National Library of Energy BETA

Sample records for including 3-d seismic

  1. 3-D Seismic Methods For Geothermal Reservoir Exploration And...

    Open Energy Info (EERE)

    3-D Seismic Methods For Geothermal Reservoir Exploration And Assessment-Summary Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: 3-D Seismic Methods For...

  2. 3-D Seismic Methods for Geothermal Reservoir Exploration and Assessment--Summary

    E-Print Network [OSTI]

    Majer, E.L.

    2003-01-01

    3-D Seismic Methods For Geothermal Reservoir Exploration andseismic imaging which will increase the efficiency of explorationexploration and are early drilling 1. Surface studies (a) Reflection seismic.

  3. 3D seismic imaging of buried Younger Dryas mass movement flows: Lake Windermere, UK

    E-Print Network [OSTI]

    National Oceanography Centre Southampton

    ). In the offshore environment, 3D seismic data sets have bridged the gap between localised core stratigraphy3D seismic imaging of buried Younger Dryas mass movement flows: Lake Windermere, UK Mark E. Vardy a Keywords: High-resolution 3D seismic Submarine landslides Younger Dryas Lake District Windermere Debris

  4. Exploration 3-D Seismic Field Test/Native Tribes Initiative

    SciTech Connect (OSTI)

    Carroll, Herbert B.; Chen, K.C.; Guo, Genliang; Johnson, W.I.; Reeves,T.K.; Sharma,Bijon

    1999-04-27

    To determine current acquisition procedures and costs and to further the goals of the President's Initiative for Native Tribes, a seismic-survey project is to be conducted on Osage tribal lands. The goals of the program are to demonstrate the capabilities, costs, and effectiveness of 3-D seismic work in a small-operator setting and to determine the economics of such a survey. For these purposes, typical small-scale independent-operator practices are being followed and a shallow target chose in an area with a high concentration of independent operators. The results will be analyzed in detail to determine if there are improvements and/or innovations which can be easily introduced in field-acquisition procedures, in processing, or in data manipulation and interpretation to further reduce operating costs and to make the system still more active to the small-scale operator.

  5. Detection and extraction of fault surfaces in 3D seismic data Israel Cohen1

    E-Print Network [OSTI]

    Cohen, Israel

    for seismic interpretation. INTRODUCTION Fault surfaces are common subterranean structures that are asso that are unrelated to faults. Furthermore, creating a consistent geological interpretation from large 3D-seismicDetection and extraction of fault surfaces in 3D seismic data Israel Cohen1 , Nicholas Coult2

  6. A 3D-3C Reflection Seismic Survey and Data Integration to Identify...

    Open Energy Info (EERE)

    A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill...

  7. Frequency Enhancements for Visualizing 3D Seismic Data Cheng-Kai Chen Carlos Correa

    E-Print Network [OSTI]

    California at Davis, University of

    of an interactive interpretation seismic system, ge- ological study and prediction can be made on the seismic dataFrequency Enhancements for Visualizing 3D Seismic Data Cheng-Kai Chen Carlos Correa Department a suite of enhancement tech- niques for visualizing seismic data. These techniques provide a better

  8. STRUCTURAL AND STRATIGRAPHIC CONTROLS ON MORROW SANDSTONE RESERVOIR DISTRIBUTION FROM 3-D SEISMIC DATA, POSTLE FIELD, TEXAS

    E-Print Network [OSTI]

    STRUCTURAL AND STRATIGRAPHIC CONTROLS ON MORROW SANDSTONE RESERVOIR DISTRIBUTION FROM 3-D SEISMIC the unit. Use of 3D, P-wave seismic data for Morrow sandstone delineation is difficult. The difficulty then guided the analysis of seismic data. Seismic amplitudes can be used to delineate Morrow A sandstones. 3D

  9. 3-D seismic velocity and attenuation structures in the geothermal field

    SciTech Connect (OSTI)

    Nugraha, Andri Dian [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)] [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Syahputra, Ahmad [Geophyisical Engineering, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)] [Geophyisical Engineering, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Fatkhan,; Sule, Rachmat [Applied Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)] [Applied Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)

    2013-09-09

    We conducted delay time tomography to determine 3-D seismic velocity structures (Vp, Vs, and Vp/Vs ratio) using micro-seismic events in the geothermal field. The P-and S-wave arrival times of these micro-seismic events have been used as input for the tomographic inversion. Our preliminary seismic velocity results show that the subsurface condition of geothermal field can be fairly delineated the characteristic of reservoir. We then extended our understanding of the subsurface physical properties through determining of attenuation structures (Qp, Qs, and Qs/Qp ratio) using micro-seismic waveform. We combined seismic velocities and attenuation structures to get much better interpretation of the reservoir characteristic. Our preliminary attanuation structures results show reservoir characterization can be more clearly by using the 3-D attenuation model of Qp, Qs, and Qs/Qp ratio combined with 3-D seismic velocity model of Vp, Vs, and Vp/Vs ratio.

  10. RayKirchhoff multicomponent borehole seismic modelling in 3D heterogeneous, anisotropic media

    E-Print Network [OSTI]

    Edinburgh, University of

    of symmetry. This algorithm can be applied to vertical seismic profile (VSP) geometries and works well when; Anisotropy; Dipping reflectors; Converted waves 1. Introduction Using vertical seismic profiles (VSPsRay­Kirchhoff multicomponent borehole seismic modelling in 3D heterogeneous, anisotropic media $ A

  11. 3-D visualisation and interpretation of seismic attributes extracted from large 3-D seismic datasets: Subregional and prospect evaluation, deepwater Nigeria

    SciTech Connect (OSTI)

    Sola, M.; Haakon Nordby, L.; Dailey, D.V.; Duncan, E.A. (BP and Statoil Alliance, Stavanger (Norway))

    1996-01-01

    High resolution 3-D visualization of horizon interpretation and seismic attributes from large 3-D seismic surveys in deepwater Nigeria has greatly enhanced the exploration team's ability to quickly recognize prospective segments of subregional and prospect specific scale areas. Integrated workstation generated structure, isopach and extracted horizon consistent, interval and windowed attributes are particularly useful in illustrating the complex structural and stratigraphical prospectivity of deepwater Nigeria. Large 3-D seismic volumes acquired over 750 square kilometers can be manipulated within the visualization system with attribute tracking capability that allows for real time data interrogation and interpretation. As in classical seismic stratigraphic studies, pattern recognition is fundamental to effective depositions facies interpretation and reservoir model construction. The 3-D perspective enhances the data interpretation through clear representation of relative scale, spatial distribution and magnitude of attributes. In deepwater Nigeria, many prospective traps rely on an interplay between syndepositional structure and slope turbidite depositional systems. Reservoir systems in many prospects appear to be dominated by unconfined to moderately focused slope feeder channel facies. These units have spatially complex facies architecture with feeder channel axes separated by extensive interchannel areas. Structural culminations generally have a history of initial compressional folding with late in extensional collapse and accommodation faulting. The resulting complex trap configurations often have stacked reservoirs over intervals as thick as 1500 meters. Exploration, appraisal and development scenarios in these settings can be optimized by taking full advantage of integrating high resolution 3-D visualization and seismic workstation interpretation.

  12. Training toward Advanced 3D Seismic Methods for CO2 Monitoring, Verification, and Accounting

    SciTech Connect (OSTI)

    Christopher Liner

    2012-05-31

    The objective of our work is graduate and undergraduate student training related to improved 3D seismic technology that addresses key challenges related to monitoring movement and containment of CO{sub 2}, specifically better quantification and sensitivity for mapping of caprock integrity, fractures, and other potential leakage pathways. We utilize data and results developed through previous DOE-funded CO{sub 2} characterization project (DE-FG26-06NT42734) at the Dickman Field of Ness County, KS. Dickman is a type locality for the geology that will be encountered for CO{sub 2} sequestration projects from northern Oklahoma across the U.S. midcontinent to Indiana and Illinois. Since its discovery in 1962, the Dickman Field has produced about 1.7 million barrels of oil from porous Mississippian carbonates with a small structural closure at about 4400 ft drilling depth. Project data includes 3.3 square miles of 3D seismic data, 142 wells, with log, some core, and oil/water production data available. Only two wells penetrate the deep saline aquifer. In a previous DOE-funded project, geological and seismic data were integrated to create a geological property model and a flow simulation grid. We believe that sequestration of CO{sub 2} will largely occur in areas of relatively flat geology and simple near surface, similar to Dickman. The challenge is not complex geology, but development of improved, lower-cost methods for detecting natural fractures and subtle faults. Our project used numerical simulation to test methods of gathering multicomponent, full azimuth data ideal for this purpose. Our specific objectives were to apply advanced seismic methods to aide in quantifying reservoir properties and lateral continuity of CO{sub 2} sequestration targets. The purpose of the current project is graduate and undergraduate student training related to improved 3D seismic technology that addresses key challenges related to monitoring movement and containment of CO{sub 2}, specifically better quantification and sensitivity for mapping of caprock integrity, fractures, and other potential leakage pathways. Specifically, our focus is fundamental research on (1) innovative narrow-band seismic data decomposition and interpretation, and (2) numerical simulation of advanced seismic data (multi-component, high density, full azimuth data) ideal for mapping of cap rock integrity and potential leakage pathways.

  13. Identifying Complex Fluvial Sandstone Reservoirs Using Core, Well Log, and 3D Seismic Data: Cretaceous Cedar Mountain and Dakota Formations,

    E-Print Network [OSTI]

    Seamons, Kent E.

    core, well-log, and 3D seismic data. The detailed stratigraphy and sedimentology of the interval were

  14. Seismic characterization of fractured reservoirs using 3D double beams

    E-Print Network [OSTI]

    Zheng, Yingcai

    2012-01-01

    We propose an efficient target-oriented method to characterize seismic properties of fractured reservoirs: the spacing between fractures and the fracture orientation. We use both singly scattered and multiply scattered ...

  15. 3D Analysis of Steep Slopes Subjected to Seismic Excitation S.S. Nadukuru1

    E-Print Network [OSTI]

    Michalowski, Radoslaw L.

    for the assessment of the factor of safety for slopes with predefined width of the failure mechanism is shown3D Analysis of Steep Slopes Subjected to Seismic Excitation S.S. Nadukuru1 , T. Martel1 , Student for the seismic excitation. A three-dimensional analysis of slopes is used here, based on the kinematic theorem

  16. Analysis of seismic anisotropy in 3D multi-component seismic data 

    E-Print Network [OSTI]

    Qian, Zhongping

    2010-01-01

    The importance of seismic anisotropy has been recognized by the oil industry since its first observation in hydrocarbon reservoirs in 1986, and the application of seismic anisotropy to solve geophysical problems has been ...

  17. Fast probabilistic petrophysical mapping of reservoirs from 3D seismic data

    E-Print Network [OSTI]

    of porosity, clay content, and water saturation components at each point in the reservoir, from data vectorsFast probabilistic petrophysical mapping of reservoirs from 3D seismic data Mohammad S. Shahraeeni1 process provides information about all parameters. The reduction of uncertainty in water saturation

  18. Integrated 3D Seismic, Core, and Well Log Study of an Upper Pleistocene Submarine Fan Reservoir

    E-Print Network [OSTI]

    Kulp, Mark

    identifies a potential exploration/drilling target to the northeast of the study area in block 193 South- ern Louisiana. From the inner-continental shelf to the deepwater plays, South Louisiana's geology and public 3D seismic and well data, depositional elements and potential drilling targets for continued

  19. Advancing New 3D Seismic Interpretation Methods for Exploration and Development of Fractured Tight Gas Reservoirs

    SciTech Connect (OSTI)

    James Reeves

    2005-01-31

    In a study funded by the U.S. Department of Energy and GeoSpectrum, Inc., new P-wave 3D seismic interpretation methods to characterize fractured gas reservoirs are developed. A data driven exploratory approach is used to determine empirical relationships for reservoir properties. Fractures are predicted using seismic lineament mapping through a series of horizon and time slices in the reservoir zone. A seismic lineament is a linear feature seen in a slice through the seismic volume that has negligible vertical offset. We interpret that in regions of high seismic lineament density there is a greater likelihood of fractured reservoir. Seismic AVO attributes are developed to map brittle reservoir rock (low clay) and gas content. Brittle rocks are interpreted to be more fractured when seismic lineaments are present. The most important attribute developed in this study is the gas sensitive phase gradient (a new AVO attribute), as reservoir fractures may provide a plumbing system for both water and gas. Success is obtained when economic gas and oil discoveries are found. In a gas field previously plagued with poor drilling results, four new wells were spotted using the new methodology and recently drilled. The wells have estimated best of 12-months production indicators of 2106, 1652, 941, and 227 MCFGPD. The latter well was drilled in a region of swarming seismic lineaments but has poor gas sensitive phase gradient (AVO) and clay volume attributes. GeoSpectrum advised the unit operators that this location did not appear to have significant Lower Dakota gas before the well was drilled. The other three wells are considered good wells in this part of the basin and among the best wells in the area. These new drilling results have nearly doubled the gas production and the value of the field. The interpretation method is ready for commercialization and gas exploration and development. The new technology is adaptable to conventional lower cost 3D seismic surveys.

  20. Integrating 3D seismic curvature and curvature gradient attributes for fracture characterization: Methodologies and interpretational implications

    SciTech Connect (OSTI)

    Gao, Dengliang

    2013-03-01

    In 3D seismic interpretation, curvature is a popular attribute that depicts the geometry of seismic reflectors and has been widely used to detect faults in the subsurface; however, it provides only part of the solutions to subsurface structure analysis. This study extends the curvature algorithm to a new curvature gradient algorithm, and integrates both algorithms for fracture detection using a 3D seismic test data set over Teapot Dome (Wyoming). In fractured reservoirs at Teapot Dome known to be formed by tectonic folding and faulting, curvature helps define the crestal portion of the reservoirs that is associated with strong seismic amplitude and high oil productivity. In contrast, curvature gradient helps better define the regional northwest-trending and the cross-regional northeast-trending lineaments that are associated with weak seismic amplitude and low oil productivity. In concert with previous reports from image logs, cores, and outcrops, the current study based on an integrated seismic curvature and curvature gradient analysis suggests that curvature might help define areas of enhanced potential to form tensile fractures, whereas curvature gradient might help define zones of enhanced potential to develop shear fractures. In certain fractured reservoirs such as at Teapot Dome where faulting and fault-related folding contribute dominantly to the formation and evolution of fractures, curvature and curvature gradient attributes can be potentially applied to differentiate fracture mode, to predict fracture intensity and orientation, to detect fracture volume and connectivity, and to model fracture networks.

  1. On the value of 3D seismic amplitude data to reduce uncertainty in the forecast of reservoir production

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    4900. E-mail address: cverdin@mail.utexas.edu (C. Torres-Verdi´n). 1 Now with ExxonMobil UpstreamOn the value of 3D seismic amplitude data to reduce uncertainty in the forecast of reservoir; accepted 29 November 2005 Abstract Three-dimensional (3D) seismic data are commonly used to identify

  2. 3D Seismic Experimentation and Advanced Processing/Inversion Development for Investigations of the Shallow Subsurface

    SciTech Connect (OSTI)

    Levander, Alan Richard; Zelt, Colin A.

    2015-03-17

    The work plan for this project was to develop and apply advanced seismic reflection and wide-angle processing and inversion techniques to high resolution seismic data for the shallow subsurface to seismically characterize the shallow subsurface at hazardous waste sites as an aid to containment and cleanup activities. We proposed to continue work on seismic data that we had already acquired under a previous DoE grant, as well as to acquire additional new datasets for analysis. The project successfully developed and/or implemented the use of 3D reflection seismology algorithms, waveform tomography and finite-frequency tomography using compressional and shear waves for high resolution characterization of the shallow subsurface at two waste sites. These two sites have markedly different near-surface structures, groundwater flow patterns, and hazardous waste problems. This is documented in the list of refereed documents, conference proceedings, and Rice graduate theses, listed below.

  3. Rapid 3D Seismic Source Inversion Using Windows Azure and Amazon EC2 Vedaprakash Subramanian, Hongyi Ma,

    E-Print Network [OSTI]

    Wang, Liqiang

    Rapid 3D Seismic Source Inversion Using Windows Azure and Amazon EC2 Vedaprakash Subramanian seismic source inversion on both cluster (specif- ically, MPI-based) and cloud computing (specifically to seismic source in- version is feasible and has its advantages. In addition, we notice that both cluster

  4. Application of Cutting-Edge 3D Seismic Attribute Technology to the Assessment of Geological Reservoirs for CO2 Sequestration

    SciTech Connect (OSTI)

    Christopher Liner; Jianjun Zeng; Po Geng Heather King Jintan Li; Jennifer Califf; John Seales

    2010-03-31

    The goals of this project were to develop innovative 3D seismic attribute technologies and workflows to assess the structural integrity and heterogeneity of subsurface reservoirs with potential for CO{sub 2} sequestration. Our specific objectives were to apply advanced seismic attributes to aide in quantifying reservoir properies and lateral continuity of CO{sub 2} sequestration targets. Our study area is the Dickman field in Ness County, Kansas, a type locality for the geology that will be encountered for CO{sub 2} sequestration projects from northern Oklahoma across the U.S. midcontent to Indiana and beyond. Since its discovery in 1962, the Dickman Field has produced about 1.7 million barrels of oil from porous Mississippian carbonates with a small structural closure at about 4400 ft drilling depth. Project data includes 3.3 square miles of 3D seismic data, 142 wells, with log, some core, and oil/water production data available. Only two wells penetrate the deep saline aquifer. Geological and seismic data were integrated to create a geological property model and a flow simulation grid. We systematically tested over a dozen seismic attributes, finding that curvature, SPICE, and ANT were particularly useful for mapping discontinuities in the data that likely indicated fracture trends. Our simulation results in the deep saline aquifer indicate two effective ways of reducing free CO{sub 2}: (a) injecting CO{sub 2} with brine water, and (b) horizontal well injection. A tuned combination of these methods can reduce the amount of free CO{sub 2} in the aquifer from over 50% to less than 10%.

  5. Joint stochastic inversion of 3D pre-stack seismic data and well logs for high-resolution reservoir characterization and petrophysical modeling: application to deepwater hydrocarbon

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    Joint stochastic inversion of 3D pre-stack seismic data and well logs for high-resolution reservoir of migrated 3D pre-stack seismic data. The inversion algorithm is based on a Bayesian statistical search of elastic and petrophysical properties we resorted to amplitude information of 3D pre-stack seismic data

  6. Assessing the value of 3D post-stack seismic amplitude data in forecasting fluid production from a deepwater Gulf-of-Mexico

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    complex hydrocarbon reservoir models constructed with the use of 3D post-stack seismic amplitude data consideration, the joint stochastic inversion of well logs and 3D post- stack seismic amplitude data1 Assessing the value of 3D post-stack seismic amplitude data in forecasting fluid production from

  7. 3D seismic interpretation, reservoir characteristics and petroleum prospects for South Marsh Island OCS Blocks, Gulf of Mexico 

    E-Print Network [OSTI]

    Duan, Ling

    2003-01-01

    interpretation has been carried out for the entire area. The objectives of this study are to conduct 3D seismic interpretation, to build a depositional environment model that encompasses the different sedimentary facies and sequence stratigraphic framework...

  8. Integration of 3-D seismic data with reservoir modeling of a stratigraphically complex reservoir, central Saudi Arabia

    SciTech Connect (OSTI)

    Simms, S.C. (Saudi Aramco, Dhahran (Saudi Arabia))

    1993-09-01

    A 425-km[sup 2], three-dimensional (3-D) seismic survey was shot in 1992 over one of the recently discovered oil fields in central Saudi Arabia. The primary objective of this survey was to provide stratigraphic control within a complex fluvial reservoir. The Permian age reservoir is a multistory, multilateral sequence of sandstones interbedded with nonproductive mudstones and siltstones. The seismic data were integrated with well control from over 50 wells to produce a 3-D geologic model of the reservoir. Numerous examples of the seismic and well data are presented in this case history. Stratigraphic cross sections through the wells illustrate that the complex nature of the reservoir and seismic sections through these wells show good correlation between seismic character and stratigraphy. Meandering channels and massive siltstone/mudstone bodies are clearly visible on seismic horizon slices and time slices. Faulting is evident on both seismic section at times slices. Acoustic impedance sections produced from both forward and inverse modeling of the seismic data are compared with geologic models of porosity and lithology based on well control alone. Good correlation between acoustic impedance and porosity/lithology allow the use of the seismic data to guide the model between well locations. A geostatistical approach was used to interpolate between well control using the inverted seismic as [open quotes]soft data.[close quotes] 3-D visualization of the geological model illustrates increasing complexity from well control only to an integrated model.

  9. 3D HYBRID RAY-FD AND DWN-FD SEISMIC MODELING FOR SIMPLE MODELS CONTAINING COMPLEX LOCAL STRUCTURES

    E-Print Network [OSTI]

    Cerveny, Vlastislav

    3D HYBRID RAY-FD AND DWN-FD SEISMIC MODELING FOR SIMPLE MODELS CONTAINING COMPLEX LOCAL STRUCTURES local structure embedded in a large, but considerably simpler, regional structure. The hybrid modelling to compute the seismic wavefield due to the source and simple regional structure. The complex local structure

  10. Submarine mass movement processes on the North Sea Fan as interpreted from the 3D seismic data 

    E-Print Network [OSTI]

    Gafeira Gonçalves, Joana

    2010-01-01

    that are normally described from 2D seismic as chaotic or acoustically transparent emphasizes the potential of detailed analysis of 3D seismic data. It gives an example of how this type of data can provide new insights into the mechanisms and processes associated...

  11. Seismic attribute analysis of the Upper Morrow Sandstone and the Arbuckle Group from 3D-3C seismic data at Cutter Field, southwest Kansas

    E-Print Network [OSTI]

    Redger, Clyde Austin

    2015-05-31

    these reservoirs with seismic methods is challenging for a number of geophysical reasons. This study investigates the accuracy with which analysis of post-stack 3D-3C seismic data can delineate Upper Morrow Sandstone reservoirs and predict Arbuckle Group rock...

  12. Q AS A LITHOLOGICAL/HYDROCARBON INDICATOR: FROM FULL WAVEFORM SONIC TO 3D SURFACE SEISMIC

    SciTech Connect (OSTI)

    Jorge O. Parra; C.L. Hackert; L. Wilson; H.A. Collier; J. Todd Thomas

    2006-03-31

    The goal of this project was to develop a method to exploit viscoelastic rock and fluid properties to greatly enhance the sensitivity of surface seismic measurements to the presence of hydrocarbon saturation. To reach the objective, Southwest Research Institute scientists used well log, lithology, production, and 3D seismic data from an oil reservoir located on the Waggoner Ranch in north central Texas. The project was organized in three phases. In the first phase, we applied modeling techniques to investigate seismic- and acoustic-frequency wave attenuation and its effect on observable wave attributes. We also gathered existing data and acquired new data from the Waggoner Ranch field, so that all needed information was in place for the second phase. During the second phase, we developed methods to extract attenuation from borehole acoustic and surface seismic data. These methods were tested on synthetic data constructed from realistic models and real data. In the third and final phase of the project, we applied this technology to a full data set from the Waggoner site. The results presented in this Final Report show that geological conditions at the site did not allow us to obtain interpretable results from the Q processing algorithm for 3D seismic data. However, the Q-log processing algorithm was successfully applied to full waveform sonic data from the Waggoner site. A significant part of this project was technology transfer. We have published several papers and conducted presentations at professional conferences. In particular, we presented the Q-log algorithm and applications at the Society of Exploration Geophysicists (SEG) Development and Production Forum in Austin, Texas, in May 2005. The presentation attracted significant interest from the attendees and, at the request of the SEG delegates, it was placed on the Southwest Research Institute Internet site. The presentation can be obtained from the following link: http://www.swri.org/4org/d15/elecsys/resgeo/ppt/Algorithm.pps In addition, we presented a second application of the Q algorithm at the SEG International Conference in Houston, Texas, in May 2005. The presentation attracted significant interest there as well, and it can be obtained from the following link: http://www.swri.org/4org/d15/elecsys/resgeo/ppt/attenuation.pps.

  13. RELAP5-3D Code Includes Athena Features and Models

    SciTech Connect (OSTI)

    Richard A. Riemke; Cliff B. Davis; Richard R. Schultz

    2006-07-01

    Version 2.3 of the RELAP5-3D computer program includes all features and models previously available only in the ATHENA version of the code. These include the addition of new working fluids (i.e., ammonia, blood, carbon dioxide, glycerol, helium, hydrogen, lead-bismuth, lithium, lithium-lead, nitrogen, potassium, sodium, and sodium-potassium) and a magnetohydrodynamic model that expands the capability of the code to model many more thermal-hydraulic systems. In addition to the new working fluids along with the standard working fluid water, one or more noncondensable gases (e.g., air, argon, carbon dioxide, carbon monoxide, helium, hydrogen, krypton, nitrogen, oxygen, sf6, xenon) can be specified as part of the vapor/gas phase of the working fluid. These noncondensable gases were in previous versions of RELAP5- 3D. Recently four molten salts have been added as working fluids to RELAP5-3D Version 2.4, which has had limited release. These molten salts will be in RELAP5-3D Version 2.5, which will have a general release like RELAP5-3D Version 2.3. Applications that use these new features and models are discussed in this paper.

  14. How an independent put inexpensive 3-D seismic to good use in New Mexico

    SciTech Connect (OSTI)

    Nester, D.C. (Landmark/Concurrent Solutions, Houston, TX (US)); Emdsley, D. (Merrion Oil and Gas Corp., Farmington, NM (US))

    1992-03-23

    This paper reports that as major oil companies focus their attention offshore and overseas, independents in the U.S. continue to find and develop onshore reserves using their traditional strengths. Those strengths have been low overhead, nimble decisionmaking, and hard-won experience within a particular geologic region. Today many of these companies are emerging as even tougher competitors by applying 3-D seismic along with the multidisciplinary know-how and the interactive workstations needed to interpret it. The recent experience of Merrion Oil and Gas Corp., Farmington, N.M., offers a case in point. When oil prices collapsed in 1986, Merrion saw the chance to venture into exploration at low cost. Ever since, the company has devoted its resources to exploring for oil in the San Juan basin's Entrada sand dunes, a complex stratigraphic play found at 6,000 ft.

  15. 3-D structural and seismic stratigraphic interpretation of the Guasare-Misoa Interval, VLE 196 Area, Block V, Lamar Field, Lake Maracaibo, Venezuela 

    E-Print Network [OSTI]

    Arzuman, Sadun

    2004-09-30

    In this study, the structure, depositional system, and the seismic stratigraphy of the VLE 196 area, Block V in Lamar Field were interpreted using 3-D seismic data and well logs to characterize structural and depositional settings of the Guasare...

  16. A multi-physics, integrated approach to formation evaluation using borehole geophysical measurements and 3D seismic data

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    A multi-physics, integrated approach to formation evaluation using borehole geophysical at Austin Summary This paper describes a methodology for formation evaluation based on the integration and DC resistivity sensors. Finally, 3D seismic data, post-stack and pre-stack, are used to ascertain

  17. 3-D Seismic Methods for Geothermal Reservoir Exploration and Assessment--Summary

    E-Print Network [OSTI]

    Majer, E.L.

    2003-01-01

    borehole methods developed in the petroleum industry the limitation for geothermaland borehole seismic methods (Vertical Seismic Profiling (VSP), Crosswell and Single Well) to locate and quantify geothermal

  18. Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs

    SciTech Connect (OSTI)

    Bjorn N. P. Paulsson

    2006-09-30

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to perform high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology has been hampered by the lack of acquisition technology necessary to record large volumes of high frequency, high signal-to-noise-ratio borehole seismic data. This project took aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array has removed the technical acquisition barrier for recording the data volumes necessary to do high resolution 3D VSP and 3D cross-well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that promise to take the gas industry to the next level in their quest for higher resolution images of deep and complex oil and gas reservoirs. Today only a fraction of the oil or gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of detailed compartmentalization of oil and gas reservoirs. In this project, we developed a 400 level 3C borehole seismic receiver array that allows for economic use of 3D borehole seismic imaging for reservoir characterization and monitoring. This new array has significantly increased the efficiency of recording large data volumes at sufficiently dense spatial sampling to resolve reservoir complexities. The receiver pods have been fabricated and tested to withstand high temperature (200 C/400 F) and high pressure (25,000 psi), so that they can operate in wells up to 7,620 meters (25,000 feet) deep. The receiver array is deployed on standard production or drill tubing. In combination with 3C surface seismic or 3C borehole seismic sources, the 400 level receiver array can be used to obtain 3D 9C data. These 9C borehole seismic data provide both compressional wave and shear wave information that can be used for quantitative prediction of rock and pore fluid types. The 400-level borehole receiver array has been deployed successfully in a number of oil and gas wells during the course of this project, and each survey has resulted in marked improvements in imaging of geologic features that are critical for oil or gas production but were previously considered to be below the limits of seismic resolution. This added level of reservoir detail has resulted in improved well placement in the oil and gas fields that have been drilled using the Massive 3D VSP{reg_sign} images. In the future, the 400-level downhole seismic receiver array is expected to continue to improve reservoir characterization and drilling success in deep and complex oil and gas reservoirs.

  19. Predicting porosity in a Saudi Arabian carbonate reservoir using geologic constraints integrated with 3-D seismic and well data

    SciTech Connect (OSTI)

    Jeffery, R.; Thomsen, M. [Saudi Aramco, Dhahran (Saudi Arabia)

    1995-08-01

    A method for predicting lateral changes in reservoir porosity using 3-D seismic Aptitudes, calibrated against the amplitude response versus porosity measured at a select number of wells, was implemented and applied to produce a porosity map of a Saudi Arabian carbonate reservoir. The technique relies on the uniform lithologic seismic response of an overlying anhydrite, and thus assigns variations in amplitudes at the reservoir level to changes in reservoir average porosity. Throughout the study area, reservoir porosity and acoustic impedance logs exhibit a firm linear relationship. As reservoir porosity increases, its acoustic impedance decreases, and the greater contrast with the overlying anhydrite translates into larger seismic amplitudes. Thus, we expect the reservoir`s relative amplitude response to also increase linearly with increasing porosity. A check on this hypothesis was provided by computing synthetic seismograms at several wells, and measuring the reservoir`s theoretical amplitude response versus porosity averaged over the producing zone within the reservoir. This trend supported a linear seismic amplitude to porosity transform. Upon verification of the technique`s applicability, the reservoirs amplitude response was extracted from the 3-D seismic volume in the vicinity of several wells. These were used in conjunction with porosities averaged ever the reservoir to derive the amplitude to porosity transform. This transform was used in converting the mapped reservoir amplitudes into variations in average porosities. The success ratio for predicting porosities in wells not used in the analysis was nearly perfect, and the map continues to correctly predict porosities in subsequently drilled wells.

  20. The application of seismic stratigraphic methods on exploration 3D seismic data to define a reservoir model in OPL 210, Deepwater Nigeria

    SciTech Connect (OSTI)

    Ragnhild, L.; Ventris, P. [Statoil and BP Alliance, Stavanger (Norway); Osahon, G. [Allied Energy Resources (Nig) Ltd., Lagos (Nigeria)

    1995-08-01

    OPL 210 lies in deepwater on the northwestern flank of the Niger Delta. The partners in this block are Allied Energy and The Statoil and BP Alliance. The license has a 5 year initial exploration phase and carries a 2 well commitment. At present the database comprises a 1 x 1 km grid of 2D seismic across the block, and 450 sq. km of 3D in an area of special interest. A larger 3D survey is planned for 1995. Little is known about the reservoir in the deep water, but we expect our main target to be ponded slope and basin turbidites. As such the bulk of the shelf well data available has little or no relevance to the play type likely to be encountered. Prior to drilling, seismic stratigraphy has been one of several methods used to generate a consistent predictive reservoir model. The excellent quality and high resolution of the 3D data have allowed identification and detailed description of several distinctive seismic facies. These facies are described in terms of their internal geometries and stacking patterns. The geometries are then interpreted based on a knowledge of depositional processes from analog slope settings. This enables a predictive model to be constructed for the distribution of reservoir within the observed facies. These predictions will be tested by one of the first wells drilled in the Nigerian deepwater in mid 1995.

  1. A 3D-3C Reflection Seismic Survey and Data Integration to Identify...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summary: Understanding geothermal reservoirs requires multi-discipline, integrated 3D GIS: Access down hole geophysical logs, surface geophysics, isotherms, isoresistivity...

  2. Efficient Evaluation of Doubly Periodic Green Functions in 3D Scattering, Including Wood Anomaly Frequencies

    E-Print Network [OSTI]

    Oscar P. Bruno; Stephen P. Shipman; Catalin Turc; Stephanos Venakides

    2013-07-04

    We present efficient methods for computing wave scattering by diffraction gratings that exhibit two-dimensional periodicity in three dimensional (3D) space. Applications include scattering in acoustics, electromagnetics and elasticity. Our approach uses boundary-integral equations. The quasi-periodic Green function is a doubly infinite sum of scaled 3D free-space outgoing Helmholtz Green functions. Their source points are located at the nodes of a periodicity lattice of the grating. For efficient numerical computation of the lattice sum, we employ a smooth truncation. Super-algebraic convergence to the Green function is achieved as the truncation radius increases, except at frequency-wavenumber pairs at which a Rayleigh wave is at exactly grazing incidence to the grating. At these "Wood frequencies", the term in the Fourier series representation of the Green function that corresponds to the grazing Rayleigh wave acquires an infinite coefficient and the lattice sum blows up. At Wood frequencies, we modify the Green function by adding two types of terms to it. The first type adds weighted spatial shifts of the Green function to itself with singularities below the grating; this yields algebraic convergence. The second-type terms are quasi-periodic plane wave solutions of the Helmholtz equation. They reinstate (with controlled coefficients) the grazing modes, effectively eliminated by the terms of first type. These modes are needed in the Green function for guaranteeing the well-posedness of the boundary-integral equation that yields the scattered field. We apply this approach to acoustic scattering by a doubly periodic 2D grating near and at Wood frequencies and scattering by a doubly periodic array of scatterers away from Wood frequencies.

  3. Quantifying the Permeability Heterogeneity of Sandstone Reservoirs in Boonsville Field, Texas by Integrating Core, Well Log and 3D Seismic Data 

    E-Print Network [OSTI]

    Song, Qian

    2013-04-29

    the permeability heterogeneity of the target reservoir by integrating core, well log and 3D seismic data. A set of permeability coefficients, variation coefficient, dart coefficient, and contrast coefficient, was defined in this study to quantitatively identify...

  4. EA-1188: Chevron U.S.A., Inc. and Santa Fe Energy Resources, Inc. Midway Valley 3D Seismic Project, Kern County, California

    Office of Energy Efficiency and Renewable Energy (EERE)

    This EA evaluates the environmental impacts for the proposed Midway Valley 3D Geophysical Exploration Project. Chevron U.S.A., Inc. and Santa Fe Energy Resources are proposing to conduct seismic...

  5. The use of exploration 3D seismic data to optimise oil exploration in OPL 210 deepwater, Nigeria

    SciTech Connect (OSTI)

    Nelson, L.C.; Lilletveit, R.; Sandvoll, T. [Statoil and BP Alliance, Stavanger (Norway)] [and others

    1995-08-01

    Allied Energy and the Statoil and BP Alliance are currently partners in the OPL 210 license, in deepwater Nigeria. The license has a 5 year initial exploration phase which carries a two well commitment. To optimize the location of these wells in this challenging and costly drilling environment the partnership has decided to acquire extensive exploration 3D seismic data within the block. Interpretation of the first of two planned 3D surveys has led to a much clearer understanding of: (a) The structural segmentation of the prospect and thus a clearer idea of the likely hydrocarbon pool size. (b) The distribution of amplitude anomalies and thus, hopefully, a superior understanding of reservoir distribution and hydrocarbons. Here the limiting factor is clearly the lack of deepwater geophysical calibration, due to the absence of wells. Consequently, conclusions at this stage, are qualitative either than quantative. Combined with detailed seismic stratigraphic and high tech geophysical analysis, these two aspects will assist in the highgrading of segments in the prospect, prior to final decisions on the well locations. The first well, planned for 1995, will be one of the first wells drilled in the Nigerian deepwater area. Examples of both 2D and 3D data will be used to demonstrate the above and some of the first well results will be integrated into our interpretation to highlight how some of our perceptions may have changed.

  6. A Robust MEMS Based Multi-Component Sensor for 3D Borehole Seismic Arrays

    SciTech Connect (OSTI)

    Paulsson Geophysical Services

    2008-03-31

    The objective of this project was to develop, prototype and test a robust multi-component sensor that combines both Fiber Optic and MEMS technology for use in a borehole seismic array. The use such FOMEMS based sensors allows a dramatic increase in the number of sensors that can be deployed simultaneously in a borehole seismic array. Therefore, denser sampling of the seismic wave field can be afforded, which in turn allows us to efficiently and adequately sample P-wave as well as S-wave for high-resolution imaging purposes. Design, packaging and integration of the multi-component sensors and deployment system will target maximum operating temperature of 350-400 F and a maximum pressure of 15000-25000 psi, thus allowing operation under conditions encountered in deep gas reservoirs. This project aimed at using existing pieces of deployment technology as well as MEMS and fiber-optic technology. A sensor design and analysis study has been carried out and a laboratory prototype of an interrogator for a robust borehole seismic array system has been assembled and validated.

  7. Improving Geologic and Engineering Models of Midcontinent Fracture and Karst-Modified Reservoirs Using New 3-D Seismic Attributes

    SciTech Connect (OSTI)

    Susan Nissen; Saibal Bhattacharya; W. Lynn Watney; John Doveton

    2009-03-31

    Our project goal was to develop innovative seismic-based workflows for the incremental recovery of oil from karst-modified reservoirs within the onshore continental United States. Specific project objectives were: (1) to calibrate new multi-trace seismic attributes (volumetric curvature, in particular) for improved imaging of karst-modified reservoirs, (2) to develop attribute-based, cost-effective workflows to better characterize karst-modified carbonate reservoirs and fracture systems, and (3) to improve accuracy and predictiveness of resulting geomodels and reservoir simulations. In order to develop our workflows and validate our techniques, we conducted integrated studies of five karst-modified reservoirs in west Texas, Colorado, and Kansas. Our studies show that 3-D seismic volumetric curvature attributes have the ability to re-veal previously unknown features or provide enhanced visibility of karst and fracture features compared with other seismic analysis methods. Using these attributes, we recognize collapse features, solution-enlarged fractures, and geomorphologies that appear to be related to mature, cockpit landscapes. In four of our reservoir studies, volumetric curvature attributes appear to delineate reservoir compartment boundaries that impact production. The presence of these compartment boundaries was corroborated by reservoir simulations in two of the study areas. Based on our study results, we conclude that volumetric curvature attributes are valuable tools for mapping compartment boundaries in fracture- and karst-modified reservoirs, and we propose a best practices workflow for incorporating these attributes into reservoir characterization. When properly calibrated with geological and production data, these attributes can be used to predict the locations and sizes of undrained reservoir compartments. Technology transfer of our project work has been accomplished through presentations at professional society meetings, peer-reviewed publications, Kansas Geological Survey Open-file reports, Master's theses, and postings on the project website: http://www.kgs.ku.edu/SEISKARST.

  8. A 3D-3C Reflection Seismic Survey and Data Integration to Identify the

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton JumpProgram | Open EnergyEnergyEnergyEnergySeismic Response of

  9. A 3D-3C Reflection Seismic Survey and Data Integration to Identify the

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A s s iof1 of 8 2Seismic Response of Fractures and

  10. Improved time-space method for 3-D heat transfer problems including global warming

    SciTech Connect (OSTI)

    Saitoh, T.S.; Wakashima, Shinichiro

    1999-07-01

    In this paper, the Time-Space Method (TSM) which has been proposed for solving general heat transfer and fluid flow problems was improved in order to cover global and urban warming. The TSM is effective in almost all-transient heat transfer and fluid flow problems, and has been already applied to the 2-D melting problems (or moving boundary problems). The computer running time will be reduced to only 1/100th--1/1000th of the existing schemes for 2-D and 3-D problems. However, in order to apply to much larger-scale problems, for example, global warming, urban warming and general ocean circulation, the SOR method (or other iterative methods) in four dimensions is somewhat tedious and provokingly slow. Motivated by the above situation, the authors improved the speed of iteration of the previous TSM by introducing the following ideas: (1) Timewise chopping: Time domain is chopped into small peaches to save memory requirement; (2) Adaptive iteration: Converged region is eliminated for further iteration; (3) Internal selective iteration: Equation with slow iteration speed in iterative procedure is selectively iterated to accelerate entire convergence; and (4) False transient integration: False transient term is added to the Poisson-type equation and the relevant solution is regarded as a parabolic equation. By adopting the above improvements, the higher-order finite different schemes and the hybrid mesh, the computer running time for the TSM is reduced to some 1/4600th of the conventional explicit method for a typical 3-D natural convection problem in a closed cavity. The proposed TSM will be more efficacious for large-scale environmental problems, such as global warming, urban warming and general ocean circulation, in which a tremendous computing time would be required.

  11. Method for identifying subsurface fluid migration and drainage pathways in and among oil and gas reservoirs using 3-D and 4-D seismic imaging

    DOE Patents [OSTI]

    Anderson, Roger N. (New York, NY); Boulanger, Albert (New York, NY); Bagdonas, Edward P. (Brookline, MA); Xu, Liqing (New Milford, NJ); He, Wei (New Milford, NJ)

    1996-01-01

    The invention utilizes 3-D and 4-D seismic surveys as a means of deriving information useful in petroleum exploration and reservoir management. The methods use both single seismic surveys (3-D) and multiple seismic surveys separated in time (4-D) of a region of interest to determine large scale migration pathways within sedimentary basins, and fine scale drainage structure and oil-water-gas regions within individual petroleum producing reservoirs. Such structure is identified using pattern recognition tools which define the regions of interest. The 4-D seismic data sets may be used for data completion for large scale structure where time intervals between surveys do not allow for dynamic evolution. The 4-D seismic data sets also may be used to find variations over time of small scale structure within individual reservoirs which may be used to identify petroleum drainage pathways, oil-water-gas regions and, hence, attractive drilling targets. After spatial orientation, and amplitude and frequency matching of the multiple seismic data sets, High Amplitude Event (HAE) regions consistent with the presence of petroleum are identified using seismic attribute analysis. High Amplitude Regions are grown and interconnected to establish plumbing networks on the large scale and reservoir structure on the small scale. Small scale variations over time between seismic surveys within individual reservoirs are identified and used to identify drainage patterns and bypassed petroleum to be recovered. The location of such drainage patterns and bypassed petroleum may be used to site wells.

  12. Method for identifying subsurface fluid migration and drainage pathways in and among oil and gas reservoirs using 3-D and 4-D seismic imaging

    DOE Patents [OSTI]

    Anderson, R.N.; Boulanger, A.; Bagdonas, E.P.; Xu, L.; He, W.

    1996-12-17

    The invention utilizes 3-D and 4-D seismic surveys as a means of deriving information useful in petroleum exploration and reservoir management. The methods use both single seismic surveys (3-D) and multiple seismic surveys separated in time (4-D) of a region of interest to determine large scale migration pathways within sedimentary basins, and fine scale drainage structure and oil-water-gas regions within individual petroleum producing reservoirs. Such structure is identified using pattern recognition tools which define the regions of interest. The 4-D seismic data sets may be used for data completion for large scale structure where time intervals between surveys do not allow for dynamic evolution. The 4-D seismic data sets also may be used to find variations over time of small scale structure within individual reservoirs which may be used to identify petroleum drainage pathways, oil-water-gas regions and, hence, attractive drilling targets. After spatial orientation, and amplitude and frequency matching of the multiple seismic data sets, High Amplitude Event (HAE) regions consistent with the presence of petroleum are identified using seismic attribute analysis. High Amplitude Regions are grown and interconnected to establish plumbing networks on the large scale and reservoir structure on the small scale. Small scale variations over time between seismic surveys within individual reservoirs are identified and used to identify drainage patterns and bypassed petroleum to be recovered. The location of such drainage patterns and bypassed petroleum may be used to site wells. 22 figs.

  13. Impact of 3-D seismic data on the Nigerian National Petroleum Corporation/Chevron Nigeria Limited joint venture development drilling program

    SciTech Connect (OSTI)

    Quam, S. (Chevron Nigeria Ltd., Lagos (Nigeria))

    1993-09-01

    The Nigerian National Petroleum Corporation/Chevron Nigeria Limited joint venture has been acquiring three-dimensional (3-D) seismic data over its concessions since 1984. To date, 1700 km[sup 2] have been recorded and processed at a cumulative cost of US $39 million. During 1991 - 1992, 20 development wells were drilled based directly on new 3-D seismic interpretations. These wells have added 148 million bbl of oil in new recoverable reserves, and to date have added 37,000 bbl/day to the joint venture's production. In addition, the 3-D interpretations have resulted in a sizable inventory of wells for future development drilling. The new 3-D interpretations provided more accurate pictures of fault patterns, fluid contacts, channel trends, stratigraphic continuity, and velocity/amplitude anomalies. In addition, the 3-D data were invaluable in designing low risk, directional well trajectories to tap relatively thin oil legs under large gas caps. Wells often were programmed to hit several objectives at their respective gas/oil contacts, resulting in maximized net oil sand pays and reducing the risk of gas production. In order to do this, directional [open quotes]sharpshooting,[close quotes] accurate depth conversion of the seismic time maps, was critical. By using the 3-D seismic, checkshot, and sonic data to develop a variable velocity space, well-top prognoses within 50 ft at depths of 6,000-10,000 ft were possible, and were key to the success of the program. As the joint venture acreage becomes more mature, development wells will be drilled for smaller numbers of stacked objectives, and sometimes for single sands. Highly accurate 3-D interpretations and depth conversions will become even more critical in order to tap thinner pay zones in a cost-effect manner.

  14. Shear-wave splitting: Tutorial, issues and implications for 9-C 3-D seismic reflection data James L. Simmons, Jr.* and Milo M. Backus

    E-Print Network [OSTI]

    Texas at Austin, University of

    Shear-wave splitting: Tutorial, issues and implications for 9-C 3-D seismic reflection data James L Characteristics of shear-wave splitting are illustrated by mod- eling the downgoing transmitted wavefield using thin-layer response as a function of the amount of shear-wave splitting (analogous to layer thickness

  15. INFILLING OF SPARSE 3D SEISMIC DATA FOR 3D FOCUSSING OPERATOR A. Gisolf * , M.J. van de Rijzen and D.J. Verschuur

    E-Print Network [OSTI]

    van Vliet, Lucas J.

    , and from the model the correct migration operators, these data-sets can be imaged very well by applying the 3D migration operators in a domain where full areal coverage is obtained, usually a common offset steps, focussing shots and receivers separately in depth-points called Common Focus Points (CFP), using

  16. The application of high-resolution 3D seismic data to model the distribution of mechanical and hydrogeological properties of a potential host rock for the deep storage of radioactive waste in France

    E-Print Network [OSTI]

    Mari, Jean-Luc

    2014-01-01

    In the context of a deep geological repository of high-level radioactive wastes, the French National Radioactive Waste Management Agency (Andra) has conducted an extensive characterization of the Callovo-Oxfordian argillaceous rock and surrounding formations in the Eastern Paris Basin. As part of this project, an accurate 3D seismic derived geological model is needed. The paper shows the procedure used for building the 3D seismic constrained geological model in depth by combining time-to-depth conversion of seismic horizons, consistent seismic velocity model and elastic impedance in time. It also shows how the 3D model is used for mechanical and hydrogeological studies. The 3D seismic field data example illustrates the potential of the proposed depth conversion procedure for estimating density and velocity distributions, which are consistent with the depth conversion of seismic horizons using the Bayesian Kriging method. The geological model shows good agreement with well log data obtained from a reference we...

  17. Seismic Evaluation of the Fruitland Formation with Implications on Leakage Potential of Injected CO2

    E-Print Network [OSTI]

    Wilson, Thomas H.

    Seismic Evaluation of the Fruitland Formation with Implications on Leakage Potential of Injected CO Basin pilot test include acquisition of geophysical logs, time lapse VSP and analysis of 3D seismic data on the analysis of 3D seismic from the area. 3D seismic interpretation reveals that the Late Cretaceous Fruitland

  18. ISET Journal of Earthquake Technology, Paper No. 444, Vol. 41, No. 1, March 2004, pp. 141-158 PERFORMANCE-BASED SEISMIC DESIGN OF 3D R/C BUILDINGS

    E-Print Network [OSTI]

    Gupta, Vinay Kumar

    -158 PERFORMANCE-BASED SEISMIC DESIGN OF 3D R/C BUILDINGS USING INELASTIC STATIC AND DYNAMIC ANALYSIS PROCEDURES behaviour even for very strong earthquakes. KEYWORDS: Performance-Based Design, Seismic Design, Reinforced trend towards "performance-based" seismic design, which can be thought of as an explicit design

  19. Joint Inversion of Reservoir Production Measurements and 3D Pre-Stack Seismic Data: Proof Carlos Torres-Verdn, Zhan Wu, Omar J. Varela, Mrinal K. Sen, and Indrajit G. Roy.

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    Joint Inversion of Reservoir Production Measurements and 3D Pre-Stack Seismic Data: Proof-stack seismic data and fluid production history. The production measurements and the seismic data problem associated with the inversion. Fluid production measurements are sensitive to initial fluid

  20. Joint environmental assessment for Chevron USA, Inc. and Santa Fe Energy Resources, Inc.: Midway Valley 3D seismic project, Kern County, California

    SciTech Connect (OSTI)

    1996-10-01

    The proposed Midway Valley 3D Geophysical Exploration Project covers approximately 31,444 aces of private lands, 6,880 acres of Department of Energy (DOE) Lands within Naval Petroleum Reserve 2 (NPR2) and 3,840 acres of lands administered by the Bureau of Land Management (BLM), in western Kern County, California. This environmental assessment (EA) presents an overview of the affected environment within the project area using results of a literature review of biological field surveys previously conducted within or adjacent to a proposed 3D seismic project. The purpose is to provide background information to identify potential and known locations of sensitive wildlife and special status plant species within the proposed seismic project area. Biological field surveys, following agency approved survey protocols, will be conducted during October through November 1996 to acquire current resources data to provide avoidance as the project is being implemented in the field.

  1. Characterization of fracture reservoirs using static and dynamic data: From sonic and 3D seismic to permeability distribution. Annual report, March 1, 1996--February 28, 1997

    SciTech Connect (OSTI)

    Parra, J.O.; Collier, H.A.; Owen, T.E.

    1997-06-01

    In low porosity, low permeability zones, natural fractures are the primary source of permeability which affect both production and injection of fluids. The open fractures do not contribute much to porosity, but they provide an increased drainage network to any porosity. They also may connect the borehole to remote zones of better reservoir characteristics. An important approach to characterizing the fracture orientation and fracture permeability of reservoir formations is one based on the effects of such conditions on the propagation of acoustic and seismic waves in the rock. The project is a study directed toward the evaluation of acoustic logging and 3D-seismic measurement techniques as well as fluid flow and transport methods for mapping permeability anisotropy and other petrophysical parameters for the understanding of the reservoir fracture systems and associated fluid dynamics. The principal application of these measurement techniques and methods is to identify and investigate the propagation characteristics of acoustic and seismic waves in the Twin Creek hydrocarbon reservoir owned by Union Pacific Resources (UPR) and to characterize the fracture permeability distribution using production data. This site is located in the overthrust area of Utah and Wyoming. UPR drilled six horizontal wells, and presently UPR has two rigs running with many established drill hole locations. In addition, there are numerous vertical wells that exist in the area as well as 3D seismic surveys. Each horizontal well contains full FMS logs and MWD logs, gamma logs, etc.

  2. Tectonic Deformation of a Lacustrine Mudstone at Soda Lake Geothermal Field, Western Nevada, USA, from 3D Seismic Interpretation

    E-Print Network [OSTI]

    enhanced extension and pull-apart basins that bring about structural controls for geothermal systems comprehensive seismic survey of a geothermal system in the world Seismic Survey The authors would like to thankTectonic Deformation of a Lacustrine Mudstone at Soda Lake Geothermal Field, Western Nevada, USA

  3. An Archaeological Survey of High Probability Areas within Geokinetics, USA, Inc.'s Perry Ranch 3-D Seismic Survey in Brazoria and Matagorda Counties, Texas: Volume 1: The Terrestrial Survey 

    E-Print Network [OSTI]

    Moore, William

    2015-07-30

    An archaeological survey of the Geokinetics USA, Inc.’s Perry Ranch 3-D seismic survey was conducted by Brazos Valley Research Associates (BVRA) in conjunction with Dixie Environmental Services Company (DESCO), LP from ...

  4. Long-Range Atmospheric Transport of Polycyclic Aromatic Hydrocarbons: A Global 3-D Model Analysis Including Evaluation of Arctic Sources

    E-Print Network [OSTI]

    Friedman, Carey

    We use the global 3-D chemical transport model GEOS-Chem to simulate long-range atmospheric transport of polycyclic aromatic hydrocarbons (PAHs). To evaluate the model’s ability to simulate PAHs with different volatilities, ...

  5. Method for inverting reflection trace data from 3-D and 4-D seismic surveys and identifying subsurface fluid and pathways in and among hydrocarbon reservoirs based on impedance models

    DOE Patents [OSTI]

    He, W.; Anderson, R.N.

    1998-08-25

    A method is disclosed for inverting 3-D seismic reflection data obtained from seismic surveys to derive impedance models for a subsurface region, and for inversion of multiple 3-D seismic surveys (i.e., 4-D seismic surveys) of the same subsurface volume, separated in time to allow for dynamic fluid migration, such that small scale structure and regions of fluid and dynamic fluid flow within the subsurface volume being studied can be identified. The method allows for the mapping and quantification of available hydrocarbons within a reservoir and is thus useful for hydrocarbon prospecting and reservoir management. An iterative seismic inversion scheme constrained by actual well log data which uses a time/depth dependent seismic source function is employed to derive impedance models from 3-D and 4-D seismic datasets. The impedance values can be region grown to better isolate the low impedance hydrocarbon bearing regions. Impedance data derived from multiple 3-D seismic surveys of the same volume can be compared to identify regions of dynamic evolution and bypassed pay. Effective Oil Saturation or net oil thickness can also be derived from the impedance data and used for quantitative assessment of prospective drilling targets and reservoir management. 20 figs.

  6. Method for inverting reflection trace data from 3-D and 4-D seismic surveys and identifying subsurface fluid and pathways in and among hydrocarbon reservoirs based on impedance models

    DOE Patents [OSTI]

    He, Wei (New Milford, NJ); Anderson, Roger N. (New York, NY)

    1998-01-01

    A method is disclosed for inverting 3-D seismic reflection data obtained from seismic surveys to derive impedance models for a subsurface region, and for inversion of multiple 3-D seismic surveys (i.e., 4-D seismic surveys) of the same subsurface volume, separated in time to allow for dynamic fluid migration, such that small scale structure and regions of fluid and dynamic fluid flow within the subsurface volume being studied can be identified. The method allows for the mapping and quantification of available hydrocarbons within a reservoir and is thus useful for hydrocarbon prospecting and reservoir management. An iterative seismic inversion scheme constrained by actual well log data which uses a time/depth dependent seismic source function is employed to derive impedance models from 3-D and 4-D seismic datasets. The impedance values can be region grown to better isolate the low impedance hydrocarbon bearing regions. Impedance data derived from multiple 3-D seismic surveys of the same volume can be compared to identify regions of dynamic evolution and bypassed pay. Effective Oil Saturation or net oil thickness can also be derived from the impedance data and used for quantitative assessment of prospective drilling targets and reservoir management.

  7. Analysis of ancient-river systems by 3D seismic time-slice technique: A case study in northeast Malay Basin, offshore Terengganu, Malaysia

    SciTech Connect (OSTI)

    Sulaiman, Noorzamzarina; Hamzah, Umar; Samsudin, Abdul Rahim

    2014-09-03

    Fluvial sandstones constitute one of the major clastic petroleum reservoir types in many sedimentary basins around the world. This study is based on the analysis of high-resolution, shallow (seabed to 500 m depth) 3D seismic data which generated three-dimensional (3D) time slices that provide exceptional imaging of the geometry, dimension and temporal and spatial distribution of fluvial channels. The study area is in the northeast of Malay Basin about 280 km to the east of Terengganu offshore. The Malay Basin comprises a thick (> 8 km), rift to post-rift Oligo-Miocene to Pliocene basin-fill. The youngest (Miocene to Pliocene), post-rift succession is dominated by a thick (1–5 km), cyclic succession of coastal plain and coastal deposits, which accumulated in a humid-tropical climatic setting. This study focuses on the Pleistocene to Recent (500 m thick) succession, which comprises a range of seismic facies analysis of the two-dimensional (2D) seismic sections, mainly reflecting changes in fluvial channel style and river architecture. The succession has been divided into four seismic units (Unit S1-S4), bounded by basin-wide strata surfaces. Two types of boundaries have been identified: 1) a boundary that is defined by a regionally-extensive erosion surface at the base of a prominent incised valley (S3 and S4); 2) a sequence boundary that is defined by more weakly-incised, straight and low-sinuosity channels which is interpreted as low-stand alluvial bypass channel systems (S1 and S2). Each unit displays a predictable vertical change of the channel pattern and scale, with wide low-sinuosity channels at the base passing gradationally upwards into narrow high-sinuosity channels at the top. The wide variation in channel style and size is interpreted to be controlled mainly by the sea-level fluctuations on the widely flat Sunda land Platform.

  8. A Revised Interpretation of 3D Seismic Data, Hawthorne Army Depot, Nevada: FaultedBasin Reflections or Sill Intrusions?

    E-Print Network [OSTI]

    of the Great Basin containing numerous extensional geothermal systems (Surpless, 2008; Oldow, 2003). A 3d to possible controlling structures within an extensional geothermal system. In areas of extensional geothermal systems, fluid flow is commonly controlled by faults and crustal thinning provides heat

  9. Advanced Reservoir Characterization and Development through High-Resolution 3C3D Seismic and Horizontal Drilling: Eva South Marrow Sand Unit, Texas County, Oklahoma

    SciTech Connect (OSTI)

    Wheeler,David M.; Miller, William A.; Wilson, Travis C.

    2002-03-11

    The Eva South Morrow Sand Unit is located in western Texas County, Oklahoma. The field produces from an upper Morrow sandstone, termed the Eva sandstone, deposited in a transgressive valley-fill sequence. The field is defined as a combination structural stratigraphic trap; the reservoir lies in a convex up -dip bend in the valley and is truncated on the west side by the Teepee Creek fault. Although the field has been a successful waterflood since 1993, reservoir heterogeneity and compartmentalization has impeded overall sweep efficiency. A 4.25 square mile high-resolution, three component three-dimensional (3C3D) seismic survey was acquired in order to improve reservoir characterization and pinpoint the optimal location of a new horizontal producing well, the ESU 13-H.

  10. Three-Dimensional Seismic Imaging of the Ryepatch Geothermal Reservoir

    E-Print Network [OSTI]

    Feighner, Mark A.

    2010-01-01

    potential process- ing of the proposed 3-D seismic surveyprocess and we would recommend this for future 3-D seismic

  11. Fracture Detection using Amplitude versus Offset and Azimuth Analysis of a 3D P-wave Seismic Dataset and Synthetic Examples

    E-Print Network [OSTI]

    Minsley, Burke J.

    2004-05-26

    Amplitude versus offset (AVO) analysis of seismic reflection data has been a successful tool in describing changes in rock properties along a reflector. This method is extended to azimuthal AVO (AVOA) in order to characterize ...

  12. Seismic fragility formulations for segmented buried pipeline systems including the impact of differential ground subsidence

    SciTech Connect (OSTI)

    Pineda Porras, Omar Andrey; Ordaz, Mario

    2009-01-01

    Though Differential Ground Subsidence (DGS) impacts the seismic response of segmented buried pipelines augmenting their vulnerability, fragility formulations to estimate repair rates under such condition are not available in the literature. Physical models to estimate pipeline seismic damage considering other cases of permanent ground subsidence (e.g. faulting, tectonic uplift, liquefaction, and landslides) have been extensively reported, not being the case of DGS. The refinement of the study of two important phenomena in Mexico City - the 1985 Michoacan earthquake scenario and the sinking of the city due to ground subsidence - has contributed to the analysis of the interrelation of pipeline damage, ground motion intensity, and DGS; from the analysis of the 48-inch pipeline network of the Mexico City's Water System, fragility formulations for segmented buried pipeline systems for two DGS levels are proposed. The novel parameter PGV{sup 2}/PGA, being PGV peak ground velocity and PGA peak ground acceleration, has been used as seismic parameter in these formulations, since it has shown better correlation to pipeline damage than PGV alone according to previous studies. By comparing the proposed fragilities, it is concluded that a change in the DGS level (from Low-Medium to High) could increase the pipeline repair rates (number of repairs per kilometer) by factors ranging from 1.3 to 2.0; being the higher the seismic intensity the lower the factor.

  13. Synthesis and Exploratory Catalysis of 3d Metals: Group-Transfer Reactions, and the Activation and Functionalization of Small Molecules Including Greenhouse Gases

    SciTech Connect (OSTI)

    Mindiola, Daniel J.

    2014-05-07

    Our work over the past three years has resulted in the development of electron rich and low-coordinate vanadium fragments, molecular nitrides of vanadium and parent imide systems of titanium, and the synthesis of phosphorus containing molecules of the 3d transition metal series. Likewise, with financial support from BES Division in DOE (DE-FG02-07ER15893), we now completed the full characterization of the first single molecular magnet (SMM) of Fe(III). We demonstrated that this monomeric form of Fe(III) has an unusual slow relaxation of the magnetization under zero applied field. To make matters more interesting, this system also undergoes a rare example of an intermediate to high-spin transition (an S = 3/2 to S = 5/2 transition). In 2010 we reported the synthesis of the first neutral and low-coordinate vanadium complexes having the terminal nitride functionality. We have now completed a full study to understand formation of the nitride ligand from the metastable azide precursor, and have also explored the reactivity of the nitride ligand in the context of incomplete and complete N-atom transfer. During the 2010-2013 period we also discovered a facile approach to assemble low-coordinate and low-valent vanadium(II) complexes and exploit their multielectron chemistry ranging from 1-3 electrons. Consequently, we can now access 3d ligand frameworks such as cyclo-P3 (and its corresponding radical anion), nitride radical anions and cations, low-coordinate vanadium oxo’s, and the first example of a vanadium thionitrosyl complex. A cis-divacant iron(IV) imido having some ligand centered radical has been also discovered, and we are in the process of elucidating its electronic structure (in particular the sign of zero field splitting and the origin of its magnitude), bonding and reactivity. We have also revisited some paramagnetic and classic metallocene compounds with S >1/2 ground states in order to understand their reactivity patterns and electronic structure. Lastly, we are completing the synthesis and characterization of a titanium nitride anion and formation of the first example of boryl and aluminyl imido titanium complexes.

  14. 3-D seismology in the Arabian Gulf

    SciTech Connect (OSTI)

    Al-Husseini, M. [Gulf PetroLink, Manama (Bahrain); Chimblo, R. [Saudi Aramco, Dhahran (Saudi Arabia)

    1995-08-01

    Since 1977 when Aramco and GSI (Geophysical Services International) pioneered the first 3-D seismic survey in the Arabian Gulf, under the guidance of Aramco`s Chief Geophysicist John Hoke, 3-D seismology has been effectively used to map many complex subsurface geological phenomena. By the mid-1990s extensive 3-D surveys were acquired in Abu Dhabi, Oman, Qatar and Saudi Arabia. Also in the mid-1990`s Bahrain, Kuwait and Dubai were preparing to record surveys over their fields. On the structural side 3-D has refined seismic maps, focused faults and fractures systems, as well as outlined the distribution of facies, porosity and fluid saturation. In field development, 3D has not only reduced drilling costs significantly, but has also improved the understanding of fluid behavior in the reservoir. In Oman, Petroleum Development Oman (PDO) has now acquired the first Gulf 4-D seismic survey (time-lapse 3D survey) over the Yibal Field. The 4-D survey will allow PDO to directly monitor water encroachment in the highly-faulted Cretaceous Shu`aiba reservoir. In exploration, 3-D seismology has resolved complex prospects with structural and stratigraphic complications and reduced the risk in the selection of drilling locations. The many case studies from Saudi Arabia, Oman, Qatar and the United Arab Emirates, which are reviewed in this paper, attest to the effectiveness of 3D seismology in exploration and producing, in clastics and carbonates reservoirs, and in the Mesozoic and Paleozoic.

  15. 3-D seismic surveys generate 5-D data volume. In order to estimate the horizons for interpretation and further processing, the traveltime picking needs to be performed on n-D subsets of this 5-D data volume (n5). Horizon

    E-Print Network [OSTI]

    Nicoli, Monica

    Abstract 3-D seismic surveys generate 5-D data volume. In order to estimate the horizons for interpretation and further processing, the traveltime picking needs to be performed on n-D subsets of this 5-D to support the interpreters in the estimation of the events by preserving their depth continuity. The HP

  16. A single channel and point bar deposit are examined in the subsurface of northeastern Alberta from the Lower Cretaceous McMurray Formation. High-quality 3-D seismic, core and wireline log data were used in order to constrain the stratigraphic

    E-Print Network [OSTI]

    Alberta from the Lower Cretaceous McMurray Formation. High-quality 3-D seismic, core and wireline log data storm events or episodes of meander-bend rotation. RÉSUMÉ Dans le Nord- Est de l'Alberta, un chenal d and stratigraphic architecture of a point bar deposit, Lower Cretaceous McMurray Formation, Alberta, Canada PHILLIP

  17. 3D NUCLEAR SEGMENTAT

    Energy Science and Technology Software Center (OSTI)

    003029WKSTN00 Delineation of nuclear structures in 3D multicellular systems  https://vision.lbl.gov/Software/3DMorphometry/ 

  18. F3D

    Energy Science and Technology Software Center (OSTI)

    003188MLTPL00 F3D Image Processing and Analysis for Many - and Multi-core Platforms  http://camera.lbl.gov/software 

  19. Seismic Modelling for the Sub-Basalt Imaging Problem Including an Analysis and Development of the Boundary Element Method 

    E-Print Network [OSTI]

    Dobson, Andrew

    The north-east Atlantic margin (NEAM) is important for hydrocarbon exploration because of the growing evidence of hydrocarbon reserves in the region. However, seismic exploration of the sub-surface is hampered by large ...

  20. 3D Printing Electronics

    E-Print Network [OSTI]

    Stryk, Oskar von

    the top six were granted further funding by DARPA and were also given an ATLAS robot to continue is the connectivity. Here in the US everyone assumes high ... Boeing Utilizing Sigma Labs (SGLB) "PrintRite3D" System for 3D Printing · -- B6 Sigma Labs (ticker SGLB) is not the same company as Sigma Technologies

  1. Graphene's 3D Counterpart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    08:59 ALS researchers have discovered a material that is essentially a 3D version of graphene-the 2D sheets of carbon through which electrons race at many times the speed at which...

  2. Azimuthally Anisotropic 3D Velocity Continuation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Burnett, William; Fomel, Sergey

    2011-01-01

    We extend time-domain velocity continuation to the zero-offset 3D azimuthally anisotropic case. Velocity continuation describes how a seismic image changes given a change in migration velocity. This description turns out to be of a wave propagation process, in which images change along a velocity axis. In the anisotropic case, the velocity model is multiparameter. Therefore, anisotropic image propagation is multidimensional. We use a three-parameter slowness model, which is related to azimuthal variations in velocity, as well as their principal directions. This information is useful for fracture and reservoir characterization from seismic data. We provide synthetic diffraction imaging examples to illustratemore »the concept and potential applications of azimuthal velocity continuation and to analyze the impulse response of the 3D velocity continuation operator.« less

  3. RELAP5-3D User Problems

    SciTech Connect (OSTI)

    Riemke, Richard Allan

    2002-09-01

    The Reactor Excursion and Leak Analysis Program with 3D capability1 (RELAP5-3D) is a reactor system analysis code that has been developed at the Idaho National Engineering and Environmental Laboratory (INEEL) for the U. S. Department of Energy (DOE). The 3D capability in RELAP5-3D includes 3D hydrodynamics2 and 3D neutron kinetics3,4. Assessment, verification, and validation of the 3D capability in RELAP5-3D is discussed in the literature5,6,7,8,9,10. Additional assessment, verification, and validation of the 3D capability of RELAP5-3D will be presented in other papers in this users seminar. As with any software, user problems occur. User problems usually fall into the categories of input processing failure, code execution failure, restart/renodalization failure, unphysical result, and installation. This presentation will discuss some of the more generic user problems that have been reported on RELAP5-3D as well as their resolution.

  4. Numerical modeling of time-lapse seismic data from fractured reservoirs including fluid flow and geochemical processes 

    E-Print Network [OSTI]

    Shekhar, Ravi

    2009-05-15

    and amplitude variation with offset (AVO) results for our example model predicts that CO2 is easier to detect than brine in the fractured reservoirs. The effects of geochemical processes on seismics are simulated by time-lapse modeling for t = 1000 years. My...

  5. Subsurface imaging with reverse vertical seismic profiles

    E-Print Network [OSTI]

    Krasovec, Mary L. (Mary Lee), 1972-

    2001-01-01

    This thesis presents imaging results from a 3D reverse vertical seismic profile (RVSP) dataset measured at a hydrocarbon bearing pinnacle reef in northern Michigan. The study presented many challenges in seismic data ...

  6. Theory of traveltime shifts around compacting reservoirs: 3D solutions for heterogeneous anisotropic media

    E-Print Network [OSTI]

    Tsvankin, Ilya

    Theory of traveltime shifts around compacting reservoirs: 3D solutions for heterogeneous and cannot be applied to traveltime shifts measured on prestack seismic data. We give an analytic 3D of traveltimes that accounts not only for the velocity changes but also for 3D deformation of reflectors

  7. INTEGRATED APPROACH FOR THE PETROPHYSICAL INTERPRETATION OF POST- AND PRE-STACK 3-D SEISMIC DATA, WELL-LOG DATA, CORE DATA, GEOLOGICAL INFORMATION AND RESERVOIR PRODUCTION DATA VIA BAYESIAN STOCHASTIC INVERSION

    SciTech Connect (OSTI)

    Carlos Torres-Verdin; Mrinal K. Sen

    2004-03-01

    The present report summarizes the work carried out between September 30, 2002 and August 30, 2003 under DOE research contract No. DE-FC26-00BC15305. During the third year of work for this project we focused primarily on improving the efficiency of inversion algorithms and on developing algorithms for direct estimation of petrophysical parameters. The full waveform inversion algorithm for elastic property estimation was tested rigorously on a personal computer cluster. For sixteen nodes on the cluster the parallel algorithm was found to be scalable with a near linear speedup. This enabled us to invert a 2D seismic line in less than five hours of CPU time. We were invited to write a paper on our results that was subsequently accepted for publication. We also carried out a rigorous study to examine the sensitivity and resolution of seismic data to petrophysical parameters. In other words, we developed a full waveform inversion algorithm that estimates petrophysical parameters such as porosity and saturation from pre-stack seismic waveform data. First we used a modified Biot-Gassmann equation to relate petrophysical parameters to elastic parameters. The transformation was validated with a suite of well logs acquired in the deepwater Gulf of Mexico. As a part of this study, we carried out a sensitivity analysis and found that the porosity is very well resolved while the fluid saturation remains insensitive to seismic wave amplitudes. Finally we conducted a joint inversion of pre-stack seismic waveform and production history data. To overcome the computational difficulties we used a simpler waveform modeling algorithm together with an efficient subspace approach. The algorithm was tested on a realistic synthetic data set. We observed that the use of pre-stack seismic data helps tremendously to improve horizontal resolution of porosity maps. Finally, we submitted four publications to refereed technical journals, two refereed extended abstracts to technical conferences, and delivered two oral presentation at a technical forum. All of these publications and presentations stemmed from work directly related to the goals of our DOE project.

  8. Fabrication of 3D Silicon Sensors

    SciTech Connect (OSTI)

    Kok, A.; Hansen, T.E.; Hansen, T.A.; Lietaer, N.; Summanwar, A.; Kenney, C.; Hasi, J.; Da Via, C.; Parker, S.I.; /Hawaii U.

    2012-06-06

    Silicon sensors with a three-dimensional (3-D) architecture, in which the n and p electrodes penetrate through the entire substrate, have many advantages over planar silicon sensors including radiation hardness, fast time response, active edge and dual readout capabilities. The fabrication of 3D sensors is however rather complex. In recent years, there have been worldwide activities on 3D fabrication. SINTEF in collaboration with Stanford Nanofabrication Facility have successfully fabricated the original (single sided double column type) 3D detectors in two prototype runs and the third run is now on-going. This paper reports the status of this fabrication work and the resulted yield. The work of other groups such as the development of double sided 3D detectors is also briefly reported.

  9. Graphene's 3D Counterpart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFESOpportunitiesNERSC GettingGraphene's 3D Counterpart Print ALS

  10. Graphene's 3D Counterpart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-Dose Low LETUsefulJorgeAtlDayGraphene's 3D Counterpart Print

  11. Graphene's 3D Counterpart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-Dose Low LETUsefulJorgeAtlDayGraphene's 3D Counterpart

  12. Graphene's 3D Counterpart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-Dose Low LETUsefulJorgeAtlDayGraphene's 3D

  13. Graphene's 3D Counterpart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-Dose Low LETUsefulJorgeAtlDayGraphene's 3DGraphene's 3D

  14. Idea Generation 3D printing

    E-Print Network [OSTI]

    Stylianou, Yannis

    2012 Idea Generation 3D printing at nanoscale Cruising on electrical roads Pushing back against Centre micro and nanoscale 15 Taking 3D printing to the nanoscale 18 Fighting cancer with a "lab

  15. Integration of geostatistical techniques and intuitive geology in the 3-D modeling process

    SciTech Connect (OSTI)

    Heine, C.J.; Cooper, D.H. (Saudi ARAMCO, Dhahran (Saudi Arabia))

    1996-01-01

    The development of 3-D geologic models for reservoir description and simulation has traditionally relied on the computer derived interpolation of well data in a geocelluar stratigraphic framework. The quality of the interpolation has been directly dependent on the nature of the interpolation method, and ability of the Interpolation scheme to accurately predict the value of geologic attributes away from the well. Typically, interpolation methods employ deterministic or geostatistical algorithms which offer limited capacity for Integrating data derived from secondary analyses. These secondary analyses, which might include the results from 3-D seismic inversion, borehole imagery studies, or deductive reasoning, introduce a subjective component into what would otherwise be restricted to a purely mathematical treatment of geologic data. At Saudi ARAMCO an increased emphases is being placed on the role of the reservoir geologist in the development of 3-D geologic models. Quantitative results, based on numerical computations, are being enhanced with intuitive geology, derived from years of cumulative professional experience and expertise. Techniques such as template modeling and modified conditional simulation, are yielding 3-D geologic models, which not only more accurately reflect the geology of the reservoir, but also preserve geologic detail throughout the simulation process. This incorporation of secondary data sources and qualitative analysis has been successfully demonstrated in a clastic reservoir environment in Central Saudi Arabia, and serves as a prototype for future 3-D geologic model development.

  16. Integration of geostatistical techniques and intuitive geology in the 3-D modeling process

    SciTech Connect (OSTI)

    Heine, C.J.; Cooper, D.H. [Saudi ARAMCO, Dhahran (Saudi Arabia)

    1995-08-01

    The development of 3-D geologic models for reservoir description and simulation has traditionally relied on the computer derived interpolation of well data in a geocelluar stratigraphic framework. The quality of the interpolation has been directly dependent on the nature of the interpolation method, and ability of the interpolation scheme to accurately predict the value of geologic attributes away from the well. Typically, interpolation methods employ deterministic or geostatistical algorithms which offer limited capacity for integrating data derived from secondary analyses. These secondary analyses, which might include the results from 3-D seismic inversion, borehole imagery studies, or deductive reasoning, introduce a subjective component into what would otherwise be restricted to a purely mathematical treatment of geologic data. At Saudi ARAMCO an increased emphasis is being placed on the role of the reservoir geologist in the development of 3-D geologic models. Quantitative results, based on numerical computations, are being enhanced with intuitive geology, derived from years of cumulative professional experience and expertise. Techniques such as template modeling and modified conditional simulation, are yielding 3-D geologic models, which not only more accurately reflect the geology of the reservoir, but also preserve geologic detail throughout the simulation process. This incorporation of secondary data sources and qualitative analysis has been successfully demonstrated in a clastic reservoir environment in Central Saudi Arabia, and serves as a prototype for future 3-D geologic model development.

  17. Integration of geostatistical techniques and intuitive geology in the 3-D modeling process

    SciTech Connect (OSTI)

    Heine, C.J.; Cooper, D.H. [Saudi ARAMCO, Dhahran (Saudi Arabia)

    1996-12-31

    The development of 3-D geologic models for reservoir description and simulation has traditionally relied on the computer derived interpolation of well data in a geocelluar stratigraphic framework. The quality of the interpolation has been directly dependent on the nature of the interpolation method, and ability of the Interpolation scheme to accurately predict the value of geologic attributes away from the well. Typically, interpolation methods employ deterministic or geostatistical algorithms which offer limited capacity for Integrating data derived from secondary analyses. These secondary analyses, which might include the results from 3-D seismic inversion, borehole imagery studies, or deductive reasoning, introduce a subjective component into what would otherwise be restricted to a purely mathematical treatment of geologic data. At Saudi ARAMCO an increased emphases is being placed on the role of the reservoir geologist in the development of 3-D geologic models. Quantitative results, based on numerical computations, are being enhanced with intuitive geology, derived from years of cumulative professional experience and expertise. Techniques such as template modeling and modified conditional simulation, are yielding 3-D geologic models, which not only more accurately reflect the geology of the reservoir, but also preserve geologic detail throughout the simulation process. This incorporation of secondary data sources and qualitative analysis has been successfully demonstrated in a clastic reservoir environment in Central Saudi Arabia, and serves as a prototype for future 3-D geologic model development.

  18. Taming Supersymmetric Defects in 3d-3d Correspondence

    E-Print Network [OSTI]

    Gang, Dongmin; Romo, Mauricio; Yamazaki, Masahito

    2015-01-01

    We study knots in 3d Chern-Simons theory with complex gauge group $SL(N,\\mathbb{C})$, in the context of its relation with 3d $\\mathcal{N}=2$ theory (the so-called 3d-3d correspondence). The defect has either co-dimension 2 or co-dimension 4 inside the 6d $(2,0)$ theory, which is compactified on a 3-manifold $\\hat{M}$. We identify such defects in various corners of the 3d-3d correspondence, namely in 3d $SL(N,\\mathbb{C})$ Chern-Simons theory, in 3d $\\mathcal{N}=2$ theory, in 5d $\\mathcal{N}=2$ super Yang-Mills theory, and in the M-theory holographic dual. We can make quantitative checks of the 3d-3d correspondence by computing partition functions at each of these theories. This Letter is a companion to a longer paper, which contains more details and more results.

  19. 3D Computer Vision and Video Computing 3D Vision3D Vision

    E-Print Network [OSTI]

    Zhu, Zhigang

    and right projections of P, respectively. #12;6 3D Computer Vision and Video Computing A Simple Stereo length Optical Center Or pr(xr,yr) RIGHT CAMERA #12;7 3D Computer Vision and Video Computing Disparity vs = Baseline f = focal length Optical Center Or pr(xr,yr) RIGHT CAMERA 3D Computer Vision and Video Computing

  20. Lake Geneva Holocene delta seismic stratigraphy S11 High-resolution seismic stratigraphy of an Holocene lacustrine delta in

    E-Print Network [OSTI]

    Gilli, Adrian

    Lake Geneva Holocene delta seismic stratigraphy S11 High-resolution seismic stratigraphy stratigraphy, slope instability, gas blanking, 3-D model. Mots-clés: delta lacustre, Lac Léman, Holocène, stratigraphie sismique, instabilité de pente, zone sourde, modèle 3-D. ABSTRACT A high-resolution seismic survey

  1. SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW

    E-Print Network [OSTI]

    Santos, Juan

    SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW J. E. Santos1, G. B. Savioli2, J. M. Carcione3, D´e, Argentina SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW ­ p. #12;Introduction. I Storage of CO2). SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW ­ p. #12;Introduction. II CO2 is separated from natural

  2. 3D World Building System

    ScienceCinema (OSTI)

    None

    2014-02-26

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  3. 3D Tissue Scaffolds BIOMATERIALS

    E-Print Network [OSTI]

    3D Tissue Scaffolds BIOMATERIALS Our goal is to develop measurement tools and reference materials006497-01) in collaboration with the New Jersey Center for Biomaterials (RESBIO P41 EB 001046). · We have-material interactions have focused on planar (2D) surfaces or films. However, biomaterials are commonly used in 3D

  4. Seismic Imaging of Receiver Ghosts of Primaries Instead of Primaries Themselves 

    E-Print Network [OSTI]

    Ma, Nan

    2010-10-12

    . They are (1) the requirement of acquiring very large 3D datasets which are beyond the capability of current seismic acquisition technology, and (2) the requirement of acquiring near-offset (including zero-offset) data. The method developed in this thesis can...

  5. Ames Lab 101: 3D Metals Printer

    SciTech Connect (OSTI)

    Ott, Ryan

    2014-02-13

    To meet one of the biggest energy challenges of the 21st century - finding alternatives to rare-earth elements and other critical materials - scientists will need new and advanced tools. The Critical Materials Institute at the U.S. Department of Energy's Ames Laboratory has a new one: a 3D printer for metals research. 3D printing technology, which has captured the imagination of both industry and consumers, enables ideas to move quickly from the initial design phase to final form using materials including polymers, ceramics, paper and even food. But the Critical Materials Institute (CMI) will apply the advantages of the 3D printing process in a unique way: for materials discovery.

  6. Ames Lab 101: 3D Metals Printer

    ScienceCinema (OSTI)

    Ott, Ryan

    2014-06-04

    To meet one of the biggest energy challenges of the 21st century - finding alternatives to rare-earth elements and other critical materials - scientists will need new and advanced tools. The Critical Materials Institute at the U.S. Department of Energy's Ames Laboratory has a new one: a 3D printer for metals research. 3D printing technology, which has captured the imagination of both industry and consumers, enables ideas to move quickly from the initial design phase to final form using materials including polymers, ceramics, paper and even food. But the Critical Materials Institute (CMI) will apply the advantages of the 3D printing process in a unique way: for materials discovery.

  7. GRAPHICS PROGRAMMING SECTION D -JAVA 3D

    E-Print Network [OSTI]

    Hill, Gary

    GRAPHICS PROGRAMMING SECTION D - JAVA 3D 1SECTION D - GRAPHICS 3-D........................................................................................... 2 30 Graphics 3D: Introduction to Java 3D........................................................................................ 78 ©Gary Hill September 2004 Java 3-D 1 of 13 #12;GRAPHICS PROGRAMMING SECTION D - GRAPHICS 3-D 30

  8. Imaging atoms in 3-D

    ScienceCinema (OSTI)

    Ercius, Peter

    2014-06-27

    Berkeley Lab's Peter Ercius discusses "Imaging atoms in 3-D" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas

  9. Imaging atoms in 3-D

    SciTech Connect (OSTI)

    Ercius, Peter

    2013-10-31

    Berkeley Lab's Peter Ercius discusses "Imaging atoms in 3-D" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas

  10. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect (OSTI)

    Joel Walls; M.T. Taner; Naum Derzhi; Gary Mavko; Jack Dvorkin

    2003-04-01

    In this report we will show results of seismic and well log derived attenuation attributes from a deep water Gulf of Mexico data set. This data was contributed by Burlington Resources and Seitel Inc. The data consists of ten square kilometers of 3D seismic data and three well penetrations. We have computed anomalous seismic absorption attributes on the seismic data and have computed Q from the well log curves. The results show a good correlation between the anomalous absorption (attenuation) attributes and the presence of gas as indicated by well logs.

  11. Seismic modelling of a fractured carbonate reservoir in Abu Dhabi, United Arab Emirates

    E-Print Network [OSTI]

    Ali, Mohammed

    Seismic modelling of a fractured carbonate reservoir in Abu Dhabi, United Arab Emirates Mohammed Y is required to optimize hydrocarbon production. A rock containing parallel fractures can be seismically to the seismic wavelength. Seismic anisotropy may be detectable from attributes of pre-stack 3-D seismic data

  12. 3-D Seismic Methods For Geothermal Reservoir Exploration And

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo NewYanbu, Saudideveloperft

  13. Idea Generation 3D printing

    E-Print Network [OSTI]

    Papadopouli, Maria

    is a national research centre focused on smart electrical grid and energy storage technology, which Centre micro and nanoscale 15 Taking 3D printing to the nanoscale 18 Fighting cancer with a "lab of wireless speeds 24 Winners of erc grants electrical transportation 25 The power of electrical roads 27

  14. Characterization of 3D Photovoltaics

    E-Print Network [OSTI]

    Characterization of 3D Photovoltaics SEMICONDUCTORS Our goal is to provide industry with test structures and models of next-generation photovoltaics, with an initial focus on cadmium telluride (Cd (nanostructured) photovoltaic devices. Objective Impact and Customers · The U.S. Photovoltaic Industry Roadmap

  15. Seismic metamaterials based on isochronous mechanical oscillators

    SciTech Connect (OSTI)

    Finocchio, G., E-mail: gfinocchio@unime.it; Garescì, F.; Azzerboni, B. [Department of Electronic Engineering, Industrial Chemistry and Engineering, University of Messina, C.da di Dio, I-98166 Messina (Italy); Casablanca, O.; Chiappini, M. [Istituto Nazionale di Geofisica e Vulcanologia (INGV), Via Vigna Murata 605, 00143 Roma (Italy); Ricciardi, G. [Department of Civil, Informatic, Architectural, and Environmental Engineering and Applied Mathematics, C.da di Dio, I-98166 Messina (Italy); Alibrandi, U. [Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576 (Singapore)

    2014-05-12

    This Letter introduces a seismic metamaterial (SM) composed by a chain of mass-in-mass system able to filter the S-waves of an earthquake. We included the effect of the SM into the mono dimensional model for the soil response analysis. The SM modifies the soil behavior and in presence of an internal damping the amplitude of the soil amplification function is reduced also in a region near the resonance frequency. This SM can be realized by a continuous structure with inside a 3d-matrix of isochronous oscillators based on a sphere rolling over a cycloidal trajectory.

  16. Spheree: A 3D Perspective-Corrected Interactive Spherical Scalable Display Ferreira, F.q

    E-Print Network [OSTI]

    British Columbia, University of

    models can be exported or printed on a 3D printer. Other related 3D displays include: 1. pCubee [StavnessSpheree: A 3D Perspective-Corrected Interactive Spherical Scalable Display Ferreira, F.q , Cabral & U of British Columbia (a) (b) (c) (d) Figure 1: (a) A snowglobe; (b) a fish-tank animation; (c) a 3D

  17. PoroTomo_Subtask_3.1_MeqRelocations_3D_VelocityModels_30Jun2015

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    William Foxall

    2015-06-30

    Hypocenters of local microearthquakes and 3D P- and S-velocity models computed by simultaneous inversion of arrival times recorded by the Brady seismic network Nov 2010-Mar 2015.

  18. PoroTomo_Subtask_3.1_MeqRelocations_3D_VelocityModels_30Jun2015

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    William Foxall

    Hypocenters of local microearthquakes and 3D P- and S-velocity models computed by simultaneous inversion of arrival times recorded by the Brady seismic network Nov 2010-Mar 2015.

  19. SciTech Connect: "3d printing"

    Office of Scientific and Technical Information (OSTI)

    3d printing" Find + Advanced Search Term Search Semantic Search Advanced Search All Fields: "3d printing" Semantic Semantic Term Title: Full Text: Bibliographic Data: Creator ...

  20. Reducing the Dimensionality of Geophysical Data in Conjunction with Seismic History Matching

    E-Print Network [OSTI]

    Eidsvik, Jo

    dimensional geophysical data, e.g. 2-D seismic images or 3-D seismic cubes, can often be described using only by geophysical observations and the complexity of working with 3D fields make the updating procedure hard. We are tested on a reservoir model of an anonymous North Sea oil field, using the seismic time shift, i

  1. Source-independent full waveform inversion of seismic data

    DOE Patents [OSTI]

    Lee, Ki Ha

    2006-02-14

    A set of seismic trace data is collected in an input data set that is first Fourier transformed in its entirety into the frequency domain. A normalized wavefield is obtained for each trace of the input data set in the frequency domain. Normalization is done with respect to the frequency response of a reference trace selected from the set of seismic trace data. The normalized wavefield is source independent, complex, and dimensionless. The normalized wavefield is shown to be uniquely defined as the normalized impulse response, provided that a certain condition is met for the source. This property allows construction of the inversion algorithm disclosed herein, without any source or source coupling information. The algorithm minimizes the error between data normalized wavefield and the model normalized wavefield. The methodology is applicable to any 3-D seismic problem, and damping may be easily included in the process.

  2. The Seismic Analyzer: Interpreting and Illustrating 2D Seismic Data Daniel Patel, Christopher Giertsen, John Thurmond, John Gjelberg, and M. Eduard Groller, Member, IEEE

    E-Print Network [OSTI]

    signs of hydrocarbons is discovered, 3D seismic reflection data is collected and analyzed. If further reservoirs. We improve the search of seismic structures by precalculating the horizon structures and interpreters. Index Terms--Seismic interpretation, Illustrative rendering, Seismic attributes, Top

  3. Image structure analysis for seismic interpretation Proefschrift

    E-Print Network [OSTI]

    van Vliet, Lucas J.

    Image structure analysis for seismic interpretation Proefschrift ter verkrijging van de graad van . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Traditional interpretation of 3-D seismic data . . . . . . . . . . . . . . . . 2 1.2 Improving the efficiency of the interpretation process . . . . . . . . . . . . 4 1.2.1 Structure enhancement for horizon

  4. Infrastructure for 3D model reconstruction of marine structures

    E-Print Network [OSTI]

    Kurniawati, Hanna

    2011-01-01

    3D model reconstruction of marine structures, such as dams, oil-rigs, and sea caves, is both important and challenging. An important application includes structural inspection. Manual inspection of marine structures is ...

  5. Seismic characterization of fractures Jos M. Carcione, OGS, Italy

    E-Print Network [OSTI]

    Santos, Juan

    Seismic characterization of fractures José M. Carcione, OGS, Italy Fractured geological formations is related to the orientation of the symmetry axis with respect to the direction of the seismic profile. We) generalized to the 3D case will be performed to compute surface seismic and VSP responses (Bakulin et al, 2000

  6. Seismic signatures of the Lodgepole fractured reservoir in Utah-Wyoming overthrust belt

    SciTech Connect (OSTI)

    Parra, J.; Collier, H.; Angstman, B.

    1997-08-01

    In low porosity, low permeability zones, natural fractures are the primary source of permeability which affect both production and injection of fluids. The open fractures do not contribute much to porosity, but they provide an increased drainage network to any porosity. An important approach to characterizing the fracture orientation and fracture permeability of reservoir formations is one based upon the effects of such conditions on the propagation of acoustic and seismic waves in the rock. We present the feasibility of using seismic measurement techniques to map the fracture zones between wells spaced 2400 ft at depths of about 1000 ft. For this purpose we constructed computer models (which include azimuthal anisotropy) using Lodgepole reservoir parameters to predict seismic signatures recorded at the borehole scale, crosswell scale, and 3 D seismic scale. We have integrated well logs with existing 2D surfaces seismic to produce petrophysical and geological cross sections to determine the reservoir parameters and geometry for the computer models. In particular, the model responses are used to evaluate if surface seismic and crosswell seismic measurements can capture the anisotropy due to vertical fractures. Preliminary results suggested that seismic waves transmitted between two wells will propagate in carbonate fracture reservoirs, and the signal can be received above the noise level at the distance of 2400 ft. In addition, the large velocities contrast between the main fracture zone and the underlying unfractured Boundary Ridge Member, suggested that borehole reflection imaging may be appropriate to map and fracture zone thickness variation and fracture distributions in the reservoir.

  7. 3D interactive pictorial maps 

    E-Print Network [OSTI]

    Naz, Asma

    2005-02-17

    will be used for data representation. I created the map of the United States of America and Europe. I displayed and compared the population density, and political stature of the states or countries by changing the color or heights of the 3D models of different... of height of models. The shades or patterns that represent each data must be clearly identifiable, not only on the legend, where the category boxes are ordered, but also on the map, where there is no predetermined order. If the shades are too similar...

  8. 3D Structures of Biomolecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-InspiredAtmosphericdevicesPPONeApril351 Substation Demolition --3D Printed3DJohn

  9. Seismic Imaging and Monitoring

    SciTech Connect (OSTI)

    Huang, Lianjie

    2012-07-09

    I give an overview of LANL's capability in seismic imaging and monitoring. I present some seismic imaging and monitoring results, including imaging of complex structures, subsalt imaging of Gulf of Mexico, fault/fracture zone imaging for geothermal exploration at the Jemez pueblo, time-lapse imaging of a walkway vertical seismic profiling data for monitoring CO{sub 2} inject at SACROC, and microseismic event locations for monitoring CO{sub 2} injection at Aneth. These examples demonstrate LANL's high-resolution and high-fidelity seismic imaging and monitoring capabilities.

  10. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect (OSTI)

    Joel Walls; M.T. Taner; Naum Derzhi; Gary Mavko; Jack Dvorkin

    2002-10-01

    RSI has access to two synthetic seismic programs: Osiris seismic modeling system provided by Odegaard (Osiris) and synthetic seismic program, developed by SRB, implementing the Kennett method for normal incidence. Achieving virtually identical synthetic seismic traces from these different programs serves as cross-validation for both. The subsequent experiments have been performed with the Kennett normal incidence code because: We have access to the source code, which allowed us to easily control computational parameters and integrate the synthetics computations with our graphical and I/O systems. This code allows to perform computations and displays on a PC in MatLab or Octave environment, which is faster and more convenient. The normal incidence model allows us to exclude from the synthetic traces some of the physical effects that take place in 3-D models (like inhomogeneous waves) but have no relevance to the topic of our investigation, which is attenuation effects on seismic reflection and transmission.

  11. Revised 1/19/06 Reflection Seismic Data Interpretation -GEY 772/772L Spring 2006

    E-Print Network [OSTI]

    Ahmad, Sajjad

    Revised 1/19/06 Reflection Seismic Data Interpretation - GEY 772/772L ­ Spring 2006 Room TEC 104 Processing, Yilmaz; and Practical Seismic Interpretation, Badley; A Lab Manual of Seismic Reflection the fundamentals of geologic interpretation of 2D and 3D reflection seismic data. The class provides hands

  12. CRYPTANALYSIS ASPECTS IN 3-D WATERMARKING V. Itier1,3

    E-Print Network [OSTI]

    Bors, Adrian

    by the expansion of new multimedia technolo- gies such as the 3-D printing. In the development of crypto- security. INTRODUCTION Because of the expansion of new technologies including mo- bile multimedia and 3-D printing

  13. A HIERARCHICAL STATISTICAL MODELING APPROACH FOR THE UNSUPERVISED 3D RECONSTRUCTION OF THE SCOLIOTIC SPINE

    E-Print Network [OSTI]

    Mignotte, Max

    . INTRODUCTION Scoliosis is a 3D deformation of the natural curve of the spinal column, including rotations and vertebral deformations. To ana­ lyze the 3D characteristics of these deformations, which can be useful

  14. Part removal of 3D printed parts

    E-Print Network [OSTI]

    Peña Doll, Mateo

    2014-01-01

    An experimental study was performed to understand the correlation between printing parameters in the FDM 3D printing process, and the force required to remove a part from the build platform of a 3D printing using a patent ...

  15. The Makerbot: Desktop 3D printing

    E-Print Network [OSTI]

    Roughan, Matthew

    The Makerbot: Desktop 3D printing Matthew Roughan School of Mathematical Sciences matthew is Lots of maths hidden in something like 3D printing Geometry and Linear algebra ++ Same math used

  16. A view-sequential 3D display

    E-Print Network [OSTI]

    Cossairt, Oliver S. (Oliver Strider), 1978-

    2003-01-01

    This thesis outlines the various techniques for creating electronic 3D displays and analyzes their commercial potential. The thesis argues for the use of view-sequential techniques in the design of 3D displays based on ...

  17. 3D Printing Prof. Hank Dietz

    E-Print Network [OSTI]

    Dietz, Henry G. "Hank"

    #12;Our 3D Printer It's a MakerGear M2, cost about $1700 We extrude 1.75mm diameter PLA filament3D Printing Prof. Hank Dietz TCMS, March 14, 2014 University of Kentucky Electrical & Computer/Craft: paper moves in Y, knife in X EDM/Laser: X/Y bed, vaporizes material #12;Subtractive 3D CNC: Computer

  18. Travel{time calculation in heterogeneous 3-D structures * Lud ek Klime s

    E-Print Network [OSTI]

    Cerveny, Vlastislav

    Travel{time calculation in heterogeneous 3-D structures * Lud#20;ek Klime#20;s Department-mail: psencik@earn.cvut.cz Summary The selection of the numerical method to calculate travel times depends on the nature of the travel times, on the complexity and computer representation of the seismic model

  19. Geosciences: Integrated Analysis for Development of 3D Models of Earth

    E-Print Network [OSTI]

    Ward, Karen

    Geosciences: Integrated Analysis for Development of 3D Models of Earth Structure PI: Aaron A Potrillo Seismic Experiment Gravity and Magnetics #12; Joint inversion of several datasets allows Employ optimization schemes to improve current methods Single inversion dataset #2 Improved model

  20. Seismic properties of a Venezuelan heavy oil in water emulsion

    SciTech Connect (OSTI)

    Maldonado, F.; Liu, Y.; Mavko, G.; Mukerji, T. [Stanford Univ., CA (United States)

    1996-08-01

    Several procedures for the production of low-viscosity, surfactant-stabilized, easy-transportable dispersions of heavy crude oil in water-briefly, oil in water (or o/w) emulsions - have been recently patented. Some of them propose to form the o/w emulsion in the reservoir, after the injection of a mixture of water and surfactants, increasing significantly the per well daily production. Progression of the o/w emulsion front, through the reservoir to the production wells, can be monitored in seismic planar slices with successive 3D seismic surveys (413 seismic), if enough contrast exists between the seismic velocity value of the o/w emulsion and the one of the oil in place. To facilitate the analysis of the contrast, this study presents high frequency acoustic velocity measurements performed in the laboratory. The experimental setup includes two reflectors and an ultrasonic transducer with double burst train emission. The estimated velocity precision is 0.02%. The measured samples are: a Venezuelan heavy o/w emulsion, a mixture of the same heavy oil and gasoil and a saturated sandstone core containing the o/w emulsion. Additionally, seismic velocities of the actual pore fluids - live oil and five o/w emulsion - and saturated sandstone are calculated using the above laboratory measurements, Wood`s equation, and Gassman`s and Biot`s models.

  1. Printing 3D Models to the Genisys Xs 3D Printer By Sotiri Koyonos

    E-Print Network [OSTI]

    Illinois at Urbana-Champaign, University of

    Printing 3D Models to the Genisys Xs 3D Printer By Sotiri Koyonos VMIL Consultant 28 February 2003's Genisys Xs 3D printer. This document assumes that you have created a stereo lithography file (*.stl Abstract This document outlines the process for manufacturing three dimensional (3D) models on the ITG

  2. 3D Site Response using NLSSI

    Broader source: Energy.gov [DOE]

    3D Site Response using NLSSI Justin Coleman, P.E. Bob Spears Nuclear Science and Technology Idaho National Laboratory October 22, 2014

  3. Advanced 3D Geophysical Imaging Technologies for Geothermal Resource...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D...

  4. 3, 35433588, 2003 3-D air pollution

    E-Print Network [OSTI]

    Boyer, Edmond

    ACPD 3, 3543­3588, 2003 3-D air pollution modelling L. M. Frohn et al. Title Page Abstract hemispheric nested air pollution model L. M. Frohn, J. H. Christensen, J. Brandt, C. Geels, and K. M. Hansen 2003 Correspondence to: L. M. Frohn (lmf@dmu.dk) 3543 #12;ACPD 3, 3543­3588, 2003 3-D air pollution

  5. Over the past 10 years, there has been a consistent increase in using 3D P-wave data to characterize fractures, which is

    E-Print Network [OSTI]

    Edinburgh, University of

    of otherwise low permeability. Here, we pre- sent a case study of fracture detection using 3D P-wave seismic the narrow-azimuth stack- ing method is applicable to the velocity and AVO gradient attributes. Study area-wave seismic attributes, such as traveltime, stacking velocity, reflected wave amplitudes, impedance, etc. can

  6. Seismic sources

    DOE Patents [OSTI]

    Green, M.A.; Cook, N.G.W.; McEvilly, T.V.; Majer, E.L.; Witherspoon, P.A.

    1987-04-20

    Apparatus is described for placement in a borehole in the earth, which enables the generation of closely controlled seismic waves from the borehole. Pure torsional shear waves are generated by an apparatus which includes a stator element fixed to the borehole walls and a rotor element which is electrically driven to rapidly oscillate on the stator element to cause reaction forces transmitted through the borehole walls to the surrounding earth. Longitudinal shear waves are generated by an armature that is driven to rapidly oscillate along the axis of the borehole, to cause reaction forces transmitted to the surrounding earth. Pressure waves are generated by electrically driving pistons that press against opposite ends of a hydraulic reservoir that fills the borehole. High power is generated by energizing the elements for more than about one minute. 9 figs.

  7. Merge2-3D: Combining Multiple Normal Maps with 3D Surfaces Sema Berkiten

    E-Print Network [OSTI]

    in computer graphics and vision, with demand for high-quality models driven by advances in 3D printing

  8. Generating 3D perspectives of textured volumetric scenes August 2005 Generating 3D perspectives

    E-Print Network [OSTI]

    Whelan, Paul F.

    Generating 3D perspectives of textured volumetric scenes August 2005 Generating 3D perspectives of textured volumetric scenes. Student Name: Michael Carmody Student ID: 98647636 Programme: Meng in Electronic Systems MEng in Electronic Systems 1 #12;Generating 3D perspectives of textured volumetric scenes

  9. Vacuum Compatibility of 3D-Printed Materials

    E-Print Network [OSTI]

    Povilus, A P; Vendeiro, Z; Baquero-Ruiz, M; Fajans, J

    2013-01-01

    The fabrication fidelity and vacuum properties are tested for currently available 3D-printed materials including polyamide, glass, acrylic, and sterling silver. The silver was the only material found to be suitable to ultrahigh vacuum environments due to outgassing and sublimation observed in other materials.

  10. Computer Modelling of 3D Geological Surface

    E-Print Network [OSTI]

    Kodge, B G

    2011-01-01

    The geological surveying presently uses methods and tools for the computer modeling of 3D-structures of the geographical subsurface and geotechnical characterization as well as the application of geoinformation systems for management and analysis of spatial data, and their cartographic presentation. The objectives of this paper are to present a 3D geological surface model of Latur district in Maharashtra state of India. This study is undertaken through the several processes which are discussed in this paper to generate and visualize the automated 3D geological surface model of a projected area.

  11. CyberShake: A Physics-Based Seismic Hazard Model for Southern California ROBERT GRAVES,1

    E-Print Network [OSTI]

    Deelman, Ewa

    the earthquake rupture process. Key words: Physics-based earthquake simulation, seismic hazard, ruptureCyberShake: A Physics-Based Seismic Hazard Model for Southern California ROBERT GRAVES,1 THOMAS H within seismic hazard calculations through the use of physics-based 3D ground motion simulations

  12. Time lapse seismic signal analysis for Cranfield, MS, EOR and CCS site Ditkof, J.1

    E-Print Network [OSTI]

    Texas at Austin, University of

    of CO2 remain in the subsurface. In 2007 and 2010, 3D seismic surveys were shot and an initial 4D seismic response was characterized showing coherent amplitude anomalies in some areas which received large and acoustic impedance change through the reservoir. The two seismic volumes were cross

  13. Physical sectioning in 3D biological microscopy 

    E-Print Network [OSTI]

    Guntupalli, Jyothi Swaroop

    2009-05-15

    Our ability to analyze the microstructure of biological tissue in three dimensions (3D) has proven invaluable in modeling its functionality, and therefore providing a better understanding of the basic mechanisms of life. ...

  14. 3-D Model for Deactivation & Decommissioning

    Broader source: Energy.gov [DOE]

    The design and production of 3-D scale models that replicate the highly contaminated structures within the nuclear facility would provide a significant improvement in visualization of the work...

  15. 3D TORUS V1.0

    Energy Science and Technology Software Center (OSTI)

    002440MLTPL00 3D Torus Routing Engine Module for OFA OpenSM v. 1.0  http://www.openfabrics.org/git?p=sashak/management.git;a=sum 

  16. 3-D simulations of multiple beam klystrons

    SciTech Connect (OSTI)

    Smithe, David N.; Bettenhausen, Mike; Ludeking, Larry; Caryotakis, G.; Sprehn, Daryl; Scheitrum, Glenn [Mission Research Corporation, 8560 Cinderbed Rd., Suite 700, Newington, Virginia 22122 (United States); Stanford Linear Accelerator Center, 2575 Sand Hill Rd., Menlo Park, California 94025 (United States)

    1999-05-07

    The MAGIC3D simulation code is being used to assess the multi-dimensional physics issues relating to the design and operation of multiple beam klystrons. Investigations, to date, include a detailed study of the mode structure of the cavities in the 19-beam hexagonally packed geometry and a study of the velocity spread caused by the cavity mode's field profile. Some attempts to minimize this effect are investigated. Additional simulations have provided quantification of the beam loading Q in a dual input cavity, and optimization of a dual output cavity. An important goal of the simulations is an accurate picture of beam transport along the length of the MBK. We have quantified the magnitude and spatial variation of the beam-line space charge interactions within a cavity gap. Present simulations have demonstrated the transport of the beam through three cavities (the present limits of our simulation size) without difficulty; additional length simulations are expected. We have also examined unbalanced beam-line scenarios, e.g., one beam-line suppressed, and find little disturbance to the transport in individual cavity tests, with results for multiple cavity transport expected.

  17. Pre-Stack Depth Migration and Attribute Analysis of 3-D Time-Lapse P-wave Data

    E-Print Network [OSTI]

    Pre-Stack Depth Migration and Attribute Analysis of 3-D Time-Lapse P-wave Data Vacuum Field, New the application of Pre-Stack Depth Migration (PSDM) and innovative window-based attribute analysis applied to 4-D seismic data. The data were acquired in Central Vacuum Unit, Lea County, New Mexico by the Reservoir

  18. Seismic, shock, and vibration isolation - 1988

    SciTech Connect (OSTI)

    Chung, H. ); Mostaghel, N. )

    1988-01-01

    This book contains papers presented at a conference on pressure vessels and piping. Topics covered include: Design of R-FBI bearings for seismic isolation; Benefits of vertical and horizontal seismic isolation for LMR nuclear reactor units; and Some remarks on the use and perspectives of seismic isolation for fast reactors.

  19. Controllable seismic source

    DOE Patents [OSTI]

    Gomez, Antonio; DeRego, Paul Jeffrey; Ferrel, Patrick Andrew; Thom, Robert Anthony; Trujillo, Joshua J.; Herridge, Brian

    2014-08-19

    An apparatus for generating seismic waves includes a housing, a strike surface within the housing, and a hammer movably disposed within the housing. An actuator induces a striking motion in the hammer such that the hammer impacts the strike surface as part of the striking motion. The actuator is selectively adjustable to change characteristics of the striking motion and characteristics of seismic waves generated by the impact. The hammer may be modified to change the physical characteristics of the hammer, thereby changing characteristics of seismic waves generated by the hammer. The hammer may be disposed within a removable shock cavity, and the apparatus may include two hammers and two shock cavities positioned symmetrically about a center of the apparatus.

  20. Controllable seismic source

    DOE Patents [OSTI]

    Gomez, Antonio; DeRego, Paul Jeffrey; Ferrell, Patrick Andrew; Thom, Robert Anthony; Trujillo, Joshua J.; Herridge, Brian

    2015-09-29

    An apparatus for generating seismic waves includes a housing, a strike surface within the housing, and a hammer movably disposed within the housing. An actuator induces a striking motion in the hammer such that the hammer impacts the strike surface as part of the striking motion. The actuator is selectively adjustable to change characteristics of the striking motion and characteristics of seismic waves generated by the impact. The hammer may be modified to change the physical characteristics of the hammer, thereby changing characteristics of seismic waves generated by the hammer. The hammer may be disposed within a removable shock cavity, and the apparatus may include two hammers and two shock cavities positioned symmetrically about a center of the apparatus.

  1. 3D Self-Portraits Etienne Vouga2

    E-Print Network [OSTI]

    O'Brien, James F.

    scanning pose change output reconstruction textured reconstruction large variety of examples3D print Figure for applications such as online avatars or 3D printing (the miniature shown here was printed using a ZPrinter 650 and accurate cap- ture system for 3D self-portraits using a single 3D sensor. Figure 2: 3D printed miniatures

  2. 3D Modeling Engine Representation Summary Report

    SciTech Connect (OSTI)

    Steven Prescott; Ramprasad Sampath; Curtis Smith; Timothy Yang

    2014-09-01

    Computers have been used for 3D modeling and simulation, but only recently have computational resources been able to give realistic results in a reasonable time frame for large complex models. This summary report addressed the methods, techniques, and resources used to develop a 3D modeling engine to represent risk analysis simulation for advanced small modular reactor structures and components. The simulations done for this evaluation were focused on external events, specifically tsunami floods, for a hypothetical nuclear power facility on a coastline.

  3. Seismic sources

    DOE Patents [OSTI]

    Green, Michael A. (Oakland, CA); Cook, Neville G. W. (Lafayette, CA); McEvilly, Thomas V. (Berkeley, CA); Majer, Ernest L. (El Cirrito, CA); Witherspoon, Paul A. (Berkeley, CA)

    1992-01-01

    Apparatus is described for placement in a borehole in the earth, which enables the generation of closely controlled seismic waves from the borehole. Pure torsional shear waves are generated by an apparatus which includes a stator element fixed to the borehole walls and a rotor element which is electrically driven to rapidly oscillate on the stator element to cause reaction forces transmitted through the borehole walls to the surrounding earth. Logitudinal shear waves are generated by an armature that is driven to rapidly oscillate along the axis of the borehole relative to a stator that is clamped to the borehole, to cause reaction forces transmitted to the surrounding earth. Pressure waves are generated by electrically driving pistons that press against opposite ends of a hydraulic reservoir that fills the borehole. High power is generated by energizing the elements at a power level that causes heating to over 150.degree. C. within one minute of operation, but energizing the elements for no more than about one minute.

  4. Fourier transform of the 3d NS equations The 3d NS equations are

    E-Print Network [OSTI]

    Salmon, Rick

    1 Fourier transform of the 3d NS equations The 3d NS equations are (1) vi t + vj vi xj = - p xi easily add it in at the end. Our interest is in the advection and pressure terms. Introducing the Fourier transforms (2) vi x( ) = ui k( )eikx k p x( ) = p k( )eikx k we obtain the Fourier transform of (1

  5. View Dependence of 3D Recovery from Folded Pictures and Warped 3D Faces

    E-Print Network [OSTI]

    Cavanagh, Patrick

    View Dependence of 3D Recovery from Folded Pictures and Warped 3D Faces Patrick Cavanagh Department vertical lines through the nose and the eyes. When this folded picture is tilted back and forth, the same is true, over a more restricted range of angles, as we move in front of a picture of an object

  6. Design of 3D eye-safe middle range vibrometer

    SciTech Connect (OSTI)

    Polulyakh, Valeriy; Poutivski, Iouri

    2014-05-27

    Laser Doppler Vibrometer and Range Meter (3D-MRV) is designed for middle range distances [1–100 meters]. 3D-MRV combines more than one laser in one device for a simultaneous real time measuring the distance and movement of the targets. The first laser has a short pulse (t?30psec) and low energy (E?200nJ) for distance measurement and the second one is a CW (continuous wave) single frequency laser for the velocity measurement with output power (P?30mW). Both lasers perform on the eye-safe wavelength 1.5 ?m. 3D-MRV uses the same mono-static optical transmitting and receiving channel for both lasers including an output telescope and a scanning angular system. 3D-MRV has an optical polarization switch to combine linear polarized laser beams from two lasers into one optical channel. The laser beams from both lasers by turns illuminate the target and the scattered laser radiation is collected by the telescope on a photo detector. The electrical signal from photo detector is used for measuring the distance to the target and its movement. For distance measurement the time of flight method is employed. For targets movement the optical heterodyne method is employed. The received CW laser radiation is mixed on a photo detector with the frequency-shifted laser radiation that is taken from CW laser and passed through an acousto-optic cell. The electrical signal from a photo detector on the difference frequency and phase has information about movement of the scattered targets. 3D-MVR may be used for the real time picturing of vibration of the extensive targets like bridges or aircrafts.

  7. 3D engine for immersive virtual environments 

    E-Print Network [OSTI]

    Anderson, Christopher Dean

    2005-02-17

    The purpose of this project is to develop a software framework, a 3D engine, which will generate images to be projected onto facets of a spatially immersive display (SID). The goal is to develop a software library to support the creation of images...

  8. 3D tracking via body radio reflections

    E-Print Network [OSTI]

    Kabelac, Zachary (Zachary E.)

    2014-01-01

    This thesis presents WiTrack, a system that tracks the 3D motion of a user from the radio signals reflected off her body. It works even if the person is occluded from the WiTrack device or in a different room. WiTrack does ...

  9. 3-D hydro + cascade model at RHIC

    E-Print Network [OSTI]

    Chiho Nonaka; Steffen A. Bass

    2005-11-07

    We present a 3-D hydro + cascade model in which viscosity and a realistic freezeout process for the hadronic phase are taken into account. We compare our results to experimental data and discuss the finite state interaction effects on physical observables.

  10. Speed-line for 3D animation 

    E-Print Network [OSTI]

    Song, Won Chan

    2007-04-25

    My thesis describes a tool which creates speed-lines automatically in 3D computer animations. Speed-lines are usually used in comic books to express fast motions in a still image. They are also used in 2D animations. Although animations don't need...

  11. Energy Savings in 3-D | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy savings in 3-D ORNL researchers show production, energy advantages of additive manufacturing ORNL 3-D printer in use. ORNL 3-D printer in use. Researchers at the Department...

  12. 3D Printed and Semiconductor Technology 'Mash-up' | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to 60 in under five seconds. Concept to reality in just six weeks. Photo Gallery: 3D Printing Brings Classic Shelby Cobra to Life 3-D Printed Inverter Novel 3-D Printed...

  13. 3-D MAPPING TECHNOLOGIES FOR HIGH LEVEL WASTE TANKS

    SciTech Connect (OSTI)

    Marzolf, A.; Folsom, M.

    2010-08-31

    This research investigated four techniques that could be applicable for mapping of solids remaining in radioactive waste tanks at the Savannah River Site: stereo vision, LIDAR, flash LIDAR, and Structure from Motion (SfM). Stereo vision is the least appropriate technique for the solids mapping application. Although the equipment cost is low and repackaging would be fairly simple, the algorithms to create a 3D image from stereo vision would require significant further development and may not even be applicable since stereo vision works by finding disparity in feature point locations from the images taken by the cameras. When minimal variation in visual texture exists for an area of interest, it becomes difficult for the software to detect correspondences for that object. SfM appears to be appropriate for solids mapping in waste tanks. However, equipment development would be required for positioning and movement of the camera in the tank space to enable capturing a sequence of images of the scene. Since SfM requires the identification of distinctive features and associates those features to their corresponding instantiations in the other image frames, mockup testing would be required to determine the applicability of SfM technology for mapping of waste in tanks. There may be too few features to track between image frame sequences to employ the SfM technology since uniform appearance may exist when viewing the remaining solids in the interior of the waste tanks. Although scanning LIDAR appears to be an adequate solution, the expense of the equipment ($80,000-$120,000) and the need for further development to allow tank deployment may prohibit utilizing this technology. The development would include repackaging of equipment to permit deployment through the 4-inch access ports and to keep the equipment relatively uncontaminated to allow use in additional tanks. 3D flash LIDAR has a number of advantages over stereo vision, scanning LIDAR, and SfM, including full frame time-of-flight data (3D image) collected with a single laser pulse, high frame rates, direct calculation of range, blur-free images without motion distortion, no need for precision scanning mechanisms, ability to combine 3D flash LIDAR with 2D cameras for 2D texture over 3D depth, and no moving parts. The major disadvantage of the 3D flash LIDAR camera is the cost of approximately $150,000, not including the software development time and repackaging of the camera for deployment in the waste tanks.

  14. 3D MEMS Simulation Modeling Using Modified Nodal Analysis J. V. Clark, N. Zhou, D. Bindel,

    E-Print Network [OSTI]

    California at Berkeley, University of

    3D MEMS Simulation Modeling Using Modified Nodal Analysis J. V. Clark, N. Zhou, D. Bindel, L, and experimental verification of several MEMS devices are presented. Simulated results include 3D mode analysis. To simulate the performance of these MEMS devices a modified nodal analysis approach is used to formulate

  15. An estimation algorithm for 3-D pose measurement using redundant ultrasonic sensors 

    E-Print Network [OSTI]

    Branum, Brian Howell

    1998-01-01

    precise precise but expensive sensing equipment to attain range measuring instruments to triangulate an accurate 3-D more sensors than are necessary for a single 3-D pose measurement. If the pose by including expected errors could be modeled with a...

  16. Camera based texture mapping: 3D applications for 2D images 

    E-Print Network [OSTI]

    Bowden, Nathan Charles

    2005-08-29

    . The purpose of this artist??s research is the development of an original method of parenting perspective projections to three-dimensional (3D) cameras, specifically tailored to result in 3D matte paintings. Research includes the demonstration of techniques...

  17. Lobe-based Estimating Ventilation and Perfusion from 3D CT scans of the Lungs

    E-Print Network [OSTI]

    Warren, Joe

    Lobe-based Estimating Ventilation and Perfusion from 3D CT scans of the Lungs Travis McPhail Joe Warren Rice University Thomas Guerrero, M.D. M.D. Anderson Cancer Center Introduction Lung cancer for lung cancer includes surgical removal or radiation therapy. 3D imaging technologies such CT, MRI

  18. Painting-to-3D Model Alignment Via Discriminative Visual Elements

    E-Print Network [OSTI]

    Painting-to-3D Model Alignment Via Discriminative Visual Elements Mathieu Aubry INRIA1 / TU M align arbitrary 2D de- pictions of an architectural site, including drawings, paintings and historical, we face a hard search problem: the number of possible align- ments of the painting to a large 3D

  19. Fast 3D Scanning for Biometric Identification and Verification

    E-Print Network [OSTI]

    McShea, Daniel W.

    Fast 3D Scanning for Biometric Identification and Verification June 2011 Authors Anselmo., & Chen, A. (2011). Fast 3D Scanning for Biometric Identification and Verification. (Prepared by RTI

  20. Visualization and Analysis of 3D Gene Expression Data (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Visualization and Analysis of 3D Gene Expression Data Citation Details In-Document Search Title: Visualization and Analysis of 3D Gene Expression Data Recent...

  1. 3D Printing in 30 Seconds | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3D Printing in 30 Seconds 3D Printing in 30 Seconds Addthis An error occurred. Unable to execute Javascript. Duration :38 Topic Science & Technology...

  2. From pictures to 3D : global optimization for scene reconstruction

    E-Print Network [OSTI]

    Chandraker, Manmohan Krishna

    2009-01-01

    SAN DIEGO From Pictures to 3D: Global Optimization for SceneOF THE DISSERTATION From Pictures to 3D: Global Optimization

  3. Demonstration of a Novel, Integrated, Multi-Scale Procedure for High-Resolution 3D Reservoir Characterization and Improved CO2-EOR/Sequestration Management, SACROC Unit

    SciTech Connect (OSTI)

    Scott R. Reeves

    2007-09-30

    The primary goal of this project was to demonstrate a new and novel approach for high resolution, 3D reservoir characterization that can enable better management of CO{sub 2} enhanced oil recovery (EOR) projects and, looking to the future, carbon sequestration projects. The approach adopted has been the subject of previous research by the DOE and others, and relies primarily upon data-mining and advanced pattern recognition approaches. This approach honors all reservoir characterization data collected, but accepts that our understanding of how these measurements relate to the information of most interest, such as how porosity and permeability vary over a reservoir volume, is imperfect. Ideally the data needed for such an approach includes surface seismic to provide the greatest amount of data over the entire reservoir volume of interest, crosswell seismic to fill the resolution gap between surface seismic and wellbore-scale measurements, geophysical well logs to provide the vertical resolution sought, and core data to provide the tie to the information of most interest. These data are combined via a series of one or more relational models to enable, in its most successful application, the prediction of porosity and permeability on a vertical resolution similar to logs at each surface seismic trace location. In this project, the procedure was applied to the giant (and highly complex) SACROC unit of the Permian basin in West Texas, one of the world's largest CO{sub 2}-EOR projects and a potentially world-class geologic sequestration site. Due to operational scheduling considerations on the part of the operator of the field, the crosswell data was not obtained during the period of project performance (it is currently being collected however as part of another DOE project). This compromised the utility of the surface seismic data for the project due to the resolution gap between it and the geophysical well logs. An alternative approach was adopted that utilized a relational model to predict porosity and permeability profiles from well logs at each well location, and a 3D geostatistical variogram to generate the reservoir characterization over the reservoir volume of interest. A reservoir simulation model was built based upon this characterization and history-matched without making significant changes to it, thus validating the procedure. While not the same procedure as originally planned, the procedure ultimately employed proved successful and demonstrated that the general concepts proposed (i.e., data mining and advanced pattern recognition methods) have the flexibility to achieve the reservoir characterization objectives sought even with imperfect or incomplete data.

  4. Estimating reservoir parameters from seismic and electromagnetic data using stochastic rock-physics models and Markov chain Monte Carlo methods

    E-Print Network [OSTI]

    Chen, Jinsong

    Joint inversion of 2D or 3D seismic and EM data for reservoir parameter estimation is computationallyEstimating reservoir parameters from seismic and electromagnetic data using stochastic rock, and pore pressure in reservoirs using seismic and electromagnetic (EM) data. Within the Bayesian framework

  5. Quasi-Newton inversion of seismic first arrivals using source finite1 bandwidth assumption: application to landslides characterization2

    E-Print Network [OSTI]

    Boyer, Edmond

    , Samyn et al. (2011) used a 3D seismic refraction traveltime52 tomography to provide a valuable-00749309,version1-7Nov2012 #12;recommended for all case studies. Seismic refraction can be basicallyQuasi-Newton inversion of seismic first arrivals using source finite1 bandwidth assumption

  6. Multicomponent seismic data, combining P-wave and converted P-to-SV wave (C-wave) wavefields, provide inde-

    E-Print Network [OSTI]

    Texas at Austin, University of

    Multicomponent seismic data, combining P-wave and converted P-to-SV wave (C-wave) wavefields (fast and slow) with differing polarization. The 4C, 3D ocean-bottom cable (OBC) multicomponent seismic objectives were to evaluate seismic attributes, such as VP/VS velocity ratios and Poisson's ratio derived

  7. INCORPORATING DYNAMIC 3D SIMULATION INTO PRA

    SciTech Connect (OSTI)

    Steven R Prescott; Curtis Smith

    2011-07-01

    Through continued advancement in computational resources, development that was previously done by trial and error production is now performed through computer simulation. These virtual physical representations have the potential to provide accurate and valid modeling results and are being used in many different technical fields. Risk assessment now has the opportunity to use 3D simulation to improve analysis results and insights, especially for external event analysis. By using simulations, the modeler only has to determine the likelihood of an event without having to also predict the results of that event. The 3D simulation automatically determines not only the outcome of the event, but when those failures occur. How can we effectively incorporate 3D simulation into traditional PRA? Most PRA plant modeling is made up of components with different failure modes, probabilities, and rates. Typically, these components are grouped into various systems and then are modeled together (in different combinations) as a “system” with logic structures to form fault trees. Applicable fault trees are combined through scenarios, typically represented by event tree models. Though this method gives us failure results for a given model, it has limitations when it comes to time-based dependencies or dependencies that are coupled to physical processes which may themselves be space- or time-dependent. Since, failures from a 3D simulation are naturally time related, they should be used in that manner. In our simulation approach, traditional static models are converted into an equivalent state diagram representation with start states, probabilistic driven movements between states and terminal states. As the state model is run repeatedly, it converges to the same results as the PRA model in cases where time-related factors are not important. In cases where timing considerations are important (e.g., when events are dependent upon each other), then the simulation approach will typically provide superior results and insights. We also couple the state model with the dynamic 3D simulation analysis representing events (such as flooding) to determine which (if any) components fail. Not only does the simulation take into account any failed items from the state model, but any failures caused by the simulation are incorporated back into the state model and factored into the overall results. Using this method we incorporate accurate 3D simulation results, eliminate static-based PRA issues, and have time ordered failure information.

  8. Assisted Seismic Matching: Joint Inversion of Seismic, Rock Physics and Basin Modeling Ulisses T. Mello*, IBM T. J. Watson Res. Center, Stewart A. Levin, Halliburton, Vanessa Lopez, Andrew Conn,

    E-Print Network [OSTI]

    Zhang, Hongchao

    Assisted Seismic Matching: Joint Inversion of Seismic, Rock Physics and Basin Modeling Ulisses T physics, and seismic attributes, including seismic amplitude to match seismic data. Introduction a match to seismic data. In particular, we seek to match not just event timing (phase) but also reflection

  9. A simple backprojection algorithm for 3D in vivo EPID dosimetry of IMRT treatments

    SciTech Connect (OSTI)

    Wendling, Markus; McDermott, Leah N.; Mans, Anton; Sonke, Jan-Jakob; Herk, Marcel van; Mijnheer, Ben J. [Department of Radiation Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands)

    2009-07-15

    Treatment plans are usually designed, optimized, and evaluated based on the total 3D dose distribution, motivating a total 3D dose verification. The purpose of this study was to develop a 2D transmission-dosimetry method using an electronic portal imaging device (EPID) into a simple 3D method that provides 3D dose information. In the new method, the dose is reconstructed within the patient volume in multiple planes parallel to the EPID for each gantry angle. By summing the 3D dose grids of all beams, the 3D dose distribution for the total treatment fraction is obtained. The algorithm uses patient contours from the planning CT scan but does not include tissue inhomogeneity corrections. The 3D EPID dosimetry method was tested for IMRT fractions of a prostate, a rectum, and a head-and-neck cancer patient. Planned and in vivo-measured dose distributions were within 2% at the dose prescription point. Within the 50% isodose surface of the prescribed dose, at least 97% of points were in agreement, evaluated with a 3D {gamma} method with criteria of 3% of the prescribed dose and 0.3 cm. Full 3D dose reconstruction on a 0.1x0.1x0.1 cm{sup 3} grid and 3D {gamma} evaluation took less than 15 min for one fraction on a standard PC. The method allows in vivo determination of 3D dose-volume parameters that are common in clinical practice. The authors conclude that their EPID dosimetry method is an accurate and fast tool for in vivo dose verification of IMRT plans in 3D. Their approach is independent of the treatment planning system and provides a practical safety net for radiotherapy.

  10. 3D supergravity from wrapped M5-branes

    E-Print Network [OSTI]

    Karndumri, Parinya

    2015-01-01

    Through consistent Kaluza-Klein reduction, we construct 3D N=2 gauged supergravities corresponding to twisted compactifications of M5-branes on a product of Riemann surfaces, including Kahler-Einstein four-manifolds. We extend the reduction to fermionic supersymmetry variations in order to determine the 3D Killing spinor equations and classify all (timelike) supersymmetric solutions. We show that the superpotential T dictates all supersymmetric solutions, not just AdS3 vacua. As a by-product, we identify an infinite class of new supersymmetric warped AdS3 (Godel) and warped dS3 critical points. Moreover, we show that T encodes the central charge and R symmetry of the dual N = (0,2) SCFTs in the large N limit. Upon uplift to 11D, we use this result to write the higher-dimensional geometries in canonical form and discuss the relation to existing classifications of supersymmetric AdS3 geometries.

  11. Towards manipulating relativistic laser pulses with 3D printed materials

    E-Print Network [OSTI]

    Ji, L L; Pukhov, A; Freeman, R R; Akli, K U

    2015-01-01

    Efficient coupling of intense laser pulses to solid-density matter is critical to many applications including ion acceleration for cancer therapy. At relativistic intensities, the focus has been mainly on investigating various laser beams irradiating initially flat interfaces with little or no control over the interaction. Here, we propose a novel approach that leverages recent advancements in 3D direct laser writing (DLW) of materials and high contrast lasers to manipulate the laser-matter interactions on the micro-scales. We demonstrate, via simulations, that usable intensities >10^23Wcm^(-2) could be achieved with current tabletop lasers coupled to 3D printed plasma lenses. We show that these plasma optical elements act not only as a lens to focus laser light, but also as an electromagnetic guide for secondary particle beams. These results open new paths to engineering light-matter interactions at ultra-relativistic intensities.

  12. 3D Technology for intelligent trackers

    SciTech Connect (OSTI)

    Lipton, Ronald; /Fermilab

    2010-09-01

    At Super-LHC luminosity it is expected that the standard suite of level 1 triggers for CMS will saturate. Information from the tracker will be needed to reduce trigger rates to satisfy the level 1 bandwidth. Tracking trigger modules which correlate information from closely-spaced sensor layers to form an on-detector momentum filter are being developed by several groups. We report on a trigger module design which utilizes three dimensional integrated circuit technology incorporating chips which are connected both to the top and bottom sensor, providing the ability to filter information locally. A demonstration chip, the VICTR, has been submitted to the Chartered/Tezzaron two-tier 3D run coordinated by Fermilab. We report on the 3D design concept, the status of the VICTR chip and associated sensor integration utilizing oxide bonding.

  13. 3D Structure and Nuclear Targets

    E-Print Network [OSTI]

    Dupré, R

    2015-01-01

    Recent experimental and theoretical ideas are laying the ground for a new era in the knowledge of the parton structure of nuclei. We report on two promising directions beyond inclusive deep inelastic scattering experiments, aimed at, among other goals, unveiling the three dimensional structure of the bound nucleon. The 3D structure in coordinate space can be accessed through deep exclusive processes, whose non-perturbative content is parametrized in terms of generalized parton distributions. In this way the distribution of partons in the transverse plane will be obtained, providing a pictorial view of the realization of the European Muon Collaboration effect. In particular, we show how, through the generalized parton distribution framework, non nucleonic degrees of freedom in nuclei can be unveiled. Analogously, the momentum space 3D structure can be accessed by studying transverse momentum dependent parton distributions in semi-inclusive deep inelastic scattering processes. The status of measurements is also...

  14. 3D Printing of Scintillating Materials

    E-Print Network [OSTI]

    Y. Mishnayot; M. Layani; I. Cooperstein; S. Magdassi; G. Ron

    2014-06-15

    We demonstrate, for the first time, the applicability of 3D printing technique to the manufacture of scintillation detectors. We report of a formulation, usable in stereolithographic printing, that exhibits scintillation efficiency on the order of 30\\% of that of commercial polystyrene based scintillators. We discuss the applicability of these techniques and propose future enhancements that will allow tailoring the printed scintillation detectors to various application.

  15. 3D Printing of Scintillating Materials

    E-Print Network [OSTI]

    Mishnayot, Y; Cooperstein, I; Magdassi, S; Ron, G

    2014-01-01

    We demonstrate, for the first time, the applicability of 3D printing technique to the manufacture of scintillation detectors. We report of a formulation, usable in stereolithographic printing, that exhibits scintillation efficiency on the order of 30\\% of that of commercial polystyrene based scintillators. We discuss the applicability of these techniques and propose future enhancements that will allow tailoring the printed scintillation detectors to various application.

  16. Completing unknown portions of 3D scenes by 3D visual propagation 

    E-Print Network [OSTI]

    Breckon, Toby P

    As the requirement for more realistic 3D environments is pushed forward by the computer {graphics | movie | simulation | games} industry, attention turns away from the creation of purely synthetic, artist derived environments towards the use of real...

  17. Scanning and Printing Persons in 3D Jurgen Sturm1

    E-Print Network [OSTI]

    Lunds Universitet

    miniatures of persons using a Kinect sensor and a 3D color printer. To achieve this, we acquire color- through in rapid prototyping in recent years. Modern 3D printers are able to print colored 3D models at resolutions comparable to 2D paper printers. On the one hand, the creation of a detailed, printable 3D model

  18. Non-Realistic 3D Object Stylization Julian Kratt1

    E-Print Network [OSTI]

    Sharf, Andrei

    or might be printed using a 3D printer. We conducted a user study to verify the proposed stylizationsNon-Realistic 3D Object Stylization Julian Kratt1 Ferdinand Eisenkeil1 S¨oren Pirk1 Andrei Sharf2 paradigm of non-realistic 3D stylization, where the expressiveness of a given 3D model is man- ifested

  19. AUTOCOSTRUIRSI UNA STAMPANTE 3D Da Dove Iniziare?

    E-Print Network [OSTI]

    AUTOCOSTRUIRSI UNA STAMPANTE 3D #12;Da Dove Iniziare? Quale sarà la 3D Printer più adatta al mio stampante 3D partendo da zero? · E' meglio che acquisto un kit di montaggio anche se più caro? E' STATA UNA progetto sarà la costruzione di una stampante 3D. ATTENZIONE: Il fab lab non ti fa il lavoro ma ti supporta

  20. Web 3D Rendering Without Plug-Ins Andrs Buritic

    E-Print Network [OSTI]

    Dahlquist, Kam D.

    OpenJSGL Web 3D Rendering Without Plug-Ins Andrés Buriticá Loyola Marymount University Faculty, 2007 Introduction 3D graphics Applications The Worldwide Web #12;Concept OpenGL JavaScript OpenJSGL Previous Work: 3D In A Browser Java applets Flash JavaScript VRML, later called X3D Java Web Start Other

  1. CAN 3D PRINTING REVOLUTIONIZE GLOBAL MANUFACTURING? A DELPHI STUDY

    E-Print Network [OSTI]

    CAN 3D PRINTING REVOLUTIONIZE GLOBAL MANUFACTURING? A DELPHI STUDY ­ Master Thesis Proposal ­ BACKGROUND 3D printing (or additive manufacturing) is not an entirely new phenomenon. First introduced and president of Foxconn, calls it a nice "gimmick" and even Nick Allen, founder of 3D printing company 3D Print

  2. 3D Printing of Functional and Biological Materials

    E-Print Network [OSTI]

    ! 3D Printing of Functional and Biological Materials Jennifer A. Lewis Wyss Professor)! Multimaterial 3D printing ! #12;3D antennas! Li ion microbatteries! Lightweight microlattices!Flexible sensors! 3D Printing of Integrated Electronic Devices ! #12;20 nm average , 5 ­ 50 nm

  3. 1998 3D GIS vs Advanced visualisation -Hack & Ozmutlu -LWI Seminar 1 3D-GIS vs Advanced Visualization

    E-Print Network [OSTI]

    Hack, Robert

    1998 3D GIS vs Advanced visualisation - Hack & Ozmutlu - LWI Seminar 1 3D-GIS vs Advanced Visualization Hack H.R.G.K. and Ozmutlu S. LWI seminar 1998 Delft, The Netherlands #12;1998 3D GIS vs Advanced visualisation - Hack & Ozmutlu - LWI Seminar 2 3D-GIS vs Advanced Visualization Visualization Strategy At source

  4. Spatial Orientation And Distribution Of Reservoir Fractures From Scattered Seismic Energy

    E-Print Network [OSTI]

    Vetri, Laura

    2005-01-01

    We present the details of a new method for determining the reflection and scattering characteristics of seismic energy from subsurface fractured formations. The method is based upon observations we have made from 3D finite ...

  5. Image resolution analysis: a new, robust approach to seismic survey design 

    E-Print Network [OSTI]

    Tzimeas, Constantinos

    2005-08-29

    Seismic survey design methods often rely on qualitative measures to provide an optimal image of their objective target. Fold, ray tracing techniques counting ray hits on binned interfaces, and even advanced 3-D survey ...

  6. Integrated Reflection Seismic Monitoring and Reservoir Modeling for Geologic CO2 Sequestration

    SciTech Connect (OSTI)

    John Rogers

    2011-12-31

    The US DOE/NETL CCS MVA program funded a project with Fusion Petroleum Technologies Inc. (now SIGMA) to model the proof of concept of using sparse seismic data in the monitoring of CO{sub 2} injected into saline aquifers. The goal of the project was to develop and demonstrate an active source reflection seismic imaging strategy based on deployment of spatially sparse surface seismic arrays. The primary objective was to test the feasibility of sparse seismic array systems to monitor the CO{sub 2} plume migration injected into deep saline aquifers. The USDOE/RMOTC Teapot Dome (Wyoming) 3D seismic and reservoir data targeting the Crow Mountain formation was used as a realistic proxy to evaluate the feasibility of the proposed methodology. Though the RMOTC field has been well studied, the Crow Mountain as a saline aquifer has not been studied previously as a CO{sub 2} sequestration (storage) candidate reservoir. A full reprocessing of the seismic data from field tapes that included prestack time migration (PSTM) followed by prestack depth migration (PSDM) was performed. A baseline reservoir model was generated from the new imaging results that characterized the faults and horizon surfaces of the Crow Mountain reservoir. The 3D interpretation was integrated with the petrophysical data from available wells and incorporated into a geocellular model. The reservoir structure used in the geocellular model was developed using advanced inversion technologies including Fusion's ThinMAN{trademark} broadband spectral inversion. Seal failure risk was assessed using Fusion's proprietary GEOPRESS{trademark} pore pressure and fracture pressure prediction technology. CO{sub 2} injection was simulated into the Crow Mountain with a commercial reservoir simulator. Approximately 1.2MM tons of CO{sub 2} was simulated to be injected into the Crow Mountain reservoir over 30 years and subsequently let 'soak' in the reservoir for 970 years. The relatively small plume developed from this injection was observed migrating due to gravity to the apexes of the double anticline in the Crow Mountain reservoir of the Teapot dome. Four models were generated from the reservoir simulation task of the project which included three saturation models representing snapshots at different times during and after simulated CO{sub 2} injection and a fully saturated CO{sub 2} fluid substitution model. The saturation models were used along with a Gassmann fluid substitution model for CO{sub 2} to perform fluid volumetric substitution in the Crow Mountain formation. The fluid substitution resulted in a velocity and density model for the 3D volume at each saturation condition that was used to generate a synthetic seismic survey. FPTI's (Fusion Petroleum Technologies Inc.) proprietary SeisModelPRO{trademark} full acoustic wave equation software was used to simulate acquisition of a 3D seismic survey on the four models over a subset of the field area. The simulated acquisition area included the injection wells and the majority of the simulated plume area.

  7. 3D reconstruction of tensors and vectors

    SciTech Connect (OSTI)

    Defrise, Michel; Gullberg, Grant T.

    2005-02-17

    Here we have developed formulations for the reconstruction of 3D tensor fields from planar (Radon) and line-integral (X-ray) projections of 3D vector and tensor fields. Much of the motivation for this work is the potential application of MRI to perform diffusion tensor tomography. The goal is to develop a theory for the reconstruction of both Radon planar and X-ray or line-integral projections because of the flexibility of MRI to obtain both of these type of projections in 3D. The development presented here for the linear tensor tomography problem provides insight into the structure of the nonlinear MRI diffusion tensor inverse problem. A particular application of tensor imaging in MRI is the potential application of cardiac diffusion tensor tomography for determining in vivo cardiac fiber structure. One difficulty in the cardiac application is the motion of the heart. This presents a need for developing future theory for tensor tomography in a motion field. This means developing a better understanding of the MRI signal for diffusion processes in a deforming media. The techniques developed may allow the application of MRI tensor tomography for the study of structure of fiber tracts in the brain, atherosclerotic plaque, and spine in addition to fiber structure in the heart. However, the relations presented are also applicable to other fields in medical imaging such as diffraction tomography using ultrasound. The mathematics presented can also be extended to exponential Radon transform of tensor fields and to other geometric acquisitions such as cone beam tomography of tensor fields.

  8. 3D hydrodynamical and radiative transfer modeling of Eta Carinae's colliding winds

    E-Print Network [OSTI]

    Madura, Thomas I; Gull, Theodore R; Kruip, Chael J H; Paardekooper, Jan-Pieter; Icke, Vincent

    2015-01-01

    We present results of full 3D hydrodynamical and radiative transfer simulations of the colliding stellar winds in the massive binary system Eta Carinae. We accomplish this by applying the SimpleX algorithm for 3D radiative transfer on an unstructured Voronoi-Delaunay grid to recent 3D smoothed particle hydrodynamics (SPH) simulations of the binary colliding winds. We use SimpleX to obtain detailed ionization fractions of hydrogen and helium, in 3D, at the resolution of the original SPH simulations. We investigate several computational domain sizes and Luminous Blue Variable primary star mass-loss rates. We furthermore present new methods of visualizing and interacting with output from complex 3D numerical simulations, including 3D interactive graphics and 3D printing. While we initially focus on Eta Car, the methods employed can be applied to numerous other colliding wind (WR 140, WR 137, WR 19) and dusty 'pinwheel' (WR 104, WR 98a) binary systems. Coupled with 3D hydrodynamical simulations, SimpleX simulatio...

  9. 3D Monitoring of LHCb Inner Tracker

    E-Print Network [OSTI]

    Sainvitu, Pascal

    2015-01-01

    The positions of the Inner Tracker (IT) detectors of the LHCb experiment installed in the LHC at CERN are impacted by the LHCb dipole magnet powering. In the past the movements of the stations have been measured using standard survey methods during magnet tests in shutdown periods. But the survey targets are visible only in very narrow spaces and the access to the IT is very difficult, even impossible in the central region when the detector is closed. Finally the precision of the standard survey measurement is affected by the poor configuration. In 2013 and 2014, during the first long shutdown of the LHC (LS1), the CERN Survey team (EN/MEF-SU) in collaboration with the LHCb Technical Coordination and the EPFL (Ecole Polytechnique Fédérale de LAUSANNE, CH), developed a permanent monitoring system which has been tested and installed in order to allow the 3D position measurement of the IT stations, even during the run periods, with a precision of 100 microns at 1 sigma level. The 3D Monitoring system of the LH...

  10. 3D Structure and Nuclear Targets

    E-Print Network [OSTI]

    R. Dupré; S. Scopetta

    2015-10-03

    Recent experimental and theoretical ideas are laying the ground for a new era in the knowledge of the parton structure of nuclei. We report on two promising directions beyond inclusive deep inelastic scattering experiments, aimed at, among other goals, unveiling the three dimensional structure of the bound nucleon. The 3D structure in coordinate space can be accessed through deep exclusive processes, whose non-perturbative content is parametrized in terms of generalized parton distributions. In this way the distribution of partons in the transverse plane will be obtained, providing a pictorial view of the realization of the European Muon Collaboration effect. In particular, we show how, through the generalized parton distribution framework, non nucleonic degrees of freedom in nuclei can be unveiled. Analogously, the momentum space 3D structure can be accessed by studying transverse momentum dependent parton distributions in semi-inclusive deep inelastic scattering processes. The status of measurements is also summarized, in particular novel coincidence measurements at high luminosity facilities, such as Jefferson Laboratory. Finally the prospects for the next years at future facilities, such as the 12~GeV Jefferson Laboratory and the Electron Ion Collider, are presented.

  11. 3D J-Integral Capability in Grizzly

    SciTech Connect (OSTI)

    Benjamin Spencer; Marie Backman; Pritam Chakraborty; William Hoffman

    2014-09-01

    This report summarizes work done to develop a capability to evaluate fracture contour J-Integrals in 3D in the Grizzly code. In the current fiscal year, a previously-developed 2D implementation of a J-Integral evaluation capability has been extended to work in 3D, and to include terms due both to mechanically-induced strains and due to gradients in thermal strains. This capability has been verified against a benchmark solution on a model of a curved crack front in 3D. The thermal term in this integral has been verified against a benchmark problem with a thermal gradient. These developments are part of a larger effort to develop Grizzly as a tool that can be used to predict the evolution of aging processes in nuclear power plant systems, structures, and components, and assess their capacity after being subjected to those aging processes. The capabilities described here have been developed to enable evaluations of Mode- stress intensity factors on axis-aligned flaws in reactor pressure vessels. These can be compared with the fracture toughness of the material to determine whether a pre-existing flaw would begin to propagate during a pos- tulated pressurized thermal shock accident. This report includes a demonstration calculation to show how Grizzly is used to perform a deterministic assessment of such a flaw propagation in a degraded reactor pressure vessel under pressurized thermal shock conditions. The stress intensity is calculated from J, and the toughness is computed using the fracture master curve and the degraded ductile to brittle transition temperature.

  12. Multi-crosswell profile 3D imaging and method

    DOE Patents [OSTI]

    Washbourne, John K. (Houston, TX); Rector, III, James W. (Kensington, CA); Bube, Kenneth P. (Seattle, WA)

    2002-01-01

    Characterizing the value of a particular property, for example, seismic velocity, of a subsurface region of ground is described. In one aspect, the value of the particular property is represented using at least one continuous analytic function such as a Chebychev polynomial. The seismic data may include data derived from at least one crosswell dataset for the subsurface region of interest and may also include other data. In either instance, data may simultaneously be used from a first crosswell dataset in conjunction with one or more other crosswell datasets and/or with the other data. In another aspect, the value of the property is characterized in three dimensions throughout the region of interest using crosswell and/or other data. In still another aspect, crosswell datasets for highly deviated or horizontal boreholes are inherently useful. The method is performed, in part, by fitting a set of vertically spaced layer boundaries, represented by an analytic function such as a Chebychev polynomial, within and across the region encompassing the boreholes such that a series of layers is defined between the layer boundaries. Initial values of the particular property are then established between the layer boundaries and across the subterranean region using a series of continuous analytic functions. The continuous analytic functions are then adjusted to more closely match the value of the particular property across the subterranean region of ground to determine the value of the particular property for any selected point within the region.

  13. Streamlining of the RELAP5-3D Code

    SciTech Connect (OSTI)

    Mesina, George L; Hykes, Joshua; Guillen, Donna Post

    2007-11-01

    RELAP5-3D is widely used by the nuclear community to simulate general thermal hydraulic systems and has proven to be so versatile that the spectrum of transient two-phase problems that can be analyzed has increased substantially over time. To accommodate the many new types of problems that are analyzed by RELAP5-3D, both the physics and numerical methods of the code have been continuously improved. In the area of computational methods and mathematical techniques, many upgrades and improvements have been made decrease code run time and increase solution accuracy. These include vectorization, parallelization, use of improved equation solvers for thermal hydraulics and neutron kinetics, and incorporation of improved library utilities. In the area of applied nuclear engineering, expanded capabilities include boron and level tracking models, radiation/conduction enclosure model, feedwater heater and compressor components, fluids and corresponding correlations for modeling Generation IV reactor designs, and coupling to computational fluid dynamics solvers. Ongoing and proposed future developments include improvements to the two-phase pump model, conversion to FORTRAN 90, and coupling to more computer programs. This paper summarizes the general improvements made to RELAP5-3D, with an emphasis on streamlining the code infrastructure for improved maintenance and development. With all these past, present and planned developments, it is necessary to modify the code infrastructure to incorporate modifications in a consistent and maintainable manner. Modifying a complex code such as RELAP5-3D to incorporate new models, upgrade numerics, and optimize existing code becomes more difficult as the code grows larger. The difficulty of this as well as the chance of introducing errors is significantly reduced when the code is structured. To streamline the code into a structured program, a commercial restructuring tool, FOR_STRUCT, was applied to the RELAP5-3D source files. The methodology employed follows Dijkstra's structured programming paradigm, which is based on splitting programs into sub-sections, each with single points of entry and exit and in which control is passed downward through the structure with no unconditional branches to higher levels. GO TO commands are typically avoided, since they alter the flow and control of a program’s execution by allowing a jump from one place in the routine to another. The restructuring of RELAP5-3D subroutines is complicated by several issues. The first is use of code other than standard FORTRAN77. The second is restructuring limitations of FOR_STRUCT. The third is existence of pre-compiler directives and the complication of nested directives. Techniques were developed to overcome all these difficulties and more and these are reported. By implementing these developments, all subroutines of RELAP were restructured. Measures of code improvement relative to maintenance and development are presented.

  14. What is a seismic reflector like? Nathalie Favretto-Cristini1

    E-Print Network [OSTI]

    Boyer, Edmond

    -tracing procedure in complex 2D and 3D structures. The first method, called Fresnel vol- ume ray tracing Cervený into the wave reflection process, this study might have significant implications for seismic interpretation using amplitude-variation-with-angle methodologies. INTRODUCTION The basis of many seismic studies

  15. Z-99 3D focussing operator estimation from sparse 3D data

    E-Print Network [OSTI]

    van Vliet, Lucas J.

    -line sampling criteria. Given the correct velocity model, and from the model the correct migration operators, these data-sets can be imaged very well by applying the 3D migration operators in a domain where full areal), whereby the imaging process was split up into two steps, focussing shots and receivers separately in depth

  16. 3DTV -PANORAMIC 3D MODEL ACQUISITION AND ITS 3D VISUALIZATION ON THE INTERACTIVE FOGSCREEN

    E-Print Network [OSTI]

    California at Santa Barbara, University of

    - ings in a neighborhood for a car chase or cultural heritage sites for a documentary. The goal of 3D. INTRODUCTION - MODEL ACQUISITION FLOW AND VISUALIZATION For 3DTV systems we present a platform with two on the interactive FogScreen Our new platform comprises an 8 Mpixel omnidirectional camera CI in conjunction

  17. Fab trees for designing complex 3D printable materials

    E-Print Network [OSTI]

    Wang, Ye, M. Eng. Massachusetts Institute of Technology

    2013-01-01

    With more 3D printable materials being invented, 3D printers nowadays could replicate not only geometries, but also appearance and physical properties. On the software side, the tight coupling between geometry and material ...

  18. A Desktop 3D Printer in Safety-Critical Java

    E-Print Network [OSTI]

    A Desktop 3D Printer in Safety-Critical Java Tórur Biskopstø Strøm Kongens Lyngby 2012 IMM-MSc-2012-critical use cases implemented according to the specification. This thesis presents a RepRap 3D desktop printer

  19. 3D Visualization of Water Transport in Ferns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3D Visualization of Water Transport in Ferns 3D Visualization of Water Transport in Ferns Print Monday, 08 April 2013 00:00 Plants transport water through elongated cells called...

  20. 3D printing rises to the occasion | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3D printing rises to the occasion ORNL group shows how it's done, one layer at a time A perforated metal box produced by an Arcam 3D printer. This detailed A perforated metal box...

  1. 3D Measurements in Images using CAD Models George Vosselman

    E-Print Network [OSTI]

    Vosselman, George

    the alignment. 1 Introduction Future geographical information systems will contain 3D and highly structured information. The development of procedures for the extraction of 3D object models from digital aerial imagery

  2. Tracking Objects Using 3D Edge Detectors February 2013

    E-Print Network [OSTI]

    O'Leary, Dianne P.

    Tracking Objects Using 3D Edge Detectors February 2013 SIAM CSE 2013 Dianne P. O'Leary c 2013 1 #12;Tracking Objects Using 3D Edge Detectors Dianne P. O'Leary Computer Science Dept. and Institute

  3. Energy Department Unveils 3D-Printed Building; New Initiatives...

    Office of Environmental Management (EM)

    Unveils 3D-Printed Building; New Initiatives During Industry Day Energy Department Unveils 3D-Printed Building; New Initiatives During Industry Day October 1, 2015 - 12:25pm...

  4. Visualization and Analysis of 3D Gene Expression Data (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Visualization and Analysis of 3D Gene Expression Data Citation Details In-Document Search Title: Visualization and Analysis of 3D Gene Expression Data You are...

  5. Ames Lab 101: Real-Time 3D Imaging

    ScienceCinema (OSTI)

    Zhang, Song

    2012-08-29

    Ames Laboratory scientist Song Zhang explains his real-time 3-D imaging technology. The technique can be used to create high-resolution, real-time, precise, 3-D images for use in healthcare, security, and entertainment applications.

  6. Characterizing tensile loading responses of 3D printed samples

    E-Print Network [OSTI]

    Haid, Christopher M

    2014-01-01

    An experimental study was performed to characterize the loading response of samples manufactured through 3D printing. Tensile testing was performed on a number of 3D printed samples created through Fused Filament Fabrication ...

  7. 3D Simulations of Thermonuclear Supernovae From Very Massive Stars

    E-Print Network [OSTI]

    Crowther, Paul

    3D Simulations of Thermonuclear Supernovae From Very Massive Stars Ke-Jung (Ken) Chen Johnston #12;3D Simulations of Thermonuclear Supernovae From Very Massive Stars Ke-Jung (Ken) Chen Johnston

  8. Computational 3D and reflectivity imaging with high photon efficiency

    E-Print Network [OSTI]

    Shin, Dongeek

    2014-01-01

    Imaging the 3D structure and reflectivity of a scene can be done using photon-counting detectors. Traditional imagers of this type typically require hundreds of detected photons per pixel for accurate 3D and reflectivity ...

  9. Advanced Seismic While Drilling System

    SciTech Connect (OSTI)

    Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser

    2008-06-30

    A breakthrough has been discovered for controlling seismic sources to generate selectable low frequencies. Conventional seismic sources, including sparkers, rotary mechanical, hydraulic, air guns, and explosives, by their very nature produce high-frequencies. This is counter to the need for long signal transmission through rock. The patent pending SeismicPULSER{trademark} methodology has been developed for controlling otherwise high-frequency seismic sources to generate selectable low-frequency peak spectra applicable to many seismic applications. Specifically, we have demonstrated the application of a low-frequency sparker source which can be incorporated into a drill bit for Drill Bit Seismic While Drilling (SWD). To create the methodology of a controllable low-frequency sparker seismic source, it was necessary to learn how to maximize sparker efficiencies to couple to, and transmit through, rock with the study of sparker designs and mechanisms for (a) coupling the sparker-generated gas bubble expansion and contraction to the rock, (b) the effects of fluid properties and dynamics, (c) linear and non-linear acoustics, and (d) imparted force directionality. After extensive seismic modeling, the design of high-efficiency sparkers, laboratory high frequency sparker testing, and field tests were performed at the University of Texas Devine seismic test site. The conclusion of the field test was that extremely high power levels would be required to have the range required for deep, 15,000+ ft, high-temperature, high-pressure (HTHP) wells. Thereafter, more modeling and laboratory testing led to the discovery of a method to control a sparker that could generate low frequencies required for deep wells. The low frequency sparker was successfully tested at the Department of Energy Rocky Mountain Oilfield Test Center (DOE RMOTC) field test site in Casper, Wyoming. An 8-in diameter by 26-ft long SeismicPULSER{trademark} drill string tool was designed and manufactured by TII. An APS Turbine Alternator powered the SeismicPULSER{trademark} to produce two Hz frequency peak signals repeated every 20 seconds. Since the ION Geophysical, Inc. (ION) seismic survey surface recording system was designed to detect a minimum downhole signal of three Hz, successful performance was confirmed with a 5.3 Hz recording with the pumps running. The two Hz signal generated by the sparker was modulated with the 3.3 Hz signal produced by the mud pumps to create an intense 5.3 Hz peak frequency signal. The low frequency sparker source is ultimately capable of generating selectable peak frequencies of 1 to 40 Hz with high-frequency spectra content to 10 kHz. The lower frequencies and, perhaps, low-frequency sweeps, are needed to achieve sufficient range and resolution for realtime imaging in deep (15,000 ft+), high-temperature (150 C) wells for (a) geosteering, (b) accurate seismic hole depth, (c) accurate pore pressure determinations ahead of the bit, (d) near wellbore diagnostics with a downhole receiver and wired drill pipe, and (e) reservoir model verification. Furthermore, the pressure of the sparker bubble will disintegrate rock resulting in an increased overall rates of penetration. Other applications for the SeismicPULSER{trademark} technology are to deploy a low-frequency source for greater range on a wireline for Reverse Vertical Seismic Profiling (RVSP) and Cross-Well Tomography. Commercialization of the technology is being undertaken by first contacting stakeholders to define the value proposition for rig site services utilizing SeismicPULSER{trademark} technologies. Stakeholders include national oil companies, independent oil companies, independents, service companies, and commercial investors. Service companies will introduce a new Drill Bit SWD service for deep HTHP wells. Collaboration will be encouraged between stakeholders in the form of joint industry projects to develop prototype tools and initial field trials. No barriers have been identified for developing, utilizing, and exploiting the low-frequency SeismicPULSER{trademark} source in a

  10. Bulletin of the Seismological Society of America, 90, 6B, pp. S65S76, December 2000 The SCEC Southern California Reference Three-Dimensional Seismic

    E-Print Network [OSTI]

    Clayton, Robert W.

    Southern California Reference Three-Dimensional Seismic Velocity Model Version 2 by Harold Magistrale-dimensional (3D) seismic velocity model of southern California developed by the Southern California Earthquake mesh of seismic velocity and density values. This parameterization is convenient to store, transfer

  11. Facial image comparison using 3D techniques Arnout Ruifroka

    E-Print Network [OSTI]

    Veltkamp, Remco

    and European Surface Anthropometry Resource) survey [3]. The main goal of the CAESAR-survey was to acquire 3D

  12. Development of monolithic 3D ion traps microfabricated

    E-Print Network [OSTI]

    Hensinger, Winfried

    surface traps [1,2], 2) 3D Au coated alumina [3-5],3) 3D degenerate Silicon [6], 4) monolithic 3D Ga. 6) Electroplating to 5 µm thickness of Au. Concept Fabrication method Potential -25 V 25 V 0 V

  13. 3D FOOT DIGITIZING AND ITS APPLICATION TO FOOTWEAR FITTING

    E-Print Network [OSTI]

    Juan, Alfons

    1 3D FOOT DIGITIZING AND ITS APPLICATION TO FOOTWEAR FITTING DIGITALISATION 3D DU PIED ET LEUR and methodological difficulties. The combination of 3D scanning systems with mathematical classification techniques for a given customer. In this paper, a new approach for customized classification (assignment) of comfortable

  14. 3-D Earth model more accurately pinpoints explosions

    E-Print Network [OSTI]

    - 1 - 3-D Earth model more accurately pinpoints explosions October 25, 2013 During the Cold War, U) have partnered to develop a 3-D model of the Earth's mantle and crust called SALSA3D (Sandia-Los Alamos of explosions. Significance of the research After an explosion, the energy travels through the Earth as waves

  15. Structural Optimization and 3D Printing Robert V. Kohn

    E-Print Network [OSTI]

    Structural Optimization and 3D Printing Robert V. Kohn Courant Institute, NYU SIAM CS&E Meeting, March 2015 Robert V. Kohn Structural Optimization and 3D Printing #12;Outline Mandate: identify areas with interesting open questions. Hence 3D printing and structural optimization. My involvement began

  16. 3D Computer Vision and Video Computing IntroductionIntroduction

    E-Print Network [OSTI]

    Zhu, Zhigang

    /Analysis/Interpretation Interpretation is an Artificial Intelligence Problem Sources of Knowledge in Vision Levels of Abstraction1 3D Computer Vision and Video Computing IntroductionIntroduction CSc I6716 Spring 2012 3D Computer Vision Introduction Instructor: Zhigang Zhu City College of New York zzhu@ccny.cuny.edu 3D Computer

  17. 3D Computer Vision and Video Computing IntroductionIntroduction

    E-Print Network [OSTI]

    Zhu, Zhigang

    /Analysis/Interpretation Interpretation is an Artificial Intelligence Problem Sources of Knowledge in Vision Levels of Abstraction1 3D Computer Vision and Video Computing IntroductionIntroduction CSc I6716 Spring 2011 3D Computer Vision Introduction Instructor: Zhigang Zhu City College of New York zzhu@ccny.cuny.edu 3D Computer

  18. 3D Computer Vision and Video Computing Introduction

    E-Print Network [OSTI]

    Zhu, Zhigang

    /Analysis/Interpretation Interpretation is an Artificial Intelligence Problem Sources of Knowledge in Vision Levels of Abstraction3D Computer Vision and Video Computing Introduction Instructor: Zhigang Zhu City College of New York zzhu@ccny.cuny.edu CSc I6716 Fall 2010 3D Computer Vision Introduction #12;3D Computer Vision

  19. 3D Computer Vision and Video Computing IntroductionIntroduction

    E-Print Network [OSTI]

    Zhu, Zhigang

    /Analysis/Interpretation Interpretation is an Artificial Intelligence Problem Sources of Knowledge in Vision Levels of Abstraction1 3D Computer Vision and Video Computing IntroductionIntroduction CSc I6716 Spring 2013 3D Computer Vision Introduction Instructor: Zhigang Zhu City College of New York zzhu@ccny.cuny.edu 3D Computer

  20. 3D Printing Prof. Hank Dietz & Paul Eberhart

    E-Print Network [OSTI]

    Dietz, Henry G. "Hank"

    3D Printing Prof. Hank Dietz & Paul Eberhart September 28, 2013 University of Kentucky Electrical/Craft: paper moves in Y, knife in X EDM/Laser: X/Y bed, vaporizes material #12;Subtractive 3D CNC: Computer "The whole is greater than the sum of its parts." ­ Aristotle #12;Additive 3D Building Material

  1. RESEARCH ARTICLE Strengthening of 3D Printed Fused

    E-Print Network [OSTI]

    Haller, Gary L.

    RESEARCH ARTICLE Strengthening of 3D Printed Fused Deposition Manufactured Parts Using the Fill as examples of 3D printed parts used in real-world applications. Introduction While the quality of additive to the wider-spread implementation of 3D- printed components continues to be the limited strength of printed

  2. 3D PRINTING FOR INTELLIGENT METALLIC STRUCTURES M. Strantza1

    E-Print Network [OSTI]

    Boyer, Edmond

    3D PRINTING FOR INTELLIGENT METALLIC STRUCTURES M. Strantza1 , D. De Baere2 , M. Rombouts3 , SSHM system is produced by 3D printing or additive manufacturing. Additive Manufacturing (AM) is a "process to enable its implementation. This work demonstrates the feasibility study of eSHM systems produced by 3D

  3. Seismic Isolation Working Meeting Gap Analysis Report

    SciTech Connect (OSTI)

    Justin Coleman; Piyush Sabharwall

    2014-09-01

    The ultimate goal in nuclear facility and nuclear power plant operations is operating safety during normal operations and maintaining core cooling capabilities during off-normal events including external hazards. Understanding the impact external hazards, such as flooding and earthquakes, have on nuclear facilities and NPPs is critical to deciding how to manage these hazards to expectable levels of risk. From a seismic risk perspective the goal is to manage seismic risk. Seismic risk is determined by convolving the seismic hazard with seismic fragilities (capacity of systems, structures, and components (SSCs)). There are large uncertainties associated with evolving nature of the seismic hazard curves. Additionally there are requirements within DOE and potential requirements within NRC to reconsider updated seismic hazard curves every 10 years. Therefore opportunity exists for engineered solutions to manage this seismic uncertainty. One engineered solution is seismic isolation. Current seismic isolation (SI) designs (used in commercial industry) reduce horizontal earthquake loads and protect critical infrastructure from the potentially destructive effects of large earthquakes. The benefit of SI application in the nuclear industry is being recognized and SI systems have been proposed, in the American Society of Civil Engineers (ASCE) 4 standard, to be released in 2014, for Light Water Reactors (LWR) facilities using commercially available technology. However, there is a lack of industry application to the nuclear industry and uncertainty with implementing the procedures outlined in ASCE-4. Opportunity exists to determine barriers associated with implementation of current ASCE-4 standard language.

  4. Seismic Attenuation Inversion with t* Using tstarTomog.

    SciTech Connect (OSTI)

    Preston, Leiph

    2014-09-01

    Seismic attenuation is defined as the loss of the seismic wave amplitude as the wave propagates excluding losses strictly due to geometric spreading. Information gleaned from seismic waves can be utilized to solve for the attenuation properties of the earth. One method of solving for earth attenuation properties is called t*. This report will start by introducing the basic theory behind t* and delve into inverse theory as it pertains to how the algorithm called tstarTomog inverts for attenuation properties using t* observations. This report also describes how to use the tstarTomog package to go from observed data to a 3-D model of attenuation structure in the earth.

  5. Performance of a 3D Spectral code on the Cray T3D and IBM SP2 parallel supercomputers

    E-Print Network [OSTI]

    Brummell, Nic

    Performance of a 3D Spectral code on the Cray T3D and IBM SP2 parallel supercomputers Clive F of the new generation of distributed memory supercomputers, in particular the Cray T3D and IBM SP2, we of 256 3 and 512 3 . The first two tables are for the Cray T3D and the other two for the IBM SP2

  6. ZABULIS et al.: 3D HEAD POSE ESTIMATION FROM MULTIPLE DISTANT VIEWS 1 3D head pose estimation from multiple

    E-Print Network [OSTI]

    Zabulis, Xenophon

    imaging, despite the low-resolution appearance of subjects. 1 Introduction 3D head pose estimation. In such situations, a human head is imaged in relatively low resolution, illumination artifacts are frequentZABULIS et al.: 3D HEAD POSE ESTIMATION FROM MULTIPLE DISTANT VIEWS 1 3D head pose estimation from

  7. AUTOMATED RECOGNITION OF 3D CAD OBJECTS IN SITE LASER SCANS FOR PROJECT 3D STATUS VISUALIZATION AND

    E-Print Network [OSTI]

    Bosché, Frédéric

    15296) are being developed for project and facility life-cycle management. They are typically built upon control (QA/QC), and (4) life-cycle 3D health monitoring. On one side, multi-dimensional CAD softwareAUTOMATED RECOGNITION OF 3D CAD OBJECTS IN SITE LASER SCANS FOR PROJECT 3D STATUS VISUALIZATION

  8. Programao Grfica 3D com OpenGL, Open Inventor e Java 3D ALESSANDRO L. BICHO

    E-Print Network [OSTI]

    Barbosa, Alberto

    Programação Gráfica 3D com OpenGL, Open Inventor e Java 3D ALESSANDRO L. BICHO ½ LUIZ GONZAGA DA estudado a Open Inventor, uma ØÓÓÐ Ø orientada a objetos construída sobre a OpenGL, contemplando funções a Java 3D, que é fortemente inspirada na Open Inventor. Ela é a biblioteca padrão da linguagem Java para

  9. Stack and cell modelling with SOFC3D: a computer program for the 3D simulations of

    E-Print Network [OSTI]

    Herbin, Raphaèle

    Stack and cell modelling with SOFC3D: a computer program for the 3D simulations of solid oxide fuel, France 1 Introduction SOFC3D is a computer program, which simulates the behaviour of a solid oxide fuel or the channels, the electrical potential \\Phi at any point of the solid part of the SOFC, and the molar fractions

  10. RELAP5-3D Compressor Model

    SciTech Connect (OSTI)

    James E. Fisher; Cliff B. Davis; Walter L. Weaver

    2005-06-01

    A compressor model has been implemented in the RELAP5-3D© code. The model is similar to that of the existing pump model, and performs the same function on a gas as the pump performs on a single-phase or two-phase fluid. The compressor component consists of an inlet junction and a control volume, and optionally, an outlet junction. This feature permits cascading compressor components in series. The equations describing the physics of the compressor are derived from first principles. These equations are used to obtain the head, the torque, and the energy dissipation. Compressor performance is specified using a map, specific to the design of the machine, in terms of the ratio of outlet-to-inlet total (or stagnation) pressure and adiabatic efficiency as functions of rotational velocity and flow rate. The input quantities are specified in terms of dimensionless variables, which are corrected to stagnation density and stagnation sound speed. A small correction was formulated for the input of efficiency to account for the error introduced by assumption of constant density when integrating the momentum equation. Comparison of the results of steady-state operation of the compressor model to those of the MIT design calculation showed excellent agreement for both pressure ratio and power.

  11. Proximity field nanopatterning (PnP) employs a 2D grating to create a 3D optical interferogram within an underlying photore-

    E-Print Network [OSTI]

    Rogers, John A.

    Proximity field nanopatterning (PnP) employs a 2D grating to create a 3D optical interferogram by images of 3D polymeric, semiconducting and ceramic structures fabricated by PnP. Paul Braun and co and three dimen- sions provides opportunities for far more exotic optical properties including 3D photonic

  12. APPLICATION OF NEW SEISMIC ATTRIBUTES TO RESERVOIR MONITORING

    E-Print Network [OSTI]

    APPLICATION OF NEW SEISMIC ATTRIBUTES TO RESERVOIR MONITORING by Tagir Galikeev #12;#12;ABSTRACT and to best conduct seismic inversion and adapt it to reservoir model building for volumetric computation and reservoir simulation. The author develops algorithms of the seismic attributes including frequency

  13. S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES

    E-Print Network [OSTI]

    S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES COMMISSION General Committee Final workshop Ispra (IT), May 30 th, 2013 MAID project : Seismic behavior of L- and T-shaped unreinforced Masonry shear walls including Acoustic Isolation Devices #12;SEISMIC ENGINEERING RESEARCH

  14. System and method for generating micro-seismic events and characterizing properties of a medium with non-linear acoustic interactions

    DOE Patents [OSTI]

    Vu, Cung Khac; Nihei, Kurt; Johnson, Paul A.; Guyer, Robert; Ten Cate, James A.; Le Bas, Pierre-Yves; Larmat, Carene S.

    2015-12-29

    A method and system includes generating a first coded acoustic signal including pulses each having a modulated signal at a central frequency; and a second coded acoustic signal each pulse of which includes a modulated signal a central frequency of which is a fraction d of the central frequency of the modulated signal for the corresponding pulse in the first plurality of pulses. A receiver detects a third signal generated by a non-linear mixing process in the mixing zone and the signal is processed to extract the third signal to obtain an emulated micro-seismic event signal occurring at the mixing zone; and to characterize properties of the medium or creating a 3D image of the properties of the medium, or both, based on the emulated micro-seismic event signal.

  15. Method for processing seismic data to identify anomalous absorption zones

    DOE Patents [OSTI]

    Taner, M. Turhan

    2006-01-03

    A method is disclosed for identifying zones anomalously absorptive of seismic energy. The method includes jointly time-frequency decomposing seismic traces, low frequency bandpass filtering the decomposed traces to determine a general trend of mean frequency and bandwidth of the seismic traces, and high frequency bandpass filtering the decomposed traces to determine local variations in the mean frequency and bandwidth of the seismic traces. Anomalous zones are determined where there is difference between the general trend and the local variations.

  16. TRACE3D. Interactive Beam-Dynamics Program

    SciTech Connect (OSTI)

    Singleton, L.; Yao, C.Y.

    1993-12-01

    TRACE3D is an interactive program that calculates the envelopes of a bunched beam, including linear space-charge forces, through a user-defined system. The transport system may consist of the following elements: drift, thin lens, quadrupole, permanent magnet quadrupole, solenoid, doublet, triplet, bending magnet, edge angle (for bend), RF gap, radio-frequency-quadrupole cell, RF cavity, coupled-cavity tank, user-desired element, coordinate rotation, and identical element. The beam is represented by a 6X6 matrix defining a hyper-ellipsoid in six-dimensional phase space. The projection of this hyperellipsoid on any two-dimensional plane is an ellipse that defines the boundary of the beam in that plane.

  17. Introduction Report 21 of the Consortium project "Seismic Waves in Complex 3D Structures"

    E-Print Network [OSTI]

    Cerveny, Vlastislav

    Bakulin (SaudiAramco, Dhahran, Saudi Arabia; SEG distinguished lec- turer), Norman Bleistein (Colorado

  18. On 3D modeling of seismic wave propagation via a structured ...

    E-Print Network [OSTI]

    2011-07-27

    In many problems following the discretization of linear par- tial differential ... ods to mitigate its nonlinear nature. The Helmholtz- .... based on certain sparse matrix techniques and structured ma- ..... tain power of 2. .... Upper left: partial SEAM velocity model; upper right: 7.5Hz time-harmonic wavefield with quality factor Q =.

  19. A Cultural Resources Survey for the Smith Point 3-D Seismic Project in Chambers County Texas 

    E-Print Network [OSTI]

    Moore, William; Baxter, William

    2015-07-24

    Exploration and Production Company of Houston, Texas in high probability areas were shovel tested. No archaeological sites were found, and no artifacts were collected. Copies of this report are on file at the Texas Historical Commission (THC), United States...

  20. Center-to-Limb Variation of Solar 3-D Hydrodynamical Simulations

    E-Print Network [OSTI]

    L. Koesterke; C. Allende Prieto; D. L. Lambert

    2008-02-15

    We examine closely the solar Center-to-Limb variation of continua and lines and compare observations with predictions from both a 3-D hydrodynamic simulation of the solar surface (provided by M. Asplund and collaborators) and 1-D model atmospheres. Intensities from the 3-D time series are derived by means of the new synthesis code ASSET, which overcomes limitations of previously available codes by including a consistent treatment of scattering and allowing for arbitrarily complex line and continuum opacities. In the continuum, we find very similar discrepancies between synthesis and observation for both types of model atmospheres. This is in contrast to previous studies that used a ``horizontally'' and time averaged representation of the 3-D model and found a significantly larger disagreement with observations. The presence of temperature and velocity fields in the 3-D simulation provides a significant advantage when it comes to reproduce solar spectral line shapes. Nonetheless, a comparison of observed and synthetic equivalent widths reveals that the 3-D model also predicts more uniform abundances as a function of position angle on the disk. We conclude that the 3-D simulation provides not only a more realistic description of the gas dynamics, but, despite its simplified treatment of the radiation transport, it also predicts reasonably well the observed Center-to-Limb variation, which is indicative of a thermal structure free from significant systematic errors.

  1. 3D Magnetotelluric Characterization Of The Geothermal Anomaly...

    Open Energy Info (EERE)

    3D Magnetotelluric Characterization Of The Geothermal Anomaly In The Llucmajor Aquifer System (Majorca, Spain) Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  2. RELAP5-3D V. 4.X.X

    Energy Science and Technology Software Center (OSTI)

    000191MLTPL01 NON-NRC FUNDED RELAP5-3D VERSION 4.x.x SOFTWARE REACTOR EXCURSION AND LEAK ANALYSIS PACKAGE - THREE DIMENSIONAL   

  3. 3D Mt Resistivity Imaging For Geothermal Resource Assessment...

    Open Energy Info (EERE)

    3D Mt Resistivity Imaging For Geothermal Resource Assessment And Environmental Mitigation At The Glass Mountain Kgra, California Jump to: navigation, search OpenEI Reference...

  4. Novel 3-D Printed Inverters for Electric Vehicles Can Improve...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Efficiency 3D Printed and Semiconductor Technology 'Mash-up' The General Motors Baltimore Operations facility at White Marsh is producing electric motors for the Chevrolet...

  5. 3-D Combustion Simulation Strategy Status, Future Potential,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Simulation Strategy Status, Future Potential, and Application Issues 3-D Combustion Simulation Strategy Status, Future Potential, and Application Issues 2004 Diesel...

  6. Fluid Imaging of Enhanced Geothermal Systems through Joint 3D...

    Open Energy Info (EERE)

    Fluid Imaging of Enhanced Geothermal Systems through Joint 3D Geophysical Inverse Modeling Geothermal Lab Call Project Jump to: navigation, search Last modified on July 22, 2011....

  7. A Geoscience Perspective on Immersive 3D Gridded Data Visualization

    E-Print Network [OSTI]

    Hamann, Bernd

    , interactive exploration Preprint submitted to Elsevier 14 November 2007 #12;a) Seismic tomography & grid faces, that was developed specifically for interactive, visual exploration in immersive virtual reality (VR) environments b) Seismic tomography & world map d) Alaska slab isosurface & streamlinesc) Alaska slab color slices

  8. MULTICOMPONENT SEISMIC ANALYSIS AND CALIBRATION TO IMPROVE RECOVERY FROM ALGAL MOUNDS: APPLICATION TO THE ROADRUNNER/TOWAOC AREA OF THE PARADOX BASIN, UTE MOUNTAIN UTE RESERVATION, COLORADO

    SciTech Connect (OSTI)

    Paul La Pointe; Claudia Rebne; Steve Dobbs

    2003-07-10

    This report describes the results made in fulfillment of contract DE-FG26-02NT15451, ''Multicomponent Seismic Analysis and Calibration to Improve Recovery from Algal Mounds: Application to the Roadrunner/Towaoc Area of the Paradox Basin, Ute Mountain Ute Reservation, Colorado''. Optimizing development of highly heterogeneous reservoirs where porosity and permeability vary in unpredictable ways due to facies variations can be challenging. An important example of this is in the algal mounds of the Lower and Upper Ismay reservoirs of the Paradox Basin in Utah and Colorado. It is nearly impossible to develop a forward predictive model to delineate regions of better reservoir development, and so enhanced recovery processes must be selected and designed based upon data that can quantitatively or qualitatively distinguish regions of good or bad reservoir permeability and porosity between existing well control. Recent advances in seismic acquisition and processing offer new ways to see smaller features with more confidence, and to characterize the internal structure of reservoirs such as algal mounds. However, these methods have not been tested. This project will acquire cutting edge, three-dimensional, nine-component (3D9C) seismic data and utilize recently-developed processing algorithms, including the mapping of azimuthal velocity changes in amplitude variation with offset, to extract attributes that relate to variations in reservoir permeability and porosity. In order to apply advanced seismic methods a detailed reservoir study is needed to calibrate the seismic data to reservoir permeability, porosity and lithofacies. This will be done by developing a petrological and geological characterization of the mounds from well data; acquiring and processing the 3D9C data; and comparing the two using advanced pattern recognition tools such as neural nets. In addition, should the correlation prove successful, the resulting data will be evaluated from the perspective of selecting alternative enhanced recovery processes, and their possible implementation. The work is being carried out on the Roadrunner/Towaoc Fields of the Ute Mountain Ute Tribe, located in the southwestern corner of Colorado. Although this project is focused on development of existing resources, the calibration established between the reservoir properties and the 3D9C seismic data can also enhance exploration success. During the time period covered by this report, the majority of the project effort has gone into the permitting, planning and design of the 3D seismic survey, and to select a well for the VSP acquisition. The business decision in October, 2002 by WesternGeco, the projects' seismic acquisition contractor, to leave North America, has delayed the acquisition until late summer, 2003. The project has contracted Solid State, a division of Grant Geophysical, to carry out the acquisition. Moreover, the survey has been upgraded to a 3D9C from the originally planned 3D3C survey, which should provide even greater resolution of mounds and internal mound structure.

  9. High-resolution geostatistical inversion of a seismic data set acquired in a Gulf of Mexico gas reservoir.

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    High-resolution geostatistical inversion of a seismic data set acquired in a Gulf of Mexico gas, UNOCAL Corporation Summary Geostatistical inversion is applied on a Gulf-of-Mexico, 3D post-stack seismic in this paper is located in the Gulf of Mexico, off the coast of Louisiana. Existing development wells reach two

  10. Chopper: Partitioning models into 3D-printable parts

    E-Print Network [OSTI]

    Luo, Linjie

    3D printing technology is rapidly maturing and becoming ubiquitous. One of the remaining obstacles to wide-scale adoption is that the object to be printed must fit into the working volume of the 3D printer. We propose a ...

  11. Deep Learning Representation using Autoencoder for 3D Shape Retrieval

    E-Print Network [OSTI]

    Deep Learning Representation using Autoencoder for 3D Shape Retrieval Zhuotun Zhu, Xinggang Wang@hust.edu.cn Abstract--We study the problem of how to build a deep learning representation for 3D shape. Deep learning the features learned on 2D images. In addition, we show the proposed deep learning feature is complementary

  12. Noise Analysis and Synthesis for 3D Laser Depth Scanners

    E-Print Network [OSTI]

    Martin, Ralph R.

    Noise Analysis and Synthesis for 3D Laser Depth Scanners Xianfang Sun a,b,, Paul L. Rosin a , Ralph the noise present in range data measured by a Konica Minolta Vivid 910 scanner, in order to better characterise real scanner noise. Methods for denoising 3D mesh data have often assumed the noise to be Gaussian

  13. Density-Based Shape Descriptors for 3D Object Retrieval

    E-Print Network [OSTI]

    Yemez, Yücel

    position among competing methods. 1 Introduction There is a growing interest in 3D shape classification, matching and retrieval as 3D object models become more commonplace in various domains such as computer-aided design, medical imaging, molecular analysis and digital preser- vation of cultural heritage. The research

  14. 3D Wavelet-Based Filter and Method

    DOE Patents [OSTI]

    Moss, William C. (San Mateo, CA); Haase, Sebastian (San Francisco, CA); Sedat, John W. (San Francisco, CA)

    2008-08-12

    A 3D wavelet-based filter for visualizing and locating structural features of a user-specified linear size in 2D or 3D image data. The only input parameter is a characteristic linear size of the feature of interest, and the filter output contains only those regions that are correlated with the characteristic size, thus denoising the image.

  15. Kirchhoff prestack depth migration in 3-D simple models

    E-Print Network [OSTI]

    Cerveny, Vlastislav

    Kirchhoff prestack depth migration in 3-D simple models: comparison of triclinic anisotropy depth migration to calculate migrated sections in 3-D simple anisotropic homogeneous velocity models interface. The anisotropy in the upper layer is triclinic. We apply Kirch- hoff prestack depth migration

  16. AUTOMATIC AND ROBUST SEMANTIC REGISTRATION OF 3D HEAD SCANS

    E-Print Network [OSTI]

    Eisert, Peter

    useful for error- prone vision techniques like stereo analysis but also for model based repairing for applications such as 3D graphics production and also for computer vision research. Laser scanners are the primeAUTOMATIC AND ROBUST SEMANTIC REGISTRATION OF 3D HEAD SCANS David C. Schneider, Peter Eisert

  17. A 3D Magnetic Force Manipulator DC Prototype

    E-Print Network [OSTI]

    North Carolina at Chapel Hill, University of

    A 3D Magnetic Force Manipulator DC Prototype Leandra Vicci Microelectronic Systems Laboratory optical field intensities which interact strongly with many materials and may produce undesired side;Leandra Vicci A 3D Magnetic Force Manipulator DC Prototype 17 October 2001 1 Conceptual design

  18. Large area 3D helical photonic crystals A. K. Rauba)

    E-Print Network [OSTI]

    New Mexico, University of

    of helical structures (3D photonic crystals) using a simple, parallel, large-area lithography processLarge area 3D helical photonic crystals A. K. Rauba) and S. R. J. Brueckb) Center for High, enabling a high index contrast chiral meta- material. Optical transmission measurements of these helical

  19. Unraveling the 3D genome: genomics tools for multiscale exploration

    E-Print Network [OSTI]

    Straight, Aaron

    Unraveling the 3D genome: genomics tools for multiscale exploration Viviana I. Risca and William J genome and the roles it may play in regulating transcription. Here we review core methods and new tools-scale chromosomal domains, and discuss the emerging pic- ture of the 3D genome that these tools have revealed. Blind

  20. Scatterplot3d an R package for Visualizing Multivariate Data

    E-Print Network [OSTI]

    Gotelli, Nicholas J.

    Scatterplot3d ­ an R package for Visualizing Multivariate Data Uwe Ligges and Martin M Software: Ligges, U. and M¨achler, M. (2003): Scatterplot3d ­ an R Package for Visualizing Multivariate for the visualization of multivariate data in a three dimensional space. R is a "language for data analysis and graphics

  1. Energy Effective 3D Stacked Hybrid NEMFET-CMOS Caches

    E-Print Network [OSTI]

    Cotofana, Sorin

    Energy Effective 3D Stacked Hybrid NEMFET-CMOS Caches Mihai Lefter, Marius Enachescu, George Razvan-stacked hybrid memories as alternative to traditional CMOS SRAMs in L1 and L2 cache implementations and analyse-per-Cycle (IPC) and energy consumption. The 3D hybrid memory cell relies on: (i) a Short Circuit Current Free

  2. 3-D Facial Imaging for Identification Anselmo Lastra

    E-Print Network [OSTI]

    McShea, Daniel W.

    Elkins ­ Ali Farsaie ­ Ping Zhuang #12;The Vision · For program like Global Entry, NEXUS, or SENTRI Right Camera Making the 3D Model · If we can identify same point in 2 views, we can compute depth at that point, and thus 3D model #12;Big Problem: Correspondence · What if we can't find corresponding point

  3. CREATING 3D ANIMATED HUMAN BEHAVIORS FOR VIRTUAL WORLDS

    E-Print Network [OSTI]

    Plotkin, Joshua B.

    i CREATING 3D ANIMATED HUMAN BEHAVIORS FOR VIRTUAL WORLDS Jan M. Allbeck A DISSERTATION in Computer, and a scholar. #12;iv ABSTRACT CREATING 3D ANIMATED HUMAN BEHAVIORS FOR VIRTUAL WORLDS Jan M. Allbeck Norman I. Badler Creating virtual scenarios that simulate a substantial human population with typical and varied

  4. SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES

    E-Print Network [OSTI]

    SERIES SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES COMMISSION;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES LNEC/NESDE Main activities · Seismic action characterization studies, seismic hazard and seismic risk · Seismic assessment of structures

  5. SEISMIC RAY THEORY Seismic Ray Theory presents the most comprehensive treatment of the seismic

    E-Print Network [OSTI]

    Cerveny, Vlastislav

    #12;SEISMIC RAY THEORY Seismic Ray Theory presents the most comprehensive treatment of the seismic ray method available. This method plays an important role in seismology, seismic exploration, and the interpretation of seismic measurements. The book presents a consistent treatment of the seismic ray method, based

  6. Three wafer stacking for 3D integration.

    SciTech Connect (OSTI)

    Greth, K. Douglas; Ford, Christine L.; Lantz, Jeffrey W.; Shinde, Subhash L.; Timon, Robert P.; Bauer, Todd M.; Hetherington, Dale Laird; Sanchez, Carlos Anthony

    2011-11-01

    Vertical wafer stacking will enable a wide variety of new system architectures by enabling the integration of dissimilar technologies in one small form factor package. With this LDRD, we explored the combination of processes and integration techniques required to achieve stacking of three or more layers. The specific topics that we investigated include design and layout of a reticle set for use as a process development vehicle, through silicon via formation, bonding media, wafer thinning, dielectric deposition for via isolation on the wafer backside, and pad formation.

  7. Emerging Technologies in the Built Environment: Geographic Information Science (GIS), 3D Printing, and Additive Manufacturing

    SciTech Connect (OSTI)

    New, Joshua Ryan

    2014-01-01

    Abstract 1: Geographic information systems emerged as a computer application in the late 1960s, led in part by projects at ORNL. The concept of a GIS has shifted through time in response to new applications and new technologies, and is now part of a much larger world of geospatial technology. This presentation discusses the relationship of GIS and estimating hourly and seasonal energy consumption profiles in the building sector at spatial scales down to the individual parcel. The method combines annual building energy simulations for city-specific prototypical buildings and commonly available geospatial data in a GIS framework. Abstract 2: This presentation focuses on 3D printing technologies and how they have rapidly evolved over the past couple of years. At a basic level, 3D printing produces physical models quickly and easily from 3D CAD, BIM (Building Information Models), and other digital data. Many AEC firms have adopted 3D printing as part of commercial building design development and project delivery. This presentation includes an overview of 3D printing, discusses its current use in building design, and talks about its future in relation to the HVAC industry. Abstract 3: This presentation discusses additive manufacturing and how it is revolutionizing the design of commercial and residential facilities. Additive manufacturing utilizes a broad range of direct manufacturing technologies, including electron beam melting, ultrasonic, extrusion, and laser metal deposition for rapid prototyping. While there is some overlap with the 3D printing talk, this presentation focuses on the materials aspect of additive manufacturing and also some of the more advanced technologies involved with rapid prototyping. These technologies include design of carbon fiber composites, lightweight metals processing, transient field processing, and more.

  8. Seismic velocity estimation from time migration

    E-Print Network [OSTI]

    Cameron, Maria Kourkina

    2007-01-01

    Seismic images . . . . . . . . . . . . . . . . .Algorithms producing the seismic velocities from thethe Dix velocities and the true seismic velocities in 2D . .

  9. Seismic Performance Assessment in Dense Urban Environments

    E-Print Network [OSTI]

    Mason, Henry Benjamin

    2011-01-01

    Kinematic interaction . . 4.4.2 Seismic footing response 6Deterministic seismic hazard analysis . . . . . . . . . .Probabilistic seismic hazard analysis . . . . . . . . .

  10. FSU Office of Research Program in Interdisciplinary Computing (PIC) What is 3D printing?

    E-Print Network [OSTI]

    Ronquist, Fredrik

    (PIC) What is 3D printing? 3D printing is a process of making. 3D printing is distinct from traditional machining techniques, which mostly organs, meat, circuit boards and batteries. 3D printing impacts nearly every

  11. 3D heterogeneous systems are a key to the next generation of electronics

    E-Print Network [OSTI]

    Rogers, John A.

    3D heterogeneous systems are a key to the next generation of electronics Researchers of substrate, including lightweight, flexible plastic sheets. Circuits built in this way offer electrical-based approaches to electronics. The invention of the transistor was considered by many to be one of the greatest

  12. 3D ANALYSIS OF TOMOGRAPHIC IMAGES , Member ASCE, T. Zhang2

    E-Print Network [OSTI]

    Franklin, W. Randolph

    resolution tomographic data of concrete in order to study its fracture energy and permeability investigating include fracture energy, pore structure and permeability of concrete. Fracture energy has been are 3D images of concrete created with high-resolution tomography (Landis 99). We are using several

  13. 3D Bone Microarchitecture Modeling and Fracture Risk Department of Computer

    E-Print Network [OSTI]

    Buffalo, State University of New York

    3D Bone Microarchitecture Modeling and Fracture Risk Prediction Hui Li Department of Computer will also rise. It calls for innovative research on understanding of osteoporo- sis and fracture mechanisms-of-the-art probabilistic approach to analyze bone fracture risk factors including demographic attributes and life styles

  14. Preliminary Study for Dosimetric Characteristics of 3D-printed Materials with Megavoltage Photons

    E-Print Network [OSTI]

    Jeong, Seonghoon; Chung, Weon Kuu; Kim, Dong Wook

    2015-01-01

    In these days, 3D-printer is on the rise in various fields including radiation therapy. This preliminary study aimed to estimate the dose characteristics of the 3D-printer materials which could be used as the compensator or immobilizer in radiation treatment. The cubes which have 5cm length and different densities as 50%, 75% and 100% were printed by 3D-printer. A planning CT scans for cubes were performed using a CT simulator (Brilliance CT, Philips Medical System, Netherlands). Dose distributions behind the cube were calculated when 6MV photon beam passed through cube. The dose response for 3D-printed cube, air and water were measured by using EBT3 film and 2D array detector. When results of air case were normalized to 100, dose calculated by TPS and measured dose of 50% and 75% cube were 96~99. Measured and calculated doses of water and 100% cube were 82~84. HU values of 50%, 75% and 100% were -910, -860 and -10, respectively. From these results, 3D-printer in radiotherapy could be used for medical purpose...

  15. Modeling 3D animals from a side-view sketch Even Entem a,b,n

    E-Print Network [OSTI]

    Cordier, Frederic

    environments and of 3D printing technologies, many practitioners would like to author their own 3D shapes

  16. Controlling Tokamak Geometry with 3D Magnetic Perturbations

    E-Print Network [OSTI]

    Bird, Thomas M

    2014-01-01

    It is shown that small externally applied magnetic perturbations can significantly alter important geometric properties of magnetic flux surfaces in tokamaks. Through 3D shaping, experimentally relevant perturbation levels are large enough to influence turbulent transport and MHD stability in the pedestal region. It is shown that the dominant pitch-resonant flux surface deformations are primarily induced by non-resonant 3D fields, particularly in the presence of significant axisymmetric shaping. The spectral content of the applied 3D field can be used to control these effects.

  17. Comparison of 2D and 3D gamma analyses

    SciTech Connect (OSTI)

    Pulliam, Kiley B.; Huang, Jessie Y.; Howell, Rebecca M.; Followill, David; Kry, Stephen F.; Bosca, Ryan; O’Daniel, Jennifer

    2014-02-15

    Purpose: As clinics begin to use 3D metrics for intensity-modulated radiation therapy (IMRT) quality assurance, it must be noted that these metrics will often produce results different from those produced by their 2D counterparts. 3D and 2D gamma analyses would be expected to produce different values, in part because of the different search space available. In the present investigation, the authors compared the results of 2D and 3D gamma analysis (where both datasets were generated in the same manner) for clinical treatment plans. Methods: Fifty IMRT plans were selected from the authors’ clinical database, and recalculated using Monte Carlo. Treatment planning system-calculated (“evaluated dose distributions”) and Monte Carlo-recalculated (“reference dose distributions”) dose distributions were compared using 2D and 3D gamma analysis. This analysis was performed using a variety of dose-difference (5%, 3%, 2%, and 1%) and distance-to-agreement (5, 3, 2, and 1 mm) acceptance criteria, low-dose thresholds (5%, 10%, and 15% of the prescription dose), and data grid sizes (1.0, 1.5, and 3.0 mm). Each comparison was evaluated to determine the average 2D and 3D gamma, lower 95th percentile gamma value, and percentage of pixels passing gamma. Results: The average gamma, lower 95th percentile gamma value, and percentage of passing pixels for each acceptance criterion demonstrated better agreement for 3D than for 2D analysis for every plan comparison. The average difference in the percentage of passing pixels between the 2D and 3D analyses with no low-dose threshold ranged from 0.9% to 2.1%. Similarly, using a low-dose threshold resulted in a difference between the mean 2D and 3D results, ranging from 0.8% to 1.5%. The authors observed no appreciable differences in gamma with changes in the data density (constant difference: 0.8% for 2D vs 3D). Conclusions: The authors found that 3D gamma analysis resulted in up to 2.9% more pixels passing than 2D analysis. It must be noted that clinical 2D versus 3D datasets may have additional differences—for example, if 2D measurements are made with a different dosimeter than 3D measurements. Factors such as inherent dosimeter differences may be an important additional consideration to the extra dimension of available data that was evaluated in this study.

  18. Suitability for 3D Printed Parts for Laboratory Use

    SciTech Connect (OSTI)

    Zwicker, Andrew P.; Bloom, Josh; Albertson, Robert; Gershman, Sophia

    2014-08-01

    3D printing has become popular for a variety of users, from industrial to the home hobbyist, to scientists and engineers interested in producing their own laboratory equipment. In order to determine the suitability of 3D printed parts for our plasma physics laboratory, we measured the accuracy, strength, vacuum compatibility, and electrical properties of pieces printed in plastic. The flexibility of rapidly creating custom parts has led to the 3D printer becoming an invaluable resource in our laboratory and is equally suitable for producing equipment for advanced undergraduate laboratories.

  19. Beyond 3D Printing: The New Dimensions of Additive Fabrication

    E-Print Network [OSTI]

    Keating, Steven John

    Additive fabrication, often referred to as 3D printing, is the construction of objects by adding material. This stands in contrast to subtractive methods, which involve removing material by means of milling or cutting. ...

  20. Polymer Solar Cells: New Materials, 3D Morphology, and Tandem...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Polymer Solar Cells: New Materials, 3D Morphology, and Tandem Devices March 2, 2010 at 3pm36-428 Ren Janssen Molecular Materials and Nanosystems, Eindhoven University of...

  1. 3D-Printed Car by Local Motors- The Strati

    Broader source: Energy.gov [DOE]

    A timelapse video of the production process behind The Strati - the 3D-printed car by Local Motors, which manufactured with Oak Ridge National Laboratory (ORNL) and delivered at the International Manufacturing Technology Show (IMTS) in September of 2014.

  2. 3D assembly and actuation of nanopatterned membranes using nanomagnets

    E-Print Network [OSTI]

    Nichol, Anthony John

    2011-01-01

    A new method for aligning and actuating membranes for 3D nano-assembly based on the interactions of nanomagnets has been developed. Arrays of nanopatterned magnetic material are integrated onto thin-film membranes. It is ...

  3. 3D Printed Microscope for Mobile Devices that Cost Pennies

    ScienceCinema (OSTI)

    Erikson, Rebecca; Baird, Cheryl; Hutchinson, Janine

    2015-06-23

    Scientists at PNNL have designed a 3D-printable microscope for mobile devices using pennies worth of plastic and glass materials. The microscope has a wide range of uses, from education to in-the-field science.

  4. The Active Wave-front Sampling based 3D endoscope

    E-Print Network [OSTI]

    Prakash, Hemanth

    2007-01-01

    This thesis investigates the potential of Active Wave-front Sampling (AWS) for real time quantified 3D endoscopy. AWS is a technique by which phase information from an aperture area of a lens is obtained by sampling ...

  5. CSers develop new 3-D design tool Haydar Taygun

    E-Print Network [OSTI]

    Laidlaw, David

    Painting," the old model for 3-D drawing at the Cave Automatic Virtual Environment in 2001, Keefe worked reality. Media Credit: Courtesy of Daniel Keefe A team of Brown computer scientists has developed "Drawing

  6. 3D Representations for Software Visualization Andrian Marcus

    E-Print Network [OSTI]

    Maletic, Jonathan I.

    research from software analysis, information visualization, human-computer interaction, and cognitive, texture, abstraction mechanism, and by supporting new manipulation techniques and user interfaces.2 [Information Interfaces and Presentation] User Interfaces Keywords: Software visualization, 3D visualization

  7. 3D Printed Microscope for Mobile Devices that Cost Pennies

    SciTech Connect (OSTI)

    Erikson, Rebecca; Baird, Cheryl; Hutchinson, Janine

    2014-09-15

    Scientists at PNNL have designed a 3D-printable microscope for mobile devices using pennies worth of plastic and glass materials. The microscope has a wide range of uses, from education to in-the-field science.

  8. Fitting of Constrained Models to Poor 3D Data 

    E-Print Network [OSTI]

    Robertson, Craig; Fisher, Robert B.; Werghi, Naoufel; Ashbrook, Anthony

    2000-01-01

    In this work we have addressed the question of whether it is possible to extract parametric models of features from poor quality 3D data. In doing this we have examined the applicability of an evolutionary strategy to the ...

  9. 2013 Santa Sleigh 3D Printing Winner | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineers Pick Winner of 2013 Santa Sleigh 3D Printing Design Contest Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share...

  10. Topobo : a 3-D constructive assembly system with kinetic memory

    E-Print Network [OSTI]

    Raffle, Hayes Solos, 1974-

    2004-01-01

    We introduce Topobo, a 3-D constructive assembly system em- bedded with kinetic memory, the ability to record and playback physical motion. Unique among modeling systems is Topobo's coincident physical input and output ...

  11. Development of an embedded 3D graphics processor 

    E-Print Network [OSTI]

    Murray, Brian

    2002-01-01

    Limitations in processing ability cause major graphical enhancements, such as support for real-time 3D graphics, to be next to impossible within embedded devices. Due to the size, power, and heat dissipation requirements, modern graphics hardware...

  12. An alternative derivation of the Minimal massive 3D gravity

    E-Print Network [OSTI]

    Ahmet Baykal

    2014-12-23

    By using the algebra of exterior forms and the first order formalism with constraints, an alternative derivation of the field equations for the Minimal massive 3D gravity model is presented.

  13. 3-D Extensions for Trustworthy Systems (Invited Paper)

    E-Print Network [OSTI]

    Kastner, Ryan

    , and passive monitoring for mass- produced processors. In our basic paradigm, a 3-D chip consists of one die combined with a control plane housing application-specific security functions; (2) physical isolation

  14. Simulated Photoevaporative Mass Loss from Hot Jupiters in 3D

    E-Print Network [OSTI]

    Tripathi, Anjali; Murray-Clay, Ruth A; Krumholz, Mark R

    2015-01-01

    Ionizing stellar photons heat the upper regions of planetary atmospheres, driving atmospheric mass loss. Gas escaping from several hot, hydrogen-rich planets has been detected using UV and X-ray transmission spectroscopy. Because these planets are tidally locked, and thus asymmetrically irradiated, escaping gas is unlikely to be spherically symmetric. In this paper, we focus on the effects of asymmetric heating on local outflow structure. We use the Athena code for hydrodynamics to produce 3D simulations of hot Jupiter mass loss that jointly model wind launching and stellar heating via photoionization. Our fiducial planet is an inflated, hot Jupiter with radius $R_p=2.14 R_{\\rm Jup}$ and mass $M_p = 0.53 M_{\\rm Jup}$. We irradiate the initially neutral, atomic hydrogen atmosphere with 13.6 eV photons and compute the outflow's ionization structure. There are clear asymmetries in the atmospheric outflow, including a neutral shadow on the planet's nightside. Given an incident ionizing UV flux comparable to that ...

  15. 3D Model of the Tuscarora Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    The Tuscarora geothermal system sits within a ~15 km wide left-step in a major west-dipping range-bounding normal fault system. The step over is defined by the Independence Mountains fault zone and the Bull Runs Mountains fault zone which overlap along strike. Strain is transferred between these major fault segments via and array of northerly striking normal faults with offsets of 10s to 100s of meters and strike lengths of less than 5 km. These faults within the step over are one to two orders of magnitude smaller than the range-bounding fault zones between which they reside. Faults within the broad step define an anticlinal accommodation zone wherein east-dipping faults mainly occupy western half of the accommodation zone and west-dipping faults lie in the eastern half of the accommodation zone. The 3D model of Tuscarora encompasses 70 small-offset normal faults that define the accommodation zone and a portion of the Independence Mountains fault zone, which dips beneath the geothermal field. The geothermal system resides in the axial part of the accommodation, straddling the two fault dip domains. The Tuscarora 3D geologic model consists of 10 stratigraphic units. Unconsolidated Quaternary alluvium has eroded down into bedrock units, the youngest and stratigraphically highest bedrock units are middle Miocene rhyolite and dacite flows regionally correlated with the Jarbidge Rhyolite and modeled with uniform cumulative thickness of ~350 m. Underlying these lava flows are Eocene volcanic rocks of the Big Cottonwood Canyon caldera. These units are modeled as intracaldera deposits, including domes, flows, and thick ash deposits that change in thickness and locally pinch out. The Paleozoic basement of consists metasedimenary and metavolcanic rocks, dominated by argillite, siltstone, limestone, quartzite, and metabasalt of the Schoonover and Snow Canyon Formations. Paleozoic formations are lumped in a single basement unit in the model. Fault blocks in the eastern portion of the model are tilted 5-30 degrees toward the Independence Mountains fault zone. Fault blocks in the western portion of the model are tilted toward steeply east-dipping normal faults. These opposing fault block dips define a shallow extensional anticline. Geothermal production is from 4 closely-spaced wells, that exploit a west-dipping, NNE-striking fault zone near the axial part of the accommodation zone.

  16. 3D Model of the Tuscarora Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    2013-12-31

    The Tuscarora geothermal system sits within a ~15 km wide left-step in a major west-dipping range-bounding normal fault system. The step over is defined by the Independence Mountains fault zone and the Bull Runs Mountains fault zone which overlap along strike. Strain is transferred between these major fault segments via and array of northerly striking normal faults with offsets of 10s to 100s of meters and strike lengths of less than 5 km. These faults within the step over are one to two orders of magnitude smaller than the range-bounding fault zones between which they reside. Faults within the broad step define an anticlinal accommodation zone wherein east-dipping faults mainly occupy western half of the accommodation zone and west-dipping faults lie in the eastern half of the accommodation zone. The 3D model of Tuscarora encompasses 70 small-offset normal faults that define the accommodation zone and a portion of the Independence Mountains fault zone, which dips beneath the geothermal field. The geothermal system resides in the axial part of the accommodation, straddling the two fault dip domains. The Tuscarora 3D geologic model consists of 10 stratigraphic units. Unconsolidated Quaternary alluvium has eroded down into bedrock units, the youngest and stratigraphically highest bedrock units are middle Miocene rhyolite and dacite flows regionally correlated with the Jarbidge Rhyolite and modeled with uniform cumulative thickness of ~350 m. Underlying these lava flows are Eocene volcanic rocks of the Big Cottonwood Canyon caldera. These units are modeled as intracaldera deposits, including domes, flows, and thick ash deposits that change in thickness and locally pinch out. The Paleozoic basement of consists metasedimenary and metavolcanic rocks, dominated by argillite, siltstone, limestone, quartzite, and metabasalt of the Schoonover and Snow Canyon Formations. Paleozoic formations are lumped in a single basement unit in the model. Fault blocks in the eastern portion of the model are tilted 5-30 degrees toward the Independence Mountains fault zone. Fault blocks in the western portion of the model are tilted toward steeply east-dipping normal faults. These opposing fault block dips define a shallow extensional anticline. Geothermal production is from 4 closely-spaced wells, that exploit a west-dipping, NNE-striking fault zone near the axial part of the accommodation zone.

  17. Texture splats for 3D vector and scalar field visualization

    SciTech Connect (OSTI)

    Crawfis, R.A.; Max, N.

    1993-04-06

    Volume Visualization is becoming an important tool for understanding large 3D datasets. A popular technique for volume rendering is known as splatting. With new hardware architectures offering substantial improvements in the performance of rendering texture mapped objects, we present textured splats. An ideal reconstruction function for 3D signals is developed which can be used as a texture map for a splat. Extensions to the basic splatting technique are then developed to additionally represent vector fields.

  18. Review: 3D Printing: Social and Cultural Trajectories Symposium -3D Printing Industry http://3dprintingindustry.com/2013/12/11/review-3d-printing-social-cultural-trajectories-symposium/[12/12/2013 11:25:00 AM

    E-Print Network [OSTI]

    Review: 3D Printing: Social and Cultural Trajectories Symposium - 3D Printing Industry http://3dprintingindustry.com/2013/12/11/review-3d-printing-social-cultural-trajectories-symposium/[12/12/2013 11:25:00 AM] Review: 3D Printing: Social and Cultural Trajectories Symposium BY ANGELA DALY & DARCY ALLEN ON WED

  19. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect (OSTI)

    Joel Walls; M.T. Taner; Naum Derzhi; Gary Mavko; Jack Dvorkin

    2003-12-01

    We have developed and tested technology for a new type of direct hydrocarbon detection. The method uses inelastic rock properties to greatly enhance the sensitivity of surface seismic methods to the presence of oil and gas saturation. These methods include use of energy absorption, dispersion, and attenuation (Q) along with traditional seismic attributes like velocity, impedance, and AVO. Our approach is to combine three elements: (1) a synthesis of the latest rock physics understanding of how rock inelasticity is related to rock type, pore fluid types, and pore microstructure, (2) synthetic seismic modeling that will help identify the relative contributions of scattering and intrinsic inelasticity to apparent Q attributes, and (3) robust algorithms that extract relative wave attenuation attributes from seismic data. This project provides: (1) Additional petrophysical insight from acquired data; (2) Increased understanding of rock and fluid properties; (3) New techniques to measure reservoir properties that are not currently available; and (4) Provide tools to more accurately describe the reservoir and predict oil location and volumes. These methodologies will improve the industry's ability to predict and quantify oil and gas saturation distribution, and to apply this information through geologic models to enhance reservoir simulation. We have applied for two separate patents relating to work that was completed as part of this project.

  20. Modeling Three-Dimensional Shock Initiation of PBX 9501 in ALE3D

    SciTech Connect (OSTI)

    Leininger, L; Springer, H K; Mace, J; Mas, E

    2008-07-08

    A recent SMIS (Specific Munitions Impact Scenario) experimental series performed at Los Alamos National Laboratory has provided 3-dimensional shock initiation behavior of the HMX-based heterogeneous high explosive, PBX 9501. A series of finite element impact calculations have been performed in the ALE3D [1] hydrodynamic code and compared to the SMIS results to validate and study code predictions. These SMIS tests used a powder gun to shoot scaled NATO standard fragments into a cylinder of PBX 9501, which has a PMMA case and a steel impact cover. This SMIS real-world shot scenario creates a unique test-bed because (1) SMIS tests facilitate the investigation of 3D Shock to Detonation Transition (SDT) within the context of a considerable suite of diagnostics, and (2) many of the fragments arrive at the impact plate off-center and at an angle of impact. A particular goal of these model validation experiments is to demonstrate the predictive capability of the ALE3D implementation of the Tarver-Lee Ignition and Growth reactive flow model [2] within a fully 3-dimensional regime of SDT. The 3-dimensional Arbitrary Lagrange Eulerian (ALE) hydrodynamic model in ALE3D applies the Ignition and Growth (I&G) reactive flow model with PBX 9501 parameters derived from historical 1-dimensional experimental data. The model includes the off-center and angle of impact variations seen in the experiments. Qualitatively, the ALE3D I&G calculations reproduce observed 'Go/No-Go' 3D Shock to Detonation Transition (SDT) reaction in the explosive, as well as the case expansion recorded by a high-speed optical camera. Quantitatively, the calculations show good agreement with the shock time of arrival at internal and external diagnostic pins. This exercise demonstrates the utility of the Ignition and Growth model applied for the response of heterogeneous high explosives in the SDT regime.

  1. SU-E-T-154: Establishment and Implement of 3D Image Guided Brachytherapy Planning System

    SciTech Connect (OSTI)

    Jiang, S; Zhao, S; Chen, Y; Li, Z; Li, P; Huang, Z; Yang, Z; Zhang, X

    2014-06-01

    Purpose: Cannot observe the dose intuitionally is a limitation of the existing 2D pre-implantation dose planning. Meanwhile, a navigation module is essential to improve the accuracy and efficiency of the implantation. Hence a 3D Image Guided Brachytherapy Planning System conducting dose planning and intra-operative navigation based on 3D multi-organs reconstruction is developed. Methods: Multi-organs including the tumor are reconstructed in one sweep of all the segmented images using the multiorgans reconstruction method. The reconstructed organs group establishs a three-dimensional visualized operative environment. The 3D dose maps of the three-dimentional conformal localized dose planning are calculated with Monte Carlo method while the corresponding isodose lines and isodose surfaces are displayed in a stereo view. The real-time intra-operative navigation is based on an electromagnetic tracking system (ETS) and the fusion between MRI and ultrasound images. Applying Least Square Method, the coordinate registration between 3D models and patient is realized by the ETS which is calibrated by a laser tracker. The system is validated by working on eight patients with prostate cancer. The navigation has passed the precision measurement in the laboratory. Results: The traditional marching cubes (MC) method reconstructs one organ at one time and assembles them together. Compared to MC, presented multi-organs reconstruction method has superiorities in reserving the integrality and connectivity of reconstructed organs. The 3D conformal localized dose planning, realizing the 'exfoliation display' of different isodose surfaces, helps make sure the dose distribution has encompassed the nidus and avoid the injury of healthy tissues. During the navigation, surgeons could observe the coordinate of instruments real-timely employing the ETS. After the calibration, accuracy error of the needle position is less than 2.5mm according to the experiments. Conclusion: The speed and quality of 3D reconstruction, the efficiency in dose planning and accuracy in navigation all can be improved simultaneously.

  2. Seismic Structure And Seismicity Of The Cooling Lava Lake Of...

    Open Energy Info (EERE)

    Seismic Structure And Seismicity Of The Cooling Lava Lake Of Kilauea Iki, Hawaii Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Seismic...

  3. 2D?3D polycatenated and 3D?3D interpenetrated metal–organic frameworks constructed from thiophene-2,5-dicarboxylate and rigid bis(imidazole) ligands

    SciTech Connect (OSTI)

    Erer, Hakan; Ye?ilel, Okan Zafer; Ar?c?, Mürsel; Keskin, Seda; Büyükgüngör, Orhan

    2014-02-15

    Hydrothermal reactions of rigid 1,4-bis(imidazol-1-yl)benzene (dib) and 1,4-bis(imidazol-1-yl)-2,5-dimethylbenzene (dimb) with deprotonated thiophene-2,5-dicarboxylic acid (H{sub 2}tdc) in the presence of Zn(II) and Cd(II) salts in H{sub 2}O produced three new metal–organic frameworks, namely, [Zn(µ-tdc)(H{sub 2}O)(µ-dib)]{sub n} (1), [Cd(µ-tdc)(H{sub 2}O)(µ-dib)]{sub n} (2), and ([Cd{sub 2}(µ{sub 3}-tdc){sub 2}(µ-dimb){sub 2}]·(H{sub 2}O)){sub n}(3). These MOFs were characterized by FT-IR spectroscopy, elemental, thermal (TG, DTA, DTG and DSC), and single-crystal X-ray diffraction analyses. Isomorphous complexes 1 and 2 reveal polycatenated 2D+2D?3D framework based on an undulated (4,4)-sql layer. Complex 3 exhibits a new 4-fold interpenetrating 3D framework with the point symbol of 6{sup 6}. Molecular simulations were used to assess the potentials of the complexes for H{sub 2} storage application. Moreover, these coordination polymers exhibit blue fluorescent emission bands in the solid state at room temperature. - Graphical abstract: In this study, hydrothermal reactions of rigid 1,4-bis(imidazol-1-yl)benzene (dib) and 1,4-bis(imidazol-1-yl)-2,5-dimethylbenzene (dimb) with deprotonated thiophene-2,5-dicarboxylic acid (H{sub 2}tdc) in the presence of Zn(II) and Cd(II) salts in H{sub 2}O produced three new metal–organic frameworks. Isomorphous complexes 1 and 2 reveal polycatenated 2D+2D?3D framework based on an undulated (4,4)-sql layer. Complex 3 exhibits a new 4-fold interpenetrating 3D framework with the point symbol of 6{sup 6}. Molecular simulations were used to assess the potentials of the complexes for H{sub 2} storage application. These coordination polymers exhibit blue fluorescent emission bands in the solid state at room temperature. Display Omitted - Highlights: • Complexes 1 and 2 display polycatenated 2D+2D?3D framework. • Complex 3 exhibits a new 4-fold interpenetrating 3D framework. • Complex 1 adsorbs the highest amount of H{sub 2} at 100 bar and 298 K. • Complexes display blue fluorescent emission bands.

  4. Building Design for Moderate Seismic Regions Peter J. Cheever, LeMessurier Consultants, Cambridge, MA, pcheever@lemessurier.com

    E-Print Network [OSTI]

    Hines, Eric

    Building Design for Moderate Seismic Regions Authors: Peter J. Cheever, LeMessurier Consultants which result in most buildings being designed for Seismic Design Category C, including special seismic detailing consistent with the 1992 AISC Seismic Provisions. Spectral design acceleration values

  5. Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone Region (Biasi, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  6. USING MICRO-SEISMICITY AND SEISMIC VELOCITIES TO MAP SUBSURFACE...

    Open Energy Info (EERE)

    USING MICRO-SEISMICITY AND SEISMIC VELOCITIES TO MAP SUBSURFACE GEOLOGIC AND HYDROLOGIC STRUCTURE WITHIN THE COSO GEOTHERMAL FIELD, CALIFORNIA Jump to: navigation, search OpenEI...

  7. Seismicity and seismic stress in the Coso Range, Coso geothermal...

    Open Energy Info (EERE)

    Seismicity and seismic stress in the Coso Range, Coso geothermal field, and Indian Wells Valley region, Southeast-Central California Jump to: navigation, search OpenEI Reference...

  8. Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone Region (Biasi, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  9. Using Micro-Seismicity and Seismic Velocities to Map Subsurface...

    Open Energy Info (EERE)

    Using Micro-Seismicity and Seismic Velocities to Map Subsurface Geologic and Hydrologic Structure Within the Coso Geothermal Field California Jump to: navigation, search OpenEI...

  10. Seismic Design Expectations Report

    Office of Environmental Management (EM)

    flood, and lightning. This report only focuses on the seismic design expectations. NPH safety requirements are described in 10 CFR Part 830, Nuclear Safety Management, DOE O...

  11. Galaxy Clustering in 3D and Modified Gravity Theories

    E-Print Network [OSTI]

    Dipak Munshi; Geraint Pratten; Patrick Valageas; Peter Coles; Philippe Brax

    2015-08-03

    We study Modified Gravity (MG) theories by modelling the redshifted matter power spectrum in a spherical Fourier-Bessel (sFB) basis. We use a fully non-linear description of the real-space matter power-spectrum and include the lowest-order redshift-space correction (Kaiser effect), taking into account some additional non-linear contributions. Ignoring relativistic corrections, which are not expected to play an important role for a shallow survey, we analyse two different modified gravity scenarios, namely the generalised Dilaton scalar-tensor theories and the $f({R})$ models in the large curvature regime. We compute the 3D power spectrum ${\\cal C}^s_{\\ell}(k_1,k_2)$ for various such MG theories with and without redshift space distortions, assuming precise knowledge of background cosmological parameters. Using an all-sky spectroscopic survey with Gaussian selection function $\\varphi(r)\\propto \\exp(-{r^2 / r^2_0})$, $r_0 = 150 \\, h^{-1} \\, {\\textrm{Mpc}}$, and number density of galaxies $\\bar {\\textrm{N}} =10^{-4}\\;{\\textrm{Mpc}}^{-3}$, we use a $\\chi^2$ analysis, and find that the lower-order $(\\ell \\leq 25)$ multipoles of ${\\cal C}^s_\\ell(k,k')$ (with radial modes restricted to $k 25$ modes can further reduce the error bars and thus in principle make cosmological gravity constraints competitive with solar system tests. However this will require an accurate modelling of non-linear redshift space distortions. Using a tomographic $\\beta(a)$-$m(a)$ parameterization we also derive constraints on specific parameters describing the Dilaton models of modified gravity.

  12. Automatically Creating Design Models from 3D Anthropometry Data

    E-Print Network [OSTI]

    Wuhrer, Stefanie; Bose, Prosenjit

    2011-01-01

    When designing a product that needs to fit the human shape, designers often use a small set of 3D models, called design models, either in physical or digital form, as representative shapes to cover the shape variabilities of the population for which the products are designed. Until recently, the process of creating these models has been an art involving manual interaction and empirical guesswork. The availability of the 3D anthropometric databases provides an opportunity to create design models optimally. In this paper, we propose a novel way to use 3D anthropometric databases to generate design models that represent a given population for design applications such as the sizing of garments and gear. We generate the representative shapes by solving a covering problem in a parameter space. Well-known techniques in computational geometry are used to solve this problem. We demonstrate the method using examples in designing glasses and helmets.

  13. The ITER 3D Magnetic Diagnostic Response to Applied n=3 and n=4 RMP's

    SciTech Connect (OSTI)

    Lazerson, S A [PPPL

    2014-09-01

    The ITER magnetic diagnostic response to applied n=3 and n=4 RMPs has been calculated for the 15MA scenario. The VMEC code was utilized to calculate free boundary 3D ideal MHD equilibria, where the non-stellarator symmetric terms were included in the calculation. This allows an assessment to be made of the possible boundary displacements due to RMP application in ITER. As the VMEC code assumes a continuous set of nested flux surface, the possibility of island and stochastic region formation is ignored. At the start of the current at-top (L-Mode) application of n = 4 RMP's indicates approximately 1 cm peak-to-peak displacements on the low field side of the plasma while later in the shot (H-mode) perturbations as large as 3 cm are present. Forward modeling of the ITER magnetic diagnostics indicates significant non-axisymmetric plasma response, exceeding 10% the axisymmetric signal in many of the flux loops. Magnetic #12;field probes seem to indicate a greater robustness to 3D effects but still indicate large sensitivities to 3D effects in a number of sensors. Forward modeling of the diagnostics response to 3D equilibria allows assessment of diagnostics design and control scenarios.

  14. 3D structural fluctuation of IgG1 antibody revealed by individual particle electron tomography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Xing [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Xi'an Jiaotong Univ., Xi'an, Shaanxi (China); Zhang, Lei [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tong, Huimin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Peng, Bo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rames, Matthew J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zhang, Shengli [Xi'an Jiaotong Univ., Xi'an, Shaanxi (China); Ren, Gang [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-05-05

    Commonly used methods for determining protein structure, including X-ray crystallography and single-particle reconstruction, often provide a single and unique three-dimensional (3D) structure. However, in these methods, the protein dynamics and flexibility/fluctuation remain mostly unknown. Here, we utilized advances in electron tomography (ET) to study the antibody flexibility and fluctuation through structural determination of individual antibody particles rather than averaging multiple antibody particles together. Through individual-particle electron tomography (IPET) 3D reconstruction from negatively-stained ET images, we obtained 120 ab-initio 3D density maps at an intermediate resolution (~1–3 nm) from 120 individual IgG1 antibody particles. Using these maps as a constraint, we derived 120 conformations of the antibody via structural flexible docking of the crystal structure to these maps by targeted molecular dynamics simulations. Statistical analysis of the various conformations disclosed the antibody 3D conformational flexibility through the distribution of its domain distances and orientations. This blueprint approach, if extended to other flexible proteins, may serve as a useful methodology towards understanding protein dynamics and functions.

  15. 3D structural fluctuation of IgG1 antibody revealed by individual particle electron tomography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Xing; Zhang, Lei; Tong, Huimin; Peng, Bo; Rames, Matthew J.; Zhang, Shengli; Ren, Gang

    2015-05-05

    Commonly used methods for determining protein structure, including X-ray crystallography and single-particle reconstruction, often provide a single and unique three-dimensional (3D) structure. However, in these methods, the protein dynamics and flexibility/fluctuation remain mostly unknown. Here, we utilized advances in electron tomography (ET) to study the antibody flexibility and fluctuation through structural determination of individual antibody particles rather than averaging multiple antibody particles together. Through individual-particle electron tomography (IPET) 3D reconstruction from negatively-stained ET images, we obtained 120 ab-initio 3D density maps at an intermediate resolution (~1–3 nm) from 120 individual IgG1 antibody particles. Using these maps as a constraint, wemore »derived 120 conformations of the antibody via structural flexible docking of the crystal structure to these maps by targeted molecular dynamics simulations. Statistical analysis of the various conformations disclosed the antibody 3D conformational flexibility through the distribution of its domain distances and orientations. This blueprint approach, if extended to other flexible proteins, may serve as a useful methodology towards understanding protein dynamics and functions.« less

  16. 3 July 2003 HIRES3D -ITC Research Seminar -Robert Hack 1 HIGH RESOLUTION REMOTE SENSING

    E-Print Network [OSTI]

    Hack, Robert

    3 July 2003 HIRES3D - ITC Research Seminar - Robert Hack 1 HIRES3D HIGH RESOLUTION REMOTE SENSING FOR 3D GROUND MODELING AND CLASSIFICATION ITC Research Seminar, 3 July 2003 Robert Hack International Seminar - Robert Hack 2 HIRES3D HIGH RESOLUTION REMOTE SENSING FOR 3D GROUND MODELING AND CLASSIFICATION

  17. 3D Printing of nanostructured catalytic materials | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-InspiredAtmosphericdevicesPPONeApril351 Substation Demolition --3D Printed3D

  18. SWELL (Seismic Wave Exploration in the Lower Lithosphere) PIs: G. Laske (SIO), J. A. Orcutt (SIO), J. Phipps Morgan (SIO, now at GEOMAR)

    E-Print Network [OSTI]

    Laske, Gabi

    5 6 2 8 1 SEISMIC PROFILE Rat Islands Dec17 (351), 97; 04:38:53.0 h0=33km; Ms=6.5 bp:0.015-0.05Hz marked. b) Example of SWELL seismic data for a Rat Islands event. The blue trace is the vertical record profile through 3D seismic shear velocity model obtained across the SWELL pilot array (line indicated

  19. Seismic mass Top electrode

    E-Print Network [OSTI]

    Kraft, Michael

    assembly process. For the measurements of the physical dimensions of the seismic mass a micrometer was usedSeismic mass Top electrode Bottom electrode x C1 C2 Chapter 4: The Micromachined Sensing Element supplied by Druck, Ltd., Groby, Leics. The manufacturing process at Druck was still in its experimental

  20. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect (OSTI)

    Joel Walls; M.T. Taner; Gary Mavko; Jack Dvorkin

    2002-01-01

    In Section 1 of this first report we will describe the work we are doing to collect and analyze rock physics data for the purpose of modeling seismic attenuation from other measurable quantities such as porosity, water saturation, clay content and net stress. This work and other empirical methods to be presented later, will form the basis for ''Q pseudo-well modeling'' that is a key part of this project. In Section 2 of this report, we will show the fundamentals of a new method to extract Q, dispersion, and attenuation from field seismic data. The method is called Gabor-Morlet time-frequency decomposition. This technique has a number of advantages including greater stability and better time resolution than spectral ratio methods.

  1. Nuclear component horizontal seismic restraint

    DOE Patents [OSTI]

    Snyder, Glenn J. (Lynchburg, VA)

    1988-01-01

    A nuclear component horizontal seismic restraint. Small gaps limit horizontal displacement of components during a seismic occurrence and therefore reduce dynamic loadings on the free lower end. The reactor vessel and reactor guard vessel use thicker section roll-forged rings welded between the vessel straight shell sections and the bottom hemispherical head sections. The inside of the reactor guard vessel ring forging contains local vertical dovetail slots and upper ledge pockets to mount and retain field fitted and installed blocks. As an option, the horizontal displacement of the reactor vessel core support cone can be limited by including shop fitted/installed local blocks in opposing alignment with the reactor vessel forged ring. Beams embedded in the wall of the reactor building protrude into apertures in the thermal insulation shell adjacent the reactor guard vessel ring and have motion limit blocks attached thereto to provide to a predetermined clearance between the blocks and reactor guard vessel ring.

  2. Recent Heat Transfer Improvements to the RELAP5-3D Code

    SciTech Connect (OSTI)

    Riemke, Richard A; Davis, Cliff B; Oh, Chang

    2007-05-01

    The heat transfer section of the RELAP5-3D computer program has been recently improved. The improvements are as follows: (1) the general cladding rupture model was modified (more than one heat structure segment connected to the hydrodynamic volume and heat structure geometry’s internal gap pressure), (2) the cladding rupture model was modified for reflood, and (3) the heat transfer minor edits/plots were extended to include radiation/enclosure heat flux and generation (internal heat source).

  3. 3-D Interpretation of Sewer Circular Structures Marina Kolesnik,

    E-Print Network [OSTI]

    Kolesnik, Marina

    3-D Interpretation of Sewer Circular Structures Marina Kolesnik, Institute for Autonomous interpretation of images taken in a sewer by a robot-inspector is presented. Modern sewers made of concrete sections. These pipe ends and joints provide regular marks on the sewer images and can be used for their 3

  4. Generic Programming in 3D Ralf Hinze a

    E-Print Network [OSTI]

    Löh, Andres

    Generic Programming in 3D Ralf Hinze a , Andres L¨oh b aInstitut f¨ur Informatik III, Universit mechanism is not restricted to equality: parsers, pretty-printers and several other functions are derivable: Haskell's pretty-printer, for instance, displays pairs and lists using a special mix-fix notation. If we

  5. Noise in 3D Laser Range Scanner Data Xianfang Sun

    E-Print Network [OSTI]

    Martin, Ralph R.

    Noise in 3D Laser Range Scanner Data Xianfang Sun Cardiff University, UK Beihang University, China University, UK Abstract This paper discusses noise in range data measured by a Konica Mi- nolta Vivid 910 Gaussian noise, which is independently distributed at each mesh point. Measure- ments of an accurately

  6. POSTER: Duct tracking in 3D medical data Martin Petrcek

    E-Print Network [OSTI]

    Pelikan, Josef

    POSTER: Duct tracking in 3D medical data Martin Petrícek Faculty of Mathematics and Physics Charles 2, 180 81 Praha 8 - Liben Czech Republic martin.horak@volny.cz ABSTRACT Implementing duct tracking interaction when selecting duct branches of interest or correcting possible mistakes in duct path segmentation

  7. EARS: Toward Fast Analysis of 3D Human

    E-Print Network [OSTI]

    State University 7171 E. Sonaran Arroyo Mall, Mesa, AZ 85212, USA 2. Brian.Corner@us.army.mil Ergonomics, visualize, and evaluate the geometric information of a 3D human body scan. To the best of our knowledge, EARS is the first complete system dedicated to fast evaluation and analysis of the quality of a human

  8. ORIGINAL PAPER Current and Future Applications of 3-D Global

    E-Print Network [OSTI]

    Simpson, Jamesina J.

    ORIGINAL PAPER Current and Future Applications of 3-D Global Earth-Ionosphere Models Based the world. Earth-iono- sphere models employing FDTD pose significant advantages over any other current-ionosphere system modeling is not so much in the computational technique itself, or in the availability of massively

  9. 3-D Structural Modeling of Humic Acids through Experimental

    E-Print Network [OSTI]

    Goddard III, William A.

    for a "typical" soilHA.SchlutenandSchnitzer(11)havecombinedelemental analysis, 13C NMR, pyrolysis mass Structure Elucidation and Atomistic Simulations. 1. Chelsea Soil Humic Acid M A M A D O U S . D I A L L O to the CASE program SIGNATURE to generate all 3-D structural models for Chelsea soil humic acid (HA

  10. Exposing Digital Forgeries From 3-D Lighting Environments

    E-Print Network [OSTI]

    Bucci, David J.

    Exposing Digital Forgeries From 3-D Lighting Environments Eric Kee 1 , Hany Farid 2 Department@cs.dartmouth.edu Abstract--When creating a photographic composite, it can be difficult to match lighting conditions. We describe a technique for measuring lighting conditions in an image, and describe its use in detecting

  11. Microbiol Monogr (3) D. Schler: Magnetoreception and Magnetosomes in Bacteria

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    Microbiol Monogr (3) D. Schüler: Magnetoreception and Magnetosomes in Bacteria DOI 10 Abstract Magnetotactic bacteria can be regarded as model systems for studying the struc- tural, chemical Introduction Magnetotactic bacteria contain intracellular ferrimagnetic crystals that are typically 30­120 nm

  12. Reversible vectorisation of 3D digital planar curves and applications

    E-Print Network [OSTI]

    Sivignon, Isabelle

    Reversible vectorisation of 3D digital planar curves and applications Isabelle Sivignon a,, Florent the problem of the computation of a planar polygonal curve from a digital planar curve, such that the digital data can be exactly retrieved from the polygonal curve. The proposed transformation also provides

  13. REAL TIME ACQUISITION AND RENDERING OF LARGE 3D MODELS

    E-Print Network [OSTI]

    Rusinkiewicz, Szymon

    OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Szymon Marek Rusinkiewicz August 2001 #12;ii c Copyright grid, and point (splat) rendering is used to provide a real-time display of the partial 3D model. Given, backface culling, level-of-detail control, and splat rendering. The system may also be extended

  14. WATERMARKING 3D MODELS Thomas Harte and Adrian G. Bors

    E-Print Network [OSTI]

    Bors, Adrian

    - ing audio data, still images, or video [1, 2, 3]. While audio data consists of one-dimensional time varying signals, images are 2-D mappings of digital data distributed on a rectangular lattice. When. A copyright protection watermarking algorithm employing modifications in the histograms of 3D object surface

  15. Cyclic Cellular Automata in 3D Clifford A. Reiter

    E-Print Network [OSTI]

    Reiter, Clifford A.

    Cyclic Cellular Automata in 3D Clifford A. Reiter Department of Mathematics, Lafayette College, Easton, PA 18042 U.S.A reiterc@lafayette.edu Abstract Cyclic cellular automata in two dimensions have this work to three dimensional cyclic cellular automata and observe self organization dependent upon

  16. 3D Painting on Scanned Surfaces Maneesh Agrawala

    E-Print Network [OSTI]

    Agrawala, Maneesh

    3D Painting on Scanned Surfaces Maneesh Agrawala Andrew C. Beers Marc Levoy Computer Science Department Stanford University Abstract We present an intuitive interface for painting on unparameterized for painting on the mesh, making it intuitive and easy to accurately place color on the mesh. CR categories: 1

  17. ELECTROMOTION 2009 3D Analytical Calculation of Forces between

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Co or NdFeB, the designers can use magnets owning a really rigid magnetization. They are the magnets whichELECTROMOTION 2009 1 3D Analytical Calculation of Forces between Linear Halbach-Type Permanent Magnet Arrays H. Allag1,2 , J-P. Yonnet1 and M. E. H. Latreche2 1- Laboratoire de Génie Electrique de

  18. Evaluation of PC-ISO for customized, 3D printed, gynecologic 192Ir HDR brachytherapy applicators

    E-Print Network [OSTI]

    2015-01-01

    15) The precision of 3D printers has been closely evaluatedmaterial substrates for 3D printers. It is not approved pertheir treatment. While 3D printers with the capability to

  19. Evaluation of PC-ISO for customized, 3D printed, gynecologic 192Ir HDR brachytherapy applicators

    E-Print Network [OSTI]

    2015-01-01

    A, Iuliano L, Violante MG. 3D printing technique applied toTengg-Kobligk H, et al. 3D printing based on imaging data:biocompatible, sterilizable 3D printing material, and its

  20. Improvement of 3D Printing Resolution by the Development of Shrinkable Materials

    E-Print Network [OSTI]

    Chia, Helena

    2014-01-01

    derived microstructures by 3D printing: bio-and structuralScaffold development using 3D printing with a starch-basedderived microstructures by 3D printing: bio-and structural

  1. Improvement of 3D Printing Resolution by the Development of Shrinkable Materials

    E-Print Network [OSTI]

    Chia, Helena

    2014-01-01

    learned a lot about 3D printing and myself in this processderived microstructures by 3D printing: bio-and structuralScaffold development using 3D printing with a starch-based

  2. RELAP5-3D Developer Guidelines and Programming Practices

    SciTech Connect (OSTI)

    Dr. George L Mesina

    2014-03-01

    Our ultimate goal is to create and maintain RELAP5-3D as the best software tool available to analyze nuclear power plants. This begins with writing excellent programming and requires thorough testing. This document covers development of RELAP5-3D software, the behavior of the RELAP5-3D program that must be maintained, and code testing. RELAP5-3D must perform in a manner consistent with previous code versions with backward compatibility for the sake of the users. Thus file operations, code termination, input and output must remain consistent in form and content while adding appropriate new files, input and output as new features are developed. As computer hardware, operating systems, and other software change, RELAP5-3D must adapt and maintain performance. The code must be thoroughly tested to ensure that it continues to perform robustly on the supported platforms. The coding must be written in a consistent manner that makes the program easy to read to reduce the time and cost of development, maintenance and error resolution. The programming guidelines presented her are intended to institutionalize a consistent way of writing FORTRAN code for the RELAP5-3D computer program that will minimize errors and rework. A common format and organization of program units creates a unifying look and feel to the code. This in turn increases readability and reduces time required for maintenance, development and debugging. It also aids new programmers in reading and understanding the program. Therefore, when undertaking development of the RELAP5-3D computer program, the programmer must write computer code that follows these guidelines. This set of programming guidelines creates a framework of good programming practices, such as initialization, structured programming, and vector-friendly coding. It sets out formatting rules for lines of code, such as indentation, capitalization, spacing, etc. It creates limits on program units, such as subprograms, functions, and modules. It establishes documentation guidance on internal comments. The guidelines apply to both existing and new subprograms. They are written for both FORTRAN 77 and FORTRAN 95. The guidelines are not so rigorous as to inhibit a programmer’s unique style, but do restrict the variations in acceptable coding to create sufficient commonality that new readers will find the coding in each new subroutine familiar. It is recognized that this is a “living” document and must be updated as languages, compilers, and computer hardware and software evolve.

  3. Optical seismic sensor systems and methods

    DOE Patents [OSTI]

    Beal, A. Craig; Cummings, Malcolm E.; Zavriyev, Anton; Christensen, Caleb A.; Lee, Keun

    2015-12-08

    Disclosed is an optical seismic sensor system for measuring seismic events in a geological formation, including a surface unit for generating and processing an optical signal, and a sensor device optically connected to the surface unit for receiving the optical signal over an optical conduit. The sensor device includes at least one sensor head for sensing a seismic disturbance from at least one direction during a deployment of the sensor device within a borehole of the geological formation. The sensor head includes a frame and a reference mass attached to the frame via at least one flexure, such that movement of the reference mass relative to the frame is constrained to a single predetermined path.

  4. A fast algorithm for gamma evaluation in 3D

    SciTech Connect (OSTI)

    Wendling, Markus; Zijp, Lambert J.; McDermott, Leah N.; Smit, Ewoud J.; Sonke, Jan-Jakob; Mijnheer, Ben J.; Herk, Marcel van [Department of Radiation Oncology, Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands)

    2007-05-15

    The {gamma}-evaluation method is a tool by which dose distributions can be compared in a quantitative manner combining dose-difference and distance-to-agreement criteria. Since its introduction, the {gamma} evaluation has been used in many studies and is on the verge of becoming the preferred dose distribution comparison method, particularly for intensity-modulated radiation therapy (IMRT) verification. One major disadvantage, however, is its long computation time, which especially applies to the comparison of three-dimensional (3D) dose distributions. We present a fast algorithm for a full 3D {gamma} evaluation at high resolution. Both the reference and evaluated dose distributions are first resampled on the same grid. For each point of the reference dose distribution, the algorithm searches for the best point of agreement according to the {gamma} method in the evaluated dose distribution, which can be done at a subvoxel resolution. Speed, computer memory efficiency, and high spatial resolution are achieved by searching around each reference point with increasing distance in a sphere, which has a radius of a chosen maximum search distance and is interpolated 'on-the-fly' at a chosen sample step size. The smaller the sample step size and the larger the differences between the dose distributions, the longer the {gamma} evaluation takes. With decreasing sample step size, statistical measures of the 3D {gamma} distribution converge. Two clinical examples were investigated using 3% of the prescribed dose as dose-difference and 0.3 cm as distance-to-agreement criteria. For 0.2 cm grid spacing, the change in {gamma} indices was negligible below a sample step size of 0.02 cm. Comparing the full 3D {gamma} evaluation and slice-by-slice 2D {gamma} evaluations ('2.5D') for these clinical examples, the {gamma} indices improved by searching in full 3D space, with the average {gamma} index decreasing by at least 8%.

  5. Short-Period Seismic Noise in Vorkuta (Russia)

    SciTech Connect (OSTI)

    Kishkina, S B; Spivak, A A; Sweeney, J J

    2008-05-15

    Cultural development of new subpolar areas of Russia is associated with a need for detailed seismic research, including both mapping of regional seismicity and seismic monitoring of specific mining enterprises. Of special interest are the northern territories of European Russia, including shelves of the Kara and Barents Seas, Yamal Peninsula, and the Timan-Pechora region. Continuous seismic studies of these territories are important now because there is insufficient seismological knowledge of the area and an absence of systematic data on the seismicity of the region. Another task of current interest is the necessity to consider the seismic environment in the design, construction, and operation of natural gas extracting enterprises such as the construction of the North European Gas Pipeline. Issues of scientific importance for seismic studies in the region are the complex geodynamical setting, the presence of permafrost, and the complex tectonic structure. In particular, the Uralian Orogene (Fig. 1) strongly affects the propagation of seismic waves. The existing subpolar seismic stations [APA (67,57{sup o}N; 33,40{sup o}E), LVZ (67,90{sup o}N; 34,65{sup o}E), and NRIL (69,50{sup o}N; 88,40{sup o}E)] do not cover the extensive area between the Pechora and Ob Rivers (Fig. 1). Thus seismic observations in the Vorkuta area, which lies within the area of concern, represent a special interest. Continuous recording at a seismic station near the city of Vorkuta (67,50{sup o}N; 64,11{sup o}E) [1] has been conducted since 2005 for the purpose of regional seismic monitoring and, more specifically, detection of seismic signals caused by local mining enterprises. Current surveys of local seismic noise [7,8,9,11], are particularly aimed at a technical survey for the suitability of the site for installation of a small-aperture seismic array, which would include 10-12 recording instruments, with the Vorkuta seismic station as the central element. When constructed, this seismic array will considerably improve the recording capacity of regional and local seismic events. It will allow detection of signatures of seismic waves propagating in submeridional and sublatitudinal directions. The latter is of special interest not only to access the influence of the Urals on propagation patterns of seismic waves, but also to address other questions, such as the structure and dynamic characteristics of the internal dynamo of the Earth [9,13]. Recording seismic waves at low angular distances from seismically active subpolar zones will allow us to collect data on vortical and convective movements in subpolar lithosphere blocks and at the boundary of the inner core of the Earth, possibly giving essential clues to the modeling of the Earth's electromagnetic field [3,13]. The present study considers basic features of seismic noise at the Vorkuta station obtained through the analysis of seismic records from March, 2006 till December, 2007.

  6. Fracture Properties From Seismic Scattering

    E-Print Network [OSTI]

    Burns, Daniel R.

    2007-01-01

    Fractures scatter seismic energy and this energy can be analyzed to provide information about fracture

  7. The Future of Manufacturing Takes Shape: 3D Printed Car on Display...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lead, Advanced Manufacturing Office Additive manufacturing - often referred to as 3D printing - is a revolutionary way to design and build products. Until now, 3D printing has...

  8. Development of 3D Simulation Training and Testing for Home Energy...

    Office of Environmental Management (EM)

    Development of 3D Simulation Training and Testing for Home Energy Score Assessor Candidates Development of 3D Simulation Training and Testing for Home Energy Score Assessor...

  9. DEVELOPMENT OF A 3D GRID, FRACTURE AND PROPERTY MODELS FOR THE UPPER FREEPORT COAL AND OVERBURDEN USING 3D

    E-Print Network [OSTI]

    Wilson, Thomas H.

    DEVELOPMENT OF A 3D GRID, FRACTURE AND PROPERTY MODELS FOR THE UPPER FREEPORT COAL AND OVERBURDEN Richard A. Bajura, Director, National Research Center for Coal and Energy, West Virginia University Park, PA. Abstract Discrete fracture networks within a CO2 injection zone (the Upper Freeport coal

  10. Pipe3D, a pipeline to analyze Integral Field Spectroscopy data: I. New fitting phylosophy of FIT3D

    E-Print Network [OSTI]

    Sánchez, S F; Sánchez-Blázquez, P; González, J J; Rosález-Ortega, F F; Cano-Díaz, M; López-Cobá, C; Marino, R A; de Paz, A Gil; Mollá, M; López-Sánchez, A R; Ascasibar, Y; Barrera-Ballesteros, J

    2015-01-01

    We present an improved version of FIT3D, a fitting tool for the analysis of the spectroscopic properties of the stellar populations and the ionized gas derived from moderate resolution spectra of galaxies. FIT3D is a tool developed to analyze Integral Field Spectroscopy data and it is the basis of Pipe3D, a pipeline already used in the analysis of datasets like CALIFA, MaNGA, and SAMI. We describe the philosophy behind the fitting procedure, and in detail each of the different steps in the analysis. We present an extensive set of simulations in order to estimate the precision and accuracy of the derived parameters for the stellar populations. In summary, we find that using different stellar population templates we reproduce the mean properties of the stellar population (age, metallicity, and dust attenuation) within ~0.1 dex. A similar approach is adopted for the ionized gas, where a set of simulated emission- line systems was created. Finally, we compare the results of the analysis using FIT3D with those pro...

  11. Advanced motor driven clamped borehole seismic receiver

    DOE Patents [OSTI]

    Engler, B.P.; Sleefe, G.E.; Striker, R.P.

    1993-02-23

    A borehole seismic tool is described including a borehole clamp which only moves perpendicular to the borehole. The clamp is driven by an electric motor, via a right angle drive. When used as a seismic receiver, the tool has a three part housing, two of which are hermetically sealed. Accelerometers or geophones are mounted in one hermetically sealed part, the electric motor in the other hermetically sealed part, and the clamp and right angle drive in the third part. Preferably the tool includes cable connectors at both ends. Optionally a shear plate can be added to the clamp to extend the range of the tool.

  12. Advanced motor driven clamped borehole seismic receiver

    DOE Patents [OSTI]

    Engler, Bruce P. (Sandoval County, NM); Sleefe, Gerard E. (Bernalillo County, NM); Striker, Richard P. (Bernalillo County, NM)

    1993-01-01

    A borehole seismic tool including a borehole clamp which only moves perpendicular to the borehole. The clamp is driven by an electric motor, via a right angle drive. When used as a seismic receiver, the tool has a three part housing, two of which are hermetically sealed. Accelerometers or geophones are mounted in one hermetically sealed part, the electric meter in the other hermetically sealed part, and the clamp and right angle drive in the third part. Preferably the tool includes cable connectors at both ends. Optionally a shear plate can be added to the clamp to extend the range of the tool.

  13. Efficient Smoothing and Interpolation of Velocity Models for Seismic Wavefront Construction Algorithms 

    E-Print Network [OSTI]

    Chen, Bo

    2012-10-19

    The wavefront construction (WFC) method is an effective tool to compute seismic ray fields and has wide applications. This paper applies the WFC method to a heterogeneous earth model represented as a 3-D grid instead of a sequence of smooth layers...

  14. Annual Meeting 2004 Prestack seismic data reduces uncertainty in the appraisal of dynamic reservoir behavior

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    history data and to design production strategies in light of time-dependent value of assets. Seismic data depositional environment that was designed to include the effect of variable seismic resolution due to waveletSEG 74th Annual Meeting 2004 Prestack seismic data reduces uncertainty in the appraisal of dynamic

  15. Method of migrating seismic records

    DOE Patents [OSTI]

    Ober, Curtis C. (Las Lunas, NM); Romero, Louis A. (Albuquerque, NM); Ghiglia, Dennis C. (Longmont, CO)

    2000-01-01

    The present invention provides a method of migrating seismic records that retains the information in the seismic records and allows migration with significant reductions in computing cost. The present invention comprises phase encoding seismic records and combining the encoded seismic records before migration. Phase encoding can minimize the effect of unwanted cross terms while still allowing significant reductions in the cost to migrate a number of seismic records.

  16. Superintegrable potentials on 3D Riemannian and Lorentzian spaces with nonconstant curvature

    SciTech Connect (OSTI)

    Ballesteros, A., E-mail: angelb@ubu.e [Universidad de Burgos, Departamento de Fisica, Facultad de Ciencias (Spain); Enciso, A., E-mail: aenciso@fis.ucm.e [Universidad Complutense, Departamento de Fisica Teorica II (Spain); Herranz, F. J., E-mail: fjherranz@ubu.e [Universidad de Burgos, Departamento de Fisica, Escuela Politecnica Superior (Spain); Ragnisco, O., E-mail: ragnisco@fis.uniroma3.i [Universita di Roma Tre and Istituto Nazionale di Fisica Nucleare sezione di Roma Tre, Dipartimento di Fisica (Italy)

    2010-02-15

    A quantum sl(2,R) coalgebra (with deformation parameter z) is shown to underly the construction of a large class of superintegrable potentials on 3D curved spaces, that include the nonconstant curvature analog of the spherical, hyperbolic, and (anti-)de Sitter spaces. The connection and curvature tensors for these 'deformed' spaces are fully studied by working on two different phase spaces. The former directly comes from a 3D symplectic realization of the deformed coalgebra, while the latter is obtained through a map leading to a spherical-type phase space. In this framework, the nondeformed limit z {yields} 0 is identified with the flat contraction leading to the Euclidean and Minkowskian spaces/potentials. The resulting Hamiltonians always admit, at least, three functionally independent constants of motion coming from the coalgebra structure. Furthermore, the intrinsic oscillator and Kepler potentials on such Riemannian and Lorentzian spaces of nonconstant curvature are identified, and several examples of them are explicitly presented.

  17. Analysis results from the Los Alamos 2D/3D program

    SciTech Connect (OSTI)

    Boyack, B.E.; Cappiello, M.W.; Harmony, S.C.; Shire, P.R.; Siebe, D.A.

    1987-01-01

    Los Alamos National Laboratory is a participant in the 2D/3D program. Activities conducted at Los Alamos National Laboratory in support of 2D/3D program goals include analysis support of facility design, construction, and operation; provision of boundary and initial conditions for test-facility operations based on analysis of pressurized water reactors; performance of pretest and posttest predictions and analyses; and use of experimental results to validate and assess the single- and multi-dimensional, nonequilibrium features in the Transient Reactor Analysis Code (TRAC). During fiscal year 1987, Los Alamos conducted analytical assessment activities using data from the Slab Core Test Facility, The Cylindrical Core Test Facility, and the Upper Plenum Test Facility. Finally, Los Alamos continued work to provide TRAC improvements. In this paper, Los Alamos activities during fiscal year 1987 will be summarized; several significant accomplishments will be described in more detail to illustrate the work activities at Los Alamos.

  18. Heat Transfer Boundary Conditions in the RELAP5-3D Code

    SciTech Connect (OSTI)

    Richard A. Riemke; Cliff B. Davis; Richard R. Schultz

    2008-05-01

    The heat transfer boundary conditions used in the RELAP5-3D computer program have evolved over the years. Currently, RELAP5-3D has the following options for the heat transfer boundary conditions: (a) heat transfer correlation package option, (b) non-convective option (from radiation/conduction enclosure model or symmetry/insulated conditions), and (c) other options (setting the surface temperature to a volume fraction averaged fluid temperature of the boundary volume, obtaining the surface temperature from a control variable, obtaining the surface temperature from a time-dependent general table, obtaining the heat flux from a time-dependent general table, or obtaining heat transfer coefficients from either a time- or temperature-dependent general table). These options will be discussed, including the more recent ones.

  19. 3D climate modeling of Earth-like extrasolar planets orbiting different types of host stars

    E-Print Network [OSTI]

    Godolt, M; Hamann-Reinus, A; Kitzmann, D; Kunze, M; Langematz, U; von Paris, P; Patzer, A B C; Rauer, H; Stracke, B

    2015-01-01

    The potential habitability of a terrestrial planet is usually defined by the possible existence of liquid water on its surface. The potential presence of liquid water depends on many factors such as, most importantly, surface temperatures. The properties of the planetary atmosphere and its interaction with the radiative energy provided by the planet's host star are thereby of decisive importance. In this study we investigate the influence of different main-sequence stars upon the climate of Earth-like extrasolar planets and their potential habitability by applying a 3D Earth climate model accounting for local and dynamical processes. The calculations have been performed for planets with Earth-like atmospheres at orbital distances where the total amount of energy received from the various host stars equals the solar constant. In contrast to previous 3D modeling studies, we include the effect of ozone radiative heating upon the vertical temperature structure of the atmospheres. The global orbital mean results o...

  20. Idaho National Laboratory (INL) Seismic Initiative | Department...

    Office of Environmental Management (EM)

    Initiative Idaho National Laboratory (INL) Seismic Initiative Presentation from the May 2015 Seismic Lessons-Learned Panel Meeting. INL Seismic Initiative More Documents &...

  1. Aspects of earthquake triggering and seismicity clustering /

    E-Print Network [OSTI]

    Chen, Xiaowei

    2013-01-01

    relocated catalog. We process the seismic waveforms tolink between seismic events and calving processes in the twobetween seismic events and glacier sliding processes (e.g. ,

  2. Resonant seismic emission of subsurface objects

    E-Print Network [OSTI]

    Korneev, Valeri A.

    2010-01-01

    E . , and S. Keydar, 1998, Seismic monitoring of diffractionthe barrel. The Resonant Seismic Emission Source ReceiverFigure 1. Geometry o f the seismic experiment to locate a

  3. Seismic demands in precast concrete diaphragms

    E-Print Network [OSTI]

    Schoettler, Matthew John

    2010-01-01

    and Mander, J. B. (2003). “Seismic Performance of PrecastState-of-the-Art Report on Seismic Resistance of Prestresseddevelopment of a diaphragm seismic design methodology,” PCI

  4. Computerized fluid movement mapping and 3-D visualization

    SciTech Connect (OSTI)

    Al-Awami, A.A.; Poore, J.W. [Saudi Aramco, Dhahran (Saudi Arabia); Sizer, J.P.

    1995-11-01

    Most of the fieldwide fluid movement monitoring techniques under utilize available computer resources. This paper discusses an approach reservoir management engineers use to monitor fluid movement in reservoirs with a multitude of wells. This approach allows the engineer to maintain up-to-date fluid movement studies and incorporate the latest information from data acquisition programs into the day to day decision-making process. The approach uses several in-house database applications and makes extensive use of commercially available software products to generate and visualize cross-sections, maps, and 3-d models. This paper reviews the computerized procedures to create cross-sections that display the current fluid contacts overlaying the lithology. It also reviews the mapping procedures nd presents examples of water encroachment maps by layer at specific time periods. 3-D geologic modeling software greatly enhances the visualization of the reservoir. This software can also be used to interpret and model fluid movement, given the appropriate engineering constraints.

  5. Sculplexity: Sculptures of Complexity using 3D printing

    E-Print Network [OSTI]

    Reiss, D S; Evans, T S

    2014-01-01

    We show how to convert models of complex systems such as 2D cellular automata into a 3D printed object. Our method takes into account the limitations inherent to 3D printing processes and materials. Our approach automates the greater part of this task, bypassing the use of CAD software and the need for manual design. As a proof of concept, a physical object representing a modified forest fire model was successfully printed. Automated conversion methods similar to the ones developed here can be used to create objects for research, for demonstration and teaching, for outreach, or simply for aesthetic pleasure. As our outputs can be touched, they may be particularly useful for those with visual disabilities.

  6. Multimessengers from 3D Core-Collapse Supernovae

    E-Print Network [OSTI]

    Yakunin, Konstantin N; Mezzacappa, Anthony; Messer, O E Bronson; Lentz, Eric J; Bruenn, Stephen W; Hix, W Rafael; Harris, J Austin

    2015-01-01

    We present gravitational wave and neutrino signatures obtained in our first principle 3D core-collapse supernova simulation of 15M non-rotating progenitor with Chimera code. Observations of neutrinos emitted by the forming neutron star, and gravitational waves, which are produced by hydrodynamic instabilities is the only way to get direct information about the supernova engine. Both GW and neutrino signals show different phases of supernova evolution.

  7. 3D, Flash, Induced Current Readout for Silicon Sensors

    SciTech Connect (OSTI)

    Parker, Sherwood I.

    2014-06-07

    A new method for silicon microstrip and pixel detector readout using (1) 65 nm-technology current amplifers which can, for the first time with silicon microstrop and pixel detectors, have response times far shorter than the charge collection time (2) 3D trench electrodes large enough to subtend a reasonable solid angle at most track locations and so have adequate sensitivity over a substantial volume of pixel, (3) induced signals in addition to, or in place of, collected charge

  8. On the Hamiltonian form of 3D massive gravity

    E-Print Network [OSTI]

    Olaf Hohm; Alasdair Routh; Paul K. Townsend; Baocheng Zhang

    2012-09-14

    We present a "Chern-Simons-like" action for the "general massive gravity" model propagating two spin-2 modes with independent masses in three spacetime dimensions (3D), and we use it to find a simple Hamiltonian form of this model. The number of local degrees of freedom, determined by the dimension of the physical phase space, agrees with a linearized analysis except in some limits, in particular that yielding "new topologically massive gravity", which therefore suffers from a linearization instability.

  9. 3D acoustic imaging applied to the Baikal Neutrino Telescope

    E-Print Network [OSTI]

    K. G. Kebkal; R. Bannasch; O. G. Kebkal; A. I. Panfilov; R. Wischnewski

    2008-11-07

    A hydro-acoustic imaging system was tested in a pilot study on distant localization of elements of the Baikal underwater neutrino telescope. For this innovative approach, based on broad band acoustic echo signals and strictly avoiding any active acoustic elements on the telescope, the imaging system was temporarily installed just below the ice surface, while the telescope stayed in its standard position at 1100 m depth. The system comprised an antenna with four acoustic projectors positioned at the corners of a 50 meter square; acoustic pulses were "linear sweep-spread signals" - multiple-modulated wide-band signals (10-22 kHz) of 51.2 s duration. Three large objects (two string buoys and the central electronics module) were localized by the 3D acoustic imaging, with a accuracy of ~0.2 m (along the beam) and ~1.0 m (transverse). We discuss signal forms and parameters necessary for improved 3D acoustic imaging of the telescope, and suggest a layout of a possible stationary bottom based 3D imaging setup. The presented technique may be of interest for neutrino telescopes of km3-scale and beyond, as a flexible temporary or as a stationary tool to localize basic telescope elements, while these are completely passive.

  10. Voxel-Based Assessment of Printability of 3D Alexandru Telea1

    E-Print Network [OSTI]

    Telea, Alexandru C.

    . Printability, the capability of a 3D printer to closely repro- duce a 3D model, is a complex decision involving on a given printer. As 3D printing technology works in a raster fashion, we implement our proposed metricsVoxel-Based Assessment of Printability of 3D Shapes Alexandru Telea1 and Andrei Jalba2 1 Institute

  11. 3D Fingerprint Phantoms Sunpreet S. Arora, Kai Cao and Anil K. Jain

    E-Print Network [OSTI]

    ) printing the 3D fingerprint phantoms using a commodity 3D printer. Preliminary experimental results show3D Fingerprint Phantoms Sunpreet S. Arora, Kai Cao and Anil K. Jain Department of Computer Science, we propose creating 3D fin- gerprint phantoms (phantoms or imaging phantoms are specially designed

  12. AUTOMATED MODELING OF 3D BUILDING ROOFS USING IMAGE AND LIDAR DATA

    E-Print Network [OSTI]

    Schindler, Konrad

    AUTOMATED MODELING OF 3D BUILDING ROOFS USING IMAGE AND LIDAR DATA N. Demir* , E. Baltsavias, Detection, 3D Modelling ABSTRACT: In this work, an automated approach for 3D building roof modelling of accurate and complete 3D building models with high degree of automation. Aerial images and LiDAR data

  13. Experience with 3D Optical Flow on Gated MRI Cardiac Datasets

    E-Print Network [OSTI]

    Barron, John

    ventricular chamber which pumps oxygenated blood to the body, as these are good indicators of heart function of points on a surface while generic 3D optical ow is 3D volumetric motion. We present two sim- ple contain 20 volumes of 3D volumetric data for one synchronized heart beat, with each 3D vol- ume dataset

  14. Evaluation of PC-ISO for customized, 3D printed, gynecologic 192Ir HDR brachytherapy applicators

    E-Print Network [OSTI]

    2015-01-01

    biocompatible, thermoplastic, 3D printing material, for useterpolymers family of thermoplastics that are made of three

  15. Towards 3D Internet: Why, What, and How? Tansu Alpcan, Christian Bauckhage, Evangelos Kotsovinos

    E-Print Network [OSTI]

    Alpcan, Tansu

    Towards 3D Internet: Why, What, and How? Tansu Alpcan, Christian Bauckhage, Evangelos Kotsovinos paradigm, the 3D Internet. We provide an overview of the concept 3D Internet and discuss why it is a goal communities. We explore first the motivation for the 3D Internet and the possibilities it brings. Subsequently

  16. ILLUSTRATING MATHEMATICS USING 3D PRINTERS OLIVER KNILL AND ELIZABETH SLAVKOVSKY

    E-Print Network [OSTI]

    Knill, Oliver

    printing technology can help to visualize proofs in mathematics. This talk aims to illustrate how 3D Greece, models allows to make mathematics more accessible. The new 3D printing technology makes unmatched. 3D printers allow us to do that with relative little effort. 2. 3D printing The industry of rapid

  17. Seismicity, Critical States of: From Models to Practical Seismic Hazard Estimates Space S 7853 Seismicity, Critical States of

    E-Print Network [OSTI]

    Ben-Zion, Yehuda

    process. Earthquake forecast/prediction The forecast or predic- tion of an earthquake is a statement about question in earthquake science is whether earthquake prediction is possible. Related issues include the following: Can a prediction of earthquakes solely based on the emergence of seismicity patterns be re

  18. ALE3D Model Predictions and Materials Characterization for the Cookoff Response of PBXN-109

    SciTech Connect (OSTI)

    McClelland, M A; Maienschein, J L; Nichols, A L; Wardell, J F; Atwood, A I; Curran, P O

    2002-03-19

    ALE3D simulations are presented for the thermal explosion of PBXN-109 (RDX, AI, HTPB, DOA) in support of an effort by the U. S. Navy and Department of Energy (DOE) to validate computational models. The U.S. Navy is performing benchmark tests for the slow cookoff of PBXN-109 in a sealed tube. Candidate models are being tested using the ALE3D code, which can simulate the coupled thermal, mechanical, and chemical behavior during heating, ignition, and explosion. The strength behavior of the solid constituents is represented by a Steinberg-Guinan model while polynomial and gamma-law expressions are used for the Equation Of State (EOS) for the solid and gas species, respectively. A void model is employed to represent the air in gaps. ALE3D model 'parameters are specified using measurements of thermal and mechanical properties including thermal expansion, heat capacity, shear modulus, and bulk modulus. A standard three-step chemical kinetics model is used during the thermal ramp, and a pressure-dependent burn front model is employed during the rapid expansion. Parameters for the three-step kinetics model are specified using measurements of the One-Dimensional-Time-to-Explosion (ODTX), while measurements for burn rate of pristine and thermally damaged material are employed to determine parameters in the burn front model. Results are given for calculations in which heating, ignition, and explosion are modeled in a single simulation. We compare model results to measurements for the cookoff temperature and tube wall strain.

  19. SU-E-J-128: 3D Surface Reconstruction of a Patient Using Epipolar Geometry

    SciTech Connect (OSTI)

    Kotoku, J; Nakabayashi, S; Kumagai, S; Ishibashi, T; Kobayashi, T; Haga, A; Saotome, N; Arai, N

    2014-06-01

    Purpose: To obtain a 3D surface data of a patient in a non-invasive way can substantially reduce the effort for the registration of patient in radiation therapy. To achieve this goal, we introduced the multiple view stereo technique, which is known to be used in a 'photo tourism' on the internet. Methods: 70 Images were taken with a digital single-lens reflex camera from different angles and positions. The camera positions and angles were inferred later in the reconstruction step. A sparse 3D reconstruction model was locating by SIFT features, which is robust for rotation and shift variance, in each image. We then found a set of correspondences between pairs of images by computing the fundamental matrix using the eight-point algorithm with RANSAC. After the pair matching, we optimized the parameter including camera positions to minimize the reprojection error by use of bundle adjustment technique (non-linear optimization). As a final step, we performed dense reconstruction and associate a color with each point using the library of PMVS. Results: Surface data were reconstructed well by visual inspection. The human skin is reconstructed well, althogh the reconstruction was time-consuming for direct use in daily clinical practice. Conclusion: 3D reconstruction using multi view stereo geometry is a promising tool for reducing the effort of patient setup. This work was supported by JSPS KAKENHI(25861128)

  20. Seismic Safety Study

    SciTech Connect (OSTI)

    Tokarz, F J; Coats, D W

    2006-05-16

    During the past three decades, the Laboratory has been proactive in providing a seismically safe working environment for its employees and the general public. Completed seismic upgrades during this period have exceeded $30M with over 24 buildings structurally upgraded. Nevertheless, seismic questions still frequently arise regarding the safety of existing buildings. To address these issues, a comprehensive study was undertaken to develop an improved understanding of the seismic integrity of the Laboratory's entire building inventory at the Livermore Main Site and Site 300. The completed study of February 2005 extended the results from the 1998 seismic safety study per Presidential Executive Order 12941, which required each federal agency to develop an inventory of its buildings and to estimate the cost of mitigating unacceptable seismic risks. Degenkolb Engineers, who performed the first study, was recontracted to perform structural evaluations, rank order the buildings based on their level of seismic deficiencies, and to develop conceptual rehabilitation schemes for the most seriously deficient buildings. Their evaluation is based on screening procedures and guidelines as established by the Interagency Committee on Seismic Safety in Construction (ICSSC). Currently, there is an inventory of 635 buildings in the Laboratory's Facility Information Management System's (FIMS's) database, out of which 58 buildings were identified by Degenkolb Engineers that require seismic rehabilitation. The remaining 577 buildings were judged to be adequate from a seismic safety viewpoint. The basis for these evaluations followed the seismic safety performance objectives of DOE standard (DOE STD 1020) Performance Category 1 (PC1). The 58 buildings were ranked according to three risk-based priority classifications (A, B, and C) as shown in Figure 1-1 (all 58 buildings have structural deficiencies). Table 1-1 provides a brief description of their expected performance and damage state following a major earthquake, rating the seismic vulnerability (1-10) where the number 10 represents the highest and worst. Buildings in classifications A and B were judged to require the Laboratory's highest attention towards rehabilitation, classification C buildings could defer rehabilitation until a major remodel is undertaken. Strengthening schemes were developed by Degenkolb Engineers for the most seriously deficient A and B classifications (15 total), which the Laboratory's Plant Engineering Department used as its basis for rehabilitation construction cost estimates. A detailed evaluation of Building 2580, a strengthening scheme, and a construction cost estimate are pending. Specific details of the total estimated rehabilitation costs, a proposed 10-year seismic rehabilitation plan, exemption categories by building, DOE performance guidelines, cost comparisons for rehabilitation, and LLNL reports by Degenkolb Engineers are provided in Appendix A. Based on the results of Degenkolb Engineers evaluations, along with the prevailing practice for the disposition of seismically deficient buildings and risk-based evaluations, it is concluded that there is no need to evacuate occupants from these 58 buildings prior to their rehabilitation.

  1. SU-F-BRE-04: Construction of 3D Printed Patient Specific Phantoms for Dosimetric Verification Measurements

    SciTech Connect (OSTI)

    Ehler, E; Higgins, P; Dusenbery, K

    2014-06-15

    Purpose: To validate a method to create per patient phantoms for dosimetric verification measurements. Methods: Using a RANDO phantom as a substitute for an actual patient, a model of the external features of the head and neck region of the phantom was created. A phantom was used instead of a human for two reasons: to allow for dosimetric measurements that would not be possible in-vivo and to avoid patient privacy issues. Using acrylonitrile butadiene styrene thermoplastic as the building material, a hollow replica was created using the 3D printer filled with a custom tissue equivalent mixture of paraffin wax, magnesium oxide, and calcium carbonate. A traditional parallel-opposed head and neck plan was constructed. Measurements were performed with thermoluminescent dosimeters in both the RANDO phantom and in the 3D printed phantom. Calculated and measured dose was compared at 17 points phantoms including regions in high and low dose regions and at the field edges. On-board cone beam CT was used to localize both phantoms within 1mm and 1° prior to radiation. Results: The maximum difference in calculated dose between phantoms was 1.8% of the planned dose (180 cGy). The mean difference between calculated and measured dose in the anthropomorphic phantom and the 3D printed phantom was 1.9% ± 2.8% and ?0.1% ± 4.9%, respectively. The difference between measured and calculated dose was determined in the RANDO and 3D printed phantoms. The differences between measured and calculated dose in each respective phantom was within 2% for 12 of 17 points. The overlap of the RANDO and 3D printed phantom was 0.956 (Jaccard Index). Conclusion: A custom phantom was created using a 3D printer. Dosimetric calculations and measurements showed good agreement between the dose in the RANDO phantom (patient substitute) and the 3D printed phantom.

  2. Time-lapse seismic modeling and production data assimilation for enhanced oil recovery and CO2 sequestration 

    E-Print Network [OSTI]

    Kumar, Ajitabh

    2009-05-15

    using reservoir models and inverse modeling for updating reservoir models using the data collected from field. The viability of time-lapse seismic monitoring using an integrated modeling of fluid flow, including chemical reactions, and seismic response...

  3. Use of a 3D liver microreactor as an in vitro model for the study of bile acid synthesis and hepatobiliary circulation

    E-Print Network [OSTI]

    Llamas Vidales, Jose Ricardo

    2009-01-01

    The liver regulates a myriad of vital functions including bile acid synthesis, hepatobiliary circulation, cholesterol homeostasis, drug metabolism, etc. This thesis focuses on the use of a 3D in vitro model of liver to ...

  4. Investigation of Seismic Surveys and Enhancement of Seismic Images 

    E-Print Network [OSTI]

    Bilgi, Celal

    2015-06-05

    The ability to recover a seismic image of subsurface structure from recorded seismic data plays an important role in exploration of seismology applications. Processing techniques are applied to recover the geology from data recorded in the field...

  5. Uncertainty Analysis of RELAP5-3D

    SciTech Connect (OSTI)

    Alexandra E Gertman; Dr. George L Mesina

    2012-07-01

    As world-wide energy consumption continues to increase, so does the demand for the use of alternative energy sources, such as Nuclear Energy. Nuclear Power Plants currently supply over 370 gigawatts of electricity, and more than 60 new nuclear reactors have been commissioned by 15 different countries. The primary concern for Nuclear Power Plant operation and lisencing has been safety. The safety of the operation of Nuclear Power Plants is no simple matter- it involves the training of operators, design of the reactor, as well as equipment and design upgrades throughout the lifetime of the reactor, etc. To safely design, operate, and understand nuclear power plants, industry and government alike have relied upon the use of best-estimate simulation codes, which allow for an accurate model of any given plant to be created with well-defined margins of safety. The most widely used of these best-estimate simulation codes in the Nuclear Power industry is RELAP5-3D. Our project focused on improving the modeling capabilities of RELAP5-3D by developing uncertainty estimates for its calculations. This work involved analyzing high, medium, and low ranked phenomena from an INL PIRT on a small break Loss-Of-Coolant Accident as wall as an analysis of a large break Loss-Of- Coolant Accident. Statistical analyses were performed using correlation coefficients. To perform the studies, computer programs were written that modify a template RELAP5 input deck to produce one deck for each combination of key input parameters. Python scripting enabled the running of the generated input files with RELAP5-3D on INL’s massively parallel cluster system. Data from the studies was collected and analyzed with SAS. A summary of the results of our studies are presented.

  6. Dosimetric comparison of 3D conformal, IMRT, and V-MAT techniques for accelerated partial-breast irradiation (APBI)

    SciTech Connect (OSTI)

    Qiu, Jian-Jian; Chang, Zheng; Horton, Janet K.; Wu, Qing-Rong Jackie; Yoo, Sua; Yin, Fang-Fang

    2014-07-01

    The purpose is to dosimetrically compare the following 3 delivery techniques: 3-dimensional conformal radiation therapy (3D-CRT), intensity-modulated arc therapy (IMRT), and volumetric-modulated arc therapy (V-MAT) in the treatment of accelerated partial-breast irradiation (APBI). Overall, 16 patients with T1/2N0 breast cancer were treated with 3D-CRT (multiple, noncoplanar photon fields) on the RTOG 0413 partial-breast trial. These cases were subsequently replanned using static gantry IMRT and V-MAT technology to understand dosimetric differences among these 3 techniques. Several dosimetric parameters were used in plan quality evaluation, including dose conformity index (CI) and dose-volume histogram analysis of normal tissue coverage. Quality assurance studies including gamma analysis were performed to compare the measured and calculated dose distributions. The IMRT and V-MAT plans gave more conformal target dose distributions than the 3D-CRT plans (p < 0.05 in CI). The volume of ipsilateral breast receiving 5 and 10 Gy was significantly less using the V-MAT technique than with either 3D-CRT or IMRT (p < 0.05). The maximum lung dose and the ipsilateral lung volume receiving 10 (V{sub 10}) or 20 Gy (V{sub 20}) were significantly less with both V-MAT and IMRT (p < 0.05). The IMRT technique was superior to 3D-CRT and V-MAT of low dose distributions in ipsilateral lung (p < 0.05 in V{sub 5} and D{sub 5}). The total mean monitor units (MUs) for V-MAT (621.0 ± 111.9) were 12.2% less than those for 3D-CRT (707.3 ± 130.9) and 46.5% less than those for IMRT (1161.4 ± 315.6) (p < 0.05). The average machine delivery time was 1.5 ± 0.2 minutes for the V-MAT plans, 7.0 ± 1.6 minutes for the 3D-CRT plans, and 11.5 ± 1.9 minutes for the IMRT plans, demonstrating much less delivery time for V-MAT. Based on this preliminary study, V-MAT and IMRT techniques offer improved dose conformity as compared with 3D-CRT techniques without increasing dose to the ipsilateral lung. In terms of MU and delivery time, V-MAT is significantly more efficient for APBI than for conventional 3D-CRT and static-beam IMRT.

  7. The Seismic Category 1 Structures Program

    SciTech Connect (OSTI)

    Bennett, J.G.; Farrar, C.R.; Dunwoody, W.E.

    1986-01-01

    The Seismic Category I Structures Program entered a new phase at the end of FY 1984. During the prior fiscal years, tests on microconcrete scale model shear deformation dominated structures were completed. The results indicated that these structures responded to seismic excitations with frequencies that were reduced by factors of two or more over those calculated based on an uncracked cross section strength-of-materials approach. This reduction implies that stiffness associated with seismic working loads (loads resulting from an operating basis earthquake up to and including a safe shutdown earthquake) are down by a factor of four or more. These reductions were also consistent with those measured during quasistatic tests to an equivalent level of loading. Furthermore, though the structures themselves were shown to have sufficient reserve margin, the equipment and piping are designed to response spectra that are based on uncracked cross sectional member properties, and these spectra may not be appropriate for actual building responses.

  8. Customizing mesoscale self-assembly with 3D printing

    E-Print Network [OSTI]

    M. Poty; G. Lumay; N. Vandewalle

    2013-10-17

    Self-assembly due to capillary forces is a common method for generating 2D mesoscale structures from identical floating particles at the liquid-air interface. Designing building blocks to obtain a desired mesoscopic structure is a scientific challenge. We show herein that it is possible to shape the particles with a low cost 3D printer, for composing specific mesoscopic structures. Our method is based on the creation of capillary multipoles inducing either attractive or repulsive forces. Since capillary interactions can be downscaled, our method opens new ways to low cost microfabrication.

  9. Convergence of Ginzburg-Landau functionals in 3-d superconductivity

    E-Print Network [OSTI]

    Sisto Baldo; Robert L. Jerrard; Giandomenico Orlandi; Mete Soner

    2011-02-23

    In this paper we consider the asymptotic behavior of the Ginzburg- Landau model for superconductivity in 3-d, in various energy regimes. We rigorously derive, through an analysis via {\\Gamma}-convergence, a reduced model for the vortex density, and we deduce a curvature equation for the vortex lines. In a companion paper, we describe further applications to superconductivity and superfluidity, such as general expressions for the first critical magnetic field H_{c1}, and the critical angular velocity of rotating Bose-Einstein condensates.

  10. A non-conforming 3D spherical harmonic transport solver

    SciTech Connect (OSTI)

    Van Criekingen, S.

    2006-07-01

    A new 3D transport solver for the time-independent Boltzmann transport equation has been developed. This solver is based on the second-order even-parity form of the transport equation. The angular discretization is performed through the expansion of the angular neutron flux in spherical harmonics (PN method). The novelty of this solver is the use of non-conforming finite elements for the spatial discretization. Such elements lead to a discontinuous flux approximation. This interface continuity requirement relaxation property is shared with mixed-dual formulations such as the ones based on Raviart-Thomas finite elements. Encouraging numerical results are presented. (authors)

  11. 3-D HYDRODYNAMIC MODELING IN A GEOSPATIAL FRAMEWORK

    SciTech Connect (OSTI)

    Bollinger, J; Alfred Garrett, A; Larry Koffman, L; David Hayes, D

    2006-08-24

    3-D hydrodynamic models are used by the Savannah River National Laboratory (SRNL) to simulate the transport of thermal and radionuclide discharges in coastal estuary systems. Development of such models requires accurate bathymetry, coastline, and boundary condition data in conjunction with the ability to rapidly discretize model domains and interpolate the required geospatial data onto the domain. To facilitate rapid and accurate hydrodynamic model development, SRNL has developed a pre- and post-processor application in a geospatial framework to automate the creation of models using existing data. This automated capability allows development of very detailed models to maximize exploitation of available surface water radionuclide sample data and thermal imagery.

  12. 3-D Earth model more accurately pinpoints explosions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-InspiredAtmosphericdevicesPPONeApril 30,University RegistrationNeed2 2D7P D3,3-D

  13. 3D Printing Aircraft Parts | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-InspiredAtmosphericdevicesPPONeApril351 Substation Demolition --3D Printed andD

  14. 3D Printing Medical Devices | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-InspiredAtmosphericdevicesPPONeApril351 Substation Demolition --3D Printed

  15. 3D Tracking at the Nanoscale | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-InspiredAtmosphericdevicesPPONeApril351 Substation Demolition --3D

  16. 3-D Nanofilm Asymmetric Ultracapacitor | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReportOffice | DepartmentVery1, in: A.R. Gavaskar and3-D Nanofilm

  17. How 3D Printers Work | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy, Ph.D.Food Drive HolidayHours UsedFire 1 in 3Households3D

  18. 3D Printing a Classic Shelby Cobra | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar: Demonstration ofDepartment1of5Department of Energy3D

  19. An Evaluation of the Carbon Sequestration Potential of the Cambro-Ordovician Strata of the Illinois and Michigan Basins: Part 1: Evaluation of Phase 2 CO{sub 2} Injection Testing in the Deep Saline Gunter Sandstone Reservoir (Cambro-Ordovician Knox Group), Marvin Blan No. 1 Hancock County, Kentucky Part 2: Time-lapse Three-Dimensional Vertical Seismic Profile (3D-VSP) of Sequestration Target Interval with Injected Fluids

    SciTech Connect (OSTI)

    Richard Bowersox; John Hickman; Hannes Leetaru

    2012-12-01

    Part 1 of this report focuses on results of the western Kentucky carbon storage test, and provides a basis for evaluating injection and storage of supercritical CO{sub 2} in Cambro-Ordovician carbonate reservoirs throughout the U.S. Midcontinent. This test demonstrated that the Cambro- Ordovician Knox Group, including the Beekmantown Dolomite, Gunter Sandstone, and Copper Ridge Dolomite in stratigraphic succession from shallowest to deepest, had reservoir properties suitable for supercritical CO{sub 2} storage in a deep saline reservoir hosted in carbonate rocks, and that strata with properties sufficient for long-term confinement of supercritical CO{sub 2} were present in the deep subsurface. Injection testing with brine and CO{sub 2} was completed in two phases. The first phase, a joint project by the Kentucky Geological Survey and the Western Kentucky Carbon Storage Foundation, drilled the Marvin Blan No. 1 carbon storage research well and tested the entire Knox Group section in the open borehole � including the Beekmantown Dolomite, Gunter Sandstone, and Copper Ridge Dolomite � at 1152�2255 m, below casing cemented at 1116 m. During Phase 1 injection testing, most of the 297 tonnes of supercritical CO{sub 2} was displaced into porous and permeable sections of the lowermost Beekmantown below 1463 m and Gunter. The wellbore was then temporarily abandoned with a retrievable bridge plug in casing at 1105 m and two downhole pressure-temperature monitoring gauges below the bridge plug pending subsequent testing. Pressure and temperature data were recorded every minute for slightly more than a year, providing a unique record of subsurface reservoir conditions in the Knox. In contrast, Phase 2 testing, this study, tested a mechanically-isolated dolomitic-sandstone interval in the Gunter. Operations in the Phase 2 testing program commenced with retrieval of the bridge plug and long-term pressure gauges, followed by mechanical isolation of the Gunter by plugging the wellbore with cement below the injection zone at 1605.7 m, then cementing a section of a 14-cm casing at 1470.4�1535.6. The resultant 70.1-m test interval at 1535.6�1605.7 m included nearly all of the Gunter sandstone facies. During the Phase 2 injection, 333 tonnes of CO{sub 2} were injected into the thick, lower sand section in the sandy member of the Gunter. Following the completion of testing, the injection zone below casing at 1116 m in the Marvin Blan No. 1 well, and wellbore below 305 m was permanently abandoned with cement plugs and the wellsite reclaimed. The range of most-likely storage capacities found in the Knox in the Marvin Blan No. 1 is 1000 tonnes per surface hectare in the Phase 2 Gunter interval to 8685 tonnes per surface hectare if the entire Knox section were available including the fractured interval near the base of the Copper Ridge. By itself the Gunter lacks sufficient reservoir volume to be considered for CO{sub 2} storage, although it may provide up to 18% of the reservoir volume available in the Knox. Regional extrapolation of CO{sub 2} storage potential based on the results of a single well test can be problematic, although indirect evidence of porosity and permeability can be demonstrated in the form of active saltwater-disposal wells injecting into the Knox. The western Kentucky region suitable for CO{sub 2} storage in the Knox is limited updip, to the east and south, by the depth at which the base of the Maquoketa shale lies above the depth required to ensure storage of CO{sub 2} in its supercritical state and the deepest a commercial well might be drilled for CO{sub 2} storage. The resulting prospective region has an area of approximately 15,600 km{sup 2}, beyond which it is unlikely that suitable Knox reservoirs may be developed. Faults in the subsurface, which serve as conduits for CO{sub 2} migration and compromise sealing strata, may mitigate the area with Knox reservoirs suitable for CO{sub 2} storage. The results of the injection tes

  20. 746 eCAADe 24 -session 17: virtual environments 3D City Model Visualization in Decision Theater

    E-Print Network [OSTI]

    decisions while evaluating architectural designs and simulations. The following are indispensable in order in the US3 . However, more than 30% of downtown area is vacant land or used just for parking lots. In order. These VR environments include 3D city models for architectural and urban planning and human organic models

  1. A phase-field method for 3D simulation of two-phase heat transfer , H. Babaee a

    E-Print Network [OSTI]

    Dong, Suchuan "Steven"

    A phase-field method for 3D simulation of two-phase heat transfer X. Zheng a , H. Babaee a , S s t r a c t We formulate new multi-phase convective heat transfer equations by combining the three for convergence in time/space including a conjugate heat transfer problem and also for a realistic tran- sient

  2. Evaluation of a Vector Hypercube for Seismic Modelling Seismic modelling

    E-Print Network [OSTI]

    Renaut, Rosemary

    Evaluation of a Vector Hypercube for Seismic Modelling Abstract Seismic modelling is a computationally to produce realistic seismic traces intensive problem. A 2D syn- Rosemary Renautt and Johnny equation is the first step in the generation of a synthetic seismogram as an aid in the interpretation

  3. TOWARDSAUTOMATICMODELING OF 3D CULTURAL HERITAGE M. Andreetto, R. Bemardini, G.M. Cortelazzo,L. Lucchese

    E-Print Network [OSTI]

    Abu-Mostafa, Yaser S.

    by means of the "3D printing" devices used in mechanical rapid prototyping. Another one is that 3D objects

  4. Geological characterization and 3D visualizations of the gas storage reservoir at Hillsboro field, Montgomery County, IL

    SciTech Connect (OSTI)

    Udegbunam, E.O.; Huff, B.G. [Illinois State Geological Survey, Champaign, IL (United States)

    1994-12-31

    Geological characterizations, modeling and 3-D computer-generated visualizations of the Ordovician St. Peter Sandstone at the Hillsboro Gas Storage field in Montgomery County, Illinois, are discussed. Petrophysical analyses reveal four distinct hydraulic flow units in six cored wells. Furthermore, four lithologies, identified by thin section petrography, are associated with the various hydraulic units. Fieldwide visualizations of 3-D distributions of petrophysically-derived attributes reservoir quality index (RQI) and flow zone indicator (FZI) -- show considerable vertical variability but lateral continuity. This finding explains why it is easier to expand the gas bubble laterally than vertically. Advantages of the 3-D reservoir description of Hillsboro Gas Storage field include (1) improved definition of the spatial porosity distribution which leads to better estimation of reservoir volumetrics; (2) improved definition of reservoir hydraulic flow zones; and (3) development of realistic reservoir model(s) for the simulation and management of the gas storage field.

  5. 3D tumor localization through real-time volumetric x-ray imaging for lung cancer radiotherapy

    E-Print Network [OSTI]

    Li, Ruijiang; Jia, Xun; Gu, Xuejun; Folkerts, Michael; Men, Chunhua; Song, William Y; Jiang, Steve B

    2011-01-01

    Recently we have developed an algorithm for reconstructing volumetric images and extracting 3D tumor motion information from a single x-ray projection. We have demonstrated its feasibility using a digital respiratory phantom with regular breathing patterns. In this work, we present a detailed description and a comprehensive evaluation of the improved algorithm. The algorithm was improved by incorporating respiratory motion prediction. The accuracy and efficiency were then evaluated on 1) a digital respiratory phantom, 2) a physical respiratory phantom, and 3) five lung cancer patients. These evaluation cases include both regular and irregular breathing patterns that are different from the training dataset. For the digital respiratory phantom with regular and irregular breathing, the average 3D tumor localization error is less than 1 mm. On an NVIDIA Tesla C1060 GPU card, the average computation time for 3D tumor localization from each projection ranges between 0.19 and 0.26 seconds, for both regular and irreg...

  6. ASIC for High Rate 3D Position Sensitive Detectors

    SciTech Connect (OSTI)

    Vernon, E.; De Geronimo, G.; Ackley, K.; Fried, J.; He, Z.; Herman, C.; Zhang, F.

    2010-06-16

    We report on the development of an application specific integrated circuit (ASIC) for 3D position sensitive detectors (3D PSD). The ASIC is designed to operate with pixelated wide bandgap sensors like Cadmium-Zinc-Telluride (CZT), Mercuric Iodide (Hgl2) and Thallium Bromide (TIBr). It measures the amplitudes and timings associated with an ionizing event on 128 anodes, the anode grid, and the cathode. Each channel provides low-noise charge amplification, high-order shaping with peaking time adjustable from 250 ns to 12 {micro}s, gain adjustable to 20 mV/fC or 120 mV/fC (for a dynamic range of 3.2 MeV and 530 keV in CZT), amplitude discrimination with 5-bit trimming, and positive and negative peak and timing detections. The readout can be full or sparse, based on a flag and single- or multi-cycle token passing. All channels, triggered channels only, or triggered with neighbors can be read out thus increasing the rate capability of the system to more than 10 kcps. The ASIC dissipates 330 mW which corresponds to about 2.5 mW per channel.

  7. Image Appraisal for 2D and 3D Electromagnetic Inversion

    SciTech Connect (OSTI)

    Alumbaugh, D.L.; Newman, G.A.

    1999-01-28

    Linearized methods are presented for appraising image resolution and parameter accuracy in images generated with two and three dimensional non-linear electromagnetic inversion schemes. When direct matrix inversion is employed, the model resolution and posterior model covariance matrices can be directly calculated. A method to examine how the horizontal and vertical resolution varies spatially within the electromagnetic property image is developed by examining the columns of the model resolution matrix. Plotting the square root of the diagonal of the model covariance matrix yields an estimate of how errors in the inversion process such as data noise and incorrect a priori assumptions about the imaged model map into parameter error. This type of image is shown to be useful in analyzing spatial variations in the image sensitivity to the data. A method is analyzed for statistically estimating the model covariance matrix when the conjugate gradient method is employed rather than a direct inversion technique (for example in 3D inversion). A method for calculating individual columns of the model resolution matrix using the conjugate gradient method is also developed. Examples of the image analysis techniques are provided on 2D and 3D synthetic cross well EM data sets, as well as a field data set collected at the Lost Hills Oil Field in Central California.

  8. AUTOMATED, HIGHLY ACCURATE VERIFICATION OF RELAP5-3D

    SciTech Connect (OSTI)

    George L Mesina; David Aumiller; Francis Buschman

    2014-07-01

    Computer programs that analyze light water reactor safety solve complex systems of governing, closure and special process equations to model the underlying physics. In addition, these programs incorporate many other features and are quite large. RELAP5-3D[1] has over 300,000 lines of coding for physics, input, output, data management, user-interaction, and post-processing. For software quality assurance, the code must be verified and validated before being released to users. Verification ensures that a program is built right by checking that it meets its design specifications. Recently, there has been an increased importance on the development of automated verification processes that compare coding against its documented algorithms and equations and compares its calculations against analytical solutions and the method of manufactured solutions[2]. For the first time, the ability exists to ensure that the data transfer operations associated with timestep advancement/repeating and writing/reading a solution to a file have no unintended consequences. To ensure that the code performs as intended over its extensive list of applications, an automated and highly accurate verification method has been modified and applied to RELAP5-3D. Furthermore, mathematical analysis of the adequacy of the checks used in the comparisons is provided.

  9. THE THOMSON SURFACE. III. TRACKING FEATURES IN 3D

    SciTech Connect (OSTI)

    Howard, T. A.; DeForest, C. E.; Tappin, S. J.; Odstrcil, D.

    2013-03-01

    In this, the final installment in a three-part series on the Thomson surface, we present simulated observations of coronal mass ejections (CMEs) observed by a hypothetical polarizing white light heliospheric imager. Thomson scattering yields a polarization signal that can be exploited to locate observed features in three dimensions relative to the Thomson surface. We consider how the appearance of the CME changes with the direction of trajectory, using simulations of a simple geometrical shape and also of a more realistic CME generated using the ENLIL model. We compare the appearance in both unpolarized B and polarized pB light, and show that there is a quantifiable difference in the measured brightness of a CME between unpolarized and polarized observations. We demonstrate a technique for using this difference to extract the three-dimensional (3D) trajectory of large objects such as CMEs. We conclude with a discussion on how a polarizing heliospheric imager could be used to extract 3D trajectory information about CMEs or other observed features.

  10. Recommissioning the K-1600 Seismic Test Facility

    SciTech Connect (OSTI)

    Wynn, C.C. ); Brewer, D.W. )

    1991-10-01

    The Center of Natural Phenomena Engineering (CNPE) was established under the technical direction of Dr. James E. Beavers with a mandate to assess, by analyses and testing, the seismic capacity of building structures that house sensitive processes at the Oak Ridge Y-12 Plant. This mandate resulted in a need to recommission the K-1600 Seismic Test Facility (STF) at the Oak Ridge K-25 Site, which had been shutdown for 6 years. This paper documents the history of the facility and fives some salient construction, operation, and performance details of its 8-ton, 20-foot center of gravity payload bi-axial seismic simulator. A log of activities involved in the restart of this valuable resource is included as Table 1. Some of problems and solutions associated with recommissioning the facility under a relatively limited budget are included. The unique attributes of the shake table are discussed. The original mission and performance requirements are compared to current expanded mission and performance capabilities. Potential upgrades to further improve the capabilities of the test facility as an adjunct to the CNPE are considered. Additional uses for the facility are proposed, including seismic qualification testing of devices unique to enrichment technologies and associated hazardous waste treatment and disposal processes. In summary, the STF restart in conjunction with CNPE has added a vital, and unique facility to the list of current national resources utilized for earthquake engineering research and development. 3 figs., 1 tab.

  11. Heritable Genetic Changes in Cells Recovered From Irradiated 3D Tissue Constructs

    SciTech Connect (OSTI)

    Michael Cornforth

    2012-03-26

    Combining contemporary cytogenetic methods with DNA CGH microarray technology and chromosome flow-sorting increases substantially the ability to resolve exchange breakpoints associated with interstitial deletions and translocations, allowing the consequences of radiation damage to be directly measured at low doses, while also providing valuable insights into molecular mechanisms of misrepair processes that, in turn, identify appropriate biophysical models of risk at low doses. Specific aims apply to cells recovered from 3D tissue constructs of human skin and, for the purpose of comparison, the same cells irradiated in traditional 2D cultures. The project includes research complementary to NASA/HRP space radiation project.

  12. 3D Simulation of Missing Pellet Surface Defects in Light Water Reactor Fuel Rods

    SciTech Connect (OSTI)

    B.W. Spencer; J.D. Hales; S.R. Novascone; R.L. Williamson

    2012-09-01

    The cladding on light water reactor (LWR) fuel rods provides a stable enclosure for fuel pellets and serves as a first barrier against fission product release. Consequently, it is important to design fuel to prevent cladding failure due to mechanical interactions with fuel pellets. Cladding stresses can be effectively limited by controlling power increase rates. However, it has been shown that local geometric irregularities caused by manufacturing defects known as missing pellet surfaces (MPS) in fuel pellets can lead to elevated cladding stresses that are sufficiently high to cause cladding failure. Accurate modeling of these defects can help prevent these types of failures. Nuclear fuel performance codes commonly use a 1.5D (axisymmetric, axially-stacked, one-dimensional radial) or 2D axisymmetric representation of the fuel rod. To study the effects of MPS defects, results from 1.5D or 2D fuel performance analyses are typically mapped to thermo-mechanical models that consist of a 2D plane-strain slice or a full 3D representation of the geometry of the pellet and clad in the region of the defect. The BISON fuel performance code developed at Idaho National Laboratory employs either a 2D axisymmetric or 3D representation of the full fuel rod. This allows for a computational model of the full fuel rod to include local defects. A 3D thermo-mechanical model is used to simulate the global fuel rod behavior, and includes effects on the thermal and mechanical behavior of the fuel due to accumulation of fission products, fission gas production and release, and the effects of fission gas accumulation on thermal conductivity across the fuel-clad gap. Local defects can be modeled simply by including them in the 3D fuel rod model, without the need for mapping between two separate models. This allows for the complete set of physics used in a fuel performance analysis to be included naturally in the computational representation of the local defect, and for the effects of the local defect to be coupled with the global fuel rod model. This approach for modeling fuel with MPS defects is demonstrated and compared with alternative techniques. The effects of varying parameters of the MPS defect are studied using this technique and presented here.

  13. Higher derivative extensions of $3d$ Chern-Simons models: conservation laws and stability

    E-Print Network [OSTI]

    D. S. Kaparulin; I. Yu. Karataeva; S. L. Lyakhovich

    2015-10-07

    We consider the class of higher derivative $3d$ vector field models with the field equation operator being a polynomial of the Chern-Simons operator. For $n$-th order theory of this type, we provide a general receipt for constructing $n$-parameter family of conserved second rank tensors. The family includes the canonical energy-momentum tensor, which is unbounded, while there are bounded conserved tensors that provide classical stability of the system for certain combinations of the parameters in the Lagrangian. We also demonstrate the examples of consistent interactions which are compatible with the requirement of stability.

  14. 3D Printing and Immersive Visualization for Improved Perception of Ancient Artifacts

    E-Print Network [OSTI]

    Di Giuseppantonio Di Franco, Paola; Camporesi, Carlo; Galeazzi, Fabrizio; Kallmann, Marcelo

    2015-01-01

    ) with circular passive polarization filters. The projectors are connected to a rendering cluster of six commodity Linux-based rendering nodes (Pentium Q9550 2.83GHz GeForce GTX 280 4Gb RAM) driven by a similar main machine controlling the virtual scene being... jet print head. Finally, the part can be finished using infiltrants including wax, cyanoacrylate (super glue), and epoxy materials, which increase the 3D object strength and create the desired finish to ensure durability and more vivid colors...

  15. First Quarter Hanford Seismic Report for Fiscal Year 2009

    SciTech Connect (OSTI)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2009-03-15

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. This includes three recently acquired Transportable Array stations located at Cold Creek, Didier Farms, and Phinney Hill. For the Hanford Seismic Network, ten local earthquakes were recorded during the first quarter of fiscal year 2009. All earthquakes were considered as “minor” with magnitudes (Mc) less than 1.0. Two earthquakes were located at shallow depths (less than 4 km), most likely in the Columbia River basalts; five earthquakes at intermediate depths (between 4 and 9 km), most likely in the sub-basalt sediments); and three earthquakes were located at depths greater than 9 km, within the basement. Geographically, four earthquakes occurred in known swarm areas and six earthquakes were classified as random events.

  16. Seismic viscoelastic attenuation Submitted to

    E-Print Network [OSTI]

    Cormier, Vernon F.

    Seismic viscoelastic attenuation Submitted to: Encyclopedia of Solid Earth Geophysics Harsh Gupta-3046 USA E-mail: vernon.cormier@uconn.edu Tel: 860-486-3547 Fax: 860-486-3346 #12;SEISMIC VISCOELASTIC ATTENUATION Synonyms Seismic intrinsic attenuation Definitions Linear viscoelastic attenuation. The loss

  17. Multicomponent Seismic Technology Assessment of

    E-Print Network [OSTI]

    Texas at Austin, University of

    Multicomponent Seismic Technology Assessment of Fluid-gas Expulsion Geology and Gas-hydrate Systems-component ocean-bottom-cable (4-C OBC) seismic data acquired in deep water across the Gulf of Mexico were used technology or with conventional towed-cable seismic technology. This increased resolution allows the P

  18. Seismic Vessel Problem Gregory Gutin

    E-Print Network [OSTI]

    Gutin, Gregory

    Seismic Vessel Problem Gregory Gutin , Helmut Jakubowicz , Shuki Ronen and Alexei Zverovitch§ November 14, 2003 Abstract We introduce and study a new combinatorial optimization prob- lem, the Seismic computational experience with solving SVP instances drawn from industrial practice (geophysical seismic acquisi

  19. Subduction Zone Seismic Experiment in Peru: Results From a Wireless Seismic Network

    E-Print Network [OSTI]

    2009-01-01

    Sensing Subduction Zone Seismic Experiment in Peru:results from a wireless seismic Network Igor Stubailo,deployed in Peru. UCLA seismic line in Peru Lake Titicaca

  20. Borehole seismic monitoring of seismic stimulation at Occidental Permian Ltd's -- South Wason Clear Fork Unit

    E-Print Network [OSTI]

    Daley, Tom; Majer, Ernie

    2007-01-01

    the distribution of seismic energy within the reservoir.Field Monitoring of ASR Seismic Stimulation Source at LostField Results from Seismic Stimulation, 17th International

  1. Initial results from seismic monitoring at the Aquistore CO2 storage site, Saskatchewan, Canada

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    White, D. J.; Roach, L. A.N.; Roberts, B.; Daley, T. M.

    2014-12-31

    The Aquistore Project, located near Estevan, Saskatchewan, is one of the first integrated commercial-scale CO2 storage projects in the world that is designed to demonstrate CO2 storage in a deep saline aquifer. Starting in 2014, CO2 captured from the nearby Boundary Dam coal-fired power plant will be transported via pipeline to the storage site and to nearby oil fields for enhanced oil recovery. At the Aquistore site, the CO2 will be injected into a brine-filled sandstone formation at ~3200 m depth using the deepest well in Saskatchewan. The suitability of the geological formations that will host the injected CO2 hasmore »been predetermined through 3D characterization using high-resolution 3D seismic images and deep well information. These data show that 1) there are no significant faults in the immediate area of the storage site, 2) the regional sealing formation is continuous in the area, and 3) the reservoir is not adversely affected by knolls on the surface of the underlying Precambrian basement. Furthermore, the Aquistore site is located within an intracratonic region characterized by extremely low levels of seismicity. This is in spite of oil-field related water injection in the nearby Weyburn-Midale field where a total of 656 million m3 of water have been injected since the 1960`s with no demonstrable related induced seismicity. A key element of the Aquistore research program is the further development of methods to monitor the security and subsurface distribution of the injected CO2. Toward this end, a permanent areal seismic monitoring array was deployed in 2012, comprising 630 vertical-component geophones installed at 20 m depth on a 2.5x2.5 km regular grid. This permanent array is designed to provide improved 3D time-lapse seismic imaging for monitoring subsurface CO2. Prior to the onset of CO2 injection, calibration 3D surveys were acquired in May and November of 2013. Comparison of the data from these surveys relative to the baseline 3D survey data from 2012 shows excellent repeatability (NRMS less than 10%) which will provide enhanced monitoring sensitivity to smaller amounts of CO2. The permanent array also provides continuous passive monitoring for injection-related microseismicity. Passive monitoring has been ongoing since the summer of 2012 in order to establish levels of background seismicity before CO2 injection starts in 2014. Microseismic monitoring was augmented in 2013 by the installation of 3 broadband seismograph stations surrounding the Aquistore site. These surface installations should provide a detection capability of seismic events with magnitudes as low as ~0. Downhole seismic methods are also being utilized for CO2 monitoring at the Aquistore site. Baseline crosswell tomographic images depict details (meters-scale) of the reservoir in the 150-m interval between the observation and injection wells. This level of resolution is designed to track the CO2 migration between the wells during the initial injection period. A baseline 3D vertical seismic profile (VSP) was acquired in the fall of 2013 to provide seismic images with resolution on a scale between that provided by the surface seismic array and the downhole tomography. The 3D VSP was recorded simultaneously using both a conventional array of downhole geophones (60-levels) and an optical fibre system. The latter utilized an optical fiber cable deployed on the outside of the monitor well casing and cemented in place. A direct comparison of these two methodologies will determine the suitability of using the fiber cable for ongoing time-lapse VSP monitoring.« less

  2. RELAP5-3D Restart and Backup Verification Testing

    SciTech Connect (OSTI)

    Dr. George L Mesina

    2013-09-01

    Existing testing methodology for RELAP5-3D employs a set of test cases collected over two decades to test a variety of code features and run on a Linux or Windows platform. However, this set has numerous deficiencies in terms of code coverage, detail of comparison, running time, and testing fidelity of RELAP5-3D restart and backup capabilities. The test suite covers less than three quarters of the lines of code in the relap directory and just over half those in the environmental library. Even in terms of code features, many are not covered. Moreover, the test set runs many problems long past the point necessary to test the relevant features. It requires standard problems to run to completion. This is unnecessary for features can be tested in a short-running problem. For example, many trips and controls can be tested in the first few time steps, as can a number of fluid flow options. The testing system is also inaccurate. For the past decade, the diffem script has been the primary tool for checking that printouts from two different RELAP5-3D executables agree. This tool compares two output files to verify that all characters are the same except for those relating to date, time and a few other excluded items. The variable values printed on the output file are accurate to no more than eight decimal places. Therefore, calculations with errors in decimal places beyond those printed remain undetected. Finally, fidelity of restart is not tested except in the PVM sub-suite and backup is not specifically tested at all. When a restart is made from any midway point of the base-case transient, the restart must produce the same values. When a backup condition occurs, the code repeats advancements with the same time step. A perfect backup can be tested by forcing RELAP5 to perform a backup by falsely setting a backup condition flag at a user-specified-time. Comparison of the calculations of that run and those produced by the same input w/o the spurious condition should be identical. Backup testing is more difficult the other kinds of testing described above because it requires additional coding to implement. The testing system constructed and described in this document resolves all of these issues. A matrix of test features and short-running cases that exercise them is presented. A small information file that contains sufficient data to verify calculations to the last decimal place and bit is produced. This testing system is used to test base cases (called null testing) as well as restart and backup cases. The programming that implements these new capabilities is presented.

  3. CALIBRATION OF SEISMIC ATTRIBUTES FOR RESERVOIR CHARACTERIZATION

    SciTech Connect (OSTI)

    Wayne D. Pennington; Horacio Acevedo; Aaron Green; Joshua Haataja; Shawn Len; Anastasia Minaeva; Deyi Xie

    2002-10-01

    The project, ''Calibration of Seismic Attributes for Reservoir Calibration,'' is now complete. Our original proposed scope of work included detailed analysis of seismic and other data from two to three hydrocarbon fields; we have analyzed data from four fields at this level of detail, two additional fields with less detail, and one other 2D seismic line used for experimentation. We also included time-lapse seismic data with ocean-bottom cable recordings in addition to the originally proposed static field data. A large number of publications and presentations have resulted from this work, including several that are in final stages of preparation or printing; one of these is a chapter on ''Reservoir Geophysics'' for the new Petroleum Engineering Handbook from the Society of Petroleum Engineers. Major results from this project include a new approach to evaluating seismic attributes in time-lapse monitoring studies, evaluation of pitfalls in the use of point-based measurements and facies classifications, novel applications of inversion results, improved methods of tying seismic data to the wellbore, and a comparison of methods used to detect pressure compartments. Some of the data sets used are in the public domain, allowing other investigators to test our techniques or to improve upon them using the same data. From the public-domain Stratton data set we have demonstrated that an apparent correlation between attributes derived along ''phantom'' horizons are artifacts of isopach changes; only if the interpreter understands that the interpretation is based on this correlation with bed thickening or thinning, can reliable interpretations of channel horizons and facies be made. From the public-domain Boonsville data set we developed techniques to use conventional seismic attributes, including seismic facies generated under various neural network procedures, to subdivide regional facies determined from logs into productive and non-productive subfacies, and we developed a method involving cross-correlation of seismic waveforms to provide a reliable map of the various facies present in the area. The Wamsutter data set led to the use of unconventional attributes including lateral incoherence and horizon-dependent impedance variations to indicate regions of former sand bars and current high pressure, respectively, and to evaluation of various upscaling routines. The Teal South data set has provided a surprising set of results, leading us to develop a pressure-dependent velocity relationship and to conclude that nearby reservoirs are undergoing a pressure drop in response to the production of the main reservoir, implying that oil is being lost through their spill points, never to be produced. Additional results were found using the public-domain Waha and Woresham-Bayer data set, and some tests of technologies were made using 2D seismic lines from Michigan and the western Pacific ocean.

  4. Assessing Beyond Design Basis Seismic Events and Implications...

    Office of Environmental Management (EM)

    Assessing Beyond Design Basis Seismic Events and Implications on Seismic Risk Assessing Beyond Design Basis Seismic Events and Implications on Seismic Risk September 19, 2012...

  5. Shell Element Verification & Regression Problems for DYNA3D

    SciTech Connect (OSTI)

    Zywicz, E

    2008-02-01

    A series of quasi-static regression/verification problems were developed for the triangular and quadrilateral shell element formulations contained in Lawrence Livermore National Laboratory's explicit finite element program DYNA3D. Each regression problem imposes both displacement- and force-type boundary conditions to probe the five independent nodal degrees of freedom employed in the targeted formulation. When applicable, the finite element results are compared with small-strain linear-elastic closed-form reference solutions to verify select aspects of the formulations implementation. Although all problems in the suite depict the same geometry, material behavior, and loading conditions, each problem represents a unique combination of shell formulation, stabilization method, and integration rule. Collectively, the thirty-six new regression problems in the test suite cover nine different shell formulations, three hourglass stabilization methods, and three families of through-thickness integration rules.

  6. 3D Model of the Neal Hot Springs Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    The Neal Hot Springs geothermal system lies in a left-step in a north-striking, west-dipping normal fault system, consisting of the Neal Fault to the south and the Sugarloaf Butte Fault to the north (Edwards, 2013). The Neal Hot Springs 3D geologic model consists of 104 faults and 13 stratigraphic units. The stratigraphy is sub-horizontal to dipping <10 degrees and there is no predominant dip-direction. Geothermal production is exclusively from the Neal Fault south of, and within the step-over, while geothermal injection is into both the Neal Fault to the south of the step-over and faults within the step-over.

  7. 3D imaging of semiconductor components by discrete laminography

    SciTech Connect (OSTI)

    Batenburg, K. J.; Palenstijn, W. J.; Sijbers, J.

    2014-06-19

    X-ray laminography is a powerful technique for quality control of semiconductor components. Despite the advantages of nondestructive 3D imaging over 2D techniques based on sectioning, the acquisition time is still a major obstacle for practical use of the technique. In this paper, we consider the application of Discrete Tomography to laminography data, which can potentially reduce the scanning time while still maintaining a high reconstruction quality. By incorporating prior knowledge in the reconstruction algorithm about the materials present in the scanned object, far more accurate reconstructions can be obtained from the same measured data compared to classical reconstruction methods. We present a series of simulation experiments that illustrate the potential of the approach.

  8. Modeling the GFR with RELAP5-3D

    SciTech Connect (OSTI)

    Cliff B. Davis; Theron D. Marshall; K. D. Weaver

    2005-09-01

    Significant improvements have been made to the RELAP5-3D computer code for analysis of the Gas Fast Reactor (GFR). These improvements consisted of adding carbon dioxide as a working fluid, improving the turbine component, developing a compressor model, and adding the Gnielinski heat transfer correlation. The code improvements were validated, generally through comparisons with independent design calculations. A model of the power conversion unit of the GFR was developed. The model of the power conversion unit was coupled to a reactor model to develop a complete model of the GFR system. The RELAP5 model of the GFR was used to simulate two transients, one initiated by a reactor trip and the other initiated by a loss of load.

  9. 3D deformation field throughout the interior of materials.

    SciTech Connect (OSTI)

    Jin, Huiqing; Lu, Wei-Yang

    2013-09-01

    This report contains the one-year feasibility study for our three-year LDRD proposal that is aimed to develop an experimental technique to measure the 3D deformation fields inside a material body. In this feasibility study, we first apply Digital Volume Correlation (DVC) algorithm to pre-existing in-situ Xray Computed Tomography (XCT) image sets with pure rigid body translation. The calculated displacement field has very large random errors and low precision that are unacceptable. Then we enhance these tomography images by setting threshold of the intensity of each slice. DVC algorithm is able to obtain accurate deformation fields from these enhanced image sets and the deformation fields are consistent with the global mechanical loading that is applied to the specimen. Through this study, we prove that the internal markers inside the pre-existing tomography images of aluminum alloy can be enhanced and are suitable for DVC to calculate the deformation field throughout the material body.

  10. Visualizing 3D velocity fields near contour surfaces. Revision 1

    SciTech Connect (OSTI)

    Max, N.; Crawfis, R.; Grant, C.

    1994-08-08

    Vector field rendering is difficult in 3D because the vector icons overlap and hide each other. We propose four different techniques for visualizing vector fields only near surfaces. The first uses motion blurred particles in a thickened region around the surface. The second uses a voxel grid to contain integral curves of the vector field. The third uses many antialiased lines through the surface, and the fourth uses hairs sprouting from the surface and then bending in the direction of the vector field. All the methods use the graphics pipeline, allowing real time rotation and interaction, and the first two methods can animate the texture to move in the flow determined by the velocity field.

  11. 3D Model of the San Emidio Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    James E. Faulds

    2013-12-31

    The San Emidio geothermal system is characterized by a left-step in a west-dipping normal fault system that bounds the western side of the Lake Range. The 3D geologic model consists of 5 geologic units and 55 faults. Overlying Jurrassic-Triassic metasedimentary basement is a ~500 m-1000 m thick section of the Miocene lower Pyramid sequence, pre- syn-extensional Quaternary sedimentary rocks and post-extensional Quaternary rocks. 15-30º eastward dip of the stratigraphy is controlled by the predominant west-dipping fault set. Both geothermal production and injection are concentrated north of the step over in an area of closely spaced west dipping normal faults.

  12. Eigenvalue Contributon Estimator for Sensitivity Calculations with TSUNAMI-3D

    SciTech Connect (OSTI)

    Rearden, Bradley T [ORNL; Williams, Mark L [ORNL

    2007-01-01

    Since the release of the Tools for Sensitivity and Uncertainty Analysis Methodology Implementation (TSUNAMI) codes in SCALE [1], the use of sensitivity and uncertainty analysis techniques for criticality safety applications has greatly increased within the user community. In general, sensitivity and uncertainty analysis is transitioning from a technique used only by specialists to a practical tool in routine use. With the desire to use the tool more routinely comes the need to improve the solution methodology to reduce the input and computational burden on the user. This paper reviews the current solution methodology of the Monte Carlo eigenvalue sensitivity analysis sequence TSUNAMI-3D, describes an alternative approach, and presents results from both methodologies.

  13. Automating the determination of 3D protein structure

    SciTech Connect (OSTI)

    Rayl, K.D.

    1993-12-31

    The creation of an automated method for determining 3D protein structure would be invaluable to the field of biology and presents an interesting challenge to computer science. Unfortunately, given the current level of protein knowledge, a completely automated solution method is not yet feasible, therefore, our group has decided to integrate existing databases and theories to create a software system that assists X-ray crystallographers in specifying a particular protein structure. By breaking the problem of determining overall protein structure into small subproblems, we hope to come closer to solving a novel structure by solving each component. By generating necessary information for structure determination, this method provides the first step toward designing a program to determine protein conformation automatically.

  14. 3D Model of the Neal Hot Springs Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    2013-12-31

    The Neal Hot Springs geothermal system lies in a left-step in a north-striking, west-dipping normal fault system, consisting of the Neal Fault to the south and the Sugarloaf Butte Fault to the north (Edwards, 2013). The Neal Hot Springs 3D geologic model consists of 104 faults and 13 stratigraphic units. The stratigraphy is sub-horizontal to dipping <10 degrees and there is no predominant dip-direction. Geothermal production is exclusively from the Neal Fault south of, and within the step-over, while geothermal injection is into both the Neal Fault to the south of the step-over and faults within the step-over.

  15. 3D Model of the San Emidio Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    James E. Faulds

    The San Emidio geothermal system is characterized by a left-step in a west-dipping normal fault system that bounds the western side of the Lake Range. The 3D geologic model consists of 5 geologic units and 55 faults. Overlying Jurrassic-Triassic metasedimentary basement is a ~500 m-1000 m thick section of the Miocene lower Pyramid sequence, pre- syn-extensional Quaternary sedimentary rocks and post-extensional Quaternary rocks. 15-30º eastward dip of the stratigraphy is controlled by the predominant west-dipping fault set. Both geothermal production and injection are concentrated north of the step over in an area of closely spaced west dipping normal faults.

  16. Growth of normal faults in multilayer sequences: A 3D seismic case study from the Egersund Basin, Norwegian North Sea

    E-Print Network [OSTI]

    Fossen, Haakon

    Accepted 7 August 2013 Available online 14 August 2013 Keywords: Salt tectonics Fault reactivation Throw the structural style and evolution of a salt-influenced, extensional fault array in the Egersund Basin (Norwegian and growth, suggesting an evolution of (1) initial syn-sedimentary fault growth contemporaneous with salt

  17. An Archaeological Survey of the Frontline Geoservices' Manning 3-D Seismic Survey in the Angelina National Forest Angelina County, Texas 

    E-Print Network [OSTI]

    Moore, William

    2015-07-30

    layer about 16 inches thick. The subsoil, to a depth of 72 inches, is a sandy clay loam. AaB soils have a high available water capacity, are moderately permeable, are somewhat poorly drained, and runoff is slow to medium. This soil is saturated... thick. The subsoil, to a depth of 65 inches, is a sandy clay loam. BaB soils have a high available water capacity, are moderately permeable, are well drained, and runoff is slow. This soil is saturated in at a depth of four to six feet in late winter...

  18. 3-D multichannel seismic reflection study of variable-flux hydrocarbon seeps, continental slope, northern Gulf of Mexico 

    E-Print Network [OSTI]

    Thomas, Ryan Douglas

    2004-11-15

    and geophysical indicators of hydrocarbons and correlate them with seafloor amplitude anomalies and fault traces in order to characterize seep activity level. The southern mud volcano in the Garden Banks site is characterized as an established high flux seep vent...

  19. An Archaeological Survey for the CGG Veritas Middleton Ranch 3-D Seismic Survey in Chambers County Texas 

    E-Print Network [OSTI]

    Moore, William; Baxter, Edward

    2015-07-31

    1988 The Crawford Site, 41PK69, Central Trinity River Uplands, Polk County, Texas. Contract Reports in Archaeology Number 4, Highway Design Division, Texas State Department of Highways and Public Transportation, Austin. 1989 Alabonson Road: Early...

  20. Simulation of Seismic Real and Virtual Data Using the 3d Finite-difference Technique and Representation Theorem 

    E-Print Network [OSTI]

    Yang, Xiujun

    2009-05-15

    by (Madariaga, 1976) is to use a staggered-grid technique. In this technique, not all quantities in the wave equations are defined at the reference gird; some are defined at half a grid point off the reference grid, say, x = parenleftbigi? 12parenrightbig... grid, shear stress, ?yz, is defined at half a grid off the reference grids, the normal stresses ?xx, ?yy, ?zz are defined at half a grid off the reference grid on the X axis. Notice that normal stresses, mass density, and the Lam?e parameters...

  1. Numerical Simulation of Fault Zone Guided Waves: Accuracy and 3-D Effects

    E-Print Network [OSTI]

    Ben-Zion, Yehuda

    seismic velocity. When sources are located in or close to these low-velocity zones, guided seismic head for seismic fault zone head and trapped waves. Fault zone head waves propagate along material discontinuity Pure and Applied Geophysics #12;traveling inside low velocity fault zone layers with dispersive

  2. Improvement of a multigrid solver for 3D EM T. Jnsthvel

    E-Print Network [OSTI]

    Vuik, Kees

    as modern seismic exploration. Due 2 #12;to improvements in magnetotelluric (MT) data collection source to seismic exploration, EM methods become more widely used in hydrocarbon exploration. Just as in seismic exploration, EM methods can contribute to e¤ective hy- drocarbon exploration in two distinct ways

  3. Volatile transport on inhomogeneous surfaces: II. Numerical calculations (VT3D)

    E-Print Network [OSTI]

    Young, Leslie A

    2015-01-01

    Several distant icy worlds have atmospheres that are in vapor-pressure equilibrium with their surface volatiles, including Pluto, Triton, and, probably, several large KBOs near perihelion. Studies of the volatile and thermal evolution of these have been limited by computational speed, especially for models that treat surfaces that vary with both latitude and longitude. In order to expedite such work, I present a new numerical model for the seasonal behavior of Pluto and Triton which (i) uses initial conditions that improve convergence, (ii) uses an expedient method for handling the transition between global and non-global atmospheres, (iii) includes local conservation of energy and global conservation of mass to partition energy between heating, conduction, and sublimation or condensation, (iv) uses time-stepping algorithms that ensure stability while allowing larger timesteps, and (v) can include longitudinal variability. This model, called VT3D, has been used in Young (2012), Young (2013), Olkin et al. (201...

  4. Engineering 3D Nanostructures for a Multitude of Applications

    E-Print Network [OSTI]

    Flores, Jose Fernando

    2015-01-01

    applications of ZnO include diodes, photonic devices including solar cells and water splitting, gas and biological sensors, piezoelectric

  5. SEISMIC EVALUATION OF HYDROCARBON SATURATION IN DEEP-WATER RESERVOIRS

    SciTech Connect (OSTI)

    M. Batzle; D-h Han; R. Gibson; O. Djordjevic

    2003-03-20

    The ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' (Grant/Cooperative Agreement DE-FC26-02NT15342) began September 1, 2002. During this second quarter: A Direct Hydrocarbon Indicator (DHI) symposium was held at UH; Current DHI methods were presented and forecasts made on future techniques; Dr. Han moved his laboratory from HARC to the University of Houston; Subcontracts were re-initiated with UH and TAMU; Theoretical and numerical modeling work began at TAMU; Geophysical Development Corp. agreed to provide petrophysical data; Negotiations were begun with Veritas GDC to obtain limited seismic data; Software licensing and training schedules were arranged with Paradigm; and Data selection and acquisition continues. The broad industry symposium on Direct Hydrocarbon Indicators was held at the University of Houston as part of this project. This meeting was well attended and well received. A large amount of information was presented, not only on application of the current state of the art, but also on expected future trends. Although acquisition of appropriate seismic data was expected to be a significant problem, progress has been made. A 3-D seismic data set from the shelf has been installed at Texas A&M University and analysis begun. Veritas GDC has expressed a willingness to provide data in the deep Gulf of Mexico. Data may also be available from TGS.

  6. DYNA3D: A nonlinear, explicit, three-dimensional finite element...

    Office of Scientific and Technical Information (OSTI)

    Service, Springfield, VA at www.ntis.gov. This report is the User Manual for the 1993 version of DYNA3D, and also serves as a User Guide. DYNA3D is a nonlinear, explicit,...

  7. Simultaneous Detection and Registration for Ileo-Cecal Valve Detection in 3D CT Colonography

    E-Print Network [OSTI]

    Barbu, Adrian

    Simultaneous Detection and Registration for Ileo-Cecal Valve Detection in 3D CT Colonography Le Lu1-Cecal Valve (ICV) detection in both clean and tagged 3D CT colonography scans. Our final ICV detection system

  8. Design and fabrication of a modular multi-material 3D printer

    E-Print Network [OSTI]

    Lan, Justin (Justin T.)

    2013-01-01

    This thesis presents 3DP-0, a modular, multi-material 3D printer. Currently, 3D printers available on the market are typically expensive and difficult to develop. In addition, the simultaneous use of multiple materials in ...

  9. Fabrication and applications of sub-micron 2D and 3D periodic...

    Office of Scientific and Technical Information (OSTI)

    Fabrication and applications of sub-micron 2D and 3D periodic carbon structures. Citation Details In-Document Search Title: Fabrication and applications of sub-micron 2D and 3D...

  10. Domain Fishing and 3D-JIGSAW: tools for protein comparative modelling

    E-Print Network [OSTI]

    Moreira, Bruno Contreras

    Domain Fishing and 3D-JIGSAW: tools for protein comparative modelling Bruno Contreras Fishing up to 7 alternative alignments #12;3D-JIGSAW Example #12;EVA: continuous evaluation of servers

  11. Statistical methods for 2D-3D registration of optical and LIDAR images

    E-Print Network [OSTI]

    Mastin, Dana Andrew

    2009-01-01

    Fusion of 3D laser radar (LIDAR) imagery and aerial optical imagery is an efficient method for constructing 3D virtual reality models. One difficult aspect of creating such models is registering the optical image with the ...

  12. 3D Geological Modelling In Bavaria - State-Of-The-Art At A State...

    Open Energy Info (EERE)

    3D Geological Modelling In Bavaria - State-Of-The-Art At A State Geological Survey Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: 3D Geological...

  13. 3D Cobra, Renewable Energy, and Green Button at the National...

    Energy Savers [EERE]

    whose design is based off of the 1965 Shelby Cobra, showcases the capabilities of 3D printing and advanced electric vehicles technology. (Click here to read more about the 3D...

  14. Interactive 3D Modeling of Indoor Environments with a Consumer Depth Camera

    E-Print Network [OSTI]

    Washington at SeattleUniversity of

    are far from accessible to average consumers. Recently, image-based 3D modeling has become feasible, with Photo Tourism [28] being a prominent example how 3D structures can be recovered by analyzing

  15. WiPrint: 3D Printing Your Wireless Coverage Author: Justin Chan

    E-Print Network [OSTI]

    WiPrint: 3D Printing Your Wireless Coverage Author: Justin Chan Advisor: Xia Zhou Dartmouth WiPrint, a novel approach to customiz- ing wireless signal maps using 3D printed glossy reflectors

  16. Application of Modern Filtering Techniques for 3D Localisation in Biological and Robotic Systems

    E-Print Network [OSTI]

    Application of Modern Filtering Techniques for 3D Localisation in Biological and Robotic Systems Application of Modern Filtering Techniques for 3D Localisation in Biological and Robotic Systems Kudah C system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Robotic system

  17. "Flying Through the Known Universe" Screens at 3D Film Festival...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Flying Through the Known Universe" Screens at 3D Film Festival in L.A. "Flying Through the Known Universe" Screens at 3D Film Festival in L.A. September 19, 2012 perseus This...

  18. 3-D Inversion Of Borehole-To-Surface Electrical Data Using A...

    Open Energy Info (EERE)

    3-D Inversion Of Borehole-To-Surface Electrical Data Using A Back-Propagation Neural Network Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: 3-D...

  19. 3-D Printed Electrically and Optically Paced Skeletal Muscle Based Biological Machines Caroline Cvetkovic, Bioengineering

    E-Print Network [OSTI]

    Kilian, Kristopher A.

    3-D Printed Electrically and Optically Paced Skeletal Muscle Based Biological Machines Caroline Research Aims and Goals · To use 3D printing technologies to fabricate the structure of the biological

  20. High-resolution 3-D refractive index imaging and Its biological applications

    E-Print Network [OSTI]

    Sung, Yongjin

    2011-01-01

    This thesis presents a theory of 3-D imaging in partially coherent light under a non-paraxial condition. The transmission cross-coefficient (TCC) has been used to characterize partially coherent imaging in a 2- D and 3-D ...

  1. 3D microstructure modeling of compressed fiber-based Gerd Gaiselmanna,

    E-Print Network [OSTI]

    Schmidt, Volker

    consideration of compression conditions as found in fuel cells. Given the input of a 3D microstructure of some compression states, an optimal vector field is estimated by simulated annealing. The model is applied to 3D im

  2. Geometric modeling and optimization in 3D solar cells : implementation and algorithms

    E-Print Network [OSTI]

    Wan, Jin Hao, M. Eng. Massachusetts Institute of Technology

    2014-01-01

    Conversion of solar energy in three-dimensional (3D) devices has been essentially untapped. In this thesis, I design and implement a C++ program that models and optimizes a 3D solar cell ensemble embedded in a given ...

  3. Novel 3d-4f Magnetic Intermetallic Materials by Design | The...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    both itinerant 3d electrons of transition metals and localized 4f electrons of rare earth metals could yield large 3d-4f exchange interactions that are prospective for many...

  4. Photo Gallery: 3D Printing Brings Classic Shelby Cobra to Life...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photo Gallery: 3D Printing Brings Classic Shelby Cobra to Life Photo Gallery: 3D Printing Brings Classic Shelby Cobra to Life April 15, 2015 - 4:02pm Addthis Zero to 60 in under...

  5. ModelCraft: Capturing Freehand Annotations and Edits on Physical 3D Models

    E-Print Network [OSTI]

    Keinan, Alon

    of affordable new desktop fabrication techniques such as 3D printing and laser cutting, physical models are used cur- rent 3D printing technology. ACM CLASSIFICATION: H5.2 [Information interfaces and presentation

  6. Design and analysis of a concrete modular housing system constructed with 3D panels

    E-Print Network [OSTI]

    Sarcia, Sam Rhea, 1982-

    2004-01-01

    An innovative modular house system design utilizing an alternative concrete residential building system called 3D panels is presented along with an overview of 3D panels as well as relevant methods and markets. The proposed ...

  7. In Operando Soft X-ray Spectroscopy of 3D Graphene Supercapacitor...

    Office of Scientific and Technical Information (OSTI)

    In Operando Soft X-ray Spectroscopy of 3D Graphene Supercapacitor Electrodes Citation Details In-Document Search Title: In Operando Soft X-ray Spectroscopy of 3D Graphene...

  8. Impact of 3D printing on global supply chains by 2020

    E-Print Network [OSTI]

    Bhasin, Varun

    2014-01-01

    This thesis aims to quantitatively estimate the potential impact of 3D Printing on global supply chains. Industrial adoption of 3D Printing has been increasing gradually from prototyping to manufacturing of low volume ...

  9. Calibration of Seismic Attributes for Reservoir Characterization

    SciTech Connect (OSTI)

    Wayne D. Pennington

    2002-09-29

    The project, "Calibration of Seismic Attributes for Reservoir Characterization," is now complete. Our original proposed scope of work included detailed analysis of seismic and other data from two to three hydrocarbon fields; we have analyzed data from four fields at this level of detail, two additional fields with less detail, and one other 2D seismic line used for experimentation. We also included time-lapse seismic data with ocean-bottom cable recordings in addition to the originally proposed static field data. A large number of publications and presentations have resulted from this work, inlcuding several that are in final stages of preparation or printing; one of these is a chapter on "Reservoir Geophysics" for the new Petroleum Engineering Handbook from the Society of Petroleum Engineers. Major results from this project include a new approach to evaluating seismic attributes in time-lapse monitoring studies, evaluation of pitfalls in the use of point-based measurements and facies classifications, novel applications of inversion results, improved methods of tying seismic data to the wellbore, and a comparison of methods used to detect pressure compartments. Some of the data sets used are in the public domain, allowing other investigators to test our techniques or to improve upon them using the same data. From the public-domain Stratton data set we have demonstrated that an apparent correlation between attributes derived along 'phantom' horizons are artifacts of isopach changes; only if the interpreter understands that the interpretation is based on this correlation with bed thickening or thinning, can reliable interpretations of channel horizons and facies be made. From the public-domain Boonsville data set we developed techniques to use conventional seismic attributes, including seismic facies generated under various neural network procedures, to subdivide regional facies determined from logs into productive and non-productive subfacies, and we developed a method involving cross-correlation of seismic waveforms to provide a reliable map of the various facies present in the area. The Wamsutter data set led to the use of unconventional attributes including lateral incoherence and horizon-dependent impedance variations to indicate regions of former sand bars and current high pressure, respectively, and to evaluation of various upscaling routines. The Teal South data set has provided a surprising set of results, leading us to develop a pressure-dependent velocity relationship and to conclude that nearby reservoirs are undergoing a pressure drop in response to the production of the main reservoir, implying that oil is being lost through their spill points, never to be produced. Additional results were found using the public-domain Waha and Woresham-Bayer data set, and some tests of technologies were made using 2D seismic lines from Michigan and the western Pacific ocean.

  10. Validation of the BISON 3D Fuel Performance Code: Temperature Comparisons for Concentrically and Eccentrically Located Fuel Pellets

    SciTech Connect (OSTI)

    J. D. Hales; D. M. Perez; R. L. Williamson; S. R. Novascone; B. W. Spencer

    2013-03-01

    BISON is a modern finite-element based nuclear fuel performance code that has been under development at the Idaho National Laboratory (USA) since 2009. The code is applicable to both steady and transient fuel behaviour and is used to analyse either 2D axisymmetric or 3D geometries. BISON has been applied to a variety of fuel forms including LWR fuel rods, TRISO-coated fuel particles, and metallic fuel in both rod and plate geometries. Code validation is currently in progress, principally by comparison to instrumented LWR fuel rods. Halden IFA experiments constitute a large percentage of the current BISON validation base. The validation emphasis here is centreline temperatures at the beginning of fuel life, with comparisons made to seven rods from the IFA-431 and 432 assemblies. The principal focus is IFA-431 Rod 4, which included concentric and eccentrically located fuel pellets. This experiment provides an opportunity to explore 3D thermomechanical behaviour and assess the 3D simulation capabilities of BISON. Analysis results agree with experimental results showing lower fuel centreline temperatures for eccentric fuel with the peak temperature shifted from the centreline. The comparison confirms with modern 3D analysis tools that the measured temperature difference between concentric and eccentric pellets is not an artefact and provides a quantitative explanation for the difference.

  11. Visualization of Seismic Soils Structure Interaction Simulations GERIK SCHEUERMANN , JAN FREY, HANS HAGEN, BERND HAMANN, BORIS JEREMIC,

    E-Print Network [OSTI]

    Hamann, Bernd

    Visualization of Seismic Soils Structure Interaction Simulations GERIK SCHEUERMANN½ ¾, JAN FREY 3D solids (soils, concrete and steel). These fluctuations in stresses and strains can result of concrete pile foundations embedded in soil. We show results and limitations of current and new techniques

  12. The roughness of stylolites: Implications of 3D high resolution topography measurements

    E-Print Network [OSTI]

    Boyer, Edmond

    diagenesis and metamorphism that develop after their initiation. In this Letter we show the first 3D high

  13. C H A P T E R 1 What is Java 3D and

    E-Print Network [OSTI]

    Hill, Gary

    1 C H A P T E R 1 What is Java 3D and is it for me? 1.1 Strengths 2 1.2 Weaknesses 3 1.3 System Java 3D is an application programming interface (API) developed at Sun Microsystems for rendering interactive 3D graphics using the Java programming language. Java 3D is a client-side Java API. Other examples

  14. Final report: high resolution lensless 3D imaging of nanostructures with coherent x-rays

    SciTech Connect (OSTI)

    Jacobsen, Chris

    2014-12-07

    Final report on the project "High resolution lensless 3D imaging of nanostructures with coherent x-rays"

  15. ROBOPuppet: Low-Cost, 3D Printed Miniatures for Teleoperating Full-Size Robots

    E-Print Network [OSTI]

    Hauser, Kris

    -the-shelf electronics and new rapid proto- typing technologies, specifically the wide availability of 3D printers to nonROBOPuppet: Low-Cost, 3D Printed Miniatures for Teleoperating Full-Size Robots Anna Eilering of the robot links, which are then 3D printed and assembled. This procedure is generalizable to variety

  16. THINKING LIKE ARCHIMEDES WITH A 3D PRINTER OLIVER KNILL AND ELIZABETH SLAVKOVSKY

    E-Print Network [OSTI]

    Knill, Oliver

    THINKING LIKE ARCHIMEDES WITH A 3D PRINTER OLIVER KNILL AND ELIZABETH SLAVKOVSKY Abstract. We illustrate Archimedes' method using models produced with 3D printers. This approach allowed us to create- iment, we follow his steps by building models produced with modern 3D printers. Archimedes was an early

  17. Build-to-Last: Strength to Weight 3D Printed Objects Andrei Sharf2

    E-Print Network [OSTI]

    Sharf, Andrei

    The emergence of low-cost 3D printers steers the investigation of new geometric problems that controlBuild-to-Last: Strength to Weight 3D Printed Objects Lin Lu1 Andrei Sharf2 Haisen Zhao1 Yuan Wei1 Ben-Gurion University 3 Tel Aviv University Figure 1: We reduce the material of a 3D kitten (left

  18. A Desktop 3D Printer in Safety-Critical Java Trur Biskopst Strm

    E-Print Network [OSTI]

    Schoeberl, Martin

    A Desktop 3D Printer in Safety-Critical Java Tórur Biskopstø Strøm Department of Informatics according to the specification. In this paper we present a 3D printer and its safety-critical Java level 1 evaluate the specification by implementing a RepRap 3D desktop printer as a use case. A RepRap is a desktop

  19. 3D Fingerprint Phantoms Sunpreet S. Arora1, Kai Cao1,

    E-Print Network [OSTI]

    Printing · Phantoms fabricated using a 3D printer (X & Y resolution: 16 microns, Z resolution: 30 microns3D Fingerprint Phantoms Sunpreet S. Arora1, Kai Cao1, Nicholas G. Paulter Jr.2 and Anil K. Jain1 1 by a grant from the NIST Measurement Science Program #12;3D Fingerprint Phantom 2 2D synthetic fingerprint

  20. Supplementary Material for Interdroplet bilayer arrays in millifluidic droplet traps from 3D printed moulds

    E-Print Network [OSTI]

    Southampton, University of

    on an Objet Connex350TM 3D printer. One block was baked for 24 hours at 80 °C, causing a colour change fromSupplementary Material for Interdroplet bilayer arrays in millifluidic droplet traps from 3D. Untreated 3D-printed moulds were found to inhibit the curing of PDMS; baking the moulds eliminates