Powered by Deep Web Technologies
Note: This page contains sample records for the topic "including biomass wood" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Successful biomass (wood pellets ) implementation in  

E-Print Network (OSTI)

Successful biomass (wood pellets ) implementation in Estonia Biomass Utilisation of Local in Estonia in 1995 - 2002 Regional Energy Centres in Estonia http://www.managenergy.net/conference/biomass

2

Table F24: Wood and Biomass Waste Consumption Estimates, 2011  

U.S. Energy Information Administration (EIA)

Table F24: Wood and Biomass Waste Consumption Estimates, 2011 State Wood Wood and Biomass Waste a Residential Commercial Industrial Electric Power ...

3

Energie-Cits 2001 BIOMASS-WOOD  

E-Print Network (OSTI)

Energie-Cités 2001 BIOMASS-WOOD Power plant LIENZ Austria By the year 2010, 12% of the gross inland this goal, intensified use needs to be made of biomass, both for heating purposes and for power generation to this rule. Thus, for instance, the town of Lienz started up the largest biomass facility of Austria

4

Energie-Cits 2001 BIOMASS -WOOD  

E-Print Network (OSTI)

Energie-Cités 2001 BIOMASS - WOOD Gasification / Cogeneration ARMAGH United Kingdom Gasification is transferring the combustible matters in organic waste or biomass into gas and pure char by burning the fuel via it allows biomass in small-scaled engines and co-generation units ­ which with conventional technologies

5

Biomass Energy - Focus on Wood Waste  

NLE Websites -- All DOE Office Websites (Extended Search)

application for wood waste as a fuel is in the co-firing of conventional coal-fired boilers, which means using biomass as a supplementary energy source in high- efficiency...

6

Biomass plants face wood supply risks Report warns giant new biomass power plants will be hugely reliant on wood chip  

E-Print Network (OSTI)

Biomass plants face wood supply risks Report warns giant new biomass power plants will be hugely's biomass energy sector could be undermined unless businesses move to resolve the supply chain issues-scale biomass plants will leave generators largely reliant on biomass from overseas such as wood chips, elephant

7

Alaska Wood Biomass Energy Project Final Report  

SciTech Connect

The purpose of the Craig Wood Fired Boiler Project is to use waste wood from local sawmilling operations to provide heat to local public buildings, in an effort to reduce the cost of operating those buildings, and put to productive use a byproduct from the wood milling process that otherwise presents an expense to local mills. The scope of the project included the acquisition of a wood boiler and the delivery systems to feed wood fuel to it, the construction of a building to house the boiler and delivery systems, and connection of the boiler facility to three buildings that will benefit from heat generated by the boiler: the Craig Aquatic Center, the Craig Elementary School, and the Craig Middle School buildings.

Jonathan Bolling

2009-03-02T23:59:59.000Z

8

Techno-economic analysis of wood biomass boilers for the greenhouse industry  

SciTech Connect

The objective of this study is to perform a techno-economic analysis on a typical wood pellet and wood residue boiler for generation of heat to an average-sized greenhouse in British Columbia. The variables analyzed included greenhouse size and structure, boiler efficiency, fuel types, and source of carbon dioxide (CO2) for crop fertilization. The net present value (NPV) show that installing a wood pellet or a wood residue boiler to provide 40% of the annual heat demand is more economical than using a natural gas boiler to provide all the heat at a discount rate of 10%. For an assumed lifespan of 25 years, a wood pellet boiler system could generate NPV of C$259,311 without electrostatic precipitator (ESP) and C$74,695 with ESP, respectively. While, installing a wood residue boiler with or without an ESP could provide NPV of C$919,922 or C$1,104,538, respectively. Using a wood biomass boiler could also eliminate over 3000 tonne CO2 equivalents of greenhouse gases annually. Wood biomass combustion generates more particulate matters than natural gas combustion. However, an advanced emission control system could significantly reduce particulate matters emission from wood biomass combustion which would bring the particulate emission to a relatively similar level as for natural gas.

Chau, J. [University of British Columbia, Vancouver; Sowlati, T. [University of British Columbia, Vancouver; Sokhansanj, Shahabaddine [ORNL; Bi, X.T. [University of British Columbia, Vancouver; Preto, F. [Natural Resources Canada; Melin, Staffan [University of British Columbia, Vancouver

2009-01-01T23:59:59.000Z

9

Best Practices for Biomass Handling in Wood Yard Operations  

Science Conference Proceedings (OSTI)

Utilities are beginning to add wood and other biomass fuels to fire their generating units to enable them to produce carbon-neutral electricity and participate in state or national renewable energy programs. However, because the material handling aspects of biomass differ from those of coal, firing at a significant scale requires new equipment to receive, store, and deliver the biomass to the flame front. This equipment is analogous in function to existing machinery but is quite different in detail, desi...

2011-08-29T23:59:59.000Z

10

Enhanced Biomass Digestion with Wood Wasp Bacteria ...  

Plant biomass represents a vast and renewable source of energy. However, harnessing this energy requires breaking down tough lignin and cellulose cell ...

11

Design of wood biomass supply chains  

Science Conference Proceedings (OSTI)

The purpose of this paper is to propose a mathematical programming approach to minimize the total cost in a biomass supply chain. A company that collects material from forests, transforms it into chipped product, stores and delivers it to its customers ... Keywords: biomass, mixed integer programming, optimization, supply chain

Tiago Costa Gomes; Filipe Pereira e Alvelos; Maria Sameiro Carvalho

2012-06-01T23:59:59.000Z

12

EA-1850: Flambeau River BioFuels, Inc. Proposed Wood Biomass...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

850: Flambeau River BioFuels, Inc. Proposed Wood Biomass-to-Liquid Fuel Biorefinery, Park Falls, Wisconsin EA-1850: Flambeau River BioFuels, Inc. Proposed Wood Biomass-to-Liquid...

13

EA-1811: NewPage Corporation Wood Biomass to Liquid Fuel, Wisconsin...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1: NewPage Corporation Wood Biomass to Liquid Fuel, Wisconsin Rapids, Wisconsin EA-1811: NewPage Corporation Wood Biomass to Liquid Fuel, Wisconsin Rapids, Wisconsin Summary This...

14

Enhanced Biomass Digestion with Wood Wasp Bacteria  

source of energy. However, harnessing this energy requires breaking down tough lignin and cellulose cell walls. In nature, certain microbes can deconstruct biomass into simple sugars by secreting combinations of enzymes. Two organisms that utilize ...

15

Successful biomass (wood pellets ) implementation in  

E-Print Network (OSTI)

Regional Energy centres in Estonia This presentation will cover Regional Energy Centres in Estonia ! Supply Regional Energy Centres in Estonia Supply of primary energy in Estonia Regional Energy Centres in Estonia of primary energy in Estonia ! Wood fuels production ! Pellet firing projects in Estonia ­ SIDA Demo East

16

Slovak Centre of Biomass Use for Energy Wood Fired Heating Plant in Slovakia  

E-Print Network (OSTI)

Slovak Centre of Biomass Use for Energy Slovakia 1 Wood Fired Heating Plant in Slovakia Energy energy User behaviour ESCOs Biomass Education Architects and engineers Wind Other Financial institutions;Slovak Centre of Biomass Use for Energy Slovakia 2 Biomass is considered as the most perspective

17

Slovak Centre of Biomass Use for Energy Wood Fired Heating Plant in Slovakia  

E-Print Network (OSTI)

Slovak Centre of Biomass Use for Energy Slovakia 1 Wood Fired Heating Plant in Slovakia Energy energy User behaviour ESCOs Biomass Education Architects and engineers Wind Other Financial institutions countries it is already implemented for several years. #12;Slovak Centre of Biomass Use for Energy Slovakia

18

EA-1850: Flambeau River BioFuels, Inc. Proposed Wood Biomass-to-Liquid Fuel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

50: Flambeau River BioFuels, Inc. Proposed Wood 50: Flambeau River BioFuels, Inc. Proposed Wood Biomass-to-Liquid Fuel Biorefinery, Park Falls, Wisconsin EA-1850: Flambeau River BioFuels, Inc. Proposed Wood Biomass-to-Liquid Fuel Biorefinery, Park Falls, Wisconsin Summary NOTE: This EA has been cancelled. This EA will evaluate the environmental impacts of a proposal to provide federal funding to Flambeau River Biofuels (FRB) to construct and operate a biomass-to-liquid biorefinery in Park Falls, Wisconsin, on property currently used by Flambeau Rivers Paper, LLC (FRP) for a pulp and paper mill and Johnson Timber Corporation's (JTC) Summit Lake Yard for timber storage. This project would design a biorefinery which would produce up to 1,150 barrels per day (bpd) of clean syncrude. The biorefinery would also supply

19

Where Wood Works Harnessing the Energy of Woody Biomass in Colorado  

E-Print Network (OSTI)

. Many coal-fired power plants can be adapted to use a blend of wood chips and coal, a process called "co by a central combined heat and power (CHP) power plant fueled by 80% biomass. The system produces up to 25 MW are needed. Heat Energy Measurements. A Btu (British Thermal Unit) is a common measurement of heat. About 1

20

NEW EDITION! The most comprehensive review of international trade in wood fiber, for the pulp, MDF and biomass industries.  

E-Print Network (OSTI)

and biomass industries. The International Pulpwood Trade Review has long been the standard for those in the business of international trade of woodchips, pulplogs and biomass fiber. This annual report examines the international market for biomass wood fiber and provides projections for the Asian woodchip markets in 2010

Note: This page contains sample records for the topic "including biomass wood" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Particulate emissions from residential wood combustion: Final report: Norteast regional Biomass Program  

DOE Green Energy (OSTI)

The objective of this study was to provide a resource document for the Northeastern states when pursuing the analysis of localized problems resulting from residential wood combustion. Specific tasks performed include assigning emission rates for total suspended particulates (TSP) and benzo(a)pyrene (BaP) from wood burning stoves, estimating the impact on ambient air quality from residential wood combustion and elucidating the policy options available to Northeastern states in their effort to limit any detrimental effects resulting from residential wood combustion. Ancillary tasks included providing a comprehensive review on the relevant health effects, indoor air pollution and toxic air pollutant studies. 77 refs., 11 figs., 25 tabs.

Not Available

1987-01-01T23:59:59.000Z

22

Methanol production from eucalyptus wood chips. Attachment IV. Health and safety aspects of the eucalypt biomass to methanol energy system  

DOE Green Energy (OSTI)

The basic eucalyptus-to-methanol energy process is described and possible health and safety risks are identified at all steps of the process. The toxicology and treatment for exposure to these substances are described and mitigating measures are proposed. The health and safety impacts and risks of the wood gasification/methanol synthesis system are compared to those of the coal liquefaction and conversion system. The scope of this report includes the health and safety risks of workers (1) in the laboratory and greenhouse, where eucalyptus seedlings are developed, (2) at the biomass plantation, where these seedlings are planted and mature trees harvested, (3) transporting these logs and chips to the refinery, (4) in the hammermill, where the logs and chips will be reduced to small particles, (5) in the methanol synthesis plant, where the wood particles will be converted to methanol, and (6) transporting and dispensing the methanol. Finally, the health and safety risks of consumers using methanol is discussed.

Fishkind, H.H.

1982-06-01T23:59:59.000Z

23

Palm Oil: Production, Processing, Uses, and CharacterizationChapter 21 Oil Palm Biomass for Various Wood-based Products  

Science Conference Proceedings (OSTI)

Palm Oil: Production, Processing, Uses, and Characterization Chapter 21 Oil Palm Biomass for Various Wood-based Products Food Science Health Nutrition Biochemistry Processing eChapters Food Science & Technology Health - Nutrition - Bioc

24

The flash pyrolysis and methanolysis of biomass (wood) for production of ethylene, benzene and methanol  

DOE Green Energy (OSTI)

The process chemistry of the flash pyrolysis of biomass (wood) with the reactive gases, H{sub 2} and CH{sub 4} and with the non-reactive gases He and N{sub 2} is being determined in a 1 in. downflow tubular reactor at pressures from 20 to 1000 psi and temperatures from 600 to 1000{degrees}C. With hydrogen, flash hydropyrolysis leads to high yields of methane and CO which can be used for SNG and methanol fuel production. With methane, flash methanolysis leads to high yields of ethylene, benzene and CO which can be used for the production of valuable chemical feedstocks and methanol transportation fuel. At reactor conditions of 50 psi and 1000{degrees}C and approximately 1 sec residence time, the yields based on pine wood carbon conversion are up to 25% for ethylene, 25% for benzene, and 45% for CO, indicating that over 90% of the carbon in pine is converted to valuable products. Pine wood produces higher yields of hydrocarbon products than Douglas fir wood; the yield of ethylene is 2.3 times higher with methane than with helium or nitrogen, and for pine, the ratio is 7.5 times higher. The mechanism appears to be a free radical reaction between CH{sub 4} and the pyrolyzed wood. There appears to be no net production or consumption of methane. A preliminary process design and analysis indicates a potentially economical competitive system for the production of ethylene, benzene and methanol based on the methanolysis of wood. 10 refs., 18 figs., 1 tab.

Steinberg, M.; Fallon, P.T.; Sundaram, M.S.

1990-02-01T23:59:59.000Z

25

Woody Biomass Supply Issues  

Science Conference Proceedings (OSTI)

Woody biomass is the feedstock for the majority of biomass power producers. Woody biomass consists of bark and wood and is generally obtained as a byproduct or waste product. Approximately 40% of timber biomass is left behind in the form of slash, consisting of tree tops, branches, and stems after a timber harvest. Collecting and processing this residue provides the feedstock for many utility biomass projects. Additional sources of woody biomass include urban forestry, right-of-way clearance, and trees k...

2011-03-31T23:59:59.000Z

26

How Wood Chip Size Affects Pretreatment Effectiveness of Woody Biomass for Biological Processing  

E-Print Network (OSTI)

explosion pretreatment of wood: effect of chip size, acid,In: Soltes, E.J. (Ed. ), Wood and Agriculture Residues D. , Wegener, G. , 1984. Wood: Chemistry, Ultrastructure,

Tam, Jerry

2013-01-01T23:59:59.000Z

27

Economic impacts of wood energy in the Northeast, 1985: State report: Northeast Regional Biomass Program  

DOE Green Energy (OSTI)

This report summarizes the economic impacts of wood energy for the 11 Northeastern states. The report begins with a brief description of the types of economic impacts estimated in the study. The direct economic impacts are the jobs and income directly attributable to wood energy activities. They are referred to as first round impacts since they reflect the economic activity generated by the first spending of the fuelwood dollar, from the consumer to the supplier. Direct impacts include employment in logging, transport, and end-use operations such as chimney sweeping and boiler operating. Direct impacts also include personal income to employees, payments of stumpage fees to landowners, and profits earned by fuelwood enterprises. Indirect employment and income result from purchases made by fuelwood supply businesses, purpose made by the employees of fuelwood supply businesses, and purchases made by wood burning households or companies for wood combustion system installation, construction, and maintenance. They include purchases of equipment, spare parts, supplies, and services, including financial services.

Chamberlin, R.; High, C.

1986-05-01T23:59:59.000Z

28

Efficient Evaluation of Doubly Periodic Green Functions in 3D Scattering, Including Wood Anomaly Frequencies  

E-Print Network (OSTI)

We present efficient methods for computing wave scattering by diffraction gratings that exhibit two-dimensional periodicity in three dimensional (3D) space. Applications include scattering in acoustics, electromagnetics and elasticity. Our approach uses boundary-integral equations. The quasi-periodic Green function is a doubly infinite sum of scaled 3D free-space outgoing Helmholtz Green functions. Their source points are located at the nodes of a periodicity lattice of the grating. For efficient numerical computation of the lattice sum, we employ a smooth truncation. Super-algebraic convergence to the Green function is achieved as the truncation radius increases, except at frequency-wavenumber pairs at which a Rayleigh wave is at exactly grazing incidence to the grating. At these "Wood frequencies", the term in the Fourier series representation of the Green function that corresponds to the grazing Rayleigh wave acquires an infinite coefficient and the lattice sum blows up. At Wood frequencies, we modify the Green function by adding two types of terms to it. The first type adds weighted spatial shifts of the Green function to itself with singularities below the grating; this yields algebraic convergence. The second-type terms are quasi-periodic plane wave solutions of the Helmholtz equation. They reinstate (with controlled coefficients) the grazing modes, effectively eliminated by the terms of first type. These modes are needed in the Green function for guaranteeing the well-posedness of the boundary-integral equation that yields the scattered field. We apply this approach to acoustic scattering by a doubly periodic 2D grating near and at Wood frequencies and scattering by a doubly periodic array of scatterers away from Wood frequencies.

Oscar P. Bruno; Stephen P. Shipman; Catalin Turc; Stephanos Venakides

2013-07-04T23:59:59.000Z

29

Decision-maker's guide to wood fuel for small industrial energy users. Final report. [Includes glossary  

DOE Green Energy (OSTI)

The technology and economics of various wood energy systems available to the small industrial and commercial energy user are considered. This book is designed to help a plant manager, engineer, or others in a decision-making role to become more familiar with wood fuel systems and make informed decisions about switching to wood as a fuel. The following subjects are discussed: wood combustion, pelletized wood, fuel storage, fuel handling and preparation, combustion equipment, retrofitting fossil-fueled boilers, cogeneration, pollution abatement, and economic considerations of wood fuel use. (MHR)

Levi, M. P.; O'Grady, M. J.

1980-02-01T23:59:59.000Z

30

How Wood Chip Size Affects Pretreatment Effectiveness of Woody Biomass for Biological Processing  

E-Print Network (OSTI)

Parameters employed for heating of wood chips employed inParameters employed for heating of wood chips employed inW.T. , 2006. Estimating heating times of wood boards, square

Tam, Jerry

2013-01-01T23:59:59.000Z

31

How Wood Chip Size Affects Pretreatment Effectiveness of Woody Biomass for Biological Processing  

E-Print Network (OSTI)

acid pretreatment of biomass. Biotechnol. Bioeng. Symp. 15,that limit enzymatic hydrolysis of biomass. Appl. Biochem.hydrolysis of cellulosic biomass. Biofuels 2(4):421-450.

Tam, Jerry

2013-01-01T23:59:59.000Z

32

Economic impacts of wood energy in the Northeast, 1985: Summary report: Northeast Regional Biomass Program  

DOE Green Energy (OSTI)

Wood energy in the Northeast accounts for an estimated average of 1.96 jobs and $46,634 of income for every 1000 tons of wood burned by households and businesses. This translates into an estimated total of over 78,000 jobs and $1.8 billion of personal income for Northeast residents and businesses. In addition, a total of $589 million in state and federal tax revenues are generated by wood energy-related economic activity. By choosing wood over other fuels, Northeast households and businesses saved $1.2 billion in their 1985 fuel bills. In the Northeast in 1985, wood displaced over 1 billion gallons of oil, 37 million tcf of natural gas and propane, 138,000 tons of coal, and 1858 million kilowatt-hours of electricity. Projected growth in wood energy consumption in the industrial and residential sectors indicate that the Northeast wood energy industry will support approximately 165,000 jobs and $3.8 billion of personal and business income by the year 2000, if projected growth continues. 9 figs., 5 tabs.

Chamberlin, R.; High, C.

1986-04-01T23:59:59.000Z

33

A Prospectus For Advancing Biomass Thermal Energy In Maryland Developed By the Maryland Wood Energy Coalition The Maryland Wood Energy Coalition was organized by the University of Maryland Extension and the  

E-Print Network (OSTI)

Department of Natural Resources Forest Service in April 2010 with the goal to increase the use of woody biomass for high?efficiency wood energy technologies. Woody biomass is an overlooked renewable energy source that produces green jobs locally, is sustainable, has low emissions due to new technological advances, and is affordable and price stable. The efforts of all those involved has resulted in the Prospectus that can serve as a concise research?based information source and roadmap for decision makers. The attached prospectus provides research?based information and policy recommendations (Pages 2 & 3) that will increase the adoption of advanced wood energy technology, and help Maryland reach targets for the Renewable Portfolio Standards (RPS). Wood is the fastest growing residential heating fuel in Maryland, increasing 33 % between 2000 and 2010. Residential and institutional applications will reduce fossil fuel and electric use. Best of all, using woody biomass from forests and urban sources is truly renewable and sustainable, while providing green jobs locally. Advances in wood burning technology have created a well?deserved image of woody biomass as a low emission renewable fuel. Finally, woody biomass has proven to be affordable and price stable, with significant fuel saving compared to fossil fuels and electricity. For more information about the Coalition and/or the Prospectus please contact Jonathan Kays at 301? 432?2767 x323 or by

Alliance For Green Heat; John Ackerly

2012-01-01T23:59:59.000Z

34

NREL-Biomass Resource Assessment | Open Energy Information  

Open Energy Info (EERE)

NREL-Biomass Resource Assessment NREL-Biomass Resource Assessment (Redirected from Biomass Resource Assessment Presentation) Jump to: navigation, search Tool Summary Name: Biomass Resource Assessment Presentation Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Biomass, Transportation Topics: Resource assessment Resource Type: Maps Website: www.nrel.gov/international/biomass_resource.html References: Biomass Resource Assessment at NREL (Int'l)[1] Logo: Biomass Resource Assessment Presentation Overview "Biomass resource assessments quantify the existing or potential biomass material in a given area. Biomass resources include agricultural crops and residues; dedicated energy crops; forestry products and residues; animal wastes; residues and byproducts from food, feed, fiber, wood, and materials

35

How Wood Chip Size Affects Pretreatment Effectiveness of Woody Biomass for Biological Processing  

E-Print Network (OSTI)

How biotech can transform biofuels. Nat. Biotechnol. , 26(of cellulosic biomass. Biofuels 2(4):421-450. Yang, B. ,cost cellulosic ethanol. Biofuels, Bioprod. Biorefin. , 2(

Tam, Jerry

2013-01-01T23:59:59.000Z

36

NREL-Biomass Resource Assessment | Open Energy Information  

Open Energy Info (EERE)

NREL-Biomass Resource Assessment NREL-Biomass Resource Assessment Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biomass Resource Assessment Presentation Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Biomass, Transportation Topics: Resource assessment Resource Type: Maps Website: www.nrel.gov/international/biomass_resource.html References: Biomass Resource Assessment at NREL (Int'l)[1] Logo: Biomass Resource Assessment Presentation Overview "Biomass resource assessments quantify the existing or potential biomass material in a given area. Biomass resources include agricultural crops and residues; dedicated energy crops; forestry products and residues; animal wastes; residues and byproducts from food, feed, fiber, wood, and materials

37

Terrestrial laser scanning for measuring the solid wood volume, including branches, of adult standing trees in the forest environment  

Science Conference Proceedings (OSTI)

This study evaluates the potential of terrestrial laser scanning (TLS) to assess the solid wood volume (i.e., stem and branch diameters of more than 7cm) of adult standing trees in the forest environment. The solid wood volume of 42 trees of different ... Keywords: 3D tree modelling, Forestry, LiDAR, Terrestrial laser scanning, Wood volume

Mathieu Dassot; AurLie Colin; Philippe Santenoise; Meriem Fournier; ThiRy Constant

2012-11-01T23:59:59.000Z

38

Biomass | Open Energy Information  

Open Energy Info (EERE)

Biomass: Biomass: Organic matter, including: agricultural and forestry residues, municipal solid wastes, industrial wastes, and terrestrial and aquatic crops grown solely for energy purposes. Other definitions:Wikipedia Reegle Traditional and Thermal Use of Biomass Traditional use of biomass, particularly burning wood, is one of the oldest manners in which biomass has been utilized for energy. Traditional use of biomass is 14% of world energy usage which is on the same level as worldwide electricity usage. Most of this consumption comes from developing countries where traditional use of biomass accounts for 35% of primary energy usage [1] and greater than 75% of primary energy use is in the residential sector. The general trend in developing countries has been a

39

Investigations on catalyzed steam gasification of biomass: feasibility study of methane production via catalytic gasification of 200 tons of wood per day  

DOE Green Energy (OSTI)

This report is a result of an additional study made of the economic feasibility of producing substitute natural gas (SNG) from wood via catalytic gasification with steam. The report has as its basis the original 2000 tons of wood per day study generated from process development unit testing performed by the Pacific Northwest Laboratory. The goal of this additional work was to determine the feasibility of a smaller scale plant one-tenth the size of the original or 200 tons of dry wood feed per day. Plant production based on this wood feed is 2.16 MM Scfd of SNG with a HHV of 956 Btu per Scf. All process and support facilities necessary to convert wood to SNG are included in this study. The plant location is Newport, Oregon. The capital cost for the plant is $26,680,000 - September 1980 basis. Gas production costs which allow for return on capital have been calculated for various wood prices for both utility and private investor financing. These wood prices represent the cost of unchipped wood delivered to the plant site. For utility financing, the gas production costs are, respectively, $14.34, $14.83, $15.86, and $17.84 per MM Btu for wood costs of $5, $10, $20, and $40 per dry ton. For private investor financing, the corresponding product costs are $18.76, $19.26, $20.28, and $22.31 per MM Btu for the corresponding wood costs. The costs calculated by the utility financing method includes a return on equity of 15% and an interest rate of 10% on the debt. The private investor financing method, which is 100% equity financing, incorporates a discounted cash flow (DCF) return on equity of 12%. The thermal efficiency without taking an energy credit for char is 57.4%.

Mudge, L.K.; Weber, S.L.; Mitchell, D.H.; Sealock, L.J. Jr.; Robertus, R.J.

1981-01-01T23:59:59.000Z

40

Investigations on catalyzed steam gasification of biomass. Appendix B: feasibility study of methanol production via catalytic gasification of 2000 tons of wood per day  

SciTech Connect

A study has been made of the economic feasibility of producing fuel grade methanol from wood via catalytic gasification with steam. The plant design in this study was developed from information on gasifier operation supplied by the Pacific Northwest Laboratory (PNL), operated by Battelle. PNL obtained this information from laboratory and process development unit testing. The plant is designed to process 2000 tons per day of dry wood to methanol. Plant production is 997 tons per day of methanol with a HHV of 9784 Btu per pound. All process and support facilities necessary to convert wood to methanol are included in this study. The plant location is Newport, Oregon. The capital cost for the plant is $120,830,000 - September 1980 basis. Methanol production costs which allow for return on capital have been calculated for various wood prices for both utility and private investor financing. These wood costs include delivery to the plant. For utility financing, the methanol production costs are respectively $.45, $.48, $.55, and $.69 per gallon for wood costs of $5, $10, $20, and $40 per dry ton. For private investor financing, the corresponding product costs are $.59, $.62, $.69, and $.83 per gallon for the corresponding wood costs. Both calculation methods include a return on equity capital in the costs. The thermal efficiency of the plant is 52.9%.

Mudge, L.K.; Weber, S.L.; Mitchell, D.H.; Sealock, L.J. Jr.; Robertus, R.J.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "including biomass wood" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Investigations on catalyzed steam gasification of biomass: feasibility study of methanol production via catalytic gasification of 200 tons of wood per day  

DOE Green Energy (OSTI)

This report is a result of an additional study made of the economic feasibility of producing fuel grade methanol from wood via catalytic gasification with steam. The report has as its basis the original 2000 tons of wood per day study generated from process development unit testing performed by the Pacific Northwest Laboratory (PNL). The goal of this additional work was to determine the feasibility of a smaller scale plant one tenth the size of the original or 200 tons of dry wood feed per day. Plant production based on this wood feed is 100 tons per day of methanol with a HHV of 9784 Btu per pound. All process and support facilities necessary to convert wood to methanol are included in this study. The plant location is Newport, Oregon. The capital cost for the plant is $34,830,000 - September 1980 basis. Methanol production costs which allow for return on capital have been calculated for various wood prices for both utility and private investor financing. These wood costs include delivery to the plant. For utility financing, the methanol production costs are, respectively, $1.20, $1.23, $1.30, and $1.44 per gallon for wood costs of $5, $10, $20, and $40 per dry ton. For private investor financing, the corresponding product costs are $1.60, $1.63, $1.70, and $1.84 per gallon for the corresponding wood costs. The costs calculated by the utility financing method include a return on equity of 15% and an interest rate of 10% on the debt. The private investor financing method, which is 100% equity financing, incorporates a discounted cash flow (DCF) return on equity of 12%. The thermal efficiency of the plant is 52.0%.

Mudge, L.K.; Weber, S.L.; Mitchell, D.H.; Sealock, L.J. Jr.; Robertus, R.J.

1981-01-01T23:59:59.000Z

42

Agricultural Biomass and Landfill Diversion Incentive (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

This law provides a grant of a minimum $20 per bone-dry ton of qualified agricultural biomass, forest wood waste, urban wood waste, co-firing biomass, or storm-generated biomass that is provided to...

43

NREL: Biomass Research - Standard Biomass Analytical Procedures  

NLE Websites -- All DOE Office Websites (Extended Search)

in the pertinent LAPs. Workbooks are available for: Wood (hardwood or softwood) Corn stover (corn stover feedstock) Biomass hydrolyzate (liquid fraction produced from...

44

Energy Basics: Wood and Pellet Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Wood and Pellet Heating Wood-burning and pellet fuel appliances use biomass or waste resources to heat homes or buildings. Types of Wood- and Pellet-Burning...

45

Energy Basics: Wood and Pellet Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heating & Cooling Systems Water Heating Wood and Pellet Heating Wood-burning and pellet fuel appliances use biomass or waste resources to heat homes or buildings. Types of Wood-...

46

Northeast regional biomass program. First quarter report, October--December 1993  

DOE Green Energy (OSTI)

This progress report presents summaries of various projects which were in operation or being planned during this quarter period. Projects included testing the efficiency of using wood chips as fuel in heating systems, barriers to commercial development of wood pellet fuels, studies of more efficient and less polluting wood stoves, work on landfill gas utilization, directories of facilities using biomass fuels, surveys of biomass conversion processes to liquid fuels, for commercial development, etc.

NONE

1994-05-01T23:59:59.000Z

47

Testing of Biomass in a Transport Reactor Gasifier  

Science Conference Proceedings (OSTI)

A 200-hour gasification test was undertaken on biomass fuels from sources that include wood waste and a potential energy crop such as switchgrass. The test involved the design and construction of a feed system to allow 100% biomass to be continuously fed to the pilot-scale transport reactor development unit (TRDU) at the Energy & Environmental Research Center. Biomass performance was also assessed in a high-efficiency transport reactor gasifier, the centerpiece of an advanced biomass integrated ...

2012-11-28T23:59:59.000Z

48

Energy Basics: Biomass Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Share this resource Biomass Biofuels Biopower Bio-Based Products Biomass Resources Geothermal Hydrogen Hydropower Ocean Solar Wind Biomass Resources Biomass resources include any...

49

Biomass Technologies  

Energy.gov (U.S. Department of Energy (DOE))

There are many types of biomassorganic matter such as plants, residue from agriculture and forestry, and the organic component of municipal and industrial wastesthat can now be used to produce fuels, chemicals, and power. Wood has been used to provide heat for thousands of years. This flexibility has resulted in increased use of biomass technologies. According to the Energy Information Administration, 53% of all renewable energy consumed in the United States was biomass-based in 2007.

50

Review of the Regional Biomass Energy Program: Technical projects  

Science Conference Proceedings (OSTI)

This article summarizes technical projects of the regional Biomass Energy Program. Projects included are as follows: economic impact studies for renewable energy resources; alternative liquid fuels; Wood pellets fuels forum; residential fuel wood consumption; waste to energy decision-makers guide; fuel assessment for cogeneration facilities; municipal solid waste combustion characteristics.

Lusk, P.

1994-12-31T23:59:59.000Z

51

Development of an extruder-feeder biomass direct liquefaction process  

DOE Green Energy (OSTI)

As an abundant, renewable, domestic energy resource, biomass could help the United States reduce its dependence on imported oil. Biomass is the only renewable energy technology capable of addressing the national need for liquid transportation fuels. Thus, there is an incentive to develop economic conversion processes for converting biomass, including wood, into liquid fuels. Through research sponsored by the US DOE's Biomass Thermochemical Conversion Program, the University of Arizona has developed a unique biomass direct liquefaction system. The system features a modified single-screw extruder capable of pumping solid slurries containing as high as 60 wt % wood flour in wood oil derived vacuum bottoms at pressures up to 3,000 psi. By comparison, conventional pumping systems are capable of pumping slurries containing only 10--20 wt % wood flour in wood oil under similar conditions. The extruder-feeder has been integrated with a unique reactor to form a system which offers potential for improving high pressure biomass direct liquefaction technology. The extruder-feeder acts simultaneously as both a feed preheater and a pumping device for injecting wood slurries into a 3,000 psi pressure reactor in the biomass liquefaction process. An experimental facility was constructed during 1983--84. Following shakedown operations, wood crude oil was produced by mid-1985. During the period January 1985 through July 1988, a total of 57 experimental continuous biomass liquefaction runs were made using White Birch wood feedstock. Good operability was achieved at slurry feed rates up to 30 lb/hr, reactor pressures from 800 to 3,000 psi and temperatures from 350{degrees}C to 430{degrees}C under conditions covering a range of carbon monoxide feed rates and sodium carbonate catalyst addition. Crude wood oils containing as little as 6--10 wt % residual oxygen were produced. 43 refs., 81 figs., 52 tabs.

White, D.H.; Wolf, D. (Arizona Univ., Tucson, AZ (United States). Dept. of Chemical Engineering)

1991-10-01T23:59:59.000Z

52

Small Modular Biomass Systems  

DOE Green Energy (OSTI)

Fact sheet that provides an introduction to small modular biomass systems. These systems can help supply electricity to rural areas, businesses, and people without power. They use locally available biomass fuels such as wood, crop waste, and animal manures.

Not Available

2002-12-01T23:59:59.000Z

53

Biomass/Biogas | Open Energy Information  

Open Energy Info (EERE)

Biomass/Biogas Biomass/Biogas < Biomass Jump to: navigation, search Agricultural residues are defined as the residues from production of the following crops. * Corn * Wheat * Soybeans * Cotton * Sorghum * Barley * Oats * Rice * Rye * Canola * Beans * Peas * Peanuts * Potatoes * Safflower * Sunflower * Sugarcane * Flaxseed Forest residues are defined as logging residues and other removals. These include material already utilized as well as material that is disposed as waste. Logging residues are the unused portions of trees cut by logging (tops and branches) and left to be burned or decay in the woods. Other removals include trees removed as a part of thinning projects, land clearings, and forest health uses that are not directly associated with round wood product harvests. Primary mill residues include wood materials

54

Investigations on catalyzed steam gasification of biomass. Appendix A. Feasibility study of methane production via catalytic gasification of 2000 tons of wood per day  

DOE Green Energy (OSTI)

A study has been made of the economic feasibility of producing substitute natural gas (SNG) from wood via catalytic gasification with steam. The plant design in this study was developed from information on gasifier operation supplied by the Pacific Northwest Laboratory (PNL). The plant is designed to process 2000 tons per day of dry wood to SNG. Plant production is 21.6 MM scfd of SNG with a HHV of 956 Btu per scf. All process and support facilities necessary to convert wood to SNG are included. The plant location is Newport, Oregon. The capital cost for the plant is $95,115,000 - September, 1980 basis. Gas production costs which allow for return on capital have been calculated for various wood prices for both utility and private investor financing. For utility financing, the gas production costs are respectively $5.09, $5.56, $6.50, and $8.34 per MM Btu for wood costs of $5, $10, $20, and $40 per dry ton delivered to the plant at a moisture content of 49.50 wt %. For private investor financing, the corresponding product costs are $6.62, $7.11, $8.10, and $10.06 per MM Btu. The cost calculated by the utility financing method includes a return on equity of 15% and an interest rate of 10% on the debt. The private investor financing method, which is 100% equity financing, incorporates a discounted cash flow (DCF) return on equity of 12%. The thermal efficiency without taking an energy credit for by-product char is 58.3%.

Mudge, L.K.; Weber, S.L.; Mitchell, D.H.; Sealock, L.J. Jr.; Robertus, R.J.

1981-01-01T23:59:59.000Z

55

Phenotypic Data Collection and Sample Preparation for Genomics of Wood Formation and Cellulosic Biomass Traits in Sunflower: Ames, IA location.  

Science Conference Proceedings (OSTI)

Three fields were planted in Ames in 2010, two association mapping fields, N3 and A, and a recombinant inbred line field, N13. Phenotype data and images were transferred to UGA to support genetic and genomic analyses of woody biomass-related traits.

Marek, Laura F.

2011-06-17T23:59:59.000Z

56

Technical Underpinnings for Sustainable Biomass Power  

Science Conference Proceedings (OSTI)

This report documents the results of a study commissioned by the Electric Power Research Institute (EPRI) with additional funding support by the Tennessee Valley Authority (TVA) and Ontario Power Generation (OPG). The study provides a model to analyze the impacts of a variety of anticipated and unexpected risk factors on the availability and pricing of biomass wood fuel within a project supply region. Anticipated risk factors include increasing demand and competition for wood fuel, increasing input costs...

2012-02-22T23:59:59.000Z

57

OpenEI - Wood and Derived Fuels  

Open Energy Info (EERE)

UK Energy Statistics: UK Energy Statistics: Renewables and Waste, Commodity Balances (2010) http://en.openei.org/datasets/node/82 Annual commodity balances (supply, consumption) for renewables and waste in the UK from 1998 to 2009. Published as part of the Digest of UK energy statistics (DUKES), by the UK Department of Energy & Climate Change (DECC). Waste includes: wood waste, farm waste, sewage gas, landfill gas, waste and tyres. Renewables includes: wood, plant-based biomass, geothermal and active solar heat, hydro, wind, wave and tidal, and liquid biofuels.

License
Type of

58

EA-1957: Cabin Creek Biomass Facility, Place County, CA  

Energy.gov (U.S. Department of Energy (DOE))

DOE is proposing to provide funding to Placer County, California to construct and operate a two-megawatt wood-to-energy biomass facility at the Eastern Regional Materials Recovery Facility (MRF) and Landfill in unincorporated Placer County. The wood?to?energy biomass facility would use a gasification technology. The fuel supply for the proposed project would be solely woody biomass, derived from a variety of sources including hazardous fuels residuals, forest thinning and harvest residuals, and Wildland Urban Interface sourced waste materials from residential and commercial property defensible space clearing and property management activities.

59

Development of an extruder-feeder biomass direct liquefaction process  

DOE Green Energy (OSTI)

As an abundant, renewable, domestic energy resource, biomass could help the United States reduce its dependence on imported oil. Biomass is the only renewable energy technology capable of addressing the national need for liquid transportation fuels. Thus, there is an incentive to develop economic conversion processes for converting biomass, including wood, into liquid fuels. Through research sponsored by the US DOE's Biomass Thermochemical Conversion Program, the University of Arizona has developed a unique biomass direct liquefaction system. The system features a modified single-screw extruder capable of pumping solid slurries containing as high as 60 wt% wood flour in wood oil derived vacuum bottoms at pressures up to 3000 psi. The extruder-feeder has been integrated with a unique reactor by the University to form a system which offers potential for improving high pressure biomass direct liquefaction technology. The extruder-feeder acts simultaneously as both a feed preheater and a pumping device for injecting wood slurries into a high pressure reactor in the biomass liquefaction process. An experimental facility was constructed and following shakedown operations, wood crude oil was produced by mid-1985. By July 1988, a total of 57 experimental continuous biomass liquefaction runs were made using White Birch wood feedstock. Good operability was achieved at slurry feed rates up to 30 lb/hr, reactor pressures from 800 to 3000 psi and temperatures from 350{degree}C to 430{degree}C under conditions covering a range of carbon monoxide feed rates and sodium carbonate catalyst addition. Crude wood oils containing as little as 6--10 wt% residual oxygen were produced. 38 refs., 82 figs., 26 tabs.

White, D.H.; Wolf, D. (Arizona Univ., Tucson, AZ (United States). Dept. of Chemical Engineering)

1991-10-01T23:59:59.000Z

60

ZINC CHLORIDE CATALYSIS IN COAL AND BIOMASS LIQUEFACTION AT PREPYROLYSIS TEMPERATURES  

E-Print Network (OSTI)

of biomass utilization and conversion facilities. ChemicalChemical Structures of Biomass Components Chemical Liquefaction of Wood and l'lood Components Biomass Conversion

Onu, Christopher O.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "including biomass wood" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Biomass Resource Allocation among Competing End Uses  

DOE Green Energy (OSTI)

The Biomass Scenario Model (BSM) is a system dynamics model developed by the U.S. Department of Energy as a tool to better understand the interaction of complex policies and their potential effects on the biofuels industry in the United States. However, it does not currently have the capability to account for allocation of biomass resources among the various end uses, which limits its utilization in analysis of policies that target biomass uses outside the biofuels industry. This report provides a more holistic understanding of the dynamics surrounding the allocation of biomass among uses that include traditional use, wood pellet exports, bio-based products and bioproducts, biopower, and biofuels by (1) highlighting the methods used in existing models' treatments of competition for biomass resources; (2) identifying coverage and gaps in industry data regarding the competing end uses; and (3) exploring options for developing models of biomass allocation that could be integrated with the BSM to actively exchange and incorporate relevant information.

Newes, E.; Bush, B.; Inman, D.; Lin, Y.; Mai, T.; Martinez, A.; Mulcahy, D.; Short, W.; Simpkins, T.; Uriarte, C.; Peck, C.

2012-05-01T23:59:59.000Z

62

Biomass Energy Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Energy Resources and Technologies Biomass Energy Resources and Technologies Biomass Energy Resources and Technologies October 7, 2013 - 9:25am Addthis Photo of two hands cupping wood chips pouring from a green dispenser. Biomass uses agriculture and forest residues to create energy. This page provides a brief overview of biomass energy resources and technologies supplemented by specific information to apply biomass within the Federal sector. Overview Biomass energy is fuel, heat, or electricity produced from organic materials such as plants, residues, and waste. These organic materials span several sources, including agriculture, forestry, primary and secondary mill residues, urban waste, landfill gases, wastewater treatment plants, and dedicated energy crops. Biomass energy takes many forms and can have a wide variety of applications

63

NREL: Dynamic Maps, GIS Data, and Analysis Tools - Biomass Maps  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Maps Biomass Maps These maps illustrate the biomass resources available in the United States by county. Biomass feedstock data are analyzed both statistically and graphically using a geographic information system (GIS). The following feedstock categories are evaluated: crop residues, forest residues, primary and secondary mill residues, urban wood waste, and methane emissions from manure management, landfills, and domestic wastewater treatment. Biomass Resources in the United States Map of Total Biomass Resources in the United States Total Resources by County Total Biomass per Square Kilometer These maps estimate the biomass resources currently available in the United States by county. They include the following feedstock categories: crop residues (5 year average: 2003-2007) forest and primary mill residues

64

Development of METHANE de-NOX Reburn Process for Wood Waste and Biomass Fired Stoker Boilers - Final Report - METHANE de-NOX Reburn Technology Manual  

Science Conference Proceedings (OSTI)

The overall objective of this project was to demonstrate the effectiveness of the METHANE de-NOX (MdN) Reburn process in the Forest Products Industry (FPI) to provide more efficient use of wood and sludge waste (biosolids) combustion for both energy generation and emissions reduction (specifically from nitrogen oxides (NOx)) and to promote the transfer of the technology to the wide range of wood waste-fired stoker boilers populating the FPI. This document, MdN Reburn Commercial Technology Manual, was prepared to be a resource to promote technology transfer and commercialization activities of MdN in the industry and to assist potential users understand its application and installation requirements. The Manual includes a compilation of MdN commercial design data from four different stoker boiler designs that were baseline tested as part of the development effort. Design information in the Manual include boiler CFD model studies, process design protocols, engineering data sheets and commercial installation drawings. Each design package is unique and implemented in a manner to meet specific mill requirements.

J. Rabovitser; B. Bryan; S. Wohadlo; S. Nester; J. Vaught; M. Tartan (Gas Technology Institute) L. Szymanski; R. Glickert (ESA Environmental Solutions)

2007-12-31T23:59:59.000Z

65

Wood and Derived Fuels | OpenEI  

Open Energy Info (EERE)

1 1 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142288361 Varnish cache server Wood and Derived Fuels Dataset Summary Description Annual commodity balances (supply, consumption) for renewables and waste in the UK from 1998 to 2009. Published as part of the Digest of UK energy statistics (DUKES), by the UK Department of Energy & Climate Change (DECC). Waste includes: wood waste, farm waste, sewage gas, landfill gas, waste and tyres. Renewables includes: wood, plant-based biomass, geothermal and active solar heat, hydro, wind, wave and tidal, and liquid biofuels. Source UK Department of Energy and Climate Change (DECC) Date Released July 29th, 2010 (4 years ago)

66

Evaluate Supply and Recovery of Woody Biomass for Energy  

E-Print Network (OSTI)

4/11/2011 1 Evaluate Supply and Recovery of Woody Biomass for Energy Production from Natural: Urban Wood Residue:Urban Wood Residue: Woody Biomass for Woody Biomass for BioenergyBioenergy TreeJustification Contrasting Woody Biomass Recovery DataContrasting Woody Biomass Recovery Data Regional Analysis

Gray, Matthew

67

Biomass pretreatment  

SciTech Connect

A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

2013-05-21T23:59:59.000Z

68

Application of CHL model for estimating biomass pyrolysis yield  

Science Conference Proceedings (OSTI)

The pyrolysis of wood biomass represents a valid technique for recovering "green" fuel from residues of forestry and other activities, in agriculture as in industry, where wood and other plant residues are available. Wood biomass is essentially a composite ... Keywords: CHL model, biogas yield, biomass, numerical analysis, pyrolysis, rate estimation

Francesco Marra

2007-12-01T23:59:59.000Z

69

Southeastern United States Biomass Resource Assessment  

Science Conference Proceedings (OSTI)

Recent financial incentives for renewable energy have stimulated interest in potential uses of biomass. In the southeastern United States, acquisition and integration of wood waste generated by sawmills and other wood processing companies is of specific interest to fossil plants. In this study, two biomass resource surveys were conducted and combined to assess cost implications of and potential for biomass cofiring in this region.

2009-11-24T23:59:59.000Z

70

EA-1957: Cabin Creek Biomass Facility, Place County, CA | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7: Cabin Creek Biomass Facility, Place County, CA 7: Cabin Creek Biomass Facility, Place County, CA EA-1957: Cabin Creek Biomass Facility, Place County, CA SUMMARY DOE is proposing to provide funding to Placer County, California to construct and operate a two-megawatt wood-to-energy biomass facility at the Eastern Regional Materials Recovery Facility (MRF) and Landfill in unincorporated Placer County. The wood-to-energy biomass facility would use a gasification technology. The fuel supply for the proposed project would be solely woody biomass, derived from a variety of sources including hazardous fuels residuals, forest thinning and harvest residuals, and Wildland Urban Interface sourced waste materials from residential and commercial property defensible space clearing and property management activities

71

Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

6 Selected Wood and Wood-Related Products in Fuel Consumption, 2002;" 6 Selected Wood and Wood-Related Products in Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: Selected NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." ,,"S e l e c t e d","W o o d","a n d","W o o d -","R e l a t e d","P r o d u c t s" ,,,,,"B i o m a s s" ,,,,,,"Wood Residues" ,,,,,,"and","Wood-Related" " "," ","Pulping Liquor"," "," ","Wood","Byproducts","and","RSE",," " "NAICS"," ","or","Biomass","Agricultural","Harvested Directly","from Mill","Paper-Related","Row"

72

Table N5.2. Selected Wood and Wood-Related Products in Fuel Consumption, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

2. Selected Wood and Wood-Related Products in Fuel Consumption, 1998;" 2. Selected Wood and Wood-Related Products in Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: Selected NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." ,,"S e l e c t e d","W o o d","a n d","W o o d -","R e l a t e d","P r o d u c t s" ,,,,,"B i o m a s s" ,,,,,,"Wood Residues" ,,,,,,"and","Wood-Related" " "," ","Pulping Liquor"," "," ","Wood","Byproducts","and","RSE",," " "NAICS"," ","or","Biomass","Agricultural","Harvested Directly","from Mill","Paper-Related","Row"

73

Biomass Resources  

Energy.gov (U.S. Department of Energy (DOE))

Biomass resources include any plant-derived organic matter that is available on a renewable basis. These materials are commonly referred to as feedstocks.

74

Long-term lime pretreatment of poplar wood  

E-Print Network (OSTI)

Lignocellulosic biomass (e.g., poplar wood) provides a unique and sustainable resource for environmentally safe organic fuels and chemicals. The core of this study is the pretreatment step involved in bioconversion processes. Pretreatment is required to realize high yields vital to commercial success. The focus of the pretreatment step is to methodically change key features of the biomass to favor enzymatic hydrolysis. This work assesses the compositional changes due to oxidative and non-oxidative longterm lime pretreatment of poplar wood (up to 4 weeks of pretreatment) at mild temperatures (25C to 65C), and their effect on the enzymatic yield of glucan and xylan. The most important pretreatment yield of lignin was 54 g lignin remaining/100 g lignin in raw biomass, and was accomplished for 4-week lime pretreatment at 65C in oxidative conditions. The corresponding pretreatment yields of glucan and xylan were 85.9 g glucan recovered/100 g glucan in raw biomass and 80.2 g xylan recovered/100 g xylan in raw biomass respectively. For poplar wood oxidatively pretreated with lime for 4 weeks at 65C and enzymatically hydrolyzed with an enzyme loading of 15 FPU/g glucan in raw biomass during a 3-day period, the best overall yields of glucan and xylan, were 80.7 g glucan hydrolyzed/100 g glucan in raw biomass and 66.9 g xylan hydrolyzed/100 g xylan in raw biomass respectively. The corresponding hydrolysis yields were 94.0 g glucan hydrolyzed/100 g glucan in treated biomass and 83.5 g xylan hydrolyzed/100 g xylan in treated biomass respectively. Because there is a previous study of long-term lime pretreatment of corn stover (Kim, 2004), the data obtained in this work show the effect of using woody lignocellulose as substrate. From the comparison, resulted that in the case of poplar wood oxidatively pretreated at 65C for 4 weeks, less lignin was removed and more carbohydrates were solubilized, however the hydrolysis yield of glucan was almost equal and the hydrolysis yield of xylan was higher than the reported by Kim for corn stover oxidatively pretreated at 55C for 4 weeks. The overall yield of glucan resulted lower in the case of poplar wood because of the lower pretreatment yield of glucan. Thus, it is important to complete the mass balances including an analysis on the pretreatment liquor to determine if the solubilized glucan was degraded.

Sierra Ramirez, Rocio

2005-12-01T23:59:59.000Z

75

Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2010; Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2010; Level: National and Regional Data; Row: Selected NAICS Codes; Column: Energy Sources; Unit: Trillion Btu. Wood Residues and Wood-Related Pulping Liquor Wood Byproducts and NAICS or Biomass Agricultural Harvested Directly from Mill Paper-Related Code(a) Subsector and Industry Black Liquor Total(b) Waste(c) from Trees(d) Processing(e) Refuse(f) Total United States 311 Food 0 44 43 * * 1 311221 Wet Corn Milling 0 1 1 0 0 0 312 Beverage and Tobacco Products 0 1 0 0 1 0 321 Wood Products 0 218 * 13 199 6 321113 Sawmills 0 100 * 5 94 1 3212 Veneer, Plywood, and Engineered Woods 0 95 * 6 87 2 321219 Reconstituted Wood Products 0 52 0 6 46 1 3219 Other Wood Products

76

Biomass Cofiring Guidelines  

Science Conference Proceedings (OSTI)

Biomass, primarily wood waste such as sawdust, has been cofired in over twenty utility coal-fired boilers in the United States at cofiring levels where the biomass provides from 1% to 10% of the heat input to the boiler. These guidelines present insights and conclusions from five years of EPRI assessment and testing of biomass cofiring and will enable utility engineers and power plant managers to evaluate their own options and plan their own tests.

1997-10-09T23:59:59.000Z

77

5, 21032130, 2008 Biomass Pantanal  

E-Print Network (OSTI)

BGD 5, 2103­2130, 2008 Biomass Pantanal J. Sch¨ongart et al. Title Page Abstract Introduction dynamics in aboveground coarse wood biomass of wetland forests in the northern Pantanal, Brazil J. Sch of the European Geosciences Union. 2103 #12;BGD 5, 2103­2130, 2008 Biomass Pantanal J. Sch¨ongart et al. Title

Paris-Sud XI, Université de

78

Biomass Energy Crops: Massachusetts' Potential  

E-Print Network (OSTI)

Biomass Energy Crops: Massachusetts' Potential Prepared for: Massachusetts Division of Energy;#12;Executive Summary In Massachusetts, biomass energy has typically meant wood chips derived from the region's extensive forest cover. Yet nationally, biomass energy from dedicated energy crops and from crop residues

Schweik, Charles M.

79

The potential of wood residue streams for industrial wood pellet production in the Baltic Countries and Poland.  

E-Print Network (OSTI)

??Currently most solid biomass in the European Union (EU-27) is made from high grade secondary wood residues, e.g. clean saw dust and wood chips. The (more)

Jong, B. de

2012-01-01T23:59:59.000Z

80

YEAR 2 BIOMASS UTILIZATION  

DOE Green Energy (OSTI)

This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from cofiring coal with waste paper, sunflower hulls, and wood waste showed a broad spectrum of chemical and physical characteristics, according to American Society for Testing and Materials (ASTM) C618 procedures. Higher-than-normal levels of magnesium, sodium, and potassium oxide were observed for the biomass-coal fly ash, which may impact utilization in cement replacement in concrete under ASTM requirements. Other niche markets for biomass-derived fly ash were explored. Research was conducted to develop/optimize a catalytic partial oxidation-based concept for a simple, low-cost fuel processor (reformer). Work progressed to evaluate the effects of temperature and denaturant on ethanol catalytic partial oxidation. A catalyst was isolated that had a yield of 24 mole percent, with catalyst coking limited to less than 15% over a period of 2 hours. In biodiesel research, conversion of vegetable oils to biodiesel using an alternative alkaline catalyst was demonstrated without the need for subsequent water washing. In work related to biorefinery technologies, a continuous-flow reactor was used to react ethanol with lactic acid prepared from an ammonium lactate concentrate produced in fermentations conducted at the EERC. Good yields of ester were obtained even though the concentration of lactic acid in the feed was low with respect to the amount of water present. Esterification gave lower yields of ester, owing to the lowered lactic acid content of the feed. All lactic acid fermentation from amylose hydrolysate test trials was completed. Management activities included a decision to extend several projects to December 31, 2003, because of delays in receiving biomass feedstocks for testing and acquisition of commercial matching funds. In strategic studies, methods for producing acetate esters for high-value fibers, fuel additives, solvents, and chemical intermediates were discussed with several commercial entities. Commercial industries have an interest in efficient biomass gasification designs but are waiting for economic incentives. Utility, biorefinery, pulp and paper, or o

Christopher J. Zygarlicke

2004-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "including biomass wood" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

For more information contact the Biomass Energy Centre, (01420) 526197 biomass.centre@forestry.gsi.gov.uk  

E-Print Network (OSTI)

For more information contact the Biomass Energy Centre, (01420) 526197 · biomass woodland supports jobs in the forestry industry. Choosing Logs When choosing wood for burning there are two suppliers are available on the Biomass Energy Centre website (www

82

Biomass One LP | Open Energy Information  

Open Energy Info (EERE)

Biomass One LP Place White City, Oregon Product Owner and operator of a 25MW wood fired cogeneration plant in Oregon. References Biomass One LP1 LinkedIn Connections CrunchBase...

83

Federal Energy Management Program: Biomass Energy Resources and  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Energy Resources and Technologies Biomass Energy Resources and Technologies Photo of two hands cupping wood chips pouring from a green dispenser. Biomass uses agriculture and forest residues to create energy. Photo of two men standing in front of large sugar cane plants. Sugar cane is used in Hawaii and other locations to produce energy and ethanol for alternative fuels. This page provides a brief overview of biomass energy resources and technologies supplemented by specific information to apply biomass within the Federal sector. Overview Biomass energy is fuel, heat, or electricity produced from organic materials such as plants, residues, and waste. These organic materials span several sources, including agriculture, forestry, primary and secondary mill residues, urban waste, landfill gases, wastewater treatment plants, and dedicated energy crops.

84

Evaluating a biomass resource: The TVA region-wide biomass resource assessment model  

DOE Green Energy (OSTI)

Wood is an alterative fuel for electric power generation at coal-fired plants in the Tennessee Valley Authority (TVA) region. Short rotation wood energy crops (SRWC) could provide a source of this woody biomass. However, the economic and supply structures of SRWC markets have not been established. Establishing the likely price and supply of SRWC biomass in a region is a complex task because biomass is not an established commodity as are oil, natural gas and coal. In this study we project the cost and supply of short-rotation woody biomass for the TVA region -- a 276 county area that includes all of Tennessee and portions of 10 contiguous states in the southeastern United States. Projected prices and quantities of SRWC are assumed to be a function of the amount and quality of crop and pasture land available in a region. expected SRWC yields and production costs on differing soils and land types, and the profit that could be obtained from current conventional crop production on these same lands. Results include the supply curve of SRWC biomass that is projected to be available from the entire region, the amount and location of crop and pasture land that would be used, and the conventional agricultural crops that would be displaced as a function of SRWC production. Finally, we show the results of sensitivity analysis on the projected cost and supply of SRWC biomass. In particular, we examine the separate impacts of varying SRWC production yields.

Downing, M.; Graham, R.L.

1993-12-31T23:59:59.000Z

85

Development of an extruder-feeder biomass direct liquefaction process. Volume 2, Parts 4--8: Final report  

DOE Green Energy (OSTI)

As an abundant, renewable, domestic energy resource, biomass could help the United States reduce its dependence on imported oil. Biomass is the only renewable energy technology capable of addressing the national need for liquid transportation fuels. Thus, there is an incentive to develop economic conversion processes for converting biomass, including wood, into liquid fuels. Through research sponsored by the US DOE`s Biomass Thermochemical Conversion Program, the University of Arizona has developed a unique biomass direct liquefaction system. The system features a modified single-screw extruder capable of pumping solid slurries containing as high as 60 wt% wood flour in wood oil derived vacuum bottoms at pressures up to 3000 psi. The extruder-feeder has been integrated with a unique reactor by the University to form a system which offers potential for improving high pressure biomass direct liquefaction technology. The extruder-feeder acts simultaneously as both a feed preheater and a pumping device for injecting wood slurries into a high pressure reactor in the biomass liquefaction process. An experimental facility was constructed and following shakedown operations, wood crude oil was produced by mid-1985. By July 1988, a total of 57 experimental continuous biomass liquefaction runs were made using White Birch wood feedstock. Good operability was achieved at slurry feed rates up to 30 lb/hr, reactor pressures from 800 to 3000 psi and temperatures from 350{degree}C to 430{degree}C under conditions covering a range of carbon monoxide feed rates and sodium carbonate catalyst addition. Crude wood oils containing as little as 6--10 wt% residual oxygen were produced. 38 refs., 82 figs., 26 tabs.

White, D.H.; Wolf, D. [Arizona Univ., Tucson, AZ (United States). Dept. of Chemical Engineering

1991-10-01T23:59:59.000Z

86

The potential impact of externalities considerations on the market for biomass power technologies  

Science Conference Proceedings (OSTI)

This study assesses the current status of externalities considerations--nonmarket costs and benefits--in state and utility electricity resource planning processes and determines how externalities considerations might help or hinder the development of biomass power plants. It provides an overview of biomass resources and technologies, including their market status and environmental impacts; reviews the current treatment of externalities in the states; and documents the perspectives of key utility, regulatory, and industry representatives concerning externalities considerations. The authors make the following recommendations to the biomass industry: (1) the wood and agricultural waste industries should work toward having states and utilities recognize that wood and agricultural waste are greenhouse gas neutral resources because of carbon sequestration during growth; (2) the biomass industry should emphasize nonenvironmental benefits such as economic development and job creation; and (3) the biomass industry should pursue and support efforts to establish renewable energy set-asides or ``green`` requests for proposals.

Swezey, B.G.; Porter, K.L.; Feher, J.S.

1994-02-01T23:59:59.000Z

87

Catalysis in biomass gasification  

DOE Green Energy (OSTI)

The objective of these studies is to evaluate the technical and economic feasibility of producing specific gas products by catalytic gasification of biomass. Catalyst performance is a key factor in the feasibility of catalytic gasification processes. The results of studies designed to gain a fundamental understanding of catalytic mechanisms and causes of deactivation, and discussion of the state-of-the-art of related catalytic processes are presented. Experiments with primary and secondary catalysts were conducted in a 5-cm-diameter, continuous-wood-feed, fixed-catalyst-bed reactor. The primary catalysts used in the experiments were alkali carbonates mixed with the biomass feed; the secondary catalysts included nickel or other transition metals on supports such as alumina, silica, or silica-alumina. The primary catalysts were found to influence wood pyrolysis as well as the char/steam reaction. Secondary catalysts were used in a fixed-bed configuration to direct gas phase reactions. Results of the performance of these catalysts are presented. Secondary catalysts were found to be highly effective for conversion of biomass to specific gas products: synthesis gases and methane-rich gas. With an active catalyst, equilibrium gas composition are obtained, and all liquid pyrolysis products are converted to gases. The major cause of catalyst deactivation was carbon deposition, or coking. Loss of surface area by sintering was also inportant. Catalyst deactivation by sulfur poisoning was observed when bagasse was used as the feedstock for catalytic gasification. Mechanisms of catalyst activity and deactivation are discussed. Model compounds (methane, ethylene, and phenol) were used to determine coking behavior of catalysts. Carbon deposition is more prevalent with ethylene and phenol than with methane. Catalyst formulations that are resistant to carbon deposition are presented. 60 references, 10 figures, 21 tables.

Baker, E.G.; Mudge, L.K.

1984-06-01T23:59:59.000Z

88

Wood Handbook Wood as an Engineering Material Centennial EditionCentennial Edition  

E-Print Network (OSTI)

Summarizes information on wood as an engineering material. Presents properties of wood and wood-based products of particular concern to the architect and engineer. Includes discussion of designing with wood and wood-based products along with some pertinent uses.

United States; Forest Service; Wood Handbook; Wood As An Engineering Material

2010-01-01T23:59:59.000Z

89

COFIRING BIOMASS WITH LIGNITE COAL  

DOE Green Energy (OSTI)

The University of North Dakota Energy & Environmental Research Center, in support of the U.S. Department of Energy's (DOE) biomass cofiring program, completed a Phase 1 feasibility study investigating aspects of cofiring lignite coal with biomass relative to utility-scale systems, specifically focusing on a small stoker system located at the North Dakota State Penitentiary (NDSP) in Bismarck, North Dakota. A complete biomass resource assessment was completed, the stoker was redesigned to accept biomass, fuel characterization and fireside modeling tests were performed, and an engineering economic analysis was completed. In general, municipal wood residue was found to be the most viable fuel choice, and the modeling showed that fireside problems would be minimal. Experimental ash deposits from firing 50% biomass were found to be weaker and more friable compared to baseline lignite coal. Experimental sulfur and NO{sub x} emissions were reduced by up to 46%. The direct costs savings to NDSP, from cogeneration and fuel saving, results in a 15- to 20-year payback on a $1,680,000 investment, while the total benefits to the greater community would include reduced landfill burden, alleviation of fees for disposal by local businesses, and additional jobs created both for the stoker system as well as from the savings spread throughout the community.

Darren D. Schmidt

2002-01-01T23:59:59.000Z

90

COFIRING BIOMASS WITH LIGNITE COAL  

SciTech Connect

The University of North Dakota Energy & Environmental Research Center, in support of the U.S. Department of Energy's (DOE) biomass cofiring program, completed a Phase 1 feasibility study investigating aspects of cofiring lignite coal with biomass relative to utility-scale systems, specifically focusing on a small stoker system located at the North Dakota State Penitentiary (NDSP) in Bismarck, North Dakota. A complete biomass resource assessment was completed, the stoker was redesigned to accept biomass, fuel characterization and fireside modeling tests were performed, and an engineering economic analysis was completed. In general, municipal wood residue was found to be the most viable fuel choice, and the modeling showed that fireside problems would be minimal. Experimental ash deposits from firing 50% biomass were found to be weaker and more friable compared to baseline lignite coal. Experimental sulfur and NO{sub x} emissions were reduced by up to 46%. The direct costs savings to NDSP, from cogeneration and fuel saving, results in a 15- to 20-year payback on a $1,680,000 investment, while the total benefits to the greater community would include reduced landfill burden, alleviation of fees for disposal by local businesses, and additional jobs created both for the stoker system as well as from the savings spread throughout the community.

Darren D. Schmidt

2002-01-01T23:59:59.000Z

91

Wood Gasification: Where It's At, Where It's Going  

E-Print Network (OSTI)

This paper discusses the principles and practice of various designs of biomass/wood gasifiers. In general, the basic principle of gasification is reviewed. A look at existing gasifier schemes, including packed bed updraft, downdraft, and fluidized bed, defines the basic characteristics of each and their advantages and di advantages. The economics of using one type of system - a fluid bed gasifier, on an oil fired boiler is presented to depict a representative, if not conservative, payback time for such an investment.

Murphy, M. L.

1981-01-01T23:59:59.000Z

92

Investigation of the Effect of In-Situ Catalyst on the Steam Hydrogasification of Biomass  

E-Print Network (OSTI)

Conversion Biomass Energy Forestry Biochemical Biopower - Logging - Anaerobic digestion - Heat - Wood, paper mills - Hydrolysis/ Fermentation - Electricity Agricultural Thermal/chemical

FAN, XIN

2012-01-01T23:59:59.000Z

93

Forest Products Supply Chain --Availability of Woody Biomass in Indiana for Bioenergy Production  

E-Print Network (OSTI)

Forest Products Supply Chain -- Availability of Woody Biomass in Indiana for Bioenergy Production or wood waste biomass · Map Indiana's wood waste for each potential bioenergy supply chain · Develop break-even analyses for transportation logistics of wood waste biomass Isaac S. Slaven Abstract: The purpose

94

BIOMASS REBURNING - MODELING/ENGINEERING STUDIES  

DOE Green Energy (OSTI)

This project is designed to develop engineering and modeling tools for a family of NOx control technologies utilizing biomass as a reburning fuel. The fifth reporting period (October 1 ? December 31) included modeling of the Advanced Reburning (AR) process while firing biomass. Modeling of Advanced Biomass Reburning included AR-Lean, AR-Rich, and reburning + SNCR. Fuels under investigation were furniture pellets and willow wood. Modeling shows that reburning efficiency increases when N-agent is injected into reburning or OFA zones, or co-injected with OFA. The kinetic model trends qualitatively agree with experimental data for a wide range of initial conditions and thus can be used for process optimization. No patentable subject matter is disclosed in the report.

NONE

1999-01-28T23:59:59.000Z

95

Assessment of Feasibility of Biomass Fuel Conversion in  

E-Print Network (OSTI)

Assessment of Feasibility of Biomass Fuel Conversion in Interior Villages #12;Is it feasible to convert diesel electrical systems in Interior Alaska villages to wood biomass systems? How would this type;Biomass Investment and Technology Boilers, wood gasification, or pyrolysis Existing combined heat

Ruess, Roger W.

96

Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2: Gas Cleanup Design and Cost Estimates -- Wood Feedstock  

DOE Green Energy (OSTI)

As part of Task 2, Gas Cleanup and Cost Estimates, Nexant investigated the appropriate process scheme for treatment of wood-derived syngas for use in the synthesis of liquid fuels. Two different 2,000 metric tonne per day gasification schemes, a low-pressure, indirect system using the gasifier, and a high-pressure, direct system using gasification technology were evaluated. Initial syngas conditions from each of the gasifiers was provided to the team by the National Renewable Energy Laboratory. Nexant was the prime contractor and principal investigator during this task; technical assistance was provided by both GTI and Emery Energy.

Nexant Inc.

2006-05-01T23:59:59.000Z

97

Flash hydrogenation of biomass  

DOE Green Energy (OSTI)

It is proposed to obtain process chemistry information on the rapid hydrogenation of biomass (wood and other agricultural products) to produce light liquid and gaseous hydrocarbon fuels and feedstocks. The process is referred to as Flash Hydropyrolysis. The information will be of use in the design and evaluation of processes for the conversion of biomass to synthetic fuels and petrochemical feedstocks. Results obtained in an initial experiment are discussed.

Steinberg, M

1980-01-01T23:59:59.000Z

98

The Potential for Biomass District Energy Production in Port Graham, Alaska  

DOE Green Energy (OSTI)

implementing a biomass fuel include reduced energy costs, energy independence, economic development, and environmental improvement. Fish oildiesel blended fuel and indoor wood boilers are the most economical and technically viable options for biomass energy in the village of Port Graham. Sufficient regional biomass resources allow up to 50% in annual heating savings to the user, displacing up to 70% current diesel imports, with a simple payback of less than 3 years for an estimated capital investment under $300,000. Distributive energy options are also economically viable and would displace all imported diesel, albeit offering less savings potential and requiring greater capital. These include a large-scale wood combustion system to provide heat to the entire village, a wood gasification system for cogeneration of heat and power, and moderate outdoor wood furnaces providing heat to 34 homes or community buildings per furnace. Coordination of biomass procurement and delivery, ensuring resource reliability and technology acceptance, and arbitrating equipment maintenance mitigation for the remote village are challenges to a biomass energy system in Port Graham that can be addressed through comprehensive planning prior to implementation.

Charles Sink, Chugachmiut; Keeryanne Leroux, EERC

2008-05-08T23:59:59.000Z

99

1990 Washington State directory of biomass energy facilities  

DOE Green Energy (OSTI)

This second edition is an update of biomass energy production and use in Washington State for 1989. The purpose of this directory is to provide a listing of known biomass users within the state and some basic information about their facilities. The data can be helpful to persons or organizations considering the use of biomass fuels. The directory is divided into three sections of biomass facilities with each section containing a map of locations and a data summary table. In addition, a conversion table, a glossary and an index are provided in the back of the directory. The first section deals with biogas production from wastewater treatment plants. The second section provides information on the wood combustion facilities in the state. This section is subdivided into two categories. The first is for facilities connected with the forest products industries. The second category include other facilities using wood for energy. The third section is composed of three different types of biomass facilities -- ethanol, municipal solid waste, and solid fuel processing. Biomass facilities included in this directory produce over 64 trillion Btu (British thermal units) per year. Wood combustion facilities account for 91 percent of the total. Biogas and ethanol facilities each produce close to 800 billion Btu per year, MSW facilities produce 1845 billion BTU, and solid fuel processing facilities produce 2321 billion Btu per year. To put these numbers in perspective, Washington's industrial section uses 200 trillion Btu of fuels per year. Therefore, biomass fuels used and/or produced by facilities listed in this directory account for nearly 32 percent of the state's total industrial fuel demand. This is a sizable contribution to the state's energy needs.

Deshaye, J.A.; Kerstetter, J.D.

1990-01-01T23:59:59.000Z

100

1990 Washington State directory of biomass energy facilities  

DOE Green Energy (OSTI)

This second edition is an update of biomass energy production and use in Washington State for 1989. The purpose of this directory is to provide a listing of known biomass users within the state and some basic information about their facilities. The data can be helpful to persons or organizations considering the use of biomass fuels. The directory is divided into three sections of biomass facilities with each section containing a map of locations and a data summary table. In addition, a conversion table, a glossary and an index are provided in the back of the directory. The first section deals with biogas production from wastewater treatment plants. The second section provides information on the wood combustion facilities in the state. This section is subdivided into two categories. The first is for facilities connected with the forest products industries. The second category include other facilities using wood for energy. The third section is composed of three different types of biomass facilities -- ethanol, municipal solid waste, and solid fuel processing. Biomass facilities included in this directory produce over 64 trillion Btu (British thermal units) per year. Wood combustion facilities account for 91 percent of the total. Biogas and ethanol facilities each produce close to 800 billion Btu per year, MSW facilities produce 1845 billion BTU, and solid fuel processing facilities produce 2321 billion Btu per year. To put these numbers in perspective, Washington`s industrial section uses 200 trillion Btu of fuels per year. Therefore, biomass fuels used and/or produced by facilities listed in this directory account for nearly 32 percent of the state`s total industrial fuel demand. This is a sizable contribution to the state`s energy needs.

Deshaye, J.A.; Kerstetter, J.D.

1990-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "including biomass wood" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

1990 Washington State directory of biomass energy facilities  

SciTech Connect

This second edition is an update of biomass energy production and use in Washington State for 1989. The purpose of this directory is to provide a listing of known biomass users within the state and some basic information about their facilities. The data can be helpful to persons or organizations considering the use of biomass fuels. The directory is divided into three sections of biomass facilities with each section containing a map of locations and a data summary table. In addition, a conversion table, a glossary and an index are provided in the back of the directory. The first section deals with biogas production from wastewater treatment plants. The second section provides information on the wood combustion facilities in the state. This section is subdivided into two categories. The first is for facilities connected with the forest products industries. The second category include other facilities using wood for energy. The third section is composed of three different types of biomass facilities -- ethanol, municipal solid waste, and solid fuel processing. Biomass facilities included in this directory produce over 64 trillion Btu (British thermal units) per year. Wood combustion facilities account for 91 percent of the total. Biogas and ethanol facilities each produce close to 800 billion Btu per year, MSW facilities produce 1845 billion BTU, and solid fuel processing facilities produce 2321 billion Btu per year. To put these numbers in perspective, Washington's industrial section uses 200 trillion Btu of fuels per year. Therefore, biomass fuels used and/or produced by facilities listed in this directory account for nearly 32 percent of the state's total industrial fuel demand. This is a sizable contribution to the state's energy needs.

Deshaye, J.A.; Kerstetter, J.D.

1990-01-01T23:59:59.000Z

102

DOE Joint Genome Institute: Breaking Biomass Better, DOE JGI...  

NLE Websites -- All DOE Office Websites (Extended Search)

12, 2010 Breaking Biomass Better: DOE JGI Sequences Wood Decaying Fungus to Advance Biofuels Prospects WALNUT CREEK, CA-One of the challenges in making cellulosic biofuels...

103

Ablative fast pyrolysis of biomass in the entrained-flow cyclonic reactor at SERI  

DOE Green Energy (OSTI)

Progress with the entrained flow cyclonic reactor at SERI is detailed. Feedstocks successfully used include wood flour and fairly large sawdust. Preliminary results show that relatively complete vaporization of the biomass is realized and that the yields of tar or gas can be varied over quite a range with trends following first order kinetic concepts.

Diebold, J.; Scahill, J.

1982-06-01T23:59:59.000Z

104

Demonstration of Pressurizing Coal/Biomass Mixtures Using Posimetric...  

NLE Websites -- All DOE Office Websites (Extended Search)

a range of coal types (bituminous, sub-bituminous, and lignite) and biomass types (wood, corn stover, and switchgrass) at biomass loadings from 30 to 50 percent by weight....

105

The Use of Biomass for Power Generation in the U.S.  

Science Conference Proceedings (OSTI)

Historically, biomass has been man's principal source of energy, mainly used in the form of wood for cooking and heating. With the industrial revolution and the introduction of motorized transportation and electricity, fossil fuels became the dominant source of energy. Today, biomass is the largest domestic source of renewable energy providing over 3% of total U.S. energy consumption, and surpassing hydropower. Yet, recent increases in the price and volatility of fossil fuel supplies and the financial impacts from a number of financially distressed investments in natural gas combined cycle power plants have led to a renewed interest in electricity generation from biomass. The biomass-fueled generation market is a dynamic one that is forecast to show significant growth over the next two decades as environmental drivers are increasingly supported by commercial ones. The most significant change is likely to come from increases in energy prices, as decreasing supply and growing demand increase the costs of fossil fuel-generated electricity and improve the competitive position of biomass as a power source. The report provides an overview of the renewed U.S. market interest in biomass-fueled power generation and gives a concise look at what's driving interest in biomass-fueled generation, the challenges faced in implementing biomass-fueled generation projects, and the current and future state of biomass-fueled generation. Topics covered in the report include: an overview of biomass-fueled generation including its history, the current market environment, and its future prospects; an analysis of the key business factors that are driving renewed interest in biomass-fueled generation; an analysis of the challenges that are hindering the implementation of biomass-fueled generation projects; a description of the various feedstocks that can be used for biomass-fueled generation; an evaluation of the biomass supply chain; a description of biomass-fueled generation technologies; and, a review of the economic drivers of biomass-fueled generation project success.

none

2006-07-15T23:59:59.000Z

106

Biomass Power Association (BPA) | Open Energy Information  

Open Energy Info (EERE)

Biomass Power Association (BPA) Biomass Power Association (BPA) Jump to: navigation, search Tool Summary Name: Biomass Power Association (BPA) Agency/Company /Organization: Biomass Power Association Sector: Energy Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels Phase: Determine Baseline, Evaluate Options, Develop Goals Resource Type: Guide/manual User Interface: Website Website: www.usabiomass.org Cost: Free References: Biomass Power Association[1] The website includes information on biomass power basics, renewable electricity standards, and updates on legislation affecting biomass power plants. Overview "The Biomass Power Association is the nation's leading organization working to expand and advance the use of clean, renewable biomass

107

Biomass Thermochemical Conversion Program. 1983 Annual report  

DOE Green Energy (OSTI)

Highlights of progress achieved in the program of thermochemical conversion of biomass into clean fuels during 1983 are summarized. Gasification research projects include: production of a medium-Btu gas without using purified oxygen at Battelle-Columbus Laboratories; high pressure (up to 500 psia) steam-oxygen gasification of biomass in a fluidized bed reactor at IGT; producing synthesis gas via catalytic gasification at PNL; indirect reactor heating methods at the Univ. of Missouri-Rolla and Texas Tech Univ.; improving the reliability, performance, and acceptability of small air-blown gasifiers at Univ. of Florida-Gainesville, Rocky Creek Farm Gasogens, and Cal Recovery Systems. Liquefaction projects include: determination of individual sequential pyrolysis mechanisms at SERI; research at SERI on a unique entrained, ablative fast pyrolysis reactor for supplying the heat fluxes required for fast pyrolysis; work at BNL on rapid pyrolysis of biomass in an atmosphere of methane to increase the yields of olefin and BTX products; research at the Georgia Inst. of Tech. on an entrained rapid pyrolysis reactor to produce higher yields of pyrolysis oil; research on an advanced concept to liquefy very concentrated biomass slurries in an integrated extruder/static mixer reactor at the Univ. of Arizona; and research at PNL on the characterization and upgrading of direct liquefaction oils including research to lower oxygen content and viscosity of the product. Combustion projects include: research on a directly fired wood combustor/gas turbine system at Aerospace Research Corp.; adaptation of Stirling engine external combustion systems to biomass fuels at United Stirling, Inc.; and theoretical modeling and experimental verification of biomass combustion behavior at JPL to increase biomass combustion efficiency and examine the effects of additives on combustion rates. 26 figures, 1 table.

Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

1984-08-01T23:59:59.000Z

108

Jordan Woods  

NLE Websites -- All DOE Office Websites (Extended Search)

Jordan Woods Windows and Envelope Materials Group Lawrence Berkeley National Laboratory 1 Cyclotron Road MS 90R2000 Berkeley CA 94720 Office Location: 90-2052C (510) 486-4931...

109

Drew Wood  

NLE Websites -- All DOE Office Websites (Extended Search)

Wood Indoor Air Quality Research Collaborative drew@iaqrc.org This speaker was a visiting speaker who delivered a talk or talks on the date(s) shown at the links below. This...

110

The Potential for Biomass District Energy Production in Port Graham, Alaska  

SciTech Connect

This project was a collaboration between The Energy & Environmental Research Center (EERC) and Chugachmiut A Tribal organization Serving the Chugach Native People of Alaska and funded by the U.S. Department of Energy (DOE) Tribal Energy Program. It was conducted to determine the economic and technical feasibility for implementing a biomass energy system to service the Chugachmiut community of Port Graham, Alaska. The Port Graham tribe has been investigating opportunities to reduce energy costs and reliance on energy imports and support subsistence. The dramatic rise in the prices of petroleum fuels have been a hardship to the village of Port Graham, located on the Kenai Peninsula of Alaska. The Port Graham Village Council views the forest timber surrounding the village and the established salmon industry as potential resources for providing biomass energy power to the facilities in their community. Benefits of implementing a biomass fuel include reduced energy costs, energy independence, economic development, and environmental improvement. Fish oildiesel blended fuel and indoor wood boilers are the most economical and technically viable options for biomass energy in the village of Port Graham. Sufficient regional biomass resources allow up to 50% in annual heating savings to the user, displacing up to 70% current diesel imports, with a simple payback of less than 3 years for an estimated capital investment under $300,000. Distributive energy options are also economically viable and would displace all imported diesel, albeit offering less savings potential and requiring greater capital. These include a large-scale wood combustion system to provide heat to the entire village, a wood gasification system for cogeneration of heat and power, and moderate outdoor wood furnaces providing heat to 34 homes or community buildings per furnace. Coordination of biomass procurement and delivery, ensuring resource reliability and technology acceptance, and arbitrating equipment maintenance mitigation for the remote village are challenges to a biomass energy system in Port Graham that can be addressed through comprehensive planning prior to implementation.

Charles Sink, Chugachmiut; Keeryanne Leroux, EERC

2008-05-08T23:59:59.000Z

111

Pre-clinical Measures of Eye Damage (Lens Opacity), Case-control Study of Tuberculosis, and Indicators of Indoor Air Pollution from Biomass Smoke  

E-Print Network (OSTI)

status in the kitchen Wood No heating fuel used ( p value)Number Percentage (%) Heating fuel type Wood/Biomass Coalfuel in the house Wood No heating fuel used Work outside in

Pokhrel, Amod Kumar

2010-01-01T23:59:59.000Z

112

Advanced Biomass: Technology Characteristics, Status and Lessons Learned  

Science Conference Proceedings (OSTI)

Biomass, primarily wood, is a significant source of heat and power in the U.S. Advances in fuel supplies and in conversion technology are needed to make renewable biomass a major source of grid-connected power. This report presents both the characteristics expected of advanced technology and some lessons learned from current wood-fired power generation.

1998-11-30T23:59:59.000Z

113

Biomass | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy » Energy » Biomass Biomass Learn how the Energy Department is working to sustainably transform the nation's abundant renewable resources into biomass energy. Featured Energy 101 | Algae-to-Fuel A behind-the-scenes video of how oil from algae is extracted and refined to create clean, renewable transportation fuel. Oregon Hospital Heats Up with a Biomass Boiler Using money from the Recovery Act, Blue Mountain Hospital replaced one of its 1950s crude oil boilers with a wood-pellet boiler -- saving the hospital about $100,000 a year in heating costs. | Photo courtesy of the Oregon Department of Energy. Highlighting how a rural Oregon hospital was able to cut its heating bills while stimulating the local economy. Ceres: Making Biofuels Bigger and Better A Ceres researcher evaluates the performance of biofuel crops. | Photo courtesy of Ceres, Inc.

114

Fly ash and concrete: a study determines whether biomass, or coal co-firing fly ash, can be used in concrete  

SciTech Connect

Current US national standards for using fly ash in concrete (ASTM C618) state that fly ash must come from coal combustion, thus precluding biomass-coal co-firing fly ash. The co-fired ash comes from a large and increasing fraction of US power plants due to rapid increases in co-firing opportunity fuels with coal. The fly ashes include coal fly ash, wood fly ash from pure wood combustion, biomass and coal co-fired fly ash SW1 and SW2. Also wood fly ash is blended with Class C or Class F to produce Wood C and Wood E. Concrete samples were prepared with fly ash replacing cement by 25%. All fly ash mixes except wood have a lower water demand than the pure cement mix. Fly ashes, either from coal or non coal combustion, increase the required air entraining agent (AEA) to meet the design specification of the mixes. If AEA is added arbitrarily without considering the amount or existence of fly ash results could lead to air content in concrete that is either too low or too high. Biomass fly ash does not impact concrete setting behaviour disproportionately. Switch grass-coal co-fired fly ash and blended wood fly ash generally lie within the range of pure coal fly ash strength. The 56 day flexure strength of all the fly ash mixes is comparable to that of the pure cement mix. The flexure strength from the coal-biomass co-fired fly ash does not differ much from pure coal fly ash. All fly ash concrete mixes exhibit lower chloride permeability than the pure cement mixes. In conclusion biomass coal co-fired fly ash perform similarly to coal fly ash in fresh and hardened concrete. As a result, there is no reason to exclude biomass-coal co-fired fly ash in concrete.

Wang, Shuangzhen; Baxter, Larry

2006-08-01T23:59:59.000Z

115

Minimising greenhouse gas emissions from biomass energy generation  

E-Print Network (OSTI)

and `farmed wood' for electricity, heat and combined heat and power production (EC JRC, 2009). All of the life wood waste SRC chips Straw SRC chips SRC pellets Cofiring Biomass power plant Domestic boiler kgCO2per vary significantly ­ from about 10kgCO2e per MWh for waste products such as waste wood and MDF, up

Wynne, Randolph H.

116

Fixed Bed Biomass Gasifier  

DOE Green Energy (OSTI)

The report details work performed by Gazogen to develop a novel biomass gasifier for producimg electricity from commercially available hardwood chips. The research conducted by Gazogen under this grant was intended to demonstrate the technical and economic feasibility of a new means of producing electricity from wood chips and other biomass and carbonaceous fuels. The technical feasibility of the technology has been furthered as a result of the DOE grant, and work is expected to continue. The economic feasibility can only be shown when all operational problems have been overocme. The technology could eventually provide a means of producing electricity on a decentralized basis from sustainably cultivated plants or plant by-products.

Carl Bielenberg

2006-03-31T23:59:59.000Z

117

Field Guide: Visual Inspection of Wood Structures  

Science Conference Proceedings (OSTI)

The Field Guide: Visual Inspection of Wood Structures is a catalog of photographs illustrating various conditions and factors that commonly affect transmission line wood structures, along with their likely causes, a Maintenance Priority Rating, and suggested actions to be taken by utility personnel. Poles, cross-arms, cross-arm braces, X-braces, brackets, anchor rods, guy wires, and direct imbedded foundations are covered. Other sections include types of wood structures, the anatomy of wood ...

2013-10-28T23:59:59.000Z

118

Processing Cost Analysis for Biomass Feedstocks  

DOE Green Energy (OSTI)

The receiving, handling, storing, and processing of woody biomass feedstocks is an overlooked component of biopower systems. The purpose of this study was twofold: (1) to identify and characterize all the receiving, handling, storing, and processing steps required to make woody biomass feedstocks suitable for use in direct combustion and gasification applications, including small modular biopower (SMB) systems, and (2) to estimate the capital and operating costs at each step. Since biopower applications can be varied, a number of conversion systems and feedstocks required evaluation. In addition to limiting this study to woody biomass feedstocks, the boundaries of this study were from the power plant gate to the feedstock entry point into the conversion device. Although some power plants are sited at a source of wood waste fuel, it was assumed for this study that all wood waste would be brought to the power plant site. This study was also confined to the following three feedstocks (1) forest residues, (2) industrial mill residues, and (3) urban wood residues. Additionally, the study was confined to grate, suspension, and fluidized bed direct combustion systems; gasification systems; and SMB conversion systems. Since scale can play an important role in types of equipment, operational requirements, and capital and operational costs, this study examined these factors for the following direct combustion and gasification system size ranges: 50, 20, 5, and 1 MWe. The scope of the study also included: Specific operational issues associated with specific feedstocks (e.g., bark and problems with bridging); Opportunities for reducing handling, storage, and processing costs; How environmental restrictions can affect handling and processing costs (e.g., noise, commingling of treated wood or non-wood materials, emissions, and runoff); and Feedstock quality issues and/or requirements (e.g., moisture, particle size, presence of non-wood materials). The study found that over the years the industry has shown a good deal of ingenuity and, as a result, has developed several cost effective methods of processing and handling wood. SMB systems usually cannot afford to perform much onsite processing and therefore usually purchase fuels processed to specification. Owners of larger systems try to minimize onsite processing to minimize processing costs. Whole truck dumpers are expensive, but allow for faster and easier unloading, which reduces labor costs and charges by the haulers. Storage costs are a major factor in overall costs, thus the amount of fuel reserve is an important consideration. Silos and bins are relatively expensive compared to open piles used for larger facilities, but may be required depending on space available, wood characteristics, and amount of wood to be stored. For larger systems, a front-end loader has a lot of flexibility in use and is an essential piece of equipment for moving material. Few opportunities appear to exist for improving the cost effectiveness of these systems.

Badger, P.C.

2002-11-20T23:59:59.000Z

119

Urban Wood-Based Bio-Energy Systems in Seattle  

DOE Green Energy (OSTI)

d.\tFuel Supply Management Plan: Development of plans and specifications for the supply of wood. It will include potential fuel sampling analysis and development of contracts for delivery and management of fuel suppliers and handlers. e.\tIntegrated Fuel Management System Development: Seattle Steam requires a biomass Fuel Management System to track and manage the delivery, testing, processing and invoicing of delivered fuel. This application will be web-based and accessed from a password-protected URL, restricting data access and privileges by user-level.

Stan Gent, Seattle Steam Company

2010-10-25T23:59:59.000Z

120

Hydropyrolysis of biomass  

DOE Green Energy (OSTI)

The pyrolysis and hydropyrolysis of biomass was investigated. Experimental runs using the biomass (Poplar wood sawdust) were performed using a tubular reactor of dimensions 1 inch inside diameter and 8 feet long heated at a temperature of 800 C and pressures between 450 and 750 psig. At low heat-up rate the reaction precedes in two steps. First pyrolysis takes place at temperatures of 300 to 400 c and subsequent hydropyrolysis takes place at 700 C and above. This is also confirmed by pressurized thermogravimetric analysis (PTGA). Under conditions of rapid heat-up at higher temperatures and higher hydrogen pressure gasification and hydrogasification of biomass is especially effective in producing carbon monoxide and methane. An overall conversion of 88 to 90 wt % of biomass was obtained. This value is in agreement with the previous work of flash pyrolysis and hydropyrolysis of biomass for rapid heat-up and short residence time. Initial rates of biomass conversion indicate that the rate increases significantly with increase in hydrogen pressure. At 800 C and 755 psig the initial rate of biomass conversion to gases is 0.92 1/min.

Kobayashi, Atsushi; Steinberg, M.

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "including biomass wood" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Biomass Anaerobic Digestion Facilities and Biomass Gasification...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Anaerobic Digestion Facilities and Biomass Gasification Facilities (Indiana) Biomass Anaerobic Digestion Facilities and Biomass Gasification Facilities (Indiana)...

122

Biomass resource potential using energy crops  

DOE Green Energy (OSTI)

Biomass energy crops can provide a significant and environmentally beneficial source of renewable energy feedstocks for the future. They can revitalize the agricultural sector of the US economy by providing profitable uses for marginal cropland. Energy crops include fast-growing trees, perennial grasses, and annual grasses, all capable of collecting solar energy and storing it as cellulosic compounds for several months to several years. Once solar energy is thus captured, it can be converted by means of currently available technologies to a wide variety of energy products such as electricity, heat, liquid transportation fuels, and gases. Experimental results from field trials have generated optimism that selected and improved energy crops, established on cropland with moderate limitations for crop production, have the potential for producing high yields. Both trees and grasses, under very good growing conditions, have produced average annual yields of 20 to 40 dry Mg ha{sup {minus}1} year{sup {minus}1}. Sorghum has shown especially high yields in the Midwest. Hybrids between sugar cane and its wild relatives, called energy cane, have yielded as much as 50 dry Mg ha{sup {minus}1} year{sup {minus}1} in Florida. These experimental results demonstrate that some species have the genetic potential for very rapid growth rates. New wood energy crop systems developed by the Department of Energy`s Biofuels Feedstock Development Program offer, at a minimum, a 100% increase in biomass production rates over the 2 to 4 Mg ha{sup {minus}1} year{sup {minus}1} of dry leafless woody biomass produced by most natural forest systems. Experimental data indicate that short rotation wood crops established on cropland with moderate limitations are capable of producing biomass yields of 8--20 dry Mg ha{sup {minus}1} year{sup {minus}1} with a present average about 11 dry Mg ha{sup {minus}1} year{sup {minus}1} on typical cropland sites.

Wright, L.L.; Cushman, J.H.; Martin, S.A.

1993-09-01T23:59:59.000Z

123

Supporting rural wood industry through timber utilization research. Research paper  

SciTech Connect

The report evaluates the potential impact of USDA Forest Service wood utilization and wood energy research on rural employment and income. Recent projections suggest employment will decrease in many forest products industries, such as softwood sawmilling, but will eventually increase in softwood plywood and reconstituated panel mills. Forest products industries expected to provide wages exceeding the average manufacturing production wage include logging, softwood sawmills, millwork, softwood plywood--veneer, structural wood members, particle-board, wood partitions, pulp mills, paper mills, and paperboard mills. Industries expected to pay 90 percent of the average manufacturing production wage include wood kitchen cabinets, mobile homes, prefabricated wood buildings, and wood preservatives.

Skog, K.

1991-10-01T23:59:59.000Z

124

Discrimination of bark from wood chips through texture analysis by image processing  

Science Conference Proceedings (OSTI)

Utilization of wood chips for bioenergy requires classification and segregation of the constituents of the chipped mass to help optimize energy conversion. Wood chips obtained from processes such as forest thinning can contain a considerable amount of ... Keywords: Bark, Biomass, Image processing, Texture analysis, Wood chip

James R. Wooten; S. D. Filip To; C. Igathinathane; L. O. Pordesimo

2011-10-01T23:59:59.000Z

125

ECONOMIC EVALUATION OF CO2 SEQUESTRATION TECHNOLOGIES TASK 4, BIOMASS GASIFICATION-BASED PROCESSING  

DOE Green Energy (OSTI)

Biomass derived energy currently accounts for about 3 quads of total primary energy use in the United States. Of this amount, about 0.8 quads are used for power generation. Several biomass energy production technologies exist today which contribute to this energy mix. Biomass combustion technologies have been the dominant source of biomass energy production, both historically and during the past two decades of expansion of modern biomass energy in the U. S. and Europe. As a research and development activity, biomass gasification has usually been the major emphasis as a method of more efficiently utilizing the energy potential of biomass, particularly wood. Numerous biomass gasification technologies exist today in various stages of development. Some are simple systems, while others employ a high degree of integration for maximum energy utilization. The purpose of this study is to conduct a technical and economic comparison of up to three biomass gasification technologies, including the carbon dioxide emissions reduction potential of each. To accomplish this, a literature search was first conducted to determine which technologies were most promising based on a specific set of criteria. During this reporting period, the technical and economic performances of the selected processes were evaluated using computer models and available literature. The results of these evaluations are summarized in this report.

Martha L. Rollins; Les Reardon; David Nichols; Patrick Lee; Millicent Moore; Mike Crim; Robert Luttrell; Evan Hughes

2002-04-01T23:59:59.000Z

126

ECONOMIC EVALUATION OF CO2 SEQUESTRATION TECHNOLOGIES TASK 4, BIOMASS GASIFICATION-BASED PROCESSING  

DOE Green Energy (OSTI)

Biomass derived energy currently accounts for about 3 quads of total primary energy use in the United States. Of this amount, about 0.8 quads are used for power generation. Several biomass energy production technologies exist today which contribute to this energy mix. Biomass combustion technologies have been the dominant source of biomass energy production, both historically and during the past two decades of expansion of modern biomass energy in the U. S. and Europe. As a research and development activity, biomass gasification has usually been the major emphasis as a method of more efficiently utilizing the energy potential of biomass, particularly wood. Numerous biomass gasification technologies exist today in various stages of development. Some are simple systems, while others employ a high degree of integration for maximum energy utilization. The purpose of this study is to conduct a technical and economic comparison of up to three biomass gasification technologies, including the carbon dioxide emissions reduction potential of each. To accomplish this, a literature search was first conducted to determine which technologies were most promising based on a specific set of criteria. The technical and economic performances of the selected processes were evaluated using computer models and available literature. Using these results, the carbon sequestration potential of the three technologies was then evaluated. The results of these evaluations are given in this final report.

Martha L. Rollins; Les Reardon; David Nichols; Patrick Lee; Millicent Moore; Mike Crim; Robert Luttrell; Evan Hughes

2002-06-01T23:59:59.000Z

127

Study of the mechanism of pyrolysis and gasification of Mallee biomass.  

E-Print Network (OSTI)

??Mechanisms of pyrolysis/gasification (steam and carbon dioxide) of mallee biomass were investigated. Wood biochar obtained under slow pyrolysis kept botanical structure but lost its original (more)

Yang, Yanwu

2012-01-01T23:59:59.000Z

128

Identifying factors and quantifying their impact on transportation costs of pre-processes biomass.  

E-Print Network (OSTI)

?? This research presents a rail transportation cost analysis of bulk agricultural commodities (such as grain and wood chips) with similar characteristics as pre-processed biomass. (more)

Gonzales, Daniela Sofia

2012-01-01T23:59:59.000Z

129

Biomass power for rural development. Revised design report.  

DOE Green Energy (OSTI)

The retrofit of Dunkirk Steam Station to fire biomass fuels is an important part of the Consortium's goal--demonstrating the viability of commercial scale willow energy crop production and conversion to power. The goal for th biomass facilities at Dunkirk is to reliably cofire a combination of wood wastes and willow biomass with coal at approximately 20% by heat input.

Neuhauser, Edward

1999-10-03T23:59:59.000Z

130

Wood as a fuel. (Latest citations from the NTIS Bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning the availability, combustion aspects, economics, and feasibility of using wood as fuel. Topics include wood-fuel power plants, wood waste fuels, district heating systems, wood burning furnaces and appliances, and wood waste generators. (Contains a minimum of 128 citations and includes a subject term index and title list.)

Not Available

1994-05-01T23:59:59.000Z

131

To be included in this de"nition, the organic matter must be derived from a renewable source of biomass such as sustained yield forestry or  

E-Print Network (OSTI)

/ Energy Policy 29 (2001) 263}277 #12; Australia's proposed RPS includes credits for solar water heaters of Resource and Environmental Management, Simon Fraser University, Vancouver, BC, Canada V5A 1S6 Received 6 July 2000 Abstract Renewables have social and environmental bene"ts compared to conventional

132

STOICHIOMETRY OF WOOD LIQUEFACTION  

E-Print Network (OSTI)

co 2 By decomposition to (2) - 0 in H cf 0 in wood TABLE VForced Balance - Wood to Char Output - 55 lbs char lbsuc -61 STOICHIOMETRY OF WOOD LIQUEFACTION Hubert G. Davis

Davis, Hubert G.

2013-01-01T23:59:59.000Z

133

Engineered plant biomass feedstock particles  

DOE Patents (OSTI)

A novel class of flowable biomass feedstock particles with unusually large surface areas that can be manufactured in remarkably uniform sizes using low-energy comminution techniques. The feedstock particles are roughly parallelepiped in shape and characterized by a length dimension (L) aligned substantially with the grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. The particles exhibit a disrupted grain structure with prominent end and surface checks that greatly enhances their skeletal surface area as compared to their envelope surface area. The L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers. The W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers. The L.times.W dimensions define a pair of substantially parallel top surfaces characterized by some surface checking between longitudinally arrayed fibers. The feedstock particles are manufactured from a variety of plant biomass materials including wood, crop residues, plantation grasses, hemp, bagasse, and bamboo.

Dooley, James H. (Federal Way, WA); Lanning, David N. (Federal Way, WA); Broderick, Thomas F. (Lake Forest Park, WA)

2011-10-11T23:59:59.000Z

134

Engineered plant biomass feedstock particles  

DOE Patents (OSTI)

A novel class of flowable biomass feedstock particles with unusually large surface areas that can be manufactured in remarkably uniform sizes using low-energy comminution techniques. The feedstock particles are roughly parallelepiped in shape and characterized by a length dimension (L) aligned substantially with the grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. The particles exhibit a disrupted grain structure with prominent end and surface checks that greatly enhances their skeletal surface area as compared to their envelope surface area. The L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers. The W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers. The L.times.W dimensions define a pair of substantially parallel top surfaces characterized by some surface checking between longitudinally arrayed fibers. At least 80% of the particles pass through a 1/4 inch screen having a 6.3 mm nominal sieve opening but are retained by a No. 10 screen having a 2 mm nominal sieve opening. The feedstock particles are manufactured from a variety of plant biomass materials including wood, crop residues, plantation grasses, hemp, bagasse, and bamboo.

Dooley, James H. (Federal Way, WA); Lanning, David N. (Federal Way, WA); Broderick, Thomas F. (Lake Forest Park, WA)

2011-10-18T23:59:59.000Z

135

Biomass Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Technology Basics Biomass Technology Basics Biomass Technology Basics August 14, 2013 - 11:31am Addthis Photo of a pair of hands holding corn stover, the unused parts of harvested corn. There are many types of biomass-organic matter such as plants, residue from agriculture and forestry, and the organic component of municipal and industrial wastes-that can now be used to produce fuels, chemicals, and power. Wood has been used to provide heat for thousands of years. This flexibility has resulted in increased use of biomass technologies. According to the Energy Information Administration, 53% of all renewable energy consumed in the United States was biomass-based in 2007. Biomass technologies break down organic matter to release stored energy from the sun. The process used depends on the type of biomass and its

136

Biomass Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Technology Basics Biomass Technology Basics Biomass Technology Basics August 14, 2013 - 11:31am Addthis Photo of a pair of hands holding corn stover, the unused parts of harvested corn. There are many types of biomass-organic matter such as plants, residue from agriculture and forestry, and the organic component of municipal and industrial wastes-that can now be used to produce fuels, chemicals, and power. Wood has been used to provide heat for thousands of years. This flexibility has resulted in increased use of biomass technologies. According to the Energy Information Administration, 53% of all renewable energy consumed in the United States was biomass-based in 2007. Biomass technologies break down organic matter to release stored energy from the sun. The process used depends on the type of biomass and its

137

16th North American Waste to Energy Conference-May 2008 CO2 Enhanced Steam Gasification of Biomass Fuels  

E-Print Network (OSTI)

16th North American Waste to Energy Conference-May 2008 CO2 Enhanced Steam Gasification of Biomass of the decomposition of various biomass feedstocks and their conversion to gaseous fuels such as hydrogen. The steam temperatures: above 500o C for the herbaceous and non-wood samples and above 650o C for the wood biomass fuels

138

34th Council on Forest Engineering, June 12-15, 2011, Quebec City (Quebec) 1 INTEGRATING WOODY BIOMASS INTO  

E-Print Network (OSTI)

BIOMASS INTO THE U.S. SOUTH WOOD SUPPLY CHAIN Dale Greene a , Shawn Baker b , Brooks Mendell c , Amanda H increased demand. Our research is based on surveys of the forest industry, interviews with biomass, availability and demand of wood biomass resources in the US South. This allows examination of how new markets

139

Putney Basketville Site Biomass CHP Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

publications. 25 5 Bioenergy Overview Biopower, or biomass power, is the use of biomass to generate electricity. Biopower system technologies include direct-firing,...

140

Biomass Cofiring Handbook  

Science Conference Proceedings (OSTI)

This handbook has been prepared as a 147how tomanual for those interested in biomass cofiring in cyclone- or pulverized-coal-fired boilers. It contains information regarding all aspects of biomass cofiring, including biomass materials and procurement, handling, storage, pulverizing, feeding, gaseous emissions, ash handling, and general economics. It relies on actual utility experience over the past many years from plants mainly in the United States, but some experience also in Europe and Australia. Many ...

2009-11-05T23:59:59.000Z

Note: This page contains sample records for the topic "including biomass wood" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Engine fuels from biomass  

SciTech Connect

Methods discussed for the conversion of biomass to engine fuels include the production of producer gas, anaerobic fermentation to give biogas, fermentation of sugars and starches to give EtOH, and the production of synthesis gas for conversion to MeOH or hydrocarbons. Also discussed are the suitability of these fuels for particular engines, biomass availability, and the economics of biomass-derived engine fuels.

Parker, H.W.

1982-01-01T23:59:59.000Z

142

Urban Wood-Based Bio-Energy Systems in Seattle  

SciTech Connect

Seattle Steam Company provides thermal energy service (steam) to the majority of buildings and facilities in downtown Seattle, including major hospitals (Swedish and Virginia Mason) and The Northwest (Level I) Regional Trauma Center. Seattle Steam has been heating downtown businesses for 117 years, with an average length of service to its customers of 40 years. In 2008 and 2009 Seattle Steam developed a biomass-fueled renewable energy (bio-energy) system to replace one of its gas-fired boilers that will reduce greenhouse gases, pollutants and the amount of waste sent to landfills. This work in this sub-project included several distinct tasks associated with the biomass project development as follows: a. Engineering and Architecture: Engineering focused on development of system control strategies, development of manuals for start up and commissioning. b. Training: The project developer will train its current operating staff to operate equipment and facilities. c. Flue Gas Clean-Up Equipment Concept Design: The concept development of acid gas emissions control system strategies associated with the supply wood to the project. d. Fuel Supply Management Plan: Development of plans and specifications for the supply of wood. It will include potential fuel sampling analysis and development of contracts for delivery and management of fuel suppliers and handlers. e. Integrated Fuel Management System Development: Seattle Steam requires a biomass Fuel Management System to track and manage the delivery, testing, processing and invoicing of delivered fuel. This application will be web-based and accessed from a password-protected URL, restricting data access and privileges by user-level.

Stan Gent, Seattle Steam Company

2010-10-25T23:59:59.000Z

143

ADVANCED BIOMASS REBURNING FOR HIGH EFFICIENCY NOx CONTROL AND BIOMASS REBURNING - MODELING/ENGINEERING STUDIES JOINT FINAL REPORT  

DOE Green Energy (OSTI)

This report presents results of studies under a Phase II SBIR program funded by the U. S. Department of Agriculture, and a closely coordinated project sponsored by the DOE National Energy Technology Laboratory (NETL, formerly FETC). The overall Phase II objective of the SBIR project is to experimentally optimize the biomass reburning technologies and conduct engineering design studies needed for process demonstration at full scale. The DOE project addresses supporting issues for the process design including modeling activities, economic studies of biomass handling, and experimental evaluation of slagging and fouling. The performance of biomass has been examined in a 300 kW (1 x 10{sup 6} Btu/hr) Boiler Simulator Facility under different experimental conditions. Fuels under investigation include furniture waste, willow wood and walnut shells. Tests showed that furniture pellets and walnut shells provided similar NO{sub x} control as that of natural gas in basic reburning at low heat inputs. Maximum NO{sub x} reduction achieved with walnut shell and furniture pellets was 65% and 58% respectively. Willow wood provided a maximum NO{sub x} reduction of 50% and was no better than natural gas at any condition tested. The efficiency of biomass increases when N-agent is injected into reburning and/or burnout zones, or along with OFA (Advanced Reburning). Co-injection of Na{sub 2}CO{sub 3} with N-agent further increases efficiency of NO{sub x} reduction. Maximum NO{sub x} reduction achieved with furniture pellets and willow wood in Advanced Reburning was 83% and 78% respectively. All combustion experiments of the Phase II project have been completed. All objectives of the experimental tasks were successfully met. The kinetic model of biomass reburning has been developed. Model agrees with experimental data for a wide range of initial conditions and thus correctly represents main features of the reburning process. Modeling suggests that the most important factors that provide high efficiency of biomass in reburning are low fuel-N content and high content of alkali metals in ash. These results indicate that the efficiency of biomass as a reburning fuel may be predicted based on its ultimate, proximate, and ash analyses. The results of experimental and kinetic modeling studies were utilized in applying a validated methodology for reburning system design to biomass reburning in a typical coal-fired boiler. Based on the trends in biomass reburning performance and the characteristics of the boiler under study, a preliminary process design for biomass reburning was developed. Physical flow models were applied to specific injection parameters and operating scenarios, to assess the mixing performance of reburning fuel and overfire air jets which is of paramount importance in achieving target NO{sub x} control performance. The two preliminary cases studied showed potential as candidate reburning designs, and demonstrated that similar mixing performance could be achieved in operation with different quantities of reburning fuel. Based upon this preliminary evaluation, EER has determined that reburning and advanced reburning technologies can be successfully applied using biomass. Pilot-scale studies on biomass reburning conducted by EER have indicated that biomass is an excellent reburning fuel. This generic design study provides a template approach for future demonstrations in specific installations.

Vladimir M. Zamansky; Mark S. Sheldon; Vitali V. Lissianski; Peter M. Maly; David K. Moyeda; Antonio Marquez; W. Randall Seeker

2000-10-01T23:59:59.000Z

144

Biomass Processing Photolibrary  

DOE Data Explorer (OSTI)

Research related to bioenergy is a major focus in the U.S. as science agencies, universities, and commercial labs seek to create new energy-efficient fuels. The Biomass Processing Project is one of the funded projects of the joint USDA-DOE Biomass Research and Development Initiative. The Biomass Processing Photolibrary has numerous images, but there are no accompanying abstracts to explain what you are seeing. The project website, however, makes available the full text of presentations and publications and also includes an exhaustive biomass glossary that is being developed into an ASAE Standard.

145

System and process for biomass treatment  

DOE Patents (OSTI)

A system including an apparatus is presented for treatment of biomass that allows successful biomass treatment at a high solids dry weight of biomass in the biomass mixture. The design of the system provides extensive distribution of a reactant by spreading the reactant over the biomass as the reactant is introduced through an injection lance, while the biomass is rotated using baffles. The apparatus system to provide extensive assimilation of the reactant into biomass using baffles to lift and drop the biomass, as well as attrition media which fall onto the biomass, to enhance the treatment process.

Dunson, Jr., James B; Tucker, III, Melvin P; Elander, Richard T; Lyons, Robert C

2013-08-20T23:59:59.000Z

146

Wood and Pellet Heating Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wood and Pellet Heating Basics Wood and Pellet Heating Basics Wood and Pellet Heating Basics August 16, 2013 - 3:02pm Addthis Wood-burning and pellet fuel appliances use biomass or waste resources to heat homes or buildings. Types of Wood- and Pellet-Burning Appliances The following is a brief overview of the different types of wood and pellet fuel appliances available. High-Efficiency Fireplaces and Fireplace Inserts Designed more for show, traditional open masonry fireplaces should not be considered heating devices. Traditional fireplaces draw in as much as 300 cubic feet per minute of heated room air for combustion, then send it straight up the chimney. Fireplaces also produce significant air pollution. Although some fireplace designs seek to address these issues with dedicated air supplies, glass doors, and heat recovery systems, fireplaces are still

147

Biomass Thermal Energy Council (BTEC) | Open Energy Information  

Open Energy Info (EERE)

Biomass Thermal Energy Council (BTEC) Biomass Thermal Energy Council (BTEC) Jump to: navigation, search Tool Summary Name: Biomass Thermal Energy Council (BTEC) Agency/Company /Organization: Biomass Thermal Energy Council (BTEC) Partner: International Trade Administration Sector: Energy Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels Phase: Determine Baseline, Evaluate Options, Develop Goals Resource Type: Guide/manual User Interface: Website Website: www.biomassthermal.org Cost: Free The Biomass Thermal Energy Council (BTEC) website is focused on biomass for heating and other thermal energy applications, and includes links to numerous reports from various agencies around the world. Overview The Biomass Thermal Energy Council (BTEC) website is focused on biomass for

148

Woody Biomass for Energy in Michigan TOPICS FOR DISCUSSION AND INQUIRY EXTENSION BULLETIN E-3086  

E-Print Network (OSTI)

-added product, such as pellets, heat, power, ethanol, or chemicals. In addition to various kinds of chips of fossil fuels. Woody biomass, or forest biomass, also comes in a variety of forms as forest products. Wood. The kind of product manufactured in the woods is important to mills that produce the next value

149

Other Biomass | OpenEI  

Open Energy Info (EERE)

Other Biomass Other Biomass Dataset Summary Description Provides annual consumption (in quadrillion Btu) of renewable energy by energy use sector (residential, commercial, industrial, transportation and electricity) and by energy source (e.g. solar, biofuel) for 2004 through 2008. Original sources for data are cited on spreadsheet. Also available from: www.eia.gov/cneaf/solar.renewables/page/trends/table1_2.xls Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords annual energy consumption biodiesel Biofuels biomass energy use by sector ethanol geothermal Hydroelectric Conventional Landfill Gas MSW Biogenic Other Biomass renewable energy Solar Thermal/PV Waste wind Wood and Derived Fuels Data application/vnd.ms-excel icon RE Consumption by Energy Use Sector, Excel file (xls, 32.8 KiB)

150

Washington State biomass data book  

DOE Green Energy (OSTI)

This is the first edition of the Washington State Biomass Databook. It assess sources and approximate costs of biomass fuels, presents a view of current users, identifies potential users in the public and private sectors, and lists prices of competing energy resources. The summary describes key from data from the categories listed above. Part 1, Biomass Supply, presents data increasing levels of detail on agricultural residues, biogas, municipal solid waste, and wood waste. Part 2, Current Industrial and Commercial Use, demonstrates how biomass is successfully being used in existing facilities as an alternative fuel source. Part 3, Potential Demand, describes potential energy-intensive public and private sector facilities. Part 4, Prices of Competing Energy Resources, shows current suppliers of electricity and natural gas and compares utility company rates. 49 refs., 43 figs., 72 tabs.

Deshaye, J.A.; Kerstetter, J.D.

1991-07-01T23:59:59.000Z

151

Use of Wood Energy in the United States  

E-Print Network (OSTI)

The use of wood for energy including the burning of solid wood and black liquor from pulping has been growing at a rate significantly greater than that for all other uses such as lumber, pulp, or particleboard. in the United States, the end of most wood is not lumber or pulp and paper but feed for energy. In 1983, 155. 5 M Mg of wood were used for energy. This could threaten to increase the price of wood for those other uses, or it can stimulate us to seek more creative ways of using untapped wood resources for fuel. on the basis of estimates of heavy wood energy use relative to other uses for wood, and estimates of continuing high costs for fossil fuels, we suggest here the feasibility of meeting the demand for fuelwood through small-scale cooperatives. Such an approach can improve forestry practices and can avoid unduly increasing the cost of wood for other end uses.

John W. Koning; Kenneth E. Skog

1986-01-01T23:59:59.000Z

152

Effects of Headspace and Oxygen Level on Off-gas Emissions from Wood Pellets in Storage  

SciTech Connect

Few papers have been published in the open literature on the emissions from biomass fuels, including wood pellets, during the storage and transportation and their potential health impacts. The purpose of this study is to provide data on the concentrations, emission factors, and emission rate factors of CO2, CO, and CH4 from wood pellets stored with different headspace to container volume ratios with different initial oxygen levels, in order to develop methods to reduce the toxic off-gas emissions and accumulation in storage spaces. Metal containers (45 l, 305 mm diameter by 610 mm long) were used to study the effect of headspace and oxygen levels on the off-gas emissions from wood pellets. Concentrations of CO2, CO, and CH4 in the headspace were measured using a gas chromatograph as a function of storage time. The results showed that the ratio of the headspace ratios and initial oxygen levels in the storage space significantly affected the off-gas emissions from wood pellets stored in a sealed container. Higher peak emission factors and higher emission rates are associated with higher headspace ratios. Lower emissions of CO2 and CO were generated at room temperature under lower oxygen levels, whereas CH4 emission is insensitive to the oxygen level. Replacing oxygen with inert gases in the storage space is thus a potentially effective method to reduce the biomass degradation and toxic off-gas emissions. The proper ventilation of the storage space can also be used to maintain a high oxygen level and low concentrations of toxic off-gassing compounds in the storage space, which is especially useful during the loading and unloading operations to control the hazards associated with the storage and transportation of wood pellets.

Sokhansanj, Shahabaddine [ORNL; Kuang, Xingya [University of British Columbia, Vancouver; Shankar, T.S. [University of British Columbia, Vancouver; Lim, C. Jim [University of British Columbia, Vancouver; Bi, X.T. [University of British Columbia, Vancouver; Melin, Staffan [University of British Columbia, Vancouver

2009-10-01T23:59:59.000Z

153

Apparatus for converting biomass to a pumpable slurry  

DOE Patents (OSTI)

An apparatus used in the pretreatment of wood chips in a process for converting biomass to a liquid hydrocarbonaceous fuel. The apparatus functions to break down the wood chips to a size distribution that can be readily handled in a slurry form. Low maintenance operation is obtained by hydrolyzing the chips in a pressure vessel having no moving parts.

Ergun, Sabri (Hillsborough, CA); Schaleger, Larry L. (Oakland, CA); Wrathall, James A. (Berkeley, CA); Yaghoubzadeh, Nasser (El Cerrito, CA)

1986-01-01T23:59:59.000Z

154

COMPACTING BIOMASS AND MUNICIPAL SOLID WASTES TO FORM AND UPGRADED FUEL  

DOE Green Energy (OSTI)

Biomass waste materials exist in large quantity in every city and in numerous industrial plants such as wood processing plants and waste paper collection centers. Through minimum processing, such waste materials can be turned into a solid fuel for combustion at existing coal-fired power plants. Use of such biomass fuel reduces the amount of coal used, and hence reduces the greenhouse effect and global warming, while at the same time it reduces the use of land for landfill and the associated problems. The carbon-dioxide resulting from burning biomass fuel is recycled through plant growth and hence does not contribute to global warming. Biomass fuel also contains little sulfur and hence does not contribute to acid rain problems. Notwithstanding the environmental desirability of using biomass waste materials, not much of them are used currently due to the need to densify the waste materials and the high cost of conventional methods of densification such as pelletizing and briquetting. The purpose of this project was to test a unique new method of biomass densification developed from recent research in coal log pipeline (CLP). The new method can produce large agglomerates of biomass materials called ''biomass logs'' which are more than 100 times larger and 30% denser than conventional ''pellets'' or ''briquettes''. The Phase I project was to perform extensive laboratory tests and an economic analysis to determine the technical and economic feasibility of the biomass log fuel (BLF). A variety of biomass waste materials, including wood processing residues such as sawdust, mulch and chips of various types of wood, combustibles that are found in municipal solid waste stream such as paper, plastics and textiles, energy crops including willows and switch grass, and yard waste including tree trimmings, fallen leaves, and lawn grass, were tested by using this new compaction technology developed at Capsule Pipeline Research Center (CPRC), University of Missouri-Columbia (MU). The compaction conditions, including compaction pressure, pressure holding time, back pressure, moisture content, particle size and shape, piston and mold geometry and roughness, and binder for the materials were studied and optimized. The properties of the compacted products--biomass logs--were evaluated in terms of physical, mechanical, and combustion characteristics. An economic analysis of this technology for anticipated future commercial operations was performed. It was found that the compaction pressure and the moisture content of the biomass materials are critical for producing high-quality biomass logs. For most biomass materials, dense and strong logs can be produced under room temperature without binder and at a pressure of 70 MPa (10,000 psi), approximately. A few types of the materials tested such as sawdust and grass need a minimum pressure of 100 MPa (15,000 psi) in order to produce good logs. The appropriate moisture range for compacting waste paper into good logs is 5-20%, and the optimum moisture is in the neighborhood of 13%. For the woody materials and yard waste, the appropriate moisture range is narrower: 5-13%, and the optimum is 8-9%. The compacted logs have a dry density of 0.8 to 1.0 g/cm{sup 3}, corresponding to a wet density of 0.9 to 1.1 g/cm{sup 3}, approximately. The logs have high strength and high resistance to impact and abrasion, but are feeble to water and hence need to be protected from water or rain. They also have good long-term performance under normal environmental conditions, and can be stored for a long time without significant deterioration. Such high-density and high-strength logs not only facilitate handling, transportation, and storage, but also increase the energy content of biomass per unit volume. After being transported to power plants and crushed, the biomass logs can be co-fired with coal to generate electricity.

Henry Liu; Yadong Li

2000-11-01T23:59:59.000Z

155

Biomass fuels: a national plan  

SciTech Connect

The options and potentials of biomass fuel production for the U.S. are reviewed. The following options are discussed: plant or vegetable oils, direct combustion of wood, production of biogas, and alcohol fuels. It is considered essential that a national planning model is developed to integrate the biofuel requirements for arable land and commercial forests with those for food and other traditional uses. (Refs. 32)

Mitchell, T.E.; Schroer, B.J.; Ziemke, M.C.; Peters, J.F.

1983-04-01T23:59:59.000Z

156

Annual Report on Biomass Cofiring Program 2001  

Science Conference Proceedings (OSTI)

Cofiring renewable biomass fuels with coal in existing coal-fired plants represents one of the lowest cost ways to increase the renewable component of the electricity supply and reduce net greenhouse gas emissions. This report documents nine years of EPRI / U.S. Department of Energy (DOE) / industry engineering analysis and field testing regarding wood and other biomass fuels cofired with coal in utility coal-fired boilers. These activities have propelled cofiring significantly towards the objective of b...

2001-12-14T23:59:59.000Z

157

Wood Use Across Time  

E-Print Network (OSTI)

?Forest products history and use ?Forest resource- the big picture ?Consumption- the big picture ?Trends forest products industry ? pulp & paper ? solid woodBack in Time ?1492 ? Columbus sailed the ocean blue! ? wood use- fuelwood American Indians ?1634: Jean Nicolet

Scott Bowe; United States Wood Use

2005-01-01T23:59:59.000Z

158

Wood Fuel LP | Open Energy Information  

Open Energy Info (EERE)

Fuel LP Fuel LP Jump to: navigation, search Logo: Wood Fuel LP Name Wood Fuel LP Address 5900 Haynesworth Lane Place Houston, Texas Zip 77034 Sector Biomass Product Wood by-products consulting and marketing Website http://www.woodfuel.com/ Coordinates 29.6221328°, -95.1872605° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.6221328,"lon":-95.1872605,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

159

Residential Wood Residential wood combustion (RWC) is  

E-Print Network (OSTI)

Residential Wood Combustion Residential wood combustion (RWC) is increasing in Europe because PM2.5. Furthermore, other combustion- related sources of OA in Europe may need to be reassessed. Will it affect global OA emission estimates? Combustion of biofuels is globally one of the major OA sources

160

CATALYTIC BIOMASS LIQUEFACTION  

E-Print Network (OSTI)

Solvent Systems Catalystic Biomass Liquefaction Investigatereactor Product collection Biomass liquefaction process12-13, 1980 CATALYTIC BIOMASS LIQUEFACTION Sabri Ergun,

Ergun, Sabri

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "including biomass wood" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Evaluation of herbacceous biomass crops in the northern Great Plains. Final report  

DOE Green Energy (OSTI)

Herbaceous lignocellulose crops are a potential renewable feedstock for biochemical conversion systems second in size to wood products. Several herbaceous crops are utilized as forage crops in the northern Great Plains, but forage quality considerations usually dictates a early harvest. Biomass cropping does not have this constraint; therefore, little information was available on herbaceous crops utilized as energy crops prior to this project. Our primary objectives were to evaluate the biomass yield and select chemical components of several herbaceous crops for energy crops in the northern Great Plains, compare the economic feasibility of energy crops with common competing crops, and evaluate biomass cropping on summer fallow lands. Three good, two marginal, and one irrigated sites were used during 1988 to 1992 for the first component. At least six perennial and four annual biomass species were included at all sites. Three to four nitrogen (N) levels and a crop-recrop comparison (annuals only) were management intensities included. Biomass cropping on idled lands was performed on dryland at Carrington and evaluated the effects of removing leguminous biomass on fallowed lands. This report summarizes results from the 5-year project.

Meyer, D.W.; Norby, W.E.; Erickson, D.O.; Johnson, R.G. [North Dakota State Univ., Fargo, ND (United States)

1994-08-01T23:59:59.000Z

162

NREL: News Feature - Wood-Boring Gribbles Intrigue Researchers  

NLE Websites -- All DOE Office Websites (Extended Search)

Wood-Boring Gribbles Intrigue Researchers Wood-Boring Gribbles Intrigue Researchers July 24, 2013 This is a light-enhanced close-up of a tiny crustacean's head and torso, with what looks like fluorescent-blue antennae. Three of its legs are showing. Enlarge image A gribble is a tiny wood borer that produces its own enzyme that can devastate wood efficiently. Researchers hope that by studying gribbles they can learn ways to improve the process of turning biomass into liquid fuels. Courtesy Laura Michie, University of Portsmouth, United Kingdom Tiny wood borers known colloquially as gribbles make their own enzymes and use them to eat through docks in harbor towns, earning enmity from fishermen all around the world. Now, researchers from the Energy Department's National Renewable Energy Laboratory (NREL) and elsewhere are exploring whether that curse can be

163

A Novel Slurry-Based Biomass Reforming Process Final Technical Report  

SciTech Connect

This project was focused on developing a catalytic means of producing H2 from raw, ground biomass, such as fast growing poplar trees, willow trees, or switch grass. The use of a renewable, biomass feedstock with minimal processing can enable a carbon neutral means of producing H2 in that the carbon dioxide produced from the process can be used in the environment to produce additional biomass. For economically viable production of H2, the biomass is hydrolyzed and then reformed without any additional purification steps. Any unreacted biomass and other byproduct streams are burned to provide process energy. Thus, the development of a catalyst that can operate in the demanding corrosive environment and presence of potential poisons is vital to this approach. The concept for this project is shown in Figure 1. The initial feed is assumed to be a >5 wt% slurry of ground wood in dilute base, such as potassium carbonate (K2CO3). Base hydrolysis and reforming of the wood is carried out at high but sub-critical pressures and temperatures in the presence of a solid catalyst. A Pd alloy membrane allows the continuous removal of pure , while the retentate, including methane is used as fuel in the plant. The project showed that it is possible to economically produce H2 from woody biomass in a carbon neutral manner. Technoeconomic analyses using HYSYS and the DOE's H2A tool [1] were used to design a 2000 ton day-1 (dry basis) biomass to hydrogen plant with an efficiency of 46% to 56%, depending on the mode of operation and economic assumptions, exceeding the DOE 2012 target of 43%. The cost of producing the hydrogen from such a plant would be in the range of $1/kg H2 to $2/kg H2. By using raw biomass as a feedstock, the cost of producing hydrogen at large biomass consumption rates is more cost effective than steam reforming of hydrocarbons or biomass gasification and can achieve the overall cost goals of the DOE Fuel Cell Technologies Program. The complete conversion of wood to hydrogen, methane, and carbon dioxide was repeatedly demonstrated in batch reactors varying in size from 50 mL to 7.6 L. The different wood sources (e.g., swamp maple, poplar, and commercial wood flour) were converted in the presence of a heterogeneous catalyst and base at relatively low temperatures (e.g., 310 ???????°C) at sub-critical pressures sufficient to maintain the liquid phase. Both precious metal and base metal catalysts were found to be active for the liquid phase hydrolysis and reforming of wood. Pt-based catalysts, particularly Pt-Re, were shown to be more selective toward breaking C-C bonds, resulting in a higher selectivity to hydrogen versus methane. Ni-based catalysts were found to prefer breaking C-O bonds, favoring the production of methane. The project showed that increasing the concentration of base (base to wood ratio) in the presence of Raney Ni catalysts resulted in greater selectivity toward hydrogen but at the expense of increasing the production of undesirable organic acids from the wood, lowering the amount of wood converted to gas. It was shown that by modifying Ni-based catalysts with dopants, it was possible to reduce the base concentration while maintaining the selectivity toward hydrogen and increasing wood conversion to gas versus organic acids. The final stage of the project was the construction and testing of a demonstration unit for H2 production. This continuous flow demonstration unit consisted of wood slurry and potassium carbonate feed pump systems, two reactors for hydrolysis and reforming, and a gas-liquid separation system. The technical challenges associated with unreacted wood fines and Raney Ni catalyst retention limited the demonstration unit to using a fixed bed Raney Ni catalyst form. The lower activity of the larger particle Raney Ni in turn limited the residence time and thus the wood mass flow feed rate to 50 g min-1 for a 1 wt% wood slurry. The project demonstrated continuous H2 yields with unmodified, fixed bed Raney Ni, from 63% to 100% with correspond

Sean C. Emerson; Timothy D. Davis; A. Peles; Ying She; Joshua Sheffel; Rhonda R. Willigan; Thomas H. Vanderspurt; Tianli Zhu

2011-09-30T23:59:59.000Z

164

NREL: Biomass Research - Thomas Foust  

NLE Websites -- All DOE Office Websites (Extended Search)

Thomas Foust Thomas Foust Photo of Thomas Foust Dr. Thomas Foust is an internationally recognized expert in the biomass field. His areas of expertise include feedstock production, biomass-to-fuels conversion technologies, and environmental and societal sustainability issues associated with biofuels. He has more than 20 years of research and research management experience, specializing in biomass feedstocks and conversion technologies. As National Bioenergy Center Director, Dr. Foust guides and directs NREL's research efforts to develop biomass conversion technologies via biochemical and thermochemical routes, as well as critical research areas addressing the sustainability of biofuels. This research focuses on developing the necessary science and technology for converting biomass to biofuels,

165

STEO October 2012 - wood  

U.S. Energy Information Administration (EIA) Indexed Site

More U.S. households burning wood this winter to stay warm, More U.S. households burning wood this winter to stay warm, reversing two-decade decline Burning wood as the primary heating source in U.S. households has risen over the last 10 years, reversing the decline seen in the 1980s and 1990s. About 2.6 million households out of 115 million will rely on wood as the main way to warm their homes this winter. That's up 3 percent from last year, according to the U.S. Energy Information Administration's new winter fuels forecast. The West will have the most households using wood as their primary space heating fuel, followed by the Midwest, South and Northeast regions of the United States. Wood is also the second most common backup fuel, after electricity, that households across the U.S. use as a supplemental heating source. Almost half of all rural households use wood this

166

THE BURNING OF BIOMASS Economy, Environment, Health  

E-Print Network (OSTI)

THE BURNING OF BIOMASS Economy, Environment, Health Kees Kolff, MD, MPH April 21, 2012 #12;OUR #12;PT COGENERATION LLC A wood-burning cogeneration power plant - Generates electricity (for sale off paper making process, black and white liquor , sludge #12;SLASH BURNING Slash burned in 2008: Jefferson

167

Catalyzed steam gasification of biomass. Phase II. Final research report  

DOE Green Energy (OSTI)

The Wright-Malta gasification process is characterized by low-temperature, catalyzed steam gasification in a pressurized rotary kiln. Fresh biomass moves slowly and continuously through the kiln, where it is gradually heated to around 1200/sup 0/F in an atmosphere of 300 psi steam. During its traverse, pyrolysis and reaction of steam with the nascent char convert nearly all of the organic solids to the gaseous phase. The volatile pyrolysis products pass through the kiln co-currently with the solids and are similarly cracked and steam-reformed within the kiln to fixed gases. Heat for the gasification process is provided by sensible heat recovered from the product gas and the wood decomposition exotherm, making the process inherently very energy-efficient. This report summarizes the work done during the experimental, laboratory-scale phase of development of the W-M biomass gasification process. Two bench-scale experimental gasifiers were constructed and tested: the ''minikiln'', a batch-feed, rotating autoclave; and the ''biogasser'', a stationary, continuous-feed, tubular reactor with zone heating and auger transport. Studies were carried out in these reactors to determine the extent of conversion of biomass solids to gas, and the makeup of the product gas, over a wide range of process conditions. The process variables that were investigated included reactor pressure and temperature, catalyst type and concentration, moisture content and type of biomass feed.

Hooverman, R.H.

1979-05-01T23:59:59.000Z

168

National Woodfuels and Wood Energy Information Analysis Prepared by: Sok Bun Heng  

E-Print Network (OSTI)

supplies. - 90 % of wood energy is consumed by households. - Industry is only a very small consumer of wood % Charcoal 1.2 %, other biomass 1.7 % and imported petroleum product. The most recent national energy supply balance indicates traditional fuels contribute 85 % of the national energy supply, of which 80

169

Production of phenols and biofuels by catalytic microwave pyrolysis of lignocellulosic biomass  

E-Print Network (OSTI)

-distance transportation advantages over raw biomass and wood pellets is BioOil from fast pyrolysis, or Pyrolysis Oil called fast pyrolysis, whereby biomass particles are heated in the absence of oxygen, vapourized to become manufacturing centers for Pyrolysis Oil, and those with extensive reserves of low-cost biomass can

Tang, Juming

170

Investigations of the transportation characteristics of biomass fuel particles in a horizontal pipeline through CFD modelling  

E-Print Network (OSTI)

. Various materials: flour, willow, wood, bark and a mixture of flour and willow, have been considered of biomass are analogies to coal, the physical properties of the milled biomass are significantly different-treatment and milling or pulverising process used in a particular power plant. Most biomass particles in use

Yan, Yong

171

Producing Clean, Renewable Diesel from Biomass | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Producing Clean, Renewable Diesel from Biomass Producing Clean, Renewable Diesel from Biomass Producing Clean, Renewable Diesel from Biomass November 30, 2011 - 12:08pm Addthis ThermoChem Recovery International's process demonstration unit -- where wood waste and forest residue is converted into renewable fuel. | Courtesy of TRI. ThermoChem Recovery International's process demonstration unit -- where wood waste and forest residue is converted into renewable fuel. | Courtesy of TRI. Paul Bryan Biomass Program Manager, Office of Energy Efficiency & Renewable Energy After a rigorous testing process, Energy Department project partners at ThermoChem Recovery International (TRI) have validated a process that converts wood waste and forest residue into clean, renewable fuel. Pilot validation is a key milestone for biofuels companies like TRI. With

172

Syngas production by plasma treatments of alcohols, bio-oils and wood This article has been downloaded from IOPscience. Please scroll down to see the full text article.  

E-Print Network (OSTI)

Syngas production by plasma treatments of alcohols, bio-oils and wood This article has been Contact us My IOPscience #12;Syngas production by plasma treatments of alcohols, bio-oils and wood K to recover energy from biomass. The Syngas produced from biomass can be used to power internal combustion

173

FETC/EPRI Biomass Cofiring Cooperative Agreement. Quarterly technical report, April 1-June 30, 1997  

DOE Green Energy (OSTI)

The FETC/EPRI Biomass Cofiring Program has accelerated the pace of cofiring development by increasing the testing activities plus the support activities for interpreting test results. Past tests conducted and analyzed include the Allen Fossil Plant and Seward Generating Station programs. On-going tests include the Colbert Fossil Plant precommercial test program, the Greenidge Station commercialization program, and the Blount St. Station switchgrass program. Tests in the formative stages included the NIPSCO cofiring test at Michigan City Generating Station. Analytical activities included modeling and related support functions required to analyze the cofiring test results, and to place those results into context. Among these activities is the fuel availability study in the Pittsburgh, PA area. This study, conducted for Duquesne Light, supports their initial investigation into reburn technology using wood waste as a fuel. This Quarterly Report, covering the third quarter of the FETC/EPRI Biomass Cofiring Program, highlights the progress made on the 16 projects funded under this cooperative agreement.

Hughes, E.; Tillman, D.

1997-12-01T23:59:59.000Z

174

Definition: Biomass | Open Energy Information  

Open Energy Info (EERE)

Biomass Biomass Organic matter, including: agricultural and forestry residues, municipal solid wastes, industrial wastes, and terrestrial and aquatic crops grown solely for energy purposes.[1][2] View on Wikipedia Wikipedia Definition Biomass is biological material derived from living, or recently living organisms. It most often refers to plants or plant-derived materials which are specifically called lignocellulosic biomass. As a renewable energy source, biomass can either be used directly via combustion to produce heat, or indirectly after converting it to various forms of biofuel. Conversion of biomass to biofuel can be achieved by different methods which are broadly classified into: thermal, chemical, and biochemical methods. Historically, humans have harnessed biomass-derived

175

An assessment of management practices of wood and wood-related wastes in the urban environment  

DOE Green Energy (OSTI)

The US Environmental Protection Agency estimates that yard waste{sup 1} accounts for approximately 16% of the municipal solid waste (MSW) stream (US EPA, 1994). Until recently, specific data and related information on this component of the (MSW) stream has been limited. The purposes of this study, phase two of the three-phase assessment of urban wood waste issues, are to assess and describe current alternatives to landfills for urban wood waste management; provide guidance on the management of urban wood waste to organizations that produce or manage wood waste; and clarify state regulatory and policy positions affecting these organizations. For this study, urban wood waste is defined as solid waste generated by tree and landscape maintenance services (public and private). Urban wood waste includes the following materials: unchipped mixed wood, unchipped logs, and unchipped tops and brush; clearing and grubbing waste; fall leaves and grass clippings; and chips and whole stumps. Construction and demolition debris and consumer-generated yard waste are not included in this study. Generators of urban wood waste include various organizations; municipal, county, and commercial tree care divisions; nurseries, orchards, and golf courses; municipal park and recreation departments; and electric and telephone utility power line maintenance, excavator and land clearance, and landscape organizations. (1) US EPA defines yard waste as ''yard trimmings'' which includes ''grass, leaves and tree brush trimmings from residential, institutional, and commercial sources.''

NONE

1996-02-01T23:59:59.000Z

176

Near-term potential of wood as a fuel  

DOE Green Energy (OSTI)

A summary of near-term conversion technologies, which could be used to expand utilization of wood residues and standing forests, is presented. The forest products industry is identified as a principal candidate for expanded wood-fuel use. Sources of wood-fuel are identified and conversion technologies and costs are discussed. Possible near-term incentives to encourage the use of wood as a fuel are examined. These incentives include a retirement tax credit and an investment tax credit. Suppliers of commercial wood conversion systems are identified.

Salo, D.; Gsellman, L.; Medville, D.; Price, G.

1978-08-01T23:59:59.000Z

177

Urban Wood Waste Resource Assessment  

DOE Green Energy (OSTI)

This study collected and analyzed data on urban wood waste resources in 30 randomly selected metropolitan areas in the United States. Three major categories wood wastes disposed with, or recovered from, the municipal solid waste stream; industrial wood wastes such as wood scraps and sawdust from pallet recycling, woodworking shops, and lumberyards; and wood in construction/demolition and land clearing debris.

Wiltsee, G.

1998-11-20T23:59:59.000Z

178

Forest-based biomass supply curves for the U.S.  

E-Print Network (OSTI)

Abstract. Nationwide county-level supply curves have been estimated for forest-based biomass in order to help evaluate their potential contributions to producing biofuels. This paper builds on the estimates of potential supply in the USDA / DOE Billion Ton supply (BTS) study. Forest biomass sources include logging residue, thinnings, other removals, unused mill residue, urban wood waste and conventional sourced wood (pulpwood size material). To make the estimates it is assumed that lower cost forest biomass will be supplied from integrated harvesting operations which also remove sawlogs and pulpwood. It is assumed that such removals can be estimated at the county level in two steps. First as a portion of recent estimates of logging residues and second by simulated thinning operations that use tops, branches and small trees for biomass. Supply from thinning dense forest stands is assumed to occur over 30 years as in the original Billion Ton Supply Study. Harvest and stumpage costs are estimated for each of these methods. Final supply estimates for each county assume supply that is half way between the two estimates. Preliminary forest and agricultural biomass supply estimates have been used to indicate that for a marginal cost of $44 per oven dry ton (odt) at forest roadside or farm gate forest and agricultural feedstocks could produce 20 billion gallons of advanced biofuels as called for under the 2007 Energy Independence and Security Act. Forests could provide about 40 million odt of biomass per year at about $44 per odt to produce 4 billion gallons and agricultural feedstocks could provide about 200 million odt and produce 20 billion gallons of biofuel.

Kenneth Skog; Jamie Barbour; Marilyn Buford; Dennis Dykstra; Patti Lebow; Pat Miles; Bob Perlack; Bryce Stokes

2009-01-01T23:59:59.000Z

179

Production of chemical feedstock by the methanolysis of wood  

DOE Patents (OSTI)

A process is discussed for the production of ethylene, benzene and carbon monoxide from particulated biomass such as wood by reaction with methane at a temperature of from 700/sup 0/C to 1200/sup 0/C, at a pressure of from 20 psi to 100 psi for a period of from 0.2 to 10 seconds.

Steinberg, M.; Fallon, P.

1983-06-01T23:59:59.000Z

180

Production of chemical feedstock by the methanolysis of wood  

DOE Patents (OSTI)

A process for the production of ethylene, benzene and carbon monoxide from particulated biomass such as wood by reaction with methane at a temperature of from 700.degree. C. to 1200.degree. C., at a pressure of from 20 psi to 100 psi for a period of from 0.2 to 10 seconds.

Steinberg, Meyer (Melville, NY); Fallon, Peter (East Moriches, NY)

1984-07-31T23:59:59.000Z

Note: This page contains sample records for the topic "including biomass wood" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Wood pellet production  

Science Conference Proceedings (OSTI)

Southern Energy Limited's wood pellet refinery, Bristol, Florida, produces wood pellets for fuel from scrap wood from a nearby sawmill and other hog fuel delivered to the plant from nearby forest lands. The refinery will provide 50,000 tons of pellets per year to the Florida State Hospital at Chattahoochee to fire recently converted boilers in the central power plant. The pellets are densified wood, having a moisture content of about 10% and a heating value of 8000 Btu/lb. They are 0.5 inches in diameter and 2 to 3 inches in length.

Moore, J.W.

1983-08-01T23:59:59.000Z

182

NETL: Coal/Biomass Feed and Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal/Biomass Feed & Gasification Coal/Biomass Feed & Gasification Coal and Coal/Biomass to Liquids Coal/Biomass Feed and Gasification The Coal/Biomass Feed and Gasification Key Technology is advancing scientific knowledge of the production of liquid hydrocarbon fuels from coal and/or coal-biomass mixtures. Activities support research for handling and processing of coal/biomass mixtures, ensuring those mixtures are compatible with feed delivery systems, identifying potential impacts on downstream components, catalyst and reactor optimization, and characterizing the range of products and product quality. Active projects within the program portfolio include the following: Coal-biomass fuel preparation Development of Biomass-Infused Coal Briquettes for Co-Gasification Coal-biomass gasification modeling

183

The potential for Eucalyptus as a wood fuel in the UK A.D. Leslie a,  

E-Print Network (OSTI)

The potential for Eucalyptus as a wood fuel in the UK A.D. Leslie a, , M. Mencuccini b,1 , M. Perks for utilising woody biomass, grown under short rotation forestry management systems, to produce electricity or heat. There are benefits to using biomass in generating heat and power the main environmental benefit

Mencuccini, Maurizio

184

Carbonic Acid Retreatment of Biomass  

DOE Green Energy (OSTI)

This project sought to address six objectives, outlined below. The objectives were met through the completion of ten tasks. (1) Solidify the theoretical understanding of the binary CO{sub 2}/H{sub 2}O system at reaction temperatures and pressures. The thermodynamics of pH prediction have been improved to include a more rigorous treatment of non-ideal gas phases. However it was found that experimental attempts to confirm theoretical pH predictions were still off by a factor of about 1.8 pH units. Arrhenius experiments were carried out and the activation energy for carbonic acid appears to be substantially similar to sulfuric acid. Titration experiments have not yet confirmed or quantified the buffering or acid suppression effects of carbonic acid on biomass. (2) Modify the carbonic acid pretreatment severity function to include the effect of endogenous acid formation and carbonate buffering, if necessary. It was found that the existing severity functions serve adequately to account for endogenous acid production and carbonate effects. (3) Quantify the production of soluble carbohydrates at different reaction conditions and severity. Results show that carbonic acid has little effect on increasing soluble carbohydrate concentrations for pretreated aspen wood, compared to pretreatment with water alone. This appears to be connected to the release of endogenous acids by the substrate. A less acidic substrate such as corn stover would derive benefit from the use of carbonic acid. (4) Quantify the production of microbial inhibitors at selected reaction conditions and severity. It was found that the release of inhibitors was correlated to reaction severity and that carbonic acid did not appear to increase or decrease inhibition compared to pretreatment with water alone. (5) Assess the reactivity to enzymatic hydrolysis of material pretreated at selected reaction conditions and severity. Enzymatic hydrolysis rates increased with severity, but no advantage was detected for the use of carbonic acid compared to water alone. (6) Determine optimal conditions for carbonic acid pretreatment of aspen wood. Optimal severities appeared to be in the mid range tested. ASPEN-Plus modeling and economic analysis of the process indicate that the process could be cost competitive with sulfuric acid if the concentration of solids in the pretreatment is maintained very high ({approx}50%). Lower solids concentrations result in larger reactors that become expensive to construct for high pressure applications.

Baylor university

2003-06-01T23:59:59.000Z

185

Carbonic Acid Pretreatment of Biomass  

SciTech Connect

This project sought to address six objectives, outlined below. The objectives were met through the completion of ten tasks. 1) Solidify the theoretical understanding of the binary CO2/H2O system at reaction temperatures and pressures. The thermodynamics of pH prediction have been improved to include a more rigorous treatment of non-ideal gas phases. However it was found that experimental attempts to confirm theoretical pH predictions were still off by a factor of about 1.8 pH units. Arrhenius experiments were carried out and the activation energy for carbonic acid appears to be substantially similar to sulfuric acid. Titration experiments have not yet confirmed or quantified the buffering or acid suppression effects of carbonic acid on biomass. 2) Modify the carbonic acid pretreatment severity function to include the effect of endogenous acid formation and carbonate buffering, if necessary. It was found that the existing severity functions serve adequately to account for endogenous acid production and carbonate effects. 3) Quantify the production of soluble carbohydrates at different reaction conditions and severity. Results show that carbonic acid has little effect on increasing soluble carbohydrate concentrations for pretreated aspen wood, compared to pretreatment with water alone. This appears to be connected to the release of endogenous acids by the substrate. A less acidic substrate such as corn stover would derive benefit from the use of carbonic acid. 4) Quantify the production of microbial inhibitors at selected reaction conditions and severity. It was found that the release of inhibitors was correlated to reaction severity and that carbonic acid did not appear to increase or decrease inhibition compared to pretreatment with water alone. 5) Assess the reactivity to enzymatic hydrolysis of material pretreated at selected reaction conditions and severity. Enzymatic hydrolysis rates increased with severity, but no advantage was detected for the use of carbonic acid compared to water alone. 6) Determine optimal conditions for carbonic acid pretreatment of aspen wood. Optimal severities appeared to be in the mid range tested. ASPEN-Plus modeling and economic analysis of the process indicate that the process could be cost competitive with sulfuric acid if the concentration of solids in the pretreatment is maintained very high (~50%). Lower solids concentrations result in larger reactors that become expensive to construct for high pressure applications.

G. Peter van Walsum; Kemantha Jayawardhana; Damon Yourchisin; Robert McWilliams; Vanessa Castleberry

2003-05-31T23:59:59.000Z

186

Combustion, pyrolysis, gasification, and liquefaction of biomass  

DOE Green Energy (OSTI)

All the products now obtained from oil can be provided by thermal conversion of the solid fuels biomass and coal. As a feedstock, biomass has many advantages over coal and has the potential to supply up to 20% of US energy by the year 2000 and significant amounts of energy for other countries. However, it is imperative that in producing biomass for energy we practice careful land use. Combustion is the simplest method of producing heat from biomass, using either the traditional fixed-bed combustion on a grate or the fluidized-bed and suspended combustion techniques now being developed. Pyrolysis of biomass is a particularly attractive process if all three products - gas, wood tars, and charcoal - can be used. Gasification of biomass with air is perhaps the most flexible and best-developed process for conversion of biomass to fuel today, yielding a low energy gas that can be burned in existing gas/oil boilers or in engines. Oxygen gasification yields a gas with higher energy content that can be used in pipelines or to fire turbines. In addition, this gas can be used for producing methanol, ammonia, or gasoline by indirect liquefaction. Fast pyrolysis of biomass produces a gas rich in ethylene that can be used to make alcohols or gasoline. Finally, treatment of biomass with high pressure hydrogen can yield liquid fuels through direct liquefaction.

Reed, T.B.

1980-09-01T23:59:59.000Z

187

A survey of state clean energy fund support for biomass  

E-Print Network (OSTI)

production and combustion testing of biomass-coal fuelsbiomass is defined to include bio-product gasification, combustion,landfill gas combustion. Support for Biomass Projects

Fitzgerald, Garrett; Bolinger, Mark; Wiser, Ryan

2004-01-01T23:59:59.000Z

188

HYDROLYZED WOOD SLURRY FLOW MODELING  

E-Print Network (OSTI)

LBL-10090 UC-61 HYDROLYZED WOOD SLURRY FLOW MODELING JimLBL-10090 HYDROLYZED WOOD SLURRY FLOW MODELING Jim Wrathallconversion of hydrolyzed wood slurry to fuel oil, Based on

Wrathall, Jim

2012-01-01T23:59:59.000Z

189

State and Regional Biomass Partnerships  

DOE Green Energy (OSTI)

The Northeast Regional Biomass Program successfully employed a three pronged approach to build the regional capacity, networks, and reliable information needed to advance biomass and bioenergy technologies and markets. The approach included support for state-based, multi-agency biomass working groups; direct technical assistance to states and private developers; and extensive networking and partnership-building activities to share objective information and best practices.

Handley, Rick; Stubbs, Anne D.

2008-12-29T23:59:59.000Z

190

Method for lowering the VOCS emitted during drying of wood products  

DOE Patents (OSTI)

The present invention is directed to a method for removal of VOCs from wood products prior to drying the wood products. The method of the invention includes the steps of providing a chamber having an opening for receiving wood and loading the chamber with green wood. The wood is loaded to an extent sufficient to provide a limited headspace in the chamber. The chamber is then closed and the wood is heated in the chamber for a time and at a temperature sufficient to saturate the headspace with moisture and to substantially transfer VOCs from the wood product to the moisture in the headspace.

Banerjee, Sujit (1832 Jacksons Creek Point, Marietta, GA 30068); Boerner, James Robert (154 Junedale Rd., Cincinnati, OH 45218); Su, Wei (2262 Orleans Ave., Marietta, GA 30062)

2000-01-01T23:59:59.000Z

191

Wood Burning Combined Cycle Power Plant  

E-Print Network (OSTI)

A combined cycle power plant utilizing wood waste products as a fuel has been designed. This plant will yield a 50% efficiency improvement compared to conventional wood-fueled steam power plants. The power plant features an externally-fired gas turbine combined cycle system that obtains its heat input from a high temperature, high pressure ceramic air heater burning wood waste products as a fuel. This paper presents the results of the design study including the cycle evaluation and a description of the major components of the power plant. The cycle configuration is based on maximum fuel efficiency with minimum capital equipment risk. The cycle discussion includes design point performance of the power plant. The design represents a significant step forward in wood-fueled power plants.

Culley, J. W.; Bourgeois, H. S.

1984-01-01T23:59:59.000Z

192

Chemistry and stoichiometry of wood liquefaction  

DOE Green Energy (OSTI)

The approximate stoichiometry of liquefaction, from data of two PDU runs and a laboratory run is Wood (100 g) + CO (0.1 - 0.4 Mol) ..-->.. CO/sub 2/ (0.5 - 1.0 Mol) + H/sub 2/O (0.4 - 0.8 Mol) + Product (55 - 64 g). Product includes wood oil, water soluble organics and residues. Water is formed by decomposition, carbon dioxide by decomposition and reduction of wood oxygen by CO. Aqueous products include many carboxylic acids plus a roughly equal percentage of non-acids. The wood oil is divided into a neutral fraction and three phenolic fractions of varying molecular weight. Some specific compounds found in water and oil phases are listed.

Davis, H.G.; Kloden, D.J.; Schaleger, L.L.

1981-06-01T23:59:59.000Z

193

Minnesota wood energy scale-up project 1994 establishment cost data  

DOE Green Energy (OSTI)

The Minnesota Wood Energy Scale-up Project began in late 1993 with the first trees planted in the spring of 1994. The purpose of the project is to track and monitor economic costs of planting, maintaining and monitoring larger scale commercial plantings. For 15 years, smaller scale research plantings of hybrid poplar have been used to screen for promising, high-yielding poplar clones. In this project 1000 acres of hybrid poplar trees were planted on Conservation Reserve Program (CRP) land near Alexandria, Minnesota in 1994. The fourteen landowners involved re-contracted with the CRP for five-year extensions of their existing 10-year contracts. These extended contracts will expire in 2001, when the plantings are 7 years old. The end use for the trees planted in the Minnesota Wood Energy Scale-up Project is undetermined. They will belong to the owner of the land on which they are planted. There are no current contracts in place for the wood these trees are projected to supply. The structure of the wood industry in the Minnesota has changed drastically over the past 5 years. Stumpage values for fiber have risen to more than $20 per cord in some areas raising the possibility that these trees could be used for fiber rather than energy. Several legislative mandates have forced the State of Minnesota to pursue renewable energy including biomass energy. These mandates, a potential need for an additional 1700 MW of power by 2008 by Northern States Power, and agricultural policies will all affect development of energy markets for wood produced much like agricultural crops. There has been a tremendous amount of local and international interest in the project. Contractual negotiations between area landowners, the CRP, a local Resource Conservation and Development District, the Minnesota Department of Natural Resources and others are currently underway for additional planting of 1000 acres in spring 1995.

Downing, M. [Oak Ridge National Lab., TN (United States)] [Oak Ridge National Lab., TN (United States); Pierce, R. [Champion International, Alexandria, MN (United States)] [Champion International, Alexandria, MN (United States); Kroll, T. [Minnesota Department of Natural Resources-Forestry, St. Cloud, MN (United States)] [Minnesota Department of Natural Resources-Forestry, St. Cloud, MN (United States)

1996-03-18T23:59:59.000Z

194

Biomass power for rural development  

DOE Green Energy (OSTI)

Biomass is a proven option for electricity generation. A diverse range of biopower producers includes electric utilities, independent power producers, and the pulp and paper industry. To help expand opportunities for biomass power production, the U.S. Department of Energy established the Biopower Program and is sponsoring efforts to increase the productivity of dedicated energy crops. The Program aims to double biomass conversion efficiencies, thus reducing biomass power generation costs. These efforts will promote industrial and agricultural growth, improve the environment, create jobs, increase U.S. energy security, and provide new export markets.

Shepherd, P.

2000-06-02T23:59:59.000Z

195

Russell Biomass | Open Energy Information  

Open Energy Info (EERE)

Russell Biomass Jump to: navigation, search Name Russell Biomass Place Massachusetts Sector Biomass Product Russell Biomass, LLC is developing a 50MW biomass to energy project at...

196

Star Biomass | Open Energy Information  

Open Energy Info (EERE)

Biomass Jump to: navigation, search Name Star Biomass Place India Sector Biomass Product Plans to set up biomass projects in Rajasthan. References Star Biomass1 LinkedIn...

197

Energy Basics: Biomass Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Share this resource Biomass Biofuels Biopower Bio-Based Products Biomass Resources Geothermal Hydrogen Hydropower Ocean Solar Wind Biomass Technologies Photo of a pair of hands...

198

Life cycle assessment and biomass carbon accounting  

U.S. Energy Information Administration (EIA) Indexed Site

Biomass feedstocks Biomass feedstocks and the climate implications of bioenergy Steven Hamburg Environmental Defense Fund Slides adapted from Reid Miner NCASI On the landscape, the single-plot looks like this 75 Harvested and burned for energy In year zero, the plot is harvested and the wood is burned for energy 1.1 Year 1 After regeneration begins, the growing biomass sequesters small amounts of CO2 annually 2.1 Year 2 2.8 Year 3 ??? Year X, until next harvest Σ = . Over time, if carbon stocks are returned to pre-harvest levels... ...the net emissions over this time are zero. single plot analysis Net Cumulative CO2 combustion emissions Cumulative CO2 combustion emissions Time Time Biomass energy Fossil fuel energy single plot analysis Net Cumulative CO2 combustion emissions Cumulative

199

Biomass Thermochemical Conversion Program: 1986 annual report  

DOE Green Energy (OSTI)

Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. Thermochemical conversion processes can generate a variety of products such as gasoline hydrocarbon fuels, natural gas substitutes, or heat energy for electric power generation. The US Department of Energy is sponsoring research on biomass conversion technologies through its Biomass Thermochemical Conversion Program. Pacific Northwest Laboratory has been designated the Technical Field Management Office for the Biomass Thermochemical Conversion Program with overall responsibility for the Program. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1986. 88 refs., 31 figs., 5 tabs.

Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

1987-01-01T23:59:59.000Z

200

Biomass Cofiring in Coal-Fired Boilers  

DOE Green Energy (OSTI)

Cofiring biomass-for example, forestry residues such as wood chips-with coal in existing boilers is one of the easiest biomass technologies to implement in a federal facility. The current practice is to substitute biomass for up to 20% of the coal in the boiler. Cofiring has many benefits: it helps to reduce fuel costs as well as the use of landfills, and it curbs emissions of sulfur oxide, nitrogen oxide, and the greenhouse gases associated with burning fossil fuels. This Federal Technology Alert was prepared by the Department of Energy's Federal Energy Management Program to give federal facility managers the information they need to decide whether they should pursue biomass cofiring at their facilities.

Not Available

2004-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "including biomass wood" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Technical and economic review of wood energy systems for military bases  

DOE Green Energy (OSTI)

This report combines two reports dealing with industrial-sized wood combustion technology. As part of its industrial wood combustion effort, SERI's former Industrial Applications and Analysis Branch (IAAB) contracted with the Air Force through the Department of Energy (DOE) to review wood fuels and equipment and to perform an economic sensitivity analysis of small-scale industrial-sized wood combustion investments that might be considered for steam and/or electricity generation at Air Force Bases. Additionally, in 1979, SERI's IAAB contracted with North Carolina State University to produce the Decision Makers' Guide to Wood Fuel for Small Industrial Energy Use. These two reports have been combined to provide the Air Force with a comprehensive guide to wood energy combustion. Discussion is presented under the headings: comparison of wood fuels with conventional boiler fuels; densified biomass; fuel storage; fuel handling and preparation; wood-fired equipment; gasification of wood; retrofitting fossil-fuel boilers; cogeneration; pollution abatement; wood energy system economics and procurement of wood fuels. (DMC)

Flowers, L.; Junge, D.; Levi, M.; O'Grady, M.

1983-06-01T23:59:59.000Z

202

Northeast regional biomass program. Retrospective, 1983--1993  

DOE Green Energy (OSTI)

Ten years ago, when Congress initiated the Regional Biomass Energy Program, biomass fuel use in the Northeast was limited primarily to the forest products industry and residential wood stoves. An enduring form of energy as old as settlement in the region, residential wood-burning now takes its place beside modern biomass combustion systems in schools and other institutions, industrial cogeneration facilities, and utility-scale power plants. Biomass today represents more than 95 percent of all renewable energy consumed in the Northeast: a little more than one-half quadrillion BTUs yearly, or five percent of the region`s total energy demand. Yet given the region`s abundance of overstocked forests, municipal solid waste and processed wood residues, this represents just a fraction of the energy potential the biomass resource has to offer.This report provides an account of the work of the Northeast Regional Biomass Program (NRBP) over it`s first ten years. The NRBP has undertaken projects to promote the use of biomass energy and technologies.

Savitt, S.; Morgan, S. [eds.] [Citizens Conservation Corp., Boston, MA (United States)

1995-01-01T23:59:59.000Z

203

DANISHBIOETHANOLCONCEPT Biomass conversion for  

E-Print Network (OSTI)

DANISHBIOETHANOLCONCEPT Biomass conversion for transportation fuel Concept developed at RIS? and DTU Anne Belinda Thomsen (RIS?) Birgitte K. Ahring (DTU) #12;DANISHBIOETHANOLCONCEPT Biomass: Biogas #12;DANISHBIOETHANOLCONCEPT Pre-treatment Step Biomass is macerated The biomass is cut in small

204

Biomass & Bioenergy, 2010, 34(7), 923-930, doi:10.1016/j.biombioe.2010.01.039. EEEnnneeerrrgggyyy rrreeeqqquuuiiirrreeemmmeeennnttt fffooorrr fffiiinnneee gggrrriiinnndddiiinnnggg ooofff tttooorrrrrreeefffiiieeeddd wwwooooooddd  

E-Print Network (OSTI)

and `farmed wood' for electricity, heat and combined heat and power production (EC JRC, 2009). All of the life wood waste SRC chips Straw SRC chips SRC pellets Cofiring Biomass power plant Domestic boiler kgCO2per vary significantly ­ from about 10kgCO2e per MWh for waste products such as waste wood and MDF, up

Paris-Sud XI, Université de

205

Science Activities in Biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

Activities in Biomass Curriculum: Biomass Power (organic chemistry, genetics, distillation, agriculture, chemicalcarbon cycles, climatology, plants and energy resources...

206

Benchmarking Biomass Gasification Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Gasification Technologies for Biomass Gasification Technologies for Fuels, Chemicals and Hydrogen Production Prepared for U.S. Department of Energy National Energy Technology Laboratory Prepared by Jared P. Ciferno John J. Marano June 2002 i ACKNOWLEDGEMENTS The authors would like to express their appreciation to all individuals who contributed to the successful completion of this project and the preparation of this report. This includes Dr. Phillip Goldberg of the U.S. DOE, Dr. Howard McIlvried of SAIC, and Ms. Pamela Spath of NREL who provided data used in the analysis and peer review. Financial support for this project was cost shared between the Gasification Program at the National Energy Technology Laboratory and the Biomass Power Program within the DOE's Office of Energy Efficiency and Renewable Energy.

207

Thermal Use of Biomass in The United States | Open Energy Information  

Open Energy Info (EERE)

of Biomass in The United States of Biomass in The United States Jump to: navigation, search The biomass heat exchanger furnace can burn husklage, wood residue, or other biomass fuels to produce warm air for space heating or for process use such as grain drying. Courtesy of DOE/NREL. Credit - Energetics The United States much less biomass to produce thermal energy even when compared with developed countries. In 2003, the United States only consumed 727 kilotons of oil equivalent (ktoe) of biomass to produce thermal energy while consuming 6,078 ktoe of biomass to produce electricity. On the other hand, Europe consumed 6,978 ktoe of biomass to produce useful thermal energy while consuming 5,663 ktoe of biomass as electricity. In Europe (especially Sweden and other Nordic Countries) the use of biomass for heat

208

Wood Heating Fuel Exemption  

Energy.gov (U.S. Department of Energy (DOE))

This statute exempts from the state sales tax all wood or "refuse-derived" fuel used for heating purposes. The law does not make any distinctions about whether the qualified fuels are used for...

209

Gregory H. Woods  

Energy.gov (U.S. Department of Energy (DOE))

Gregory H. Woods was sworn in as the General Counsel of the Department of Energy on April 16, 2012, following the unanimous confirmation of his appointment by the United States Senate. Mr....

210

Fuels for Schools Program Uses Leftover Wood to Warm Buildings | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuels for Schools Program Uses Leftover Wood to Warm Buildings Fuels for Schools Program Uses Leftover Wood to Warm Buildings Fuels for Schools Program Uses Leftover Wood to Warm Buildings May 10, 2010 - 1:11pm Addthis Darby Schools received a woodchip heating system in 2003. Rick Scheele, facilities manager for the Darby schools, shows off the wood firebox | Photo Courtesy USFS Fuels for Schools, Dave Atkins Darby Schools received a woodchip heating system in 2003. Rick Scheele, facilities manager for the Darby schools, shows off the wood firebox | Photo Courtesy USFS Fuels for Schools, Dave Atkins Stephen Graff Former Writer & editor for Energy Empowers, EERE In parts of this country, wood seems like the outsider in the biomass family. New ethanol plants that grind down millions of bushels of corn in the Midwest and breakthroughs in algae along the coasts always garner the

211

Biomass thermochemical conversion program. 1985 annual report  

DOE Green Energy (OSTI)

Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. The US Department of Energy (DOE) is sponsoring research on this conversion technology for renewable energy through its Biomass Thermochemical Conversion Program. The Program is part of DOE's Biofuels and Municipal Waste Technology Division, Office of Renewable Technologies. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1985. 32 figs., 4 tabs.

Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

1986-01-01T23:59:59.000Z

212

Alkali deposits found in biomass boilers: The behavior of inorganic material in biomass-fired power boilers -- Field and laboratory experiences. Volume 2  

DOE Green Energy (OSTI)

This report documents the major findings of the Alkali Deposits Investigation, a collaborative effort to understand the causes of unmanageable ash deposits in biomass-fired electric power boilers. Volume 1 of this report provide an overview of the project, with selected highlights. This volume provides more detail and discussion of the data and implications. This document includes six sections. The first, the introduction, provides the motivation, context, and focus for the investigation. The remaining sections discuss fuel properties, bench-scale combustion tests, a framework for considering ash deposition processes, pilot-scale tests of biomass fuels, and field tests in commercially operating biomass power generation stations. Detailed chemical analyses of eleven biomass fuels representing a broad cross-section of commercially available fuels reveal their properties that relate to ash deposition tendencies. The fuels fall into three broad categories: (1) straws and grasses (herbaceous materials); (2) pits, shells, hulls and other agricultural byproducts of a generally ligneous nature; and (3) woods and waste fuels of commercial interest. This report presents a systematic and reasonably detailed analysis of fuel property, operating condition, and boiler design issues that dictate ash deposit formation and property development. The span of investigations from bench-top experiments to commercial operation and observations including both practical illustrations and theoretical background provide a self-consistent and reasonably robust basis to understand the qualitative nature of ash deposit formation in biomass boilers. While there remain many quantitative details to be pursued, this project encapsulates essentially all of the conceptual aspects of the issue. It provides a basis for understanding and potentially resolving the technical and environmental issues associated with ash deposition during biomass combustion. 81 refs., 124 figs., 76 tabs.

Baxter, L.L. [Sandia National Labs., Livermore, CA (United States). Combustion Research Facility; Miles, T.R.; Miles, T.R. Jr. [Miles (Thomas R.), Portland, OR (United States); Jenkins, B.M. [California Univ., Davis, CA (United States); Dayton, D.C.; Milne, T.A. [National Renewable Energy Lab., Golden, CO (United States); Bryers, R.W. [Foster Wheeler Development Corp., Livingston, NJ (United States); Oden, L.L. [Bureau of Mines, Albany, OR (United States). Albany Research Center

1996-03-01T23:59:59.000Z

213

2003 Biomass Interest Group Annual Summary  

Science Conference Proceedings (OSTI)

The Biomass Interest Group (BIG) provides a special focus for biomass energy research through EPRI. This annual summary provides a description of BIG meetings and projects in 2003, research results on several key BIG topics (including gasification, digestion, and cofiring studies), and an overview of EPRI's biomass research program.

2004-03-25T23:59:59.000Z

214

Gregory H. Woods  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

H. Woods H. Woods Department· of Energy Fermi Site Office Post Office Box 2000 Batavia, Illinois 60510 JAN 1 1 2DD Office of the General Counsel GC-1, FORS SUBJECT: FERMI SITE OFFICE (FSO) 2013 ANNUAL NATIONAL ENVIRONMENTAL POLICY ACT (NEPA) PLANNING SUMMARY Section 5(a) (7) of Department Of Energy Order 451.1 B Change 2, NEPA Compliance Program, requires each Secretarial Officer and Head of Field Organization to submit an annual NEPA

215

Finishing Wood Decks  

E-Print Network (OSTI)

Wood decks have become an important part of residential construction in recent years. However, there is considerable confusion regarding how these structures should be protected with finish. This paper summarizes the types, application techniques, and expected service lives of various finishes on both preservative treated and untreated lumber. Recommendations are made on the basis of decades of research on various wood species using a wide variety of finishes.

R. Sam Williams; et al.

1993-01-01T23:59:59.000Z

216

Treated Wood Pole Management  

Science Conference Proceedings (OSTI)

This document characterizes similarities and differences in international wood pole and wood pole preservative management. The research team identified practices for selection, regulation, and disposition of utility poles outside the United States. Most information is based on interviews and website and published literature searches. Additional research will clarify regulatory positions in other countries and generate improved understanding, which will support strategic planning for U.S. utilities. Utili...

2008-10-29T23:59:59.000Z

217

Definition: Biomass Cook Stove | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Biomass Cook Stove Jump to: navigation, search Dictionary.png Biomass Cook Stove A Stove that is heated by burning wood, charcoal, animal dung or crop residue. Cook stoves are the most common way of cooking and heating food in developing countries.[1] View on Wikipedia Wikipedia Definition "Cooking stove" redirects here. For a kitchen cooker, stove, range, oven, or stove top, see Kitchen stove. In cooking, a cook stove is heated by burning wood, charcoal, animal dung or crop residue. Cook stoves are commonly used for cooking and heating food in developing countries. Developing countries consume little energy compared to developed nations; however, over 50% of the energy that they do use goes into cooking food.

218

Method of producing hydrogen, and rendering a contaminated biomass inert  

DOE Patents (OSTI)

A method for rendering a contaminated biomass inert includes providing a first composition, providing a second composition, reacting the first and second compositions together to form an alkaline hydroxide, providing a contaminated biomass feedstock and reacting the alkaline hydroxide with the contaminated biomass feedstock to render the contaminated biomass feedstock inert and further producing hydrogen gas, and a byproduct that includes the first composition.

Bingham, Dennis N. (Idaho Falls, ID); Klingler, Kerry M. (Idaho Falls, ID); Wilding, Bruce M. (Idaho Falls, ID)

2010-02-23T23:59:59.000Z

219

Biomass Meeting, September 23, 2004, Orlando, Florida  

Science Conference Proceedings (OSTI)

EPRI's Biomass Interest Group (BIG) meets three times per year and its purpose is to evaluate, fund, discuss, and identify projects that produce power from biomass sources. This CD contains presentations made at the September 2004 meeting: 1. Minutes - September 2004 (Agenda and Attendee List included) 2. Dave O'Connor, EPRI Biomass Program Manager -- Biomass Energy 84E for Renewable Energy Advisory Meeting Sept 22, 2004 3. Darren Ishimura, Hawaiian Electric Company -- Hawaiian Electric Update: RPS and B...

2005-03-31T23:59:59.000Z

220

Economic Development Through Biomass Systems Integration  

Science Conference Proceedings (OSTI)

Current research has shown the economic feasibility of integrated biomass systems using willow as an energy crop feedstock along with available wood wastes. Utility members in the Empire State Biopower Consortium anticipate conversion of four pulverized-coal plants for co-firing at 10% by heat content. Co-firing would be a prelude to repowering with a high-efficiency biopower system by 2012.

1995-10-07T23:59:59.000Z

Note: This page contains sample records for the topic "including biomass wood" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Maintenance Guidelines for Air Conveyors in Biomass Transport  

Science Conference Proceedings (OSTI)

Utilities are beginning to add wood and other biomass fuels to fire their generating units. This enables them to produce carbon-neutral electricity and participate in state or national renewable energy programs. New equipment is available to convey biomass. This equipment is analogous in function to existing conveyors, but it is different from the detail, design, maintenance, and operations perspectives. Air-supported belt conveyors have replaced the carry idlers that are common to conventional belt conv...

2012-06-20T23:59:59.000Z

222

Catalytic Hydrothermal Gasification of Biomass  

Science Conference Proceedings (OSTI)

A recent development in biomass gasification is the use of a pressurized water processing environment in order that drying of the biomass can be avoided. This paper reviews the research undertaken developing this new option for biomass gasification. This review does not cover wet oxidation or near-atmospheric-pressure steam-gasification of biomass. Laboratory research on hydrothermal gasification of biomass focusing on the use of catalysts is reviewed here, and a companion review focuses on non-catalytic processing. Research includes liquid-phase, sub-critical processing as well as super-critical water processing. The use of heterogeneous catalysts in such a system allows effective operation at lower temperatures, and the issues around the use of catalysts are presented. This review attempts to show the potential of this new processing concept by comparing the various options under development and the results of the research.

Elliott, Douglas C.

2008-05-06T23:59:59.000Z

223

COFIRING BIOMASS WITH LIGNITE COAL  

DOE Green Energy (OSTI)

As of September 28, 2001, all the major project tasks have been completed. A presentation was given to the North Dakota State Penitentiary (NDSP) and the North Dakota Division of Community Services (DCS). In general, the feasibility study has resulted in the following conclusions: (1) Municipal wood resources are sufficient to support cofiring at the NDSP. (2) Steps have been taken to address all potential fuel-handling issues with the feed system design, and the design is cost-effective. (3) Fireside issues of cofiring municipal wood with coal are not of significant concern. In general, the addition of wood will improve the baseline performance of lignite coal. (4) The energy production strategy must include cogeneration using steam turbines. (5) Environmental permitting issues are small and do not affect economics. (6) The base-case economic scenario provides for a 15-year payback of a 20-year municipal bond and does not include the broader community benefits that can be realized.

Darren D. Schmidt

2001-09-30T23:59:59.000Z

224

Life Cycle Assessment: Using Wildland Biomass to Generate Electrical Power  

E-Print Network (OSTI)

California faces significant threats from wildfire due to excessive accumulations of forest and wildland fuels. Much of this fuel loading is in the form of small-diameter woody material, or biomass. Fire suppression over the past century, combined with intensive forest management and a generally warmer and wetter climate, has led to increasingly dense vegetation. When wildfires occur, the heavy accumulation of biomass often makes those fires larger and more severe. The increase in forest biomass threatens public health and safety, watersheds, and wildlife habitat with unacceptable losses to wildfire. Public land management agencies and private landowners are focusing efforts on treating biomass to reduce wildfire hazards. These treatments typically create a significant volume of biomass wood waste. California law and policy, as well as several studies, assert a range of benefits associated with removing and using biomass from forests, as well as from agricultural

I. The Problem

2005-01-01T23:59:59.000Z

225

Particulate matter emissions from combustion of wood in district heating applications  

Science Conference Proceedings (OSTI)

The utilization of wood biomass to generate district heat and power in communities that have access to this energy source is increasing. In this paper the effect of wood fuel properties, combustion condition, and flue gas cleaning system on variation in the amount and formation of particles in the flue gas of typical district heating wood boilers are discussed based on the literature survey. Direct measurements of particulate matter (PM) emissions from wood boilers with district heating applications are reviewed and presented. Finally, recommendations are given regarding the selection of wood fuel, combustion system condition, and flue gas cleaning system in district heating systems in order to meet stringent air quality standards. It is concluded that utilization of high quality wood fuel, such as wood pellets produced from natural, uncontaminated stem wood, would generate the least PM emissions compared to other wood fuel types. Particulate matter emissions from grate burners equipped with electrostatic precipitators when using wood pellets can be well below stringent regulatory emission limit such as particulate emission limit of Metro Vancouver, Canada.

Ghafghazi, S. [University of British Columbia, Vancouver; Sowlati, T. [University of British Columbia, Vancouver; Sokhansanj, Shahabaddine [ORNL; Bi, X.T. [University of British Columbia, Vancouver; Melin, Staffan [Delta Research Corporation

2011-01-01T23:59:59.000Z

226

Biomass Resource Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Resource Basics Biomass Resource Basics Biomass Resource Basics August 14, 2013 - 1:22pm Addthis Biomass resources include any plant-derived organic matter that is available on a renewable basis. These materials are commonly referred to as feedstocks. Biomass Feedstocks Biomass feedstocks include dedicated energy crops, agricultural crops, forestry residues, aquatic crops, biomass processing residues, municipal waste, and animal waste. Dedicated energy crops Herbaceous energy crops are perennials that are harvested annually after taking 2 to 3 years to reach full productivity. These include such grasses as switchgrass, miscanthus (also known as elephant grass or e-grass), bamboo, sweet sorghum, tall fescue, kochia, wheatgrass, and others. Short-rotation woody crops are fast-growing hardwood trees that are

227

Biomass Resource Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Resource Basics Biomass Resource Basics Biomass Resource Basics August 14, 2013 - 1:22pm Addthis Biomass resources include any plant-derived organic matter that is available on a renewable basis. These materials are commonly referred to as feedstocks. Biomass Feedstocks Biomass feedstocks include dedicated energy crops, agricultural crops, forestry residues, aquatic crops, biomass processing residues, municipal waste, and animal waste. Dedicated energy crops Herbaceous energy crops are perennials that are harvested annually after taking 2 to 3 years to reach full productivity. These include such grasses as switchgrass, miscanthus (also known as elephant grass or e-grass), bamboo, sweet sorghum, tall fescue, kochia, wheatgrass, and others. Short-rotation woody crops are fast-growing hardwood trees that are

228

Schiller Biomass Con Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Schiller Biomass Con Biomass Facility Jump to: navigation, search Name Schiller Biomass Con Biomass...

229

Ware Biomass Cogen Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Ware Biomass Cogen Biomass Facility Jump to: navigation, search Name Ware Biomass Cogen Biomass...

230

Principle Wood Scientist  

E-Print Network (OSTI)

Wood, bark, and the wax-coated seeds from Chinese tallow tree (Sapium sebiferum (L.) Roxb. syn. Triadica sebifera (L.) Small), an invasive tree species in the southeastern United States, were subjected to extractions and degradative chemical analyses in an effort to better understand the mechanism(s) by which this tree species aggressively competes against native vegetation, and also to facilitate utilization efforts. Analysis of the wood extractives by FTIR spectroscopy showed functionalities analogous to those in hydrolyzable tannins, which appeared to be abundant in the bark; as expected, the seeds had a high wax/oil content (43.1%). Compared to other fast-growing hardwoods, the holocellulose content for the Chinese tallow tree wood was somewhat higher (83.3%). The alpha-cellulose (48.3%) and Klason lignin (20.3%) contents were found to be similar to those for most native North American hardwoods. Results suggest that Chinese tallow tree wood utilization along with commercial wood species should not present any significant processing problems related to the extractives or cell-wall chemistry. Keywords: Cellulose, Chinese tallow tree, extractives, Klason lignin, utilization.

Thomas L. Eberhardt; Usda Forest Service; Xiaobo Li; Chung Y. Hse; Usda Forest Service

2005-01-01T23:59:59.000Z

231

Assessment of potential wood supply for intermediate scale thermoconversion facilities, Tasks I, II, III  

DOE Green Energy (OSTI)

The Department of Energy's Biomass Thermochemical Conversion Program has been concerned with the potential of wood biomass to contribute to the Nation's energy supply. One of the factors inhibiting the selection of wood biomass for energy by non-forest industries, especially by those requiring large quantities (500 to 2000 green tons per day), is concern with adequate fuel supply in terms of both a supply system and an adequate resource base. With respect to the latter, this report looks at the gross resource base as has been historically reported and also examines factors other than traditional product removals that could reduce to some degree the amount of resource that is available. The study also examined the conversion of a New England utility from coal to wood chips.

Not Available

1985-11-01T23:59:59.000Z

232

Gasifier system identification for biomass power plants using response surface method  

Science Conference Proceedings (OSTI)

Biomass in the form of wood has been used by human as a source of energy for a long period of time. Recently, the use of renewable energy sources has been widely experienced in domestic, commercial, and industrial appliances. This has resulted in a greater ... Keywords: biomass, gasifier System, identification, modelling, response surface method

J. Satonsaowapak; T. Ratniyomchai; T. Kulworawanichpong; P. Pao-La-Or; B. Marungsri; A. Oonsivilai

2010-02-01T23:59:59.000Z

233

Precision wood particle feedstocks  

DOE Patents (OSTI)

Wood particles having fibers aligned in a grain, wherein: the wood particles are characterized by a length dimension (L) aligned substantially parallel to the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L; the L.times.H dimensions define two side surfaces characterized by substantially intact longitudinally arrayed fibers; the W.times.H dimensions define two cross-grain end surfaces characterized individually as aligned either normal to the grain or oblique to the grain; the L.times.W dimensions define two substantially parallel top and bottom surfaces; and, a majority of the W.times.H surfaces in the mixture of wood particles have end checking.

Dooley, James H; Lanning, David N

2013-07-30T23:59:59.000Z

234

The Pitfalls of Realist Analysis of Global Capitalism: A Critique of Ellen Meiksins Woods Empire of Capitalism: A Critique of Ellen Meiksins Wood's "Empire of Capital"  

E-Print Network (OSTI)

Boulder: Paradigm Press. Wood, Ellen Meiksins 2002, Globalgroups. 13 Indeed, Wood 2003, p. 23. Wood 2003, p. 132.Ibid. Wood 2003, p. 129. Wood 2003, p. 133. Wood 2003, p.

Robinson, William I.

2007-01-01T23:59:59.000Z

235

NREL: Biomass Research - Biomass Characterization Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Characterization Projects Biomass Characterization Projects A photo of a magnified image on a computer screen. Many blue specks and lines in different sizes and shapes are visible on top of a white background. A microscopic image of biomass particles. Through biomass characterization projects, NREL researchers are exploring the chemical composition of biomass samples before and after pretreatment and during processing. The characterization of biomass feedstocks, intermediates, and products is a critical step in optimizing biomass conversion processes. Among NREL's biomass characterization projects are: Feedstock/Process Interface NREL is working to understand the effects of feedstock and feedstock pre-processing on the conversion process and vice versa. The objective of the task is to understand the characteristics of biomass feedstocks

236

Burls and Other Unusual Woods  

NLE Websites -- All DOE Office Websites (Extended Search)

President Roland F. Eisenbeis, Supt. of Conservation BURLS AND OTHER UNUSUAL WOODS Wood worked by the hands of skilled craftsmen puts a wealth of quiet beauty into our daily...

237

Environmental assessment of the atlas bio-energy waste wood fluidized bed gasification power plant. Final report  

DOE Green Energy (OSTI)

The Atlas Bio-Energy Corporation is proposing to develop and operate a 3 MW power plant in Brooklyn, New York that will produce electricity by gasification of waste wood and combustion of the produced low-Btu gas in a conventional package steam boiler coupled to a steam-electric generator. The objectives of this project were to assist Atlas in addressing the environmental permit requirements for the proposed power plant and to evaluate the environmental and economic impacts of the project compared to more conventional small power plants. The project`s goal was to help promote the commercialization of biomass gasification as an environmentally acceptable and economically attractive alternative to conventional wood combustion. The specific components of this research included: (1) Development of a permitting strategy plan; (2) Characterization of New York City waste wood; (3) Characterization of fluidized bed gasifier/boiler emissions; (4) Performance of an environmental impact analysis; (5) Preparation of an economic evaluation; and (6) Discussion of operational and maintenance concerns. The project is being performed in two phases. Phase I, which is the subject of this report, involves the environmental permitting and environmental/economic assessment of the project. Pending NYSERDA participation, Phase II will include development and implementation of a demonstration program to evaluate the environmental and economic impacts of the full-scale gasification project.

Holzman, M.I.

1995-08-01T23:59:59.000Z

238

The land around typical Darfur refugee camps is cleared of all wood 2 T H E T R O U B L E W I T H C O O K I N Gthe impact of biomass-burning on health & enviornment and what we are doing about it  

E-Print Network (OSTI)

O O K I N Gthe impact of biomass-burning on health & enviornment and what we are doing about it H fire By 2030, biomass use for cooking is projected to in- crease by an addi- tional 30%13 References [1-Darfur Stove World Population 3B 7B 3B 4B Biomass Users Non-Biomass Users 2 , 0 0 0 , 0 0 0deaths annually

Eisen, Michael

239

Engineered plant biomass feedstock particles  

DOE Patents (OSTI)

A new class of plant biomass feedstock particles characterized by consistent piece size and shape uniformity, high skeletal surface area, and good flow properties. The particles of plant biomass material having fibers aligned in a grain are characterized by a length dimension (L) aligned substantially parallel to the grain and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces. The L.times.W surfaces of particles with L/H dimension ratios of 4:1 or less are further elaborated by surface checking between longitudinally arrayed fibers. The length dimension L is preferably aligned within 30.degree. parallel to the grain, and more preferably within 10.degree. parallel to the grain. The plant biomass material is preferably selected from among wood, agricultural crop residues, plantation grasses, hemp, bagasse, and bamboo.

Dooley, James H. (Federal Way, WA); Lanning, David N. (Federal Way, WA); Broderick, Thomas F. (Lake Forest Park, WA)

2012-04-17T23:59:59.000Z

240

Material and Energy Balances for Methanol from Biomass Using Biomass Gasifiers  

DOE Green Energy (OSTI)

The objective of the Biomass to Methanol Systems Analysis Project is the determination of the most economically optimum combination of unit operations which will make the production of methanol from biomass competitive with or more economic than traditional processes with conventional fossil fuel feedstocks. This report summarizes the development of simulation models for methanol production based upon the Institute of Gas Technology (IGT) ''Renugas'' gasifier and the Battelle Columbus Laboratory (BCL) gasifier. This report discusses methanol production technology, the IGT and BCL gasifiers, analysis of gasifier data for gasification of wood, methanol production material and energy balance simulations, and one case study based upon each of the gasifiers.

Bain, R. L.

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "including biomass wood" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Real-Time and Post-Reaction Microscopic Structural Analysis of Biomass Undergoing Pyrolysis  

Science Conference Proceedings (OSTI)

The structural complexity of unprocessed plant tissues used for thermochemical conversion of biomass to fuels and energy impedes heat and mass transfer and may increase the occurrence of tar-forming secondary chemical reactions. At industrial scales, gas and liquid products trapped within large biomass particles may reduce net fuel yields and increase tars, impacting industrial operations and increasing overall costs. Real-time microscopic analysis of poplar (Populus sp.) wood samples undergoing anoxic, pyrolytic heat treatment has revealed a pattern of tissue and macropore expansion and collapse. Post-reaction structural analyses of biomass char (biochar) by light and transmission electron microscopy have provided direct structural evidence of pyrolysis product mass-transfer issues, including trapped pyrolysis products and cell wall compression, and have demonstrated the impact of heat-transfer problems on biomass particles. Finally, microscopic imaging has revealed that pyrolyzed/gasified biochars recovered from a fluidized bed reactor retain a similar pre-reaction basic plant tissue structure as the samples used in this study, suggesting that the phenomena observed here are representative of those that occur in larger scale reactors.

Haas, T. J.; Nimlos, M. R.; Donohoe, B. S.

2009-01-01T23:59:59.000Z

242

Plummer Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Plummer Biomass Facility Jump to: navigation, search Name Plummer Biomass Facility Facility Plummer Sector Biomass Owner Wood Power Location Plummer, Idaho Coordinates 47.3351803°, -116.8885094° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.3351803,"lon":-116.8885094,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

243

The Asian Wood Pellet Markets  

E-Print Network (OSTI)

. 25 p. This study examines the three major wood pellet markets in Asia: China, Japan, and South Korea, South Korea is striving to increase its per- centage of renewable energy, which could benefit the wood pellets industry. We found that China, the largest energy consumer in Asia, has an established wood pellet

244

China: Changing Wood Products Markets  

E-Print Network (OSTI)

#12;China: Changing Wood Products Markets less is probably known about the forestry and wood products market in China than most other U.S. trading partners. In the 1980s China emerged as the world,11,12). However, U.S. wood products exports to China declined nearly 93 percent from 1988 to 1996, from $-I%3

Zhang, Daowei

245

Field Guide: Visual Inspection of Wood Structures (Optimized for Electronic Viewing)  

Science Conference Proceedings (OSTI)

The Field Guide: Visual Inspection of Wood Structures is a catalog of photographs illustrating various conditions and factors that commonly affect transmission line wood structures, along with their likely causes, a Maintenance Priority Rating, and suggested actions to be taken by utility personnel. Poles, cross-arms, cross-arm braces, X-braces, brackets, anchor rods, guy wires, and direct imbedded foundations are covered. Other sections include types of wood structures, the anatomy of wood ...

2011-11-09T23:59:59.000Z

246

Pressurized Oxidative Recovery of Energy from Biomass Final Technical Report  

DOE Green Energy (OSTI)

This study was conducted to evaluate the technical feasibility of using pressurized oxyfuel, the ThermoEnergy Integrated Power System (TIPS), to recover energy from biomass. The study was focused on two frontscomputer simulation of the TIPS plant and corrosion testing to determine the best materials of construction for the critical heat exchanger components of the process. The goals were to demonstrate that a successful strategy of applying the TIPS process to wood waste could be achieved. To fully investigate the technical and economic benefits of using TIPS, it was necessary to model a conventional air-fired biomass power plant for comparison purposes. The TIPS process recovers and utilizes the latent heat of vaporization of water entrained in the fuel or produced during combustion. This latent heat energy is unavailable in the ambient processes. An average composition of wood waste based on data from the Pacific Northwest, Pacific Southwest, and the South was used for the study. The high moisture content of wood waste is a major advantage of the TIPS process. The process can utilize the higher heating value of the fuel by condensing most of the water vapor in the flue gas and making the flue gas a useful source of heat. This is a considerable thermal efficiency gain over conventional power plants which use the lower heating value of the fuel. The elevated pressure also allows TIPS the option of recovering CO2 at near ambient temperatures with high purity oxygen used in combustion. Unlike ambient pressure processes which need high energy multi-stage CO2 compression to supply pipeline quality product, TIPS is able to simply pump the CO2 liquid using very little auxiliary power. In this study, a 15.0 MWe net biomass power plant was modeled, and when a CO2 pump was included it only used 0.1 MWe auxiliary power. The need for refrigeration is eliminated at such pressures resulting in significant energy, capital, and operating and maintenance savings. Since wood waste is a fuel with a high moisture and hydrogen content, it is one of the best applications for TIPS. The only way to fully utilize the latent heat is by using a pressurized system and the oxy-fuel approach allows for carbon capture and easier emission control. Pressurized operation also allows for easier emission control than atmospheric oxyfuel because presence of infiltration air in the atmospheric case. For the case of wood waste as the fuel however, the ability of TIPS to fully utilize the heat of condensation is the most valuable advantage of the process. The project research showed that titanium alloys were the best materials of construction for the heat exchangers. All other materials tested failed to withstand even brief periods in the harsh environment (high temperature, acidic, and oxidizing conditions). Titanium was able to survive due to the formation of a stable TiO2 passivation layer.

M. Misra

2007-06-10T23:59:59.000Z

247

CATALYTIC BIOMASS LIQUEFACTION  

E-Print Network (OSTI)

LBL-11 019 UC-61 CATALYTIC BIOMASS LIQUEFACTION Sabri Ergun,Catalytic Liquefaction of Biomass,n M, Seth, R. Djafar, G.of California. CATALYTIC BIOMASS LIQUEFACTION QUARTERLY

Ergun, Sabri

2013-01-01T23:59:59.000Z

248

CATALYTIC LIQUEFACTION OF BIOMASS  

E-Print Network (OSTI)

liquid Fuels from Biomass: "Catalyst Screening and KineticUC-61 (l, RCO osn CDL or BIOMASS CATALYTIC LIQUEFACTION ManuCATALYTIC LIQUEFACTION OF BIOMASS Manu Seth, Roger Djafar,

Seth, Manu

2012-01-01T23:59:59.000Z

249

The Wood Duck  

NLE Websites -- All DOE Office Websites (Extended Search)

Wood Duck Wood Duck Nature Bulletin No. 502-A October 13, 1973 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation THE WOOD DUCK Of all the fowl that swim, the Wood Duck is a most unusual bird. They perch in trees like jaybirds, and nest in tree holes like woodpeckers. The hens do not quack like the females of most ducks, and the drakes are dressed in a riot of gaudy colors. Each summer we see dozens of them -- more than any other kind of wild duck -- rear their families of ducklings on and around the streams, ponds, lakes and sloughs of Cook County's forest preserves. Words can scarcely describe the brilliance of the drake's plumage. The head, crest and back glint with iridescent greens, purples and blues. The eyes are red, the throat white, and the bill orange-red. The breast is wine-colored flecked with white, the belly is white, and the sides are buff. The woodie is about midway in size between the mallard and the blue-winged teal. The drakes weigh about a pound and a half. The hen is smaller and plainer, with a gray-brown head and body, a white throat, and a conspicuous white ring around the eye. Her voice is a shrill, squealing "whoo-eek", while the male's is a mere squeak.

250

Biomass Interest Group Meetings - 2007  

Science Conference Proceedings (OSTI)

The Biomass Interest Group (BIG) provides technology updates and information exchange for funders of EPRI Program 84.005. The group sponsors research projects and technology summaries. This report assembles presentation materials from webcasts and other meetings conducted by the Biomass Interest Group in 2007. Presentations covered several technologies including the prospect of using cellulosic feedstock in the production of ethanol, as well as gasification, the synthesis of biodiesel, and the cofiring o...

2008-03-31T23:59:59.000Z

251

Ionic liquid pretreatment of poplar wood at room temperature: swelling and incorporation of nanoparticles  

DOE Green Energy (OSTI)

Lignocellulosic biomass represents a potentially sustainable source of liquid fuels and commodity chemicals. It could satisfy the energy needs for transportation and electricity generation, while contributing substantially to carbon sequestration and limiting the accumulation of greenhouse gases in the atmosphere. Potential feedstocks are abundant and include crops, agricultural wastes, forest products, grasses, and algae. Among those feedstocks, wood is mainly constituted of three components: cellulose, hemicellulose, and lignin. The conversion process of lignocellulosic biomass typically consists of three steps: (1) pretreatment; (2) hydrolysis of cellulose and hemicellulose into fermentable sugars; and (3) fermentation of the sugars into liquid fuels (ethanol) and other commodity chemicals. The pretreatment step is necessary due to the complex structure of the plant cell wall and the chemical resistance of lignin. Most current pretreatments are energy-intensive and/or polluting. So it is imperative to develop new pretreatments that are economically viable and environmentally friendly. Recently, ionic liquids have attracted considerable interest, due to their ability to dissolve biopolymers, such as cellulose, lignin, native switchgrass, and others. Ionic liquids are also considered green solvents, since they have been successfully recycled at high yields for further use with limited efficiency loss. Also, a few microbial cellulases remain active at high ionic liquid concentration. However, all studies on the dissolution of wood in ionic liquids have been conducted so far at high temperatures, typically above 90 C. Development of alternative pretreatments at room temperature is desirable to eliminate the additional energy cost. In this study, thin sections of poplar wood were swollen at room temperature by a 3 h ionic liquid (1-ethyl-3-methylimidazolium acetate or EMIMAc) pretreatment. The pretreated sample was then exposed to an aqueous suspension of nanoparticles that resulted in the sample contraction and the deposition of nanoparticles onto the surface and embedded into the cell wall. To date, both silver and gold particles ranging in size from 40-100 nm have been incorporated into wood. Penetration of gold nanoparticles of 100 nm diameter in the cell walls was best confirmed by near-infrared confocal Raman microscopy, since the deposition of gold nanoparticles induces a significant enhancement of the Raman signal from the wood in their close proximity, an enhancement attributed to the surface-enhanced Raman effect (SERS). After rinsing with water, scanning electron microscopy (SEM) and Raman images of the same areas show that most nanoparticles remained on the pretreated sample. Raman images at different depths reveal that a significant number of nanoparticles were incorporated into the wood sample, at depths up to 4 {micro}m, or 40 times the diameter of the nanoparticles. Control experiments on an untreated wood sample resulted in the deposition of nanoparticles only at the surface and most nanoparticles were removed upon rinsing. This particle incorporation process enables the development of new pretreatments, since the nanoparticles have a high surface-to-volume ratio and could be chemically functionalized. Other potential applications for the incorporated nanoparticles include isotope tracing, catalysis, imaging agents, drug-delivery systems, energy-storage devices, and chemical sensors.

Lucas, Marcel [Los Alamos National Laboratory; Macdonald, Brian A [Los Alamos National Laboratory; Wagner, Gregory L [Los Alamos National Laboratory; Joyce, Steven A [Los Alamos National Laboratory; Rector, Kirk D [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

252

Effect of species and wood to bark ratio on pelleting of southern woods  

Science Conference Proceedings (OSTI)

Six common southern hardwoods and loblolly pine were pelleted in a laboratory pellet mill. The pellet furnishes were blended to test the effect of different wood to bark ratios on pellet durability and production rate. Included was a ratio chosen to simulate the wood to bark ratio found in whole-tree chips. This furnish produced good quality pellets for all species tested. Pelleting of the pure wood of hardwoods was not successful; furnish routinely blocked the pellet mill dies. Pure pine wood, however, did produce acceptable pellets. It was noted that, as lignin and extractive content increased above a threshold level, the precentage of fines produced in a pellet durability test increased. Thus, all pine and tupelo wood/bark mixes produces high fines. This reduces the desirability of the pellets in the marketplace. Further research is necessary to confirm this relationship. This study suggests that both tree species and wood/bark ratio affect the durability of pellets and the rate with which they can be produced in a laboratory pellet mill. 9 references.

Bradfield, J.; Levi, M.P.

1984-01-01T23:59:59.000Z

253

Oregon Hospital Heats Up with a Biomass Boiler | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oregon Hospital Heats Up with a Biomass Boiler Oregon Hospital Heats Up with a Biomass Boiler Oregon Hospital Heats Up with a Biomass Boiler December 27, 2012 - 4:30pm Addthis Using money from the Recovery Act, Blue Mountain Hospital replaced one of its 1950s crude oil boilers with a wood-pellet boiler -- saving the hospital about $100,000 a year in heating costs. | Photo courtesy of the Oregon Department of Energy. Using money from the Recovery Act, Blue Mountain Hospital replaced one of its 1950s crude oil boilers with a wood-pellet boiler -- saving the hospital about $100,000 a year in heating costs. | Photo courtesy of the Oregon Department of Energy. Julie McAlpin Communications Liaison, State Energy Program Why biomass? Wood was the first energy source used and man's main fuel source until the Industrial Revolution.

254

NREL: Biomass Research - Biomass Characterization Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Characterization Capabilities Biomass Characterization Capabilities A photo of a man wearing a white lab coat and looking into a large microscope. A researcher uses an Atomic Force Microscope to image enzymes used in biochemical conversion. Through biomass characterization, NREL develops, refines, and validates rapid and cost-effective methods to determine the chemical composition of biomass samples before and after pretreatment, as well as during bioconversion processing. Detailed and accurate characterization of biomass feedstocks, intermediates, and products is a necessity for any biomass-to-biofuels conversion. Understanding how the individual biomass components and reaction products interact at each stage in the process is important for researchers. With a large inventory of standard biomass samples as reference materials,

255

Tracy Biomass Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Tracy Biomass Biomass Facility Tracy Biomass Biomass Facility Jump to: navigation, search Name Tracy Biomass Biomass Facility Facility Tracy Biomass Sector Biomass Location San Joaquin County, California Coordinates 37.9175935°, -121.1710389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.9175935,"lon":-121.1710389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

256

NREL: Biomass Research - Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities At NREL's state-of-the-art biomass research facilities, researchers design and optimize processes to convert renewable biomass feedstocks into transportation fuels and...

257

Catalytic conversion of biomass.  

E-Print Network (OSTI)

?? Catalytic processes for conversion of biomass to transportation fuels have gained an increasing attention in sustainable energy production. The biomass can be converted to (more)

Calleja Aguado, Raquel

2013-01-01T23:59:59.000Z

258

Biomass pyrolysis for chemicals.  

E-Print Network (OSTI)

??Biomass Pyrolysis for Chemicals The problems associated with the use of fossil fuels demand a transition to renewable sources (sun, wind, water, geothermal, biomass) for (more)

Wild, Paul de

2011-01-01T23:59:59.000Z

259

Wood Inspection by Infrared Thermography  

E-Print Network (OSTI)

Wood is used everywhere and for everything. With times, this material presents many adulterations, witch degrade his physical properties. This work present a study of infrared thermography NDT for wood decay detection. The study is based on the difference of moisture content between sound wood and decay. In the first part, moisture content influence on response signal is determine. The second part define the limits of infrared thermography for wood decay detection. Results show that this method could be used, but with many cautions on depth and size of wood defects.

A. Wyckhuyse; X. Maldague; X. Maldague Corresponding

2002-01-01T23:59:59.000Z

260

Home Page > Business > Industrial > Global Trade Of Wood Chips Down 26% In 2009 As Pulpmills Reduce Production Worldwide, Reports Wood Resources International  

E-Print Network (OSTI)

Poster Explore Strategies in Technical Analysis from Experienced Brokers. www.Lind-Waldock.com , USA financial crises and the reduced demand for paper products worldwide. This year, only an estimated 25 worldwide, European demand for pellets and biomass chips, outlook for plantation wood chip supply, ocean

Note: This page contains sample records for the topic "including biomass wood" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Clean-Burning Wood Stove Grant Program (Maryland) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean-Burning Wood Stove Grant Program (Maryland) Clean-Burning Wood Stove Grant Program (Maryland) Clean-Burning Wood Stove Grant Program (Maryland) < Back Eligibility Residential Savings Category Bioenergy Program Info Start Date 09/07/2012 State Maryland Program Type State Rebate Program Rebate Amount Stick Burning Stove: $500 Pellet Burning Stove: $700 The Maryland Energy Administration (MEA) now offers the Clean Burning Wood Stove Grant program as part of its Residential Clean Energy Grant Program. The Clean Burning Wood Stove Grant program offers a flat grant award of $500 for stick burning wood stoves and $700 for pellet burning wood stoves that meet program eligibility requirements. Basic requirements for grant funding include: *The property must serve as primary residence *Clean burning wood stove must replace existing electric or non-natural gas

262

Biomass Energy Data Book: Edition 3  

SciTech Connect

The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the third edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also four appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.

Boundy, Robert Gary [ORNL; Davis, Stacy Cagle [ORNL

2010-12-01T23:59:59.000Z

263

Biomass Energy Data Book: Edition 4  

SciTech Connect

The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the fourth edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also two appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.

Boundy, Robert Gary [ORNL; Diegel, Susan W [ORNL; Wright, Lynn L [ORNL; Davis, Stacy Cagle [ORNL

2011-12-01T23:59:59.000Z

264

Biomass Energy Data Book, 2011, Edition 4  

DOE Data Explorer (OSTI)

The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the fourth edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also four appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.[copied from http://cta.ornl.gov/bedb/pdf/BEDB4_Front_Matter.pdf

Wright, L.; Boundy, B.; Diegel, S.W.; Davis, S.C.

265

Biomass Energy Data Book: Edition 2  

SciTech Connect

The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the second edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also four appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, assumptions for selected tables and figures, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.

Wright, Lynn L [ORNL; Boundy, Robert Gary [ORNL; Badger, Philip C [ORNL; Perlack, Robert D [ORNL; Davis, Stacy Cagle [ORNL

2009-12-01T23:59:59.000Z

266

NREL: Dynamic Maps, GIS Data, and Analysis Tools - Biomass Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Data Biomass Data These datasets represent the biomass resource availability in the United States by county. The estimates are based on county-level statistics and/or point-source data gathered from the U.S. Department of Agriculture, U.S. Forest Service, EPA and other organizations. Geographic Coordinate System Name: GCS_North_American_1983 Coverage File Size Last Updated Metadata Urban Wood and Secondary Mill Residues (Zip 6.8 MB) 5/23/2012 Urban Wood and Secondary Mill Residues.xml Geographic Coordinate System Name: WGS 1984 Coverage File Size Last Updated Metadata Crop Residues (Zip 6.81 MB) 10/28/2008 Crop Residues.xml Forest and Primary Mill Residues (Zip 69.75 MB) 10/28/2008 Forest and Primary Mill Residues.xml Note - These datasets are designed to be used in GIS software applications.

267

Potential of biomass residue availability; The case of Thailand  

SciTech Connect

An acute shortage of fuel wood and charcoal prevails in many developing countries. A logical approach to the problem places emphasis on the development of alternative energy sources, including use of biomass residues. An assessment of the potential of biomass residues for energy and other uses calls for an estimation of their annual production. Also, because the residues are normally bulky they should be utilized near their place of origin whenever possible to avoid high transportation costs. Thus knowledge of the total national generation of residues per year does not provide enough information for planning residue utilization. This article illustrates a method of residue estimation that takes the case of Thailand as an example. It presents the annual generation of nine agricultural resides (paddy husk, paddy straw, bagasse, cotton stalk, corn cob, groundnut shell, cassava stalk and coconut husk and shell) and one forestry residue (sawdust) in different agroeconomic zones and regions of Thailand. The methodology used for the investigation of crop-to-residue ratios is outlined. The annual generation figures for the different residues along with observations about their traditional uses are presented.

Bhattacharya, S.C.; Shrestha, R.M.; Ngamkajornvivat, S. (Energy Technology Div., Asian Institute of Technology, Bangkok 10501 (TH))

1989-01-01T23:59:59.000Z

268

NREL: Computational Science - Enzymatic Conversion of Biomass to Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Enzymatic Conversion of Biomass to Fuels Enzymatic Conversion of Biomass to Fuels Scientists in the Computational Science Center at the National Renewable Energy Laboratory (NREL) and their partners use the latest terascale high-performance computers to probe the complex enzymatic cellulose depolymerization (i.e., breakdown) at the molecular level as biomass is converted to fuels. For a sustainable and economically viable liquid-fuel economy, America needs a carbon-neutral alternative to fossil fuels. Lignocellulosic biomass (i.e., agricultural residues, energy crops, and wood) could serve as the dominant feedstock for biofuels, if it can be efficiently and economically converted to its component sugars for microbial fermentation. One major obstacle to the use of biomass is the high resistance of crystalline

269

The economics of biomass production in the United States  

DOE Green Energy (OSTI)

Biomass crops (e.g. poplar, willow, switchgrass) could become important feedstocks for power, liquid fuel, and chemical production. This paper presents estimates of the potential production of biomass in the US under a range of assumptions. Estimates of potential biomass crop yields and production costs from the Department of Energy`s (DOE) Oak Ridge National Laboratories (ORNL) are combined with measures of land rents from USDA`s Conservation Reserve Program (CRP), to estimate a competitive supply of biomass wood and grass crops. Estimates are made for one potential biomass use--electric power production--where future costs of electricity production from competing fossil fuels set the demand price. The paper outlines the methodology used and limitations of the analysis.

Graham, R.L.; Walsh, M.E. [Oak Ridge National Lab., TN (United States); Lichtenberg, E. [Univ. of Maryland, College Park, MD (United States); Roningen, V.O. [ERS-USDA, Washington, DC (United States); Shapouri, H. [OENU-ERS-USDA, Washington, DC (United States)

1995-12-31T23:59:59.000Z

270

Steam gasification of wood in the presence of catalysts  

SciTech Connect

Catalytic steam gasification of wood, including sawdust, chipped forest slash, and mill shavings, is being investigated. Results of laboratory, process development unit (PDU), and feasibility studies illustrate attractive processes for conversion of wood to methanol and a substitute natural gas (SNG). Recent laboratory studies developed a long-lived alloy catalyst for generation of a methanol synthesis gas by steam gasification of wood. Modification of the PDU for operation at 10 atm (150 psia) is nearly complete. The modified PDU will be operated at the elevated pressure to confirm yields and design parameters used in process feasibility studies. Feasibility studies were completed on wood-to-methane (SNG) and wood-to-methanol plants with capacities of 2000 and 200 oven dried tons (1800 and 180 metric t) per day using catalytic gasification. The results showed that generation of methanol on the large scale is economically viable today while SNG generation is competitive with future prices.

Mitchell, D.H.; Mudge, L.K.; Baker, E.G.

1981-01-01T23:59:59.000Z

271

Performance of bolted wood connections using supplemental confining devices  

E-Print Network (OSTI)

In the aftermath of the 1994 Northridge Earthquake, extensive field investigations revealed damage in wood frame construction in the form of splitting the 2x4 or 2x6 dimension lumber sill plates along the line of anchor bolts which typically connect shear walls to the masonry or concrete foundation. This paper presents an experimental investigation on the performance of bolted wood connections at the yield and ultimate limit states during monotonic and incremental quasi-static reversed cyclic loading and suggests possible retrofit strategies for their improved seismic performance. Proposed retrofit strategies are based on providing confinement to the bolted wood member using metal reinforcing ;traps and reinforcing clamps to increase the deformation capability and energy dissipation capacity of the connection, while maintaining substantial levels of connection strength. Connection types included in the investigation are: (1) double shear wood-to-wood connections; and (2) single shear simulated sill plate-to-concrete foundation connections.

Stromatt, Rebecca Faye

1996-01-01T23:59:59.000Z

272

Catalyzed gasification of biomass  

DOE Green Energy (OSTI)

Catalyzed biomass gasification studies are being conducted by Battelle's Pacific Northwest Laboratories. Investigations are being carried out concurrently at the bench and process development unit scales. These studies are designed to test the technical and economic feasibility of producing specific gaseous products from biomass by enhancing its reactivity and product specificity through the use of specific catalysts. The program is directed at controlling the gasification reaction through the use of specific catalytic agents to produce desired products including synthetic natural gas, ammonia synthesis gas (H/sub 2//N/sub 2/), hydrogen, or syn gas (H/sub 2//CO). Such gaseous products are currently produced in tonnage quantities from non-renewable carbonaceous resources, e.g., natural gas and petroleum. The production of high yields of these specified gases from biomass is accomplished through optimization of gasification conditions and proper choice of catalytic agents. For instance, high yields of synthetic natural gas can be attained through gasification with steam in the presence of gasification catalyst such as trona (Na/sub 2/CO/sub 3/ . NaHCO/sub 3/ . 2H/sub 2/O) and a nickel methanation catalyst. The gasification catalyst enhances the steam-biomass reaction while the methanation catalyst converts gaseous intermediates from this reaction to methane, the most thermodynamically stable hydrocarbon product. This direct conversion to synthetic natural gas represents a significant advancement in the classical approach of producing synthetic natural gas from carbonaceous substrates through several unit operations. A status report, which includes experimental data and results of the program is presented.

Sealock, L.J. Jr.; Robertus, R.J.; Mudge, L.K.; Mitchell, D.H.; Cox, J.L.

1978-06-16T23:59:59.000Z

273

Biomass treatment method  

DOE Patents (OSTI)

A method for treating biomass was developed that uses an apparatus which moves a biomass and dilute aqueous ammonia mixture through reaction chambers without compaction. The apparatus moves the biomass using a non-compressing piston. The resulting treated biomass is saccharified to produce fermentable sugars.

Friend, Julie (Claymont, DE); Elander, Richard T. (Evergreen, CO); Tucker, III; Melvin P. (Lakewood, CO); Lyons, Robert C. (Arvada, CO)

2010-10-26T23:59:59.000Z

274

Biomass Energy Data Book: Edition 1  

DOE Green Energy (OSTI)

The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of the Biomass Program and the Office of Planning, Budget and Analysis in the Department of Energy's Energy Efficiency and Renewable Energy (EERE) program. Designed for use as a desk-top reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use. This is the first edition of the Biomass Energy Data Book and is currently only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass is a section on biofuels which covers ethanol, biodiesel and BioOil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is about the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also three appendices which include measures of conversions, biomass characteristics and assumptions for selected tables and figures. A glossary of terms and a list of acronyms are also included for the reader's convenience.

Wright, Lynn L [ORNL; Boundy, Robert Gary [ORNL; Perlack, Robert D [ORNL; Davis, Stacy Cagle [ORNL; Saulsbury, Bo [ORNL

2006-09-01T23:59:59.000Z

275

BIOMASS REBURNING - MODELING/ENGINEERING STUDIES  

DOE Green Energy (OSTI)

This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. The forth reporting period (July 1 - September 30) included ongoing kinetic modeling of the reburning process while firing biomass. Modeling of biomass reburning concentrated on description of biomass performance at different reburning heat inputs. Reburning fuel was assumed to undergo rapid breakdown to produce various gaseous products. Modeling shows that the efficiency of biomass is affected by its composition. The kinetic model agrees with experimental data for a wide range of initial conditions and thus can be used for process optimization. Experimental data on biomass reburning are included in Appendix 2.

NONE

1998-10-20T23:59:59.000Z

276

FETC/EPRI Biomass Cofiring Cooperative Agreement. Quaterly technical report, January 1-March 30m 1997  

DOE Green Energy (OSTI)

Cofiring is considered to be the most promising near-term approach to fossil C0{sub 2} emissions mitigation through biomass usage. Consequently FETC and EPRI have entered into a cooperative agreement: `Cofiring Biomass and Waste-Derived fuels in Electric Utility Coal- Fired Boilers.` This agreement supports sixteen (16) EPRI research projects, each contributing to the commercialization of systems to address greenhouse gas emissions. These projects include: (1) cofiring combustion testing at the Seward Generating Station of GPU Genco; (2) fuel preparation testing at the Greenidge Generating Station of NYSEG; (3) precommercial testing of cofiring at the Allen and Colbert Fossil Plants of TVA; (4) testing of switchgrass cofiring at the Blount St. Station of Madison Gas & Electric; (5) high percentage biomass cofiring with Southern Company; (6) urban wood waste cofiring at the supercritical cyclone boiler at Michigan City Generating Station of Northern Indiana Public Service Co. (NIPSCO); (7) evaluation of switchgrass cofiring with Nebraska Public Power District at Sandia National Laboratories in Livermore, CA; (8) waste plastics cofiring with Duke Power in a tangentially-fired pulverized coal (PC) boiler; (9) cofiring a mixture of plastics, fiber, and pulp industry wastes with South Carolina Electric and Gas; (10) urban wood waste cofiring evaluation and testing by the University of Pittsburgh in stoker boilers; (11) assessment of toxic emissions from cofiring of wood and coal; (12) development of fuel and power plant models for analysis and interpretation of cofiring results; (13) analysis of C0{sub 2} utilization in algal systems for wastewater treatment; (14) combustion testing and combustor development focusing on high percentage cofiring; (15) analysis of problems and potential solutions to the sale of flyash from coal-fired boilers practicing cofiring; and (16) analysis of C0{sub 2} capture and disposal systems. During the second quarter of this contract, from January 1, 1997 through March 31, 1997, significant progress has been made on these projects. This progress focuses upon analysis of data from the cofiring tests, construction of systems to promote additional cofiring tests, and initiation of tasks evaluating alternatives to cofiring. This report contains a brief description of the progress made during the second quarter of the contract, focusing upon test results from the Seward Generating Station, where parametric testing at a wall-fired PC boiler was used to evaluate cofiring using separate feeding of wood and coal to the energy generation system.

Hughes, E.; Tillman, D.

1997-12-01T23:59:59.000Z

277

Inside the guts of wood-eating catfishes: can they digest wood?  

E-Print Network (OSTI)

the cellulolytic system of the wood-boring marine mollusk2008), how diVerent are the wood-eating catWshes from otherendosymbionts and digest wood, or are these wood- eating

German, Donovan P.

2009-01-01T23:59:59.000Z

278

Biomass Interest Group Meeting Summary, June 2004  

Science Conference Proceedings (OSTI)

EPRI's Biomass Interest Group (BIG) met June 29 and 30, 2004, at the offices of We Energies in Milwaukee, Wisconsin. This report summarizes the meeting, which included presentations on such topics as gasification, cofiring, waste digestion, and state legislation affecting the biomass energy industry. The BIG meets three times per year and its purpose is to evaluate, fund, discuss, and identify projects that produce power from biomass sources.

2004-09-29T23:59:59.000Z

279

Engineering and Economic Evaluation of Biomass Gasification  

Science Conference Proceedings (OSTI)

The use of gasification technology to convert biomass to electric power has increased substantially over the last 10 years. Many new projects, using a wide range of gasification technologies, have been developed and become operational. Some of the key driving factors for biomass gasification-to-power facilities include:Abundant local supplies of biomass, at low or no cost, for use as a feedstock for gasification-to-power facilities.Federal and state tax credits ...

2012-12-20T23:59:59.000Z

280

Investigations on catalyzed steam gasification of biomass  

DOE Green Energy (OSTI)

The purpose of the study is to evaluate the technical and economic feasibility of producing specific gas products via the catalytic gasification of biomass. This report presents the results of research conducted from December 1977 to October 1980. The study was comprised of laboratory studies, process development, and economic analyses. The laboratory studies were conducted to develop operating conditions and catalyst systems for generating methane-rich gas, synthesis gases, hydrogen, and carbon monoxide; these studies also developed techniques for catalyst recovery, regeneration, and recycling. A process development unit (PDU) was designed and constructed to evaluate laboratory systems at conditions approximating commercial operations. The economic analyses, performed by Davy McKee, Inc. for PNL, evaluated the feasibility of adapting the wood-to-methane and wood-to-methanol processes to full-scale commercial operations. Plants were designed in the economic analyses to produce fuel-grade methanol from wood and substitute natural gas (SNG) from wood via catalytic gasification with steam.

Mudge, L.K.; Weber, S.L.; Mitchell, D.H.; Sealock, L.J. Jr.; Robertus, R.J.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "including biomass wood" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Oak Ridge National Laboratory to be Fueled by Biomass | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oak Ridge National Laboratory to be Fueled by Biomass Oak Ridge National Laboratory to be Fueled by Biomass Oak Ridge National Laboratory to be Fueled by Biomass May 27, 2010 - 12:59pm Addthis When construction is complete in 2011, Oak Ridge National Laboratory’s biomass steam plant will be fueled by roughly 50,000 tons of waste wood per year. | Illustration Courtesy of Oak Ridge National Laboratory When construction is complete in 2011, Oak Ridge National Laboratory's biomass steam plant will be fueled by roughly 50,000 tons of waste wood per year. | Illustration Courtesy of Oak Ridge National Laboratory Lindsay Gsell Oak Ridge National Laboratory (ORNL) will be saving nearly $4 million a year by switching a portion of their current natural gas-fueled steam plant for one powered by biofuel. The move is part of an Energy Savings

282

Oak Ridge National Laboratory to be Fueled by Biomass | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ridge National Laboratory to be Fueled by Biomass Ridge National Laboratory to be Fueled by Biomass Oak Ridge National Laboratory to be Fueled by Biomass May 27, 2010 - 12:59pm Addthis When construction is complete in 2011, Oak Ridge National Laboratory’s biomass steam plant will be fueled by roughly 50,000 tons of waste wood per year. | Illustration Courtesy of Oak Ridge National Laboratory When construction is complete in 2011, Oak Ridge National Laboratory's biomass steam plant will be fueled by roughly 50,000 tons of waste wood per year. | Illustration Courtesy of Oak Ridge National Laboratory Lindsay Gsell Oak Ridge National Laboratory (ORNL) will be saving nearly $4 million a year by switching a portion of their current natural gas-fueled steam plant for one powered by biofuel. The move is part of an Energy Savings

283

Chemical and Structural Features of Plants That Contribute to Biomass Recalcitrance  

E-Print Network (OSTI)

WT. Estimating Heating Times of Wood Boards, Square Timbers,Heating Times for Round and Rectangular Cross Sections of Woodheating times for a large combination of variables (including chip size, temperature, wood

DeMartini, Jaclyn Diana

2011-01-01T23:59:59.000Z

284

Enzymatic Hydrolysis of Cellulosic Biomass  

Science Conference Proceedings (OSTI)

Biological conversion of cellulosic biomass to fuels and chemicals offers the high yields to products vital to economic success and the potential for very low costs. Enzymatic hydrolysis that converts lignocellulosic biomass to fermentable sugars may be the most complex step in this process due to substrate-related and enzyme-related effects and their interactions. Although enzymatic hydrolysis offers the potential for higher yields, higher selectivity, lower energy costs, and milder operating conditions than chemical processes, the mechanism of enzymatic hydrolysis and the relationship between the substrate structure and function of various glycosyl hydrolase components are not well understood. Consequently, limited success has been realized in maximizing sugar yields at very low cost. This review highlights literature on the impact of key substrate and enzyme features that influence performance to better understand fundamental strategies to advance enzymatic hydrolysis of cellulosic biomass for biological conversion to fuels and chemicals. Topics are summarized from a practical point of view including characteristics of cellulose (e.g., crystallinity, degree of polymerization, and accessible surface area) and soluble and insoluble biomass components (e.g., oligomeric xylan, lignin, etc.) released in pretreatment, and their effects on the effectiveness of enzymatic hydrolysis. We further discuss the diversity, stability, and activity of individual enzymes and their synergistic effects in deconstructing complex lignocellulosic biomass. Advanced technologies to discover and characterize novel enzymes and to improve enzyme characteristics by mutagenesis, post-translational modification, and over-expression of selected enzymes and modifications in lignocellulosic biomass are also discussed.

Yang, Bin; Dai, Ziyu; Ding, Shi-You; Wyman, Charles E.

2011-08-22T23:59:59.000Z

285

FRACTIONATION OF LIGNOCELLULOSIC BIOMASS FOR FUEL-GRADE ETHANOL PRODUCTION  

SciTech Connect

PureVision Technology, Inc. (PureVision) of Fort Lupton, Colorado is developing a process for the conversion of lignocellulosic biomass into fuel-grade ethanol and specialty chemicals in order to enhance national energy security, rural economies, and environmental quality. Lignocellulosic-containing plants are those types of biomass that include wood, agricultural residues, and paper wastes. Lignocellulose is composed of the biopolymers cellulose, hemicellulose, and lignin. Cellulose, a polymer of glucose, is the component in lignocellulose that has potential for the production of fuel-grade ethanol by direct fermentation of the glucose. However, enzymatic hydrolysis of lignocellulose and raw cellulose into glucose is hindered by the presence of lignin. The cellulase enzyme, which hydrolyzes cellulose to glucose, becomes irreversibly bound to lignin. This requires using the enzyme in reagent quantities rather than in catalytic concentration. The extensive use of this enzyme is expensive and adversely affects the economics of ethanol production. PureVision has approached this problem by developing a biomass fractionator to pretreat the lignocellulose to yield a highly pure cellulose fraction. The biomass fractionator is based on sequentially treating the biomass with hot water, hot alkaline solutions, and polishing the cellulose fraction with a wet alkaline oxidation step. In September 2001 PureVision and Western Research Institute (WRI) initiated a jointly sponsored research project with the U.S. Department of Energy (DOE) to evaluate their pretreatment technology, develop an understanding of the chemistry, and provide the data required to design and fabricate a one- to two-ton/day pilot-scale unit. The efforts during the first year of this program completed the design, fabrication, and shakedown of a bench-scale reactor system and evaluated the fractionation of corn stover. The results from the evaluation of corn stover have shown that water hydrolysis prior to alkaline hydrolysis may be beneficial in removing hemicellulose and lignin from the feedstock. In addition, alkaline hydrolysis has been shown to remove a significant portion of the hemicellulose and lignin. The resulting cellulose can be exposed to a finishing step with wet alkaline oxidation to remove the remaining lignin. The final product is a highly pure cellulose fraction containing less than 1% of the native lignin with an overall yield in excess of 85% of the native cellulose. This report summarizes the results from the first year's effort to move the technology to commercialization.

F.D. Guffey; R.C. Wingerson

2002-10-01T23:59:59.000Z

286

Wood Cofiring in a Cyclone Boiler at TVA's Allen Fossil Plant  

Science Conference Proceedings (OSTI)

Tests in a 272-MW cyclone boiler show that cofiring wood waste in the form of sawdust and small chips with coal is possible in a stable and routine operation. This report presents biomass data for five series of tests conducted from 1994 through 1996 and an analysis of the NOx reduction achieved.

1997-12-22T23:59:59.000Z

287

Bioenergy and Wood Fiber in Virginia and Beyond John F. Munsell  

E-Print Network (OSTI)

­ Grayson County and others · Northern Virginia ­ Municipal Waste · Bio-fuels / Ethanol Goals ­ VA Energy energy productiongy p · 9% renewable: 47% biomass: 72% wood-based 17.00% 9.00% 31.00% 2% Wind 45% Hydroelectric 11.00% Petroleum Renewable Energy Nuclear Electric Hydroelectric 5% Geothermal 47% 32.00% Coal

Wynne, Randolph H.

288

Woodland Biomass Power Ltd Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Woodland Biomass Power Ltd Biomass Facility Jump to: navigation, search Name Woodland Biomass Power...

289

Fibrominn Biomass Power Plant Biomass Facility | Open Energy...  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Fibrominn Biomass Power Plant Biomass Facility Jump to: navigation, search Name Fibrominn Biomass Power...

290

Extraction of non-forest trees for biomass assessment based on airborne and terrestrial LiDAR data  

Science Conference Proceedings (OSTI)

The main goal of the federal funded project 'LiDAR based biomass assessment' is the nationwide investigation of the biomass potential coming from wood cuttings of non-forest trees. In this context, first and last pulse airborne laserscanning (F+L) data ... Keywords: LiDAR, correlation, point cloud, segmentation, three-dimensional, vegetation

Matthias Rentsch; Alfons Krismann; Peter Krzystek

2011-10-01T23:59:59.000Z

291

Wood combustion systems: status of environmental concerns  

DOE Green Energy (OSTI)

This document addresses the uncertainties about environmental aspects of Wood Combustion Systems that remain to be resolved through research and development. The resolution of these uncertainties may require adjustments in the technology program before it can be commercialized. The impacts and concerns presented in the document are treated generically without reference to specific predetermined sites unless these are known. Hence, site-specific implications are not generally included in the assessment. The report consists of two main sections which describe the energy resource base involved, characteristics of the technology, and introduce the environmental concerns of implementing the technology; and which review the concerns related to wood combustion systems which are of significance for the environment. It also examines the likelihood and consequence of findings which might impede wood commercialization such as problems and uncertainties stemming from current or anticipated environmental regulation, or costs of potential environmental controls. This document is not a formal NEPA document. Appropriate NEPA documentation will be prepared after a formal wood combustion commercialization program is approved by DOE.

Dunwoody, J.E.; Takach, H.; Kelley, C.S.; Opalanko, R.; High, C.; Fege, A.

1980-01-01T23:59:59.000Z

292

Biomass Burning and the Production of Greenhouse Gases  

Science Conference Proceedings (OSTI)

Biomass burning is a source of greenhouse gases, carbon dioxide, methane, and nitrous oxide. In addition, biomass burning is a source of chemically active gases, including carbon monoxide, nonmethane hydrocarbons, and nitric oxide. These gases, along ...

Levine J. S.

1994-01-01T23:59:59.000Z

293

Water-Activated, Shape Memory Twist Effect in Wood Slivers as an ...  

Science Conference Proceedings (OSTI)

This shape memory twist effect in wood could inspire new smart materials for a wide range of applications, including sensors, actuators, biomedical devices, and

294

Proceedings of the coordination meeting of contractors 'energy from biomass' (project E) (1st), held in Amsterdam on September 18-19, 1980 (Second Solar Energy R and D Programme, 1979-1983)  

Science Conference Proceedings (OSTI)

Experiments to produce energy by converting agricultural wastes and specially grown catch crops into methane and/or methanol are underway. Technical as well as economic aspects of the utilization of wood wastes and the application of short rotation forestry methods to provide material for energy production are being studied. Algae cultivated in offshore and land-based situations are being used for the production of hydrocarbon gases. Biological routes for the conversion of biomass through anaerobic digestion and a pilot-scale fermentation process for ethanol production are described. Thermochemical routes for converting biomass include combustion, gasification and catalytic processes. Participants concluded that Europe was among the leaders in biomass to methanol technology.

Not Available

1981-01-01T23:59:59.000Z

295

Biomass Energy Program Grants | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Energy Program Grants Biomass Energy Program Grants Biomass Energy Program Grants < Back Eligibility Local Government Nonprofit Schools State Government Savings Category Bioenergy Solar Buying & Making Electricity Wind Maximum Rebate Varies Program Info Funding Source U.S. Department of Energy's State Energy Program (SEP) State Michigan Program Type State Grant Program Rebate Amount Varies by solicitation; check website for each solicitation's details Provider Michigan Economic Development Corporation '''''The application window for the most recent grant opportunity closed November 26, 2012.''''' The Michigan Biomass Energy Program (MBEP) provides funding for state bioenergy and biofuels projects on a regular basis. Funding categories typically include biofuels and bioenergy education, biofuels

296

WOOD FLOORING 1. INTRODUCTION TO WARM AND WOOD FLOORING  

E-Print Network (OSTI)

This chapter describes the methodology used in EPAs Waste Reduction Model (WARM) to estimate streamlined life-cycle greenhouse gas (GHG) emission factors for wood flooring beginning at the waste generation reference point. 1 The WARM GHG emission factors are used to compare the net emissions associated with wood flooring in the following three waste management alternatives: source reduction, combustion, and landfilling.

unknown authors

2012-01-01T23:59:59.000Z

297

WOOD PRODUCTS 1. INTRODUCTION TO WARM AND WOOD PRODUCTS  

E-Print Network (OSTI)

This chapter describes the methodology used in EPAs Waste Reduction Model (WARM) to estimate streamlined life-cycle greenhouse gas (GHG) emission factors for wood products beginning at the point of waste generation. The WARM GHG emission factors are used to compare the net emissions associated with wood products in the following four materials management alternatives: source

unknown authors

2012-01-01T23:59:59.000Z

298

CATALYTIC BIOMASS LIQUEFACTION  

E-Print Network (OSTI)

of operating variables on oil yield and quality under batchcharacterization of product oil with a view towards possibleinitiated before crude, wood oil from Albany test run TR-7 (

Ergun, Sabri

2013-01-01T23:59:59.000Z

299

CHEMISTRY AND STOICHIOMETRY OF WOOD LIQUEFACTION  

E-Print Network (OSTI)

V. , Anderson, Carry, Academic, New York. Pyrolysis of WoodT.J. Elder, E.J. Soltes, Wood and Fiber, 12(4), 1980, "Phenolic Constituents of a Wood Pyrolytic Oil." J.A. Knight,

Davis, H.G.

2012-01-01T23:59:59.000Z

300

BIOMASS ENERGY CONVERSION IN HAWAII  

E-Print Network (OSTI)

Report, (unpublished, 1979). Biomass Project Progress 31.Operations, vol. 2 of Biomass Energy (Stanford: StanfordPhotosynthethic Pathway Biomass Energy Production," ~c:_! _

Ritschard, Ronald L.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "including biomass wood" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

USDOE/EPRI BIOMASS COFIRING COOPERATIVE AGREEMENT  

DOE Green Energy (OSTI)

During the period of April 1, 1999 through June 30, 1999, wood cofiring testing at both Seward Generating Station of GPU Genco and Bailly Generating Station of Northern Indiana Public Service Company provided the focus for all activities. In both cases, the testing was directed at the impacts of cofiring on efficiency, operability, and NO{sub x} emissions. This report summarizes the activities during the second calendar quarter in 1999 of the USDOE/EPRI Biomass Cofiring Cooperative Agreement. It focuses upon reporting the results of testing activities at both generating stations.

D. Tillman; E. Hughes

1999-07-01T23:59:59.000Z

302

Biomass Repowering Study for Plant Scholz  

Science Conference Proceedings (OSTI)

Southern Company and its subsidiary, Gulf Power, have identified Gulf Powers Plant Scholz as a potential target for conversion from coal firing to 100% biomass firing. Plant Scholz is located in Sneads, Florida, and was built in 1953. It is capable of generating up to 98 MW of electricity (gross) while operating on pulverized coal. Net generation at full load is about 93 MW. Modifying this unit to use wood fuel will significantly reduce air emissions rates for several regulated pollutants and is an optio...

2010-12-31T23:59:59.000Z

303

Biomass Burning: A Driver for Global Change!  

Science Conference Proceedings (OSTI)

Biomass burning includes the burning of the world''s vegetation---forests, savannas, and agricultural lands---to clear the land and change its use. Only in the past decade have researchers realized the important contributions of biomass burning to the ...

Levine J. S.; III W. R. Cofer; Jr D. R. Cahoon; Winstead E. L.

1995-01-01T23:59:59.000Z

304

Lessons learned from existing biomass power plants  

DOE Green Energy (OSTI)

This report includes summary information on 20 biomass power plants, which represent some of the leaders in the industry. In each category an effort is made to identify plants that illustrate particular points. The project experiences described capture some important lessons learned that lead in the direction of an improved biomass power industry.

Wiltsee, G.

2000-02-24T23:59:59.000Z

305

EPRI Biomass Interest Group European Technology Review  

Science Conference Proceedings (OSTI)

Members of EPRI's Biomass Interest Group and made a 14 day tour of key European Biomass-to-Power installations in the fall of 2005. The group visited a variety of technologies, including gasification, co-firing, direct combustion, and combined heat and power facilities.

2005-12-22T23:59:59.000Z

306

Fast Curing of Composite Wood Products  

SciTech Connect

The overall objective of this program is to develop low temperature curing technologies for UF and PF resins. This will be accomplished by: Identifying the rate limiting UF and PF curing reactions for current market resins; Developing new catalysts to accelerate curing reactions at reduced press temperatures and times. In summary, these new curing technologies will improve the strength properties of the composite wood products and minimize the detrimental effects of wood extractives on the final product while significantly reducing energy costs for wood composites. This study is related to the accelerated curing of resins for wood composites such as medium density fiberboard (MDF), particle board (PB) and oriented strandboard (OSB). The latter is frequently manufactured with a phenol-formaldehyde resin whereas ureaformaldehyde (UF) resins are usually used in for the former two grades of composite wood products. One of the reasons that hinder wider use of these resins in the manufacturing of wood composites is the slow curing speed as well as inferior bondability of UF resin. The fast curing of UP and PF resins has been identified as an attractive process development that would allow wood to be bonded at higher moisture contents and at lower press temperatures that currently employed. Several differing additives have been developed to enhance cure rates of PF resins including the use of organic esters, lactones and organic carbonates. A model compound study by Conner, Lorenz and Hirth (2002) employed 2- and 4-hydroxymethylphenol with organic esters to examine the chemical basis for the reported enhanced reactivity. Their studies suggested that the enhance curing in the presence of esters could be due to enhanced quinone methide formation or enhanced intermolecular SN2 reactions. In either case the esters do not function as true catalysts as they are consumed in the reaction and were not found to be incorporated in the polymerized resin product. An alternative approach to accelerated PF curing can be accomplished with the addition amines or amides. The later functionality undergoes base catalyzed hydrolysis yielding the corresponding carboxyl ate and free amine which rapidly reacts with the phenolic methylol groups facilitating polymerization and curing of the PF resin (Pizzi, 1997).

Dr. Arthur J. Ragauskas

2006-04-26T23:59:59.000Z

307

FETC/EPRI Biomass Cofiring Cooperative Agreement. Quarterly technical report, September 26-December 31, 1996  

DOE Green Energy (OSTI)

Biomass utilization to reduce fossil C0{sub 2} emissions is being supported by sixteen (16) EPRI research projects, each contributing to the commercialization of systems to address greenhouse gas emissions. These projects include: (1) cofiring combustion testing at the Seward Generating Station of GPU Genco; (2) fuel preparation testing at the Greenidge Generating Station of NYSEG; (3) precommercial testing of cofiring at the Allen and Colbert Fossil Plants of TVA; (4) testing of switchgrass cofiring at the Blount St. Station of Madison Gas & Electric; (5) high percentage biomass cofiring with Southern Company; (6) urban wood waste cofiring at the supercritical cyclone boiler at Michigan City Generating Station of Northern Indiana Public Service Co. (NIPSCO); (7) evaluation of switchgrass cofiring with Nebraska Public Power District at Sandia National Laboratories in Livermore, CA; (8) waste plastics cofiring with Duke Power in a tangentially-fired pulverized coal (PC) boiler; (9) cofiring a mixture of plastics, fiber, and pulp industry wastes with South Carolina Electric and Gas; (10) urban wood waste cofiring evaluation and testing by the University of Pittsburgh in stoker boilers; (11) assessment of toxic emissions from cofiring of wood and coal; (12) development of fuel and power plant models for analysis and interpretation of cofiring results; (13) analysis of C0{sub 2} utilization in algal systems for wastewater treatment; (14) combustion testing and combustor development focusing on high percentage cofiring; (15) analysis of problems and potential solutions to the sale of flyash from coal- fired boilers practicing cofiring; and (16) analysis of C0{sub 2} capture and disposal systems. EPRI is supported in these efforts by numerous contractors including: Foster Wheeler Environmental Corporation, Battelle Columbus Laboratories, New York State Electric and Gas Co., Tennessee Valley Authority (TVA), NIPSCO, the University of Pittsburgh, John Benneman, and others. These projects address various aspects of cofiring for C0{sub 2} mitigation including testing of cofiring with various fuels, and in all types of boilers; development of analytical tools to support the cofiring assessment; addressing specific barriers to cofiring such as the sale of flyash; longer term technology development; and evaluating alternative methods for C0{sub 2} mitigation. Taken together, they address the critical concerns associated with this approach to biofuel utilization. As such, they support implementation of the most promising near-term approach to biomass usage for greenhouse gas mitigation. This report contains a brief description of each project. It then reports the progress made during the first quarter of the contract, focusing upon test results from the Allen Fossil Plant, where precommercial testing at a cyclone boiler was used to evaluate particle size and NO{sub x} emissions from cofiring.

Hughes, E. Tillman, D.

1997-12-01T23:59:59.000Z

308

Multitrade Biomass Holdings LLC | Open Energy Information  

Open Energy Info (EERE)

Multitrade Biomass Holdings LLC Multitrade Biomass Holdings LLC Place Ridgeway, Virginia Zip 24148-0000 Sector Renewable Energy Product Virginia-based developer of renewable wood fired power plants and feedstock producer. Coordinates 43.001473°, -89.989356° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.001473,"lon":-89.989356,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

309

Biomass Combustion Systems Inc | Open Energy Information  

Open Energy Info (EERE)

Combustion Systems Inc Combustion Systems Inc Jump to: navigation, search Name Biomass Combustion Systems Inc Address 67 Millbrook St Place Worcester, Massachusetts Zip 01606 Sector Biomass Product Combustion systems for wood fuel Website http://www.biomasscombustion.c Coordinates 42.290195°, -71.799627° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.290195,"lon":-71.799627,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

310

Catalyst and feedstock effects in the thermochemical conversion of biomass to liquid transportation fuels  

DOE Green Energy (OSTI)

The thermochemical conversion of biomass feedstocks to liquid transportation fuels can be accomplished by three processes, namely gasification, high-pressure liquefaction, and pyrolysis. In this study, the pyrolysis option is selected which is followed by the catalytic upgrading of pyrolysis vapors to aromatic and olefinic hydrocarbons (PYROCAT process). The aromatics constitute a high-octane gasoline blend, while the olefins can be utilized as feedstocks for various chemicals. The PYROCAT process has been studied in a laboratory-scale fixed-bed catalytic reactor. Consecutive biomass samples were pyrolyzed rapidly in steam at 550{degree}C and atmospheric pressure, and then the pyrolysis vapors were passed over a zeolite catalyst. The catalytic upgrading products were monitored in real-time using molecular-beam mass-spectrometry (MBMS). The yields of major products were estimated from mass-spectral data. Several zeolite catalysts were screened in the upgrading process and promising catalysts with high yields were identified. Feedstocks studied included: the woody biomass species aspen (Populus tremuloides), basswood (Tilia americana), and willow (Salix alba); the three isolated components of wood lignin, xylan and cellulose; and the herbaceous species bagasse (Saccharum spp. hybrid), wheat straw (Triticum aestivum), and Sericea lespedeza (Lespedeza cuneata). 17 refs.

Rejai, B.; Agblevor, F.A.; Evans, R.J.; Wang, D.

1992-05-01T23:59:59.000Z

311

GLOBAL WOOD SUPPLY Sten Nilsson  

E-Print Network (OSTI)

· Increasing demand for wood through population and economic growth · More expensive wood · Where should America Expansion potential USA Deficit Canada Deficit #12;RUSSIA Advantages: Raw Materials Source LEAVED ­ EASTERN USA Source: http://www.cas.vanderbilt.edu/bioimages/biohires/ecoregions/h50404bottomland

312

U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry  

SciTech Connect

The report, Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply (generally referred to as the Billion-Ton Study or 2005 BTS), was an estimate of 'potential' biomass based on numerous assumptions about current and future inventory, production capacity, availability, and technology. The analysis was made to determine if conterminous U.S. agriculture and forestry resources had the capability to produce at least one billion dry tons of sustainable biomass annually to displace 30% or more of the nation's present petroleum consumption. An effort was made to use conservative estimates to assure confidence in having sufficient supply to reach the goal. The potential biomass was projected to be reasonably available around mid-century when large-scale biorefineries are likely to exist. The study emphasized primary sources of forest- and agriculture-derived biomass, such as logging residues, fuel treatment thinnings, crop residues, and perennially grown grasses and trees. These primary sources have the greatest potential to supply large, reliable, and sustainable quantities of biomass. While the primary sources were emphasized, estimates of secondary residue and tertiary waste resources of biomass were also provided. The original Billion-Ton Resource Assessment, published in 2005, was divided into two parts-forest-derived resources and agriculture-derived resources. The forest resources included residues produced during the harvesting of merchantable timber, forest residues, and small-diameter trees that could become available through initiatives to reduce fire hazards and improve forest health; forest residues from land conversion; fuelwood extracted from forests; residues generated at primary forest product processing mills; and urban wood wastes, municipal solid wastes (MSW), and construction and demolition (C&D) debris. For these forest resources, only residues, wastes, and small-diameter trees were considered. The 2005 BTS did not attempt to include any wood that would normally be used for higher-valued products (e.g., pulpwood) that could potentially shift to bioenergy applications. This would have required a separate economic analysis, which was not part of the 2005 BTS. The agriculture resources in the 2005 BTS included grains used for biofuels production; crop residues derived primarily from corn, wheat, and small grains; and animal manures and other residues. The cropland resource analysis also included estimates of perennial energy crops (e.g., herbaceous grasses, such as switchgrass, woody crops like hybrid poplar, as well as willow grown under short rotations and more intensive management than conventional plantation forests). Woody crops were included under cropland resources because it was assumed that they would be grown on a combination of cropland and pasture rather than forestland. In the 2005 BTS, current resource availability was estimated at 278 million dry tons annually from forestlands and slightly more than 194 million dry tons annually from croplands. These annual quantities increase to about 370 million dry tons from forestlands and to nearly 1 billion dry tons from croplands under scenario conditions of high-yield growth and large-scale plantings of perennial grasses and woody tree crops. This high-yield scenario reflects a mid-century timescale ({approx}2040-2050). Under conditions of lower-yield growth, estimated resource potential was projected to be about 320 and 580 million dry tons for forest and cropland biomass, respectively. As noted earlier, the 2005 BTS emphasized the primary resources (agricultural and forestry residues and energy crops) because they represent nearly 80% of the long-term resource potential. Since publication of the BTS in April 2005, there have been some rather dramatic changes in energy markets. In fact, just prior to the actual publication of the BTS, world oil prices started to increase as a result of a burgeoning worldwide demand and concerns about long-term supplies. By the end of the summer, oil pri

Downing, Mark [ORNL; Eaton, Laurence M [ORNL; Graham, Robin Lambert [ORNL; Langholtz, Matthew H [ORNL; Perlack, Robert D [ORNL; Turhollow Jr, Anthony F [ORNL; Stokes, Bryce [Navarro Research & Engineering; Brandt, Craig C [ORNL

2011-08-01T23:59:59.000Z

313

Daniel Wood | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wood Wood About Us Daniel Wood - Data Integration Specialist Daniel Wood Daniel Wood is the Data Visualization and Cartographic Specialist in the Office of Public Affairs at the Department of Energy. He develops creative and interactive ways of viewing the Energy Department's vast array of data. You can check out some of his work here. Prior to joining the Energy.gov team, Daniel worked at a large PR firm in Washington, D.C, doing web development and technical project management. Daniel is a graduate of Boston University but a true Philadelphian at heart. On his off days you are likely to find him exploring new neighborhoods on his bike or hanging out with the awesome kids over at Little Lights Urban Ministries. Most Recent The History of the Light Bulb November 22

314

Weathering and Protection of Wood  

E-Print Network (OSTI)

Introduction When wood is exposed outdoors, above ground, a complex combination of chemical, mechanical, and light energy factors contribute to what is described as weathering (38). Weathering is not to be confused with decay, which results from decay organisms (fungi) acting in the presence of excess moisture and air for an extended period of time (34). Under conditions suitable for the development of decay, wood can deteriorate rapidly and the result is far different than that observed for natural outdoor weathering, Outdoor Weathering Process In outdoor weathering of smooth wood, original surfaces become rough as grain raises and the wood checks, and the checks grow into large cracks; grain may loosen, boards cup and warp and pull away from fasteners (Figs. 1 and 2), The roughened surface changes color, gathers dirt and mildew, and may become unsightly; the wood loses its surface coherence and becomes friable, splinters, and frag ments come off. All these e

William C. Feist

1983-01-01T23:59:59.000Z

315

Biomass for Electricity Generation  

Reports and Publications (EIA)

This paper examines issues affecting the uses of biomass for electricity generation. The methodology used in the National Energy Modeling System to account for various types of biomass is discussed, and the underlying assumptions are explained.

Zia Haq

2002-07-01T23:59:59.000Z

316

Biomass Energy Program  

Energy.gov (U.S. Department of Energy (DOE))

The Biomass Energy Program assists businesses in installing biomass energy systems. Program participants receive up to $75,000 in interest subsidy payments to help defray the interest expense on...

317

TORREFACTION OF BIOMASS.  

E-Print Network (OSTI)

??Torrefaction is a thermo-chemical pre-treatment of biomass within a narrow temperature range from 200C to 300C, where mostly the hemicellulose components of a biomass depolymerise. (more)

Dhungana, Alok

2011-01-01T23:59:59.000Z

318

Pellet stoves wood energy for all  

Science Conference Proceedings (OSTI)

While it`s true that specialized pellet stoves, capable of burning fuels as diverse as reprocessed paper waste and feed corn, are expensive and occasionally clunky, they also represent one of the best hopes for introducing clean burning, reliable renewable energy to those now heating with gas and oil. This article explores the benefits and operation of the stoves including discussions of the following: ecological benefits, combustion, stove venting, ashes, costs, fuels, and the future of wood heat. 1 tab.

NONE

1995-10-01T23:59:59.000Z

319

Good Practice Guidance on the Sustainable Mobilisation of Wood in Europe |  

Open Energy Info (EERE)

Good Practice Guidance on the Sustainable Mobilisation of Wood in Europe Good Practice Guidance on the Sustainable Mobilisation of Wood in Europe Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Good Practice Guidance on the Sustainable Mobilisation of Wood in Europe Agency/Company /Organization: United Nations Economic Commission for Europe Partner: Food and Agriculture Organization of the United Nations Sector: Land Focus Area: Biomass, Forestry Topics: Implementation, Policies/deployment programs Resource Type: Guide/manual, Lessons learned/best practices Website: www.unece.org/publications/oes/Timber_wood-mobilization-good_practice- UN Region: "Western & Eastern Europe" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property.

320

Biomass One Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Biomass Facility Biomass Facility Facility Biomass One Sector Biomass Owner Biomass One LP Location White City, Oregon Coordinates 42.4333333°, -122.8338889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.4333333,"lon":-122.8338889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "including biomass wood" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Biomass Cofiring Update 2002  

Science Conference Proceedings (OSTI)

Biomass is a renewable energy source. When cofired with coal in a plant that would normally fire 100% coal as the fuel, biomass becomes a renewable source of electricityfor that fraction of electricity that is generated from the biomass fraction of the heat in the fuel mix to the power plant. For electric power generation organizations that have coal-fired generation, cofiring biomass with coal will often be the lowest-cost form of renewable power.

2003-07-11T23:59:59.000Z

322

Original article Root biomass and biomass increment in a beech  

E-Print Network (OSTI)

Original article Root biomass and biomass increment in a beech (Fagus sylvatica L.) stand in North ­ This study is part of a larger project aimed at quantifying the biomass and biomass increment been developed to estimate the biomass and biomass increment of coarse, small and fine roots of trees

Recanati, Catherine

323

Hydrothermal Liquefaction of Biomass  

SciTech Connect

Hydrothermal liquefaction technology is describes in its relationship to fast pyrolysis of biomass. The scope of work at PNNL is discussed and some intial results are presented. HydroThermal Liquefaction (HTL), called high-pressure liquefaction in earlier years, is an alternative process for conversion of biomass into liquid products. Some experts consider it to be pyrolysis in solvent phase. It is typically performed at about 350 C and 200 atm pressure such that the water carrier for biomass slurry is maintained in a liquid phase, i.e. below super-critical conditions. In some applications catalysts and/or reducing gases have been added to the system with the expectation of producing higher yields of higher quality products. Slurry agents ('carriers') evaluated have included water, various hydrocarbon oils and recycled bio-oil. High-pressure pumping of biomass slurry has been a major limitation in the process development. Process research in this field faded away in the 1990s except for the HydroThermal Upgrading (HTU) effort in the Netherlands, but has new resurgence with other renewable fuels in light of the increased oil prices and climate change concerns. Research restarted at Pacific Northwest National Laboratory (PNNL) in 2007 with a project, 'HydroThermal Liquefaction of Agricultural and Biorefinery Residues' with partners Archer-Daniels-Midland Company and ConocoPhillips. Through bench-scale experimentation in a continuous-flow system this project investigated the bio-oil yield and quality that could be achieved from a range of biomass feedstocks and derivatives. The project was completed earlier this year with the issuance of the final report. HydroThermal Liquefaction research continues within the National Advanced Biofuels Consortium with the effort focused at PNNL. The bench-scale reactor is being used for conversion of lignocellulosic biomass including pine forest residue and corn stover. A complementary project is an international collaboration with Canada to investigate kelp (seaweed) as a biomass feedstock. The collaborative project includes process testing of the kelp in HydroThermal Liquefaction in the bench-scale unit at PNNL. HydroThermal Liquefaction at PNNL is performed in the hydrothermal processing bench-scale reactor system. Slurries of biomass are prepared in the laboratory from whole ground biomass materials. Both wet processing and dry processing mills can be used, but the wet milling to final slurry is accomplished in a stirred ball mill filled with angle-cut stainless steel shot. The PNNL HTL system, as shown in the figure, is a continuous-flow system including a 1-litre stirred tank preheater/reactor, which can be connected to a 1-litre tubular reactor. The product is filtered at high-pressure to remove mineral precipitate before it is collected in the two high-pressure collectors, which allow the liquid products to be collected batchwise and recovered alternately from the process flow. The filter can be intermittently back-flushed as needed during the run to maintain operation. By-product gas is vented out the wet test meter for volume measurement and samples are collected for gas chromatography compositional analysis. The bio-oil product is analyzed for elemental content in order to calculate mass and elemental balances around the experiments. Detailed chemical analysis is performed by gas chromatography-mass spectrometry and 13-C nuclear magnetic resonance is used to evaluate functional group types in the bio-oil. Sufficient product is produced to allow subsequent catalytic hydroprocessing to produce liquid hydrocarbon fuels. The product bio-oil from hydrothermal liquefaction is typically a more viscous product compared to fast pyrolysis bio-oil. There are several reasons for this difference. The HTL bio-oil contains a lower level of oxygen because of more extensive secondary reaction of the pyrolysis products. There are less amounts of the many light oxygenates derived from the carbohydrate structures as they have been further reacted to phenolic Aldol condensation products. The bio-oil

Elliott, Douglas C.

2010-12-10T23:59:59.000Z

324

The Use of Biomass for Power Generation in the U.S  

Science Conference Proceedings (OSTI)

The report provides an overview of the renewed U.S. market interest in biomass-fueled power generation and a concise look at what's driving interest in biomass-fueled generation, the challenges faced in implementing biomass-fueled generation projects, and the current and future state of biomass-fueled generation. Topics covered include: an overview of biomass-fueled generation including its history, the current market environment, and its future prospects; an analysis of the key business factors that are driving renewed interest in biomass-fueled generation; an evaluation of the challenges that are hindering the implementation of biomass-fueled generation projects; a description of the various feedstocks that can be used for biomass-fueled generation; an evaluation of the biomass supply chain; a description of biomass-fueled generation technologies; a review of the economic drivers of biomass-fueled generation project success; and, profiles of major biomass-fueled generation developers.

NONE

2007-10-15T23:59:59.000Z

325

Fiscalini Farms Biomass Energy Project  

SciTech Connect

In this final report describes and documents research that was conducted by the Ecological Engineering Research Program (EERP) at the University of the Pacific (Stockton, CA) under subcontract to Fiscalini Farms LP for work under the Assistance Agreement DE-EE0001895 'Measurement and Evaluation of a Dairy Anaerobic Digestion/Power Generation System' from the United States Department of Energy, National Energy Technology Laboratory. Fiscalini Farms is operating a 710 kW biomass-energy power plant that uses bio-methane, generated from plant biomass, cheese whey, and cattle manure via mesophilic anaerobic digestion, to produce electricity using an internal combustion engine. The primary objectives of the project were to document baseline conditions for the anaerobic digester and the combined heat and power (CHP) system used for the dairy-based biomass-energy production. The baseline condition of the plant was evaluated in the context of regulatory and economic constraints. In this final report, the operation of the plant between start-up in 2009 and operation in 2010 are documented and an interpretation of the technical data is provided. An economic analysis of the biomass energy system was previously completed (Appendix A) and the results from that study are discussed briefly in this report. Results from the start-up and first year of operation indicate that mesophilic anaerobic digestion of agricultural biomass, combined with an internal combustion engine, is a reliable source of alternative electrical production. A major advantage of biomass energy facilities located on dairy farms appears to be their inherent stability and ability to produce a consistent, 24 hour supply of electricity. However, technical analysis indicated that the Fiscalini Farms system was operating below capacity and that economic sustainability would be improved by increasing loading of feedstocks to the digester. Additional operational modifications, such as increased utilization of waste heat and better documentation of potential of carbon credits, would also improve the economic outlook. Analysis of baseline operational conditions indicated that a reduction in methane emissions and other greenhouse gas savings resulted from implementation of the project. The project results indicate that using anaerobic digestion to produce bio-methane from agricultural biomass is a promising source of electricity, but that significant challenges need to be addressed before dairy-based biomass energy production can be fully integrated into an alternative energy economy. The biomass energy facility was found to be operating undercapacity. Economic analysis indicated a positive economic sustainability, even at the reduced power production levels demonstrated during the baseline period. However, increasing methane generation capacity (via the importation of biomass codigestate) will be critical for increasing electricity output and improving the long-term economic sustainability of the operation. Dairy-based biomass energy plants are operating under strict environmental regulations applicable to both power-production and confined animal facilities and novel approached are being applied to maintain minimal environmental impacts. The use of selective catalytic reduction (SCR) for nitrous oxide control and a biological hydrogen sulfide control system were tested at this facility. Results from this study suggest that biomass energy systems can be compliant with reasonable scientifically based air and water pollution control regulations. The most significant challenge for the development of biomass energy as a viable component of power production on a regional scale is likely to be the availability of energy-rich organic feedstocks. Additionally, there needs to be further development of regional expertise in digester and power plant operations. At the Fiscalini facility, power production was limited by the availability of biomass for methane generation, not the designed system capacity. During the baseline study period, feedstocks included manure, sudan grass silage, and

William Stringfellow; Mary Kay Camarillo; Jeremy Hanlon; Michael Jue; Chelsea Spier

2011-09-30T23:59:59.000Z

326

NREL: Biomass Research - Research Staff  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Staff Research Staff NREL's biomass research staff includes: Management team Technology and research areas Research support areas. Search the NREL staff directory to contact any of the research staff listed below. Management Team The biomass management team is composed of: Thomas Foust, National Bioenergy Center Director Robert Baldwin, Principal Scientist, Thermochemical Conversion Phil Pienkos, Applied Science Principal Group Manager Kim Magrini, Catalysis and Thermochemical Sciences and Engineering R&D Principal Group Manager Jim McMillan, Biochemical Process R&D Principal Group Manager Rich Bain, Principal Engineer, Thermochemical Sciences Mark Davis, Thermochemical Platform Lead Richard Elander, Biochemical Platform Lead Dan Blake, Emeritus Back to Top Technology and Research Areas

327

AVAILABLE NOW! Biomass Funding  

E-Print Network (OSTI)

AVAILABLE NOW! Biomass Funding Guide 2010 The Forestry Commission and the Humber Rural Partnership (co-ordinated by East Riding of Yorkshire Council) have jointly produced a biomass funding guide fuel prices continue to rise, and the emerging biomass sector is well-placed to make a significant

328

1994 Washington State directory of Biomass Energy Facilities  

DOE Green Energy (OSTI)

This is the fourth edition of the Washington Directory of Biomass Energy Facilities, the first edition was published in 1987. The purpose of this directory is to provide a listing of and basic information about known biomass producers and users within the state to help demonstrate the importance of biomass energy in fueling our state`s energy needs. In 1992 (latest statistical year), estimates show that the industrial sector in Washington consumed nearly 128 trillion Btu of electricity, nearly 49.5 trillion Btu of petroleum, over 82.2 trillion Btu of natural gas, and over 4.2 trillion Btu of coal. Facilities listed in this directory generated approximately 114 trillion Btu of biomass energy - 93 trillion were consumed from waste wood and spent chemicals. In the total industrial energy picture, wood residues and chemical cooking liquors placed second only to electricity. This directory is divided into four main sections biogas production, biomass combustion, ethanol production, and solid fuel processing facilities. Each section contains maps and tables summarizing the information for each type of biomass. Provided in the back of the directory for reference are a conversion table, a table of abbreviations, a glossary, and an index. Chapter 1 deals with biogas production from both landfills and sewage treatment plants in the state. Biogas produced from garbage and sewage can be scrubbed and used to generate electricity. At the present time, biogas collected at landfills is being flared on-site, however four landfills are investigating the feasibility of gas recovery for energy. Landfill biogas accounted for approximately 6 percent of the total biomass reported. Sewage treatment biogas accounted for 0.6 percent. Biogas generated from sewage treatment plants is primarily used for space and process heat, only one facility presently scrubs and sells methane. Together, landfill and sewage treatment plant biogas represented over 6.6 percent of the total biomass reported.

Deshaye, J.A.; Kerstetter, J.D.

1994-03-01T23:59:59.000Z

329

Oxidation of volatiles in residential wood burning equipment. Final technical report, September 1980-February 1984  

DOE Green Energy (OSTI)

The objectives of this project are to measure, through the use of laboratory combustors, those conditions which promote complete combustion of wood volatiles in residential wood burning equipment. The conditions of interest are combustion temperature, residence time, stoichiometry, and air mixing. The project objectives are met through two laboratory approaches: (1) model compound studies: in order to measure the overall rates of oxidative pyrolysis of biomass volatiles, and to determine the types of intermediate organic species which are likely to form as part of this process, model compounds have been reacted in a specialized jet-stirred reactor, which has been developed as part of this research. (2) high-intensity wood combustion: in order to study the clean combustion of wood, that is, to investigate the conceptual design features required for clean burning, and to ascertain the levels and types of pollutant and condensible species which are most difficult to oxidize, a high-intensity, research wood combustor has been developed and examined for the different phases of the wood burning cycle. Although the objectives of the project have been met, it has not been possible, because of support limitations, to thoroughly explore several interesting aspects which have arisen because of this research. For example, a third laboratory system in which wood pyrolysis gas is injected directly into the a well characterized reactor, so that the kinetics and mechanisms of the gas-phase reaction of the actual biomass volatiles can be studied, could not be thoroughly developed. Refinements in the high-intensity wood combustor, which would bring its design features closer to practicality for the industry, could not be considered. 32 references, 37 figures, 10 tables.

Malte, P.C.; Thornton, M.M.; Kamber, P.D.

1984-04-01T23:59:59.000Z

330

Bioconversion of waste biomass to useful products  

DOE Patents (OSTI)

A process is provided for converting waste biomass to useful products by gasifying the biomass to produce synthesis gas and converting the synthesis gas substrate to one or more useful products. The present invention is directed to the conversion of biomass wastes including municipal solid waste, sewage sludge, plastic, tires, agricultural residues and the like, as well as coal, to useful products such as hydrogen, ethanol and acetic acid. The overall process includes the steps of gasifying the waste biomass to produce raw synthesis gas, cooling the synthesis gas, converting the synthesis gas to the desired product or products using anaerobic bioconversion, and then recovering the product or products. In accordance with a particular embodiment of the present invention, waste biomass is converted to synthesis gas containing carbon monoxide and, then, the carbon monoxide is converted to hydrogen by an anaerobic microorganism ERIH2, bacillus smithii ATCC No. 55404.

Grady, James L. (Fayetteville, AR); Chen, Guang Jiong (Fayetteville, AR)

1998-01-01T23:59:59.000Z

331

Bioconversion of waste biomass to useful products  

DOE Patents (OSTI)

A process is provided for converting waste biomass to useful products by gasifying the biomass to produce synthesis gas and converting the synthesis gas substrate to one or more useful products. The present invention is directed to the conversion of biomass wastes including municipal solid waste, sewage sludge, plastic, tires, agricultural residues and the like, as well as coal, to useful products such as hydrogen, ethanol and acetic acid. The overall process includes the steps of gasifying the waste biomass to produce raw synthesis gas, cooling the synthesis gas, converting the synthesis gas to the desired product or products using anaerobic bioconversion, and then recovering the product or products. In accordance with a particular embodiment of the present invention, waste biomass is converted to synthesis gas containing carbon monoxide and, then, the carbon monoxide is converted to hydrogen by an anaerobic microorganism ERIH2, Bacillus smithii ATCC No. 55404. 82 figs.

Grady, J.L.; Chen, G.J.

1998-10-13T23:59:59.000Z

332

NREL: Biomass Research - Alexandre Chapeaux  

NLE Websites -- All DOE Office Websites (Extended Search)

biofuels with industrial partners. Alex's research areas of interest are: Integrated biomass processing High solids biomass conversion Fermentation development Separation...

333

Gasification of woody biomass Tessa Jansen (s0140600)  

E-Print Network (OSTI)

on biomass fast pyrolysis followed by #12;-3- hydroprocessing.11-14 A number of pre-conversion technologies;-9- Fast pyrolysis followed by hydroprocessing Fast pyrolysis is a process of heating biomass without include biomass pretreatment, fast pyrolysis, solids removal, oil recovery, char combustion

Luding, Stefan

334

Biomass Stoves and Lens Opacity and Cataract in Nepalese Women  

E-Print Network (OSTI)

Biomass Stoves and Lens Opacity and Cataract in Nepalese Women Amod K. Pokhrel*, Michael N. Bates with use of biomass cookstoves. These studies, however, have had limitations, including potential control of Nepal where biomass cookstoves are widely used without direct venting of the smoke to the outdoors

335

BNL | Biomass Burns  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Burn Observation Project (BBOP) Biomass Burn Observation Project (BBOP) Aerosols from biomass burning are recognized to perturb Earth's climate through the direct effect (both scattering and absorption of incoming shortwave radiation), the semi-direct effect (evaporation of cloud drops due to absorbing aerosols), and indirect effects (by influencing cloud formation and precipitation. Biomass burning is an important aerosol source, providing an estimated 40% of anthropogenically influenced fine carbonaceous particles (Bond, et al., 2004; Andrea and Rosenfeld, 2008). Primary organic aerosol (POA) from open biomass burns and biofuel comprises the largest component of primary organic aerosol mass emissions at northern temperate latitudes (de Gouw and Jimenez, 2009). Data from the IMPROVE

336

Biomass Estimates for Five Western States.  

DOE Green Energy (OSTI)

The purpose of this report is to describe the woody biomass resource within US Department of Energy's Pacific Northwest and Alaska Regional Biomass Program, comprised of southeast Alaska, Idaho, Montana, Oregon, and Washington. In addition to the regional forest biomass assessment, information will be presented for logging residue, which represents current energy conversion opportunities. The information presented in the report is based on data and relationships already published. Regionally applicable biomass equations are generally not available for species occurring in the west. Because of this, a number of assumptions were made to develop whole-tree biomass tables. These assumptions are required to link algorithms from biomass studies to regional timber inventory data published by the Forest Inventory and Analysis Research Units (FIA), of the Pacific Northwest and Intermountain Research Stations, US Forest Service. These sources and assumptions will be identified later in this report. Tabular biomass data will be presented for 11 resource areas, identified in the FS inventory publications. This report does not include information for the vast area encompassing interior Alaska. Total tress biomass as defined in the report refers to the above ground weight of a tree above a 1.0 foot stump, and exclusive of foliage. A glossary is included that defines specific terms as used in the report. Inventory terminology is derived from forest inventory reports from Forest Inventory and Analysis units at the Intermountain and Pacific Northwest Research Stations. 39 refs., 15 figs., 23 tabs.

Howard, James O.

1990-10-01T23:59:59.000Z

337

Biomass Estimates for Five Western States.  

SciTech Connect

The purpose of this report is to describe the woody biomass resource within US Department of Energy's Pacific Northwest and Alaska Regional Biomass Program, comprised of southeast Alaska, Idaho, Montana, Oregon, and Washington. In addition to the regional forest biomass assessment, information will be presented for logging residue, which represents current energy conversion opportunities. The information presented in the report is based on data and relationships already published. Regionally applicable biomass equations are generally not available for species occurring in the west. Because of this, a number of assumptions were made to develop whole-tree biomass tables. These assumptions are required to link algorithms from biomass studies to regional timber inventory data published by the Forest Inventory and Analysis Research Units (FIA), of the Pacific Northwest and Intermountain Research Stations, US Forest Service. These sources and assumptions will be identified later in this report. Tabular biomass data will be presented for 11 resource areas, identified in the FS inventory publications. This report does not include information for the vast area encompassing interior Alaska. Total tress biomass as defined in the report refers to the above ground weight of a tree above a 1.0 foot stump, and exclusive of foliage. A glossary is included that defines specific terms as used in the report. Inventory terminology is derived from forest inventory reports from Forest Inventory and Analysis units at the Intermountain and Pacific Northwest Research Stations. 39 refs., 15 figs., 23 tabs.

Howard, James O.

1990-10-01T23:59:59.000Z

338

Integration of alternative feedstreams for biomass treatment and utilization  

DOE Patents (OSTI)

The present invention provides a method for treating biomass composed of integrated feedstocks to produce fermentable sugars. One aspect of the methods described herein includes a pretreatment step wherein biomass is integrated with an alternative feedstream and the resulting integrated feedstock, at relatively high concentrations, is treated with a low concentration of ammonia relative to the dry weight of biomass. In another aspect, a high solids concentration of pretreated biomass is integrated with an alternative feedstream for saccharifiaction.

Hennessey, Susan Marie (Avondale, PA); Friend, Julie (Claymont, DE); Dunson, Jr., James B. (Newark, DE); Tucker, III, Melvin P. (Lakewood, CO); Elander, Richard T. (Evergreen, CO); Hames, Bonnie (Westminster, CO)

2011-03-22T23:59:59.000Z

339

California's program converts biomass residues to energy  

SciTech Connect

This paper provides a brief introduction to the emerging biomass fuel industry in California and includes descriptions of California's biomass potential, California's biomass development program, and legislation that expands the state's developmental efforts in biomass commercialization. California's agriculture and forest industries residues were discussed. These residues can be converted to energy, and now, through California's aggressive development program, more residues will be converted. (DP)

Ward, P.F.

1980-01-01T23:59:59.000Z

340

Understanding Biomass Feedstock Variability  

SciTech Connect

If the singular goal of biomass logistics and the design of biomass feedstock supply systems is to reduce the per ton supply cost of biomass, these systems may very well develop with ultimate unintended consequences of highly variable and reduced quality biomass feedstocks. This paper demonstrates that due to inherent species variabilities, production conditions, and differing harvest, collection, and storage practices, this is a very real scenario that biomass producers and suppliers as well as conversion developers should be aware of. Biomass feedstock attributes of ash, carbohydrates, moisture, and particle morphology will be discussed. We will also discuss specifications for these attributes, inherent variability of these attributes in biomass feedstocks, and approaches and solutions for reducing variability for improving feedstock quality.

Kevin L. Kenney; William A. Smith; Garold L. Gresham; Tyler L. Westover

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "including biomass wood" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Wood and energy in connecticut. Staff report  

SciTech Connect

Telephone surveys of Connecticut households conducted in 1979 indicate a transition to wood heating in response to a series of conventional energy price increases and uncertainty in conventional energy supplies. Connecticut households consumed 668,000 cords of wood in the winter of 1978-79. The airtight wood stove has become the most commonly used wood-burning apparatus. Survey data of residential wood cutting, purchasing, and burning were analyzed by household tenure, wood-burning apparatus, and county. Residential use of wood for energy constitutes a new demand on the forest resource, increases local income and employment, displaces fuel oil and electricity, but may compromise household safety.

Bailey, M.R.; Wheeling, P.R.; Lenz, M.I.

1983-03-01T23:59:59.000Z

342

White Pine Co. Public School System Biomass Conversion Heating Project  

DOE Green Energy (OSTI)

The White Pine County School District and the Nevada Division of Forestry agreed to develop a pilot project for Nevada using wood chips to heat the David E. Norman Elementary School in Ely, Nevada. Consideration of the project was triggered by a ''Fuels for Schools'' grant that was brought to the attention of the School District. The biomass project that was part of a district-wide energy retrofit, called for the installation of a biomass heating system for the school, while the current fuel oil system remained as back-up. Woody biomass from forest fuel reduction programs will be the main source of fuel. The heating system as planned and completed consists of a biomass steam boiler, storage facility, and an area for unloading and handling equipment necessary to deliver and load fuel. This was the first project of it's kind in Nevada. The purpose of the DOE funded project was to accomplish the following goals: (1) Fuel Efficiency: Purchase and install a fuel efficient biomass heating system. (2) Demonstration Project: Demonstrate the project and gather data to assist with further research and development of biomass technology; and (3) Education: Educate the White Pine community and others about biomass and other non-fossil fuels.

Paul Johnson

2005-11-01T23:59:59.000Z

343

White Pine Co. Public School System Biomass Conversion Heating Project  

SciTech Connect

The White Pine County School District and the Nevada Division of Forestry agreed to develop a pilot project for Nevada using wood chips to heat the David E. Norman Elementary School in Ely, Nevada. Consideration of the project was triggered by a ''Fuels for Schools'' grant that was brought to the attention of the School District. The biomass project that was part of a district-wide energy retrofit, called for the installation of a biomass heating system for the school, while the current fuel oil system remained as back-up. Woody biomass from forest fuel reduction programs will be the main source of fuel. The heating system as planned and completed consists of a biomass steam boiler, storage facility, and an area for unloading and handling equipment necessary to deliver and load fuel. This was the first project of it's kind in Nevada. The purpose of the DOE funded project was to accomplish the following goals: (1) Fuel Efficiency: Purchase and install a fuel efficient biomass heating system. (2) Demonstration Project: Demonstrate the project and gather data to assist with further research and development of biomass technology; and (3) Education: Educate the White Pine community and others about biomass and other non-fossil fuels.

Paul Johnson

2005-11-01T23:59:59.000Z

344

Conversion of biomass to methanol and its effect on CO sub 2 emissions  

DOE Green Energy (OSTI)

The purpose for this report is to present a preliminary analysis of various processes for conversion of biomass to methanol fuel with the objective of determining the effect of these processes on net CO{sub 2} emissions. The analysis is made primarily on the basis of first principles of mass and energy balances. There are at least four systems that can produce methanol from biomass (defined as wood or lignocellulose). These are reviewed and assessed. 5 refs., 3 figs., 1 tab.

Steinberg, M.

1990-10-01T23:59:59.000Z

345

Superheater Corrosion In Biomass Boilers: Today's Science and Technology  

DOE Green Energy (OSTI)

This report broadens a previous review of published literature on corrosion of recovery boiler superheater tube materials to consider the performance of candidate materials at temperatures near the deposit melting temperature in advanced boilers firing coal, wood-based fuels, and waste materials as well as in gas turbine environments. Discussions of corrosion mechanisms focus on the reactions in fly ash deposits and combustion gases that can give corrosive materials access to the surface of a superheater tube. Setting the steam temperature of a biomass boiler is a compromise between wasting fuel energy, risking pluggage that will shut the unit down, and creating conditions that will cause rapid corrosion on the superheater tubes and replacement expenses. The most important corrosive species in biomass superheater corrosion are chlorine compounds and the most corrosion resistant alloys are typically FeCrNi alloys containing 20-28% Cr. Although most of these materials contain many other additional additions, there is no coherent theory of the alloying required to resist the combination of high temperature salt deposits and flue gases that are found in biomass boiler superheaters that may cause degradation of superheater tubes. After depletion of chromium by chromate formation or chromic acid volatilization exceeds a critical amount, the protective scale gives way to a thick layer of Fe{sub 2}O{sub 3} over an unprotective (FeCrNi){sub 3}O{sub 4} spinel. This oxide is not protective and can be penetrated by chlorine species that cause further acceleration of the corrosion rate by a mechanism called active oxidation. Active oxidation, cited as the cause of most biomass superheater corrosion under chloride ash deposits, does not occur in the absence of these alkali salts when the chloride is present as HCl gas. Although a deposit is more corrosive at temperatures where it is molten than at temperatures where it is frozen, increasing superheater tube temperatures through the measured first melting point of fly ash deposits does not necessarily produce a step increase in corrosion rate. Corrosion rate typically accelerates at temperatures below the first melting temperature and mixed deposits may have a broad melting temperature range. Although the environment at a superheater tube surface is initially that of the ash deposits, this chemistry typically changes as the deposits mature. The corrosion rate is controlled by the environment and temperature at the tube surface, which can only be measured indirectly. Some results are counter-intuitive. Two boiler manufacturers and a consortium have developed models to predict fouling and corrosion in biomass boilers in order to specify tube materials for particular operating conditions. It would be very useful to compare the predictions of these models regarding corrosion rates and recommended alloys in the boiler environments where field tests will be performed in the current program. Manufacturers of biomass boilers have concluded that it is more cost-effective to restrict steam temperatures, to co-fire biofuels with high sulfur fuels and/or to use fuel additives rather than try to increase fuel efficiency by operating with superheater tube temperatures above melting temperature of fly ash deposits. Similar strategies have been developed for coal fired and waste-fired boilers. Additives are primarily used to replace alkali metal chloride deposits with higher melting temperature and less corrosive alkali metal sulfate or alkali aluminum silicate deposits. Design modifications that have been shown to control superheater corrosion include adding a radiant pass (empty chamber) between the furnace and the superheater, installing cool tubes immediately upstream of the superheater to trap high chloride deposits, designing superheater banks for quick replacement, using an external superheater that burns a less corrosive biomass fuel, moving circulating fluidized bed (CFB) superheaters from the convective pass into the hot recirculated fluidizing medium and adding an insulating layer to superh

Sharp, William (Sandy) [SharpConsultant

2011-12-01T23:59:59.000Z

346

Managing Transmission Line Wood Structures  

Science Conference Proceedings (OSTI)

The objective of this project is to reduce capital cost by extending life expectancy of overhead transmission wood structures through inspection and assessment procedures and through aging mitigation techniques and tools.

2005-11-29T23:59:59.000Z

347

Catalytic Tri-reforming of Biomass-Derived Syngas to Produce Desired H2:CO Ratios for Fuel Applications.  

E-Print Network (OSTI)

??This study focuses on upgrading biomass derived syngas for the synthesis of liquid fuels using Fischer-Tropsch synthesis (FTS). The process includes novel gasification of biomass (more)

Walker, Devin Mason

2012-01-01T23:59:59.000Z

348

Treated Wood Planted Post Study  

Science Conference Proceedings (OSTI)

This Technical Update describes the interim results of a planted post study currently under way at the Austin Cary Memorial Forest (ACMF), operated by The University of Florida, in Gainesville. The purpose of this research is to examine the effectiveness of commercially available prevention methods to reduce preservative migration from treated wood poles, compare the migration of constituents of various wood treatments, and assess the environmental impacts and performance of untreated chestnut.

2009-11-12T23:59:59.000Z

349

Test Burns of Torrefied Wood  

Science Conference Proceedings (OSTI)

Biomass fuel is an important option for mitigating the production of carbon dioxide emissions from generating units that are designed to fire conventional fossil fuels. The key attraction of biomass fuels is that they are carbon neutralthe carbon dioxide released by combustion was fixed or removed from the atmosphere by photosynthesis, so its return does not provide a net carbon addition. Utilities in the United States and Canada are considering options both for co-firing biomass with coal and for comple...

2010-06-24T23:59:59.000Z

350

NREL: Biomass Research - News  

NLE Websites -- All DOE Office Websites (Extended Search)

News News Below are news stories related to NREL biomass research. Subscribe to the RSS feed RSS . Learn about RSS. November 7, 2013 NREL Developed Mobile App for Alternative Fueling Station Locations Released iPhone users now have access to a free application that locates fueling stations offering alternative fuels, including electricity, natural gas, biodiesel, e85 Ethanol, propane and hydrogen. The Energy Department's (DOE) National Renewable Energy Laboratory (NREL) developed the new mobile application for DOE's Clean Cities program. Clean Cities supports local stakeholders across the country in an effort to cut petroleum use in transportation. August 21, 2013 Can "Drop-In" Biofuels Solve Integration Issues? Lab works to create biofuels indistinguishable from conventional

351

FACTORS AFFECTING WOOD PELLET DURABILITY.  

E-Print Network (OSTI)

??Densification increases the bulk density of biomass, thereby increasing the efficiency of its transport and improving its competitiveness with low-cost fossil energy. The method of (more)

Wilson, Thomas

2010-01-01T23:59:59.000Z

352

Northeast Regional Biomass Program first and second quarter reports, October 1, 1994--March 31, 1995  

SciTech Connect

The Northeast states face several near-term barriers to the expanded use of biomass energy. Informational and technical barriers have impeded industrial conversions, delaying the development of a wood energy supply infrastructure. Concern over the environmental impacts on resources are not well understood. Public awareness and concern about safety issues surrounding wood energy use has also grown to the point of applying a brake to the trend of increases in residential applications of biomass energy. In addition, many residential commercial, industrial, and commercial energy users are discouraged from using biomass energy because of the convenience factor. Regardless of the potential for cost savings, biomass energy sources, aside from being perceived as more esoteric, are also viewed as more work for the user. The Northeast Regional biomass Program (NRBP) is designed to help the eleven Northeastern states overcome these obstacles and achieve their biomass energy potentials. The objective of this program in the current and future years is to increase the role of biomass fuels in the region`s energy mix by providing the impetus for states and the private sector to develop a viable Northeast biomass fuels market. This paper contains a management report, state program summaries, technical project status report, and technology transfer activities.

1995-07-01T23:59:59.000Z

353

Research, Development and Demonstration of Bio-Mass Boiler for Food Industry  

SciTech Connect

Frito-Lay is working to reduce carbon emissions from their manufacturing plants. As part of this effort, they invested in a ??biomass-fired? boiler at the Topeka, Kansas, plant. Frito-Lay partnered with Burns & McDonnell Engineering, Inc. and CPL Systems, Inc., to design and construct a steam producing boiler using ??carbon neutral? fuels such as wood wastes (e.g. tree bark), shipping pallets, and used rubber vehicle tires. The U.S. Department of Energy (DOE) joined with Frito-Lay, Burns & McDonnell, and CPL to analyze the reductions in carbon dioxide (CO{sub 2}) emissions that result from use of biomass-fired boilers in the food manufacturing environment. DOE support provided for the data collection and analysis, and reporting necessary to evaluate boiler efficiencies and reductions in CO{sub 2} emissions. The Frito-Lay biomass-fired boiler has resulted in significant reductions in CO{sub 2} emissions from the Topeka production facility. The use of natural gas has been reduced by 400 to 420 million standard cubic feet per year with corresponding reductions of 24,000 to 25,000 tons of CO{sub 2}. The boiler does require auxiliary ??functions,? however, that are unnecessary for a gas-fired boiler. These include heavy motors and fans for moving fuel and firing the boiler, trucks and equipment for delivering the fuel and moving at the boiler plant, and chippers for preparing the fuel prior to delivery. Each of these operations requires the combustion of fossil fuels or electricity and has associated CO{sub 2} emissions. Even after accounting for each of these auxiliary processes, however, the biomass-fired boiler results in net emission reductions of 22,500 to 23,500 tons of CO{sub 2} per year.

Fisher, Steve; Knapp, David

2012-03-31T23:59:59.000Z

354

BARRIER ISSUES TO THE UTILIZATION OF BIOMASS  

DOE Green Energy (OSTI)

The Energy & Environmental Research Center (EERC) is conducting a project to examine the fundamental issues limiting the use of biomass in small industrial steam/power systems in order to increase the future use of this valuable domestic resource. Specifically, the EERC is attempting to elucidate the ash-related problems--grate clinkering and heat exchange surface fouling--associated with cofiring coal and biomass in grate-fired systems. Utilization of biomass in stoker boilers designed for coal can be a cause of concern for boiler operators. Boilers that were designed for low volatile fuels with lower reactivities can experience damaging fouling when switched to higher volatile and more reactive lower-rank fuels, such as when cofiring biomass. Higher heat release rates at the grate can cause more clinkering or slagging at the grate because of higher temperatures. Combustion and loss of volatile matter can start too early for biomass fuels compared to the design fuel, vaporizing alkali and chlorides which then condense on rear walls and heat exchange tube banks in the convective pass of the stoker, causing noticeable increases in fouling. In addition, stoker-fired boilers that switch to biomass blends may encounter new chemical species such as potassium sulfates and various chlorides, in combination with different flue gas temperatures because of changes in fuel heating value which can adversely affect ash deposition behavior. The goal of this project is to identify the primary ash mechanisms related to grate clinkering and heat exchange surface fouling associated with cofiring coal and biomass--specifically wood and agricultural residuals--in grate-fired systems, leading to future mitigation of these problems. The specific technical objectives of the project are: Modification of an existing EERC pilot-scale combustion system to simulate a grate-fired system; Verification testing of the simulator; Laboratory-scale testing and fuel characterization to determine ash formation and potential fouling mechanisms and to optimize activities in the modified pilot-scale system; and Pilot-scale testing in the grate-fired system. The resulting data will be collected, analyzed, and reported to elucidate ash-related problems during biomass-coal cofiring and offer a range of potential solutions.

Bruce C. Folkedahl; Darren D. Schmidt; Greg F. Weber; Christopher J. Zygarlicke

2001-10-01T23:59:59.000Z

355

BARRIER ISSUES TO THE UTILIZATION OF BIOMASS  

DOE Green Energy (OSTI)

The Energy & Environmental Research Center (EERC) has completed a project to examine fundamental issues that could limit the use of biomass in small industrial steam/power systems in order to increase the future use of this valuable domestic resource. Specifically, the EERC attempted to elucidate the ash-related problems--grate clinkering and heat exchange surface fouling--associated with cofiring coal and biomass in grate-fired systems. Utilization of biomass in stoker boilers designed for coal can be a cause of concern for boiler operators. Boilers that were designed for low-volatile fuels with lower reactivities can experience problematic fouling when switched to higher-volatile and more reactive coal-biomass blends. Higher heat release rates at the grate can cause increased clinkering or slagging at the grate due to higher temperatures. Combustion and loss of volatile matter can start much earlier for biomass fuels compared to design fuel, vaporizing alkali and chlorides which then condense on rear walls and heat exchange tube banks in the convective pass of the stoker, causing noticeable increases in fouling. In addition, stoker-fired boilers that switch to biomass blends may encounter new chemical species such as potassium sulfates, various chlorides, and phosphates. These species in combination with different flue gas temperatures, because of changes in fuel heating value, can adversely affect ash deposition behavior. The goal of this project was to identify the primary ash mechanisms related to grate clinkering and heat exchange surface fouling associated with cofiring coal and biomass--specifically wood and agricultural residuals--in grate-fired systems, leading to future mitigation of these problems. The specific technical objectives of the project were: (1) Modification of an existing pilot-scale combustion system to simulate a grate-fired system. (2) Verification testing of the simulator. (3) Laboratory-scale testing and fuel characterization to determine ash formation and potential fouling mechanisms and to optimize activities in the modified pilot-scale system. (4) Pilot-scale testing in the grate-fired system. The resulting data were used to elucidate ash-related problems during coal-biomass cofiring and offer a range of potential solutions.

Bruce C. Folkedahl; Jay R. Gunderson; Darren D. Schmidt; Greg F. Weber; Christopher J. Zygarlicke

2002-09-01T23:59:59.000Z

356

NREL: Biomass Research - Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities Capabilities A photo of a series of large metal tanks connected by a network of pipes. Only the top portion of the tanks is visible above the metal floor grate. Each tank has a round porthole on the top. Two men examine one of the tanks at the far end of the floor. Sugars are converted into ethanol in fermentation tanks. This ethanol is then separated, purified, and recovered for use as a transportation fuel. NREL biomass researchers and scientists have strong capabilities in many facets of biomass technology that support the cost-effective conversion of biomass to biofuels-capabilities that are in demand. The NREL biomass staff partners with other national laboratories, academic institutions, and commercial entities at every stage of the biomass-to-biofuels conversion process. For these partners, our biomass

357

Complex pendulum biomass sensor  

DOE Patents (OSTI)

A complex pendulum system biomass sensor having a plurality of pendulums. The plurality of pendulums allow the system to detect a biomass height and density. Each pendulum has an angular deflection sensor and a deflector at a unique height. The pendulums are passed through the biomass and readings from the angular deflection sensors are fed into a control system. The control system determines whether adjustment of machine settings is appropriate and either displays an output to the operator, or adjusts automatically adjusts the machine settings, such as the speed, at which the pendulums are passed through the biomass. In an alternate embodiment, an entanglement sensor is also passed through the biomass to determine the amount of biomass entanglement. This measure of entanglement is also fed into the control system.

Hoskinson, Reed L. (Rigby, ID); Kenney, Kevin L. (Idaho Falls, ID); Perrenoud, Ben C. (Rigby, ID)

2007-12-25T23:59:59.000Z

358

Metagenome of an Anaerobic Microbial Community Decomposing Poplar Wood Chips  

DOE Green Energy (OSTI)

This study describes the composition and metabolic potential of a lignocellulosic biomass degrading community that decays poplar wood chips under anaerobic conditions. We examined the community that developed on poplar biomass in a non-aerated bioreactor over the course of a year, with no microbial inoculation other than the naturally occurring organisms on the woody material. The composition of this community contrasts in important ways with biomass-degrading communities associated with higher organisms, which have evolved over millions of years into a symbiotic relationship. Both mammalian and insect hosts provide partial size reduction, chemical treatments (low or high pH environments), and complex enzymatic 'secretomes' that improve microbial access to cell wall polymers. We hypothesized that in order to efficiently degrade coarse untreated biomass, a spontaneously assembled free-living community must both employ alternative strategies, such as enzymatic lignin depolymerization, for accessing hemicellulose and cellulose and have a much broader metabolic potential than host-associated communities. This would suggest that such a community would make a valuable resource for finding new catalytic functions involved in biomass decomposition and gaining new insight into the poorly understood process of anaerobic lignin depolymerization. Therefore, in addition to determining the major players in this community, our work specifically aimed at identifying functions potentially involved in the depolymerization of cellulose, hemicelluloses, and lignin, and to assign specific roles to the prevalent community members in the collaborative process of biomass decomposition. A bacterium similar to Magnetospirillum was identified among the dominant community members, which could play a key role in the anaerobic breakdown of aromatic compounds. We suggest that these compounds are released from the lignin fraction in poplar hardwood during the decay process, which would point to lignin-modification or depolymerization under anaerobic conditions.

van der Lelie, D.; Taghavi, S.; McCorkle, S. M.; Li, L. L.; Malfatti, S. A.; Monteleone, D.; Donohoe, B. S.; Ding, S. Y.; Adney, W. S.; Himmel, M. E.; Tringe, S. G.

2012-05-01T23:59:59.000Z

359

Biomass for Electricity Generation - Table 9  

U.S. Energy Information Administration (EIA)

Modeling and Analysis Papers> Biomass for Electricity Generation : Biomass for Electricity Generation. Table 9. Biomass-Fired Electricity Generation ...

360

Biomass for Electricity Generation - Table 3  

U.S. Energy Information Administration (EIA)

Modeling and Analysis Papers> Biomass for Electricity Generation : Biomass for Electricity Generation. Table 3. Biomass Resources by Price: Quantities ...

Note: This page contains sample records for the topic "including biomass wood" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Biomass Gasification Syngas Cleanup  

Science Conference Proceedings (OSTI)

In December 2012, the Electric Power Research Institute (EPRI) published report 1023994, Engineering and Economic Evaluation of Biomass Gasification, prepared by CH2M HILL Engineers, Inc. (CH2M HILL). It provided a global overview of commercially available biomass gasification technologies that can be used for power production in the 25- to 50-MWe range. The report provided detailed descriptions of biomass gasification technologies, typical operational parameters, emissions information, and ...

2013-12-23T23:59:59.000Z

362

Advanced Biomass Gasification Projects  

DOE Green Energy (OSTI)

DOE has a major initiative under way to demonstrate two high-efficiency gasification systems for converting biomass into electricity. As this fact sheet explains, the Biomass Power Program is cost-sharing two scale-up projects with industry in Hawaii and Vermont that, if successful, will provide substantial market pull for U.S. biomass technologies, and provide a significant market edge over competing foreign technologies.

Not Available

1997-08-01T23:59:59.000Z

363

Biomass Gasification Technology Commercialization  

Science Conference Proceedings (OSTI)

Reliable cost and performance data on biomass gasification technology is scarce because of limited experience with utility-scale gasification projects and the reluctance of vendors to share proprietary information. The lack of this information is a major obstacle to the implementation of biomass gasification-based power projects in the U.S. market. To address this problem, this report presents four case studies for bioenergy projects involving biomass gasification technologies: A utility-scale indirect c...

2010-12-10T23:59:59.000Z

364

Chromoblastomycosis associated with in a carpenter handling exotic woods  

E-Print Network (OSTI)

in a carpenter handling exotic woods Nuno Menezes 1 , Pauloas saprophytes in the soil, wood and vegetation [ 3 ]. Theyare normally made of tropical wood [ 9 ]. The inoculation

2008-01-01T23:59:59.000Z

365

Issues in the use of wood as an energy source in the northeastern US  

DOE Green Energy (OSTI)

This report analyzes some of the concerns surrounding the use of wood for energy in the Northeast. It reviews the information on resource availability and ownership patterns in the Northeast, then focuses on New England, to assess the affect of potential resource constraints on the supply of wood available for energy and the effects of wood energy use on land use patterns. Finally, the application of specific technologies in settings that may experience significant wood energy use in the future is considered, including an assessment of the regional employment and income benefits of a major woodfuel installation.

Munson, J.S. (ed.)

1980-05-01T23:59:59.000Z

366

Hydrogen production from biomass .  

E-Print Network (OSTI)

??Biomass energy encompasses a broad category of energy derived from plants and animals as well as the residual materials from each. Hydrogen gas is an (more)

Hahn, John J.

2006-01-01T23:59:59.000Z

367

NREL: Biomass Research - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Spectrometer analyzes vapors during the gasification and pyrolysis processes. NREL's biomass projects are designed to advance the production of liquid transportation fuels from...

368

Co-firing biomass  

SciTech Connect

Concern about global warming has altered the landscape for fossil-fuel combustion. The advantages and challenges of co-firing biomass and coal are discussed. 2 photos.

Hunt, T.; Tennant, D. [Hunt, Guillot & Associates LLC (United States)

2009-11-15T23:59:59.000Z

369

Florida Biomass Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Florida Biomass Energy, LLC Place Florida Sector Biomass Product Florida-based biomass project developer. References Florida Biomass Energy, LLC1 LinkedIn Connections CrunchBase...

370

Wood and Pellet Heating | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wood and Pellet Heating Wood and Pellet Heating Wood and Pellet Heating November 25, 2013 - 2:24pm Addthis A wood stove on a stone hearth. | Photo courtesy of ©iStockphoto/King_Louie A wood stove on a stone hearth. | Photo courtesy of ©iStockphoto/King_Louie What does this mean for me? Wood or pellets may be an economical and environmentally sound heating fuel choice. If you live in an area where you can cut your own wood for heating, your fuel will be local and inexpensive. Today you can choose from a new generation of wood- and pellet-burning appliances that are cleaner burning, more efficient, and powerful enough to heat many average-sized, modern homes. Pellet fuel appliances burn small pellets that measure 3/8 to 1 inch in length. Choosing and Installing Wood- and Pellet-Burning Appliances

371

EERC Center for Biomass Utilization 2005  

DOE Green Energy (OSTI)

Biomass utilization is one solution to our nations addiction to oil and fossil fuels. What is needed now is applied fundamental research that will cause economic technology development for the utilization of the diverse biomass resources in the United States. This Energy & Environmental Research Center (EERC) applied fundamental research project contributes to the development of economical biomass utilization for energy, transportation fuels, and marketable chemicals using biorefinery methods that include thermochemical and fermentation processes. The fundamental and basic applied research supports the broad scientific objectives of the U.S. Department of Energy (DOE) Biomass Program, especially in the area of developing alternative renewable biofuels, sustainable bioenergy, technologies that reduce greenhouse gas emissions, and environmental remediation. Its deliverables include 1) identifying and understanding environmental consequences of energy production from biomass, including the impacts on greenhouse gas production, carbon emission abatement, and utilization of waste biomass residues and 2) developing biology-based solutions that address DOE and national needs related to waste cleanup, hydrogen production from renewable biomass, biological and chemical processes for energy and fuel production, and environmental stewardship. This project serves the public purpose of encouraging good environmental stewardship by developing biomass-refining technologies that can dramatically increase domestic energy production to counter current trends of rising dependence upon petroleum imports. Decreasing the nations reliance on foreign oil and energy will enhance national security, the economy of rural communities, and future competitiveness. Although renewable energy has many forms, such as wind and solar, biomass is the only renewable energy source that can be governed through agricultural methods and that has an energy density that can realistically compete with, or even replace, petroleum and other fossil fuels in the near future. It is a primary domestic, sustainable, renewable energy resource that can supply liquid transportation fuels, chemicals, and energy that are currently produced from fossil sources, and it is a sustainable resource for a hydrogen-based economy in the future.

Zygarlicke, C.J.; Schmidt, D.D.; Olson, E.S.; Leroux, K.M.; Wocken, C.A.; Aulich, T.A.; WIlliams, K.D.

2008-07-28T23:59:59.000Z

372

Waste-to-Energy Biomass Digester with Decreased Water Consumption  

Waste-to-Energy Biomass Digester with Decreased Water Consumption ... Able to digest multiple types of waste, including bovine, equine, and poultry manure

373

One- and Two-Phase Conversion of Biomass to Furfural  

Exploiting the energy potential of biomass high in cellulose and ligninincluding grasses, shrubs, husks, bark, yard and mill offal not readily ...

374

Methanol production from Eucalyptus wood chips. Working document I. The Florida Eucalyptus energy farm: silvicultural methods and considerations  

DOE Green Energy (OSTI)

The silvicultural matrix within which the nation's first large scale wood energy plantation will develop is described in detail. The relevant literature reviewed is identified and distilled. The plantation history, site preparation, planting, species selection, maintenance and management, harvesting, and the Eucalyptus biomass production estimates are presented.

Fishkind, H.H.

1982-04-01T23:59:59.000Z

375

NREL: Biomass Research - Eric P. Knoshaug  

NLE Websites -- All DOE Office Websites (Extended Search)

Eric P. Knoshaug Eric P. Knoshaug Photo of Eric Knoshaug Eric P. Knoshaug is a senior scientist in the Applied Science section of the National Bioenergy Center at the National Renewable Energy Laboratory in Golden, Colorado. He joined NREL in August 2000 and has since worked on engineering yeast for efficient utilization of biomass-generated pentose sugars, protein design and evolution for increased activity on recalcitrant biomass substrates, and increasing lipid production in microalgae. Current projects include: Pentose utilization in yeast Algal growth systems Algal lipid production and nitrogen stress responses Enzymatic degradation of algal biomass. Research Interests Microbiology Molecular biology Microbial physiology Fermentation and growth systems development Metabolic engineering

376

BIOMASS REBURNING - MODELING/ENGINEERING STUDIES  

DOE Green Energy (OSTI)

This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. During the ninth reporting period (September 27--December 31, 1999), EER prepared a paper Kinetic Model of Biomass Reburning and submitted it for publication and presentation at the 28th Symposium (International) on Combustion, University of Edinburgh, Scotland, July 30--August 4, 2000. Antares Group Inc, under contract to Niagara Mohawk Power Corporation, evaluated the economic feasibility of biomass reburning options for Dunkirk Station. A preliminary report is included in this quarterly report.

Vladimir Zamansky; Chris Lindsey; Vitali Lissianski

2000-01-28T23:59:59.000Z

377

Increasing the productivity of biomass plantations of Populus species and hybrids in the Pacific Northwest. Final report, September 14, 1981--December 31, 1996  

DOE Green Energy (OSTI)

This final report represents the culmination of eight years of biological research devoted to increasing the productivity of short rotation plantations of Populus trichocarpa and Populus hybrids in the Pacific Northwest. Studies described herein provide an understanding of tree growth, stand development and biomass yield at various spacings, and how patterns thereof differ by Populus clone in monoclonal and polyclonal plantings. Also included is some information about factors related to wind damage in Populus plantings, use of leaf size as a predictor of growth potential, and approaches for estimating tree and stand biomass and biomass growth. The work was accomplished in three research plantations, all established cooperatively with the Washington State Department of Natural Resources (DNR) and located at the DNR Tree Improvement Center near Olympia. The first plantation was established in Spring 1986 to evaluate the highly touted {open_quotes}woodgrass{close_quotes} concept and compare it with more conventional short-rotation management regimes, using two Populus hybrid clones planted at five spacings. Besides providing scientific data to resolve the politicized {open_quotes}wood-grass{close_quotes} dispute, this plantation has furnished excellent data on stand dynamics and woody biomass yield. A second plantation was established at the same time; groups of trees therein received two levels of irrigation and different amounts of four fertilizer amendments, resulting in microsites with diverse moisture and nutrient conditions.

DeBell, D.S.; Harrington, C.A.; Clendenen, G.W. [USDA Forest Service, Olympia, WA (United States)] [and others

1997-08-01T23:59:59.000Z

378

Biomass Boiler to Heat Oregon School | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Boiler to Heat Oregon School Biomass Boiler to Heat Oregon School Biomass Boiler to Heat Oregon School April 26, 2011 - 5:29pm Addthis Oregon Governor Kulongoski maneuvers a backhoe to break ground at the Vernonia school site. | Department of Energy Image | Photo by Joel Danforth, Contractor | Public Domain | Oregon Governor Kulongoski maneuvers a backhoe to break ground at the Vernonia school site. | Department of Energy Image | Photo by Joel Danforth, Contractor | Public Domain | Joel Danforth Project Officer, Golden Field Office What will the project do? The boiler system will have a capacity of up to 3 Million Metric British Thermal Units (MMBTU) per hour and will be fueled by locally derived wood-pellet feedstocks. A new school in Vernonia, Oregon is beginning to take form as the town

379

Biomass Boiler to Heat Oregon School | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Boiler to Heat Oregon School Biomass Boiler to Heat Oregon School Biomass Boiler to Heat Oregon School April 26, 2011 - 5:29pm Addthis Oregon Governor Kulongoski maneuvers a backhoe to break ground at the Vernonia school site. | Department of Energy Image | Photo by Joel Danforth, Contractor | Public Domain | Oregon Governor Kulongoski maneuvers a backhoe to break ground at the Vernonia school site. | Department of Energy Image | Photo by Joel Danforth, Contractor | Public Domain | Joel Danforth Project Officer, Golden Field Office What will the project do? The boiler system will have a capacity of up to 3 Million Metric British Thermal Units (MMBTU) per hour and will be fueled by locally derived wood-pellet feedstocks. A new school in Vernonia, Oregon is beginning to take form as the town

380

Changes in composition and sugar release across the annual rings of Populus wood and implications on recalcitrance  

NLE Websites -- All DOE Office Websites (Extended Search)

composition composition and sugar release across the annual rings of Populus wood and implications on recalcitrance Jaclyn D. DeMartini, Charles E. Wyman ⇑ Center for Environmental Research and Technology, Bourns College of Engineering, University of California Riverside, 1084 Columbia Avenue, Riverside, CA 92507, United States a r t i c l e i n f o Article history: Received 9 July 2010 Received in revised form 30 August 2010 Accepted 31 August 2010 Available online xxxx Keywords: Pretreatment Enzymatic hydrolysis Biomass recalcitrance Age effects Populus wood a b s t r a c t Understanding structural characteristics that are responsible for biomass recalcitrance by identifying why it is more difficult for some plants, or portions of plants, to release their sugars would be extremely valuable in overcoming this barrier. With this in mind, this study investigated the recalcitrance of wood

Note: This page contains sample records for the topic "including biomass wood" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Extracellular oxidative metabolism of wood decay fungi  

DOE Green Energy (OSTI)

Substantial progress has been made toward understanding the fundamental physiology and genetics of wood decay fungi, microbes that are capable of degrading all major components of plant cell walls. Efficient utilization of lignocellulosic biomass has been hampered in part by limitations in our understanding of enzymatic mechanisms of plant cell wall degradation. This is particularly true of woody substrates where accessibility and high lignin content substantially complicate enzymatic 'deconstruction'. The interdisciplinary research has illuminated enzymatic mechanisms essential for the conversion of lignocellulosics to simple carbohydrates and other small molecular weight products. Progress was in large part dependent on substantial collaborations with the Department of Energy's Joint Genome Institute (JGI) in Walnut Creek and Los Alamos, as well as the Catholic University, Santiago, Chile, the Royal Institute of Technology, Stockholm, the University of Minnesota, St. Paul, and colleagues at the University of Wisconsin and the Forest Products Laboratory. Early accomplishments focused on the development of experimental tools (2, 7, 22, 24-26, 32) and characterization of individual genes and enzymes (1, 3-5, 8, 9, 11, 14, 15, 17, 18, 23, 27, 33). In 2004, the genome of the most intensively studied lignin-degrading fungus, Phanerochaete chrysosporium, was published (21). This milestone lead to additional progress on this important model system (6, 10, 12, 13, 16, 28-31) and was further complemented by genome analysis of other important cellulose-degrading fungi (19, 20). These accomplishments have been highly cited and have paved the way for whole new research areas.

Daniel Cullen

2010-04-21T23:59:59.000Z

382

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY) .......................................................................... 91 Appendix 10: Power Plant Analysis for Conversion of Forest Remediation Biomass) ......................................................................................................................... 111 Appendix 12: Biomass to Energy Project Team, Committee Members, and Project Advisors

383

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY to treatment prescriptions and anticipated outputs of sawlogs and biomass fuel? How many individual operations biomass fuel removed. Typically in plantations. 50% No harvest treatment

384

biomass | OpenEI  

Open Energy Info (EERE)

biomass biomass Dataset Summary Description Biomass energy consumption and electricity net generation in the industrial sector by industry and energy source in 2008. This data is published and compiled by the U.S. Energy Information Administration (EIA). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated August 01st, 2010 (4 years ago) Keywords 2008 biomass consumption industrial sector Data application/vnd.ms-excel icon industrial_biomass_energy_consumption_and_electricity_2008.xls (xls, 27.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote

385

Biomass reburning - Modeling/engineering studies  

DOE Green Energy (OSTI)

This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. During the eleventh reporting period (April 1--June 30, 2000), EER and NETL R&D group continued to work on Tasks 2, 3, 4, and 5. This report includes results from Task 3 physical modeling of the introduction of biomass reburning in a working coal-fired utility boiler.

Sheldon, M.; Marquez, A.; Zamansky, V.

2000-07-27T23:59:59.000Z

386

BIOMASS REBURNING - MODELING/ENGINEERING STUDIES  

SciTech Connect

This project is designed to develop engineering and modeling tools for a family of NO{sub x}control technologies utilizing biomass as a reburning fuel. During the eighth reporting period (July 1--September 26, 1999), Antares Group Inc, under contract to Niagara Mohawk Power Corporation, evaluated the economic feasibility of biomass reburning options for Dunkirk Station. This report includes summary of the findings; complete information will be submitted in the next Quarterly Report.

Vladimir Zamansky; Chris Lindsey

1999-10-29T23:59:59.000Z

387

Wood-Composites Industry Benefits from ALS Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Wood-Composites Industry Benefits from ALS Research Wood-Composites Industry Benefits from ALS Research Print Thursday, 25 October 2012 10:44 paris-wood composites Wood scientist...

388

Categorical Exclusion for Wood Pole  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wood Pole Wood Pole Replacement at two structures (11/6 & 11/9) located along the Oracle-Tucson 115-kV Transmission Line, in Oro Valley, Pima County, Arizona. RECORD OF CATEGORICAL EXCLUSION DETERMINATION A. Proposed Action: Western plans to replace deteriorated wood poles, cross arms and X-braces at two existing H-frame structures (11/6 & 1119) located along the Oracle Tucson 115-kV Transmission Line in Pima, Arizona (Figure 1). Built in 1943, its aging components are beyond repair and require replacement. These poles performed poorly during structural tests, and we consider them unstable. This replacement project will ensure the safety of Western's workers and the public as well as reliability of the bulk electric system. Western will accomplish the work by clearing vegetation and blading a level pad at

389

Ethanol production using corn, switchgrass, and wood; Biodiesel production using soybean and sunflower  

E-Print Network (OSTI)

Energy outputs from ethanol produced using corn, switchgrass, and wood biomass were each less than the respective fossil energy inputs. The same was true for producing biodiesel using soybeans and sunflower, however, the energy cost for producing soybean biodiesel was only slightly negative compared with ethanol production. Findings in terms of energy outputs compared with the energy inputs were: Ethanol production using corn grain required 29% more fossil energy than the ethanol fuel produced. Ethanol production using switchgrass required 50 % more fossil energy than the ethanol fuel produced. Ethanol production using wood biomass required 57 % more fossil energy than the ethanol fuel produced. Biodiesel production using soybean required 27 % more fossil energy than the biodiesel fuel produced (Note, the energy yield from soy oil per hectare is far lower than the ethanol yield from corn). Biodiesel production using sunflower required 118 % more fossil energy than the biodiesel fuel produced.

David Pimentel; Tad W. Patzek

2005-01-01T23:59:59.000Z

390

A distributed approach to accounting for carbon in wood products  

SciTech Connect

With an evolving political environment of commitments to limit emissions of greenhouse gases, and of markets to trade in emissions permits, there is growing scientific, political, and economic need to accurately evaluate carbon (C) stocks and flows especially those related to human activities. One component of the global carbon cycle that has been contentious is the stock of carbon that is physically held in harvested wood products. The carbon stored in wood products has been sometimes overlooked, but the amount of carbon contained in wood products is not trivial, it is increasing with time, and it is significant to some Parties. This paper is concerned with accurate treatment of harvested wood products in inventories of CO2 emissions to the atmosphere. The methodologies outlined demonstrate a flexible way to expand current methods beyond the assumption of a simple, first-order decay to include the use of more accurate and detailed data while retaining the simplicity of simple formulas. The paper demonstrates that a more accurate representation of decay time can have significant economic implications in a system where emissions are taxed or emissions permits are traded. The method can be easily applied using only data on annual production of wood products and two parameters to characterize their expected lifetime. These methods are not specific to wood products but can be applied to long-lived, carbon-containing products from sources other than wood, e.g. long-lived petrochemical products. A single unifying approach that is both simple and flexible has the potential to be both more accurate in its results, more efficient in its implementation, and economically important to some Parties.

Marland, Eric [Appalachian State University; Stellar, Kirk [Appalachian State University; Marland, Gregg [ORNL

2010-01-01T23:59:59.000Z

391

NREL: Biomass Research Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

and green algae and gas bubbles can be seen floating in the liquid. Through biomass research, NREL is developing technologies to convert biomass-plant matter such as...

392

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY study. The Biomass to Energy (B2E) Project is exploring the ecological and economic consequences

393

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY Citation: USDA Forest Service, Pacific Southwest Research Station. 2009. Biomass to Energy: Forest

394

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY and continuously between the earth's biomass and atmosphere. From a greenhouse gas perspective, forest treatments

395

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY .................................................................................... 33 3.3 BIOMASS POWER PLANT OPERATION MODELS AND DATA

396

Multi-functional biomass systems.  

E-Print Network (OSTI)

??Biomass can play a role in mitigating greenhouse gas emissions by substituting conventional materials and supplying biomass based fuels. Main reason for the low share (more)

Dornburg, Veronika

2004-01-01T23:59:59.000Z

397

Northeast regional biomass program: Second and Third quarterlies and final report, January 1994--September 30, 1994  

DOE Green Energy (OSTI)

The Northeast Regional Biomass Program (NRBP) is comprised of the following states: Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania. Rhode Island and Vermont. It is managed for the Department of Energy (DOE) by the CONEG Policy Research Center, Inc. The Northeast states face several near-term barriers to the expanded use of biomass energy. Informational and technical barriers have impeded industrial conversions, delaying the development of a wood energy supply infrastructure. Concern over the environmental impacts on resources are not well understood. Public awareness and concern about safety issues surrounding wood energy use has also grown to the point of applying a brake to the trend of increases in residential applications of biomass energy. In addition, many residential, commercial, industrial, and commercial energy users are discouraged from using biomass energy because of the convenience factor. Regardless of the potential for cost savings, biomass energy sources, aside from being perceived as more esoteric, are also viewed as more work for the user. The Northeast Regional Biomass Program (NRBP) is designed to help the eleven states overcome obstacles and achieve biomass energy potentials.

NONE

1995-07-01T23:59:59.000Z

398

Marin County- Wood Stove Replacement Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

The County of Marin has created a rebate program to encourage homeowners to remove or replace non-EPA certified wood-burning heaters (wood stoves and fireplace inserts) with cleaner burning stoves...

399

Structure-Infesting Wood-Boring Beetles  

E-Print Network (OSTI)

Several kinds of beetles damage stored wood, structural timbers and other wood products. This publication explains how to detect, identify, prevent and control powderpost beetle, old house borer and others.

Jackman, John A.

2006-03-28T23:59:59.000Z

400

Research and evaluation of biomass resources/conversion/utilization systems (market/experimental analysis for development of a data base for a fuels from biomass model). Quarterly technical progress report, November 1, 1979-January 31, 1980  

DOE Green Energy (OSTI)

The biomass allocation model has been developed and is undergoing testing. Data bases for biomass feedstock and thermochemical products are complete. Simulated data on process efficiency and product costs are being used while more accurate data are being developed. Market analyses data are stored for the biomass allocation model. The modeling activity will assist in providing process efficiency information required for the allocation model. Process models for entrained bed and fixed bed gasifiers based on coal have been adapted to biomass. Fuel product manufacturing costs will be used as inputs for the data banks of the biomass allocations model. Conceptual economics have been generated for seven of the fourteen process configurations via a biomass economic computer program. The PDU studies are designed to demonstrate steady state thermochemical conversions of biomass to fuels in fluidized, moving and entrained bed reactor configurations. Pulse tests in a fluidized bed to determine the effect of particle size on reaction rates and product gas composition have been completed. Two hour shakedown tests using peanut hulls and wood as the biomass feedstock and the fluidized bed reactor mode have been carried out. A comparison was made of the gas composition using air and steam - O/sub 2/. Biomass thermal profiles and biomass composition information shall be provided. To date approximately 70 biomass types have been collected. Chemical characterization of this material has begun. Thermal gravimetric, pyrogaschromatographic and effluent gas analysis has begun on pelletized samples of these biomass species.

Ahn, Y.K.; Chen, Y.C.; Chen, H.T.; Helm, R.W.; Nelson, E.T.; Shields, K.J.; Stringer, R.P.; Bailie, R.C.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "including biomass wood" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Biomass power and state renewable energy policies under electric industry restructuring  

DOE Green Energy (OSTI)

Several states are pursuing policies to foster renewable energy as part of efforts to restructure state electric power markets. The primary policies that states are pursuing for renewables are system benefits charges (SBCs) and renewable portfolio standards (RPSs). However, the eligibility of biomass under state RPS and SBC policies is in question in some states. Eligibility restrictions may make it difficult for biomass power companies to access these policies. Moreover, legislative language governing the eligibility of biomass power is sometimes vague and difficult to interpret. This paper provides an overview of state RPS and SBC policies and focuses on the eligibility of biomass power. For this paper, the authors define biomass power as using wood and agricultural residues and landfill methane, but not waste-to-energy, to produce energy.

Porter, K.; Wiser, R.

2000-08-01T23:59:59.000Z

402

Cofiring Wood and Coal to Stoker Boilers in Pittsburgh  

DOE Green Energy (OSTI)

The prime objective of the University of Pittsburgh's overall wood/coal cofiring program is the successful introduction of commercial cofiring of urban wood wastes into the stoker boilers of western Pennsylvania. Central to this objective is the demonstration test at the Pittsburgh Brewing Company. In this test the project team is working to show that two commercially-available clean wood wastes - tub-ground pallet waste and chipped clearance wood - can be included in the fuel fed daily to an industrial stoker boiler. Irrespective of its economic outcome, the technical success of the demonstration at the brewery will allow the local air quality regulation agency to permit a parametric test at the Bellefield Boiler Plant. The objective of this test is to obtain comprehensive data on all key parameters of this operational boiler while firing wood with coal. The data would then be used for thorough generic technical and economic analyses. The technical analysis would be added to the open literature for the general planning and operational guidance for boiler owners and operators. The economic analysis would gage the potential for providing this stoker fuel commercially in an urban setting and for purchasing it regularly for combustion in an urban stoker boiler.

Cobb, J.T., Jr.; Elder, W.W.

1997-07-01T23:59:59.000Z

403

Economics of methanol and SNG production from biomass via catalytic gasification  

Science Conference Proceedings (OSTI)

The steam gasification of wood in the presence of catalysts was studied to determine the technical feasibility of the process to produce specific products and to evaluate the economics of the technical feasible processes. From the results of bench-scale and process development unit (PDU) studies, the production of MeOH and CH4 (SNG) from wood via catalytic gasification is technically feasible. The PDU was operated to obtain data for the design of gasifiers. The cost of MeOH from wood is competitive with the current price of MeOH from natural gas. The cost of SNG from wood is competitive with projected future prices of natural gas. Some advantage of the catalytic steam gasification of biomass over steam-O gasification are discussed.

Mudge, L.K.; Robertus, R.J.; Mitchell, D.H.; Sealock, L.J. Jr.; Weber, S.L.

1981-01-01T23:59:59.000Z

404

OpenEI - biomass  

Open Energy Info (EERE)

Industrial Biomass Industrial Biomass Energy Consumption and Electricity Net Generation by Industry and Energy Source, 2008 http://en.openei.org/datasets/node/827 Biomass energy consumption and electricity net generation in the industrial sector by industry and energy source in 2008. This data is published and compiled by the U.S. Energy Information Administration (EIA).

License
Type of License: 

405

WP 3 Report: Biomass Potentials Biomass production potentials  

E-Print Network (OSTI)

WP 3 Report: Biomass Potentials 1 Biomass production potentials in Central and Eastern Europe under different scenarios Final report of WP3 of the VIEWLS project, funded by DG-Tren #12;WP 3 Report: Biomass Potentials 2 Report Biomass production potentials in central and Eastern Europe under different scenarios

406

NREL: Energy Analysis - Biomass Technology Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Technology Analysis Biomass Technology Analysis Conducting full life-cycle assessments for biomass products, including electricity, biodiesel, and ethanol, is important for determining environmental benefits. NREL analysts use a life-cycle inventory modeling package and supporting databases to conduct life-cycle assessments. These tools can be applied on a global, regional, local, or project basis. Integrated system analyses, technoeconomic analyses, life-cycle assessments (LCAs), and other analysis tools are essential to our research and development efforts. They provide an understanding of the economic, technical, and even global impacts of renewable technologies. These analyses also provide direction, focus, and support to the development and commercialization of various biomass conversion technologies. The economic

407

Water Sampling At International Geothermal Area, New Zealand (Wood, 2002) |  

Open Energy Info (EERE)

International Geothermal Area, New Zealand (Wood, 2002) International Geothermal Area, New Zealand (Wood, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At International Geothermal Area New Zealand (Wood, 2002) Exploration Activity Details Location International Geothermal Area New Zealand Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley

408

Hogged Wood Fuel Supply and Price Analysis : Final Report.  

SciTech Connect

This study discusses the factors that determine the supply and demand for hogged wood in the Pacific Northwest, with particular emphasis on the role of the regional pulp and paper industry and lumber industry. Because hogged wood is often a substitute for conventional fuels, the consumption and price of natural gas, electricity, fuel oil and coal are also addressed. A detailed and comprehensive examination of the indicies relating to the hogged wood market is provided, including analysis and graphing of all time series variables. A spreadsheet- based forecasting model is developed and presented with an emphasis on explaining the process used to arrive at the final model. 42 refs., 46 figs., 14 tabs. (MHB)

Biederman, Richard T.; Blazek, Christopher F.

1991-05-01T23:59:59.000Z

409

Water Sampling At Heber Area (Wood, 2002) | Open Energy Information  

Open Energy Info (EERE)

Heber Area (Wood, 2002) Heber Area (Wood, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Heber Area (Wood, 2002) Exploration Activity Details Location Heber Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the Salton Sea and Heber geothermal fields of southern California; and 7) the

410

Autonomous Underwater Gliders Wood, Stephen  

E-Print Network (OSTI)

26 Autonomous Underwater Gliders Wood, Stephen Florida Institute of Technology United States underwater vehicles to perform ocean surveys. With these vehicles it is now possible for the scientist substances in the ocean such as chemicals from an underwater vent or toxic algae such as red tide

Wood, Stephen L.

411

CLC of biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

Developments on Developments on Chemical Looping Combustion of Biomass Laihong Shen Jiahua Wu Jun Xiao Rui Xiao Southeast University Nanjing, China 2 th U.S. - China Symposium on CO 2 Emissions Control Science & Technology Hangzhou, China May 28-30, 2008 Overview  Introduction  Technical approach  Experiments on chemical looping combustion of biomass  Conclusions Climate change is a result of burning too much coal, oil and gas.... We need to capture CO 2 in any way ! Introduction CCS is the world's best chance to have a major & immediate impact on CO 2 emission reduction Introduction Introduction  Biomass is renewable energy with zero CO 2 emission  A way to capture CO 2 from biomass ?  If so, a quick way to reduce CO 2 content in the atmosphere Normal combustion

412

Energy Basics: Biomass Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technologies Photo of a pair of hands holding corn stover, the unused parts of harvested corn. There are many types of biomass-organic matter such as plants, residue from...

413

CLC of biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

Developments on Chemical Looping Combustion of Biomass Laihong Shen Jiahua Wu Jun Xiao Rui Xiao Southeast University Nanjing, China 2 th U.S. - China Symposium on CO 2 Emissions...

414

BIOMASS ACTION PLAN FOR SCOTLAND  

E-Print Network (OSTI)

BIOMASS ACTION PLAN FOR SCOTLAND #12; #12;© Crown copyright 2007 ISBN: 978 0 7559 6506 9 Scottish% recyclable. #12;A BIOMASS ACTION PLAN FOR SCOTLAND #12;#12;1 CONTENTS FOREWORD 3 1. EXECUTIVE SUMMARY 5 2. INTRODUCTION 9 3. WIDER CONTEXT 13 4. SCOTLAND'S ROLE IN THE UK BIOMASS STRATEGY 17 5. BIOMASS HEATING 23 6

415

Biomass cogeneration. A business assessment  

DOE Green Energy (OSTI)

This guide serves as an overview of the biomass cogeneration area and provides direction for more detailed analysis. The business assessment is based in part on discussions with key officials from firms that have adopted biomass cogeneration systems and from organizations such as utilities, state and federal agencies, and banks that would be directly involved in a biomass cogeneration project. The guide is organized into five chapters: biomass cogeneration systems, biomass cogeneration business considerations, biomass cogeneration economics, biomass cogeneration project planning, and case studies.

Skelton, J.C.

1981-11-01T23:59:59.000Z

416

James F. Wood | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

James F. Wood James F. Wood About Us James F. Wood - Deputy Assistant Secretary for Clean Coal Photo of James Wood Photo of James Wood James F. Wood is currently Deputy Assistant Secretary for Clean Coal in the Office of Fossil Energy (FE). In this position, he is responsible for the management and direction of the Office's clean coal research and development programs. Chief among these is the Carbon Sequestration program, the Clean Coal Power Initiative, and FE's $3.4 billion portfolio of Recovery Act projects. Wood has over 30 years of experience in the power industry. Most recently, he was president and CEO of Babcock Power Inc. (BPI), one of the major US-based designer/manufacturers of environmental, pressure part, heat exchanger, combustion equipment and after-market

417

Qualifying Wood Stove Deduction | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Qualifying Wood Stove Deduction Qualifying Wood Stove Deduction Qualifying Wood Stove Deduction < Back Eligibility Residential Savings Category Bioenergy Maximum Rebate 500 Program Info Start Date 1/1/1994 State Arizona Program Type Personal Deduction Rebate Amount Total cost, exclusive of taxes, interest and other finance charges Provider Arizona Department of Revenue This incentive allows Arizona taxpayers to deduct the cost of converting an existing wood fireplace to a qualifying wood stove. The cost to purchase and install all necessary equipment is tax deductible, up to a maximum $500 deduction. Qualifying wood stoves must meet the standards of performance for new wood heaters manufactured after July 1990, or sold after July 1992 pursuant to [http://www.epa.gov/oecaerth/resources/policies/monitoring/caa/woodstover...

418

Final Scientific and Technical Report State and Regional Biomass Partnerships  

SciTech Connect

The Northeast Regional Biomass Program successfully employed a three pronged approach to build the regional capacity, networks, and reliable information needed to advance biomass and bioenergy technologies and markets. The approach included support for state-based, multi-agency biomass working groups; direct technical assistance to states and private developers; and extensive networking and partnership-building activities to share objective information and best practices.

Handley, Rick; Stubbs, Anne D.

2008-12-29T23:59:59.000Z

419

Investigation of gasification of biomass in the presence of catalysts  

DOE Green Energy (OSTI)

The overall objective of this study is to determine the technical and economic feasibility of catalyzed biomass gasification to produce specific products: (a) methane, (b) hydrogen, (c) carbon monoxide, and (d) synthesis gases for generation of ammonia, methanol, or hydrocarbons. Work to achieve the objectives of this study was continued in the laboratory and process development unit (PDU). Laboratory studies further defined the effect of primary catalyst concentration on gasification rate. Systems for direct generation of ammonia synthesis gas and hydrogen were defined at the laboratory scale. No promising system for direct carbon monoxide production was found. A new wood feed system was installed in the PDU and has proved to be reliable and effective for metering wood into the gasifier. New heaters installed in the PDU reactor have greatly improved temperature control in the system. Preliminary calculations on the feasibility of catalyzed gasification of wood to produce methanol are encouraging. Potential methanol yield is about 180 gallons per dry ton of wood. Energy efficiency of the process would be 68%. Details of the results obtained since the last contractors' meeting are presented in the discussion. Status of the project is also presented.

Mudge, L.K.; Robertus, R.J.; Sealock, L.J. Jr.; Mitchell, D.H.; Weber, S.L.; Stegen, G.E.

1979-01-01T23:59:59.000Z

420

URBAN WOOD/COAL CO-FIRING IN THE BELLEFIELD BOILERPLANT  

DOE Green Energy (OSTI)

During the third quarter, important preparatory work was continued so that the experimental activities can begin early in the fourth quarter. Authorization was awaited in response to the letter that was submitted to the Allegheny County Health Department (ACHD) seeking an R&D variance for the air permit at the Bellefield Boiler Plant (BBP). Verbal authorizations were received from the Pennsylvania Department of Environmental Protection (PADEP) for R&D variances for solid waste permits at the J. A. Rutter Company (JARC), and Emery Tree Service (ETS). Construction wood was acquired from Thompson Properties and Seven D Corporation. Forty tons of pallet and construction wood were ground to produce BioGrind Wood Chips at JARC and delivered to Mon Valley Transportation Company (MVTC). Five tons of construction wood were milled at ETS and half of the product delivered to MVTC. Discussions were held with BBP and Energy Systems Associates (ESA) about the test program. Material and energy balances on Boiler No.1 and a plan for data collection were prepared. Presentations describing the University of Pittsburgh Wood/Coal Co-Firing Program were provided to the Pittsburgh Chapter of the Pennsylvania Society of Professional Engineers, and the Upgraded Coal Interest Group and the Biomass Interest Group (BIG) of the Electric Power Research Institute (EPRI). An article describing the program appeared in the Pittsburgh Post-Gazette. An application was submitted for authorization for a Pennsylvania Switchgrass Energy and Conservation Program.

James T. Cobb, Jr.; Gene E. Geiger; William W. Elder III; William P. Barry; Jun Wang; Hongming Li

2001-08-21T23:59:59.000Z

Note: This page contains sample records for the topic "including biomass wood" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Review: Enzymatic Hydrolysis of Cellulosic Biomass  

SciTech Connect

Biological conversion of cellulosic biomass to fuels and chemicals offers the high yields to products vital to economic success and the potential for very low costs. Enzymatic hydrolysis that converts lignocellulosic biomass to fermentable sugars may be the most complex step in this process due to substrate-related and enzyme-related effects and their interactions. Although enzymatic hydrolysis offers the potential for higher yields, higher selectivity, lower energy costs, and milder operating conditions than chemical processes, the mechanism of enzymatic hydrolysis and the relationship between the substrate structure and function of various glycosyl hydrolase components are not well understood. Consequently, limited success has been realized in maximizing sugar yields at very low cost. This review highlights literature on the impact of key substrate and enzyme features that influence performance to better understand fundamental strategies to advance enzymatic hydrolysis of cellulosic biomass for biological conversion to fuels and chemicals. Topics are summarized from a practical point of view including characteristics of cellulose (e.g., crystallinity, degree of polymerization, and accessible surface area) and soluble and insoluble biomass components (e.g., oligomeric xylan, lignin, etc.) released in pretreatment, and their effects on the effectiveness of enzymatic hydrolysis. We further discuss the diversity, stability, and activity of individual enzymes and their synergistic effects in deconstructing complex lignocellulosic biomass. Advanced technologies to discover and characterize novel enzymes and to improve enzyme characteristics by mutagenesis, post-translational modification, and over-expression of selected enzymes and modifications in lignocellulosic biomass are also discussed.

Yang, Bin; Dai, Ziyu; Ding, Shi-You; Wyman, Charles E.

2011-07-16T23:59:59.000Z

422

Relationships between dead wood and arthropods in the Southeastern United States.  

SciTech Connect

The importance of dead wood to maintaining forest diversity is now widely recognized. However, the habitat associations and sensitivities of many species associated with dead wood remain unknown, making it difficult to develop conservation plans for managed forests. The purpose of this research, conducted on the upper coastal plain of South Carolina, was to better understand the relationships between dead wood and arthropods in the southeastern United States. In a comparison of forest types, more beetle species emerged from logs collected in upland pine-dominated stands than in bottomland hardwood forests. This difference was most pronounced for Quercus nigra L., a species of tree uncommon in upland forests. In a comparison of wood postures, more beetle species emerged from logs than from snags, but a number of species appear to be dependent on snags including several canopy specialists. In a study of saproxylic beetle succession, species richness peaked within the first year of death and declined steadily thereafter. However, a number of species appear to be dependent on highly decayed logs, underscoring the importance of protecting wood at all stages of decay. In a study comparing litter-dwelling arthropod abundance at different distances from dead wood, arthropods were more abundant near dead wood than away from it. In another study, grounddwelling arthropods and saproxylic beetles were little affected by large-scale manipulations of dead wood in upland pine-dominated forests, possibly due to the suitability of the forests surrounding the plots.

Ulyshen, Michael, Darragh

2009-05-01T23:59:59.000Z

423

Screening study for waste biomass to ethanol production facility using the Amoco process in New York State. Final report  

DOE Green Energy (OSTI)

This report evaluates the economic feasibility of locating biomass-to-ethanol waste conversion facilities in New York State. Part 1 of the study evaluates 74 potential sites in New York City and identifies two preferred sites on Staten, the Proctor Gamble and the Arthur Kill sites, for further consideration. Part 2 evaluates upstate New York and determines that four regions surrounding the urban centers of Albany, Buffalo, Rochester, and Syracuse provide suitable areas from which to select specific sites for further consideration. A separate Appendix provides supplemental material supporting the evaluations. A conceptual design and economic viability evaluation were developed for a minimum-size facility capable of processing 500 tons per day (tpd) of biomass consisting of wood or paper, or a combination of the two for upstate regions. The facility would use Amoco`s biomass conversion technology and produce 49,000 gallons per day of ethanol and approximately 300 tpd of lignin solid by-product. For New York City, a 1,000-tpd processing facility was also evaluated to examine effects of economies of scale. The reports evaluate the feasibility of building a biomass conversion facility in terms of city and state economic, environmental, and community factors. Given the data obtained to date, including changing costs for feedstock and ethanol, the project is marginally attractive. A facility should be as large as possible and located in a New York State Economic Development Zone to take advantage of economic incentives. The facility should have on-site oxidation capabilities, which will make it more financially viable given the high cost of energy. 26 figs., 121 tabs.

NONE

1995-08-01T23:59:59.000Z

424

Biomass waste gasification - Can be the two stage process suitable for tar reduction and power generation?  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer Comparison of one stage (co-current) and two stage gasification of wood pellets. Black-Right-Pointing-Pointer Original arrangement with grate-less reactor and upward moving bed of the pellets. Black-Right-Pointing-Pointer Two stage gasification leads to drastic reduction of tar content in gas. Black-Right-Pointing-Pointer One stage gasification produces gas with higher LHV at lower overall ER. Black-Right-Pointing-Pointer Content of ammonia in gas is lower in two stage moving bed gasification. - Abstract: A pilot scale gasification unit with novel co-current, updraft arrangement in the first stage and counter-current downdraft in the second stage was developed and exploited for studying effects of two stage gasification in comparison with one stage gasification of biomass (wood pellets) on fuel gas composition and attainable gas purity. Significant producer gas parameters (gas composition, heating value, content of tar compounds, content of inorganic gas impurities) were compared for the two stage and the one stage method of the gasification arrangement with only the upward moving bed (co-current updraft). The main novel features of the gasifier conception include grate-less reactor, upward moving bed of biomass particles (e.g. pellets) by means of a screw elevator with changeable rotational speed and gradual expanding diameter of the cylindrical reactor in the part above the upper end of the screw. The gasifier concept and arrangement are considered convenient for thermal power range 100-350 kW{sub th}. The second stage of the gasifier served mainly for tar compounds destruction/reforming by increased temperature (around 950 Degree-Sign C) and for gasification reaction of the fuel gas with char. The second stage used additional combustion of the fuel gas by preheated secondary air for attaining higher temperature and faster gasification of the remaining char from the first stage. The measurements of gas composition and tar compound contents confirmed superiority of the two stage gasification system, drastic decrease of aromatic compounds with two and higher number of benzene rings by 1-2 orders. On the other hand the two stage gasification (with overall ER = 0.71) led to substantial reduction of gas heating value (LHV = 3.15 MJ/Nm{sup 3}), elevation of gas volume and increase of nitrogen content in fuel gas. The increased temperature (>950 Degree-Sign C) at the entrance to the char bed caused also substantial decrease of ammonia content in fuel gas. The char with higher content of ash leaving the second stage presented only few mass% of the inlet biomass stream.

Sulc, Jindrich; Stojdl, Jiri; Richter, Miroslav; Popelka, Jan [Faculty of the Environment, Jan Evangelista Purkyne University in Usti nad Labem, Kralova Vysina 7, 400 96 Usti nad Labem (Czech Republic); Svoboda, Karel, E-mail: svoboda@icpf.cas.cz [Faculty of the Environment, Jan Evangelista Purkyne University in Usti nad Labem, Kralova Vysina 7, 400 96 Usti nad Labem (Czech Republic); Institute of Chemical Process Fundamentals of the ASCR, v.v.i., Rozvojova 135, 165 02 Prague 6 (Czech Republic); Smetana, Jiri; Vacek, Jiri [D.S.K. Ltd., Ujezdecek - Dukla 264, 415 01 Teplice I (Czech Republic); Skoblja, Siarhei; Buryan, Petr [Dept. of Gas, Coke and Air protection, Institute of Chemical Technol., Technicka 5, 166 28 Prague 6 (Czech Republic)

2012-04-15T23:59:59.000Z

425

Biomass Reburning: Modeling/Engineering Studies  

SciTech Connect

Reburning is a mature fuel staging NO{sub x} control technology which has been successfully demonstrated at full scale by Energy and Environmental Research Corporation (EER) and others on numerous occasions. Based on chemical kinetic modeling and experimental combustion studies, EER is currently developing novel concepts to improve the efficiency of the basic gas reburning process and to utilize various renewable and waste fuels for NO{sub x} control. This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. Basic and advanced biomass reburning have the potential to achieve 60-90+% NO{sub x} control in coal fired boilers at a significantly lower cost than SCR. The scope of work includes modeling studies (kinetic, CFD, and physical modeling), experimental evaluation of slagging and fouling associated with biomass reburning, and economic study of biomass handling requirements. Project participants include: EER, FETC R and D group, Niagara Mohawk Power Corporation and Antares, Inc. Most of the combustion experiments on development of biomass reburning technologies are being conducted in the scope of coordinated SBIR program funded by USDA. The first reporting period (October 1--December 31, 1997) included preparation of project management plan and organization of project kick-off meeting at DOE FETC. The quarterly report briefly describes the management plan and presents basic information about the kick-off meeting.

Vladimir M. Zamansky

1998-01-20T23:59:59.000Z

426

NREL: Biomass Research - Projects in Biomass Process and Sustainability  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects in Biomass Process and Sustainability Analyses Projects in Biomass Process and Sustainability Analyses Researchers at NREL use biomass process and sustainability analyses to understand the economic, technical, and global impacts of biomass conversion technologies. These analyses reveal the economic feasibility and environmental benefits of biomass technologies and are useful for government, regulators, and the private sector. NREL's Energy Analysis Office integrates and supports the energy analysis functions at NREL. Among NREL's projects in biomass process and sustainability analyses are: Life Cycle Assessment of Energy Independence and Security Act for Ethanol NREL is determining the life cycle environmental impacts of the ethanol portion of the Energy Independence and Security Act (EISA). EISA mandates

427

BIOMASS REBURNING - MODELING/ENGINEERING STUDIES  

DOE Green Energy (OSTI)

This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. During the tenth reporting period (January 1-March 31, 2000), EER and NETL R and D group continued to work on Tasks 2, 3, 4, and 5. Information regarding these tasks will be included in the next Quarterly Report. This report includes (Appendix 1) a conceptual design study for the introduction of biomass reburning in a working coal-fired utility boiler. This study was conducted under the coordinated SBIR program funded by the U. S. Department of Agriculture.

Vladimir Zamansky; David Moyeda; Mark Sheldon

2000-04-28T23:59:59.000Z

428

Managing Transmission Line Wood Structures  

Science Conference Proceedings (OSTI)

Transmission and distribution infrastructures throughout the world are aging. As such, inspection, assessment, and maintenance of existing facilities have become increasingly important topics. This valuable reference provides an in-depth look at all facets of an inspection, assessment, and maintenance program for transmission line wood structures to help utilities develop and refine individual maintenance programs. The report is part of a broader multi-year effort by EPRI to develop a comprehensive handb...

2006-09-28T23:59:59.000Z

429

Distribution Library--Wood Poles  

Science Conference Proceedings (OSTI)

EPRI has sponsored research and published information on a wide variety of topics related to wood poles for overhead lines. Many of these resources, particularly older publications, are difficult for EPRI members to find and use. To help ensure retention of this valuable knowledge base, EPRI sponsored the project reported herein to capture this information and make it accessible in an easy-to-use electronic media (E-Media) repository.

2005-12-22T23:59:59.000Z

430

Wood Poles Population with Testing  

Science Conference Proceedings (OSTI)

EPRI's asset management research focuses on developing a rational basis for selecting repair or replacement options for specific classes of equipment by balancing the risks of equipment failure against the costs of continued maintenance or capital replacement. This Model User Guide is a companion to Guidelines for Intelligent Asset Replacement: Volume 4Wood Poles (Expanded Edition), EPRI, Palo Alto, CA: 2006. 1012500, the fourth report on guidelines for asset replacement, which discusses methods for maki...

2006-12-18T23:59:59.000Z

431

Vertical feed stick wood fuel burning furnace system  

DOE Patents (OSTI)

A new and improved stove or furnace for efficient combustion of wood fuel including a vertical feed combustion chamber for receiving and supporting wood fuel in a vertical attitude or stack, a major upper portion of the combustion chamber column comprising a water jacket for coupling to a source of water or heat transfer fluid and for convection circulation of the fluid for confining the locus of wood fuel combustion to the bottom of the vertical gravity feed combustion chamber. A flue gas propagation delay channel extending from the laterally directed draft outlet affords delayed travel time in a high temperature environment to assure substantially complete combustion of the gaseous products of wood burning with forced air as an actively induced draft draws the fuel gas and air mixture laterally through the combustion and high temperature zone. Active sources of forced air and induced draft are included, multiple use and circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.

Hill, Richard C. (Orono, ME)

1984-01-01T23:59:59.000Z

432

Vertical feed stick wood fuel burning furnace system  

DOE Patents (OSTI)

A stove or furnace for efficient combustion of wood fuel includes a vertical feed combustion chamber (15) for receiving and supporting wood fuel in a vertical attitude or stack. A major upper portion of the combustion chamber column comprises a water jacket (14) for coupling to a source of water or heat transfer fluid for convection circulation of the fluid. The locus (31) of wood fuel combustion is thereby confined to the refractory base of the combustion chamber. A flue gas propagation delay channel (34) extending laterally from the base of the chamber affords delayed travel time in a high temperature refractory environment sufficient to assure substantially complete combustion of the gaseous products of wood burning with forced air prior to extraction of heat in heat exchanger (16). Induced draft draws the fuel gas and air mixture laterally through the combustion chamber and refractory high temperature zone to the heat exchanger and flue. Also included are active sources of forced air and induced draft, multiple circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.

Hill, Richard C. (Orono, ME)

1982-01-01T23:59:59.000Z

433

Baseline effects on carbon footprints of biofuels: The case of wood  

Science Conference Proceedings (OSTI)

As biofuel usage has boomed over the past decade, so has research and regulatory interest in its carbon accounting. This paper examines one aspect of that carbon accounting: the baseline, i.e. the reference case against which other conditions or changes can be compared. A literature search and analysis identified four baseline types: no baseline; reference point; marginal fossil fuel; and biomass opportunity cost. The fourth one, biomass opportunity cost, is defined in more detail, because this is not done elsewhere in the literature. The four baselines are then applied to the carbon footprint of a wood-fired power plant. The footprint of the resulting wood-fired electricity varies dramatically, according to the type of baseline. Baseline type is also found to be the footprint's most significant sensitivity. Other significant sensitivities are: efficiency of the power plant; the growth (or re-growth) rate of the forest that supplies the wood; and the residue fraction of the wood. Length of the policy horizon is also an important factor in determining the footprint. The paper concludes that because of their significance and variability, baseline choices should be made very explicit in biofuel carbon footprints. - Highlights: Black-Right-Pointing-Pointer Four baseline types for biofuel footprinting are identified. Black-Right-Pointing-Pointer One type, 'biomass opportunity cost', is defined mathematically and graphically. Black-Right-Pointing-Pointer Choice of baseline can dramatically affect the footprint result. Black-Right-Pointing-Pointer The 'no baseline' approach is not acceptable. Black-Right-Pointing-Pointer Choice between the other three baselines depends on the question being addressed.

Johnson, Eric, E-mail: johnsonatlantic@gmail.com [Atlantic Consulting, 8136 Gattikon (Switzerland); Tschudi, Daniel [ETH, Berghaldenstrasse 46, 8800 Thalwil (Switzerland)

2012-11-15T23:59:59.000Z

434

NREL: Energy Analysis - Sustainable Biomass Resource Development and Use  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainable Biomass Resource Development and Use Sustainable Biomass Resource Development and Use A flowchart illustrating the process flow of life-cycle assessment. Enlarge image NREL's international work in sustainability analysis includes biomass resource use and impact assessment. This analysis examines how we can use existing resources in a sustainable manner. It also examines the environmental and socio-economic impacts of resource development and use. Our analysts also look at the relationship of sustainable land use and biomass resource development. They look at whether there is available land to support bioenergy. They also study how we can use this available land for biomass resource development in a sustainable manner. Another key question is how biomass resource development is linked to food supply,

435

Summary of NOx Emissions Reduction from Biomass Cofiring  

DOE Green Energy (OSTI)

NOx emissions from commercial- and pilot-scale biomass/coal cofiring demonstrations are reduced as the percentage of energy supplied to the boiler by the biomass fuel is increased. This report attempts to provide a summary of the NO{sub x} emissions measured during recent biomass/coal cofiring demonstrations. These demonstrations were carried out at the commercial and pilot-scales. Commercial-scale tests were conducted in a variety of pulverized fuel boiler types including wall-fired, T-fired, and cyclone furnaces. Biomass input ranged up to 20% on a mass basis and 10% on an energy basis.

Dayton, D.

2002-05-01T23:59:59.000Z

436

Biomass co-firing: A renewable alternative for utilities  

DOE Green Energy (OSTI)

Biomass is a proven option for electricity generation. A diverse range of biopower producers includes electric utilities, independent power producers, and the pulp and paper industry. To help expand opportunities for biomass power production, the U.S. Department of Energy established the Biopower Program and is sponsoring efforts to increase the productivity of dedicated energy crops. The Program aims to double biomass conversion efficiencies, thus reducing biomass power generation costs. These efforts will promote industrial and agricultural growth, improve the environment, create jobs, increase U.S. energy security, and provide new export markets.

Shepherd, P.

2000-06-02T23:59:59.000Z

437

Evaluation of wastewater treatment requirements for thermochemical biomass liquefaction  

DOE Green Energy (OSTI)

Biomass can provide a substantial energy source. Liquids are preferred for use as transportation fuels because of their high energy density and handling ease and safety. Liquid fuel production from biomass can be accomplished by any of several different processes including hydrolysis and fermentation of the carbohydrates to alcohol fuels, thermal gasification and synthesis of alcohol or hydrocarbon fuels, direct extraction of biologically produced hydrocarbons such as seed oils or algae lipids, or direct thermochemical conversion of the biomass to liquids and catalytic upgrading to hydrocarbon fuels. This report discusses direct thermochemical conversion to achieve biomass liquefaction and the requirements for wastewater treatment inherent in such processing. 21 refs.

Elliott, D.C. [Pacific Northwest Lab., Richland, WA (United States)

1992-04-01T23:59:59.000Z

438

BIOMASS REBURNING - MODELING/ENGINEERING STUDIES  

DOE Green Energy (OSTI)

This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. The sixth reporting period (January 1--March 31, 1999) included CFD modeling and assessment of available experimental and modeling data on biomass reburning. Experimental and modeling data obtained within scope of this and Phase II SBIR USDA projects were reviewed and analyzed. This work was necessary to summarize available data and to make decision about additional efforts that are necessary for successful completion of the DOE FETC project. These efforts resulted in preparation of the paper entitled ''Kinetic Study of Biomass Reburning'' which was presented at the 1999 Joint Meeting of the United States Sections of the Combustion Institute. The paper is included in Attachment A.

Vitali V. Lissianski; Vladimir M. Zamansky

1999-04-29T23:59:59.000Z

439

BIOMASS REBURNING - MODELING/ENGINEERING STUDIES  

SciTech Connect

This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. The sixth reporting period (January 1--March 31, 1999) included CFD modeling and assessment of available experimental and modeling data on biomass reburning. Experimental and modeling data obtained within scope of this and Phase II SBIR USDA projects were reviewed and analyzed. This work was necessary to summarize available data and to make decision about additional efforts that are necessary for successful completion of the DOE FETC project. These efforts resulted in preparation of the paper entitled ''Kinetic Study of Biomass Reburning'' which was presented at the 1999 Joint Meeting of the United States Sections of the Combustion Institute. The paper is included in Attachment A.

Vitali V. Lissianski; Vladimir M. Zamansky

1999-04-29T23:59:59.000Z

440

November 2011 Model documentation for biomass,  

E-Print Network (OSTI)

1 November 2011 Model documentation for biomass, cellulosic biofuels, renewable of Education, Office of Civil Rights. #12;3 Contents Biomass.....................................................................................................................................................4 Variables in the biomass module

Noble, James S.

Note: This page contains sample records for the topic "including biomass wood" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Florida Biomass Energy Consortium | Open Energy Information  

Open Energy Info (EERE)

Consortium Jump to: navigation, search Name Florida Biomass Energy Consortium Place Florida Sector Biomass Product Association of biomass energy companies. References Florida...

442

Haryana Biomass Power Ltd | Open Energy Information  

Open Energy Info (EERE)

Haryana Biomass Power Ltd Jump to: navigation, search Name Haryana Biomass Power Ltd. Place Mumbai, Haryana, India Zip 400025 Sector Biomass Product This is a JV consortium between...

443

Algae Biomass Summit | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Algae Biomass Summit Algae Biomass Summit September 30, 2013 12:00PM EDT to October 3, 2013 12:00PM EDT Algae Biomass Summit...

444

PRETREATMENT OF BIOMASS PRIOR TO LIQUEFACTION  

E-Print Network (OSTI)

UC-61 PRETREATMENT OF BIOMASS PRIOR TO LIQUEFACTION Larry L.10093 PRETREATMENT OF BIOMASS PRIOR TO LIQUEFACTION Larry L.hydrolytic pretreatment to biomass feedstocks, higher acid

Schaleger, Larry L.

2012-01-01T23:59:59.000Z

445

Category:Biomass | Open Energy Information  

Open Energy Info (EERE)

Biomass category. Pages in category "Biomass" This category contains only the following page. B Biomass Scenario Model Retrieved from "http:en.openei.orgwindex.php?titleCatego...

446

Tribal Renewable Energy Curriculum Foundational Course: Biomass...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Tribal Renewable Energy Curriculum Foundational Course: Biomass Watch the U.S. Department of Energy Office of Indian Energy foundational course webinar on biomass renewable...

447

UCSD Biomass to Power Economic Feasibility Study  

E-Print Network (OSTI)

Biofuels,LLC UCSDBiomasstoPower EconomicFeasibilityFigure1:WestBiofuelsBiomassGasificationtoPowerrates... 31 UCSDBiomasstoPower?Feasibility

Cattolica, Robert

2009-01-01T23:59:59.000Z

448

Hebei Jiantou Biomass Power | Open Energy Information  

Open Energy Info (EERE)

Jiantou Biomass Power Jump to: navigation, search Name Hebei Jiantou Biomass Power Place Jinzhou, Hebei Province, China Zip 50000 Sector Biomass Product A company engages in...

449

Chowchilla Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Chowchilla Biomass Facility Jump to: navigation, search Name Chowchilla Biomass Facility Facility Chowchilla Sector Biomass Owner London Economics Location Chowchilla, California...

450