examination of these factors may inform best practices when approaching the conduits necessary to accelerate the shifting of our nation's energy system to cleaner forms of generation and use. From a technical perspective, the telecom industry in the 1990s saw a shift from highly centralized systems that had no capacity for adaptation to highly adaptive, distributed network systems. From a management perspective, the industry shifted from small, private-company structures to big, capital-intensive corporations. This presentation will explore potential correlation and outline the lessons that we can take away from this comparison.

Wise, A. L.

2008-05-01T23:59:59.000Z

247

A distributed model for capacitance requirements for self-excited induction generators  

Science Journals Connector (OSTI)

The main objective of this paper is to construct a distributed environment through which the capacitance requirements of self-excited induction generators can be monitored and controlled. A single-server/multiclient architecture has been proposed which enables that the self-excited induction generators can access the remote server at any time, with their respective data and can able to get the minimum capacitance requirements. An Remote Method Invocation (RMI)-based distributed model has been developed in such a way that for every specific period of time, the remote server obtains the system data simultaneously from the neighbouring self-excited induction generators which are the clients registered with it and the server send back the capacitance requirements as response to the respective clients. The server creates a new thread of control for every client request and hence complete distributed environment has been exploited.

K. Nithiyananthan; V. Ramachandran

2008-01-01T23:59:59.000Z

248

The impact of large-scale distributed generation on power grid and microgrids  

Science Journals Connector (OSTI)

Abstract With the widespread application of distributed generation (DG), their utilization rate is increasingly higher and higher in the power system. This paper analyzes the static and transient impact of large-scale \\{DGs\\} integrated with the distribution network load models on the power grid. Studies of static voltage stability based on continuous power flow method have shown that a reasonable choice of DG's power grid position will help to improve the stability of the system. The transient simulation results show that these induction motors in the distribution network would make effect on the start-up and fault conditions, which may cause the instability of \\{DGs\\} and grid. The simulation results show that modeling of distributed generations and loads can help in-depth study of the microgrid stability and protection design.

Qian Ai; Xiaohong Wang; Xing He

2014-01-01T23:59:59.000Z

249

Cost reduction of distribution network protection in presence of distributed generation using optimized fault current limiter allocation  

Science Journals Connector (OSTI)

Using Solid State Fault Current Limiters (SSFCLs) has been proposed as a potential cost-efficient candidate to minimize the effect of exposing Distributed Generation (DG) to the distribution system. Genetic Algorithm (GA) is employed to find the optimum number, location and size of \\{FCLs\\} to be used in the network. The numerical and simulation results show the efficiency of proposed GA-based FCL allocation and sizing method in terms of minimizing the cost of distribution protection system. The prices of \\{FCLs\\} are estimated using real market prices and simulations are performed in four cases assuming prices more than the estimated one, less than estimated price and equal to the real estimated cost for FCL. Numerical results show that FCL price highly affects the optimum choices for \\{FCLs\\} and the price imposed by using FCLs.

Sayyed Ali Akbar Shahriari; Ali Yazdian Varjani; Mahmood Reza Haghifam

2012-01-01T23:59:59.000Z

250

Enhancement of loading capacity of distribution system through distributed generator placement considering techno-economic benefits with load growth  

Science Journals Connector (OSTI)

Abstract Load growth in a system is a natural phenomenon. With the increase in load demand, system power loss and voltage drop increases. Distributed generators (DGs) are one of the best solutions to cope up with the load growth if they are allocated appropriately in the distribution system. In this work, optimal size and location of multiple \\{DGs\\} are found to cater the incremental load on the system and minimization of power loss without violating system constraints. For this a predetermined annual load growth up to five years is considered with voltage regulation as a constraint. The particle swarm optimization with constriction factor approach is applied to determine the optimum size and location with multiple DGs. To see the effect of load growth on system, 33-node IEEE standard test case is considered. It is observed that with the penetration of multiple number of \\{DGs\\} in distribution system, there is great improvement in several distribution system parameters. Moreover, the loading capacity of distribution system is enhanced through DG placement and its techno-economic benefits are also established.

Khyati D. Mistry; Ranjit Roy

2014-01-01T23:59:59.000Z

251

Generation of communication schedules for multi-mode distributed real-time applications  

Science Journals Connector (OSTI)

A key problem in designing multi-mode real-time systems is the generation of schedules to reduce the complexities of transforming the model semantics to code. Moreover, distributed multi-mode applications are prone to suffer from delays incurred during ...

Akramul Azim; Gonzalo Carvajal; Rodolfo Pellizzoni; Sebastian Fischmeister

2014-03-01T23:59:59.000Z

252

Fuel Cell Generation in Geo-Distributed Cloud Services: A Quantitative Study  

E-Print Network (OSTI)

Fuel Cell Generation in Geo-Distributed Cloud Services: A Quantitative Study Zhi Zhou1 Fangming Liu of fuel cell energy in cloud computing, yet it is unclear what and how much benefit it may bring. This paper, for the first time, attempts to quantitatively examine the benefits brought by fuel cell

Li, Baochun

253

Buildings Energy Data Book: 6.2 Electricity Generation, Transmission, and Distribution  

Buildings Energy Data Book (EERE)

7 7 Characteristics of New and Stock Generating Capacities, by Plant Type Total Capital Costs Size Overnight Costs (2) of Typical New Plant New Plant Type (MW) (2010 $/kW) ($2010 million) Scrubbed Coal 1300 2809 3652 Integrated Coal-Gasification Combined Cycle (IGCC) 1200 3182 3818 IGCC w/Carbon Sequestration 520 5287 2749 Conv. Gas/Oil Combined Cycle 540 967 522 Adv. Gas/Oil Combined Cycle 400 991 396 Conv. Combustion Turbine 85 961 82 Adv. Combustion Turbine 210 658 138 Fuel Cell 10 6752 68 Advanced Nuclear 2236 5275 11795 Municipal Solid Waste 50 8237 412 Conventional Hydropower (3) 500 2221 1111 Wind 100 2409 241 Stock Plant Type 2010 2015 2020 2025 2030 2035 Fossil Fuel Steam Heat Rate (Btu/kWh) Nuclear Energy Heat Rate (Btu/kWh) Note(s): Source(s): 1) Plant use of electricity is included in heat rate calculations; however, transmission and distribution losses of the electric grid are excluded.

254

Statistics for PV, wind and biomass generators and their impact on distribution grid planning  

Science Journals Connector (OSTI)

The integration of renewable energy generation leads to major challenges for distribution grid operators. When the feed-in of photovoltaic (PV), biomass and wind generators exceed significantly the local consumption, large investments are needed. To improve the knowledge on the interaction between these technologies, statistical information for load curves, correlation coefficients and general feed-in behavior is derived. These derivations are based on measured data of different generators in a German distribution area. In this paper, we give new insights useful for the dimensioning of grid structures and assets. Furthermore, an approach is presented which allows the calculation of the maximum and minimum feed-in resulting from different combinations of the considered technologies.

Stefan Nykamp; Albert Molderink; Johann L. Hurink; Gerald J.M. Smit

2012-01-01T23:59:59.000Z

255

Distributed voltage control strategy for LV networks with inverter-interfaced generators  

Science Journals Connector (OSTI)

Abstract Low voltage distribution networks are characterized by an ever growing diffusion of single and three phase distributed generators whose unregulated operation may deplete the power quality levels, in particular as regard voltage profiles and unbalances. This issue is at present under discussion by several national and international standardization bodies and the general trend is to require, for the new connections of generators to medium and low voltage grids, their participation to the reactive power network management. In this paper a novel strategy proposes to control the network voltage unbalance suitably for coordinating single and three-phase inverter interfaced embedded generators, concurrently with a local volt/var regulation action as foreseen by the new grid connection requirements. Simulations conducted on case study network representing a typical Italian 4-wire LV distribution system under different load/generation conditions, demonstrate that the coordinated action of single-phase and three-phase inverters may considerably reduce the degree of unbalance thus improving the network power quality levels.

R. Caldon; M. Coppo; R. Turri

2014-01-01T23:59:59.000Z

256

Planning of grid integrated distributed generators: A review of technology, objectives and techniques  

Science Journals Connector (OSTI)

Abstract The world is witnessing a transition from its present centralized generation paradigm to a future with increased share of distributed generation (DG). Integration of renewable energy sources (RES) based distributed generators is seen as a solution to decrease reliance on depleting fossil fuel reserves, increase energy security and provide an environment friendly solution to growing power demand. The planning of power system incorporating \\{DGs\\} has to take into account various factors such as nature of DG technology, impact of DG on operating characteristics of power system and economic considerations. This paper put forwards a comprehensive review on planning of grid integrated distributed generators. An overview of different DG technologies has been presented. Different issues associated with DG integration have been discussed. The planning objectives of DG integration have been surveyed in detail and have been critically reviewed with respect to conventional and RES based DG technologies. Different techniques used for optimal placement of \\{DGs\\} have also been investigated and compared. The extensive literature survey revealed that researchers have mostly focussed on DG integration planning using conventional DGs. RES based \\{DGs\\} have not been given due consideration. While integrating RES, their stochastic behaviour has not been appropriately accounted. Finally, visualizing the wide scope of research in the planning of grid integrated DGs; an attempt has been made to identify future research avenues.

Priyanka Paliwal; N.P. Patidar; R.K. Nema

2014-01-01T23:59:59.000Z

257

Time dependent evolution of RF-generated non-thermal particle distributions in fusion plasmas  

Science Journals Connector (OSTI)

We describe fully self-consistent time-dependent simulations of radio frequency (RF) generated ion distributions in the ion cyclotron range of frequencies and RF-generated electron distributions in the lower hybrid range of frequencies using combined FokkerPlanck and full wave electromagnetic field solvers. In each regime, the non-thermal particle distributions have been used in synthetic diagnostic codes to compare with diagnostic measurements from experiment, thus providing validation of the simulation capability. The computational intensive simulations require multiple full wave code runs that iterate with a FokkerPlanck code. We will discuss advanced algorithms that have been implemented to accelerate both the massively parallel full wave simulations as well as the iteration with the distribution code. A vector extrapolation method (Sidi A 2008 Comput. Math. Appl. 56) that permits Jacobian-free acceleration of the traditional fixed point iteration technique is used to reduce the number of iterations needed between the distribution and wave codes to converge to self-consistency. The computational burden of the parallel full wave codes has been reduced by using a more efficient two level parallel decomposition that improves the strong scaling of the codes and reduces the communication overhead.

J C Wright; A Bader; L A Berry; P T Bonoli; R W Harvey; E F Jaeger; J-P Lee; A Schmidt; E D'Azevedo; I Faust; C K Phillips; E Valeo

2014-01-01T23:59:59.000Z

258

Multi-objective quasi-oppositional teaching learning based optimization for optimal location of distributed generator in radial distribution systems  

Science Journals Connector (OSTI)

Abstract This paper presents a novel quasi-oppositional teaching learning based optimization (QOTLBO) methodology in order to find the optimal location of distributed generator to simultaneously optimize power loss, voltage stability index and voltage deviation of radial distribution network. The basic disadvantage of the original teaching learning based optimization (TLBO) algorithm is that it gives a near optimal solution rather than an optimal one in a limited iteration cycles. In this paper, opposition based learning (OBL) and quasi OBL concepts are introduced in original TLBO algorithm for improving the convergence speed and simulation results of TLBO. In order to show the effectiveness and superiority, the proposed algorithms are tested on 33-bus, 69-bus and 118-bus radial distribution networks. The simulation results of the proposed methods are compared with those obtained by other artificial intelligence techniques like GA/PSO, GA, PSO and loss sensitivity factor simulated annealing (LSFSA). The results show that the QOTLBO surpasses the other techniques in terms of solution quality.

Sneha Sultana; Provas Kumar Roy

2014-01-01T23:59:59.000Z

259

An ExpressionRewriting Framework to Generate Communication Sets for HPF Programs with BlockCyclic Distribution  

E-Print Network (OSTI)

information (how data are distributed among processors), and generate the communication codes[3, 16, 19An Expression­Rewriting Framework to Generate Communication Sets for HPF Programs with Block­Cyclic Distribution Gwan­Hwan Hwang Jenq Kuen Lee Department of Computer Science, National Tsing­Hua University

Lee, Jenq-Kuen

260

Practical stability assessment of distributed synchronous generators under variations in the system equilibrium conditions  

Science Journals Connector (OSTI)

Abstract This paper proposes a method to assess the practical stability of power distribution systems with synchronous generators subject to changes in the system equilibrium conditions due to fast varying loads. The concept of practical stability deals with two known state-space regions ?1 (which contains all the initial conditions reflecting the perturbations at which the system is subject during its operation) and ?2 (which represents the operating security region of the power distribution system) satisfying ?1??2. The practical stability problem and the focus of this paper is to determine under which conditions the system trajectories will be confined into a security region of operation for a certain time interval of interest, as the equilibrium point of the model changes. This study was carried out using a mathematical model of the distribution system with synchronous generators in the form of a switched affine system. This proposed model is capable of describing the system behavior over a certain period within which changes on the equilibrium conditions of the system can occur. Sufficient conditions for the power distribution system with synchronous generators described as a switched affine system to be practically stable with respect to its operating security region ?2 are given in the form of matrix inequalities constraints. The results, obtained for the model of a cogeneration plant of 10MW added to a distribution network constituted by a feeder and six buses, show that the less stringent properties of the concept of practical stability can be very well-suited to the security analysis of power systems subjected to frequent variations in the load level.

Roman Kuiava; Rodrigo A. Ramos; Hemanshu R. Pota; Luis F.C. Alberto

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "including distributed generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Regulatory Considerations for Developing Distributed Generation Projects Webinar May 23, 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jay Morrison Jay Morrison Vice President, Regulatory Issues National Rural Electric Cooperative Association jay.morrison@nreca.coop Susan Kelly General Counsel, Senior Vice President American Public Power Association skelly@publicpower.org  DG penetration rates are increasing rapidly  Careful selection of business model can maximize value for all participants by:  Maximizing access to government incentives  Maximize access to all available value streams for the developer, customer, and utility  Minimize regulatory burdens for all parties  Provide win-win-win solution 2  What size generator?  What fuel or energy source? Does it include storage?  Who pays the up-front cost of the generator?  Who owns the generator?  Who operates the generator?

262

Flicker attenuation and transfer study for induction generator integrated into distribution network  

Science Journals Connector (OSTI)

Abstract Squirrel-cage induction generators (IGs) are widely used in distributed generation (DG). When the voltage at the point of common coupling is fluctuant, the embedded IG will show the impedance characteristic with dynamic changes under the different fluctuation frequencies. In addition, the drive train of IG set has great impact on the voltage flicker attenuation. This paper observes the dynamic response of IG to the voltage flicker through the experiments and further defines the flicker attenuation factor and transfer coefficient. A linearization model of IG with two-mass equivalent drive train is constructed through comparing the impacts of different drive trains (such as diesel engine, wind turbine) on the voltage flicker attenuation. Then an analytical method is proposed to determine the dynamic impedance, attenuation factor, transfer coefficient and flicker limit for IG integrated into distribution network. The correctness of the proposed method is verified by the experimental tests and the dynamic simulation using the detailed model of IG set. The parameters sensitivities of drive train and generator to the voltage flicker attenuation effect are analyzed and discussed in the paper.

Qianggang Wang; Niancheng Zhou; Jizhong Zhu; Wei Yan; Shu Pan

2014-01-01T23:59:59.000Z

263

Optimizing Geographic Allotment of Photovoltaic Capacity in a Distributed Generation Setting: Preprint  

SciTech Connect

A multi-objective optimization was performed to allocate 2MW of PV among four candidate sites on the island of Lanai such that energy was maximized and variability in the form of ramp rates was minimized. This resulted in an optimal solution set which provides a range of geographic allotment alternatives for the fixed PV capacity. Within the optimal set, a tradeoff between energy produced and variability experienced was found, whereby a decrease in variability always necessitates a simultaneous decrease in energy. A design point within the optimal set was selected for study which decreased extreme ramp rates by over 50% while only decreasing annual energy generation by 3% over the maximum generation allocation. To quantify the allotment mix selected, a metric was developed, called the ramp ratio, which compares ramping magnitude when all capacity is allotted to a single location to the aggregate ramping magnitude in a distributed scenario. The ramp ratio quantifies simultaneously how much smoothing a distributed scenario would experience over single site allotment and how much a single site is being under-utilized for its ability to reduce aggregate variability. This paper creates a framework for use by cities and municipal utilities to reduce variability impacts while planning for high penetration of PV on the distribution grid.

Urquhart, B.; Sengupta, M.; Keller, J.

2012-09-01T23:59:59.000Z

264

Optimal allocation of multi-type distributed generators using backtracking search optimization algorithm  

Science Journals Connector (OSTI)

Abstract In this article, a very recently swarm optimization technique namely a backtracking search optimization algorithm (BSOA) is addressed to assign the distributed generators (DGs) along radial distribution networks. One of the main features of the BSOA is a single control parameter and not over sensitive to the initial value of this factor. The objective function is adapted with weighting factor to reduce the network real loss and enhance the voltage profile with the purpose of improving the operating performance. In addition, the combined power factor and reduction in network reactive power loss are spotted. Set of fuzzy expert rules using loss sensitivity factors and bus voltages are employed to identify the initial DGs locations. The proposed approach is attuned to tackle the shortfall of loss sensitivity factors and to decide the final placement of the DGs. Two types of the \\{DGs\\} are studied and investigated. The proposed method is demonstrated and validated thru many radial distribution networks with different sizes and complexities. The BSOA-based methodology can efficiently generate high-quality solutions compared to other competitive techniques in the literature.

Attia El-Fergany

2015-01-01T23:59:59.000Z

265

Laboratories for the 21st Century: Best Practices (Brochure): Onsite Distributed Generation Systems For Laboratories  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

L L a b o r a t o r i e s f o r t h e 2 1 s t C e n t u r y : B e s t P r a c t i c e s This combined heat and power system at the Bristol-Myers Squibb laboratory in Wallingford, Connecticut, could meet 100% of the lab's power requirement, if necessary. Bernard Blesinger / PIX 12552 ONSITE DISTRIBUTED GENERATION SYSTEMS FOR LABORATORIES Introduction Laboratories have unique requirements for lighting, ventilation, and scientific equipment with each requiring a considerable amount of energy. The reliability of that energy is very important. Laboratories must be able to conduct research without power interruptions, which can damage both equipment and experiments. Generating power and heat on site is one good way to enhance energy reliability, improve fuel utilization efficiency, reduce utility costs,

266

Development, Demonstration, and Field Testing of Enterprise-Wide Distributed Generation Energy Management System: Final Report  

SciTech Connect

This report details progress on subcontract NAD-1-30605-1 between the National Renewable Energy Laboratory and RealEnergy (RE), the purpose of which is to describe RE's approach to the challenges it faces in the implementation of a nationwide fleet of clean cogeneration systems to serve contemporary energy markets. The Phase 2 report covers: utility tariff risk and its impact on market development; the effect on incentives on distributed energy markets; the regulatory effectiveness of interconnection in California; a survey of practical field interconnection issues; trend analysis for on-site generation; performance of dispatch systems; and information design hierarchy for combined heat and power.

Greenberg, S.; Cooley, C.

2005-01-01T23:59:59.000Z

267

The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (English Version)  

E-Print Network (OSTI)

Distributed Generation in Japanese Prototype Buildings: English Version On-site absorption cooling On-site heating On-site generatorsDistributed Generation in Japanese Prototype Buildings: English Version On-site direct absorption cooling On-site heating On-site generatorDistributed Generation in Japanese Prototype Buildings: English Version Macrogrid On-site heating fuel consumption (tJ/a) carbon (t/a) On-site generators

Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

2004-01-01T23:59:59.000Z

268

Paradigm shift in urban energy systems through distributed generation: Methods and models  

Science Journals Connector (OSTI)

The path towards energy sustainability is commonly referred to the incremental adoption of available technologies, practices and policies that may help to decrease the environmental impact of energy sector, while providing an adequate standard of energy services. The evaluation of trade-offs among technologies, practices and policies for the mitigation of environmental problems related to energy resources depletion requires a deep knowledge of the local and global effects of the proposed solutions. While attempting to calculate such effects for a large complex system like a city, an advanced multidisciplinary approach is needed to overcome difficulties in modeling correctly real phenomena while maintaining computational transparency, reliability, interoperability and efficiency across different levels of analysis. Further, a methodology that rationally integrates different computational models and techniques is necessary to enable collaborative research in the field of optimization of energy efficiency strategies and integration of renewable energy systems in urban areas. For these reasons, a selection of currently available models for distributed generation planning and design is presented and analyzed in the perspective of gathering their capabilities in an optimization framework to support a paradigm shift in urban energy systems. This framework embodies the main concepts of a local energy management system and adopts a multicriteria perspective to determine optimal solutions for providing energy services through distributed generation.

Massimiliano Manfren; Paola Caputo; Gaia Costa

2011-01-01T23:59:59.000Z

269

Fault response of inverter interfaced distributed generators in grid-connected applications  

Science Journals Connector (OSTI)

Abstract Inverter-interfaced distributed generation is prominent in some distribution networks because of the growth of PV and other new sources. In order to ensure that protection system design remains effective in this environment, it is essential to be able to accurately represent inverters in fault current calculations. Calculating the fault current contribution is complicated because of the nature of the transition into current limiting mode and because the current produced is a function of control choices as well as physical components. The desire is for a simple source plus impedance model for incorporation into network studies. Based on knowledge of the control strategy and the details of the method of current limiting, linear analytical equivalent models are proposed whose source and impedance values (at fundamental frequency) can be expressed as a function of the inverter's hardware parameters and controller gains. The dependence of the entry into current limit on the nature and location of other generators in the network leads to a proposal for a load flow based fault analysis incorporating the new models. This iteratively determines which inverter experiences current limiting. The proposed inverter fault models and their use in a network fault analysis have been verified against experimental results in a 3-inverter network.

Cornelis A. Plet; Timothy C. Green

2014-01-01T23:59:59.000Z

270

Reduction in subsidy for solar power as distributed electricity generation in Indian future competitive power market  

Science Journals Connector (OSTI)

Developed countries have seen renewable energy as a key tool for emission reduction as well as reducing reliance on oil gas and coal.Renewable energy sources (RESs) and technologies have potential to provide solutions to the longstanding energy problems being faced by the developing countries. In the future competitive electricity market for India it becomes very much important to give special consideration for development of RESs due to economic environmental and other social problems related with conventional generations.Solar energy can be an important part of India's plan not only to add new capacity but also to increase energy security and lead the massive market for renewable energy. The major problem with solar powergeneration (SPG) is high cost of renewable generation. The Indian government is providing a lot of subsidy in order to encourage renewable energygenerations. This paper presents an approach for reduction in subsidy of SPG used as distributed generator in competitive power market. The proposed approach has been validated with IEEE 14-bus and IEEE 30-bus systems.

Naveen Kumar Sharma; Yog Raj Sood

2012-01-01T23:59:59.000Z

271

Viability of Small Wind Distributed Generation for Farmers Who Irrigate (Poster)  

SciTech Connect

About 14% of U.S. farms are irrigated, representing 55 million acres of irrigated land. Irrigation on these farms is a major energy user in the United States, accounting for one-third of water withdrawals and 137 billion gallons per day. More than half of the Irrigation systems use electric energy. Wind energy can be a good choice for meeting irrigation energy needs. Nine of the top 10 irrigation states (California, Texas, Idaho, Arkansas, Colorado, Nebraska, Arizona, Kansas, Washington, and Oregon) have good to excellent wind resources. Many rural areas have sufficient wind speeds to make wind an attractive alternative, and farms and ranches can often install a wind energy system without impacting their ability to plant crops and graze livestock. Additionally, the rising and uncertain future costs of diesel, natural gas, and even electricity increase the potential effectiveness for wind energy and its predictable and competitive cost. In general, wind-powered electric generation systems generate more energy in the winter months than in the summer months when most crops need the water. Therefore, those states that have a supportive net metering policy can dramatically impact the viability of an onsite wind turbine. This poster presentation highlights case studies that show favorable and unfavorable policies that impact the growth of small wind in this important sector and demonstrate how net metering policies affect the viability of distributed wind generation for farmers who irrigate.

Meadows, B.; Forsyth, T.; Johnson, S.; Healow, D.

2010-05-01T23:59:59.000Z

272

Design of a 2.5kW Low Temperature Stirling Engine for Distributed Solar Thermal Generation  

E-Print Network (OSTI)

Design of a 2.5kW Low Temperature Stirling Engine for Distributed Solar Thermal Generation Mike He on the design of a Stirling engine for distributed solar thermal ap- plications. In particular, we design renewable energy applications. A key advantage of a solar thermal system is that they can incorporate

Sanders, Seth

273

Distributed Generation Study/10 West 66th Street Corp | Open Energy  

Open Energy Info (EERE)

10 West 66th Street Corp 10 West 66th Street Corp < Distributed Generation Study Jump to: navigation, search Study Location New York, New York Site Description Residential-Multifamily-Single Building Study Type Long-term Monitoring Technology Microturbine Prime Mover Ingersoll Rand I-R PowerWorks 70 Heat Recovery Systems Built-in Fuel Natural Gas System Installer DSM Engineering System Enclosure Indoor System Application Combined Heat and Power Number of Prime Movers 1 Stand-alone Capability None Power Rating 70 kW0.07 MW 70,000 W 70,000,000 mW 7.0e-5 GW 7.0e-8 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 300000 Cooling Capacity (Refrig/Tons) Origin of Controller 3rd Party Off-the-Shelf Component Integration Customer Assembled Start Date 2005/11/17 Monitoring Termination Date 1969/12/31

274

Spectroscopic measurement of ion temperature and ion velocity distributions in the flux-coil generated FRC  

SciTech Connect

One aim of the flux-coil generated field reversed configuration at Tri Alpha Energy (TAE) is to establish the plasma where the ion rotational energy is greater than the ion thermal energy. To verify this, an optical diagnostic was developed to simultaneously measure the Doppler velocity-shift and line-broadening using a 0.75 m, 1800 groves/mm, spectrometer. The output spectrum is magnified and imaged onto a 16-channel photomultiplier tube (PMT) array. The individual PMT outputs are coupled to high-gain, high-frequency, transimpedance amplifiers, providing fast-time response. The Doppler spectroscopy measurements, along with a survey spectrometer and photodiode-light detector, form a suite of diagnostics that provide insights into the time evolution of the plasma-ion distribution and current when accelerated by an azimuthal-electric field.

Gupta, D.; Gota, H.; Hayashi, R.; Kiyashko, V.; Morehouse, M.; Primavera, S. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States); Bolte, N. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States); Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Marsili, P. [Department of Physics, University of Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Roche, T. [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Wessel, F. [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States)

2010-10-15T23:59:59.000Z

275

Commercialization of a 2.5kW Utility Interactive Inverter for Distributed Generation  

SciTech Connect

Through this project, Advanced Energy Conversion (AEC) has developed, tested, refined and is preparing to commercialize a 2.5kW utility-interactive inverter system for distributed generation. The inverter technology embodies zero-voltage switching technology that will ultimately yield a system that is smaller, less expensive and more efficient than existing commercial technologies. This program has focused on commercial success through careful synthesis of technology, market-focus and business development. AEC was the primary participant. AEC is utilizing contract manufacturers in the early stages of production, allowing its technical staff to focus on quality control issues and product enhancements. The objective of this project was to bring the AEC inverter technology from its current pre-production state to a commercial product. Federal funds have been used to build and test production-intent inverters, support the implementation of the commercialization plan and bring the product to the point of UL certification.

Torrey, David A.

2006-05-26T23:59:59.000Z

276

Distributed Generation Study/Aisin Seiki G60 at Hooligans Bar and Grille |  

Open Energy Info (EERE)

Aisin Seiki G60 at Hooligans Bar and Grille Aisin Seiki G60 at Hooligans Bar and Grille < Distributed Generation Study Jump to: navigation, search Study Location Liverpool, New York Site Description Commercial-Restaurant Study Type Field Test Technology Internal Combustion Engine Prime Mover Aisin Seiki G60 Heat Recovery Systems Built-in Fuel Natural Gas System Installer ECO Technical Solutions System Enclosure Outdoor System Application Combined Heat and Power Number of Prime Movers 1 Stand-alone Capability None Power Rating 6 kW0.006 MW 6,000 W 6,000,000 mW 6.0e-6 GW 6.0e-9 TW Nominal Voltage (V) 240 Heat Recovery Rating (BTU/hr) 46105 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Customer Assembled Start Date 2005/07/10 Monitoring Termination Date 2005/07/21

277

Evaluation of distributed building thermal energy storage in conjunction with wind and solar electric power generation  

Science Journals Connector (OSTI)

Abstract Energy storage is often seen as necessary for the electric utility systems with large amounts of solar or wind power generation to compensate for the inability to schedule these facilities to match power demand. This study looks at the potential to use building thermal energy storage as a load shifting technology rather than traditional electric energy storage. Analyses are conducted using hourly electric load, temperature, wind speed, and solar radiation data for a 5-state central U.S. region in conjunction with simple computer simulations and economic models to evaluate the economic benefit of distributed building thermal energy storage (TES). The value of the TES is investigated as wind and solar power generation penetration increases. In addition, building side and smart grid enabled utility side storage management strategies are explored and compared. For a relative point of comparison, batteries are simulated and compared to TES. It is found that cooling TES value remains approximately constant as wind penetration increases, but generally decreases with increasing solar penetration. It is also clearly shown that the storage management strategy is vitally important to the economic value of TES; utility side operating methods perform with at least 75% greater value as compared to building side management strategies. In addition, TES compares fairly well against batteries, obtaining nearly 90% of the battery value in the base case; this result is significant considering TES can only impact building thermal loads, whereas batteries can impact any electrical load. Surprisingly, the value of energy storage does not increase substantially with increased wind and solar penetration and in some cases it decreases. This result is true for both TES and batteries and suggests that the tie between load shifting energy storage and renewable electric power generation may not be nearly as strong as typically thought.

Byron W. Jones; Robert Powell

2015-01-01T23:59:59.000Z

278

On-Site Generation Simulation with EnergyPlus for Commercial Buildings  

E-Print Network (OSTI)

L ABORATORY On-Site Generation Simulation with EnergyPlusemployer. On-Site Generation Simulation with EnergyPlus forin modeling distributed generation (DG), including DG with

Stadler, Michael; Firestone, Ryan; Curtil, Dimitri; Marnay, Chris

2006-01-01T23:59:59.000Z

279

A Multi-State Model for the Reliability Assessment of a Distributed Generation System via Universal Generating Function  

E-Print Network (OSTI)

renewable technology (e.g. wind or solar, etc.) whose behavior is described by a binary state, working assessment, multi-state modeling, universal generating function #12;2 Notations Solar irradiance Total number of discretized solar irradiance states Discretized solar irradiance at state i Random variable representing

Boyer, Edmond

280

Central power generation versus distributed generation e An air quality assessment in the South Coast Air Basin of California  

E-Print Network (OSTI)

., Suite 200, San Francisco, CA 94111, USA c Advanced Power and Energy Program, Department of Mechanical obstacles to transmission line additions may force even central power generation back into air basins by the year 2020. The intermittent nature of renewable sources like wind and solar power may require

Dabdub, Donald

Note: This page contains sample records for the topic "including distributed generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Distributed Generation Potential of the U.S. CommercialSector  

SciTech Connect

Small-scale (100 kW-5 MW) on-site distributed generation (DG) economically driven by combined heat and power (CHP) applications and, in some cases, reliability concerns will likely emerge as a common feature of commercial building energy systems in developed countries over the next two decades. In the U.S., private and public expectations for this technology are heavily influenced by forecasts published by the Energy Information Administration (EIA), most notably the Annual Energy Outlook (AEO). EIA's forecasts are typically made using the National Energy Modeling System (NEMS), which has a forecasting module that predicts the penetration of several possible commercial building DG technologies over the period 2005-2025. Annual penetration is forecast by estimating the payback period for each technology, for each of a limited number of representative building types, for each of nine regions. This process results in an AEO2004 forecast deployment of about a total 3 GW of DG electrical generating capacity by 2025, which is only 0.25 percent of total forecast U.S. capacity. Analyses conducted using both the AEO2003 and AEO2004 versions of NEMS changes the baseline costs and performance characteristics of DG to reflect a world without U.S. Department of Energy (DOE) research into several thermal DG technologies, which is then compared to a case with enhanced technology representative of the successful achievement of DOE research goals. The net difference in 2025 DG penetration is dramatic using the AEO2003 version of NEMS, but much smaller in the AEO2004 version. The significance and validity of these contradictory results are discussed, and possibilities for improving estimates of commercial U.S. DG potential are explored.

LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Gumerman,Etan; Marnay, Chris

2005-06-01T23:59:59.000Z

282

A new method for power generation and distribution in outer space  

SciTech Connect

The power system is a major component of a space system's size, mass, technical complexity, and hence, cost. To date, space systems include the energy source as an integral part of the mission satellite. Potentially significant benefit could be realized by separating the energy source from the end-use system and transmitting the power via an energy beam (power beaming) (Coomes et al., 1989). This concept parallels the terrestrial central generating station and transmission grid. In this summary, the system components required for power beaming implementation are outlined and applied to a satellite for power beaming implementation are outlined and applied to a satellite constellation to demonstrate the feasibility of implementing power beaming in the next 20 years. 5 refs., 1 fig., 3 tabs.

Bamberger, J.A.

1989-09-01T23:59:59.000Z

283

Distributed Generation Study/615 kW Waukesha Packaged System | Open Energy  

Open Energy Info (EERE)

kW Waukesha Packaged System kW Waukesha Packaged System < Distributed Generation Study Jump to: navigation, search Study Location Des Plaines, Illinois Site Description Testing Laboratory Study Type Laboratory Test Technology Internal Combustion Engine Prime Mover Waukesha VGF 36GLD Heat Recovery Systems Sondex PHE-Type SL140-TM-EE-190, Sondex PHE-Type SL140-TM-EE-150, Cain UTR1-810A17.5SSP Fuel Natural Gas System Installer GTI System Enclosure Outdoor System Application Combined Heat and Power Number of Prime Movers 1 Stand-alone Capability None Power Rating 615 kW0.615 MW 615,000 W 615,000,000 mW 6.15e-4 GW 6.15e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 2500000 Cooling Capacity (Refrig/Tons) 90 Origin of Controller 3rd Party Off-the-Shelf Component Integration Factory Integrated

284

Economic and sensitivity analyses of dynamic distributed generation dispatch to reduce building energy cost  

Science Journals Connector (OSTI)

Abstract The practicality of any particular distributed generation (DG) installation depends upon its ability to reduce overall energy costs. A parametric study summarizing DG performance capabilities is developed using an economic dispatch strategy that minimizes building energy costs. Various electric rate structures are considered and applied to simulate meeting various measured building demand dynamics for heat and power. A determination of whether investment in DG makes economic sense is developed using a real-time dynamic dispatch and control strategy to meet real building demand dynamics. Under the economic dispatch strategy, capacity factor is influenced by DG electrical efficiency, operations and maintenance cost, and fuel price. Under a declining block natural gas rate structure, a large local thermal demand improves DG economics. Increasing capacity for DG that produces low cost electricity increases savings, but installing further capacity beyond the average building electrical demand reduces savings. For DG that produces high cost electricity, reducing demand charges can produce savings. Heat recovery improves capacity factor and DG economics only if thermal and electrical demand is coincident and DG heat is utilized. Potential DG economic value can be improved or impaired depending upon how the utility electricity cost is determined.

Robert J. Flores; Brendan P. Shaffer; Jacob Brouwer

2014-01-01T23:59:59.000Z

285

Buildings Energy Data Book: 6.2 Electricity Generation, Transmission, and Distribution  

Buildings Energy Data Book (EERE)

9 9 2009 Peak Load and Capacity Margin, Summer and Winter by NERC Region (MW) NERC Region Capacity Margin Capacity Margin TRE 16.7% 19.1% FRCC 6.0% 2.0% MRO (U.S.) 24.6% 26.8% NPCC (U.S.) 29.1% 43.2% RFC 25.2% 33.3% SERC 24.6% 26.2% SPP 16.4% 34.6% WECC 19.4% 29.6% U.S. TOTAL 22.2% 28.5% Note(s): Source(s): 128,245 109,565 725,958 668,818 1) Summer Demand includes the months of June, July, August, and September. 2) Winter Demand includes December of the previous year and January-March of the current year. 3) Capacity Margin is the amount of unused available capability of an electric power system at peak load as a percentage of net capacity resources. Net Capacity Resources: Utility- and IPP-owned generating capacity that is existing or in various stages of planning or construction, less inoperable capacity, plus planned capacity purchases from other resources, less planned

286

J. Phys. B: At. Mol. Opt. Phys. 29 (1996) 47714786. Printed in the UK Angular distributions of high-order harmonics generated  

E-Print Network (OSTI)

distributions of high-order harmonics generated with a femtosecond Cr:LiSrAlF6 laser. We investigate-atom response. The far-field distributions of the harmonics (11 to 41) generated in heavy rare gases are foundJ. Phys. B: At. Mol. Opt. Phys. 29 (1996) 4771­4786. Printed in the UK Angular distributions

Ditmire, Todd

287

Generation of lower hybrid and whistler waves by an ion velocity ring distribution  

SciTech Connect

Using fully kinetic simulations in two and three spatial dimensions, we consider the generation and nonlinear evolution of lower hybrid waves produced by a cold ion ring velocity distribution in a low beta plasma. We show that the initial development of the instability is very similar in two and three dimensions and not significantly modified by electromagnetic effects, consistent with linear theory. At saturation, the level of electric field fluctuations is a small fraction of the background thermal energy; the electric field and corresponding density fluctuations consist of long, field-aligned striations. Energy extracted from the ring goes primarily into heating the background ions and the electrons at comparable rates. The initial growth and saturation of the magnetic components of the lower hybrid waves are related to the electric field components, consistent with linear theory. As the growing electric field fluctuations saturate, parallel propagating whistler waves develop by the interaction of two lower hybrid waves. At later times, these whistlers are replaced by longer wavelength, parallel propagating whistlers that grow through the decay of the lower hybrid fluctuations. Wave matching conditions demonstrate these conversion processes of lower hybrid waves to whistler waves. The conversion efficiency (=ratio of the whistler wave energy to the energy in the saturated lower hybrid waves) is computed and found to be significant ({approx}15%) for the parameters of the three-dimensional simulation (and even larger in the two-dimensional simulation), although when normalized in terms of the initial kinetic energy in the ring ions the overall efficiency is very small (<10{sup -4}). The results are compared with relevant linear and nonlinear theory.

Winske, D.; Daughton, W. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2012-07-15T23:59:59.000Z

288

The Sensitivity of DPF Performance to the Spatial Distribution of Ash Generated from Six Lubricant Formulations  

Energy.gov (U.S. Department of Energy (DOE))

Discusses potential of DPF pressure drop reduction by optimizing the spatial distribution of ash inside DPF inlet channel

289

Proposal for the award of a contract for the supply and maintenance of six 380 V 50 Hz diesel generators for the LEP electrical distribution system  

E-Print Network (OSTI)

Proposal for the award of a contract for the supply and maintenance of six 380 V 50 Hz diesel generators for the LEP electrical distribution system

1986-01-01T23:59:59.000Z

290

A study of small-scale energy networks of the Japanese Syowa Base in Antarctica by distributed engine generators  

Science Journals Connector (OSTI)

Abstract Fuel traffic to the Syowa Base of the South Pole is increasing from Japan, with growing research and observation occurring every year. Limits to fuel traffic and the spread of green energy utilization are topics of interest for Syowa Base; this research considers the construction of a Syowa Base small-scale energy network (Syowa Base Micro-Grid: SBMG) for the purposes of reducing fuel consumption and increasing green energy utilization. The number of engine generators, the operation plan for the batterys charge and discharge, and the introduction of an exhaust heat pump provided a means by which the load factor of the engine generator could be maintained high value from the fluctuations of green energy. This might be accomplished by modifying the main power supply of Syowa Base into a distributed power supply system rather than a conventional central power supply system. The relationship between the amount of green energy (photovoltaics and wind power generation) connected to the proposed power supply distribution and the amount of fuel consumed by the engine generators and backup boiler was clarified. Moreover, the outside temperatures, insulation levels, and wind velocity at the Syowa Base change seasonally, resulting in large changes in the SBMG operation method. Therefore, differences in the operation methods between the proposed power supply distribution system and the conventional central power supply were assessed during the summer (January), winter (July), and mid-season (October), and the resulting differences in fuel consumption were clarified.

Shinya Obara; Yuta morizane; Jorge Morel

2013-01-01T23:59:59.000Z

291

Effective Integration of Wind-Distributed Generation to Power Grid with STATCOM  

Science Journals Connector (OSTI)

Worldwide fast depletion of conventional energy resources necessitates the implementation of renewable energy sources for generation to satisfy the growing demand. Since last decade, technological innovations and...

Surekha Manoj; P. S. Puttaswamy

2014-01-01T23:59:59.000Z

292

Optimization of a stand?alone Solar PV?Wind?DG Hybrid System for Distributed Power Generation at Sagar Island  

Science Journals Connector (OSTI)

An estimation of a stand?alone solar PV and wind hybrid system for distributed power generation has been made based on the resources available at Sagar island a remote area distant to grid operation. Optimization and sensitivity analysis has been made to evaluate the feasibility and size of the power generation unit. A comparison of the different modes of hybrid system has been studied. It has been estimated that Solar PV?Wind?DG hybrid system provides lesser per unit electricity cost. Capital investment is observed to be lesser when the system run with Wind?DG compared to Solar PV?DG.

P. C. Roy; A. Majumder; N. Chakraborty

2010-01-01T23:59:59.000Z

293

3D phase-differentiated GDL microstructure generation with binder and PTFE distributions  

E-Print Network (OSTI)

December 2011 Keywords: PEM fuel cell Gas diffusion layer Stochastic generation a b s t r a c exchange membrane fuel cells (PEMFCs) are an attractive alternative for electrical power generation, partic) digital 3D micro- structures in a cost- and time-effective manner for the first time. The results

Kandlikar, Satish

294

Performance Analysis of Positive-feedback-based Active Anti-islanding Schemes for Inverter-Based Distributed Generators  

SciTech Connect

Recently proposed positive-feedback-based anti-islanding schemes (AI) are highly effective in preventing islanding without causing any degradation in power quality. This paper aims to analyze the performance of these schemes quantitatively in the context of the dynamic models of inverter-based distributed generators (DG). In this study, the characteristics of these active anti-islanding methods are discussed and design guidelines are derived.

Du, Pengwei; Aponte, Erick E.; Nelson, J. Keith

2010-06-14T23:59:59.000Z

295

Voltage distribution over capacitively coupled plasma electrode for atmospheric-pressure plasma generation  

Science Journals Connector (OSTI)

When capacitively coupled plasma (CCP) is used to generate large-area plasma, the standing wave effect becomes significant, ... which results in the hindering of the uniform plasma process such as in a plasma etc...

Mitsutoshi Shuto; Fukumi Tomino; Hiromasa Ohmi

2013-05-01T23:59:59.000Z

296

Optical and thermodynamic analysis and optimization of a novel solar concentrating system for distributed power generation.  

E-Print Network (OSTI)

??A novel central receiver power system utilizing linked-tracking heliostats is analyzed for distributed-scale concentrated solar power. Smaller linkage groupings are typically found to have a (more)

Dunham, Marc Tyler Deo

2012-01-01T23:59:59.000Z

297

Utilizing Electric Vehicles to Assist Integration of Large Penetrations of Distributed Photovoltaic Generation Capacity  

SciTech Connect

Executive Summary Introduction and Motivation This analysis provides the first insights into the leveraging potential of distributed photovoltaic (PV) technologies on rooftop and electric vehicle (EV) charging. Either of the two technologies by themselves - at some high penetrations may cause some voltage control challenges or overloading problems, respectively. But when combined, there at least intuitively could be synergistic effects, whereby one technology mitigates the negative impacts of the other. High penetration of EV charging may overload existing distribution system components, most prominently the secondary transformer. If PV technology is installed at residential premises or anywhere downstream of the secondary transformer, it will provide another electricity source thus, relieving the loading on the transformers. Another synergetic or mitigating effect could be envisioned when high PV penetration reverts the power flow upward in the distribution system (from the homes upstream into the distribution system). Protection schemes may then no longer work and voltage violation (exceeding the voltage upper limited of the ANSI voltage range) may occur. In this particular situation, EV charging could absorb the electricity from the PV, such that the reversal of power flow can be reduced or alleviated. Given these potential mutual synergistic behaviors of PV and EV technologies, this project attempted to quantify the benefits of combining the two technologies. Furthermore, of interest was how advanced EV control strategies may influence the outcome of the synergy between EV charging and distributed PV installations. Particularly, Californian utility companies with high penetration of the distributed PV technology, who have experienced voltage control problems, are interested how intelligent EV charging could support or affect the voltage control

Tuffner, Francis K.; Chassin, Forrest S.; Kintner-Meyer, Michael CW; Gowri, Krishnan

2012-11-30T23:59:59.000Z

298

Updated greenhouse gas and criteria air pollutant emission factors and their probability distribution functions for electricity generating units  

SciTech Connect

Greenhouse gas (CO{sub 2}, CH{sub 4} and N{sub 2}O, hereinafter GHG) and criteria air pollutant (CO, NO{sub x}, VOC, PM{sub 10}, PM{sub 2.5} and SO{sub x}, hereinafter CAP) emission factors for various types of power plants burning various fuels with different technologies are important upstream parameters for estimating life-cycle emissions associated with alternative vehicle/fuel systems in the transportation sector, especially electric vehicles. The emission factors are typically expressed in grams of GHG or CAP per kWh of electricity generated by a specific power generation technology. This document describes our approach for updating and expanding GHG and CAP emission factors in the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model developed at Argonne National Laboratory (see Wang 1999 and the GREET website at http://greet.es.anl.gov/main) for various power generation technologies. These GHG and CAP emissions are used to estimate the impact of electricity use by stationary and transportation applications on their fuel-cycle emissions. The electricity generation mixes and the fuel shares attributable to various combustion technologies at the national, regional and state levels are also updated in this document. The energy conversion efficiencies of electric generating units (EGUs) by fuel type and combustion technology are calculated on the basis of the lower heating values of each fuel, to be consistent with the basis used in GREET for transportation fuels. On the basis of the updated GHG and CAP emission factors and energy efficiencies of EGUs, the probability distribution functions (PDFs), which are functions that describe the relative likelihood for the emission factors and energy efficiencies as random variables to take on a given value by the integral of their own probability distributions, are updated using best-fit statistical curves to characterize the uncertainties associated with GHG and CAP emissions in life-cycle modeling with GREET.

Cai, H.; Wang, M.; Elgowainy, A.; Han, J. (Energy Systems)

2012-07-06T23:59:59.000Z

299

Dynamically generated electric charge distributions in Abelian projected SU(2) lattice gauge theories  

E-Print Network (OSTI)

We show in the maximal Abelian gauge the dynamical electric charge density generated by the coset fields, gauge fixing and ghosts shows antiscreening as in the case of the non-Abelian charge. We verify that with the completion of the ghost term all contributions to flux are accounted for in an exact lattice Ehrenfest relation.

A. Hart; R. W. Haymaker; Y. Sasai

1998-08-28T23:59:59.000Z

300

Atmospheric Environment 40 (2006) 55085521 Air quality impacts of distributed power generation in the South  

E-Print Network (OSTI)

entails the use of power generation technologies (e.g., fuel cells, gas turbines) to produce electricity in the South Coast Air Basin of California 1: Scenario development and modeling analysis M.A. Rodriguez, M are developed to determine the potential impacts of unexpected outcomes. Realistic implementations of DG

Dabdub, Donald

Note: This page contains sample records for the topic "including distributed generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Self-triggered Communication Enabled Control of Distributed Generation in Microgrids  

E-Print Network (OSTI)

Tahir Member, IEEE Dept. of Elect. Eng. and Al-Khwarizmi Institute of Comp. Science University. System reliability for secondary control in microgrids can be improved by using a distributed cooperative control approach. For realizing the cooperative control of multiple DGs in smart-grid, a multi-agent based

Mazumder, Sudip K.

302

Species composition, distribution and abundance of zooplankton (including ichthyoplankton) in the intake and discharge canals of a steam-electric generating station located on Galveston Bay, Texas  

E-Print Network (OSTI)

identification of zooplankton and to F. Joseph Nargraf for his help in designing programs for the Hewlett-Packard 9830A computer. I am grateful to Nr. Timothy L. Jones, of the Southwest Research Institute, Houston, arid to Nr. Richard D. Kalke...Xec. uh and Penaem he. tc(ecuh PaX. a@710M. WM spp. zoeae. . . . . . . . . . . . . . Ogg~d& l~+COER zoeae. . . . . . . . . . . . . . CaXXmeMha. sp. zoeae. . . . . . . . . . . . . . . . Ca. EEiee&M s pp. mega lops. . . . . . . . . . . . CaX&rt. e&M hap...

McAden, David Charles

2012-06-07T23:59:59.000Z

303

Advanced Inverter Technology for High Penetration Levels of PV Generation in Distribution Systems  

SciTech Connect

This subcontract report was completed under the auspices of the NREL/SCE High-Penetration Photovoltaic (PV) Integration Project, which is co-funded by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and the California Solar Initiative (CSI) Research, Development, Demonstration, and Deployment (RD&D) program funded by the California Public Utility Commission (CPUC) and managed by Itron. This project is focused on modeling, quantifying, and mitigating the impacts of large utility-scale PV systems (generally 1-5 MW in size) that are interconnected to the distribution system. This report discusses the concerns utilities have when interconnecting large PV systems that interconnect using PV inverters (a specific application of frequency converters). Additionally, a number of capabilities of PV inverters are described that could be implemented to mitigate the distribution system-level impacts of high-penetration PV integration. Finally, the main issues that need to be addressed to ease the interconnection of large PV systems to the distribution system are presented.

Schauder, C.

2014-03-01T23:59:59.000Z

304

Temperature and thermal stress distributions for the HFIR permanent reflector generated by nuclear heating  

SciTech Connect

The beryllium permanent reflector of the High Flux Isotope Reactor has the main functions for slowing down and reflecting the neutrons and housing the experimental facilities. The reflector is heated as a result of the nuclear reaction. Heat is removed mainly by the cooling water passing through the densely distributed coolant holes along the vertical or axial direction of the reflector. The reflector neutronic distribution and its heating rate are calculated by J.C. Gehin of the Oak Ridge National Laboratory by applying the Monte Carlo Code MCNP. The heat transfer boundary conditions along several reflector interfaces are estimated to remove additional heat from the reflector. The present paper is to report the calculation results of the temperature and the thermal stress distributions of the permanent reflector by applying the computer aided design code I-DEAS and the finite element code ABAQUS. The present calculation is to estimate the high stress areas as a result of the new beam tube cutouts along the horizontal mid-plane of the reflector of the recent reactor upgrade project. These high stresses were not able to be calculated in the preliminary design analysis in earlier 60`s. The heat transfer boundary conditions are used in this redesigned calculation. The material constants and the acceptance criteria for the allowable stresses are mainly based on that assumed in the preliminary design report.

Chang, S.J.

1998-04-01T23:59:59.000Z

305

Distributively generated near rings on the dihedral group of order eight  

E-Print Network (OSTI)

DISTRIBHvlri "LY GEZERKTED NEZR RINGS ON THE DIH ', DRAL GRODP OP ORDER EIGHT A Thesis INRy LING VILLHITE Submitted to the Gra~', . ate ' allege of Tezas jan& Rnid e'r, si!, y in Parti "1 fulfillment of the reGui rom nt fo- the eSree o MASTER... GP BC. E. ":lOE December le~70 Major Subject: llathematics DISTRIBUTIVELY GMWRA ED NEAR RINGE ON THE DIHED tAL GROUP OF ORDER EIGHT A Thesis NARY LYNN VILLHITE Approved as to st'yle and. content 'by: ax man. of Gom; i ee , member A &. ~;g...

Willhite, Mary Lynn

1970-01-01T23:59:59.000Z

306

Developing Next-generation Distributed Applications with QoS-enabled DPE Middleware  

E-Print Network (OSTI)

the underlying network and endsystem QoS architectures more effectively. This paper also describes a Qo operating system (OS) architectures that enforce QoS specifications pro- vided by applications. 3 include Java vir- tual machines (JVMs) and the ADAPTIVE Communication Envir

307

NiSource Energy Technologies Inc.: System Integration of Distributed Power for Complete Building Systems  

SciTech Connect

Summarizes NiSource Energy Technologies' work under contract to DOE's Distribution and Interconnection R&D. Includes studying distributed generation interconnection issues and CHP system performance.

Not Available

2003-10-01T23:59:59.000Z

308

Buildings Energy Data Book: 6.2 Electricity Generation, Transmission, and Distribution  

Buildings Energy Data Book (EERE)

3 3 Electric Capacity Factors, by Year and Fuel Type (1) Conventional Coal Petroleum Natural Gas Nuclear Hydroelectric Solar/PV Wind Total 1990 59% 17% 23% 66% 45% 13% 18% 46% 1991 59% 18% 22% 70% 43% 17% 18% 46% 1992 59% 14% 22% 71% 38% 13% 18% 45% 1993 61% 16% 21% 70% 41% 16% 19% 46% 1994 61% 15% 22% 74% 38% 17% 23% 46% 1995 62% 11% 22% 77% 45% 17% 21% 47% 1996 65% 11% 19% 76% 52% 18% 22% 48% 1997 66% 13% 20% 72% 51% 17% 23% 48% 1998 67% 20% 23% 79% 47% 17% 20% 50% 1999 67% 20% 22% 85% 46% 15% 23% 51% 2000 70% 18% 22% 88% 40% 15% 27% 51% 2001 68% 20% 21% 89% 31% 16% 20% 48% 2002 69% 16% 18% 90% 38% 16% 27% 46% 2003 71% 21% 14% 88% 40% 15% 21% 44% 2004 71% 22% 16% 90% 39% 17% 25% 44% 2005 72% 22% 17% 89% 40% 15% 23% 45% 2006 71% 11% 19% 90% 42% 14% 27% 45% 2007 72% 12% 21% 92% 36% 14% 24% 45% 2008 71% 8% 20% 91% 37% 18% 26% 44% 2009 63% 7% 21% 90% 40% 16% 25% 42% 2010 (2) 65% 6% 23% 91% 37% 17% 29% 43% Note(s): Source(s) 1) EIA defines capacity factor to be "the ratio of the electrical energy produced by a generating unit for the period of time considered to the

309

Buildings Energy Data Book: 6.2 Electricity Generation, Transmission, and Distribution  

Buildings Energy Data Book (EERE)

4 4 Electric Conversion Factors and Transmission and Distribution (T&D) Losses Average Utility Average Utility Growth Rate Delivery Efficiency (1, 2) Delivery Ratio (Btu/kWh) (2, 3) (2010-year) 1980 29.4% 1981 29.9% 1982 29.7% 1983 29.8% 1984 30.5% 1985 30.4% 1986 30.8% 1987 31.1% 1988 31.1% 1989 30.2% 1990 30.3% 1991 30.5% 1992 30.7% 1993 30.6% 1994 30.9% 1995 30.7% 1996 30.7% 1997 30.8% 1998 30.7% 1999 30.6% 2000 30.7% 2001 31.1% 2002 31.1% 2003 31.3% 2004 31.3% 2005 31.5% 2006 31.7% 2007 31.8% 2008 31.8% 2009 32.2% 2010 32.3% 2011 32.1% 2012 32.4% 2013 32.7% 2014 33.0% 2015 33.1% 2016 33.2% 2017 33.1% 2018 33.1% 2019 33.1% 2020 33.1% 2021 33.2% 2022 33.2% 2023 33.2% 2024 33.2% 2025 33.1% 2026 33.2% 2027 33.3% 2028 33.4% 10,218 0.2% 10,294 0.2% 10,266 0.2% 10,247 0.2% 10,277 0.2% 10,291 0.2% 10,281 0.2% 10,300 0.3% 10,301 0.3% 10,282 0.3% 10,292 0.4% 10,310 0.4% 10,305

310

Development and Testing of a 6-Cylinder HCCI Engine for Distributed Generation  

SciTech Connect

This paper describes the technical approach for converting a Caterpillar 3406 natural gas spark ignited engine into HCCI mode. The paper describes all stages of the process, starting with a preliminary analysis that determined that the engine can be operated by preheating the intake air with a heat exchanger that recovers energy from the exhaust gases. This heat exchanger plays a dual role, since it is also used for starting the engine. For start-up, the heat exchanger is preheated with a natural gas burner. The engine is therefore started in HCCI mode, avoiding the need to handle the potentially difficult transition from SI or diesel mode to HCCI. The fueling system was modified by replacing the natural gas carburetor with a liquid petroleum gas (LPG) carburetor. This modification sets an upper limit for the equivalence ratio at {phi} {approx} 0.4, which is ideal for HCCI operation and guarantees that the engine will not fail due to knock. Equivalence ratio can be reduced below 0.4 for low load operation with an electronic control valve. Intake boosting has been a challenge, as commercially available turbochargers are not a good match for the engine, due to the low HCCI exhaust temperature. Commercial introduction of HCCI engines for stationary power will therefore require the development of turbochargers designed specifically for this mode of operation. Considering that no appropriate off-the-shelf turbocharger for HCCI engines exists at this time, we are investigating mechanical supercharging options, which will deliver the required boost pressure (3 bar absolute intake) at the expense of some reduction in the output power and efficiency. An appropriate turbocharger can later be installed for improved performance when it becomes available or when a custom turbocharger is developed. The engine is now running in HCCI mode and producing power in an essentially naturally aspirated mode. Current work focuses on developing an automatic controller for obtaining consistent combustion in the 6 cylinders. The engine will then be tested for 1000 hours to demonstrate durability. This paper presents intermediate progress towards development of an HCCI engine for stationary power generation and next steps towards achieving the project goals.

Flowers, D L; Martinez-Frias, J; Espinosa-Loza, F; Killingsworth, N; Aceves, S M; Dibble, R; Kristic, M; Bining, A

2005-07-12T23:59:59.000Z

311

Distribution:  

Office of Legacy Management (LM)

JAN26 19% JAN26 19% Distribution: OR00 Attn: h.H.M.Roth DFMusser ITMM MMMann INS JCRyan FIw(2) Hsixele SRGustavson, Document rocm Formal file i+a@mmm bav@ ~@esiaw*cp Suppl. file 'Br & Div rf's s/health (lic.only) UNITED STATES ATOMIC ENERGY COMMISSION SPECIAL NUCLEAB MATERIAL LICENSE pursuant to the Atomic Energy Act of 1954 and Title 10, Code of Federal Regulations, Chapter 1, P&t 70, "Special Nuclear Material Reg)llatiqm," a license is hereby issued a$hortztng the licensee to rekeive and possess the special nuclear material designated below; to use such special nuclear mat&ial for the purpose(s) and at the place(s) designated below; and to transfer such material to per&s authorized to receive it in accordance with the regula,tions in said Part.

312

A novel control strategy of a distributed generator operating in seven modes for ancillary services under grid faults  

Science Journals Connector (OSTI)

This study was interested in a renewable distributed generator (RDG) made up of a wind turbine used as a principal source and a supercapacitor (SC) considered as a storage system. The studied RDG is associated with loads to constitute a micro-grid (MG) which can operate in grid connected mode, stand alone mode or synchronization mode. The objective of this work is to investigate a novel control scheme for MG integrated into power electrical system in order to maintain the voltage and the frequency of the grid in an allowable range and to ensure the continuity of power supply in case of grid failure. This control strategy made up of two parts: the first one is the power management algorithm used to detect islanding in case of defect and to monitor the RDG into seven operating modes. The second one is the droop control used to control the exported or imported active and reactive powers transferred with the grid ensuring its stability by adjusting the frequency and amplitude of its output voltage. The system is simulated using MATLAB software and results are provided in order to show the feasibility of this control strategy.

Mouna Rekik; Achraf Abdelkafi; Lotfi Krichen

2013-01-01T23:59:59.000Z

313

Can distributed generation offer substantial benefits in a Northeastern American context? A case study of small-scale renewable technologies using a life cycle methodology  

Science Journals Connector (OSTI)

Renewable distributed electricity generation can play a significant role in meeting today's energy policy goals, such as reducing greenhouse gas emissions, improving energy security, while adding supply to meet increasing energy demand. However, the exact potential benefits are still a matter of debate. The objective of this study is to evaluate the life cycle implications (environmental, economic and energy) of distributed generation (DG) technologies. A complementary objective is to compare the life cycle implications of DG technologies with the centralized electricity production representing the Northeastern American context. Environmental and energy implications are modeled according to the recommendations in the ISO 14040 standard and this, using different indicators: Human Health; Ecosystem Quality; Climate Change; Resources and Non-Renewable Energy Payback Ratio. Distinctly, economic implications are modeled using conventional life cycle costing. DG technologies include two types of grid-connected photovoltaic panels (3kWp mono-crystalline and poly-crystalline) and three types of micro-wind turbines (1, 10 and 30kW) modeled for average, below average and above average climatic conditions in the province of Quebec (Canada). A sensitivity analysis was also performed using different scenarios of centralized energy systems based on average and marginal (short- and long-term) technology approaches. Results show the following. First, climatic conditions (i.e., geographic location) have a significant effect on the results for the environmental, economic and energy indicators. More specifically, it was shown that the 30kW micro-wind turbine is the best technology for above average conditions, while 3kWp poly-crystalline photovoltaic panels are preferable for below average conditions. Second, the assessed DG technologies do not show benefits in comparison to the centralized Quebec grid mix (average technology approach). On the other hand, the 30kW micro-wind turbine shows a potential benefit as long as the Northeastern American electricity market is considered (i.e., oil and coal centralized technologies are affected for the short- and long-term marginal scenarios, respectively). Photovoltaic panels could also become more competitive if the acquisition cost decreased. In conclusion, DG utilization will represent an improvement over centralized electricity production in a Northeastern American context, with respect to the environmental, energy and economic indicators assessed, and under the appropriate conditions discussed (i.e., geographical locations and affected centralized electricity production scenarios).

Mourad Ben Amor; Pascal Lesage; Pierre-Olivier Pineau; Rjean Samson

2010-01-01T23:59:59.000Z

314

Convergence problem in forward/backward sweep power flow method caused by non-positive-sequence impedance of distributed generators and its solution  

Science Journals Connector (OSTI)

Abstract A variety of distributed generators (DGs) are integrated in distribution system which is usually operated under three-phase unbalanced conditions. The zero and negative sequence impedances of \\{DGs\\} may vary within a large range. In this paper, the convergence problem caused by the zero and negative sequence impedances of \\{DGs\\} in forward/backward sweep three-phase power flow is found through numerical experiments. The reason of this phenomenon is explained and an impedance compensation method is proposed to solve this problem.

Yuntao Ju; Wenchuan Wu; Boming Zhang

2014-01-01T23:59:59.000Z

315

In situ diagnostic of the size distribution of nanoparticles generated by ultrashort pulsed laser ablation in vacuum  

SciTech Connect

We aim to characterize the size distribution of nanoparticles located in the ablation plume produced by femtosecond laser interaction. The proposed method relies on the use of white-light extinction spectroscopy setup assisted by ultrafast intensified temporal gating. This method allows measurement of optical absorbance of a nickel nanoparticles cloud. Simulation of the extinction section of nickel nanoparticles size distributions has been developed in order to compare the measured optical absorbance to the optical extinction by theoretical and experimental nanoparticles size distributions (measured by scanning electron microscopy). A good agreement has been found between the in situ measured optical absorbance and the optical extinction cross section calculated from ex situ nanoparticles size distribution measurements.

Bourquard, Florent; Loir, Anne-Sophie; Donnet, Christophe; Garrelie, Florence, E-mail: florence.garrelie@univ-st-etienne.fr [Universit de Lyon, CNRS UMR 5516, Laboratoire Hubert Curien, Universit Jean Monnet, Saint-tienne (France)] [Universit de Lyon, CNRS UMR 5516, Laboratoire Hubert Curien, Universit Jean Monnet, Saint-tienne (France)

2014-03-10T23:59:59.000Z

316

Foreword to the Handbook of Research on "Mobile Peer-to-Peer Computing for Next Generation Distributed Environments: Advancing  

E-Print Network (OSTI)

Foreword to the Handbook of Research on "Mobile Peer-to-Peer Computing for Next Generation, namely mobile P2P systems, are in their infancy. This does not mean that research on the subject has physically. Thus, serious security and privacy concerns arise. Additionally, many mobile P2P systems cannot

Wolfson, Ouri E.

317

4. TITLE AND SUBTITLE Cost Analysis of Electric Grid Enhancement Utilizing Distributed Generation in Post-War Reconstruction  

E-Print Network (OSTI)

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to

Darol D. M. Fiala; Daniel Nussbaum; Jomana Amara

2009-01-01T23:59:59.000Z

318

Using Wireless Communications To Enable Decentralized Analysis and Control of Smart Distribution Systems.  

E-Print Network (OSTI)

??The smart grid is a multidisciplinary approach that aims to revolutionize the whole electricity supply chain including generation, transmission and distribution systems in order to (more)

Ibrahim, Michael Naiem Abdelmassih

2014-01-01T23:59:59.000Z

319

Abundance and distribution of macro-crustaceans in the intake and discharge areas before and during early operation of the Cedar Bayou Generating Station  

E-Print Network (OSTI)

at Stations 4 and 5 varied from 3. 0 to 4. 0 m. The substrate at these two stations was silt and clay, with a very high content of organic debris. Trinity Bay, Discharge Area Each of shoreline Stations 6, 9, 19, 21, and 24 were located at 1610 m (I mile...ABUNDANCE AND DISTRIBUTION OF MACRO-CRUSTACEANS IN THE INTAKE AND DISCHARGE AREAS BEFORE AND DURING EARLY OPERATION OF THE CEDAR BAYOU GENERATING STATION A Thesis by MONROE SCHMIDT Submitted to the Graduate College of Texas A&M University...

Schmidt, Monroe

1972-01-01T23:59:59.000Z

320

Fuel Cell Power Model Version 2: Startup Guide, System Designs, and Case Studies. Modeling Electricity, Heat, and Hydrogen Generation from Fuel Cell-Based Distributed Energy Systems  

SciTech Connect

This guide helps users get started with the U.S. Department of Energy/National Renewable Energy Laboratory Fuel Cell Power (FCPower) Model Version 2, which is a Microsoft Excel workbook that analyzes the technical and economic aspects of high-temperature fuel cell-based distributed energy systems with the aim of providing consistent, transparent, comparable results. This type of energy system would provide onsite-generated heat and electricity to large end users such as hospitals and office complexes. The hydrogen produced could be used for fueling vehicles or stored for later conversion to electricity.

Steward, D.; Penev, M.; Saur, G.; Becker, W.; Zuboy, J.

2013-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "including distributed generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Pump apparatus including deconsolidator  

DOE Patents (OSTI)

A pump apparatus includes a particulate pump that defines a passage that extends from an inlet to an outlet. A duct is in flow communication with the outlet. The duct includes a deconsolidator configured to fragment particle agglomerates received from the passage.

Sonwane, Chandrashekhar; Saunders, Timothy; Fitzsimmons, Mark Andrew

2014-10-07T23:59:59.000Z

322

Abstract--The capacity of distributed generation (DG) is set to increase significantly with much of the plant connecting to  

E-Print Network (OSTI)

of producing energy at less than 7p/kWh [4]. This includes some 300 MW of small hydro, 11.5 GW of onshore wind in England and Wales (18% in Scotland) is derived from renewable resources. With existing large hydro explicitly excluded and new build unlikely, the energy will have to come from wind, wave, biomass or mini-hydro

Harrison, Gareth

323

The Flare-energy Distributions Generated by Kink-unstable Ensembles of Zero-net-current Coronal Loops  

E-Print Network (OSTI)

It has been proposed that the million degree temperature of the corona is due to the combined effect of barely-detectable energy releases, so called nanoflares, that occur throughout the solar atmosphere. Alas, the nanoflare density and brightness implied by this hypothesis means that conclusive verification is beyond present observational abilities. Nevertheless, we investigate the plausibility of the nanoflare hypothesis by constructing a magnetohydrodynamic (MHD) model that can derive the energy of a nanoflare from the nature of an ideal kink instability. The set of energy-releasing instabilities is captured by an instability threshold for linear kink modes. Each point on the threshold is associated with a unique energy release and so we can predict a distribution of nanoflare energies. When the linear instability threshold is crossed, the instability enters a nonlinear phase as it is driven by current sheet reconnection. As the ensuing flare erupts and declines, the field transitions to a lower energy sta...

Bareford, M R; Van der Linden, R A M

2011-01-01T23:59:59.000Z

324

Energy and exergy analyses of an externally fired gas turbine (EFGT) cycle integrated with biomass gasifier for distributed power generation  

Science Journals Connector (OSTI)

Biomass based decentralized power generation using externally fired gas turbine (EFGT) can be a technically feasible option. In this work, thermal performance and sizing of such plants have been analyzed at different cycle pressure ratio (rp=2?8), turbine inlet temperature (TIT=10501350K) and the heat exchanger cold end temperature difference (CETD=200300K). It is found that the thermal efficiency of the EFGT plant reaches a maximum at an optimum pressure ratio depending upon the TIT and heat exchanger CETD. For a particular pressure ratio, thermal efficiency increases either with the increase in TIT or with the decrease in heat exchanger CETD. The specific air flow, associated with the size of the plant equipment, decreases with the increase in pressure ratio. This decrease is rapid at the lower end of the pressure ratio (rp<4) but levels-off at higher rp values. An increase in the TIT reduces the specific air flow, while a change in the heat exchanger CETD has no influence on it. Based on this comparison, the performance of a 100kW EFGT plant has been analyzed for three sets of operating parameters and a trade-off in the operating condition is reached.

Amitava Datta; Ranjan Ganguly; Luna Sarkar

2010-01-01T23:59:59.000Z

325

Methods for Analyzing the Benefits and Costs of Distributed Photovoltaic Generation to the U.S. Electric Utility System  

SciTech Connect

This report outlines the methods, data, and tools that could be used at different levels of sophistication and effort to estimate the benefits and costs of DGPV. In so doing, we identify the gaps in current benefit-cost-analysis methods, which we hope will inform the ongoing research agenda in this area. The focus of this report is primarily on benefits and costs from the utility or electricity generation system perspective. It is intended to provide useful background information to utility and regulatory decision makers and their staff, who are often being asked to use or evaluate estimates of the benefits and cost of DGPV in regulatory proceedings. Understanding the technical rigor of the range of methods and how they might need to evolve as DGPV becomes a more significant contributor of energy to the electricity system will help them be better consumers of this type of information. This report is also intended to provide information to utilities, policy makers, PV technology developers, and other stakeholders, which might help them maximize the benefits and minimize the costs of integrating DGPV into a changing electricity system.

Denholm, P.; Margolis, R.; Palmintier, B.; Barrows, C.; Ibanez, E.; Bird, L.; Zuboy, J.

2014-09-01T23:59:59.000Z

326

In case you're interested, I started with two normally-distributed random variables X,Y ~ N(0,1) then applied the following transformation to generate new random variables  

E-Print Network (OSTI)

Hi John, In case you're interested, I started with two normally-distributed random variables X,Y ~ N(0,1) then applied the following transformation to generate new random variables U,V: U = { |X distributions in each of U and V (also if projected onto each axis) and cov(U,V) = 0, i

Masci, Frank

327

2012 Market Report on U.S. Wind Technologies in Distributed Applications  

Energy.gov (U.S. Department of Energy (DOE))

An annual report on U.S. wind power in distributed applications--expanded to include small, mid-size, and utility-scale installations--including key statistics, economic data, installation, capacity, and generation statistics, and more.

328

RELIABILITY PLANNING IN DISTRIBUTED ELECTRIC ENERGY SYSTEMS  

E-Print Network (OSTI)

the other hand, such distributed generators as fuel cells ordistributed and conventional. Nuclear plants and conventional coal fired generators

Kahn, E.

2011-01-01T23:59:59.000Z

329

Gamma ray generator  

DOE Patents (OSTI)

An embodiment of a gamma ray generator includes a neutron generator and a moderator. The moderator is coupled to the neutron generator. The moderator includes a neutron capture material. In operation, the neutron generator produces neutrons and the neutron capture material captures at least some of the neutrons to produces gamma rays. An application of the gamma ray generator is as a source of gamma rays for calibration of gamma ray detectors.

Firestone, Richard B; Reijonen, Jani

2014-05-27T23:59:59.000Z

330

The abundance and distribution of macro-invertebrates in the cooling-water canal system of the P. H. Robinson Generating Station located on Galveston Bay, Texas, with emphasis on the effect of supplemental cooling towers  

E-Print Network (OSTI)

and Goodyear 1972; Raney et al. 1973; Belts et al. 1974). There is aslo increasing awareness and concern for other power plant related problems such as mechanical and pressure stress due to entrainment through the condenser tubes, impingement upon intake... to determine the abundance, distribution and survival rate of macro- invertebrates present in the cooling-water canal system of Houston Lighting 6 Power Company's P. H. Robinson Generating Station. Surface and bottom, day and night collections were taken...

Margraf, F. Joseph

2012-06-07T23:59:59.000Z

331

Renewable Energy Co-Location of Distribution Facilities (Virginia) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Co-Location of Distribution Facilities (Virginia) Co-Location of Distribution Facilities (Virginia) Renewable Energy Co-Location of Distribution Facilities (Virginia) < Back Eligibility Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Systems Integrator Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Virginia Program Type Siting and Permitting Provider Virginia State Corporation Commission This legislation applies to distribution facilities, which include poles and wires, cables, pipelines, or other underground conduits by which a renewable generator is able to (i) supply electricity generated at its

332

A hybrid method combining JFPSO and probabilistic three-phase load flow for improving unbalanced voltages in distribution systems with photovoltaic generators  

Science Journals Connector (OSTI)

This paper presents a new hybrid method that combines jumping frog and particle swarm optimization and probabilistic three-phase load flow to improve unbalanced voltages in distribution systems with photovoltaic

F. J. Ruiz-Rodriguez; F. Jurado; M. Gomez-Gonzalez

2014-09-01T23:59:59.000Z

333

Photon generator  

DOE Patents (OSTI)

A photon generator includes an electron gun for emitting an electron beam, a laser for emitting a laser beam, and an interaction ring wherein the laser beam repetitively collides with the electron beam for emitting a high energy photon beam therefrom in the exemplary form of x-rays. The interaction ring is a closed loop, sized and configured for circulating the electron beam with a period substantially equal to the period of the laser beam pulses for effecting repetitive collisions.

Srinivasan-Rao, Triveni (Shoreham, NY)

2002-01-01T23:59:59.000Z

334

Ignition distributor voltage generator  

SciTech Connect

This patent describes a voltage pulse generator and ignition distributor comprising, a base, a shaft rotatably supported by the base, a distributor cap supported by the base having a center electrode and circumferentially spaced outer electrodes. The pulse generator and ignition distribution also include a first rotor driven by the shaft formed of electrical insulating material having electrically conductive means connected to the center terminal and a portion that rotates past the outer electrodes. The portion of the electrically conductive means that rotates past the outer electrodes is spaced from the outer electrodes to form a gap therebetween. A voltage pulse generator comprises a second rotor driven by the shaft, at least one permanent magnet and an annular pickup coil supported by the base. The pickup coil has inner turns and outer turns, the beginning turn of the inner turns connected to a first lead and the last turn of the outer turns connected to a second lead, the outer turns enclosing the inner turns. The pickup coil also has a circuit connected directly between the second lead and ground which is operative to provide a direct conductive path to ground for high frequency energy capacitively coupled to the outer turns from the gap discharge between the electrically conductive means of the first rotor and an outer electrode, the outer turns forming a grounded shield for the inner turns.

Boyer, J.A.

1986-11-04T23:59:59.000Z

335

Computational Needs for the Next Generation Electric Grid Proceedings  

E-Print Network (OSTI)

generation equipment, substations, distribution lines,energyresources(DER), substationanddistribution. thenextgenerationofsubstationautomationsolutions. It

Birman, Kenneth

2012-01-01T23:59:59.000Z

336

Meals included in Conference Registrations  

E-Print Network (OSTI)

Meals included in Conference Registrations Meals included as part of the cost of a conference the most reasonable rates are obtained. Deluxe hotels and motels should be avoided. GSA rates have been for Georgia high cost areas. 75% of these amounts would be $21 for non- high cost areas and $27 for high cost

Arnold, Jonathan

337

Tailpulse signal generator  

DOE Patents (OSTI)

A tailpulse signal generating/simulating apparatus, system, and method designed to produce electronic pulses which simulate tailpulses produced by a gamma radiation detector, including the pileup effect caused by the characteristic exponential decay of the detector pulses, and the random Poisson distribution pulse timing for radioactive materials. A digital signal process (DSP) is programmed and configured to produce digital values corresponding to pseudo-randomly selected pulse amplitudes and pseudo-randomly selected Poisson timing intervals of the tailpulses. Pulse amplitude values are exponentially decayed while outputting the digital value to a digital to analog converter (DAC). And pulse amplitudes of new pulses are added to decaying pulses to simulate the pileup effect for enhanced realism in the simulation.

Baker, John (Walnut Creek, CA); Archer, Daniel E. (Knoxville, TN); Luke, Stanley John (Pleasanton, CA); Decman, Daniel J. (Livermore, CA); White, Gregory K. (Livermore, CA)

2009-06-23T23:59:59.000Z

338

Geothermal Power Generation  

SciTech Connect

The report provides an overview of the renewed market interest in using geothermal for power generation including a concise look at what's driving interest in geothermal power generation, the current status of geothermal power generation, and plans for the future. Topics covered in the report include: an overview of geothermal power generation including its history, the current market environment, and its future prospects; an analysis of the key business factors that are driving renewed interest in geothermal power generation; an analysis of the challenges that are hindering the implementation of geothermal power generation projects; a description of geothermal power generation technologies; a review of the economic drivers of geothermal power generation project success; profiles of the major geothermal power producing countries; and, profiles of the major geothermal power project developers.

NONE

2007-11-15T23:59:59.000Z

339

Scramjet including integrated inlet and combustor  

SciTech Connect

This patent describes a scramjet engine. It comprises: a first surface including an aft facing step; a cowl including: a leading edge and a trailing edge; an upper surface and a lower surface extending between the leading edge and the trailing edge; the cowl upper surface being spaced from and generally parallel to the first surface to define an integrated inlet-combustor therebetween having an inlet for receiving and channeling into the inlet-combustor supersonic inlet airflow; means for injecting fuel into the inlet-combustor at the step for mixing with the supersonic inlet airflow for generating supersonic combustion gases; and further including a spaced pari of sidewalls extending between the first surface to the cowl upper surface and wherein the integrated inlet-combustor is generally rectangular and defined by the sidewall pair, the first surface and the cowl upper surface.

Kutschenreuter, P.H. Jr.; Blanton, J.C.

1992-02-04T23:59:59.000Z

340

Distribution, relative abundance and species composition of shrimp, crabs and fish in the intake area, discharge canal and cooling lake of the Cedar Bayou generating station, Baytown, Texas  

E-Print Network (OSTI)

area and discharge waters of Houston Lighting S Power Company's Cedar Bayou Generating Station, Baytown, Texas. Hydrological data were taken at each sampling station. A total of 12 species of crustaceans and 53 species of fish was captured. The 10... juvenile stages risk entrainment through the plant (Mihursky and Kennedy 1967; Bascom 1974) or impingement on the intake screens. As Landry (1977) found, the impact of either entrainment or impingement depends mainly on the season of recruitment...

St. Clair, Lou Ann

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "including distributed generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Sponsorship includes: Agriculture in the  

E-Print Network (OSTI)

Sponsorship includes: · Agriculture in the Classroom · Douglas County Farm Bureau · Gifford Farm · University of Nebraska Agricultural Research and Development Center · University of Nebraska- Lincoln Awareness Coalition is to help youth, primarily from urban communities, become aware of agriculture

Nebraska-Lincoln, University of

342

Diophantine Generation,  

E-Print Network (OSTI)

Diophantine Generation, Horizontal and Vertical Problems, and the Weak Vertical Method Alexandra Shlapentokh Diophantine Sets, Definitions and Generation Diophantine Sets Diophantine Generation Properties of Diophantine Generation Diophantine Family of Z Diophantine Family of a Polynomial Ring Going Down Horizontal

Shlapentokh, Alexandra

343

Generation Technologies  

E-Print Network (OSTI)

Many local governments are using green power in their facilities and providing assistance to local businesses and residents to do the same. Green power is a subset of renewable energy that is produced with no GHG emissions, typically from solar, wind, geothermal, biogas, biomass, or low-impact small hydroelectric sources, includes three types of products: utility products (i.e., green power purchased from the utility through the electricity grid), renewable energy certificates (RECs), and on-site generation. Opportunities to purchase these products are increasing significantly, with annual green power market growth rates

Green Power

2005-01-01T23:59:59.000Z

344

Modelling and Simulation of a Single Phase Grid Connected Using Photovoltaic and Battery Based Power Generation  

Science Journals Connector (OSTI)

Microgrid is a part of the power distribution system which uses renewable energy based of power generation connected to the grid system. Multi energy power generation is composed of renewable energy systems including photovoltaic, wind turbine, energy ... Keywords: Battery Storage, Inverter, Microgrid, Photovoltaic, Matlab/Simulink.

Alias Khamis; Azah Mohamed; Hussain Shareef; Afida Ayob; Mohd Shahrieel Mohd Aras

2013-11-01T23:59:59.000Z

345

Analytically solvable geometric network growth model with arbitrary degree distribution  

E-Print Network (OSTI)

We construct a class of network growth models capable of producing arbitrary degree distributions. The conditions necessary for generating the desired degree distribution can be derived analytically. In this model, a network is generated as a result of local interactions among agents residing on a metric space. Specifically, we study the case of random-walking agents who form bonds when they meet at designated locations we refer to as "rendezvous points." The spatial distribution of the rendezvous points determines key characteristics of the network such as the degree distribution. For any arbitrary (monotonic) degree distribution, we are able to analytically solve for the required rendezvous point distribution. Certain features of the model including high clustering coefficients suggest that it may be a suitable candidate for modeling biological and urban networks.

Dianati, Navid

2015-01-01T23:59:59.000Z

346

Appendix F Cultural Resources, Including  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appendix F Appendix F Cultural Resources, Including Section 106 Consultation STATE OF CALIFORNIA - THE RESOURCES AGENCY EDMUND G. BROWN, JR., Governor OFFICE OF HISTORIC PRESERVATION DEPARTMENT OF PARKS AND RECREATION 1725 23 rd Street, Suite 100 SACRAMENTO, CA 95816-7100 (916) 445-7000 Fax: (916) 445-7053 calshpo@parks.ca.gov www.ohp.parks.ca.gov June 14, 2011 Reply in Reference To: DOE110407A Angela Colamaria Loan Programs Office Environmental Compliance Division Department of Energy 1000 Independence Ave SW, LP-10 Washington, DC 20585 Re: Topaz Solar Farm, San Luis Obispo County, California Dear Ms. Colamaria: Thank you for seeking my consultation regarding the above noted undertaking. Pursuant to 36 CFR Part 800 (as amended 8-05-04) regulations implementing Section

347

Countries Gasoline Prices Including Taxes  

Gasoline and Diesel Fuel Update (EIA)

Countries (U.S. dollars per gallon, including taxes) Countries (U.S. dollars per gallon, including taxes) Date Belgium France Germany Italy Netherlands UK US 01/13/14 7.83 7.76 7.90 8.91 8.76 8.11 3.68 01/06/14 8.00 7.78 7.94 8.92 8.74 8.09 3.69 12/30/13 NA NA NA NA NA NA 3.68 12/23/13 NA NA NA NA NA NA 3.63 12/16/13 7.86 7.79 8.05 9.00 8.78 8.08 3.61 12/9/13 7.95 7.81 8.14 8.99 8.80 8.12 3.63 12/2/13 7.91 7.68 8.07 8.85 8.68 8.08 3.64 11/25/13 7.69 7.61 8.07 8.77 8.63 7.97 3.65 11/18/13 7.99 7.54 8.00 8.70 8.57 7.92 3.57 11/11/13 7.63 7.44 7.79 8.63 8.46 7.85 3.55 11/4/13 7.70 7.51 7.98 8.70 8.59 7.86 3.61 10/28/13 8.02 7.74 8.08 8.96 8.79 8.04 3.64 10/21/13 7.91 7.71 8.11 8.94 8.80 8.05 3.70 10/14/13 7.88 7.62 8.05 8.87 8.74 7.97 3.69

348

NREL: Electric Infrastructure Systems Research - Distributed Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Energy Resources Test Facility Distributed Energy Resources Test Facility NREL's Distributed Energy Resources Test Facility (DERTF) is a working laboratory for interconnection and systems integration testing. This state-of-the-art facility includes generation, storage, and interconnection technologies as well as electric power system equipment capable of simulating a real-world electric system. Photo of the Distributed Energy Resources Test Facility and an adjacent solar photovoltaic array. The Distributed Energy Resources Test Facility is located at the National Wind Technology Center near Boulder, Colorado. Take a virtual tour of the DERTF. Researchers at the facility can vary equipment configurations and introduce common electrical disturbances such as sags, swells, and harmonic issues on

349

Distributed Algorithms Distributed Transactions  

E-Print Network (OSTI)

Algorithms© Gero Mühl 8 Concurrency Control serial RC (ReCoverable) ACA (Avoiding Cascading Aborts) ST (StricDistributed Algorithms Distributed Transactions PD Dr.-Ing. Gero Mühl Kommunikations- und Betriebssysteme Fakultät für Elektrotechnik u. Informatik Technische Universität Berlin #12;Distributed Algorithms

Wichmann, Felix

350

Hardware simulation of diesel generator and microgrid stability  

E-Print Network (OSTI)

Over the last few years, people have begun to depend less on large power plants with extensive distribution systems, and more on local distributed generation sources. A microgrid, a local collection of distributed generators, ...

Zieve, Michael M

2012-01-01T23:59:59.000Z

351

Distributed Wind 2015  

Energy.gov (U.S. Department of Energy (DOE))

Distributed Wind 2015 is committed to the advancement of both distributed and community wind energy. This two day event includes a Business Conference with sessions focused on advancing the...

352

Coal Distribution Database, 2006  

U.S. Energy Information Administration (EIA) Indexed Site

2009 Final February 2011 2 Overview of 2009 Coal Distribution Tables Introduction The Coal Distribution Report - Annual provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing State. This Final 2009 Coal Distribution Report - Annual, supersedes the data contained in the four Quarterly Coal Distribution Reports previously issued for 2009. This report relies on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. In addition, the report

353

1. Generation 1 1. Generation  

E-Print Network (OSTI)

1. Generation 1 _________________________________________________________________________ 1. Generation Sound and vibrations or, in more general terms, oscillations of matter (solids or fluids) are generated in many different dynamic processes. The basic mechanisms which underlie these oscillations

Berlin,Technische Universität

354

Study of parallel AC and DC electrical distribution in the all-electric ship  

Science Journals Connector (OSTI)

Medium-voltage DC electrical distribution is envisioned as a possible system for the warship of the future, bringing numerous advantages including a very power-dense architecture. This system takes the AC power produced by generators, immediately rectifies ... Keywords: MVDC, electric-drive ship, electrical distribution

Julie S. Chalfant; Chryssostomos Chryssostomidis; Matthew G. Angle

2010-07-01T23:59:59.000Z

355

Distribution System State Estimation  

Office of Scientific and Technical Information (OSTI)

these include reactive power management, outage management, loss reduction, demand response, adaptable over-current protection, condition-based maintenance, distributed...

356

What is Distributed Wind?  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and refurbishers, including those from Canada, Mexico, Europe, China, and South Africa. In 2013, 30.4 MW of new distributed wind capacity was added, representing nearly...

357

Microfluidic devices and methods including porous polymer monoliths  

DOE Patents (OSTI)

Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.

Hatch, Anson V; Sommer, Gregory J; Singh, Anup K; Wang, Ying-Chih; Abhyankar, Vinay V

2014-04-22T23:59:59.000Z

358

Impact of dispersed solar and wind systems on electric distribution planning and operation  

SciTech Connect

Small-scale dispersed solar photovoltaic and wind generation (DSW) will affect the generation, transmission, and distribution systems of an electric utility. This study examines the technical and economic impacts of dispersing DSW devices within the distribution system. Dispersed intermittent generation is included. Effects of DSW devices on capital investments, reliability, operating and maintenance costs, protection requirements, and communication and control requirements are examined. A DSW operation model is developed to help determine the dependable capacity of fluctuating solar photovoltaic and wind generation as part of the distribution planning process. Specific case studies using distribution system data and renewable resource data for Southern California Edison Company and Consumers Power Company are analyzed to gain insights into the effects of interconnecting DSW devices. The DSW devices were found to offer some distribution investment savings, depending on their availability during peak loads. For a summer-peaking utility, for example, dispersing photovoltaic systems is more likely to defer distribution capital investments than dispersing wind systems. Dispersing storage devices to increase DSW's dependable capacity for distribution systems needs is not economically attractive. Substation placement of DSW and storage devices is found to be more cost effective than feeder or customer placement. Examination of the effects of DSW on distribution system operation showed that small customer-owned DSW devices are not likely to disrupt present time-current distribution protection coordination. Present maintenance work procedures, are adequate to ensure workmen's safety. Regulating voltages within appropriate limits will become more complex with intermittent generation along the distribution feeders.

Boardman, R.W.; Patton, R.; Curtice, D.H.

1981-02-01T23:59:59.000Z

359

Distributed control of reactive power flow in a radial distribution circuit with high photovoltaic penetration  

SciTech Connect

We show how distributed control of reactive power can serve to regulate voltage and minimize resistive losses in a distribution circuit that includes a significant level of photovoltaic (PV) generation. To demonstrate the technique, we consider a radial distribution circuit with a single branch consisting of sequentially-arranged residential-scale loads that consume both real and reactive power. In parallel, some loads also have PV generation capability. We postulate that the inverters associated with each PV system are also capable of limited reactive power generation or consumption, and we seek to find the optimal dispatch of each inverter's reactive power to both maintain the voltage within an acceptable range and minimize the resistive losses over the entire circuit. We assume the complex impedance of the distribution circuit links and the instantaneous load and PV generation at each load are known. We compare the results of the optimal dispatch with a suboptimal local scheme that does not require any communication. On our model distribution circuit, we illustrate the feasibility of high levels of PV penetration and a significant (20% or higher) reduction in losses.

Chertkov, Michael [Los Alamos National Laboratory; Turitsyn, Konstantin [Los Alamos National Laboratory; Backhaus, Scott [Los Alamos National Laboratory; Sule, Petr [NEW MEXICO CONSORTIUM

2009-01-01T23:59:59.000Z

360

A numerical study for the optimal arrangement of ocean current turbine generators in the ocean current power parks  

Science Journals Connector (OSTI)

The present paper deals with the investigation of the flow distribution in the ocean current power park in order to optimize the arrangement of the turbine generators in the sea and the lake sides. To produce more reliable results, the detailed geometry of the ocean current generators is included in the computational domain with frozen rotor method to consider rotating effect. The numerical results show the details of flow distribution in the ocean current power park and propose the appropriate arrangement of the turbine generators for the efficient operation, which is essential for possible maximum power generation.

Seung Ho Lee; Sang Hyuk Lee; Kyungsoo Jang; Jungeun Lee; Nahmkeon Hur

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "including distributed generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Definition: Distributed Energy Resource | Open Energy Information  

Open Energy Info (EERE)

Resource Resource Jump to: navigation, search Dictionary.png Distributed Energy Resource A device that produces electricity, and is connected to the electrical system, either "behind the meter" in the customer's premise, or on the utility's primary distribution system. A Distributed Energy Resource (DER) can utilize a variety of energy inputs including, but not limited to, liquid petroleum fuels, biofuels, natural gas, solar, wind, and geothermal. Electricity storage devices can also be classified as DERs.[1] Also Known As DER Related Terms energy, biofuels, electricity storage technologies, system, electricity generation References ↑ https://www.smartgrid.gov/category/technology/distributed_energy_resource [[Categ LikeLike UnlikeLike You like this.Sign Up to see what your friends like.

362

FRIB cryogenic distribution system  

SciTech Connect

The Michigan State University Facility for Rare Isotope Beams (MSU-FRIB) helium distribution system has been revised to include bayonet/warm valve type disconnects between each cryomodule and the transfer line distribution system, similar to the Thomas Jefferson National Accelerator Facility (JLab) and the Spallation Neutron Source (SNS) cryogenic distribution systems. The heat loads at various temperature levels and some of the features in the design of the distribution system are outlined. The present status, the plans for fabrication, and the procurement approach for the helium distribution system are also included.

Ganni, Venkatarao [JLAB; Dixon, Kelly D. [JLAB; Laverdure, Nathaniel A. [JLAB; Knudsen, Peter N. [JLAB; Arenius, Dana M. [JLAB; Barrios, Matthew N. [Michigan State; Jones, S. [Michigan State; Johnson, M. [Michigan State; Casagrande, Fabio [Michigan State

2014-01-01T23:59:59.000Z

363

FRIB cryogenic distribution system  

SciTech Connect

The Michigan State University Facility for Rare Isotope Beams (MSU-FRIB) helium distribution system has been revised to include bayonet/warm valve type disconnects between each cryomodule and the transfer line distribution system, similar to the Thomas Jefferson National Accelerator Facility (JLab) and the Spallation Neutron Source (SNS) cryogenic distribution systems. The heat loads at various temperature levels and some of the features in the design of the distribution system are outlined. The present status, the plans for fabrication, and the procurement approach for the helium distribution system are also included.

Ganni, V.; Dixon, K.; Laverdure, N.; Knudsen, P.; Arenius, D. [Thomas Jefferson National Accelerator Facility (JLab), Newport News, VA 23606 (United States); Barrios, M.; Jones, S.; Johnson, M.; Casagrande, F. [Facility for Rare Isotope Beams (FRIB), Michigan State University, East Lansing, MI 48824 (United States)

2014-01-29T23:59:59.000Z

364

Constructing Reliable Distributed Communication Systems with CORBA  

E-Print Network (OSTI)

Constructing Reliable Distributed Communication Systems with CORBA Silvano Maffeis Douglas C Communication software and distributed services for next- generation applications must be reliable, efficient model to support reliable data- and process- oriented distributed systems that communicate through syn

Schmidt, Douglas C.

365

Distributed Generation with Heat Recovery and Storage  

E-Print Network (OSTI)

Ernest Orlando Lawrence Berkeley National Laboratory is anErnest Orlando Lawrence Berkeley National Laboratory,Ernest Orlando Lawrence Berkeley National Laboratory,

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

366

Distributed Generation with Heat Recovery and Storage  

E-Print Network (OSTI)

in floor tiles for thermal energy storage, working paper,D. R. (2000). Thermal energy storage for space cooling,A simple model of thermal energy storage is developed as a

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

367

DISTRIBUTED GENERATION USE AND CONTROL IN BUILDINGS  

E-Print Network (OSTI)

.g., fuel cells), energy conversion devices (e.g., absorption chillers), and energy storage devices (e were analyzed: 1. 1-250kW HTFC with 25TR Absorption Chiller 2. 4-60kW MTGs with 100TR Absorption Chiller 3. 1-125kW HTFC and 2-60kW MTGs with 63TR Absorption Chiller · Heating not considered

Mease, Kenneth D.

368

Distributed Generation with Heat Recovery and Storage  

E-Print Network (OSTI)

Energy; Grid systems; Optimization; Heat flow; Financialof grid power and by utilizing combined heat and power (CHP)

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

369

[Article 1 of 7: Motivates and Includes the Consumer]  

NLE Websites -- All DOE Office Websites (Extended Search)

2 of 7: Research on the Characteristics of a Modern Grid by the NETL 2 of 7: Research on the Characteristics of a Modern Grid by the NETL Modern Grid Strategy Team Accommodates All Generation and Storage Options Last month we presented the first Principal Characteristic of a Modern Grid, "Motivates and Includes the Consumer". This month we present a second characteristic, "Accommodates All Generation and Storage Options". This characteristic will fundamentally transition today's grid from a centralized model for generation to one that also has a more balanced contribution from decentralized generation and storage. This characteristic, along with the other six, define a Modern Grid that will power the 21 st Century economy. For a more detailed discussion on "Accommodates All Generation and Storage Options", please see:

370

The Efficiency of Electricity Generation in the U.S. After Restructuring  

NLE Websites -- All DOE Office Websites (Extended Search)

The Efficiency of Electricity Generation in the U.S. After Restructuring The Efficiency of Electricity Generation in the U.S. After Restructuring Speaker(s): Catherine Wolfram Date: June 9, 2003 - 12:00pm Location: Bldg. 90 Over the past eleven years, US electric utilities have faced significant changes to their competitive and regulatory environments. The industry restructuring is designed to enhance economic efficiency at all levels of operation, including distribution, transmission, generation and retail services. The gains are likely to be largest in electric generation because generation costs are the largest component of end-use costs and restructuring has a larger impact on generation than on other segments of the electricity industry, such as transmission and distribution, which are likely to remain more heavily regulated. This paper evaluates changes in

371

Thermoelectric generator  

SciTech Connect

A thermoelectric generator unit is described comprising: a hot side heat exchanger including a plate having extruded retention posts projecting from one surface of the plate, and fins adapted for contact with a heating source. The fins are positioned between two of the retention posts. Retention rods are inserted between the retention posts and the base of the fins to retain the fin in thermal contact with the plate surface upon insertion of the retention rod between the engaging surface of the post and the corresponding fin. Thermoelectric semi-conductor modules are in thermal contact with the opposite side of the hot side heat exchanger plate from the contact with the fins. The modules are arranged in a grid pattern so that heat flow is directed into each of the modules from the hot side heat exchanger. The modules are connected electrically so as to combine their electrical output; and a cold side heat exchanger is in thermal contact with the modules acting as a heat sink on the opposite side of the module from the hot side heat exchanger plate so as to produce a thermal gradient across the modules.

Shakun, W.; Bearden, J.H.; Henderson, D.R.

1988-03-29T23:59:59.000Z

372

Generation Planning (pbl/generation)  

NLE Websites -- All DOE Office Websites (Extended Search)

Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Generation Planning Thumbnail image of BPA White Book BPA White Book (1998 - 2011) Draft Dry...

373

Benford distributions in NMR  

E-Print Network (OSTI)

Benford's Law is an empirical law which predicts the frequency of significant digits in databases corresponding to various phenomena, natural or artificial. Although counter intuitive at the first sight, it predicts a higher occurrence of digit 1, and decreasing occurrences to other larger digits. Here we report the Benford analysis of various NMR databases and draw several interesting inferences. We observe that, in general, NMR signals follow Benford distribution in time-domain as well as in frequency domain. Our survey included NMR signals of various nuclear species in a wide variety of molecules in different phases, namely liquid, liquid-crystalline, and solid. We also studied the dependence of Benford distribution on NMR parameters such as signal to noise ratio, number of scans, pulse angles, and apodization. In this process we also find that, under certain circumstances, the Benford analysis can distinguish a genuine spectrum from a visually identical simulated spectrum. Further we find that chemical-shift databases and amplitudes of certain radio frequency pulses generated using optimal control techniques also satisfy Benford's law to a good extent.

Gaurav Bhole; Abhishek Shukla; T. S. Mahesh

2014-06-27T23:59:59.000Z

374

Renewable Electricity Generation (Fact Sheet)  

SciTech Connect

This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

Not Available

2012-09-01T23:59:59.000Z

375

Mini Renewable Hybrid Distributed Power Plants for Lebanon  

Science Journals Connector (OSTI)

Lebanon has spent billions of dollars on its electricity sector, but the demand is higher than available power. In peak demand time, blackouts are the major phenomena in almost all the Lebanese regions. As the world today is going into green energy, this project This step will minimize green house gas emissions, increase the reliability of the grid finally, increase the power generation capacity in Lebanon. For all the mentioned problems, distributed generation using hybrid-renewable energy systems is proposed as a future solution for the Lebanese energy sector. Losses in the transmission and distribution system will be reduced since power is generated near loads. The grid availability and stability will increase and individuals can save money in their electricity bill and finally the generated power is clean and nonpolluting. A study of a design will be launched, including simulation using MATLAB/SIMULINK.

M.B. Najjar; Edmond Ghoulam; Hanna Fares

2012-01-01T23:59:59.000Z

376

Analysis of Random Number Generators Parijat Naik  

E-Print Network (OSTI)

1 Analysis of Random Number Generators Parijat Naik Department of Computer Science Oregon State generation used in practice and a comparison of their efficiency. The paper focuses on the techniques used Random number generators are used for generating an array of numbers that have a random distribution

377

Utility Solar Generation Valuation Methods  

SciTech Connect

Tucson Electric Power (TEP) developed, tested and verified the results of a new and appropriate method for accurately evaluating the capacity credit of time variant solar generating sources and reviewed new methods to appropriately and fairly evaluate the value of solar generation to electric utilities. The project also reviewed general integrated approaches for adequately compensating owners of solar generation for their benefits to utilities. However, given the limited funding support and time duration of this project combined with the significant differences between utilities regarding rate structures, solar resource availability and coincidence of solar generation with peak load periods, it is well beyond the scope of this project to develop specific rate, rebate, and interconnection approaches to capture utility benefits for all possible utilities. The project developed computer software based evaluation method models to compare solar generation production data measured in very short term time increments called Sample Intervals over a typical utility Dispatch Cycle during an Evaluation Period against utility system load data. Ten second resolution generation production data from the SGSSS and actual one minute resolution TEP system load data for 2006 and 2007, along with data from the Pennington Street Garage 60 kW DC capacity solar unit installed in downtown Tucson will be applied to the model for testing and verification of the evaluation method. Data was provided by other utilities, but critical time periods of data were missing making results derived from that data inaccurate. The algorithms are based on previous analysis and review of specific 2005 and 2006 SGSSS production data. The model was built, tested and verified by in house TEP personnel. For this phase of the project, TEP communicated with, shared solar production data with and collaborated on the development of solar generation valuation tools with other utilities, including Arizona Public Service, Salt River Project, Xcel and Nevada Power Company as well as the Arizona electric cooperatives. In the second phase of the project, three years of 10 second power output data of the SGSSS was used to evaluate the effectiveness of frequency domain analysis, normal statistical distribution analysis and finally maximum/minimum differential output analysis to test the applicability of these mathematic methods in accurately modeling the output variations produced by clouds passing over the SGSSS array.

Hansen, Thomas N.; Dion, Phillip J.

2009-06-30T23:59:59.000Z

378

SEEPAGE MODEL FOR PA INCLUDING DRIFT COLLAPSE  

SciTech Connect

The purpose of this report is to document the predictions and analyses performed using the seepage model for performance assessment (SMPA) for both the Topopah Spring middle nonlithophysal (Tptpmn) and lower lithophysal (Tptpll) lithostratigraphic units at Yucca Mountain, Nevada. Look-up tables of seepage flow rates into a drift (and their uncertainty) are generated by performing numerical simulations with the seepage model for many combinations of the three most important seepage-relevant parameters: the fracture permeability, the capillary-strength parameter 1/a, and the percolation flux. The percolation flux values chosen take into account flow focusing effects, which are evaluated based on a flow-focusing model. Moreover, multiple realizations of the underlying stochastic permeability field are conducted. Selected sensitivity studies are performed, including the effects of an alternative drift geometry representing a partially collapsed drift from an independent drift-degradation analysis (BSC 2004 [DIRS 166107]). The intended purpose of the seepage model is to provide results of drift-scale seepage rates under a series of parameters and scenarios in support of the Total System Performance Assessment for License Application (TSPA-LA). The SMPA is intended for the evaluation of drift-scale seepage rates under the full range of parameter values for three parameters found to be key (fracture permeability, the van Genuchten 1/a parameter, and percolation flux) and drift degradation shape scenarios in support of the TSPA-LA during the period of compliance for postclosure performance [Technical Work Plan for: Performance Assessment Unsaturated Zone (BSC 2002 [DIRS 160819], Section I-4-2-1)]. The flow-focusing model in the Topopah Spring welded (TSw) unit is intended to provide an estimate of flow focusing factors (FFFs) that (1) bridge the gap between the mountain-scale and drift-scale models, and (2) account for variability in local percolation flux due to stochastic hydrologic properties and flow processes.

C. Tsang

2004-09-22T23:59:59.000Z

379

Using Backup Generators: Choosing the Right Backup Generator - Business  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Choosing the Right Backup Generator Choosing the Right Backup Generator - Business Owners Using Backup Generators: Choosing the Right Backup Generator - Business Owners Using Backup Generators: Choosing the Right Backup Generator - Business Owners Identify essential systems and equipment-What do you need to keep your business operating? These may include heating, ventilation, and air conditioning systems; industrial equipment and major appliances, such as refrigerators and freezers; lights (interior and exterior), computers, and other office equipment; pumps, including sump pumps, sprinkler system pumps, and well water pumps; and alarm systems. Some of these systems and equipment may have to operate continuously, while others may be needed only during normal business hours. Choose the generator's fuel source-Backup generators are

380

Coal Distribution Database, 2006  

U.S. Energy Information Administration (EIA) Indexed Site

7 7 December 2008 2007 Changes in Coal Distribution Table Format and Data Sources The changes in the coal distribution data sources made in 2006 are carried over to the 2007 tables. As in 2006, EIA used data from the EIA-3 survey to distribute synfuel to the electric generation sector on a state level, aggregated with all of the other coal (such as bituminous, subbituminous, and lignite coal) sent to electric generating plants. EIA supplemented the EIA-3 data with previously collected information to determine the mode of transportation from the synfuel plant to the electric generating consumer, which was not reported on the EIA-3A survey form. Although not contained in the EIA-6A master file, this information has been documented in an ancillary spreadsheet in the EIA

Note: This page contains sample records for the topic "including distributed generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Thermoacoustic magnetohydrodynamic electrical generator  

DOE Patents (OSTI)

A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1,000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

1986-01-01T23:59:59.000Z

382

Thermoelectric Generators 1. Thermoelectric generator  

E-Print Network (OSTI)

. Cold Hot I - -- - - - - -- Figure 1 Electron concentration in a thermoelectric material. #12;2 A large1 Thermoelectric Generators HoSung Lee 1. Thermoelectric generator 1.1 Basic Equations In 1821 on the direction of current and material [3]. This is called the Thomson effect (or Thomson heat). These three

Lee, Ho Sung

383

Stress distribution under heavy haul transporters  

SciTech Connect

In a previous cited paper, comparisons were made between the relationship of maximum vertical compressive stress generated with depth by various vehicles, including an automobile, a fully-loaded 18-wheel tractor-trailer combination, a test-loaded 12-axle, 96-wheel heavy transporter trailer, and the transporter prime mover, also test loaded. This paper extends the usefulness of those comparisons by adding a 12-axle, 144-wheel heavy transporter trailer. The transporter is a one-and-one-half-wide hydraulic platform trailer test loaded to 110% of the loading from a Westinghouse steam generator. The total weight on the transporter trailer tires is just over 675 tons. This trailer will be used in an upcoming steam generator replacement project. In addition to examining the distribution of maximum vertical stress with depth, the paper looks at the variation of loading beneath the maximum loaded axle of the transporter at different depths.

Davie, J.R.; Senapathy, H. [Bechtel Power Corp., Gaithersburg, MD (United States)

1999-11-01T23:59:59.000Z

384

Coal Distribution Database, 2008  

U.S. Energy Information Administration (EIA) Indexed Site

4Q 2009 4Q 2009 April 2010 Quarterly Coal Distribution Table Format and Data Sources 4Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal Distribution Report is a preliminary report, based on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. The final report will rely on the receipt of annual data to replace the imputed monthly data for smaller electric generation plants that are excluded from the monthly filing requirement, and final data for all other respondents. The Coal Distribution Report traces coal from the origin State to the destination State by transportation mode. The data sources beginning with the 2008 Coal Distribution Report

385

Quadrennial Technology Review's Alternative Generation Workshop...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Workshop Slides Preliminary Slides for Alternative Generation Workshop including Carbon Capture and Sequestration, Nuclear Power, Wind Power, Water Power, Geothermal...

386

Quasiseparable Generators  

Science Journals Connector (OSTI)

It is clear from the preceding chapter that any matrix has quasiseparable representations. By padding given quasiseparable generators with zero matrices of large sizes one ... large orders. However, one is lookin...

Yuli Eidelman; Israel Gohberg

2014-01-01T23:59:59.000Z

387

Distribution System Research Priorities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mark McGranaghan Mark McGranaghan EPRI ELECTRICITY DISTRIBUTION SYSTEM WORKSHOP Crystal City, VA September 24, 2012 Distribution System Research Priorities 2 © 2012 Electric Power Research Institute, Inc. All rights reserved. The Power System Roadmaps start with a Vision Future Power System will require new technologies, infrastructure, and control systems 3 © 2012 Electric Power Research Institute, Inc. All rights reserved. R&D Roadmaps - Coordination is Critical Roadmaps are living documents 4 © 2012 Electric Power Research Institute, Inc. All rights reserved. Developing the next generation grid * Industry needs new technologies, communication protocols, and information management methods - More variable generation sources and controllable loads - Aging infrastructure

388

Self-Excited ac High Voltage Generation Using Water Droplets  

Science Journals Connector (OSTI)

By letting water drops fall through rings into cans high voltage can be spontaneously generated with no external electrical excitation. Previous work concerning this type of electric influence machine for dc and three-phase ac high voltage generation is extended to include multiphase multifrequency operation by considering N streams and N cans. A distributed equivalent circuit representation is used to calculate the natural frequencies of the system where it is found that many overstable modes are present. Experimental observations with up to five cans are presented. This device can serve as a model for phenomena concerned with atmospheric electricity.

Markus Zahn

1973-01-01T23:59:59.000Z

389

Electricity Distribution  

Science Journals Connector (OSTI)

High voltage (HV) distribution grids have nominal voltages of up ... the grid that connects distribution to the transmission substations and also supplies large industrial customers requiri...

Toms Gmez

2013-01-01T23:59:59.000Z

390

Control Engineering Practice 10 (2002) 615624 Stabilizer design for industrial co-generation systems  

E-Print Network (OSTI)

, whose quantity (measured by its flow rate) and quality (measured by its pressure and temperature) play boilers, three CO-type boilers and two once-through steam generators (OTSG). The header system includes receives steam from the boiler system and then distributes the steam for three different usages: (i

Marquez, Horacio J.

391

Microwave generator  

DOE Patents (OSTI)

A microwave generator is provided for generating microwaves substantially from virtual cathode oscillation. Electrons are emitted from a cathode and accelerated to an anode which is spaced apart from the cathode. The anode has an annular slit there through effective to form the virtual cathode. The anode is at least one range thickness relative to electrons reflecting from the virtual cathode. A magnet is provided to produce an optimum magnetic field having the field strength effective to form an annular beam from the emitted electrons in substantial alignment with the annular anode slit. The magnetic field, however, does permit the reflected electrons to axially diverge from the annular beam. The reflected electrons are absorbed by the anode in returning to the real cathode, such that substantially no reflexing electrons occur. The resulting microwaves are produced with a single dominant mode and are substantially monochromatic relative to conventional virtual cathode microwave generators. 6 figs.

Kwan, T.J.T.; Snell, C.M.

1987-03-31T23:59:59.000Z

392

Scram signal generator  

DOE Patents (OSTI)

A scram signal generating circuit for nuclear reactor installations monitors a flow signal representing the flow rate of the liquid sodium coolant which is circulated through the reactor, and initiates reactor shutdown for a rapid variation in the flow signal, indicative of fuel motion. The scram signal generating circuit includes a long-term drift compensation circuit which processes the flow signal and generates an output signal representing the flow rate of the coolant. The output signal remains substantially unchanged for small variations in the flow signal, attributable to long term drift in the flow rate, but a rapid change in the flow signal, indicative of a fast flow variation, causes a corresponding change in the output signal. A comparator circuit compares the output signal with a reference signal, representing a given percentage of the steady state flow rate of the coolant, and generates a scram signal to initiate reactor shutdown when the output signal equals the reference signal.

Johanson, Edward W. (New Lenox, IL); Simms, Richard (Westmont, IL)

1981-01-01T23:59:59.000Z

393

Vector generator scan converter  

DOE Patents (OSTI)

High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardware for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold. 7 figs.

Moore, J.M.; Leighton, J.F.

1988-02-05T23:59:59.000Z

394

Distributed Rural Electrification in Brazil  

Science Journals Connector (OSTI)

DG technologies ranging from diesel generators to solar home systems already have a long history ... electrification in Brazil is dominated by the centralized utilities installing and operating distributed techno...

Hisham Zerriffi

2011-01-01T23:59:59.000Z

395

Distributed Energy Fuel Cells Electricity Users  

E-Print Network (OSTI)

& Barriers Distributed Energy OBJECTIVES · Develop a distributed generation PEM fuel cell system operating of Stationary PEM Fuel Cell Power System Development of Back-up Fuel Cell Power System Development of Materials of PEM Fuel Cell Systems #12;

396

Coal Distribution Database, 2008  

U.S. Energy Information Administration (EIA) Indexed Site

Origin State, Origin State, Consumer, Destination and Method of Transportation 3Q 2009 February 2010 Quarterly Coal Distribution Table Format and Data Sources 3Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal Distribution Report is a preliminary report, based on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. The final report will rely on the receipt of annual data to replace the imputed monthly data for smaller electric generation plants that are excluded from the monthly filing requirement, and final data for all other respondents. The Coal Distribution Report traces coal from the origin State to the destination State by

397

Coal Distribution Database, 2008  

U.S. Energy Information Administration (EIA) Indexed Site

Destination State, Destination State, Consumer, Destination and Method of Transportation 3Q 2009 February 2010 Quarterly Coal Distribution Table Format and Data Sources 3Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal Distribution Report is a preliminary report, based on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. The final report will rely on the receipt of annual data to replace the imputed monthly data for smaller electric generation plants that are excluded from the monthly filing requirement, and final data for all other respondents. The Coal Distribution Report traces coal from the origin State to the destination State by

398

Net Taxable Gasoline Gallons (Including Aviation Gasoline)  

E-Print Network (OSTI)

Net Taxable Gasoline Gallons (Including Aviation Gasoline) Period 2000 2001 (2) 2002 2003 2004 "gross" to "net" , was deemed impractical. (5) This report replaces the Gross Taxable Gasoline Gallons (Including Aviation Gasoline) report which will not be produced after December 2002. (6) The November 2007

399

NEW APPROACH TO ADDRESSING GAS GENERATION IN RADIOACTIVE MATERIAL PACKAGING  

SciTech Connect

Safety Analysis Reports for Packaging (SARP) document why the transportation of radioactive material is safe in Type A(F) and Type B shipping containers. The content evaluation of certain actinide materials require that the gas generation characteristics be addressed. Most packages used to transport actinides impose extremely restrictive limits on moisture content and oxide stabilization to control or prevent flammable gas generation. These requirements prevent some users from using a shipping container even though the material to be shipped is fully compliant with the remaining content envelope including isotopic distribution. To avoid these restrictions, gas generation issues have to be addressed on a case by case basis rather than a one size fits all approach. In addition, SARP applicants and review groups may not have the knowledge and experience with actinide chemistry and other factors affecting gas generation, which facility experts in actinide material processing have obtained in the last sixty years. This paper will address a proposal to create a Gas Generation Evaluation Committee to evaluate gas generation issues associated with Safety Analysis Reports for Packaging material contents. The committee charter could include reviews of both SARP approved contents and new contents not previously evaluated in a SARP.

Watkins, R; Leduc, D; Askew, N

2009-06-25T23:59:59.000Z

400

Magnetocumulative generator  

DOE Patents (OSTI)

An improved magnetocumulative generator is described that is useful for producing magnetic fields of very high energy content over large spatial volumes. The polar directed pleated magnetocumulative generator has a housing providing a housing chamber with an electrically conducting surface. The chamber forms a coaxial system having a small radius portion and a large radius portion. When a magnetic field is injected into the chamber, from an external source, most of the magnetic flux associated therewith positions itself in the small radius portion. The propagation of an explosive detonation through high-explosive layers disposed adjacent to the housing causes a phased closure of the chamber which sweeps most of the magnetic flux into the large radius portion of the coaxial system. The energy content of the magnetic field is greatly increased by flux stretching as well as by flux compression. The energy enhanced magnetic field is utilized within the housing chamber itself.

Pettibone, J.S.; Wheeler, P.C.

1981-06-08T23:59:59.000Z

Note: This page contains sample records for the topic "including distributed generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Monthly Generation System Peak (pbl/generation)  

NLE Websites -- All DOE Office Websites (Extended Search)

Generation > Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Monthly Generation System Peak (GSP) This site is no longer maintained. Page last...

402

BUILDOUT AND UPGRADE OF CENTRAL EMERGENCY GENERATOR SYSTEM, GENERATOR 3 AND 4 ELECTRICAL INSTALLATION  

SciTech Connect

SECTION 01000SUMMARY OF WORK PART 1GENERAL 1.1 SUMMARY The work to be performed under this project consists of providing the labor, equipment, and materials to perform "Buildout and Upgrade of Central Emergency Generator System, Generator 3 and 4 Electrical Installation" for the National Aeronautics and Space Administration at the Dryden Flight Research Center (NASA/DFRC), Edwards, California 93523. All modifications to existing substations and electrical distribution systems are the responsibility of the contractor. It is the contractors responsibility to supply a complete and functionally operational system. The work shall be performed in accordance with these specifications and the related drawings. The work of this project is defined by the plans and specifications contained and referenced herein. This work specifically includes but is not limited to the following: Scope of Work - Installation 1. Install all electrical wiring and controls for new generators 3 and 4 to match existing electrical installation for generators 1 and 2 and in accordance with drawings. Contractor shall provide as-built details for electrical installation. 2. Install battery charger systems for new generators 3 and 4 to match existing battery charging equipment and installation for generators 1 and 2. This may require exchange of some battery charger parts already on-hand. Supply power to new battery chargers from panel and breakers as shown on drawings. Utilize existing conduits already routed to generators 3 and 4 to field route the new wiring in the most reasonable way possible. 3. Install electrical wiring for fuel/lube systems for new generators 3 and 4 to match existing installation for generators 1 and 2. Supply power to lube oil heaters and fuel system (day tanks) from panel and breakers as shown on drawings. Utilize existing conduits already routed to generators 3 and 4 to field route the new wiring in the most reasonable way possible. Add any conduits necessary to complete wiring to fuel systems. 4. Install power to new dampers/louvers from panel and breakers as shown on drawings. Wiring shall be similar to installation to existing dampers/louvers. Utilize existing conduits already routed to louver areas to field route the new wiring in the most reasonable way possible. Add any conduits necessary to complete wiring to new dampers/louvers. 5. Install power to jacket water heaters for new generators 3 and 4 from panel and breakers as shown on drawings. Utilize existing conduits already routed to generators 3 and 4 to field route the new wiring in the most reasonable way possible. 6. Install new neutral grounding resistor and associated parts and wiring for new generators 3 and 4 to match existing installation for generators 1 and 2. Grounding resistors will be Government Furnished Equipment (GFE). 7. Install two new switchgear sections, one for generator #3 and one for generator #4, to match existing generator #1 cubicle design and installation and in accordance with drawings and existing parts lists. This switchgear will be provided as GFE. 8. Ground all new switchgear, generators 3 and 4, and any other new equipment to match existing grounding connections for generators 1 and 2, switchgear and other equipment. See drawings for additional details. Grounding grid is already existing. Ensure that all grounding meets National Electrical Code requirements. 9. Cummins DMC control for the generator and switchgear syste

Gary D. Seifert; G. Shawn West; Kurt S. Myers; Jim Moncur

2006-07-01T23:59:59.000Z

403

Gas storage materials, including hydrogen storage materials  

DOE Patents (OSTI)

A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

2014-11-25T23:59:59.000Z

404

Method for protecting an electric generator  

DOE Patents (OSTI)

A method for protecting an electrical generator which includes providing an electrical generator which is normally synchronously operated with an electrical power grid; providing a synchronizing signal from the electrical generator; establishing a reference signal; and electrically isolating the electrical generator from the electrical power grid if the synchronizing signal is not in phase with the reference signal.

Kuehnle, Barry W. (Ammon, ID); Roberts, Jeffrey B. (Ammon, ID); Folkers, Ralph W. (Ammon, ID)

2008-11-18T23:59:59.000Z

405

Reliability evaluation of electric power generation systems including unconventional energy sources  

E-Print Network (OSTI)

System Used in Case Study Table 5. Interstate Transition Rates of Units in Base System Table 6. Comparison of LOLE Results for January 1982 Table 7. Comparison of LOLE Results for July 1982 . Table 8. Comparison of Frequency Results for January 1982... Table 9. Comparison of Frequency Results for July 1982 Table 10. Comparison of CPU secs Used by III and IV 27 36 50 52 55 55 56 56 57 CHAPTER I INTRODUCTION 1. 1 Alternative Energy Sources In recent years, the escalation in the cost...

Lago-Gonzalez, Alex

1984-01-01T23:59:59.000Z

406

Parton distributions for the LHC Run II  

E-Print Network (OSTI)

We present NNPDF3.0, the first set of parton distribution functions (PDFs) determined with a methodology validated by a closure test. NNPDF3.0 uses a global dataset including HERA-II deep-inelastic inclusive cross-sections, the combined HERA charm data, jet production from ATLAS and CMS, vector boson rapidity and transverse momentum distributions from ATLAS, CMS and LHCb, W+c data from CMS and top quark pair production total cross sections from ATLAS and CMS. Results are based on LO, NLO and NNLO QCD theory and also include electroweak corrections. To validate our methodology, we show that PDFs determined from pseudo-data generated from a known underlying law correctly reproduce the statistical distributions expected on the basis of the assumed experimental uncertainties. This closure test ensures that our methodological uncertainties are negligible in comparison to the generic theoretical and experimental uncertainties of PDF determination. This enables us to determine with confidence PDFs at different perturbative orders and using a variety of experimental datasets ranging from HERA-only up to a global set including the latest LHC results, all using precisely the same validated methodology. We explore some of the phenomenological implications of our results for the upcoming 13 TeV Run of the LHC, in particular for Higgs production cross-sections.

The NNPDF Collaboration; Richard D. Ball; Valerio Bertone; Stefano Carrazza; Christopher S. Deans; Luigi Del Debbio; Stefano Forte; Alberto Guffanti; Nathan P. Hartland; Jose I. Latorre; Juan Rojo; Maria Ubiali

2014-11-06T23:59:59.000Z

407

Magnetocumulative generator  

DOE Patents (OSTI)

An improved magnetocumulative generator is described that is useful for producing magnetic fields of very high energy content over large spatial volumes. The polar directed pleated magnetocumulative generator has a housing (100, 101, 102, 103, 104, 105) providing a housing chamber (106) with an electrically conducting surface. The chamber (106) forms a coaxial system having a small radius portion and a large radius portion. When a magnetic field is injected into the chamber (106), from an external source, most of the magnetic flux associated therewith positions itself in the small radius portion. The propagation of an explosive detonation through high-explosive layers (107, 108) disposed adjacent to the housing causes a phased closure of the chamber (106) which sweeps most of the magnetic flux into the large radius portion of the coaxial system. The energy content of the magnetic field is greatly increased by flux stretching as well as by flux compression. The energy enhanced magnetic field is utilized within the housing chamber itself.

Pettibone, Joseph S. (Livermore, CA); Wheeler, Paul C. (Livermore, CA)

1983-01-01T23:59:59.000Z

408

Theory of gyroresonance and free-free emissions from non-Maxwellian quasi-steady-state electron distributions  

E-Print Network (OSTI)

Currently there is a concern about ability of the classical thermal (Maxwellian) distribution to describe quasi-steady-state plasma in solar atmosphere including active regions. In particular, other distributions have been proposed to better fit observations, for example, kappa- and $n$-distributions. If present, these distributions will generate radio emissions with different observable properties compared with the classical gyroresonance (GR) or free-free emission, which implies a way of remote detecting these non-Maxwellian distributions in the radio observations. Here we present analytically derived GR and free-free emissivities and absorption coefficients for the kappa- and $n$-distributions and discuss their properties, which are in fact remarkably different from each other and from the classical Maxwellian plasma. In particular, the radio brightness temperature from a gyrolayer increases with the optical depth $\\tau$ for kappa-distribution, but decreases with $\\tau$ for $n$-distribution. This property ...

Fleishman, Gregory D

2013-01-01T23:59:59.000Z

409

Distributed Energy | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Distributed Energy Distributed Energy Distributed energy consists of a range of smaller-scale and modular devices designed to provide electricity, and sometimes also thermal energy, in locations close to consumers. They include fossil and renewable energy technologies (e.g., photovoltaic arrays, wind turbines, microturbines, reciprocating engines, fuel cells, combustion turbines, and steam turbines); energy storage devices (e.g., batteries and flywheels); and combined heat and power systems. Distributed energy offers solutions to many of the nation's most pressing energy and electric power problems, including blackouts and brownouts, energy security concerns, power quality issues, tighter emissions standards, transmission bottlenecks, and the desire for greater control over energy costs.

410

Solid state pulsed power generator  

DOE Patents (OSTI)

A power generator includes one or more full bridge inverter modules coupled to a semiconductor opening switch (SOS) through an inductive resonant branch. Each module includes a plurality of switches that are switched in a fashion causing the one or more full bridge inverter modules to drive the semiconductor opening switch SOS through the resonant circuit to generate pulses to a load connected in parallel with the SOS.

Tao, Fengfeng; Saddoughi, Seyed Gholamali; Herbon, John Thomas

2014-02-11T23:59:59.000Z

411

Intentionally Including - Engaging Minorities in Physics Careers |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Intentionally Including - Engaging Minorities in Physics Careers Intentionally Including - Engaging Minorities in Physics Careers Intentionally Including - Engaging Minorities in Physics Careers April 24, 2013 - 4:37pm Addthis Joining Director Dot Harris (second from left) were Marlene Kaplan, the Deputy Director of Education and director of EPP, National Oceanic and Atmospheric Administration, Claudia Rankins, a Program Officer with the National Science Foundation and Jim Stith, the past Vice-President of the American Institute of Physics Resources. Joining Director Dot Harris (second from left) were Marlene Kaplan, the Deputy Director of Education and director of EPP, National Oceanic and Atmospheric Administration, Claudia Rankins, a Program Officer with the National Science Foundation and Jim Stith, the past Vice-President of the

412

Transmission line including support means with barriers  

DOE Patents (OSTI)

A gas insulated transmission line includes an elongated outer sheath, a plurality of inner conductors disposed within and extending along the outer sheath, and an insulating gas which electrically insulates the inner conductors from the outer sheath. A support insulator insulatably supports the inner conductors within the outer sheath, with the support insulator comprising a main body portion including a plurality of legs extending to the outer sheath, and barrier portions which extend between the legs. The barrier portions have openings therein adjacent the main body portion through which the inner conductors extend.

Cookson, Alan H. (Pittsburgh, PA)

1982-01-01T23:59:59.000Z

413

Clearwater: Extensible, Flexible, Modular Code Generation Galen S. Swint, Calton Pu,  

E-Print Network (OSTI)

in two non-trivial code generators: the In- fopipe Stub Generator (ISG) to support distributed flow for distributed systems soft- ware has been an established technique since the introduction of RPC stub generator life span of code generation tools developed for distributed system software. Two of our recent

Paris-Sud XI, Université de

414

Energy Consumption of Personal Computing Including Portable  

E-Print Network (OSTI)

Energy Consumption of Personal Computing Including Portable Communication Devices Pavel Somavat1 consumption, questions are being asked about the energy contribution of computing equipment. Al- though studies have documented the share of energy consumption by this type of equipment over the years, research

Namboodiri, Vinod

415

EE Regional Technology Roadmap Includes comparison  

E-Print Network (OSTI)

EE Regional Technology Roadmap Includes comparison against 6th Power Plan (Update cyclically Roadmap with a strong linkage to utility programs Scan for Technologies 1. How does it address the NW Data Clearinghouse BPA/RTF NEEA/Regional Programs Group Update Regional EE Technology Roadmap Lighting

416

Video Topics Include Freshman Inquiry Course  

E-Print Network (OSTI)

Video Topics Include Freshman Inquiry Course Open Advisement/ Group Advisement Dinning Campus: End of Spring 2012, Commencement May 18: Grades available on MAX after 4:30pm AdvisementYouTubeVideoSeries I N S I D E T H I S I S S U E : YouTube Video Series 1 Mark Your Calendar 1 Exploring Major Tips 2

Hardy, Christopher R.

417

Including Ocean Model Uncertainties in Climate Predictions  

E-Print Network (OSTI)

Including Ocean Model Uncertainties in Climate Predictions Chris Brierley, Alan Thorpe, Mat Collins's to perform the integrations Currently uses a `slab' ocean #12;An Ocean Model Required to accurately model transient behaviour Will have its own uncertainties Requires even more computing power Create new models

Jones, Peter JS

418

Seepage Model for PA Including Dift Collapse  

SciTech Connect

The purpose of this Analysis/Model Report (AMR) is to document the predictions and analysis performed using the Seepage Model for Performance Assessment (PA) and the Disturbed Drift Seepage Submodel for both the Topopah Spring middle nonlithophysal and lower lithophysal lithostratigraphic units at Yucca Mountain. These results will be used by PA to develop the probability distribution of water seepage into waste-emplacement drifts at Yucca Mountain, Nevada, as part of the evaluation of the long term performance of the potential repository. This AMR is in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (CRWMS M&O 2000 [153447]). This purpose is accomplished by performing numerical simulations with stochastic representations of hydrological properties, using the Seepage Model for PA, and evaluating the effects of an alternative drift geometry representing a partially collapsed drift using the Disturbed Drift Seepage Submodel. Seepage of water into waste-emplacement drifts is considered one of the principal factors having the greatest impact of long-term safety of the repository system (CRWMS M&O 2000 [153225], Table 4-1). This AMR supports the analysis and simulation that are used by PA to develop the probability distribution of water seepage into drift, and is therefore a model of primary (Level 1) importance (AP-3.15Q, ''Managing Technical Product Inputs''). The intended purpose of the Seepage Model for PA is to support: (1) PA; (2) Abstraction of Drift-Scale Seepage; and (3) Unsaturated Zone (UZ) Flow and Transport Process Model Report (PMR). Seepage into drifts is evaluated by applying numerical models with stochastic representations of hydrological properties and performing flow simulations with multiple realizations of the permeability field around the drift. The Seepage Model for PA uses the distribution of permeabilities derived from air injection testing in niches and in the cross drift to stochastically simulate the 3D flow of water in the fractured host rock (in the vicinity of potential emplacement drifts) under ambient conditions. The Disturbed Drift Seepage Submodel evaluates the impact of the partial collapse of a drift on seepage. Drainage in rock below the emplacement drift is also evaluated.

G. Li; C. Tsang

2000-12-20T23:59:59.000Z

419

Biogass Generator  

NLE Websites -- All DOE Office Websites (Extended Search)

Another internet tool by: Another internet tool by: Build Your Own Page 1 of 5 Teach...build...learn...renewable energy! Biogas Generator A Renewable Energy Project Kit The Pembina Institute What Is Biogas? Biogas is actually a mixture of gases, usually carbon dioxide and methane. It is produced by a few kinds of microorganisms, usually when air or oxygen is absent. (The absence of oxygen is called "anaerobic conditions.") Animals that eat a lot of plant material, particularly grazing animals such as cattle, produce large amounts of biogas. The biogas is produced not by the cow or elephant, but by billions of microor- ganisms living in its digestive system. Biogas also develops in bogs and at the bottom of lakes, where decaying organic matter builds up under wet and

420

Distribution Workshop  

Energy.gov (U.S. Department of Energy (DOE))

On September 24-26, 2012, the GTT presented a workshop on grid integration on the distribution system at the Sheraton Crystal City near Washington, DC.

Note: This page contains sample records for the topic "including distributed generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Buildings Included on EMS Reports"  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Legacy Management Office of Legacy Management Buildings Included on EMS Reports" "Site","Property Name","Property ID","GSF","Incl. in Water Baseline (CY2007)","Water Baseline (sq. ft.)","Water CY2008 (sq. ft.)","Water CY2009 (sq. ft.)","Water Notes","Incl. in Energy Baseline (CY2003)","Energy Baseline (sq. ft.)","CY2008 Energy (sq. ft.)","CY2009 Energy (sq. ft.)","Energy Notes","Included as Existing Building","CY2008 Existing Building (sq. ft.)","Reason for Building Exclusion" "Column Totals",,"Totals",115139,,10579,10579,22512,,,3183365,26374,115374,,,99476 "Durango, CO, Disposal/Processing Site","STORAGE SHED","DUD-BLDG-STORSHED",100,"no",,,,,"no",,,,"OSF","no",,"Less than 5,000 GSF"

422

FlexibleSUSY -- A spectrum generator generator for supersymmetric models  

E-Print Network (OSTI)

We introduce FlexibleSUSY, a Mathematica and C++ package, which generates a fast, precise C++ spectrum generator for any SUSY model specified by the user. The generated code is designed with both speed and modularity in mind, making it easy to adapt and extend with new features. The model is specified by supplying the superpotential, gauge structure and particle content in a SARAH model file; specific boundary conditions e.g. at the GUT, weak or intermediate scales are defined in a separate FlexibleSUSY model file. From these model files, FlexibleSUSY generates C++ code for self-energies, tadpole corrections, renormalization group equations (RGEs) and electroweak symmetry breaking (EWSB) conditions and combines them with numerical routines for solving the RGEs and EWSB conditions simultaneously. The resulting spectrum generator is then able to solve for the spectrum of the model, including loop-corrected pole masses, consistent with user specified boundary conditions. The modular structure of the generated co...

Athron, Peter; Stckinger, Dominik; Voigt, Alexander

2014-01-01T23:59:59.000Z

423

Completion strategy includes clay and precipitate control  

SciTech Connect

This article describes the conditions which are necessary for a successful oil well completion in the Mississippi and Cherokee zones of South Central Kansas. Topics considered include paraffin precipitation, clay swelling and migration, and iron precipitation. Clays in these zones are sensitive to water-base treating fluids and tend to swell and migrate to the well bore, thereby causing permeability damage. The presence of iron in the Mississippi and Cherokee formations has been indicated by cuttings, core samples, and connate water samples.

Sandy, T.; Gardner, G.R.

1985-05-06T23:59:59.000Z

424

Jet-calculus approach including coherence effects  

Science Journals Connector (OSTI)

We show how integrodifferential equations typical of jet calculus can be combined with an averaging procedure to obtain jet-calculus-based results including the Mueller interference graphs. Results in longitudinal-momentum fraction x for physical quantities are higher at intermediate x and lower at large x than with the conventional incoherent jet calculus. These results resemble those of Marchesini and Webber, who used a Monte Carlo approach based on the same dynamics.

L. M. Jones; R. Migneron; K. S. S. Narayanan

1987-01-01T23:59:59.000Z

425

Neutron/gamma coupled library generation and gamma transport calculation with KARMA 1.2  

SciTech Connect

KAERI has developed a lattice transport calculation code KARMA and its multi-group cross section library generation system. Recently, the multi-group cross section library generation system has included a gamma cross section generation capability and KARMA also has been improved to include a gamma transport calculation module. This paper addresses the multi-group gamma cross section generation capability for the KARMA 1.2 code and the preliminary test results of the KARMA 1.2 gamma transport calculations. The gamma transport calculation with KARMA 1.2 gives the gamma flux, gamma smeared power, and gamma energy deposition distributions. The results of the KARMA gamma calculations were compared with those of HELIOS and they showed that KARMA 1.2 gives reasonable gamma transport calculation results. (authors)

Hong, S. G. [Dept. of Nuclear Engineering, Kyung Hee Univ., 446-701 Deogyeong-daero, GiHeung-gu, Yongin, Gyeonggi-do (Korea, Republic of); Kim, K. S.; Cho, J. Y.; Lee, K. H. [Korea Atomic Energy Research Inst., 305-353 Duckjin-dong, Yuseong-gu, Daejon (Korea, Republic of)

2012-07-01T23:59:59.000Z

426

Apparatuses and methods for generating electric fields  

DOE Patents (OSTI)

Apparatuses and methods relating to generating an electric field are disclosed. An electric field generator may include a semiconductive material configured in a physical shape substantially different from a shape of an electric field to be generated thereby. The electric field is generated when a voltage drop exists across the semiconductive material. A method for generating an electric field may include applying a voltage to a shaped semiconductive material to generate a complex, substantially nonlinear electric field. The shape of the complex, substantially nonlinear electric field may be configured for directing charged particles to a desired location. Other apparatuses and methods are disclosed.

Scott, Jill R; McJunkin, Timothy R; Tremblay, Paul L

2013-08-06T23:59:59.000Z

427

Nucleon and nucleon-pair momentum distributions in A?12 nuclei  

We report variational Monte Carlo calculations of single-nucleon momentum distributions for A?12 nuclei and nucleon-pair and nucleon-cluster momentum distributions for A?8. The wave functions have been generated for a Hamiltonian containing the Argonne ?18 two-nucleon and Urbana X three-nucleon potentials. The single-nucleon and nucleon-pair momentum distributions exhibit universal features attributable to the one-pion-exchange tensor interaction The single-nucleon distributions are broken down into proton and neutron components and spin-up and spin-down components where appropriate. The nucleon-pair momentum distributions are given separately for pp and pn pairs. The nucleon-cluster momentum distributions include dp in 3He, tp and dd in S4He, ?d in 6Li,?t in 7Li, and ?? in 8Be. Detailed tables are provided on-line for download.

Wiringa, Robert B. [ANL; Schiavilla, Rocco [ODU, JLAB; Pieper, Steven C. [ANL; Carlson, Joseph A. [LANL

2014-02-01T23:59:59.000Z

428

NREL: Learning - Distributed Energy Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Energy Basics Distributed Energy Basics Photo of transmission towers and lines extending for miles towards a pink sunset in the distance. Distributed energy technologies can relieve transmission bottlenecks by reducing the amount of electricity that must be sent long distances down high-voltage power lines. Distributed energy refers to a variety of small, modular power-generating technologies that can be combined with load management and energy storage systems to improve the quality and/or reliability of the electricity supply. They are "distributed" because they are placed at or near the point of energy consumption, unlike traditional "centralized" systems, where electricity is generated at a remotely located, large-scale power plant and then transmitted down power lines to the consumer.

429

Distributed Wind | Open Energy Information  

Open Energy Info (EERE)

Distributed Wind Distributed Wind Jump to: navigation, search Distributed wind energy systems provide clean, renewable power for on-site use and help relieve pressure on the power grid while providing jobs and contributing to energy security for homes, farms, schools, factories, private and public facilities, distribution utilities, and remote locations.[1] Resources Clean Energy States Alliance. (2010). State-Based Financing Tools to Support Distributed and Community Wind Projects. Accessed September 27, 2013. This guide reviews the financing role that states, and specifically state clean energy funds, have played and can play in supporting community and distributed wind projects. Clean Energy States Alliance. (May 2010). Supporting Onsite Distributed Wind Generation Projects. Accessed September 27, 2013.

430

DOE Considers Natural Gas Utility Service Options: Proposal Includes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Considers Natural Gas Utility Service Options: Proposal Considers Natural Gas Utility Service Options: Proposal Includes 30-mile Natural Gas Pipeline from Pasco to Hanford DOE Considers Natural Gas Utility Service Options: Proposal Includes 30-mile Natural Gas Pipeline from Pasco to Hanford January 23, 2012 - 12:00pm Addthis Media Contacts Cameron Hardy, DOE , (509) 376-5365, Cameron.Hardy@rl.doe.gov RICHLAND, WASH. - The U.S. Department of Energy (DOE) is considering natural gas transportation and distribution requirements to support the Waste Treatment Plant (WTP) and evaporator operations at the Hanford Site in southeastern Washington State. DOE awarded a task order worth up to $5 million to the local, licensed supplier of natural gas in the Hanford area, Cascade Natural Gas Corporation (Cascade). Cascade will support DOE and its Environmental

431

Symmetric generalized binomial distributions  

SciTech Connect

In two recent articles, we have examined a generalization of the binomial distribution associated with a sequence of positive numbers, involving asymmetric expressions of probabilities that break the symmetry win-loss. We present in this article another generalization (always associated with a sequence of positive numbers) that preserves the symmetry win-loss. This approach is also based on generating functions and presents constraints of non-negativeness, similar to those encountered in our previous articles.

Bergeron, H. [Univ Paris-Sud, ISMO, UMR 8214, 91405 Orsay (France)] [Univ Paris-Sud, ISMO, UMR 8214, 91405 Orsay (France); Curado, E. M. F. [Centro Brasileiro de Pesquisas Fisicas, Rua Xavier Sigaud 150 22290-180 - Rio de Janeiro (Brazil) [Centro Brasileiro de Pesquisas Fisicas, Rua Xavier Sigaud 150 22290-180 - Rio de Janeiro (Brazil); Instituto Nacional de Cincia e Tecnologia - Sistemas Complexos, Rua Xavier Sigaud 150, 22290-180 - Rio de Janeiro, RJ (Brazil); Gazeau, J. P. [Centro Brasileiro de Pesquisas Fisicas, Rua Xavier Sigaud 150 22290-180 - Rio de Janeiro (Brazil) [Centro Brasileiro de Pesquisas Fisicas, Rua Xavier Sigaud 150 22290-180 - Rio de Janeiro (Brazil); APC, UMR 7164, Univ Paris Diderot, Sorbonne Paris Cit, 75205 Paris (France); Rodrigues, Ligia M. C. S., E-mail: herve.bergeron@u-psud.fr, E-mail: evaldo@cbpf.br, E-mail: gazeau@apc.univ-paris7.fr, E-mail: ligia@cbpf.br [Centro Brasileiro de Pesquisas Fisicas, Rua Xavier Sigaud 150 22290-180 - Rio de Janeiro (Brazil)

2013-12-15T23:59:59.000Z

432

Software-Based Challenges of Developing the Future Distribution Grid  

SciTech Connect

The software that the utility industry currently uses may be insufficient to analyze the distribution grid as it rapidly modernizes to include active resources such as distributed generation, switch and voltage control, automation, and increasingly complex loads. Although planners and operators have traditionally viewed the distribution grid as a passive load, utilities and consultants increasingly need enhanced analysis that incorporates active distribution grid loads in order to ensure grid reliability. Numerous commercial and open-source tools are available for analyzing distribution grid systems. These tools vary in complexity from providing basic load-flow and capacity analysis under steady-state conditions to time-series analysis and even geographical representations of dynamic and transient events. The need for each type of analysis is not well understood in the industry, nor are the reasons that distribution analysis requires different techniques and tools both from those now available and from those used for transmission analysis. In addition, there is limited understanding of basic capability of the tools and how they should be practically applied to the evolving distribution system. The study reviews the features and state of the art capability of current tools, including usability and visualization, basic analysis functionality, advanced analysis including inverters, and renewable generation and load modeling. We also discuss the need for each type of distribution grid system analysis. In addition to reviewing basic functionality current models, we discuss dynamics and transient simulation in detail and draw conclusions about existing software?s ability to address the needs of the future distribution grid as well as the barriers to modernization of the distribution grid that are posed by the current state of software and model development. Among our conclusions are that accuracy, data transfer, and data processing abilities are key to future distribution grid modeling, and measured data sources are a key missing element . Modeling tools need to be calibrated based on measured grid data to validate their output in varied conditions such as high renewables penetration and rapidly changing topology. In addition, establishing a standardized data modeling format would enable users to transfer data among tools to take advantage of different analysis features. ?

Stewart, Emma; Kiliccote, Sila; McParland, Charles

2014-06-01T23:59:59.000Z

433

Ormolu : generating runtime monitors from alloy models  

E-Print Network (OSTI)

This thesis presents Ormolu, a runtime monitor used for monitoring distributed systems. Given an Alloy model, Ormolu generates a database schema and translates the constraints of the model to queries over the database. The ...

Reeves, Dwayne Lloyd

2011-01-01T23:59:59.000Z

434

Cathode power distribution system and method of using the same for power distribution  

DOE Patents (OSTI)

Embodiments include a cathode power distribution system and/or method of using the same for power distribution. The cathode power distribution system includes a plurality of cathode assemblies. Each cathode assembly of the plurality of cathode assemblies includes a plurality of cathode rods. The system also includes a plurality of bus bars configured to distribute current to each of the plurality of cathode assemblies. The plurality of bus bars include a first bus bar configured to distribute the current to first ends of the plurality of cathode assemblies and a second bus bar configured to distribute the current to second ends of the plurality of cathode assemblies.

Williamson, Mark A; Wiedmeyer, Stanley G; Koehl, Eugene R; Bailey, James L; Willit, James L; Barnes, Laurel A; Blaskovitz, Robert J

2014-11-11T23:59:59.000Z

435

Discrete Pearson distributions  

SciTech Connect

These distributions are generated by a first order recursive scheme which equates the ratio of successive probabilities to the ratio of two corresponding quadratics. The use of a linearized form of this model will produce equations in the unknowns matched by an appropriate set of moments (assumed to exist). Given the moments we may find valid solutions. These are two cases; (1) distributions defined on the non-negative integers (finite or infinite) and (2) distributions defined on negative integers as well. For (1), given the first four moments, it is possible to set this up as equations of finite or infinite degree in the probability of a zero occurrence, the sth component being a product of s ratios of linear forms in this probability in general. For (2) the equation for the zero probability is purely linear but may involve slowly converging series; here a particular case is the discrete normal. Regions of validity are being studied. 11 refs.

Bowman, K.O. [Oak Ridge National Lab., TN (United States); Shenton, L.R. [Georgia Univ., Athens, GA (United States); Kastenbaum, M.A. [Kastenbaum (M.A.), Basye, VA (United States)

1991-11-01T23:59:59.000Z

436

Laser spark distribution and ignition system  

DOE Patents (OSTI)

A laser spark distribution and ignition system that reduces the high power optical requirements for use in a laser ignition and distribution system allowing for the use of optical fibers for delivering the low peak energy pumping pulses to a laser amplifier or laser oscillator. An optical distributor distributes and delivers optical pumping energy from an optical pumping source to multiple combustion chambers incorporating laser oscillators or laser amplifiers for inducing a laser spark within a combustion chamber. The optical distributor preferably includes a single rotating mirror or lens which deflects the optical pumping energy from the axis of rotation and into a plurality of distinct optical fibers each connected to a respective laser media or amplifier coupled to an associated combustion chamber. The laser spark generators preferably produce a high peak power laser spark, from a single low power pulse. The laser spark distribution and ignition system has application in natural gas fueled reciprocating engines, turbine combustors, explosives and laser induced breakdown spectroscopy diagnostic sensors.

Woodruff, Steven (Morgantown, WV); McIntyre, Dustin L. (Morgantown, WV)

2008-09-02T23:59:59.000Z

437

Optical panel system including stackable waveguides  

DOE Patents (OSTI)

An optical panel system including stackable waveguides is provided. The optical panel system displays a projected light image and comprises a plurality of planar optical waveguides in a stacked state. The optical panel system further comprises a support system that aligns and supports the waveguides in the stacked state. In one embodiment, the support system comprises at least one rod, wherein each waveguide contains at least one hole, and wherein each rod is positioned through a corresponding hole in each waveguide. In another embodiment, the support system comprises at least two opposing edge structures having the waveguides positioned therebetween, wherein each opposing edge structure contains a mating surface, wherein opposite edges of each waveguide contain mating surfaces which are complementary to the mating surfaces of the opposing edge structures, and wherein each mating surface of the opposing edge structures engages a corresponding complementary mating surface of the opposite edges of each waveguide.

DeSanto, Leonard (Dunkirk, MD); Veligdan, James T. (Manorville, NY)

2007-11-20T23:59:59.000Z

438

Thermovoltaic semiconductor device including a plasma filter  

DOE Patents (OSTI)

A thermovoltaic energy conversion device and related method for converting thermal energy into an electrical potential. An interference filter is provided on a semiconductor thermovoltaic cell to pre-filter black body radiation. The semiconductor thermovoltaic cell includes a P/N junction supported on a substrate which converts incident thermal energy below the semiconductor junction band gap into electrical potential. The semiconductor substrate is doped to provide a plasma filter which reflects back energy having a wavelength which is above the band gap and which is ineffectively filtered by the interference filter, through the P/N junction to the source of radiation thereby avoiding parasitic absorption of the unusable portion of the thermal radiation energy.

Baldasaro, Paul F. (Clifton Park, NY)

1999-01-01T23:59:59.000Z

439

Critical point anomalies include expansion shock waves  

SciTech Connect

From first-principle fluid dynamics, complemented by a rigorous state equation accounting for critical anomalies, we discovered that expansion shock waves may occur in the vicinity of the liquid-vapor critical point in the two-phase region. Due to universality of near-critical thermodynamics, the result is valid for any common pure fluid in which molecular interactions are only short-range, namely, for so-called 3-dimensional Ising-like systems, and under the assumption of thermodynamic equilibrium. In addition to rarefaction shock waves, diverse non-classical effects are admissible, including composite compressive shock-fan-shock waves, due to the change of sign of the fundamental derivative of gasdynamics.

Nannan, N. R., E-mail: ryan.nannan@uvs.edu [Mechanical Engineering Discipline, Anton de Kom University of Suriname, Leysweg 86, PO Box 9212, Paramaribo, Suriname and Process and Energy Department, Delft University of Technology, Leeghwaterstraat 44, 2628 CA Delft (Netherlands); Guardone, A., E-mail: alberto.guardone@polimi.it [Department of Aerospace Science and Technology, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Colonna, P., E-mail: p.colonna@tudelft.nl [Propulsion and Power, Delft University of Technology, Kluyverweg 1, 2629 HS Delft (Netherlands)

2014-02-15T23:59:59.000Z

440

Complex shell model representation including antibound states  

Science Journals Connector (OSTI)

A generalization of the complex shell model formalism is presented that includes antibound states in the basis. These states, together with bound states, Gamow states, and the continuum background, represented by properly chosen scattering waves, form a representation in which all states are treated on the same footing. Two-particle states are evaluated within this formalism, and observable two-particle resonances are defined. The formalism is illustrated in the well-known case of Li11 in its bound ground state and in Ca70(g.s.), which is also bound. Both cases are found to have a halo structure. These halo structures are described within the generalized complex shell model. We investigated the formation of two-particle resonances in these nuclei, but no evidence of such resonances was found.

R. Id Betan; R. J. Liotta; N. Sandulescu; T. Vertse; R. Wyss

2005-11-30T23:59:59.000Z

Note: This page contains sample records for the topic "including distributed generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Overland Tidal Power Generation Using Modular Tidal Prism  

SciTech Connect

Naturally occurring sites with sufficient kinetic energy suitable for tidal power generation with sustained currents > 1 to 2 m/s are relatively rare. Yet sites with greater than 3 to 4 m of tidal range are relatively common around the U.S. coastline. Tidal potential does exist along the shoreline but is mostly distributed, and requires an approach which allows trapping and collection to also be conducted in a distributed manner. In this paper we examine the feasibility of generating sustainable tidal power using multiple nearshore tidal energy collection units and present the Modular Tidal Prism (MTP) basin concept. The proposed approach utilizes available tidal potential by conversion into tidal kinetic energy through cyclic expansion and drainage from shallow modular manufactured overland tidal prisms. A preliminary design and configuration of the modular tidal prism basin including inlet channel configuration and basin dimensions was developed. The unique design was shown to sustain momentum in the penstocks during flooding as well as ebbing tidal cycles. The unstructured-grid finite volume coastal ocean model (FVCOM) was used to subject the proposed design to a number of sensitivity tests and to optimize the size, shape and configuration of MTP basin for peak power generation capacity. The results show that an artificial modular basin with a reasonable footprint (? 300 acres) has the potential to generate 10 to 20 kw average energy through the operation of a small turbine located near the basin outlet. The potential of generating a total of 500 kw to 1 MW of power through a 20 to 40 MTP basin tidal power farms distributed along the coastline of Puget Sound, Washington, is explored.

Khangaonkar, Tarang; Yang, Zhaoqing; Geerlofs, Simon H.; Copping, Andrea

2010-03-01T23:59:59.000Z

442

Introduction Minimal generation  

E-Print Network (OSTI)

Introduction Minimal generation Random generation Minimal and probabilistic generation of finite generation of finite groups #12;Introduction Minimal generation Random generation Some motivation Let x1 random elements of G = x1, . . . , xk . (G is the group generated by x1, . . . , xk : all possible

St Andrews, University of

443

PLUTINO DETECTION BIASES, INCLUDING THE KOZAI RESONANCE  

SciTech Connect

Because of their relative proximity within the trans-Neptunian region, the plutinos (objects in the 3:2 mean-motion resonance with Neptune) are numerous in flux-limited catalogs, and well-studied theoretically. We perform detailed modeling of the on-sky detection biases for plutinos, with special attention to those that are simultaneously in the Kozai resonance. In addition to the normal 3:2 resonant argument libration, Kozai plutinos also show periodic oscillations in eccentricity and inclination, coupled to the argument of perihelion ({omega}) oscillation. Due to the mean-motion resonance, plutinos avoid coming to pericenter near Neptune's current position in the ecliptic plane. Because Kozai plutinos are restricted to certain values of {omega}, perihelion always occurs out of the ecliptic plane, biasing ecliptic surveys against finding these objects. The observed Kozai plutino fraction f{sub koz}{sup obs} has been measured by several surveys, finding values between 8% and 25%, while the true Kozai plutino fraction f{sub koz}{sup true} has been predicted to be between 10% and 30% by different giant planet migration simulations. We show that f{sub koz}{sup obs} varies widely depending on the ecliptic latitude and longitude of the survey, so debiasing to find the true ratio is complex. Even a survey that covers most or all of the sky will detect an apparent Kozai fraction that is different from f{sub koz}{sup true}. We present a map of the on-sky plutino Kozai fraction that would be detected by all-sky flux-limited surveys. This will be especially important for the Panoramic Survey Telescope and Rapid Response System and Large Synoptic Survey Telescope projects, which may detect large numbers of plutinos as they sweep the sky. f{sub koz}{sup true} and the distribution of the orbital elements of Kozai plutinos may be a diagnostic of giant planet migration; future migration simulations should provide details on their resonant Kozai populations.

Lawler, S. M.; Gladman, B. [Department of Physics and Astronomy, 6224 Agricultural Road, University of British Columbia, Vancouver, BC V6T 1Z1 (Canada)

2013-07-01T23:59:59.000Z

444

Intelligent Generation | Open Energy Information  

Open Energy Info (EERE)

Generation Generation Jump to: navigation, search Name Intelligent Generation Place Chicago, Illinois Zip 60603 Sector Renewable Energy Product Chicago-based maker of software aimed at optimising distributed renewable energy generation and power storage. Coordinates 41.88415°, -87.632409° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.88415,"lon":-87.632409,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

445

Distributed photomixers  

E-Print Network (OSTI)

Although the terahertz domain has been explored scientifically, components, especially sources, are needed to enable further exploration of the frequency range. A photomixer generates coherent THz radiation through optical ...

Duerr, Erik Kurt, 1973-

2002-01-01T23:59:59.000Z

446

Wealth Distribution  

Science Journals Connector (OSTI)

Walter: What is a just wealth distribution? In my view, it is one that results from respect for proper initial homesteading, for resulting private property rights, and, finally, from any legitimate subsequent ...

Four Arrows; Walter Block

2011-01-01T23:59:59.000Z

447

Special Distribution  

Office of Legacy Management (LM)

Special Distribution Special Distribution Issued: December 1977 ',, Radiological Survey and Decontamination of the Former Main Technical Area (TA-1) at Los Alamos, New Mexico Compiled by A. John Ahlquist Alan K. Stoker Linda K. Trocki c laboratory of, the University of California LOS ALAMOS, NEW MEXICO 87545 An Alfirmdve Action/Equal Opportunity Employer ..-_- .-- .--.-. c T -,--... _ _._-r..l __,.. - .-,_.. ..- _._ -- .--. " . . _ . - . c- - . . . _ -. . _ . - . - . _ - - n - _ _~ ~_. __ _ ~~_ --..&e+ L.';; CONTENTS ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .._____ 1 EXECUTIVE SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .._... _._ 2 I. BACKGROUND .............................................. 15

448

IEEE POWER ENGINEERING SOCIETY ENERGY DEVELOPMENT AND POWER GENERATION COMMITTEE  

E-Print Network (OSTI)

--Price Cap Regulation: Stimulating Efficiency in Electricity Distribution in Latin America. (Luiz Barroso Sponsored by: International Practices for Energy Development and Power Generation Chairs: Luiz Barroso, PSR

Catholic University of Chile (Universidad Católica de Chile)

449

Adapting On-site Electrical Generation Platforms for Producer Gas  

Energy.gov (U.S. Department of Energy (DOE))

Internal combustion reciprocating engine generators (gensets) are regularly deployed at distribution centers, small municipal utilities, and public institutions to provide on-site electricity...

450

Siemens Power Generation, Inc.  

NLE Websites -- All DOE Office Websites (Extended Search)

2005 Pittsburgh Coal Conference 2005 Pittsburgh Coal Conference Siemens Power Generation, Inc. Page 1 of 10 © Siemens Power Generation, Inc., All Rights Reserved Development of a Catalytic Combustor for Fuel Flexible Turbines W. R. Laster Siemens Westinghouse Power Corporation Abstract Siemens has been working on a catalytic combustor for natural gas operation for several years using the Rich Catalytic Lean (RCL TM ) design. The design has been shown to produce low NOx emissions on natural gas operation. By operating the catalyst section fuel rich, the design shows considerable promise for robust operation over a wide range of fuel compositions including syngas. Under the sponsorship of the U. S. Department of Energy' s National Energy Technology Laboratory, Siemens Westinghouse is conducting a three year

451

CALIFORNIA'S NEXT GENERATION OF LOAD MANAGEMENT STANDARDS  

E-Print Network (OSTI)

the need for new peaking generation capacity and associated transmission and distribution capacity. By reducing capacity, generation and infrastructure costs, it can lower total power costs and customer bills wholesale power spot markets more competitive and efficient and less subject to the abuse of market power

452

The implications of using hydrocarbon fuels to generate electricity for hydrogen fuel powered automobiles on electrical capital, hydrocarbon consumption, and anthropogenic emissions  

Science Journals Connector (OSTI)

This paper considers some of the impacts of adopting hydrogen fuel cell powered electric automobiles in the US. The change will need significant adjustments to the electrical generation industry including additional capital and hydrocarbon fuel consumption as well as impacting anthropogenic greenhouse emissions. Examining the use of three fuels to generate hydrogen fuels, using three production methods, distributed in three geographic scenarios, we determine that while the change reduces anthropogenic greenhouse emissions with minimal additional electrical generation capital expenditures, it accelerates the use of natural gas. Electrolysis provides a sustainable, longer-term solution, but requires more capital investment in electrical generation and yields an increase in anthropogenic greenhouse emissions.

Derek Tittle; Jingwen Qu

2013-01-01T23:59:59.000Z

453

Multi-processor including data flow accelerator module  

DOE Patents (OSTI)

An accelerator module for a data flow computer includes an intelligent memory. The module is added to a multiprocessor arrangement and uses a shared tagged memory architecture in the data flow computer. The intelligent memory module assigns locations for holding data values in correspondence with arcs leading to a node in a data dependency graph. Each primitive computation is associated with a corresponding memory cell, including a number of slots for operands needed to execute a primitive computation, a primitive identifying pointer, and linking slots for distributing the result of the cell computation to other cells requiring that result as an operand. Circuitry is provided for utilizing tag bits to determine automatically when all operands required by a processor are available and for scheduling the primitive for execution in a queue. Each memory cell of the module may be associated with any of the primitives, and the particular primitive to be executed by the processor associated with the cell is identified by providing an index, such as the cell number for the primitive, to the primitive lookup table of starting addresses. The module thus serves to perform functions previously performed by a number of sections of data flow architectures and coexists with conventional shared memory therein. A multiprocessing system including the module operates in a hybrid mode, wherein the same processing modules are used to perform some processing in a sequential mode, under immediate control of an operating system, while performing other processing in a data flow mode.

Davidson, George S. (Albuquerque, NM); Pierce, Paul E. (Albuquerque, NM)

1990-01-01T23:59:59.000Z

454

Distributed Wind Energy in Idaho  

SciTech Connect

Project Objective: This project is a research and development program aimed at furthering distributed wind technology. In particular, this project addresses some of the barriers to distributed wind energy utilization in Idaho. Background: At its core, the technological challenge inherent in Wind Energy is the transformation of a highly variable form of energy to one which is compatible with the commercial power grid or another useful application. A major economic barrier to the success of distributed wind technology is the relatively high capital investment (and related long payback periods) associated with wind turbines. This project will carry out fundamental research and technology development to address both the technological and economic barriers. â?¢ Active drive train control holds the potential to improve the overall efficiency of a turbine system by allowing variable speed turbine operation while ensuring a tight control of generator shaft speed, thus greatly simplifying power conditioning. â?¢ Recent blade aerodynamic advancements have been focused on large, utility-scale wind turbine generators (WTGs) as opposed to smaller WTGs designed for distributed generation. Because of Reynolds Number considerations, blade designs do not scale well. Blades which are aerodynamically optimized for distributed-scale WTGs can potentially reduce the cost of electricity by increasing shaft-torque in a given wind speed. â?¢ Grid-connected electric generators typically operate at a fixed speed. If a generator were able to economically operate at multiple speeds, it could potentially convert more of the windâ??s energy to electricity, thus reducing the cost of electricity. This research directly supports the stated goal of the Wind and Hydropower Technologies Program for Distributed Wind Energy Technology: By 2007, reduce the cost of electricity from distributed wind systems to 10 to 15 cents/kWh in Class 3 wind resources, the same level that is currently achievable in Class 5 winds.

Gardner, John; Ferguson, James; Ahmed-Zaid, Said; Johnson, Kathryn; Haynes, Todd; Bennett, Keith

2009-01-31T23:59:59.000Z

455

Frequency regulator for synchronous generators  

DOE Patents (OSTI)

The present invention is directed to a novel frequency regulator which controls a generator output frequency for variations in both the input power to the generator and the power supplied to an uncontrolled external load. The present invention further includes over current and current balance protection devices which are relatively inexpensive to manufacture, which may be encapsulated to provide protection from the operating environment and which respond more quickly than previously known electromechanical devices.

Karlicek, Robert F. (1920 Camino Centroloma, Fullerton, CA 92633)

1982-01-01T23:59:59.000Z

456

Frequency regulator for synchronous generators  

DOE Patents (OSTI)

The present invention is directed to a novel frequency regulator which controls a generator output frequency for variations in both the input power to the generator and the power supplied to an uncontrolled external load. The present invention further includes over current and current balance protection devices which are relatively inexpensive to manufacture, which may be encapsulated to provide protection from the operating environment and which respond more quickly than previously known electromechanical devices. 11 figs.

Karlicek, R.F.

1982-08-10T23:59:59.000Z

457

Generation Disclosure | Open Energy Information  

Open Energy Info (EERE)

Disclosure Disclosure Jump to: navigation, search Some states require electric utilities to provide their customers with specific information about the electricity that the utility supplies. This information, which generally must be shared with customers periodically, usually includes the utility's fuel mix percentages and emissions statistics. In states with restructured electricity markets, generation disclosure policies are designed to help consumers make informed decisions about the electricity and suppliers they choose. A few states that have not fully restructured their electricity markets require generation disclosure by utilities. [1] Generation Disclosure Incentives CSV (rows 1 - 40) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active

458

electricity generating capacity | OpenEI  

Open Energy Info (EERE)

generating capacity generating capacity Dataset Summary Description The New Zealand Ministry of Economic Development publishes energy data including many datasets related to electricity. Included here are three electricity generating capacity datasets: annual operational electricity generation capacity by plant type (1975 - 2009); estimated generating capacity by fuel type for North Island, South Island and New Zealand (2009); and information on generating plants (plant type, name, owner, commissioned date, and capacity), as of December 2009. Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated July 03rd, 2009 (5 years ago) Keywords biomass coal Electric Capacity electricity generating capacity geothermal Hydro Natural Gas wind Data application/vnd.ms-excel icon Operational Electricity Generation Capacity by Plant Type (xls, 42.5 KiB)

459

Understanding and Managing Generation Y  

E-Print Network (OSTI)

There are four generations in the workplace today; they consist of the Silent Generation, Baby Boom Generation, Generation X, and Generation Y. Generation Y, being the newest generation, is the least understood generation although marketers...

Wallace, Kevin

2007-12-14T23:59:59.000Z

460

Milliwatt Generator Project  

SciTech Connect

This report covers progress on the Milliwatt Generator Project from April 1986 through March 1988. Activities included fuel processing and characterization, production of heat sources, fabrication of pressure-burst test units, compatibility studies, impact testing, and examination of surveillance units. The major task of the Los Alamos Milliwatt Generator Project is to fabricate MC2893A heat sources (4.0 W) for MC2730A radioisotope thermoelectric generators (RTGS) and MC3599 heat sources (4.5 W) for MC3500 RTGs. The MWG Project interfaces with the following contractors: Sandia National Laboratories, Albuquerque (designer); E.I. du Pont de Nemours and Co. (Inc.), Savannah River Plant (fuel); Monsanto Research Corporation, Mound Facility (metal hardware); and General Electric Company, Neutron Devices Department (RTGs). In addition to MWG fabrication activities, Los Alamos is involved in (1) fabrication of pressure-burst test units, (2) compatibility testing and evaluation, (3) examination of surveillance units, and (4) impact testing and subsequent examination of compatibility and surveillance units.

Latimer, T.W.; Rinehart, G.H.

1992-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "including distributed generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Lexicon generation methods, lexicon generation devices, and lexicon generation articles of manufacture  

DOE Patents (OSTI)

Lexicon generation methods, computer implemented lexicon editing methods, lexicon generation devices, lexicon editors, and articles of manufacture are described according to some aspects. In one aspect, a lexicon generation method includes providing a seed vector indicative of occurrences of a plurality of seed terms within a plurality of text items, providing a plurality of content vectors indicative of occurrences of respective ones of a plurality of content terms within the text items, comparing individual ones of the content vectors with respect to the seed vector, and responsive to the comparing, selecting at least one of the content terms as a term of a lexicon usable in sentiment analysis of text.

Carter, Richard J [Richland, WA; McCall, Jonathon D [West Richland, WA; Whitney, Paul D [Richland, WA; Gregory, Michelle L [Richland, WA; Turner, Alan E [Kennewick, WA; Hetzler, Elizabeth G [Kennewick, WA; White, Amanda M [Kennewick, WA; Posse, Christian [Seattle, WA; Nakamura, Grant C [Kennewick, WA

2010-10-26T23:59:59.000Z

462

Characterization of Neptunium Oxide Generated Using the HB-Line Phase II Flowsheet  

SciTech Connect

Approximately 98 grams of neptunium(IV) oxide (NpO{sub 2}) were produced at the Savannah River Technology Center (SRTC) for use in gas generation tests to support the neptunium stabilization program at the Savannah River Site (SRS). The NpO{sub 2} was produced according to the anticipated HB-Line flowsheet consisting of anion exchange, oxalate precipitation, filtration, and calcination. Characterization of the NpO{sub 2} product to be used in gas generation tests included bulk and tap density measurements, X-ray diffraction, particle size distribution, specific surface area measurements, and moisture analysis.

Duffey, J

2003-08-29T23:59:59.000Z

463

Third Generation Flywheels for electric storage  

SciTech Connect

Electricity is critical to our economy, but growth in demand has saturated the power grid causing instability and blackouts. The economic penalty due to lost productivity in the US exceeds $100 billion per year. Opposition to new transmission lines and power plants, environmental restrictions, and an expected $100 billion grid upgrade cost have slowed system improvements. Flywheel electricity storage could provide a more economical, environmentally benign alternative and slash economic losses if units could be scaled up in a cost effective manner to much larger power and capacity than the present maximum of a few hundred kW and a few kWh per flywheel. The goal of this project is to design, construct, and demonstrate a small-scale third generation electricity storage flywheel using a revolutionary architecture scalable to megawatt-hours per unit. First generation flywheels are built from bulk materials such as steel and provide inertia to smooth the motion of mechanical devices such as engines. They can be scaled up to tens of tons or more, but have relatively low energy storage density. Second generation flywheels use similar designs but are fabricated with composite materials such as carbon fiber and epoxy. They are capable of much higher energy storage density but cannot economically be built larger than a few kWh of storage capacity due to structural and stability limitations. LaunchPoint is developing a third generation flywheel the "Power Ring" with energy densities as high or higher than second generation flywheels and a totally new architecture scalable to enormous sizes. Electricity storage capacities exceeding 5 megawatt-hours per unit appear both technically feasible and economically attractive. Our design uses a new class of magnetic bearing a radial gap shear-force levitator that we discovered and patented, and a thin-walled composite hoop rotated at high speed to store kinetic energy. One immediate application is power grid frequency regulation, where Power Rings could cut costs, reduce fuel consumption, eliminate emissions, and reduce the need for new power plants. Other applications include hybrid diesel-electric locomotives, grid power quality, support for renewable energy, spinning reserve, energy management, and facility deferral. Decreased need for new generation and transmission alone could save the nation $2.5 billion per year. Improved grid reliability could cut economic losses due to poor power quality by tens of billions of dollars per year. A large export market for this technology could also develop. Power Ring technology will directly support the EERE mission, and the goals of the Distributed Energy Technologies Subprogram in particular, by helping to reduce blackouts, brownouts, electricity costs, and emissions, by relieving transmission bottlenecks, and by greatly improving grid power quality.

Ricci, Michael, R.; Fiske, O. James

2008-02-29T23:59:59.000Z

464

Constrained water cloud generator  

Science Journals Connector (OSTI)

The fast generation of large cloudy volumes with imposed cloud cover fractions and ambient vertical profiles is very important for the realistic simulation of atmospheric scenes. The model proposed here is the second step of a two-step model composed on the one hand of a volume generator based on a Fourier filtering method and on the other hand of a physical generator filling the volume with physical parameters. After a description of the general generation scheme, this paper focuses on the simulation of vertical profiles of water content (liquid, vapour) coupled with other state parameters (temperature, pressure, vertical velocity) via thermodynamic and hydrodynamic equations by local forcing of ambient conditions. The method for solving these equations is explained and applied to practical cases. First, by assuming that the actual temperature at the cloud base is equal to the dew temperature and by imposing a moist pseudo-adiabatic temperature gradient between the cloud top and bottom, the temperature profile in the cloud is found. When conditional instability occurs, the initial temperature profile between the ground and the cloud base is iteratively shifted to lower values until absolute stability is reached. Then the liquid water content is calculated by integrating the equation of water conservation, and the water vapour content by assuming that the cloud is everywhere saturated. Eventually, the vertical velocity is estimated by integration of the momentum equation. This method gives results in good agreement with published measurements, analytical and numerical models. Eventually, further developments of the column model, including the effects of phase transitions, turbulence, horizontal motions and mixing with the surrounding medium, are proposed in the concluding section.

Roland P.H. Berton

2008-01-01T23:59:59.000Z

465

Distributed Energy Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Fuel Cells Energy Fuel Cells DOE Hydrogen DOE Hydrogen and and Fuel Cells Fuel Cells Coordination Meeting Fuel Cell Coordination Meeting June 2-3, 2003 Electricity Users Kathi Epping Kathi Epping Objectives & Barriers Distributed Energy OBJECTIVES * Develop a distributed generation PEM fuel cell system operating on natural gas or propane that achieves 40% electrical efficiency and 40,000 hours durability at $400-750/kW by 2010. BARRIERS * Durability * Heat Utilization * Power Electronics * Start-Up Time Targets and Status Integrated Stationary PEMFC Power Systems Operating on Natural Gas or Propane Containing 6 ppm Sulfur 40,000 30,000 15,000 Hours Durability 750 1,250 2,500 $/kWe Cost 40 32 30 % Electrical Efficiency Large (50-250 kW) Systems 40,000 30,000 >6,000 Hours Durability 1,000 1,500 3,000

466

Definition: Optimized Generator Operation | Open Energy Information  

Open Energy Info (EERE)

Optimized Generator Operation Optimized Generator Operation Jump to: navigation, search Dictionary.png Optimized Generator Operation Better forecasting and monitoring of load and grid performance would enable grid operators to dispatch a more efficient mix of generation that could be optimized to reduce cost. The coordinated operation of energy storage, distributed generation, or plug-in electric vehicle assets could also result in completely avoiding central generation dispatch.[1] Related Terms sustainability References ↑ SmartGrid.gov 'Description of Benefits' An LikeLike UnlikeLike You like this.Sign Up to see what your friends like. inline Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Optimized_Generator_Operation&oldid=502509" Categories:

467

Efficient Generation of Generic Entanglement  

E-Print Network (OSTI)

We find that generic entanglement is physical, in the sense that it can be generated in polynomial time from two-qubit gates picked at random. We prove as the main result that such a process generates the average entanglement of the uniform (Haar) measure in at most $O(N^3)$ steps for $N$ qubits. This is despite an exponentially growing number of such gates being necessary for generating that measure fully on the state space. Numerics furthermore show a variation cut-off allowing one to associate a specific time with the achievement of the uniform measure entanglement distribution. Various extensions of this work are discussed. The results are relevant to entanglement theory and to protocols that assume generic entanglement can be achieved efficiently.

R. Oliveira; O. C. O. Dahlsten; M. B. Plenio

2007-04-03T23:59:59.000Z

468

DISTRIBUTION CATEGORY  

Office of Scientific and Technical Information (OSTI)

DISTRIBUTION CATEGORY DISTRIBUTION CATEGORY uc-11 I A W E N C E LIVERMORE IABORATORY University of Cahfmia/Livermore, California/94550 UCRL-52658 CALCULATION OF CHEMICAL EQUILIBRIUM BETWEEN AQUEOUS SOLUTION AND MINERALS: THE EQ3/6 - - SOFTWARE PACKAGE T. J. Wolery MS. date: February 1, 1979 . . - . . - . Tho rcpon rn prepared as an account of work sponsored by the United Stater Government. Seither Lhc Urutcd Stater nor the Umted Stater Department of Energy, nor any of their employees. nor any of their E O ~ ~ ~ B C I O I S . rubcontracton. o r their employees. makes any warranr)., exprcs or !mplwd. or assumes any legal liability or respanability io: the ~ c c u o c y . complctencn or uvfulneu of any miormarlon. apparatcr. product or p r o m s dtwlorcd. or r c p r e v n u that its UP would not infringe privately owned r

469

Advanced islanding detection utilized in distribution systems with DFIG  

Science Journals Connector (OSTI)

Abstract The penetration of distributed generation (DG) in electrical power systems is rapidly increasing these days and more attention is drawn to maintain a healthy distribution system. Islanding operation of \\{DGs\\} is one of the biggest challenges to the distribution system stability. Fast and accurate islanding detection can avoid the possibility of damages to the \\{DGs\\} when they are un-intentionally reconnected to the grid and also provide useful information to the protection and automation design of the stand alone operated system. Rate of change of frequency (ROCOF) method is one of the most commonly employed anti-islanding protection techniques, it offers fast detection and easy implementation. However, it is often easily affected by the system disturbance and might not able to detect the islanding situation if the power imbalance between the DG and the load is small. This paper investigates an inter-lock method which can improve the performance of rate of change of frequency (ROCOF) by applying system impedance estimation. It was found that this new method can help in verifying the ROCOF relay islanding detection and avoiding false operations of ROCOF in a grid connected distribution system which has large load variations. The proposed method was verified using the experimental testing results derived from both an experimental testing model which includes an 8kW Double Feed Induction Generator (DFIG) and a 9MW DFIG simulation system.

Ke Jia; Tianshu Bi; Bohan Liu; David Thomas; Andrew Goodman

2014-01-01T23:59:59.000Z

470

Advancing Next-Generation Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

the U.S. Department of Energy's (DOE's) lead laboratory for researching advanced vehicle technologies, including hy- the U.S. Department of Energy's (DOE's) lead laboratory for researching advanced vehicle technologies, including hy- brid, plug-in hybrid, battery electric, and alternative fuel vehicles, Argonne provides transportation research critical to advancing the development of next-generation vehicles. Central to this effort is the Lab's Advanced Powertrain Research Facility (APRF), an integrated four-wheel drive chassis dynamometer and component test facility.

471

United States/Mexico electricity trade study. [Glossary included  

SciTech Connect

During energy discussions between the United States and Mexico, it was suggested that the two countries revisit the issue of enhanced electricity trade because 10 years had elapsed since this issue was first studied. Responsibility to organize the updated study was jointly assigned to the US and to the Comision Federal de Electricidad (CFE). The study highlights the opportunities for increased cooperation among the electric utilities in the U.S. and Mexico. Direct benefits could include increased reliability of electric power service and cost savings through diversity of peak demand patterns and locational benefits associated with the siting of new generation sources. Indirect benefits could include improved economic and employment opportunities, especially in the border areas of both countries. While the study indicates that increased electricity trade is possible, there are significant technical and economic issues to consider. Any major increase in electricity trade would require a higher level of cooperation and coordination among utilities in both countries and would need to be preceded by a detailed analysis of associated benefits and costs (including environmental impacts) on both a short-term and a long-term basis. Whether US utilities and CFE decide to pursue specific projects will depend upon the need for and economics of those projects. The study recommends that the work begun by the two utility groups be continued. The study also recommends that regulators at all levels consider policies to increase coordination and review among all relevant parties so that unnecessary delays in planning and constructing needed facilities are avoided. 12 figs., 17 tabs.

Not Available

1991-03-01T23:59:59.000Z

472

Next Generation Radioisotope Generators | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

» Next Generation Radioisotope Generators » Next Generation Radioisotope Generators Next Generation Radioisotope Generators Advanced Stirling Radioisotope Generator (ASRG) - The ASRG is currently being developed as a high-efficiency RPS technology to support future space missions on the Martian surface or in the vacuum of space. This system uses Stirling convertors, which have moving parts to mechanically convert heat to electricity. This power conversion system, if successfully deployed, will reduce the weight of each RPS and the amount of Pu-238 needed per mission. A HISTORY OF MISSION SUCCESSES For over fifty years, the Department of Energy has enabled space exploration on 27 missions by providing safe reliable radioistope power systems and radioisotope heater units for NASA, Navy and Air Force.

473

Tree Dependent Identically Distributed Learning Tony Jebara  

E-Print Network (OSTI)

generated in an independent identically distributed or iid manner (Box & Tiao, 1992; Ghahramani & Beal, 1999 modeling (Meila & Shi, 2001; Ghahramani & Beal, 1999). Finally, we can also adopt graph­theoretic as

474

Operating Reserves and Variable Generation  

SciTech Connect

This report tries to first generalize the requirements of the power system as it relates to the needs of operating reserves. It also includes a survey of operating reserves and how they are managed internationally in system operations today and then how new studies and research are proposing they may be managed in the future with higher penetrations of variable generation.

Ela, E.; Milligan, M.; Kirby, B.

2011-08-01T23:59:59.000Z

475

Generation gaps in engineering?  

E-Print Network (OSTI)

There is much enthusiastic debate on the topic of generation gaps in the workplace today; what the generational differences are, how to address the apparent challenges, and if the generations themselves are even real. ...

Kim, David J. (David Jinwoo)

2008-01-01T23:59:59.000Z

476

The Sensitivity of DPF Performance to the Spatial Distribution...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Distribution of Ash Generated from Six Lubricant Formulations Presenter: Yujun Wang Advisor: Dr. Victor W. Wong October 18, 2012 Massachusetts Institute of Technology Sloan...

477

Hydrogen Generation by Electrolysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Engineered Solutions. Better Engineered Solutions. What Listening Generates. Better Engineered Solutions. What Listening Generates. Hydrogen Generation by Electrolysis September 2004 Steve Cohen Hydrogen Generation by Electrolysis September 2004 Steve Cohen NREL H 2 Electrolysis - Utility Integration Workshop NREL H 2 Electrolysis - Utility Integration Workshop 2 Hydrogen Generation by Electrolysis Hydrogen Generation by Electrolysis  Intro to Teledyne Energy Systems  H 2 Generator Basics & Major Subsystems  H 2 Generating & Storage System Overview  Electrolysis System Efficiency & Economics  Focus for Attaining DOE H 2 Production Cost Goals 3 Teledyne Energy Systems Locations - ISO 9001 Teledyne Energy Systems Locations - ISO 9001 Hunt Valley, Maryland  State-of-the-art thermoelectric,

478

Quantum key distribution with passive decoy state selection  

Science Journals Connector (OSTI)

We propose a quantum key distribution scheme which closely matches the performance of a perfect single photon source. It nearly attains the physical upper bound in terms of key generation rate and maximally achievable distance. Our scheme relies on a practical setup based on a parametric downconversion source and present day, nonideal photon-number detection. Arbitrary experimental imperfections which lead to bit errors are included. We select decoy states by classical postprocessing. This allows one to improve the effective signal statistics and achievable distance.

Wolfgang Mauerer and Christine Silberhorn

2007-05-31T23:59:59.000Z

479

Percent Distribution  

Gasoline and Diesel Fuel Update (EIA)

. . Percent Distribution of Natural Gas Supply and Disposition by State, 1996 Table State Estimated Proved Reserves (dry) Marketed Production Total Consumption Alabama................................................................... 3.02 2.69 1.48 Alaska ...................................................................... 5.58 2.43 2.04 Arizona..................................................................... NA 0 0.55 Arkansas.................................................................. 0.88 1.12 1.23 California.................................................................. 1.25 1.45 8.23 Colorado .................................................................. 4.63 2.90 1.40 Connecticut.............................................................. 0 0 0.58 D.C...........................................................................

480

Born Digital: Looking at Information Literacy Instruction through a Generational Lens  

E-Print Network (OSTI)

Provides an introduction to the study of generations with a focus on the Millennial generation, also referred to as Generation Y (born 1982-2002). Identifies characteristics associated with this generation, including the ...

Walter, Scott

2005-04-20T23:59:59.000Z

Note: This page contains sample records for the topic "including distributed generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

PSERC 97-12 "Thermal Unit Commitment Including  

E-Print Network (OSTI)

iteration to another. The complexity of a given iteration becomes linear in the number of generators instead of the coupling between generator time- spanning constraints and system-wide instantaneous constraints, su ers from combinatoric complexity as the number of generators increases. It is this feature

482

Thermal Unit Commitment Including Optimal AC Power Flow Constraints  

E-Print Network (OSTI)

iteration to another. The complexity of a given iteration becomes linear in the number of generators instead of the coupling between generator time- spanning constraints and system-wide instantaneous constraints, suers from combinatoric complexity as the number of generators increases. It is this feature that dooms

483

Distributed Wind Case Study: Cross Island Farms, Wellesley Island, New York (Fact Sheet), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Wind Case Study: Cross Island Farms, Wellesley Island, New York Distributed Wind Case Study: Cross Island Farms, Wellesley Island, New York www.nrel.gov Baker and Belding installed a 10-kW Bergey Excel wind turbine in August 2011. Photo from Cross Island Farms, NREL/PIX 19923 Funding Summary * Total cost of wind turbine, including first developer: $82,000 * Total cost of wind turbine, excluding first developer: $73,000 * Total cost of solar: $40,000 * Propane generator: $8,000; including equipment, installation, and propane: $13,000 * USDA REAP grant: $20,506 (~25% of

484

Fuel cell generating plant  

SciTech Connect

This paper discusses a fuel cell generating plant. It comprises a compressed fuel supply; a fuel cell system including fuel conditioning apparatus and fuel cells; a main fuel conduit for conveying fuel from the fuel supply to the fuel cell system; a turbo compressor having a turbine receiving exhaust products from the fuel cell system and a compressor for compressing air; a main air conduit for conveying air from the compressor to the fuel cell system; an auxiliary burner having a primary burner and a pilot; an auxiliary air conduit for conveying air from the compressed fuel supply to the auxiliary burner; an auxiliary exhaust conduit for conveying exhaust products from the auxiliary burner to the turbine; a check valve located between the fuel supply and the pilot; and a gas accumulator in the auxiliary fuel conduit located between the check valve and the pilot.

Sanderson, R.A.

1990-11-27T23:59:59.000Z

485

Stratified vapor generator  

DOE Patents (OSTI)

A stratified vapor generator (110) comprises a first heating section (H.sub.1) and a second heating section (H.sub.2). The first and second heating sections (H.sub.1, H.sub.2) are arranged so that the inlet of the second heating section (H.sub.2) is operatively associated with the outlet of the first heating section (H.sub.1). A moisture separator (126) having a vapor outlet (164) and a liquid outlet (144) is operatively associated with the outlet (124) of the second heating section (H.sub.2). A cooling section (C.sub.1) is operatively associated with the liquid outlet (144) of the moisture separator (126) and includes an outlet that is operatively associated with the inlet of the second heating section (H.sub.2).

Bharathan, Desikan (Lakewood, CO); Hassani, Vahab (Golden, CO)

2008-05-20T23:59:59.000Z

486

A New Tone Generator  

Science Journals Connector (OSTI)

New Pure Tone Generator and Receiver of Sounds.(1) Construction and operation. The instrument consists of a thin, non-magnetic, metallic diaphragm between two flat coils through which a constant direct current I0 flows in such a way as to produce a radial magnetic field in the diaphragm; then when a simple harmonic alternating current I of the frequency ?2? is superposed upon the direct current, circular currents are induced in the diaphragm, which thereupon is acted upon by a simple harmonic electrodynamic force and vibrates with the frequency of the alternating current. For low frequencies the electrodynamic force is approximately proportional to ?I0Isin(?t+?) and the amplitude of vibration is approximately proportional to I0I?. The absence of overtones is due to the absence of ferromagnetic material, and to the fact that the radial magnetic field is constant. The aperiodicity of the diaphragm renders the calculation of the performance of the instrument practicable, and eliminates distorsion, due to resonance, in the wave form of the emitted sound when the instrument is excited by a complex alternating current. When used as a generator of pure tones, the coils were connected in the circuit of a thermionic oscillator whose frequency could be varied from 500 to 25,000 vibrations per second. When used as a receiver of sound, the current generated in the coils by the motion of the diaphragm is fed into a thermionic amplifier. (2) Quantitative study of the performance. The distribution of the magnetic field between the coils was determined experimentally; the diaphragm current equations were deduced and solved for a particular case; the forces on various parts of the diaphragm were calculated, and thence the amplitude of vibration and the sound energy output. With an aluminum diaphragm 0.0025 cm. thick and 10 cm. in diameter, a direct current of 1 ampere, an alternating current of 0.085 ampere, and a frequency of 1052?, these were respectively 7 10-7 cm., and 9 ergs per second. By increasing both direct and alternating currents five-fold, the output could be increased over six hundred-fold. Measurements of the amplitude for various frequencies agreed well with the calculated values. (3) Applications of the instrument. Since it gives a pure tone of constant and measurable pitch and intensity over a wide range, it would serve as a precision source of sound, useful both for research and lecture purposes. When used as a telephone receiver and transmitter, actual tests have shown that the reproduction of sound is remarkably faithful.

C. W. Hewlett

1922-01-01T23:59:59.000Z

487

TDX Manley Generating LLC | Open Energy Information  

Open Energy Info (EERE)

TDX Manley Generating LLC TDX Manley Generating LLC Jump to: navigation, search Name TDX Manley Generating LLC Place Alaska Utility Id 56503 Utility Location Yes Ownership M Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.6340/kWh Commercial: $0.6920/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=TDX_Manley_Generating_LLC&oldid=411634

488

Distributed Energy Calculator | Open Energy Information  

Open Energy Info (EERE)

Distributed Energy Calculator Distributed Energy Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Distributed Energy Calculator Agency/Company /Organization: Apps for Energy Challenge Participant Sector: Energy Resource Type: Application prototype User Interface: Website Website: distributedenergycalculator.com/ OpenEI Keyword(s): Challenge Generated, Green Button Apps Language: English References: Apps for Energy[1] The Distributed Energy Calculator allows you to explore the potential energy savings for your community using Solar, Small Wind or Microturbines. The Distributed Energy Calculator allows you to explore the potential energy savings for your community using Solar, Small Wind or Microturbines. You can upload Green Button Data to compare your utility energy costs to