National Library of Energy BETA

Sample records for includes steel works

  1. FINITE ELEMENT ANALYSIS OF STEEL WELDED COVERPLATE INCLUDING COMPOSITE DOUBLERS

    E-Print Network [OSTI]

    Petri, Brad

    2008-05-15

    With the increasing focus on welded bridge members resulting in crack initiation and propagation, there is a large demand for creative solutions. One of these solutions includes the application of composite doublers over ...

  2. Proposal for the award of a contract for civil-engineering and steel work for the construction of Building 245

    E-Print Network [OSTI]

    2015-01-01

    Proposal for the award of a contract for civil-engineering and steel work for the construction of Building 245

  3. A new direct steel making process based upon the blast furnace (Including scrap processing with recovery of tramp elements)

    SciTech Connect (OSTI)

    Nabi, G.

    1996-12-31

    Steel is produced from raw materials containing iron and alloying elements with direct elimination of oxygen and impurities in the blast furnace process. The blast furnace shaft is modified to take off load from the liquid bath and carbon is prevented from going into the liquid steel. In the gas purification system sulphur and CO{sub 2} removal facilities are included and purified reducing gases so obtained are combusted in the hearth with oxygen to produce heat for smelting. Scrap can be charged as raw material with the recovery of tramp elements with continuous production of liquid steel.

  4. In this work, robust substrates, such as stainless steel, have been studied as substrates for rnicromachiped devices.

    E-Print Network [OSTI]

    Abstract In this work, robust substrates, such as stainless steel, have been studied as substrates pressure sensor array has been designed, fabricated, and characterized using stainless steel substrate pressure sensor array has been fabricated using stainless steel as a substrate, Kapton polyimide film

  5. Modelling Precipitation of Carbides in Martensitic Steels

    E-Print Network [OSTI]

    Yamasaki, Shingo

    The purpose of this work was to model carbide precipitation in steels of a quaternary system which includes two substitutional elements. The work focuses on secondary hardening steels which are used for high-strength components, where hydrogen...

  6. Lab Safety/Hazardous Waste Training Persons (including faculty, staff and students) working in a lab and work-

    E-Print Network [OSTI]

    Tennessee, University of

    Lab Safety/Hazardous Waste Training Persons (including faculty, staff and students) working in a lab and work- ing with hazardous materials should receive annual training that address- es lab safety, personal protective equipment, storage, use, and disposal of hazardous materials, emergency procedures

  7. Microstructural study and densification analysis of hot work tool steel matrix composites reinforced with TiB{sub 2} particles

    SciTech Connect (OSTI)

    Fedrizzi, A.; Pellizzari, M.; Zadra, M.; Marin, E.

    2013-12-15

    Hot work tool steels are characterized by good toughness and high hot hardness but are less wear resistant than other tooling materials, such as high speed steel. Metal matrix composites show improved tribological behavior, but not much work has been done in the field of hot work tool steels. In this paper TiB{sub 2}-reinforced hot work tool steel matrix composites were produced by spark plasma sintering (SPS). Mechanical alloying (MA) was proposed as a suited process to improve the composite microstructure. Density measurements and microstructure confirmed that MA promotes sintering and produces a fine and homogeneous dispersion of reinforcing particles. X-ray diffraction patterns of the sintered composites highlighted the formation of equilibrium Fe{sub 2}B and TiC, as predicted by thermodynamic calculations using Thermo-Calcģ software. Scanning electron microscopy as well as scanning Kelvin probe force microscopy highlighted the reaction of the steel matrix with TiB{sub 2} particles, showing the formation of a reaction layer at the TiB{sub 2}-steel interface. Phase investigations pointed out that TiB{sub 2} is not chemically stable in steel matrix because of the presence of carbon even during short time SPS. - Highlights: ē TiB{sub 2} reinforced steel matrix composites were produced by spark plasma sintering. ē TiB{sub 2} was successfully dispersed in the steel matrix by mechanical alloying. ē Steel and TiB{sub 2} react during sintering forming equilibrium Fe{sub 2}B and TiC. ē The new phases were investigated by means of AFM, Volta potential and XRD analyses.

  8. Coke oven gas treatment and by-product plant of Magnitogorsk Integrated Iron and Steel Works

    SciTech Connect (OSTI)

    Egorov, V.N.; Anikin, G.J. [Magnitogorsk Integrated Iron and Steel Works, (Russian Federation); Gross, M. [Krupp Koppers GmbH, Essen (Germany)

    1995-12-01

    Magnitogorsk Integrated Iron and Steel Works, Russia, decided to erect a new coke oven gas treatment and by-product plant to replace the existing obsolete units and to improve the environmental conditions of the area. The paper deals with the technological concept and the design requirements. Commissioning is scheduled at the beginning of 1996. The paper describes H{sub 2}S and NH{sub 3} removal, sulfur recovery and ammonia destruction, primary gas cooling and electrostatic tar precipitation, and the distributed control system that will be installed.

  9. AISI/DOE Technology Roadmap Program: Cold Work Embrittlement of Interstitial Free Steel

    SciTech Connect (OSTI)

    John T Bowker; Pierre Martin

    2002-10-31

    This work addresses the issues of measurement of secondary cold work embrittlement (SCWE) of an IF steel in deep-drawn parts using laboratory tests, and its correlation with real part fracture. It aimed at evaluating the influence of the steel chemistry and processing condition, microstructure, and test conditions, on SCWE as well as the effect of SCWE on fatigue properties. Size 6-in. cups produced with various draw ratios or trimmed at different heights were tested to determine the ductile-to-brittle-transition temperature (DBTT) as a function of strain. The 2-in. cup/expansion test, bend test and fracture of notched specimens were also used to generate information complementary to that provided by the 6-inch cup/expansion test. The relationship between laboratory tests and fracture in real parts was established by testing large-scale parts. The fatigue behavior was investigated in the as-rolled and deep drawn (high stain) conditions, using prestrained specimens taken from the wall of a formed part.

  10. Development of automatic operation system for coke oven machines at Yawata Works of Nippon Steel Corporation

    SciTech Connect (OSTI)

    Matsunaga, Masao; Uematsu, Hiroshi; Nakagawa, Yoji; Ishiharaguchi, Yuji

    1995-12-01

    The coke plant is a working environment involving heavy dust emissions, high heat and demanding physical labor. The labor-saving operation of the coke plant is an essential issue from the standpoints of not only improvement in working environment, but also reduction in fixed cost by enhancement of labor productivity. Under these circumstances, Nippon Steel has implemented the automation of coke oven machines. The first automatic operation system for coke oven machinery entered service at Oita Works in 1992, followed by the second system at the No. 5 coke oven battery of the coke plant at Yawata Works. The Yawata automatic operation system is characterized by the installation of coke oven machinery to push as many as 140 ovens per day within a short cycle time, such as a preliminary ascension pipe cap opening car and cycle time simulator by the manned operation of the pusher, which is advantageous from the standpoint of investment efficiency, and by the monitoring of other oven machines by the pusher. These measures helped to reduce the manpower requirement to 2 persons per shift from 4 persons per shift. The system entered commercial operation in March, 1994 and has been smoothly working with an average total automatic rate of 97%. Results from the startup to recent operation of the system are reported below.

  11. Manufacture of Alumina-Forming Austenitic Steel Alloys by Conventional Casting and Hot-Working Methods

    SciTech Connect (OSTI)

    Brady, M.P.; Yamamoto, Y.; Magee, J.H.

    2009-03-10

    Oak Ridge National Laboratory (ORNL) and Carpenter Technology Corporation (CarTech) participated in an in-kind cost share cooperative research and development agreement (CRADA) effort under the auspices of the Energy Efficiency and Renewable Energy (EERE) Technology Maturation Program to explore the feasibility for scale up of developmental ORNL alumina-forming austenitic (AFA) stainless steels by conventional casting and rolling techniques. CarTech successfully vacuum melted 301b heats of four AFA alloy compositions in the range of Fe-(20-25)Ni-(12-14)Cr-(3-4)Al-(l-2.5)Nb wt.% base. Conventional hot/cold rolling was used to produce 0.5-inch thick plate and 0.1-inch thick sheet product. ORNL subsequently successfully rolled the 0.1-inch sheet to 4 mil thick foil. Long-term oxidation studies of the plate form material were initiated at 650, 700, and 800 C in air with 10 volume percent water vapor. Preliminary results indicated that the alloys exhibit comparable (good) oxidation resistance to ORNL laboratory scale AFA alloy arc casting previously evaluated. The sheet and foil material will be used in ongoing evaluation efforts for oxidation and creep resistance under related CRADAs with two gas turbine engine manufacturers. This work will be directed to evaluation of AFA alloys for use in gas turbine recuperators to permit higher-temperature operating conditions for improved efficiencies and reduced environmental emissions. AFA alloy properties to date have been obtained from small laboratory scale arc-castings made at ORNL. The goal of the ORNL-CarTech CRADA was to establish the viability for producing plate, sheet and foil of the AFA alloys by conventional casting and hot working approaches as a first step towards scale up and commercialization of the AFA alloys. The AFA alloy produced under this effort will then be evaluated in related CRADAs with two gas turbine engine manufacturers for gas turbine recuperator applications.

  12. Surface working of 304L stainless steel: Impact on microstructure, electrochemical behavior and SCC resistance

    SciTech Connect (OSTI)

    Acharyya, S.G.; Khandelwal, A.; Kain, V.; Kumar, A.; Samajdar, I.

    2012-10-15

    The effect of surface working operations on the microstructure, electrochemical behavior and stress corrosion cracking resistance of 304L stainless steel (SS) was investigated in this study. The material was subjected to (a) solution annealing (b) machining and (c) grinding operations. Microstructural characterization was done using stereo microscopy and electron back scattered diffraction (EBSD) technique. The electrochemical nature of the surfaces in machined, ground and solution annealed condition were studied using potentiodynamic polarization and scanning electrochemical microscopy (SECM) in borate buffer solution. The stress corrosion cracking resistance of 304L SS in different conditions was studied by exposing the samples to boiling MgCl{sub 2} environment. Results revealed that the heavy plastic deformation and residual stresses present near the surface due to machining and grinding operations make 304L SS electrochemically more active and susceptible to stress corrosion cracking. Ground sample showed highest magnitude of current density in the passive potential range followed by machined and solution annealed 304L SS. Micro-electrochemical studies established that surface working promotes localized corrosion along the surface asperities which could lead to crack initiation. - Highlights: Black-Right-Pointing-Pointer Machining/grinding produce extensive grain fragmentation near the surface of 304L SS. Black-Right-Pointing-Pointer Machining/grinding result in martensitic transformation near the surface of 304L SS. Black-Right-Pointing-Pointer Machining/grinding drastically reduce the SCC resistance of 304L SS in chloride. Black-Right-Pointing-Pointer Machining/grinding make the surface of 304L SS electrochemically much more active. Black-Right-Pointing-Pointer SECM study reveal that preferential dissolution takes place along surface asperities.

  13. Zebrafish Facility Work at UMassZebrafish Facility Work at UMass Ensure proper environmental conditions including a wall

    E-Print Network [OSTI]

    Siegelmann , Hava T

    conditions including a wall maintained system, clean tanks and proper water quality Goal : Keep fish happy and healthy! Regular feedings 7 days a week - fish don't celebrate holidays! #12;Intro to the the zebrafish: 151 Morrill 2 ~8,500-11,000 fish Approximately 15 mutant lines #12;Jensen Lab: Eye development

  14. Stainless steel

    SciTech Connect (OSTI)

    Lula, R.A.

    1985-01-01

    This book discusses the stainless steels for high-strength, heat-resistant or corrosion-resistant applications. It is a treatment of the properties and selection of stainless steels. Up-to-date information covers physical, mechanical and chemical properties of all stainless grades, including the new ferritic and duplex grades. The book covers physical metallurgy as well as processing and service characteristics, including service in corrosive environments. It deals with wrought and cast stainless steels and reviews fabrication from cold-forming to powder metallurgy.

  15. Manufacture of Alumina-Forming Austenitic Stainless Steel Alloys by Conventional Casting and Hot-Working Methods

    SciTech Connect (OSTI)

    Brady, M.P.; Yamamoto, Y.; Magee, J.H. (Carpenter Technol. Corp.)

    2009-03-23

    Oak Ridge National Laboratory (ORNL) and Carpenter Technology Corporation (CarTech) participated in an in-kind cost share cooperative research and development agreement (CRADA) effort under the auspices of the Energy Efficiency and Renewable Energy (EERE) Technology Maturation program to explore the feasibility for scale up of developmental ORNL alumina-forming austenitic (AFA) stainless steels by conventional casting and rolling techniques. CarTech successfully vacuum melted 30lb heats of four AFA alloy compositions in the range of Fe-(20-25)Ni-(12-14)Cr-(3-4)Al-(1-2.5)Nb wt.% base. Conventional hot/cold rolling was used to produce 0.5-inch thick plate and 0.1-inch thick sheet product. ORNL subsequently successfully rolled the 0.1-inch sheet to 4 mil thick foil. Long-term oxidation studies of the plate form material were initiated at 650, 700, and 800 C in air with 10 volume percent water vapor. Preliminary results indicated that the alloys exhibit comparable (good) oxidation resistance to ORNL laboratory scale AFA alloy arc casting previously evaluated. The sheet and foil material will be used in ongoing evaluation efforts for oxidation and creep resistance under related CRADAs with two gas turbine engine manufacturers. This work will be directed to evaluation of AFA alloys for use in gas turbine recuperators to permit higher-temperature operating conditions for improved efficiencies and reduced environmental emissions.

  16. Reducing the impact of chemical releases: U.S. Steel Clairton Works` Early Warning Plan

    SciTech Connect (OSTI)

    York, R.G.; Hart, C.M.; Graeser, W.C.

    1995-12-01

    The Early Warning Plan (EWP) is a program designed to alert plant personnel to a release of contaminants to a receiving stream before it becomes significant enough to impinge on the environment or the public. It also provides a method of written documentation of any discharge of contaminants so that rapid corrective action can be taken. The EWP includes procedures for monitoring, rapid analytical turnaround, on-site analysis, statistical process control evaluation, and follow-up investigation. It is related to, but separate from other emergency response plans for the Clairton complex. The plant also uses a Spill Prevention, Control, and Countermeasure Plan (SPCC), an Environmental Emergency Response Plan (EERP), an Oil Pollution Act (OPA) Response Plan, and an EPA Facility Response Plan. Major spills and response activities are described in these other plans, but the EWP has served to concentrate on day-to-day plant operations. The paper discusses the driving forces behind the Plan, the EWP, and results of the program after nearly 10 years of operation.

  17. Development of Next Generation Heating System for Scale Free Steel Reheating

    SciTech Connect (OSTI)

    Dr. Arvind C. Thekdi

    2011-01-27

    The work carried out under this project includes development and design of components, controls, and economic modeling tools that would enable the steel industry to reduce energy intensity through reduction of scale formation during the steel reheating process. Application of scale free reheating offers savings in energy used for production of steel that is lost as scale, and increase in product yield for the global steel industry. The technology can be applied to a new furnace application as well as retrofit design for conversion of existing steel reheating furnaces. The development work has resulted in the knowledge base that will enable the steel industry and steel forging industry us to reheat steel with 75% to 95% reduction in scale formation and associated energy savings during the reheating process. Scale reduction also results in additional energy savings associated with higher yield from reheat furnaces. Energy used for steel production ranges from 9 MM Btu/ton to 16.6 MM Btu/ton or the industry average of approximately 13 MM Btu/ton. Hence, reduction in scale at reheating stage would represent a substantial energy reduction for the steel industry. Potential energy savings for the US steel industry could be in excess of 25 Trillion Btu/year when the technology is applied to all reheating processes. The development work has resulted in new design of reheating process and the required burners and control systems that would allow use of this technology for steel reheating in steel as well as steel forging industries.

  18. McGraw Hill encyclopedia of science and technology. An international reference work in fifteen volumes including an index

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    This extensively revised and updated 5th Edition features contributions by 3000 distinguished experts - including 16 Nobel Prize winners - working with an international advisory board and 60 consulting editors. Thorough coverage is devoted to 75 separate disciplines in science and technology, from acoustics and biochemistry through fluid mechanics and geophysics to thermodynamics and vertebrate zoology. Detailed entries examine not only the physical and natural sciences, but also all engineering disciplines, discussing both the basic and the most recent theories, concepts, terminology, discoveries, materials, methods, and techniques. All of the new developments and technical advances that have occurred during the last five years - in each of the 75 disciplines - have been added to the encyclopedia and are explored in depth. Completely new material deals with such timely and newsworthy subjects as genetic engineering, artificial intelligence, nuclear medicine, desertification, psycholinguistics, industrial robots, and immunoassay. Also covered in extensive entries are such current topics as video disk recording, metallic glasses, acoustic levitation, magnetic bubble memory, gluons, and computerized tomography. The encyclopedia includes more than 15,000 photographs, drawings, maps, charts, and diagrams, shown in full-color, two-color, or black-and-white reproductions.

  19. Corrosion protection of steel in ammonia/water heat pumps

    DOE Patents [OSTI]

    Mansfeld, Florian B.; Sun, Zhaoli

    2003-10-14

    Corrosion of steel surfaces in a heat pump is inhibited by adding a rare earth metal salt to the heat pump's ammonia/water working fluid. In preferred embodiments, the rare earth metal salt includes cerium, and the steel surfaces are cerated to enhance the corrosion-inhibiting effects.

  20. Thesis Track In addition to HIS 5060, thesis students must complete 21 hours of graduate course work including

    E-Print Network [OSTI]

    Fernandez, Eduardo

    Thesis Track In addition to HIS 5060, thesis students must complete 21 hours of graduate course a minimum of twelve (12) hours of course work in their primary or thesis field, and at least nine (9) hours in a non-thesis field. Checklist for Thesis Track. Students considering the thesis-track option should

  1. Chapter 12 -Painting Operations Safety 1. Do not perform work in a heavily populated area, including building air intake

    E-Print Network [OSTI]

    Tullos, Desiree

    51 Chapter 12 - Painting Operations Safety Rules General 1. Do not perform work in a heavily is required whenever rust or loose paint is removed from surfaces with a wire brush. A hard hat is required the manufacturer's instructions for handling all epoxy materials, thinners, catalysts, paint removers, etc. Gloves

  2. TPA Action Plan Appendix D - Work Schedule Milestones and Target Dates Including Designation of Lead Regulatory Agency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With LivermoreSustainableDEPARTMENT OFEnergy Innovation Current as of

  3. Industrial Sites Work Plan for Leachfield Corrective Action Units: Nevada Test Site and Tonopah Test Range, Nevada (including Record of Technical Change Nos. 1, 2, 3, and 4)

    SciTech Connect (OSTI)

    DOE/NV

    1998-12-18

    This Leachfield Corrective Action Units (CAUs) Work Plan has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the U.S. Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the U.S. Department of Defense (FFACO, 1996). Under the FFACO, a work plan is an optional planning document that provides information for a CAU or group of CAUs where significant commonality exists. A work plan may be developed that can be referenced by leachfield Corrective Action Investigation Plans (CAIPs) to eliminate redundant CAU documentation. This Work Plan includes FFACO-required management, technical, quality assurance (QA), health and safety, public involvement, field sampling, and waste management documentation common to several CAUs with similar site histories and characteristics, namely the leachfield systems at the Nevada Test Site (NTS) and the Tonopah Test Range (TT R). For each CAU, a CAIP will be prepared to present detailed, site-specific information regarding contaminants of potential concern (COPCs), sampling locations, and investigation methods.

  4. White(etching!matter!in!bearing!steel! Part1:!Controlled(cracking!of!52100!steel!

    E-Print Network [OSTI]

    Cambridge, University of

    ! quenched! and! untempered! steel! normally! used! in! the! manufacture! of! bearings.!The!varieties!of!cracks!studied!include!sparsely!distributed!martensite(lubricant!interactions,!or!hydrogen!trapping!can!be!studied!further.! ! Keywords:!bearing!steel,!indentation!cracks,!cracked!martensite,!grain(boundary!decohesion,! surface! 1! White(etching!matter!in!bearing!steel! Part1:!Controlled(cracking!of!52100!steel! ! W

  5. Ferritic steel melt and FLiBe/steel experiment : melting ferritic steel.

    SciTech Connect (OSTI)

    Troncosa, Kenneth P.; Smith, Brandon M.; Tanaka, Tina Joan

    2004-11-01

    In preparation for developing a Z-pinch IFE power plant, the interaction of ferritic steel with the coolant, FLiBe, must be explored. Sandia National Laboratories Fusion Technology Department was asked to drop molten ferritic steel and FLiBe in a vacuum system and determine the gas byproducts and ability to recycle the steel. We tried various methods of resistive heating of ferritic steel using available power supplies and easily obtained heaters. Although we could melt the steel, we could not cause a drop to fall. This report describes the various experiments that were performed and includes some suggestions and materials needed to be successful. Although the steel was easily melted, it was not possible to drip the molten steel into a FLiBe pool Levitation melting of the drop is likely to be more successful.

  6. Supporting steel

    SciTech Connect (OSTI)

    Badra, C. [International Trade Commission, Washington, DC (United States)

    1995-10-01

    The US Department of Energy (DOE) and the American Iron and Steel Institute (AISI) have just completed a pilot program on the technical and economic viability of direct ironmaking by a process based on bath smelting. In this process, oxygen, prereduced iron ore pellets, coal, and flux are charged into a molten slag bath containing a high percentage of carbon. The carbon removes oxygen from the iron ore and generates carbon monoxide and liquid iron. Oxygen is then injected to burn some of the carbon monoxide gas before it leaves the smelting vessel. The partially combusted gas is sued to preheat and prereduced the ore before it is injected into the bath. There are several competing cokeless ironmaking processes in various stages of development around the world. A brief comparison of these processes provides a useful perspective with which to gauge the progress and objectives of the AISI-DOE research initiative. The principal competing foreign technologies include the Corex process, DIOS, HIsmelt, and Jupiter. The advantages of the direct ironmaking process examined by AISI-DOE were not sufficiently demonstrated to justify commercialization without further research. However, enough knowledge was gained from laboratory and pilot testing to teach researchers how to optimize the direct ironmaking process and to provide the foundation for future research. Researchers now better understand issues such as the dissolution of materials, reduction mechanisms and rates, slag foaming and control, the behavior of sulfur, dust generation, and the entire question of energy efficiency--including post combustion and the role of coal/volatile matter.

  7. Stainless Steel Permeability

    SciTech Connect (OSTI)

    Buchenauer, Dean A.; Karnesky, Richard A.

    2015-09-01

    An understanding of the behavior of hydrogen isotopes in materials is critical to predicting tritium transport in structural metals (at high pressure), estimating tritium losses during production (fission environment), and predicting in-vessel inventory for future fusion devices (plasma driven permeation). Current models often assume equilibrium diffusivity and solubility for a class of materials (e.g. stainless steels or aluminum alloys), neglecting trapping effects or, at best, considering a single population of trapping sites. Permeation and trapping studies of the particular castings and forgings enable greater confidence and reduced margins in the models. For FY15, we have continued our investigation of the role of ferrite in permeation for steels of interest to GTS, through measurements of the duplex steel 2507. We also initiated an investigation of the permeability in work hardened materials, to follow up on earlier observations of unusual permeability in a particular region of 304L forgings. Samples were prepared and characterized for ferrite content and coated with palladium to prevent oxidation. Issues with the poor reproducibility of measurements at low permeability were overcome, although the techniques in use are tedious. Funding through TPBAR and GTS were secured for a research grade quadrupole mass spectrometer (QMS) and replacement turbo pumps, which should improve the fidelity and throughput of measurements in FY16.

  8. Development of New Stainless Steel

    SciTech Connect (OSTI)

    Robert F. Buck

    2005-08-30

    A new family of innovative martensitic stainless steels, 521-A, 521-B, and 521-C has been developed by Advanced Steel Technology, LLC (Trafford, PA) as high strength fastener (bolt) materials for use at moderate temperatures in turbine engines, including steam turbines, gas turbines, and aircraft engines. The primary objective of the development program was to create a martensitic stainless steel with high strength at moderate temperatures, and which could replace the expensive nickel-based superalloy IN 718 in some fasteners applications. A secondary objective was to replace conventional 12Cr steels such as AISI 422 used as blades, buckets and shafts that operate at intermediate temperatures in turbine engines with stronger steel. The composition of the new alloys was specifically designed to produce excellent mechanical properties while integrating heat treatment steps into production to reduce energy consumption during manufacturing. As a result, production costs and energy consumption during production of rolled bar products is significantly lower than conventional materials. Successful commercialization of the new alloys would permit the installed cost of certain turbine engines to be reduced without sacrificing high availability or operational flexibility, thereby enhancing the global competitiveness of U.S. turbine engine manufacturers. Moreover, the domestic specialty steel industry would also benefit through increased productivity and reduced operating costs, while increasing their share of the international market for turbine engine fasteners, blades, buckets and shafts.

  9. DOE - Office of Legacy Management -- U S Steel Co National Tube...

    Office of Legacy Management (LM)

    Steel Co National Tube Div Christy Park Works - PA 35 FUSRAP Considered Sites Site: U. S. STEEL CO., NATIONAL TUBE DIV., CHRISTY PARK WORKS (PA.35) Eliminated from further...

  10. Hydrogen embrittlement of structural steels.

    SciTech Connect (OSTI)

    Somerday, Brian P.

    2010-06-01

    Carbon-manganese steels are candidates for the structural materials in hydrogen gas pipelines, however it is well known that these steels are susceptible to hydrogen embrittlement. Decades of research and industrial experience have established that hydrogen embrittlement compromises the structural integrity of steel components. This experience has also helped identify the failure modes that can operate in hydrogen containment structures. As a result, there are tangible ideas for managing hydrogen embrittement in steels and quantifying safety margins for steel hydrogen containment structures. For example, fatigue crack growth aided by hydrogen embrittlement is a key failure mode for steel hydrogen containment structures subjected to pressure cycling. Applying appropriate structural integrity models coupled with measurement of relevant material properties allows quantification of safety margins against fatigue crack growth in hydrogen containment structures. Furthermore, application of these structural integrity models is aided by the development of micromechanics models, which provide important insights such as the hydrogen distribution near defects in steel structures. The principal objective of this project is to enable application of structural integrity models to steel hydrogen pipelines. The new American Society of Mechanical Engineers (ASME) B31.12 design code for hydrogen pipelines includes a fracture mechanics-based design option, which requires material property inputs such as the threshold for rapid cracking and fatigue crack growth rate under cyclic loading. Thus, one focus of this project is to measure the rapid-cracking thresholds and fatigue crack growth rates of line pipe steels in high-pressure hydrogen gas. These properties must be measured for the base materials but more importantly for the welds, which are likely to be most vulnerable to hydrogen embrittlement. The measured properties can be evaluated by predicting the performance of the pipeline using a relevant structural integrity model, such as that in ASME B31.12. A second objective of this project is to enable development of micromechanics models of hydrogen embrittlement in pipeline steels. The focus of this effort is to establish physical models of hydrogen embrittlement in line pipe steels using evidence from analytical techniques such as electron microscopy. These physical models then serve as the framework for developing sophisticated finite-element models, which can provide quantitative insight into the micromechanical state near defects. Understanding the micromechanics of defects can ensure that structural integrity models are applied accurately and conservatively.

  11. Final Scientific Report - "Novel Steels for High Temperature Carburizing"

    SciTech Connect (OSTI)

    McKimpson, Marvin G.; Liu, Tianjun; Maniruzzaman, Md

    2012-07-27

    This program was undertaken to develop a microalloy-modified grade of standard carburizing steel that can successfully exploit the high temperature carburizing capabilities of current commercial low pressure (i.e. 'vacuum') carburizing systems. Such steels can lower the amount of energy required for commercial carburizing operations by reducing the time required for deep-case carburizing operations. The specific technical objective of the work was to demonstrate a carburizing steel composition capable of maintaining a prior austenite grain size no larger than ASTM grain size number 5 after exposure to simulated carburizing conditions of 1050 C for 8 hr. Such thermal exposure should be adequate for producing carburized case depths up to about 2 mm. Such carburizing steels are expected to be attractive for use across a wide range of industries, including the petroleum, chemical, forest products, automotive, mining and industrial equipment industries. They have potential for reducing energy usage during low pressure carburizing by more than 25%, as well as reducing cycle times and process costs substantially. They also have potential for reducing greenhouse gas emissions from existing low pressure carburizing furnaces by more than 25%. High temperature carburizing can be done in most modern low pressure carburizing systems with no additional capital investment. Accordingly, implementing this technology on carburizing furnaces will provide a return on investment significantly greater than 10%. If disseminated throughout the domestic carburizing community, the technology has potential for saving on the order of 23 to 34 trillion BTU/year in industrial energy usage. Under the program, two compositions of microalloyed, coarsening-resistant low alloy carburizing steels were developed, produced and evaluated. After vacuum annealing at 1050oC for 8 hrs and high pressure gas quenching, both steels exhibited a prior austenite ASTM grain size number of 5.0 or finer. For comparison, a control alloy of similar composition but without the microalloy additions exhibited a duplex prior austenite grain size with grains ranging from ASTM grain size 3 down to ASTM grain size 1 after similar processing and thermal exposure. These results confirm the potential for using microalloy additions of Ti, B, Nb, Al, rare earths and/or N for austenite grain size control in Cr-Mo (i.e. 4000-series) low alloy carburizing steels. They also demonstrate that these microalloy additions will not compromise the processability of the steel; all three materials produced under the program could be hot worked readily using normal steel processing protocols. To fully realize the technical and commercial potential of these steels, there is a need to continue development work using larger-scale heats. These larger-scale heats are needed to provide adequate material for fatigue testing of quenched and tempered alloys, to conduct more complete investigations of potential alloy chemistries and to provide additional material for processing studies. It will also be beneficial to carefully review intellectual property issues associated with this family of steels, since existing Japanese patent literature suggests that significant microstructural and/or process characterization work may be needed on new materials to confirm that these materials fall outside existing patent claims.

  12. Feasibility study for reconstruction of the reheat furnaces for the 2000 Hot Strip Mill (Novolipetsk Steel Works, Lipetsk, Russia): Final report. Export trade information

    SciTech Connect (OSTI)

    1997-05-01

    The objective of this study was to develop a furnace design that would be instrumental in advancing the NLMK 2000 Hot Strip Mill to a level of world class strip mills capable of producing high quality strip with improved energy efficiency and minimal environmental impact. The contents include the following: (1) executive summary; (2) capital cost assessment; (3) project financial analysis; (4) study overview; (5) basic furnace design; (6) silicon design specification; (7) utilities; (8) NOx reduction technologies for reheat furnaces; (9) site investigation and construction schedule; (10) hot connect.

  13. Effect of heat treatment on microstructure and hardness of Grade 91 steel

    SciTech Connect (OSTI)

    Shrestha, Triratna; Alsagabi, Sultan; Charit, Indrajit; Potirniche, Gabriel; Glazoff, Michael

    2015-01-21

    The modified 9Cr-1Mo steel (Grade 91) is a material of choice in fossil-fuel-fired power plants with increased efficiency, service life, and reduction in emission of greenhouse gases. It is also considered a prospective material for the Next Generation Nuclear Power Plant for application in reactor pressure vessels at temperatures up to 650įC. In this paper, heat treatment of the modified 9Cr-1Mo steel was studied by normalizing and tempering the steel at various temperatures and times, with the ultimate goal of improving its creep resistance and optimizing material hardness. The microstructural evolution of the heat treated steels was correlated with the differential scanning calorimetric results. Optical microscopy, scanning and transmission electron microscopy in conjunction with microhardness profiles and calorimetric plots were used to understand the evolution of microstructure including precipitate structures in modified 9Cr-1Mo steel and relate it to the mechanical behavior of the steel. Thermo-CalcTM calculations were used to support experimental work and provide guidance in terms of the precipitate stability and microstructural evolution. Furthermore, the carbon isopleth and temperature dependencies of the volume fraction of different precipitates were constructed. The predicted and experimentally observed results were found to be in good agreement.

  14. Effect of heat treatment on microstructure and hardness of Grade 91 steel

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shrestha, Triratna; Alsagabi, Sultan; Charit, Indrajit; Potirniche, Gabriel; Glazoff, Michael

    2015-01-21

    The modified 9Cr-1Mo steel (Grade 91) is a material of choice in fossil-fuel-fired power plants with increased efficiency, service life, and reduction in emission of greenhouse gases. It is also considered a prospective material for the Next Generation Nuclear Power Plant for application in reactor pressure vessels at temperatures up to 650įC. In this paper, heat treatment of the modified 9Cr-1Mo steel was studied by normalizing and tempering the steel at various temperatures and times, with the ultimate goal of improving its creep resistance and optimizing material hardness. The microstructural evolution of the heat treated steels was correlated with themore†Ľdifferential scanning calorimetric results. Optical microscopy, scanning and transmission electron microscopy in conjunction with microhardness profiles and calorimetric plots were used to understand the evolution of microstructure including precipitate structures in modified 9Cr-1Mo steel and relate it to the mechanical behavior of the steel. Thermo-CalcTM calculations were used to support experimental work and provide guidance in terms of the precipitate stability and microstructural evolution. Furthermore, the carbon isopleth and temperature dependencies of the volume fraction of different precipitates were constructed. The predicted and experimentally observed results were found to be in good agreement.ę†less

  15. Effect of Heat Treatment on Microstructure and Hardness of Grade 91 Steel

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shrestha, Triratna; Alsagabi, Sultan; Charit, Indrajit; Potirniche, Gabriel; Glazoff, Michael

    2015-03-01

    The modified 9Cr-1Mo steel (Grade 91) is a material of choice in fossil-fuel-fired power plants with increased efficiency, service life, and reduction in emission of greenhouse gases. It is also considered a prospective material for the Next Generation Nuclear Power Plant for application in reactor pressure vessels at temperatures up to 650įC. In this paper, heat treatment of the modified 9Cr-1Mo steel was studied by normalizing and tempering the steel at various temperatures and times, with the ultimate goal of improving its creep resistance and optimizing material hardness. The microstructural evolution of the heat treated steels was correlated with the differential scanning calorimetric results. Optical microscopy, scanning and transmission electron microscopy in conjunction with microhardness profiles and calorimetric plots were used to understand the evolution of microstructure including precipitate structures in modified 9Cr-1Mo steel and relate it to the mechanical behavior of the steel. Thermo- CalcTM calculations were used to support experimental work and provide guidance in terms of the precipitate stability and microstructural evolution. Furthermore, the carbon isopleth and temperature dependencies of the volume fraction of different precipitates were constructed. The predicted and experimentally observed results were found to be in good agreement.

  16. Overview: STEEL Enabling Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    or confidential information Dr. Roger Heimbuch AutoSteel Partnership w w w . a - s p . o r g 2008 DOE Merit Review OUTLINE OF PRESENTATION * Sheet Steel Fatigue *...

  17. Typhoon of Steel

    E-Print Network [OSTI]

    Hamamoto, Gena

    2012-01-01

    Typhoon of Steel, a Documentary Film A thesis submitted inTyphoon of Steel A Documentary Film by Gena Sayoko Hamamotoa short community-based documentary film that explores the

  18. Steel Industry Profile

    Broader source: Energy.gov [DOE]

    The steel industry is critical to the U.S. economy. Steel is the material of choice for many elements of manufacturing, construction, transportation, and various consumer products. Traditionally...

  19. Nano-scale nitride-particle-strengthened high-temperature wrought ferritic and martensitic steels

    SciTech Connect (OSTI)

    Klueh, Ronald L; Hashimoto, Naoyuki; Maziasz, Philip J

    2009-04-21

    A method of making a steel composition includes the steps of: a. providing a steel composition that includes up to 15% Cr, up to 3% Mo, up to 4% W, 0.05-1% V, up to 2% Si, up to 3% Mn, up to 10% Co, up to 3% Cu, up to 5% Ni, up to 0.3% C, 0.02-0.3% N, balance iron, wherein the percentages are by total weight of the composition; b. austenitizing the composition at a temperature in the range of 1000.degree. C. to 1400.degree. C.; c. cooling the composition of steel to a selected hot-working temperature in the range 500.degree. C. to 1000.degree. C.; d. hot-working the composition at the selected hot-working temperature; e. annealing the composition for a time period of up to 10 hours at a temperature in the range of 500.degree. C. to 1000.degree. C.; and f. cooling the composition to ambient temperature to transform the steel composition to martensite, bainite, ferrite, or a combination of those microstructures.

  20. Fire performance of unprotected and protected concrete filled steel hollow structural sections†

    E-Print Network [OSTI]

    Rush, David Ian

    2013-11-28

    Concrete filled steel hollow structural (CFS) sections are increasingly used to support large compressive loads in buildings, with the concrete infill and the steel tube working together to yield several benefits both ...

  1. A Computational-based Approach for the Design of Trip Steels

    E-Print Network [OSTI]

    Li, Sheng-Yen

    2013-08-06

    The purpose of this work is to optimize the chemical composition as well as the heat treatment for improving the mechanical performance of the TRIP steel by employing the theoretical models. TRIP steel consists of the microstructure with ferrite...

  2. Methods of forming steel

    DOE Patents [OSTI]

    Branagan, Daniel J. (Iona, ID); Burch, Joseph V. (Shelley, ID)

    2001-01-01

    In one aspect, the invention encompasses a method of forming a steel. A metallic glass is formed and at least a portion of the glass is converted to a crystalline steel material having a nanocrystalline scale grain size. In another aspect, the invention encompasses another method of forming a steel. A molten alloy is formed and cooled the alloy at a rate which forms a metallic glass. The metallic glass is devitrified to convert the glass to a crystalline steel material having a nanocrystalline scale grain size. In yet another aspect, the invention encompasses another method of forming a steel. A first metallic glass steel substrate is provided, and a molten alloy is formed over the first metallic glass steel substrate to heat and devitrify at least some of the underlying metallic glass of the substrate.

  3. PLC-9 Non Rusting Stainless Steel Column 10" Square with Radius Corners

    E-Print Network [OSTI]

    Stuart, Steven J.

    PLC-9 Non Rusting Stainless Steel Column 10" Square with Radius Corners Unit includes two lights General Specifications of PLC-9 Column Non Rusting, Non Magnetic Stainless Steel - .125" Thick Dimensions

  4. Success Story: Harrison Steel

    Broader source: Energy.gov [DOE]

    This case study highlights how Harrison Steel leveraged both EPA's ENERGY STAR program and DOE resources to enhance energy efficiency efforts and multiply captured energy savings.

  5. Hydrogen compatibility handbook for stainless steels

    SciTech Connect (OSTI)

    Caskey, G.R. Jr.

    1983-06-01

    This handbook compiles data on the effects of hydrogen on the mechanical properties of stainless steels and discusses this data within the context of current understanding of hydrogen compatibility of metals. All of the tabulated data derives from continuing studies of hydrogen effects on materials that have been conducted at the Savannah River Laboratory over the past fifteen years. Supplementary data from other sources are included in the discussion. Austenitic, ferritic, martensitic, and precipitation hardenable stainless steels have been studied. Damage caused by helium generated from decay of tritium is a distinctive effect that occurs in addition to the hydrogen isotopes protium and deuterium. The handbook defines the scope of our current knowledge of hydrogen effects in stainless steels and serves as a guide to selection of stainless steels for service in hydrogen.

  6. Microbial Corrosion in Linepipe Steel Under the Influence of a Sulfate-Reducing Consortium Isolated

    E-Print Network [OSTI]

    biofilm, carbon steel API 5L X52, microbiologically influenced corrosion, pipeline, sulfateMicrobial Corrosion in Linepipe Steel Under the Influence of a Sulfate-Reducing Consortium Isolated) This work investigates microbiologically influenced corrosion of API 5L X52 linepipe steel by a sulfate

  7. Effectiveness of advanced coating systems for mitigating blast effects on steel components

    E-Print Network [OSTI]

    Effectiveness of advanced coating systems for mitigating blast effects on steel components C. Chen1 of this work is to study the effectiveness of an advanced coating material, polyurea, as a blast mitigation tool for steel components. The response of polyurea coated steel components under blast loading

  8. Duplex Stainless Steels Margaret Gorog

    E-Print Network [OSTI]

    Das, Suman

    11/14/2014 1 Duplex Stainless Steels Margaret Gorog Federal Way, WA Pulp and Paper Corrosion Symposium Georgia Tech Renewable Bioproducts Institute November 2014 2205 stainless steel Microstructure: austenite + ferrite 304L stainless steel Microstructure: austenite Duplex Stainless Steel f a #12

  9. Transmission electron microscopy of oxide development on 9Cr ODS steel in supercritical water

    E-Print Network [OSTI]

    Motta, Arthur T.

    cladding include austenitic stainless steels, solid solution and precipitation-hardened alloys, ferritic≠martensitic is on the ferritic≠martensitic 9Cr ODS steel, which was originally developed by JAEA for use in sodium-cooled fastTransmission electron microscopy of oxide development on 9Cr ODS steel in supercritical water A

  10. Stainless Steel Microstructure and Mechanical Properties Evaluation

    SciTech Connect (OSTI)

    Switzner, Nathan T

    2010-06-01

    A nitrogen strengthened 21-6-9 stainless steel plate was spinformed into hemispherical test shapes. A battery of laboratory tests was used to characterize the hemispheres. The laboratory tests show that near the pole (axis) of a spinformed hemisphere the yield strength is the lowest because this area endures the least ďcold-workĒ strengthening, i.e., the least deformation. The characterization indicated that stress-relief annealing spinformed stainless steel hemispheres does not degrade mechanical properties. Stress-relief annealing reduces residual stresses while maintaining relatively high mechanical properties. Full annealing completely eliminates residual stresses, but reduces yield strength by about 30%.

  11. Formability Characterization of a New Generation High Strength Steels

    SciTech Connect (OSTI)

    Sriram Sadagopan; Dennis Urban; Chris Wong; Mai Huang; Benda Yan

    2003-05-16

    Advanced high strength steels (AHSS) are being progressively explored by the automotive industry all around the world for cost-effective solutions to accomplish vehicle lightweighting, improve fuel economy, and consequently reduce greenhouse emissions. Because of their inherent high strength, attractive crash energy management properties, and good formability, the effective use of AHSS such as Duel Phase and TRIP (Transformation Induced Plasticity) steels, will significantly contribute to vehicle lightweighting and fuel economy. To further the application of these steels in automotive body and structural parts, a good knowledge and experience base must be developed regarding the press formability of these materials. This project provides data on relevant intrinsic mechanical behavior, splitting limits, and springback behavior of several lots of mild steel, conventional high strength steel (HSS), advanced high strength steel (AHSS) and ultra-high strength steel (UHSS), supplied by the member companies of the Automotive Applications Committee (AAC) of the American Iron and Steel Institute (AISI). Two lots of TRIP600, which were supplied by ThyssenKrupp Stahl, were also included in the study. Since sheet metal forming encompasses a very diverse range of forming processes and deformation modes, a number of simulative tests were used to characterize the forming behavior of these steel grades. In general, it was found that formability, as determined by the different tests, decreased with increased tensile strength. Consistant with previous findings, the formability of TRIP600 was found to be exceptionally good for its tensile strength.

  12. Report on thermal aging effects on tensile properties of ferritic-martensitic steels.

    SciTech Connect (OSTI)

    Li, M.; Soppet, W.K.; Rink, D.L.; Listwan, J.T.; Natesan, K.

    2012-05-10

    This report provides an update on the evaluation of thermal-aging induced degradation of tensile properties of advanced ferritic-martensitic steels. The report is the first deliverable (level 3) in FY11 (M3A11AN04030103), under the Work Package A-11AN040301, 'Advanced Alloy Testing' performed by Argonne National Laboratory, as part of Advanced Structural Materials Program for the Advanced Reactor Concepts. This work package supports the advanced structural materials development by providing tensile data on aged alloys and a mechanistic model, validated by experiments, with a predictive capability on long-term performance. The scope of work is to evaluate the effect of thermal aging on the tensile properties of advanced alloys such as ferritic-martensitic steels, mod.9Cr-1Mo, NF616, and advanced austenitic stainless steel, HT-UPS. The aging experiments have been conducted over a temperature of 550-750 C for various time periods to simulate the microstructural changes in the alloys as a function of time at temperature. In addition, a mechanistic model based on thermodynamics and kinetics has been used to address the changes in microstructure of the alloys as a function of time and temperature, which is developed in the companion work package at ANL. The focus of this project is advanced alloy testing and understanding the effects of long-term thermal aging on the tensile properties. Advanced materials examined in this project include ferritic-martensitic steels mod.9Cr-1Mo and NF616, and austenitic steel, HT-UPS. The report summarizes the tensile testing results of thermally-aged mod.9Cr-1Mo, NF616 H1 and NF616 H2 ferritic-martensitic steels. NF616 H1 and NF616 H2 experienced different thermal-mechanical treatments before thermal aging experiments. NF616 H1 was normalized and tempered, and NF616 H2 was normalized and tempered and cold-rolled. By examining these two heats, we evaluated the effects of thermal-mechanical treatments on material microstructures and associated mechanical properties during long-term aging at elevated temperatures. Thermal aging experiments at different temperatures and periods of time have been completed: 550 C for up to 5000 h, 600 C for up to 7500 h, and 650 C for more than 10,000 h. Tensile properties were measured on thermally aged specimens and aging effect on tensile behavior was assessed. Effects of thermal aging on deformation and failure mechanisms were investigated by using in-situ straining technique with simultaneous synchrotron XRD measurements.

  13. them. Such objects introduce many difficulties that have not been addressed in this work, including incomplete cross-sections and non-parallel surface cuts of primitives, especially at joints. More

    E-Print Network [OSTI]

    Southern California, University of

    the axis pierces the cross-section plane, not necessarily at its center) and the values si (i = 1..n) (call, including incomplete cross-sections and non-parallel surface cuts of primitives, especially at joints. More cross-section, the orientation of the axis, the coordinates (xs, ys, zs)t of its origin (point where

  14. Working with Tamoxifen and Tamoxifen-Treated Animals Uses: Tamoxifen is a estrogen receptor modulator (SERM) drug used in the treatment or prevention of breast cancer. Other uses of Tamoxifen may include treatment of anovulatory infertility and

    E-Print Network [OSTI]

    Chan, Hue Sun

    include treatment of anovulatory infertility and McCune-Albright syndrome. Mechanism of Action modulator (SERM) drug used in the treatment or prevention of breast cancer. Other uses of Tamoxifen may reported, also isolated cases of death from peliosis hepatis and from hyperlipidemia. In the treatment

  15. Sensitivity study of borehole-to-surface and crosswell electromagnetic measurements acquired with energized steel casing to water

    E-Print Network [OSTI]

    Torres-VerdŪn, Carlos

    with energized steel casing to water displacement in hydrocarbon-bearing layers David Pardo1 , Carlos Torres is energized with a finite-size sole- noid antenna located along the axis of the borehole. Measure- ments more recent work concerning energized steel casing, in which an ar- ray of steel-casing segments

  16. Continuous steel production and apparatus

    DOE Patents [OSTI]

    Peaslee, Kent D. (Rolla, MO); Peter, Jorg J. (McMinnville, OR); Robertson, David G. C. (Rolla, MO); Thomas, Brian G. (Champaign, IL); Zhang, Lifeng (Trondheim, NO)

    2009-11-17

    A process for continuous refining of steel via multiple distinct reaction vessels for melting, oxidation, reduction, and refining for delivery of steel continuously to, for example, a tundish of a continuous caster system, and associated apparatus.

  17. High productivity injection practices at Rouge Steel

    SciTech Connect (OSTI)

    Barker, D.H.; Hegler, G.L.; Falls, C.E. [Rouge Steel Co., Dearborn, MI (United States)

    1995-12-01

    Rouge Steel Company, located in Dearborn, Michigan, operates two blast furnaces. The smaller of the pair, ``B`` Furnace, has a hearth diameter of 20 feet and 12 tuyeres. It has averaged 2,290 NTHM (net ton of hot metal) per day of 8.2 NTHM per 100 cubic feet of working volume. ``C`` Furnace has a hearth diameter of 29 feet and 20 tuyeres. Both of these furnaces are single tap hole furnaces. Prior to its reline in 1991, ``C`` Furnace was producing at a rate of 3,300 NTHM/day or about 6.25 NTHM/100 cfwv. In November, 1994 it averaged 5,106 NTHM/day or 9.6 NTHM/100 cfwv. This paper discusses how the current production rates were achieved. Also, the areas that needed to be addressed as production increased will be described. These areas include casthouse arrangement and workload, hot metal ladle capacity, slag pot capacity and charging capability. Coupled with the high blast temperature capability, the furnace was provided with a new natural gas injection system that injected the gas through the blowpipes and a natural gas injection system to enrich the stove gas. Following the furnace reline, natural gas has been used in three ways: tuyere level control; combination injection; and stove gas enrichment. Coke consumption rate has also decreased per NTHM.

  18. Sensitisation of Austenitic Stainless Steels

    E-Print Network [OSTI]

    Cambridge, University of

    Sensitisation of Austenitic Stainless Steels By Chia Hooi Too Queens' College University; Abstract Austenitic stainless steels with excellent corrosion resistance and good weldabil- ity have wide, making the steel `stainless'. However, carbide precipitation due to the welding process or heat treatment

  19. Accelerated corrosion of stainless steel in thiocyanate-containing solutions

    SciTech Connect (OSTI)

    Pistorius, P Chris; Li, Wen

    2012-09-19

    It is known that reduced sulfur compounds (such as thiocyanate and thiosulfate) can accelerate active corrosion of austenitic stainless steel in acid solutions, but before we started this project the mechanism of acceleration was largely unclear. This work combined electrochemical measurements and analysis using scanning electron microscopy (SEM) and X-ray photo-electron spectroscopy (XPS), which provided a comprehensive understanding of the catalytic effect of reduced sulfur species on the active corrosion of stainless steel. Both the behavior of the pure elements and the steel were studied and the work focused on the interaction between the pure elements of the steel, which is the least understood area. Upon completion of this work, several aspects are now much clearer. The main results from this work can be summarized as follows: The presence of low concentrations (around 0.1 mM) of thiocyanate or tetrathionate in dilute sulfuric acid greatly accelerates the anodic dissolution of chromium and nickel, but has an even stronger effect on stainless steels (iron-chromium-nickel alloys). Electrochemical measurements and surface analyses are in agreement with the suggestion that accelerated dissolution really results from suppressed passivation. Even well below the passivation potential, the electrochemical signature of passivation is evident in the electrode impedance; the electrode impedance shows clearly that this pre-passivation is suppressed in the presence of thiocyanate. For the stainless steels, remarkable changes in the morphology of the corroded metal surface and in the surface concentration of chromium support the suggestion that pre-passivation of stainless steels is suppressed because dissolution of chromium is accelerated. Surface analysis confirmed that adsorbed sulfur / sulfide forms on the metal surfaces upon exposure to solutions containing thiocyanate or thiosulfate. For pure nickel, and steels containing nickel (and residual copper), bulk sulfide (visible as a black corrosion product) forms during anodic dissolution. The sulfide is electronically conductive, and gives an increase of several orders of magnitude in the electrode capacitance; the sulfide also causes anodic activation to persist after the pure metals and steels were removed from the thiocyanate-containing electrolyte and transferred to a thiocyanate-free electrolyte. The main practical implications of this work are that low concentrations of reduced sulfur compounds strongly affect anodic dissolution of stainless steels, and that selecting steels with elevated concentrations of chromium, nickel or molybdenum would serve to limit the anodic dissolution rate in the presence of reduced sulfur compounds.

  20. Reaustenitisation from Bainite in Steels

    E-Print Network [OSTI]

    Takahashi, Manabu

    1993-03-16

    .7 APPLICATIONS . . . 1.7.1 Ferrite-Martensite dual phase steels 1.7.2 Steels containing some retained austenite 1.7.3 Welding of steels . . . . . . . . . . 1.7.4 Initial austenite grain size . . . . . . . 1.8 TRANSFORMATION FROM AUSTENITE 1.8.1 Widmanstiitten... is important in the production of dual phase steels which have a final microstructure of ferrite and about 20% martensite. These steels have a good combination of strength and uniform ductility, and find applications in the automobile industry. When a fully...

  1. SURFACE PREPARATION OF STEEL SUBSTRATES USING GRIT-BLASTING

    SciTech Connect (OSTI)

    Donna Post Guillen; D. J. Varacalle, Jr.; D. Deason; W. Rhodaberger; E. Sampson

    2005-05-01

    The primary purpose of grit blasting for thermal spray applications is to ensure a strong mechanical bond between the substrate and the coating by the enhanced roughening of the substrate material. This study presents statistically designed experiments that were accomplished to investigate the effect of abrasives on roughness for A36/1020 steel. The experiments were conducted using a Box statistical design of experiment (SDE) approach. Three grit blasting parameters and their effect on the resultant substrate roughness were investigated. These include blast media, blast pressure, and working distance. The substrates were characterized for roughness using surface profilometry. These attributes were correlated with the changes in operating parameters. Twin-Wire Electric Arc (TWEA) coatings of aluminum and zinc/aluminum were deposited on the grit-blasted substrates. These coatings were then tested for bond strength. Bond strength studies were conducted utilizing a portable adhesion tester following ASTM standard D4541.

  2. Nuclear containment steel liner corrosion workshop : final summary and recommendation report.

    SciTech Connect (OSTI)

    Erler, Bryan A. (Erler Engineering Ltd., Chicago, IL); Weyers, Richard E. (Virginia Tech University, Blacksburg, VA); Sagues, Alberto (University of South Florida, Tampa, FL); Petti, Jason P.; Berke, Neal Steven (Tourney Consulting Group, LLC, Kalamazoo, MI); Naus, Dan J. (Oak Ridge National Laboratory, Oak Ridge, TN)

    2011-07-01

    This report documents the proceedings of an expert panel workshop conducted to evaluate the mechanisms of corrosion for the steel liner in nuclear containment buildings. The U.S. Nuclear Regulatory Commission (NRC) sponsored this work which was conducted by Sandia National Laboratories. A workshop was conducted at the NRC Headquarters in Rockville, Maryland on September 2 and 3, 2010. Due to the safety function performed by the liner, the expert panel was assembled in order to address the full range of issues that may contribute to liner corrosion. This report is focused on corrosion that initiates from the outer surface of the liner, the surface that is in contact with the concrete containment building wall. Liner corrosion initiating on the outer diameter (OD) surface has been identified at several nuclear power plants, always associated with foreign material left embedded in the concrete. The potential contributing factors to liner corrosion were broken into five areas for discussion during the workshop. Those include nuclear power plant design and operation, corrosion of steel in contact with concrete, concrete aging and degradation, concrete/steel non-destructive examination (NDE), and concrete repair and corrosion mitigation. This report also includes the expert panel member's recommendations for future research.

  3. Friction Stir Spot Welding of Advanced High Strength Steels

    SciTech Connect (OSTI)

    Hovanski, Yuri; Grant, Glenn J.; Santella, M. L.

    2009-11-13

    Friction stir spot welding techniques were developed to successfully join several advanced high strength steels. Two distinct tool materials were evaluated to determine the effect of tool materials on the process parameters and joint properties. Welds were characterized primarily via lap shear, microhardness, and optical microscopy. Friction stir spot welds were compared to the resistance spot welds in similar strength alloys by using the AWS standard for resistance spot welding high strength steels. As further comparison, a primitive cost comparison between the two joining processes was developed, which included an evaluation of the future cost prospects of friction stir spot welding in advanced high strength steels.

  4. La Revue de Mtallurgie-CIT Janvier 2006 37 Stainless steel grades are now widely used for

    E-Print Network [OSTI]

    Boyer, Edmond

    La Revue de Mťtallurgie-CIT Janvier 2006 37 Stainless steel grades are now widely used with the thermomechanical fatigue (TMF) of stainless steels at high temperature, specially behaviour and damage models of stainless steel exhaust manifold under a thermal fatigue load. It includes the modeling of manifolds

  5. Surface modified stainless steels for PEM fuel cell bipolar plates

    SciTech Connect (OSTI)

    Brady, Michael P; Wang, Heli; Turner, John A

    2007-07-24

    A nitridation treated stainless steel article (such as a bipolar plate for a proton exchange membrane fuel cell) having lower interfacial contact electrical resistance and better corrosion resistance than an untreated stainless steel article is disclosed. The treated stainless steel article has a surface layer including nitrogen-modified chromium-base oxide and precipitates of chromium nitride formed during nitridation wherein oxygen is present in the surface layer at a greater concentration than nitrogen. The surface layer may further include precipitates of titanium nitride and/or aluminum oxide. The surface layer in the treated article is chemically heterogeneous surface rather than a uniform or semi-uniform surface layer exclusively rich in chromium, titanium or aluminum. The precipitates of titanium nitride and/or aluminum oxide are formed by the nitriding treatment wherein titanium and/or aluminum in the stainless steel are segregated to the surface layer in forms that exhibit a low contact resistance and good corrosion resistance.

  6. Weldment for austenitic stainless steel and method

    DOE Patents [OSTI]

    Bagnall, Christopher (Hempfield, PA); McBride, Marvin A. (Hempfield, PA)

    1985-01-01

    For making defect-free welds for joining two austenitic stainless steel mers, using gas tungsten-arc welding, a thin foil-like iron member is placed between the two steel members to be joined, prior to making the weld, with the foil-like iron member having a higher melting point than the stainless steel members. When the weld is formed, there results a weld nugget comprising melted and then solidified portions of the joined members with small portions of the foil-like iron member projecting into the solidified weld nugget. The portions of the weld nugget proximate the small portions of the foil-like iron member which project into the weld nugget are relatively rich in iron. This causes these iron-rich nugget portions to display substantial delta ferrite during solidification of the weld nugget which eliminates weld defects which could otherwise occur. This is especially useful for joining austenitic steel members which, when just below the solidus temperature, include at most only a very minor proportion of delta ferrite.

  7. Measurement of intergranular attack in stainless steel using ultrasonic energy

    DOE Patents [OSTI]

    Mott, Gerry (Pittsburgh, PA); Attaar, Mustan (Monroeville, PA); Rishel, Rick D. (Monroeville, PA)

    1989-08-08

    Ultrasonic test methods are used to measure the depth of intergranular attack (IGA) in a stainless steel specimen. The ultrasonic test methods include a pitch-catch surface wave technique and a through-wall pulse-echo technique. When used in combination, these techniques can establish the extent of IGA on both the front and back surfaces of a stainless steel specimen from measurements made on only one surface.

  8. 9 Cr-- 1 Mo steel material for high temperature application

    DOE Patents [OSTI]

    Jablonski, Paul D; Alman, David; Dogan, Omer; Holcomb, Gordon; Cowen, Christopher

    2012-11-27

    One or more embodiments relates to a high-temperature, titanium alloyed, 9 Cr-1 Mo steel exhibiting improved creep strength and oxidation resistance at service temperatures up to 650.degree. C. The 9 Cr-1 Mo steel has a tempered martensite microstructure and is comprised of both large (0.5-3 .mu.m) primary titanium carbides and small (5-50 nm) secondary titanium carbides in a ratio of. from about 1:1.5 to about 1.5:1. The 9 Cr-1 Mo steel may be fabricated using exemplary austenizing, rapid cooling, and tempering steps without subsequent hot working requirements. The 9 Cr-1 Mo steel exhibits improvements in total mass gain, yield strength, and time-to-rupture over ASTM P91 and ASTM P92 at the temperature and time conditions examined.

  9. Pump apparatus including deconsolidator

    DOE Patents [OSTI]

    Sonwane, Chandrashekhar; Saunders, Timothy; Fitzsimmons, Mark Andrew

    2014-10-07

    A pump apparatus includes a particulate pump that defines a passage that extends from an inlet to an outlet. A duct is in flow communication with the outlet. The duct includes a deconsolidator configured to fragment particle agglomerates received from the passage.

  10. ITP Steel: Theoretical Minimum Energies to Produce Steel for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Minimum Energies to Produce Steel for Selected Conditions, March 2000 theoreticalminimumenergies.pdf More Documents & Publications Ironmaking Process Alternatives Screening Study...

  11. Developing Fatigue Pre-crack Procedure to Evaluate Fracture Toughness of Pipeline Steels Using Spiral Notch Torsion Test

    SciTech Connect (OSTI)

    Wang, Jy-An John; Tan, Ting; Jiang, Hao; Zhang, Wei; Feng, Zhili

    2012-10-01

    The spiral notch torsion test (SNTT) has been utilized to investigate the crack growth behavior of X52 steel base and welded materials used for hydrogen infrastructures. The X52 steel materials are received from a welded pipe using friction stir welding techniques. Finite element models were established to study the crack growth behavior of steel SNTT steel samples, which were assumed to be isotropic material. A series SNTT models were set up to cover various crack penetration cases, of which the ratios between crack depth to diameter (a/D ratio) ranging from 0.10 to 0.45. The evolution of compliance and energy release rates in the SNTT method have been investigated with different cases, including different geometries and materials. Indices of characteristic compliance and energy release rates have been proposed. Good agreement has been achieved between predictions from different cases in the same trend. These work shed lights on a successful protocol for SNTT application in wide range of structural materials. The further effort needed for compliance function development is to extend the current developed compliance function to the deep crack penetration arena, in the range of 0.55 to 0.85 to effectively determine fracture toughness for extremely tough materials.

  12. MECS 2006- Iron and Steel

    Broader source: Energy.gov [DOE]

    Manufacturing Energy and Carbon Footprint for Iron and Steel Sector (NAICS 3311, 3312) with Total Energy Input, October 2012 (MECS 2006)

  13. Process for dezincing galvanized steel

    DOE Patents [OSTI]

    Morgan, W.A.; Dudek, F.J.; Daniels, E.J.

    1998-07-14

    A process is described for removing zinc from galvanized steel. The galvanized steel is immersed in an electrolyte containing at least about 15% by weight of sodium or potassium hydroxide and having a temperature of at least about 75 C and the zinc is galvanically corroded from the surface of the galvanized steel. The material serving as the cathode is principally a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series. The corrosion rate may be accelerated by (1) increasing the number density of corrosion sites in the galvanized steel by mechanically abrading or deforming the galvanized steel, (2) heating the galvanized steel to form an alloy of zinc on the surface of the galvanized steel, (3) mixing the galvanized steel with a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series, or (4) moving the galvanized steel relative to itself and to the electrolyte while immersed in the electrolyte. 1 fig.

  14. CREEP STRENGTH OF HIGH CR FERRITIC STEELS DESIGNED USING NEURAL NETWORKS AND PHASE STABILITY CALCULATIONS

    E-Print Network [OSTI]

    Cambridge, University of

    in the creep resistance of 9- 12%Cr steels used for boiler header/piping and steam turbine rotor applications,000 h. While the 630įC goal may be realized, much more work is needed to achieve steam temperatures up Development of heat-resistant steel for power boilers and turbines has been ongoing for about five decades

  15. Origin of a magnetic easy axis in pipeline steel L. Clapham,a)

    E-Print Network [OSTI]

    Clapham, Lynann

    Origin of a magnetic easy axis in pipeline steel L. Clapham,a) C. Heald, T. Krause, and D. L and low temperature annealing treatments. Our results indicate that plastic deformation and residual 100 crystallographic texture such as that found in electrical steels.1 In addition, recent work2,3 has

  16. Low Temperature Irradiation Embrittlement of Reactor Pressure Vessel Steels

    SciTech Connect (OSTI)

    Wang, Jy-An John

    2015-08-01

    The embrittlement trend curve development project for HFIR reactor pressure vessel (RPV) steels was carried out with three major tasks. Which are (1) data collection to match that used in HFIR steel embrittlement trend published in 1994 Journal Nuclear Material by Remec et. al, (2) new embrittlement data of A212B steel that are not included in earlier HFIR RPV trend curve, and (3) the adjustment of nil-ductility-transition temperature (NDTT) shift data with the consideration of the irradiation temperature effect. An updated HFIR RPV steel embrittlement trend curve was developed, as described below. NDTT( C) = 23.85 log(x) + 203.3 log (x) + 434.7, with 2- uncertainty of 34.6 C, where parameter x is referred to total dpa. The developed update HFIR RPV embrittlement trend curve has higher embrittlement rate compared to that of the trend curve developed in 1994.

  17. High Mn austenitic stainless steel

    DOE Patents [OSTI]

    Yamamoto, Yukinori (Oak Ridge, TN) [Oak Ridge, TN; Santella, Michael L (Knoxville, TN) [Knoxville, TN; Brady, Michael P (Oak Ridge, TN) [Oak Ridge, TN; Maziasz, Philip J (Oak Ridge, TN) [Oak Ridge, TN; Liu, Chain-tsuan (Knoxville, TN) [Knoxville, TN

    2010-07-13

    An austenitic stainless steel alloy includes, in weight percent: >4 to 15 Mn; 8 to 15 Ni; 14 to 16 Cr; 2.4 to 3 Al; 0.4 to 1 total of at least one of Nb and Ta; 0.05 to 0.2 C; 0.01 to 0.02 B; no more than 0.3 of combined Ti+V; up to 3 Mo; up to 3 Co; up to 1W; up to 3 Cu; up to 1 Si; up to 0.05 P; up to 1 total of at least one of Y, La, Ce, Hf, and Zr; less than 0.05 N; and base Fe, wherein the weight percent Fe is greater than the weight percent Ni, and wherein the alloy forms an external continuous scale including alumina, nanometer scale sized particles distributed throughout the microstructure, the particles including at least one of NbC and TaC, and a stable essentially single phase FCC austenitic matrix microstructure that is essentially delta-ferrite-free and essentially BCC-phase-free.

  18. Fillability of Thin-Wall Steel Castings

    SciTech Connect (OSTI)

    Robert C. Voigt; Joseph Bertoletti; Andrew Kaley; Sandi Ricotta; Travis Sunday

    2002-07-30

    The use of steel components is being challenged by lighter nonferrous or cast iron components. The development of techniques for enhancing and ensuring the filability of thin-wall mold cavities is most critical for thinner wall cast steel production. The purpose of this research was to develop thin-wall casting techniques that can be used to reliably produce thin-wall castings from traditional gravity poured sand casting processes. The focus of the research was to enhance the filling behavior to prevent misrunds. Experiments were conducted to investigate the influence of various foundry variables on the filling of thin section steel castings. These variables include casting design, heat transfer, gating design, and metal fluidity. Wall thickness and pouring temperature have the greatest effect on casting fill. As wall thickness increases the volume to surface area of the casting increases, which increases the solidification time, allowing the metal to flow further in thicker sect ions. Pouring time is another significant variable affecting casting fill. Increases or decreases of 20% in the pouring time were found to have a significant effect on the filling of thin-wall production castings. Gating variables, including venting, pouring head height, and mold tilting also significantly affected thin-wall casting fill. Filters offer less turbulent, steadier flow, which is appropriate for thicker castings, but they do not enhance thin-wall casting fill.

  19. Numerical and experimental evaluation of laser forming process for the shape correction in ultra high strength steels

    SciTech Connect (OSTI)

    Song, J. H.; Lee, J.; Lee, S.; Kim, E. Z.; Lee, N. K.; Lee, G. A.; Park, S. J.; Chu, A.

    2013-12-16

    In this paper, laser forming characteristics in ultra high strength steel with ultimate strength of 1200MPa are investigated numerically and experimentally. FE simulation is conducted to identify the response related to deformation and characterize the effect of laser power, beam diameter and scanning speed with respect to the bending angle for a square sheet part. The thermo-mechanical behaviors during the straight-line heating process are presented in terms of temperature, stress and strain. An experimental setup including a fiber laser with maximum mean power of 3.0 KW is used in the experiments. From the results in this work, it would be easily adjustment the laser power and the scanning speed by controlling the line energy for a bending operation of CP1180 steel sheets.

  20. Steel | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergyPlan | Department of Energy 1 DOE| Department ofSteam SystemSteamSteel

  1. Method for reducing formation of electrically resistive layer on ferritic stainless steels

    DOE Patents [OSTI]

    Rakowski, James M.

    2013-09-10

    A method of reducing the formation of electrically resistive scale on a an article comprising a silicon-containing ferritic stainless subjected to oxidizing conditions in service includes, prior to placing the article in service, subjecting the article to conditions under which silica, which includes silicon derived from the steel, forms on a surface of the steel. Optionally, at least a portion of the silica is removed from the surface to placing the article in service. A ferritic stainless steel alloy having a reduced tendency to form silica on at least a surface thereof also is provided. The steel includes a near-surface region that has been depleted of silicon relative to a remainder of the steel.

  2. Stress relief cracking in creep resisting low alloy ferritic steels.

    E-Print Network [OSTI]

    Tait, Robert Andrew

    1976-10-26

    good creep strengthening in these low alloy steels. As a result of this work, it has been established that the above view is both inaccurate and misleading. Most of the experiments were performed on two samples of commercially produced 1/2Cr 1/2Mo 1...

  3. Improving the Performance of Creep-Strength-Enhanced Ferritic Steels

    E-Print Network [OSTI]

    Pennycook, Steve

    generators used in combined cycle gas turbine units. Improvements in the high temperature capability of CSEF failures of CSEF steels after only a few years in service. These failures result from two main causes: (1 use of these advanced alloys in power generation equipment. Additionally, this work could establish

  4. Modelling Precipitation of Carbides in Martensitic Steels

    E-Print Network [OSTI]

    Cambridge, University of

    Modelling Precipitation of Carbides in Martensitic Steels Shingo Yamasaki Darwin College appreciate Dr S. Aihara and Mr T. Tarui at Nippon Steel Corporation for giving me the opportunity to study at Nippon Steel Corporation. I am indebted to grants from the Personnel Division of Nippon Steel Corporation

  5. Role of stress-assisted martensite in the design of strong ultrafine-grained duplex steels

    E-Print Network [OSTI]

    Yen, Hung-Wei; Ooi, Steve Woei; Eizadjou, Mehdi; Breen, Andrew; Huang, Ching-Yuan; Bhadeshia, H. K. D. H.; Ringer, Simon P.

    2014-10-03

    This work explains the occurrence of transformation-induced plasticity via stressassisted martensite, when designing ultrafine-grained duplex steels. It is found that, when the austenite is reduced to a fine scale of about 300 nm, the initial...

  6. Design of mechanical testing device to measure break angle of thin, stainless steel

    E-Print Network [OSTI]

    Weiner, Stephen (Stephen Andrew)

    2005-01-01

    Working with Gillette Corporation, an automated mechanical testing tool that bent a small flat piece of steel was designed. The design of the tool was an effort to improve upon previous generations of the same tool. It ...

  7. Design and modelling of ultra-high strength steels: nanoprecipitation and plasticity

    E-Print Network [OSTI]

    Kim, Bij-Na

    2014-03-04

    control, which requires an understanding of the processing-microstructure-property relationship in medium carbon (0.5-0.6 wt.%) steels throughout tempering. Much of the work has been centred in understanding the role of silicon at the precipitation...

  8. Characterisation and Development of Nanostructured, Ultrahigh Strength, and Ductile Bainitic Steels

    E-Print Network [OSTI]

    Sherif, Mohamed

    The purpose of the present work was to characterise and further develop a novel nanostructured type of bainitic steel. Three chemical compositions were considered with different concentrations of Al and Co. The addition of Al and Co is believed...

  9. The Behaviour of Multi-storey Composite Steel Framed Structures in Response to Compartment Fires†

    E-Print Network [OSTI]

    Lamont, Susan

    For many years, the ability of highly redundant composite framed structure to resist the effect of a fire have been undervalued and misunderstood. A great deal of work on the behavior of composite steel-concrete structures ...

  10. Proposed Provisions on Seismic Design of Steel Shear Walls, proposed to BSSC TS6 by A. Astaneh, May 29, 2002 of 91 Tentatively

    E-Print Network [OSTI]

    Astaneh-Asl, Abolhassan

    Proposed Provisions on Seismic Design of Steel Shear Walls, proposed to BSSC TS6 by A. Astaneh, May 29, 2002 of 91 Tentatively Proposed Seismic Design Provisions and Commentary for Steel Shear Walls to the BSSC and the TS6's efforts in having seismic design provisions for steel shear walls included

  11. Greenhouse Gas Mitigation Options in ISEEM Global Energy Model: 2010-2050 Scenario Analysis for Least-Cost Carbon Reduction in Iron and Steel Sector

    SciTech Connect (OSTI)

    Karali, Nihan; Xu, Tengfang; Sathaye, Jayant

    2013-12-01

    The goal of the modeling work carried out in this project was to quantify long-term scenarios for the future emission reduction potentials in the iron and steel sector. The main focus of the project is to examine the impacts of carbon reduction options in the U.S. iron and steel sector under a set of selected scenarios. In order to advance the understanding of carbon emission reduction potential on the national and global scales, and to evaluate the regional impacts of potential U.S. mitigation strategies (e.g., commodity and carbon trading), we also included and examined the carbon reduction scenarios in Chinaís and Indiaís iron and steel sectors in this project. For this purpose, a new bottom-up energy modeling framework, the Industrial Sector Energy Efficiency Modeling (ISEEM), (Karali et al. 2012) was used to provide detailed annual projections starting from 2010 through 2050. We used the ISEEM modeling framework to carry out detailed analysis, on a country-by-country basis, for the U.S., Chinaís, and Indiaís iron and steel sectors. The ISEEM model applicable to iron and steel section, called ISEEM-IS, is developed to estimate and evaluate carbon emissions scenarios under several alternative mitigation options - including policies (e.g., carbon caps), commodity trading, and carbon trading. The projections will help us to better understand emission reduction potentials with technological and economic implications. The database for input of ISEEM-IS model consists of data and information compiled from various resources such as World Steel Association (WSA), the U.S. Geological Survey (USGS), China Steel Year Books, India Bureau of Mines (IBM), Energy Information Administration (EIA), and recent LBNL studies on bottom-up techno-economic analysis of energy efficiency measures in the iron and steel sector of the U.S., China, and India, including long-term steel production in China. In the ISEEM-IS model, production technology and manufacturing details are represented, in addition to the extensive data compiled from recent studies on bottom-up representation of efficiency measures for the sector. We also defined various mitigation scenarios including long-term production trends to project country-specific production, energy use, trading, carbon emissions, and costs of mitigation. Such analyses can provide useful information to assist policy-makers when considering and shaping future emissions mitigation strategies and policies. The technical objective is to analyze the costs of production and CO{sub 2} emission reduction in the U.S, China, and Indiaís iron and steel sectors under different emission reduction scenarios, using the ISEEM-IS as a cost optimization model. The scenarios included in this project correspond to various CO{sub 2} emission reduction targets for the iron and steel sector under different strategies such as simple CO{sub 2} emission caps (e.g., specific reduction goals), emission reduction via commodity trading, and emission reduction via carbon trading.

  12. Strain aging behavior of austenitic stainless steels containing strain induced martensite

    SciTech Connect (OSTI)

    Rathbun, R.W.; Matlock, D.K.; Speer, J.G.

    2000-04-01

    Transformation of austenite to martensite during deformation is widely used to strengthen metastable austenitic stainless steel grades. It has been reported that aging of cold worked material can result in further strength increases through the formation of additional martensite. Alternate interpretations of the effects of aging on the strength of stainless steels containing strain induced martensite may also be hypothesized. It is well known that plastically deformed ferritic steels can be strengthened by the diffusion of interstitial solute atoms (carbon and nitrogen) during aging at low temperatures. It is anticipated that plastically deformed metastable austenitic steels containing the body-centered martensite phase may also be strengthened in a similar manner. This assumption appears reasonable as martensitic steels, with low carbon content similar to the austenitic steels of interest, have been shown to exhibit aging effects similar to those observed in low carbon ferritic steels. Thus the purpose of the present study was to evaluate the effects of time and temperature on the stress-strain behavior and strength of cold worked metastable 300 series stainless steels to determine the degree to which observed strength increases might be attributed to strain aging.

  13. ITP Steel: Energy Use in the U.S. Steel Industry: An Historical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Use in the U.S. Steel Industry: An Historical Perspective and Future Opportunities, September 2000 ITP Steel: Energy Use in the U.S. Steel Industry: An Historical...

  14. Great Lakes Steel -- PCI facility

    SciTech Connect (OSTI)

    Eichinger, F.T. [BMH Claudius Peters AG, Buxtehude (Germany); Dake, S.H.; Wagner, E.D.; Brown, G.S. [Raytheon Engineers and Constructors, Pittsburgh, PA (United States)

    1997-12-31

    This paper discusses the planning, design, and start-up of the 90 tph PCI facility for National Steel`s Great Lakes Steel Division in River Rouge, MI. This project is owned and operated by Edison Energy Services, and was implemented on a fast-track basis by Raytheon Engineers and Constructors, Babcock Material Handling, and Babcock and Wilcox. This paper presents important process issues, basic design criteria, an the challenges of engineering and building a state-of-the-art PCI facility in two existing plants. Pulverized coal is prepared at the River Rouge Power Plant of Detroit Edison, is pneumatically conveyed 6,000 feet to a storage silo at Great Lakes Steel, and is injected into three blast furnaces.

  15. Electrochemical Dezincing of Steel Scrap

    Office of Energy Efficiency and Renewable Energy (EERE)

    Half of the steel produced in the United States is derived from scrap. With zinc-coated prompt scrap increasing fivefold since 1980, steelmakers are feeling the effect of increased contaminant...

  16. Auto/Steel Partnership: AHSS Stamping, Strain Rate Characterization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AHSS Stamping, Strain Rate Characterization, Sheet Steel Fatigue, AHSS Joining AutoSteel Partnership: AHSS Stamping, Strain Rate Characterization, Sheet Steel Fatigue, AHSS...

  17. MICROSTRUCTURE AND PROPERTIES OF DUAL PHASE STEELS CONTAINING FINE PRECIPITATES

    E-Print Network [OSTI]

    Gau, J.S.

    2014-01-01

    phase steels subjected to intercritical annealing followedphase steels sub- jected to intercritical annealing followedof steels fast quenched after intercritical annealing is a

  18. Use of explosives to demolish multistory steel frame buildings†

    E-Print Network [OSTI]

    Landry, Charles Vernon

    1988-01-01

    OF CONTENTS LIST OF FIGURES . 1. INTRODUCTION. vi 1. 1 Problem Definition . 1. 2 Work Done to Date. 1. 3 Purpose of the Study . 1. 4 Approach. 2. GENERAL PLANNING FOR STEEL FRAME MULTISTORY DEMOLITION. 2. 1 Introduction. 2. 2 General Mechanics... of the other companies who use these techniques, have, in the past, worked for Controiled Demolition Inc. Due in part to these connections, many of these companies consider all of the information on their controlled demolition techniques as proprietary...

  19. Phase Transformations in Heterogeneous Steels

    E-Print Network [OSTI]

    Khan, Shahid Amin

    1990-05-08

    for autocatalysis, relying on the fact that immediate vicinity of a plate is disturbed quite severely by a combination of elastic and plastic deformation processes due to the shear like nature of the transformation. ē Stress-induced Nucleation, i.e., the activation... elements in steels is twofold. They can affect both the thermodynamics and kinetics of transformations. The hardenability of steels is related directly to the in- fluence on the nucleation and growth kinetics of the decomposition products. Primarily...

  20. SOLID STATE JOINING OF MAGNESIUM TO STEEL

    SciTech Connect (OSTI)

    Jana, Saumyadeep; Hovanski, Yuri; Pilli, Siva Prasad; Field, David P.; Yu, Hao; Pan, Tsung-Yu; Santella, M. L.

    2012-06-04

    Friction stir welding and ultrasonic welding techniques were applied to join automotive magnesium alloys to steel sheet. The effect of tooling and process parameters on the post-weld microstructure, texture and mechanical properties was investigated. Static and dynamic loading were utilized to investigate the joint strength of both cast and wrought magnesium alloys including their susceptibility and degradation under corrosive media. The conditions required to produce joint strengths in excess of 75% of the base metal strength were determined, and the effects of surface coatings, tooling and weld parameters on weld properties are presented.

  1. PRELIMINARY REPORT ON STEEL BUILDING DAMAGE FROM THE DARFIELD EARTHQUAKE

    E-Print Network [OSTI]

    Bruneau, Michel

    351 PRELIMINARY REPORT ON STEEL BUILDING DAMAGE FROM THE DARFIELD EARTHQUAKE OF SEPTEMBER 4, 2010 the Darfield earthquake of September 4, 2010, including concentrically braced frames, eccentrically braced this earthquake, but much of this is attributed to the fact that seismic demands from the Darfield earthquake were

  2. Battery and fuel cell electrodes containing stainless steel charging additive

    DOE Patents [OSTI]

    Zuckerbrod, David (Pittsburgh, PA); Gibney, Ann (Monroeville, PA)

    1984-01-01

    An electrode for use in electrochemical energy cells is made, comprising a hydrophilic layer and a hydrophobic layer, where the hydrophilic layer comprises a hydrophilic composite which includes: (i) carbon particles; (ii) stainless steel particles; (iii) a nonwetting agent; and (iv) a catalyst, where at least one current collector contacts said composite.

  3. 2012 ACCOMPLISHMENTS - TRITIUM AGING STUDIES ON STAINLESS STEELS

    SciTech Connect (OSTI)

    Morgan, M.

    2013-01-31

    This report summarizes the research and development accomplishments during FY12 for the tritium effects on materials program. The tritium effects on materials program is designed to measure the long-term effects of tritium and its radioactive decay product, helium-3, on the structural properties of forged stainless steels which are used as the materials of construction for tritium reservoirs. The FY12 R&D accomplishments include: (1) Fabricated and Thermally-Charged 150 Forged Stainless Steel Samples with Tritium for Future Aging Studies; (2) Developed an Experimental Plan for Measuring Cracking Thresholds of Tritium-Charged-and-Aged Steels in High Pressure Hydrogen Gas; (3) Calculated Sample Tritium Contents For Laboratory Inventory Requirements and Environmental Release Estimates; (4) Published report on ďCracking Thresholds and Fracture Toughness Properties of Tritium-Charged-and-Aged Stainless SteelsĒ; and, (5) Published report on ďThe Effects of Hydrogen, Tritium, and Heat Treatment on the Deformation and Fracture Toughness Properties of Stainless SteelsĒ. These accomplishments are highlighted here and references given to additional reports for more detailed information.

  4. Saturation in ``nonmagnetic'' stainless steel C. Weber and J. Fajansa)

    E-Print Network [OSTI]

    Fajans, Joel

    Saturation in ``nonmagnetic'' stainless steel C. Weber and J. Fajansa) Department of Physics July 1998 Scientific equipment often uses ``nonmagnetic'' stainless steel, relying on the steel's nonmagnetic behavior to leave external magnetic fields unaltered. However, stainless steel's permeability can

  5. A Comparison of Iron and Steel Production Energy Use and Energy Intensity in China and the U.S.

    SciTech Connect (OSTI)

    Hasanbeigi, Ali; Price, Lynn; Aden, Nathaniel; Chunxia, Zhang; Xiuping, Li; Fangqin, Shangguan

    2011-06-15

    Production of iron and steel is an energy-intensive manufacturing process. In 2006, the iron and steel industry accounted for 13.6% and 1.4% of primary energy consumption in China and the U.S., respectively (U.S. DOE/EIA, 2010a; Zhang et al., 2010). The energy efficiency of steel production has a direct impact on overall energy consumption and related carbon dioxide (CO2) emissions. The goal of this study is to develop a methodology for making an accurate comparison of the energy intensity (energy use per unit of steel produced) of steel production. The methodology is applied to the steel industry in China and the U.S. The methodology addresses issues related to boundary definitions, conversion factors, and indicators in order to develop a common framework for comparing steel industry energy use. This study uses a bottom-up, physical-based method to compare the energy intensity of China and U.S. crude steel production in 2006. This year was chosen in order to maximize the availability of comparable steel-sector data. However, data published in China and the U.S. are not always consistent in terms of analytical scope, conversion factors, and information on adoption of energy-saving technologies. This study is primarily based on published annual data from the China Iron & Steel Association and National Bureau of Statistics in China and the Energy Information Agency in the U.S. This report found that the energy intensity of steel production is lower in the United States than China primarily due to structural differences in the steel industry in these two countries. In order to understand the differences in energy intensity of steel production in both countries, this report identified key determinants of sector energy use in both countries. Five determinants analyzed in this report include: share of electric arc furnaces in total steel production, sector penetration of energy-efficiency technologies, scale of production equipment, fuel shares in the iron and steel industry, and final steel product mix in both countries. The share of lower energy intensity electric arc furnace production in each country was a key determinant of total steel sector energy efficiency. Overall steel sector structure, in terms of average plant vintage and production capacity, is also an important variable though data were not available to quantify this in a scenario. The methodology developed in this report, along with the accompanying quantitative and qualitative analyses, provides a foundation for comparative international assessment of steel sector energy intensity.

  6. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2011-01-01

    in the iron and steel industry include pumps for circulatingindustry/bestpractices/software.html Pump System Assessmentvacuum pumps were introduced in the semiconductor industry

  7. H-Series Cast Austenitic Stainless Steels

    Broader source: Energy.gov [DOE]

    Cast H-Series austenitic steels are used extensively in several industries for a broad range of high-temperature applications. The H-Series stainless steels have evolved over many years of complex...

  8. Extraordinary Ductility in Albearing TRIP Steel

    E-Print Network [OSTI]

    Cambridge, University of

    ferrite that is normally introduced into TRIP≠assisted steels by intercritical annealing or continuousExtraordinary Ductility in Al≠bearing ≠TRIP Steel By H. L. Yi1 , K. Y. Lee2 and H. K. D. H strength and elongation which are not available with current steels used in the manufacture of automobiles

  9. MICROSTRUCTURE OF SUPER-DUPLEX STAINLESS STEELS

    E-Print Network [OSTI]

    Cambridge, University of

    MICROSTRUCTURE OF SUPER-DUPLEX STAINLESS STEELS By Shahriar Sharafi St. Edmund College Department of Sweden for providing the materials. IV #12;ABSTRACT Corrosion resistant stainless steels with a mixed microstructure of o-ferrite and austenite in approximately equal proportion are called "duplex stainless steels

  10. Tensile Properties of Austenitic Stainless Steel

    E-Print Network [OSTI]

    Cambridge, University of

    Tensile Properties of Austenitic Stainless Steel by Iqbal Shah Corpus Christi College, Cambridge;Abstract The short-term mechanical properties of austenitic stainless steels can be affected by a myriad of factors. Materials scientists conduct countless trials to find new steel compositions, in an attempt

  11. Tensile Properties of Austenitic Stainless Steel

    E-Print Network [OSTI]

    Cambridge, University of

    Tensile Properties of Austenitic Stainless Steel by Iqbal Shah Corpus Christi College, Cambridge; Abstract The short≠term mechanical properties of austenitic stainless steels can be affected by a myriad of factors. Materials scientists conduct countless trials to find new steel compositions, in an attempt

  12. Effects of Framing on the Thermal Performance of Wood and Steel-Framed Walls†

    E-Print Network [OSTI]

    Kosny, J.; Yarbrough, D. W.; Childs, P.; Mohiuddin, S. A.

    2006-01-01

    ON THE THERMAL PERFORMANCE OF WOOD AND STEEL-FRAMED WALLS JAN KOSNY, PhD DAVID W. YARBROUGH PhD, PE PHILLIP CHILDS Senior research engineer Senior research engineer Research engineer Oak Ridge National Laboratory, Oak Ridge, TN SYED AZAM MOHIUDDIN...% framing factor for US homes. This paper reports, experimental work and numerical analysis of the thermal performance of various configurations of structural components in wood and steel-framed walls. In addition, the consequences of installation...

  13. Reliability-based condition assessment of steel containment and liners

    SciTech Connect (OSTI)

    Ellingwood, B.; Bhattacharya, B.; Zheng, R.

    1996-11-01

    Steel containments and liners in nuclear power plants may be exposed to aggressive environments that may cause their strength and stiffness to decrease during the plant service life. Among the factors recognized as having the potential to cause structural deterioration are uniform, pitting or crevice corrosion; fatigue, including crack initiation and propagation to fracture; elevated temperature; and irradiation. The evaluation of steel containments and liners for continued service must provide assurance that they are able to withstand future extreme loads during the service period with a level of reliability that is sufficient for public safety. Rational methodologies to provide such assurances can be developed using modern structural reliability analysis principles that take uncertainties in loading, strength, and degradation resulting from environmental factors into account. The research described in this report is in support of the Steel Containments and Liners Program being conducted for the US Nuclear Regulatory Commission by the Oak Ridge National Laboratory. The research demonstrates the feasibility of using reliability analysis as a tool for performing condition assessments and service life predictions of steel containments and liners. Mathematical models that describe time-dependent changes in steel due to aggressive environmental factors are identified, and statistical data supporting the use of these models in time-dependent reliability analysis are summarized. The analysis of steel containment fragility is described, and simple illustrations of the impact on reliability of structural degradation are provided. The role of nondestructive evaluation in time-dependent reliability analysis, both in terms of defect detection and sizing, is examined. A Markov model provides a tool for accounting for time-dependent changes in damage condition of a structural component or system. 151 refs.

  14. Recovery Act: Waste Energy Project at AK Steel Corporation Middletown

    SciTech Connect (OSTI)

    Joyce, Jeffrey

    2012-06-30

    In 2008, Air Products and Chemicals, Inc. (ďAir ProductsĒ) began development of a project to beneficially utilize waste blast furnace ďtopgasĒ generated in the course of the iron-making process at AK Steel Corporationís Middletown, Ohio works. In early 2010, Air Products was awarded DOE Assistance Agreement DE-EE002736 to further develop and build the combined-cycle power generation facility. In June 2012, Air Products and AK Steel Corporation terminated work when it was determined that the project would not be economically viable at that time nor in the foreseeable future. The project would have achieved the FOA-0000044 Statement of Project Objectives by demonstrating, at a commercial scale, the technology to capture, treat, and convert blast furnace topgas into electric power and thermal energy.

  15. Multi analysis of the effect of grain size on the dynamic behavior of microalloyed steels

    SciTech Connect (OSTI)

    Zurek, Anna K; Muszka, K; Majta, J; Wielgus, M

    2009-01-01

    This study presents some aspects of multiscale analysis and modeling of variously structured materials behavior in quasi-static and dynamic loading conditions. The investigation was performed for two different materials of common application: high strength microalloyed steel (HSLA, X65), and as a reference more ductile material, Ti-IF steel. The MaxStrain technique and one pass hot rolling processes were used to produce ultrafine-grained and coarse-grained materials. The efficiency and inhomogeneity of microstructure refinement were examined because of their important role in work hardening and the initiation and growth of fracture under tensile stresses. It is shown that the combination of microstructures characterized by their different features contributes to the dynamic behavior and final properties of the product. In particular, the role of solute segregation at grain boundaries as well as precipitation of carbonitrides in coarse and ultrafine-grained structures is assessed. The predicted mechanical response of ultrafine-grained structures, using modified KHL model is in reasonable agreement with the experiments. This is a result of proper representation of the role of dislocation structure and the grain boundary and their multiscale effects included in this model.

  16. Cast CF8C-Plus Stainless Steel for Turbocharger Applications

    SciTech Connect (OSTI)

    Maziasz, P.J.; Shyam, A.; Evans, N.D.; Pattabiraman, K. (Honeywell Turbo Technologies

    2010-06-30

    The purpose of this Cooperative Research and Development Agreement (CRADA) project is to provide the critical test data needed to qualify CF8C-Plus cast stainless steel for commercial production and use for turbocharger housings with upgraded performance and durability relative to standard commercial cast irons or stainless steels. The turbocharger technologies include, but are not limited to, heavy-duty highway diesel engines, and passenger vehicle diesel and gasoline engines. This CRADA provides additional critical high-temperature mechanical properties testing and data analysis needed to quality the new CF8C-Plus steels for turbocharger housing applications.

  17. The thermal performance of steel-framed walls

    SciTech Connect (OSTI)

    Barbour, C.E. [NAHB Research Center, Upper Marlboro, MD (United States). Building Systems Div.; Goodrow, J. [Holometrix, Bedford, MA (United States)

    1995-12-31

    Thermal bridges are areas in constructions that have highly conductive materials, allowing higher heat transfer through less conductive areas. In a wall, thermal bridges can increase heat loss, cause dust to accumulate on the studs (ghosting) due to temperature distribution, and cause condensation to form in and on the walls. The effects of thermal bridges are often misunderstood by engineers, buildings, and manufacturers of construction products. This study attempts to provide a better understanding of the effects of thermal bridges in steel-framed walls, as well as information leading to improved methods of predicting R-value of walls containing thermal bridges. An improved method for estimating R-value would allow an equitable comparison of thermal performance with other construction types and materials. This would increase the number of alternative materials for walls available to designers, thus allowing them the freedom to correctly choose the optimum choice for construction. In order to arrive at an improved method, experimental data on the heat transfer characteristics of steel-framed walls were collected. Twenty-three wall samples were tested in a calibrated hot box (ASTM C976) to measure the thermal performance of steel-framed wall systems. The tests included an array of stud frame configurations, exterior sheathing, and fiberglass batt insulations. Other studies of thermal bridging in steel-framed walls have not included the use of insulating sheathing, which reduces the extent of the thermal bridges and improves total thermal performance. The purpose of the project was to provide measured R-values for commonly used steel-framed wall configurations and to improve R-value estimating methods. Also, detailed monitoring of temperature gradients in the test walls combined with numerical analysis provided new insights into heat transfer phenomena concerning thermal bridges.

  18. Heat treated 9 Cr-1 Mo steel material for high temperature application

    DOE Patents [OSTI]

    Jablonski, Paul D.; Alman, David; Dogan, Omer; Holcomb, Gordon; Cowen, Christopher

    2012-08-21

    The invention relates to a composition and heat treatment for a high-temperature, titanium alloyed, 9 Cr-1 Mo steel exhibiting improved creep strength and oxidation resistance at service temperatures up to 650.degree. C. The novel combination of composition and heat treatment produces a heat treated material containing both large primary titanium carbides and small secondary titanium carbides. The primary titanium carbides contribute to creep strength while the secondary titanium carbides act to maintain a higher level of chromium in the finished steel for increased oxidation resistance, and strengthen the steel by impeding the movement of dislocations through the crystal structure. The heat treated material provides improved performance at comparable cost to commonly used high-temperature steels such as ASTM P91 and ASTM P92, and requires heat treatment consisting solely of austenization, rapid cooling, tempering, and final cooling, avoiding the need for any hot-working in the austenite temperature range.

  19. Hydrostatic Microextrusion of Steel and Copper

    SciTech Connect (OSTI)

    Berti, Guido; Monti, Manuel; D'Angelo, Luciano

    2011-05-04

    The paper presents an experimental investigation based on hydrostatic micro extrusion of billets in low carbon steel and commercially pure copper, and the relevant results. The starting billets have a diameter of 0.3 mm and are 5 mm long; a high pressure generator consisting of a manually operated piston screw pump is used to pressurize the fluid up to 4200 bar, the screw pump is connected through a 3-way distribution block to the extrusion die and to a strain gauge high pressure sensor. The sensor has a full scale of 5000 bar and the extrusion pressure is acquired at a sampling rate of 2 kHz by means of an acquisition program written in the LabVIEW environment. Tests have been conducted at room temperature and a lubricant for wire drawing (Chemetall Gardolube DO 338) acts both as the pressurizing fluid and lubricant too. In addition, billets were graphite coated. Different fluid pressures and process durations have been adopted, resulting in different extrusion lengths. The required extrusion pressure is much higher than in non-micro forming operations (this effect is more evident for steel). On the cross section of the extruded parts, hardness and grain size distribution have been measured, the former through Vickers micro hardness (10 g load) tests. In the case of the extrusion of copper, the material behaves as in microdrawing process. In the case of the extrusion of steel, the hardness increases from the core to the surface as in the drawing process, but with lower values. The analysis evidenced the presence of the external layer, but its thickness is about 1/3 of the external layer in the drawn wire and the grains appear smaller than in the layer of the drawn wire. The extruding force required along the extruding direction is higher (22-24 N) than the drawing force along the same direction (12 N): being the material, the reduction ratio, the die sliding length the same in both cases, the higher extrusion force should be caused by a higher tangential friction force and/or a higher redundant work of deformation and/or a different material behaviour. Which is the real mechanism is not clear at present, but surface layer grains in extrusion are more deformed than in wire drawing. For this reason the deformation inhomogeneity increases in extrusion and the material under the highly deformed surface layer should be subjected to lower strains, strain hardening and finally resulting in lower hardness.

  20. Wrought Cr--W--V bainitic/ferritic steel compositions

    DOE Patents [OSTI]

    Klueh, Ronald L.; Maziasz, Philip J.; Sikka, Vinod Kumar; Santella, Michael L.; Babu, Sudarsanam Suresh; Jawad, Maan H.

    2006-07-11

    A high-strength, high-toughness steel alloy includes, generally, about 2.5% to about 4% chromium, about 1.5% to about 3.5% tungsten, about 0.1% to about 0.5% vanadium, and about 0.05% to 0.25% carbon with the balance iron, wherein the percentages are by total weight of the composition, wherein the alloy is heated to an austenitizing temperature and then cooled to produce an austenite transformation product.

  1. Seismic Performance and Design of Steel Plate Shear Walls with Low Yield Point Steel Infill Plates

    E-Print Network [OSTI]

    Zirakian, Tadeh

    2013-01-01

    Bhowmick A.K. (2009a). Seismic Analysis and Design of Steeland Grondin G.Y. (2009b). ďSeismic analysis of steel plateand Bhagwagar T. (2002). ďSeismic retrofit of flexible steel

  2. Development of Cr-Mo-V-Cb-Ca steel for high pressure and high temperature hydrogenation reactors

    SciTech Connect (OSTI)

    Yamada, Masato; Sakai, Tadamiti; Nose, Shiro [Kobe Steel, Ltd., Takasago, Hyogo (Japan). Energy and Chemical Plant Group

    1995-12-31

    Cr-Mo-V-Cb-Ca steels have been developed as materials for high temperature and high pressure hydrogenation reactors. Cr-Mo-V-Cb-Ca steels have high strength at elevated temperature. The addition of vanadium and columbium also improve the resistance against hydrogen attack and hydrogen embrittlement. Calcium addition, which is a unique feature of this material, effectively reduces the possibility of stress relief cracking in the heat affected zone of the weldment of which susceptibility is otherwise impaired by the addition of vanadium. In 1993, 3Cr-1Mo-V-Cb-Ca steel was approved by ASME as ASME Code Case 2151 and the first hydrocracking reactors made of 3Cr-1Mo-V-Cb-Ca steel were manufactured in 1994 at Kobe Steel, Takasago Works.

  3. Countries Gasoline Prices Including Taxes

    Gasoline and Diesel Fuel Update (EIA)

    Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and...

  4. Irradiation effects in low-alloy reactor pressure vessel steels (Heavy-Section Steel Technology Program Series 4 and 5)

    SciTech Connect (OSTI)

    Berggren, R.G.; McGowan, J.J.; Menke, B.H.; Nanstad, R.K.; Thoms, K.R.

    1984-01-01

    Multiple testing is done at two laboratories of typical nuclear pressure vessel materials (both irradiated and unirradiated) and statistical analyses of the test results. Multiple tests are conducted at each of several test temperatures for each material, standard deviations are determined, and results from the two laboratories are compared. The Fourth Heavy-Section Steel Technology (HSST) Irradiation Series, almost completed, was aimed at elastic-plastic and fully plastic fracture toughness of low-copper weldments (current practice welds). A typical nuclear pressure vessel plate steel was included for statistical purposes. The Fifth HSST Irradiation Series, now in progress, is aimed at determining the shape of the K/sub IR/ curve after significant radiation-induced shift of the transition temperatures. This series includes irradiated test specimens of thicknesses up to 100 mm and weldment compositions typical of early nuclear power reactor pressure vessel welds.

  5. 13 Modern Bainitic Steels Steels with yield strengths in excess of 1000 MPa are important in certain

    E-Print Network [OSTI]

    Cambridge, University of

    the formation of martensite. Steels like these (Alloy 1, Table 13.1), when normalised, are found to transform13 Modern Bainitic Steels Steels with yield strengths in excess of 1000 MPa are important balance of hardenability in the context of large scale steel production technologies. Lean steels tend

  6. Including Retro-Commissioning in Federal Energy Savings Performance...

    Energy Savers [EERE]

    the cost of the survey. Developing a detailed scope of work and a fixed price for this work is important to eliminate risk to the Agency and the ESCo. Including a detailed scope...

  7. STUDENT STEEL BRIDGE COMPETITION The mission of the Student Steel Bridge Competition (SSBC) is to supplement

    E-Print Network [OSTI]

    Stuart, Steven J.

    1 STUDENT STEEL BRIDGE COMPETITION 2012 RULES #12;2 MISSION The mission of the Student Steel Bridge individuals in the Student Steel Bridge Competition without regard to race, ethnicity, religion, age, gender, sexual orientation, nationality, or physical challenges. Bridge teams should be inclusive and open

  8. Phase Transformations in Cast Duplex Stainless Steels

    SciTech Connect (OSTI)

    Yoon-Jun Kim

    2004-12-19

    Duplex stainless steels (DSS) constitute both ferrite and austenite as a matrix. Such a microstructure confers a high corrosion resistance with favorable mechanical properties. However, intermetallic phases such as {sigma} and {chi} can also form during casting or high-temperature processing and can degrade the properties of the DSS. This research was initiated to develop time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams of two types of cast duplex stainless steels, CD3MN (Fe-22Cr-5Ni-Mo-N) and CD3MWCuN (Fe-25Cr-7Ni-Mo-W-Cu-N), in order to understand the time and temperature ranges for intermetallic phase formation. The alloys were heat treated isothermally or under controlled cooling conditions and then characterized using conventional metallographic methods that included tint etching, and also using electron microscopy (SEM, TEM) and wavelength dispersive spectroscopy (WDS). The kinetics of intermetallic-phase ({sigma} + {chi}) formation were analyzed using the Johnson-Mehl-Avrami (MA) equation in the case of isothermal transformations and a modified form of this equation in the case of continuous cooling transformations. The rate of intermetallic-phase formation was found to be much faster in CD3MWCuN than CD3MN due mainly to differences in the major alloying contents such as Cr, Ni and Mo. To examine in more detail the effects of these elements of the phase stabilities; a series of eight steel castings was designed with the Cr, Ni and Mo contents systematically varied with respect to the nominal composition of CD3MN. The effects of varying the contents of alloying additions on the formation of intermetallic phases were also studied computationally using the commercial thermodynamic software package, Thermo-Calc. In general, {sigma} was stabilized with increasing Cr addition and {chi} by increasing Mo addition. However, a delicate balance among Ni and other minor elements such as N and Si also exists. Phase equilibria in DSS can be affected by local composition fluctuations in the cast alloy. This may cause discrepancy between thermodynamic prediction and experimental observation.

  9. MICROSTRUCTURE AND MECHANICAL PROPERTY PERFORMANCE OF COMMERCIAL GRADE API PIPELINE STEELS IN HIGH PRESSURE GASEOUS HYDROGEN

    SciTech Connect (OSTI)

    Stalheim, Mr. Douglas; Boggess, Todd; San Marchi, Chris; Jansto, Steven; Somerday, Dr. B; Muralidharan, Govindarajan; Sofronis, Prof. Petros

    2010-01-01

    The continued growth of the world s developing countries has placed an ever increasing demand on traditional fossil fuel energy sources. This development has lead to increasing research and development of alternative energy sources. Hydrogen gas is one of the potential alternative energy sources under development. Currently the most economical method of transporting large quantities of hydrogen gas is through steel pipelines. It is well known that hydrogen embrittlement has the potential to degrade steel s mechanical properties when hydrogen migrates into the steel matrix. Consequently, the current pipeline infrastructure used in hydrogen transport is typically operated in a conservative fashion. This operational practice is not conducive to economical movement of significant volumes of hydrogen gas as an alternative to fossil fuels. The degradation of the mechanical properties of steels in hydrogen service is known to depend on the microstructure of the steel. Understanding the levels of mechanical property degradation of a given microstructure when exposed to hydrogen gas under pressure can be used to evaluate the suitability of the existing pipeline infrastructure for hydrogen service and guide alloy and microstructure design for new hydrogen pipeline infrastructure. To this end, the 2 Copyright 2010 by ASME microstructures of relevant steels and their mechanical properties in relevant gaseous hydrogen environments must be fully characterized to establish suitability for transporting hydrogen. A project to evaluate four commercially available pipeline steels alloy/microstructure performance in the presences of gaseous hydrogen has been funded by the US Department of Energy along with the private sector. The microstructures of four pipeline steels were characterized and then tensile testing was conducted in gaseous hydrogen and helium at pressures of 800, 1600 and 3000 psi. Based on measurements of reduction of area, two of the four steels that performed the best across the pressure range were selected for evaluation of fracture and fatigue performance in gaseous hydrogen at 800 and 3000 psi. This paper will describe the work performed on four commercially available pipeline steels in the presence of gaseous hydrogen at pressures relevant for transport in pipelines. Microstructures and mechanical property performances will be compared. In addition, recommendations for future work related to gaining a better understanding of steel pipeline performance in hydrogen service will be discussed.

  10. Transformation induced plasticity assisted steels: stress or strain affected martensitic

    E-Print Network [OSTI]

    Cambridge, University of

    Transformation induced plasticity assisted steels: stress or strain affected martensitic induced martensitic transformation of the retained austenite in TRIP assisted steels. The authors begin transformation? S. Chatterjee and H. K. D. H. Bhadeshia* Transformation induced plasticity (TRIP) assisted steels

  11. Iron and Steel (2010 MECS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Iron and Steel (2010 MECS) Iron and Steel (2010 MECS) Manufacturing Energy and Carbon Footprint for Iron and Steel Sector (NAICS 3311, 3312) Energy use data source: 2010 EIA MECS...

  12. Wear-Resistant, Nano-Composite Steel Coatings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wear-Resistant, Nano-Composite Steel Coatings Laser Processing Techniques Used for the Production of Wear-Resistant Steel Coatings from Iron-Based Glassy Powders Introduction Steel...

  13. Mag-Foot: a steel bridge inspection robot

    E-Print Network [OSTI]

    Asada, Harry

    A legged robot that moves across a steel structure is developed for steel bridge inspection. Powerful permanent magnets imbedded in each foot allow the robot to hang from a steel ceiling powerlessly. Although the magnets ...

  14. HEAT TREATMENT AND CHARACTERIZATION OF DUPLEX 1010 AND 1020 STEELS

    E-Print Network [OSTI]

    Young, M.J.

    2010-01-01

    1020 steels were subjected to the two phase * " annealingof steel. A viable alternative utilizes annealing in the twoAnnealing (1010). The-.initial microstructure is important in the duplex proc≠ essing of steel, and

  15. Modelling simultaneous precipitation reactions in austenitic stainless steels.

    E-Print Network [OSTI]

    Cambridge, University of

    Modelling simultaneous precipitation reactions in austenitic stainless steels. T. Sourmail and H. K developed for simultaneous precipitation reactions in austenitic stainless steels, taking into account for important phases in creep-resistant austenitic stainless steels. 1 Introduction Precipitation phenomena

  16. PROTON INDUCED SWELLING IN TYPE 316 STAINLESS STEEL

    E-Print Network [OSTI]

    Srivastava, A.K.

    2010-01-01

    Damage in an Austenitic Stainless Steel, USAEC Report ORNL-Formation in Austenitic Stainless Steel, Ref. 5, p. 142. D.and Nicke1- Irradiated 304 Stainless Steel, Ref. 5, p. 499.

  17. FERRITE STRUCTURE AND MECHANICAL PROPERTIES OF LOW ALLOY DUPLEX STEELS

    E-Print Network [OSTI]

    Hoel, R.H.

    2013-01-01

    and Properties of Dual-Phase Steels, R. A. Kot and J. W.Formable HSLA and Dual Phase Steels, A. T. Davenport, ed. ,Formable HSLA and Dual Phase Steels, A. T. Davenport, ed. ,

  18. MICROSTRUCTURE AND PROPERTIES OF DUAL PHASE STEELS CONTAINING FINE PRECIPITATES

    E-Print Network [OSTI]

    Gau, J.S.

    2014-01-01

    and Properties of Dual-Phase Steels, R. A. Kot and J. W.of Niobium Microalloyed Dual- Phase Steel, MetallurgicalAND PROPERTIES OF DUAL PHASE STEELS CONTAINING FINE

  19. Characterization of liquefied natural gas tanker steel from cryogenic to fire temperatures.

    SciTech Connect (OSTI)

    Dempsey, J. Franklin; Wellman, Gerald William; Antoun, Bonnie R.; Connelly, Kevin; Kalan, Robert J.

    2010-03-01

    The increased demand for Liquefied Natural Gas (LNG) as a fuel source in the U.S. has prompted a study to improve our capability to predict cascading damage to LNG tankers from cryogenic spills and subsequent fire. To support this large modeling and simulation effort, a suite of experiments were conducted on two tanker steels, ABS Grade A steel and ABS Grade EH steel. A thorough and complete understanding of the mechanical behavior of the tanker steels was developed that was heretofore unavailable for the span of temperatures of interest encompassing cryogenic to fire temperatures. This was accomplished by conducting several types of experiments, including tension, notched tension and Charpy impact tests at fourteen temperatures over the range of -191 C to 800 C. Several custom fixtures and special techniques were developed for testing at the various temperatures. The experimental techniques developed and the resulting data will be presented, along with a complete description of the material behavior over the temperature span.

  20. Work Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricNCubictheThepresented in the7 Table7Work &Work Plan

  1. What To Include In The Whistleblower Complaint? | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Apply for Our Jobs Our Jobs Working at NNSA Blog Home About Us Our Operations Management and Budget Whistleblower Program What To Include In The Whistleblower Complaint?...

  2. Neutralino relic density including coannihilations

    E-Print Network [OSTI]

    Paolo Gondolo; Joakim Edsjo

    1997-11-25

    We give an overview of our precise calculation of the relic density of the lightest neutralino, in which we included relativistic Boltzmann averaging, subthreshold and resonant annihilations, and coannihilation processes with charginos and neutralinos.

  3. Collected Works

    E-Print Network [OSTI]

    Turner, Lance

    2011-04-26

    The collection of work presented here illustrates the constant struggle individuals face in understanding the repercussions of their past, the weight of their decisions in the present moment, and the possibilities of the ...

  4. Development of Steel Fastener Nano-Ceramic Coatings for Corrosion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steel Fastener Nano-Ceramic Coatings for Corrosion Protection of Magnesium Parts (AMD-704) Development of Steel Fastener Nano-Ceramic Coatings for Corrosion Protection of Magnesium...

  5. Development of 3rd Generation Advanced High Strength Steels ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3rd Generation Advanced High Strength Steels (AHSS) with an Integrated Experimental and Simulation Approach Development of 3rd Generation Advanced High Strength Steels (AHSS) with...

  6. First Generation Advanced High-Strength Steels Deformation Fundamental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generation Advanced High-Strength Steels Deformation Fundamentals First Generation Advanced High-Strength Steels Deformation Fundamentals 2012 DOE Hydrogen and Fuel Cells Program...

  7. Post Irradiation Examination of Stainless Steel Cladding from...

    Office of Environmental Management (EM)

    Post Irradiation Examination of Stainless Steel Cladding from In-Reactor Permeation Experiment Post Irradiation Examination of Stainless Steel Cladding from In-Reactor Permeation...

  8. Lessons Learned at the Nevada National Security Site Implementing the EFCOG Activity-level Work Planning and Control Guide

    Broader source: Energy.gov [DOE]

    Slide Presentation by Steele Coddington, Work Planning Manager, National Security Technologies, Nevada National Security Site. Lessons Learned Implementing Work Planning & Control. 6 Step Process for improving WP&C.

  9. Sensitization and IGSCC susceptibility prediction in stainless steel pipe weldments

    SciTech Connect (OSTI)

    Atteridge, D.G.; Simmons, J.W.; Li, Ming ); Bruemmer, S.M. )

    1991-11-01

    An analytical model, based on prediction of chromium depletion, has been developed for predicting thermomechanical effects on austenitic stainless steel intergranular stress corrosion cracking (IGSCC) susceptibility. Model development and validation is based on sensitization development analysis of over 30 Type 316 and 304 stainless steel heats. The data base included analysis of deformation effects on resultant sensitization development. Continuous Cooling sensitization behavior is examined and modelled with and without strain. Gas tungsten are (GTA) girth pipe weldments are also characterized by experimental measurements of heat affected zone (HAZ) temperatures, strains and sensitization during/after each pass; pass by pass thermal histories are also predicted. The model is then used to assess pipe chemistry changes on IGSCC resistance.

  10. Aluminum electroplating on steel from a fused bromide electrolyte

    SciTech Connect (OSTI)

    Prabhat K. Tripathy; Laura A. Wurth; Eric J. Dufek; Toni Y. Gutknecht; Natalie J. Gese; Paula Hahn; Steven M. Frank; Guy L. Frederickson; J. Stephen Herring

    2014-08-01

    A quaternary bromide bath (LiBrĖKBrĖCsBrĖAlBr3) was used to electro-coat aluminum on steel substrates. The electrolytewas prepared by the addition of AlBr3 into the eutectic LiBrĖKBrĖCsBr melt. A smooth, thick, adherent and shiny aluminum coating could be obtained with 80 wt.% AlBr3 in the ternary melt. The SEM photographs of the coated surfaces suggest the formation of thick and dense coatings with good aluminum coverage. Both salt immersion and open circuit potential measurement suggested that the coatings did display a good corrosionresistance behavior. Annealing of the coated surfaces, prior to corrosion tests, suggested the robustness of the metallic aluminum coating in preventing the corrosion of the steel surfaces. Studies also indicated that the quaternary bromide plating bath can potentially provide a better aluminumcoating on both ferrous and non-ferrous metals, including complex surfaces/geometries.

  11. Aluminium Electroplating on Steel from a Fused Bromide Electrolyte

    SciTech Connect (OSTI)

    Prabhat Tripathy; Laura Wurth; Eric Dufek; Toni Y. Gutknecht; Natalie Gese; Paula Hahn; Steven Frank; Guy Fredrickson; J Stephen Herring

    2014-08-01

    A quaternary bromide bath (LiBr-KBr-CsBr-AlBr3) was used to electro-coat aluminium on steel substrates. The electrolyte was prepared by the addition of AlBr3 into the eutectic LiBr-KBr-CsBr melt. A smooth, thick, adherent and shiny aluminium coating could be obtained with 80 wt.% AlBr3 in the ternary melt. The SEM photographs of the coated surfaces suggest the formation of thick and dense coatings with good aluminium coverage. Both salt immersion and open circuit potential measurement suggest that the coatings did display good corrosion-resistance behavior. Annealing of the coated surfaces, prior to corrosion tests, suggested the robustness of the metallic aluminium coating in preventing the corrosion of the steel surfaces. Studies also indicated that the quaternary bromide plating bath can potentially provide a better aluminium coating on both ferrous and non-ferrous metals, including complex surfaces/geometries.

  12. CARBON DIFFUSION ACROSS DISSIMILAR STEEL WELDS

    E-Print Network [OSTI]

    Cambridge, University of

    CARBON DIFFUSION ACROSS DISSIMILAR STEEL WELDS By Julia Margaret Race St. John's College, Cambridge. 111 #12;#12;ABSTRACT Dissimilar steel welds are used extensively in the power generation industry to the high alloy side of the weld. This leaves an area on one side of the weld denuded of carbon

  13. Transformation texture of allotriomorphic ferrite in steel

    E-Print Network [OSTI]

    Cambridge, University of

    Transformation texture of allotriomorphic ferrite in steel D. W. Kim1 , R. S. Qin1 and H. K. D. H into martensite or bainite are well established because the process by which the parent lattice is transformed within the austenite before its transformation. Keywords: Allotriomorphic ferrite, Steel, Texture, Dual

  14. Method for welding chromium molybdenum steels

    DOE Patents [OSTI]

    Sikka, Vinod K. (Clinton, TN)

    1986-01-01

    Chromium-molybdenum steels exhibit a weakening after welding in an area adjacent to the weld. This invention is an improved method for welding to eliminate the weakness by subjecting normalized steel to a partial temper prior to welding and subsequently fully tempering the welded article for optimum strength and ductility.

  15. STRAIN AGING OF AUSTENITIC HADFIELD MANGANESE STEEL

    E-Print Network [OSTI]

    Grujicic, Mica

    STRAIN AGING OF AUSTENITIC HADFIELD MANGANESE STEEL W. S. OWEN1 { and M. GRUJICIC2 1 Departmentģeld steel is discussed in terms of the interstitial octahedron, local-order model, which deģnes order on the metal sublattice are frozen on sites determined either by the high-temperature equilibrium anneal

  16. Thermal performance of steel-framed walls. Final report

    SciTech Connect (OSTI)

    Barbour, E. [NAHB Research Center, Inc., Upper Marlboro, MD (United States); Goodrow, J. [Holometrix, Inc., Bedford, MA (United States); Kosny, J.; Christian, J.E. [Oak Ridge National Lab., TN (United States)

    1994-11-21

    In wall construction, highly conductive members spaced along the wall, which allow higher heat transfer than that through less conductive areas, are referred to as thermal bridges. Thermal bridges in walls tend to increase heat loss and, under certain adverse conditions, can cause dust streaking (``ghosting``) on interior walls over studs due to temperature differentials, as well as condensation in and on walls. Although such adverse conditions can be easily avoided by proper thermal design of wall systems, these effects have not been well understood and thermal data has been lacking. Therefore, the present study was initiated to provide (1) a better understanding of the thermal behavior of steel-framed walls, (2) a set of R-values for typical wall constructions, and (3) information that could be used to develop improved methods of predicting R-values. An improved method for estimating R-value would allow an equitable comparison of thermal performance with other construction types and materials. This would increase the number of alternative materials for walls available to designers, thus allowing them to choose the optimum choice for construction. Twenty-three wall samples were tested in a calibrated hot box (ASTM C9761) to measure the thermal performance of steel-framed wall systems. The tests included an array of stud frame configurations, exterior sheathing and fiberglass batt insulations. Other studies have not included the use of insulating sheathing, which reduces the extent of the thermal bridges and improves total thermal performance. The purpose of the project was to provide measured R-values for commonly used steel-framed wall configurations and to improve R-value estimating methods. Test results were compared to R-value estimates using the parallel path method, the isothermal planes method and the ASHRAE Zone method. The comparison showed that the known procedures do not fully account for the three-dimensional effects created by steel framing in a wall.

  17. Processing and mechanical behavior of hypereutectoid steel wires

    SciTech Connect (OSTI)

    Lesuer, D.R.; Syn, C.K.; Sherby, O.D.; Kim, D.K.

    1996-06-25

    Hypereutectoid steels have the potential for dramatically increasing the strength of wire used in tire cord and in other high strength wire applications. The basis for this possible breakthrough is the elimination of a brittle proeutectoid network that can form along grain boundaries if appropriate processing procedures and alloy additions are used. A review is made of work done by Japanese and other researchers on eutectoid and mildly hypereutectoid wires. A linear extrapolation of the tensile strength of fine wires predicts higher strengths at higher carbon contents. The influence of processing, alloy additions and carbon content in optimizing the strength, ductility and fracture behavior of hypereutectoid steels is presented. It is proposed that the tensile strength of pearlitic wires is dictated by the fracture strength of the carbide lamella at grain boundary locations in the carbide. Methods to improve the strength of carbide grain boundaries and to decrease the carbide plate thickness will contribute to enhancing the ultrahigh strength obtainable in hypereutectoid steel wires. 23 refs., 13 figs., 1 tab.

  18. Impact Testing of Stainless Steel Material at Cold Temperatures

    SciTech Connect (OSTI)

    Spencer D. Snow; D. Keith Morton; Robert K. Blandford

    2008-07-01

    Stainless steels are used for the construction of numerous spent nuclear fuel or radioactive material containers that may be subjected to high strains and moderate strain rates during accidental drop events. Mechanical characteristics of these base materials and their welds under dynamic loads in the strain rate range of concern are not well documented. However, a previous paper [1] reported on impact testing and analysis results performed at the Idaho National Laboratory using 304/304L and 316/316L stainless steel base material specimens at room and elevated temperatures. The goal of the work presented herein is to add recently completed impact tensile testing results at -20 degrees F conditions for dual-marked 304/304L and 316/316L stainless steel material specimens (hereafter referred to as 304L and 316L, respectively). Recently completed welded material impact testing at -20 degrees F, room, 300 degrees F, and 600 degrees F is also reported. Utilizing a drop-weight impact test machine and 1/4-inch to 1/2-inch thick dog-bone shaped test specimens, the impact tests achieved strain rates in the 4 to 40 per second range, depending upon the material temperature. Elevated true stress-strain curves for these materials reflecting varying strain rates and temperatures are presented herein.

  19. Evaluation of Oxidation and Hydrogen Permeation of Al Containing Duplex Stainless Steels

    SciTech Connect (OSTI)

    Adams, Thad M.; Korinko, Paul; Duncan, Andrew

    2005-06-17

    As the National Hydrogen Economy continues to develop and evolve the need for structural materials that can resist hydrogen assisted degradation will become critical. To date austenitic stainless steel materials have been shown to be mildly susceptible to hydrogen attack which results in lower mechanical and fracture strengths. As a result, hydrogen permeation barrier coatings are typically applied to these steel to retard hydrogen ingress. The focal point of the reported work was to evaluate the potential for intentional alloying of commercial 300-series stainless steels to promote hydrogen permeation resistant oxide scales. Previous research on the Cr- and Fe-oxide scales inherent to 300-series stainless steels has proven to be inconsistent in effecting permeation resistance. The approach undertaken in this research was to add aluminum to the 300-series stainless steels in an attempt to promote a pure Al-oxide or and Al-rich oxide scale. Aloxide had been previously demonstrated to be an effective hydrogen permeation barrier. Results for 304L and 347H alloys doped with Al in concentration from 0.5-3.0 wt% with respect to oxidation kinetic studies, cyclic oxidation and characterization of the oxide scale chemistry are reported herein. Gaseous hydrogen permeation testing of the Al-doped alloys in both the unoxidized and oxidized (600 C, 30 mins) conditions are reported. A critical finding from this work is that at concentration as low as 0.5 wt% Al, the Al stabilizes the ferrite phase in these steels thus producing duplex austenitic-ferritic microstructures. As the Al-content increases the amount of measured ferrite increases thus resulting in hydrogen permeabilities more closely resembling ferritic steels.

  20. thesis work

    E-Print Network [OSTI]

    Toback, David

    thesis work Aggie student given award for thesis on particle physics&M. Wagner accepted the Universities Research Association (URA) Thesis Award June 4 for his doctoral,500 award, is given each year to the most outstanding doctoral thesis written on research conducted

  1. High-Temperature Performance of Cast CF8C-Plus Austenitic Stainless Steel

    SciTech Connect (OSTI)

    Maziasz, Philip J [ORNL; Pint, Bruce A [ORNL

    2011-01-01

    Covers and casings of small to medium size gas turbines can be made from cast austenitic stainless steels, including grades such as CF8C, CF3M, or CF10M. Oak Ridge National Laboratory and Caterpillar have developed a new cast austenitic stainless steel, CF8C-Plus, which is a fully austenitic stainless steel, based on additions of Mn and N to the standard Nb-stabilized CF8C steel grade. The Mn addition improves castability, as well as increases the alloy solubility for N, and both Mn and N synergistically act to boost mechanical properties. CF8C-Plus steel has outstanding creep-resistance at 600-900 C, which compares well with Ni-based superalloys such as alloys X, 625, 617, and 230. CF8C-Plus also has very good fatigue and thermal fatigue resistance. It is used in the as-cast condition, with no additional heat-treatments. While commercial success for CF8C-Plus has been mainly for diesel exhaust components, this steel can also be considered for gas turbine and microturbine casings. The purposes of this paper are to demonstrate some of the mechanical properties, to update the long-term creep-rupture data, and to present new data on the high-temperature oxidation behavior of these materials, particularly in the presence of water vapor.

  2. Apparatus and process for ultrasonic seam welding stainless steel foils

    DOE Patents [OSTI]

    Leigh, Richard W. (New York, NY)

    1992-01-01

    An ultrasonic seam welding apparatus having a head which is rotated to form contact, preferably rolling contact, between a metallurgically inert coated surface of the head and an outside foil of a plurality of layered foils or work materials. The head is vibrated at an ultrasonic frequency, preferably along a longitudinal axis of the head. The head is constructed to transmit vibration through a contacting surface of the head into each of the layered foils. The contacting surface of the head is preferably coated with aluminum oxide to prevent the head from becoming welded to layered stainless steel foils.

  3. Laser infrared photothermal radiometric depth profilometry of steels and its potential in rail track evaluation

    E-Print Network [OSTI]

    Mandelis, Andreas

    -scattering or in the transmission mode using a variety of sensor probes. In this work we used the infrared (IR) photothermal radioLaser infrared photothermal radiometric depth profilometry of steels and its potential in rail track evaluation A. Mandelis*, M. Munidasa, L. Nicolaides Photothermal and Optoelectronic Diagnostics

  4. BEHAVIOR OF BRIDGE DECKS REINFORCED WITH MMFX STEEL HATEM SELIEM

    E-Print Network [OSTI]

    steel in bridge decks. The paper also presents the effects bending MMFX steel bars on their tensile, Corrosion, High-Strength Steel, MMFX, Flexure, Punching Shear. ABSTRACT This paper describes the behavior reinforcement. In addition, for the new steel to be accepted as transverse reinforcement, the effects of bending

  5. Steels for Bearings H. K. D. H. Bhadeshia

    E-Print Network [OSTI]

    Cambridge, University of

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 6 Microcracking 33 7 Spheroidise Annealing 34 8 Steels for Aerospace Bearings 41 8.1 SpecialSteels for Bearings H. K. D. H. Bhadeshia May 5, 2011 Director, SKF University Technology Centre for Steels Tata Steel Professor of Metallurgy University of Cambridge Materials Science and Metallurgy

  6. Study of Mechanical Properties and Characterization of Pipe Steel welded by Hybrid (Friction Stir Weld + Root Arc Weld) Approach

    SciTech Connect (OSTI)

    Lim, Yong Chae [ORNL; Sanderson, Samuel [MegaStir Technologies LLC; Mahoney, Murray [Consultant; Wasson, Andrew J [ExxonMobil, Upstream Research Company (URC); Fairchild, Doug P [ExxonMobil, Upstream Research Company (URC); Wang, Yanli [ORNL; Feng, Zhili [ORNL

    2015-01-01

    Friction stir welding (FSW) has recently attracted attention as an alternative construction process for gas/oil transportation applications due to advantages compared to fusion welding techniques. A significant advantage is the ability of FSW to weld the entire or nearly the entire wall thickness in a single pass, while fusion welding requires multiple passes. However, when FSW is applied to a pipe or tube geometry, an internal back support anvil is required to resist the plunging forces exerted during FSW. Unfortunately, it may not be convenient or economical to use internal backing support due to limited access for some applications. To overcome this issue, ExxonMobil recently developed a new concept, combining root arc welding and FSW. That is, a root arc weld is made prior to FSW that supports the normal loads associated with FSW. In the present work, mechanical properties of a FSW + root arc welded pipe steel are reported including microstructure and microhardness.

  7. Yield Improvement in Steel Casting (Yield II)

    SciTech Connect (OSTI)

    Richard A. Hardin; Christoph Beckermann; Tim Hays

    2002-02-18

    This report presents work conducted on the following main projects tasks undertaken in the Yield Improvement in Steel Casting research program: Improvement of Conventional Feeding and Risering Methods, Use of Unconventional Yield Improvement Techniques, and Case Studies in Yield Improvement. Casting trials were conducted and then simulated using the precise casting conditions as recorded by the participating SFSA foundries. These results present a statistically meaningful set of experimental data on soundness versus feeding length. Comparisons between these casting trials and casting trials performed more than forty years ago by Pellini and the SFSA are quite good and appear reasonable. Comparisons between the current SFSA feeding rules and feeding rules based on the minimum Niyama criterion reveal that the Niyama-based rules are generally less conservative. The niyama-based rules also agree better with both the trials presented here, and the casting trails performed by Pellini an d the SFSA years ago. Furthermore, the use of the Niyama criterion to predict centerline shrinkage for horizontally fed plate sections has a theoretical basis according to the casting literature reviewed here. These results strongly support the use of improved feeding rules for horizontal plate sections based on the Niyama criterion, which can be tailored to the casting conditions for a given alloy and to a desired level of soundness. The reliability and repeatability of ASTM shrinkage x-ray ratings was investigated in a statistical study performed on 128 x-rays, each of which were rated seven different times. A manual ''Feeding and Risering Guidelines for Steel Castings' is given in this final report. Results of casting trials performed to test unconventional techniques for improving casting yield are presented. These use a stacked arrangement of castings and riser pressurization to increase the casting yield. Riser pressurization was demonstrated to feed a casting up to four time s the distance of a non-pressurized riser, and can increase casting yield by decreasing the required number of risers. All case studies for this projects were completed and compiled into an SFSA Technical Report that is submitted part of this Final Report

  8. Development of the magnescope as an instrument for in situ evaluation of steel components of nuclear systems

    SciTech Connect (OSTI)

    Jiles, D.C.; Bi, Y.; Biner, S.B.

    1997-08-01

    Fatigue damage causes continuous, cumulative microstructural changes in materials and the magnetic properties of steels are sensitive to these microstructural changes. The work therefore focused on the relationship between fatigue damage and the measured magnetic properties of different steels under a variety of fatigue conditions. The project also investigated the feasibility and applicability of magnetic inspection techniques for non-destructive evaluation of fatigue damage. From the results of a series of fatigue tests, conducted on different steels under both low-cycle and high-cycle fatigue conditions, the magnetic properties, such as coercivity, remanence and Barkhausen effect, were found to change systematically with fatigue damage. The magnetic properties showed significant changes, especially during early stage of the fatigue and also at the end of the fatigue lifetime. An approximately linear relationship between the mechanical modulus and magnetic remanence was observed and was explained by a model developed in this study to describe the dynamic changes in magnetic and mechanical properties. The results of this research demonstrated that magnetic measurements are suitable for non-destructive evaluation of fatigue damage in steels such as A533B steel and Cr-Mo steels. The magnetic measurement techniques have been incorporated into instrumentation for in-situ evaluation of steel structures and components.

  9. Working Draft

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-Sessions |discussed how saving energy5 Worker Righs, Issue 2 Working Capital

  10. Microstructural characterization in dissimilar friction stir welding between 304 stainless steel and st37 steel

    SciTech Connect (OSTI)

    Jafarzadegan, M. [Department of Materials Eng., Tarbiat Modares University, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of) [Department of Materials Eng., Tarbiat Modares University, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of); State Key Laboratory of Advanced Welding Production Technology, School of Materials Science and Eng., Harbin Institute of Technology, P.O. Box: 150001, Harbin (China); Feng, A.H. [State Key Laboratory of Advanced Welding Production Technology, School of Materials Science and Eng., Harbin Institute of Technology, P.O. Box: 150001, Harbin (China)] [State Key Laboratory of Advanced Welding Production Technology, School of Materials Science and Eng., Harbin Institute of Technology, P.O. Box: 150001, Harbin (China); Abdollah-zadeh, A., E-mail: zadeh@modares.ac.ir [Department of Materials Eng., Tarbiat Modares University, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of); Saeid, T. [Advanced Materials Research Center, Sahand University of Technology, P.O. Box: 51335-1996, Tabriz (Iran, Islamic Republic of)] [Advanced Materials Research Center, Sahand University of Technology, P.O. Box: 51335-1996, Tabriz (Iran, Islamic Republic of); Shen, J. [State Key Laboratory of Advanced Welding Production Technology, School of Materials Science and Eng., Harbin Institute of Technology, P.O. Box: 150001, Harbin (China)] [State Key Laboratory of Advanced Welding Production Technology, School of Materials Science and Eng., Harbin Institute of Technology, P.O. Box: 150001, Harbin (China); Assadi, H. [Department of Materials Eng., Tarbiat Modares University, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of)] [Department of Materials Eng., Tarbiat Modares University, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of)

    2012-12-15

    In the present study, 3 mm-thick plates of 304 stainless steel and st37 steel were welded together by friction stir welding at a welding speed of 50 mm/min and tool rotational speed of 400 and 800 rpm. X-ray diffraction test was carried out to study the phases which might be formed in the welds. Metallographic examinations, and tensile and microhardness tests were used to analyze the microstructure and mechanical properties of the joint. Four different zones were found in the weld area except the base metals. In the stir zone of the 304 stainless steel, a refined grain structure with some features of dynamic recrystallization was evidenced. A thermomechanically-affected zone was characterized on the 304 steel side with features of dynamic recovery. In the other side of the stir zone, the hot deformation of the st37 steel in the austenite region produced small austenite grains and these grains transformed to fine ferrite and pearlite and some products of displacive transformations such as Widmanstatten ferrite and martensite by cooling the material after friction stir welding. The heat-affected zone in the st37 steel side showed partially and fully refined microstructures like fusion welding processes. The recrystallization in the 304 steel and the transformations in the st37 steel enhanced the hardness of the weld area and therefore, improved the tensile properties of the joint. - Highlights: Black-Right-Pointing-Pointer FSW produced sound welds between st37 low carbon steel and 304 stainless steel. Black-Right-Pointing-Pointer The SZ of the st37 steel contained some products of allotropic transformation. Black-Right-Pointing-Pointer The material in the SZ of the 304 steel showed features of dynamic recrystallization. Black-Right-Pointing-Pointer The finer microstructure in the SZ increased the hardness and tensile strength.

  11. NanoComposite Stainless Steel Powder Technologies

    SciTech Connect (OSTI)

    DeHoff, R.; Glasgow, C. (MesoCoat, Inc.)

    2012-07-25

    Oak Ridge National Laboratory has been investigating a new class of Fe-based amorphous material stemming from a DARPA, Defense Advanced Research Projects Agency initiative in structural amorphous metals. Further engineering of the original SAM materials such as chemistry modifications and manufacturing processes, has led to the development of a class of Fe based amorphous materials that upon processing, devitrify into a nearly homogeneous distribution of nano sized complex metal carbides and borides. The powder material is produced through the gas atomization process and subsequently utilized by several methods; laser fusing as a coating to existing components or bulk consolidated into new components through various powder metallurgy techniques (vacuum hot pressing, Dynaforge, and hot isostatic pressing). The unique fine scale distribution of microstructural features yields a material with high hardness and wear resistance compared to material produced through conventional processing techniques such as casting while maintaining adequate fracture toughness. Several compositions have been examined including those specifically designed for high hardness and wear resistance and a composition specifically tailored to devitrify into an austenitic matrix (similar to a stainless steel) which poses improved corrosion behavior.

  12. Safety-analysis report for packaging - corrugated steel container (SAND Box) for DOT specification 7A packaging

    SciTech Connect (OSTI)

    Brugger, R.P.

    1983-05-16

    Department of Transportation (DOT) Specification 7A, Type A corrugated steel containers for shipment and storage of Transuranic (TRU) solid waste have been developed. The containers are made entirely of 14 gauge (0.0747-in.) low carbon steel. All seams including the closure are welded to produce a leak-tight container. Four sizes of the SAND Box container have successfully met all Specification 7A, Type A requirements.

  13. Safety analysis report for packaging-corrugated steel container (SAND Box) for DOT Specification 7A packaging

    SciTech Connect (OSTI)

    Brugger, R.P.

    1983-01-24

    Department of Transportation (DOT) Specification 7A, Type A corrugated steel containers for shipment and storage of Transuranic (TRU) solid waste have been developed. The containers are made entirely of 14 gauge (0.0747-in.) low carbon steel. All seams including the closure are welded to produce a leaktight container. Four sizes of the SAND Box container have successfully met all Specification 7A, Type A requirements.

  14. Light Steel Framing: Improving the Integral Design†

    E-Print Network [OSTI]

    Amundarain, Aitor; Torero, Jose L; Usmani, Asif; Al-Remal, Ahmad M

    2006-09-11

    Light Steel Framing has been extensively used in cold climate countries due to its good thermal and structural behaviour. Improved thermal behaviour results in positive environmental impact essential for sustainable ...

  15. Modelling of Simultaneous Transformations in Steels

    E-Print Network [OSTI]

    Chen, Jiawen

    The microstructure of a steel is often developed by solid-state transformation from austenite. The major transformation products are allotriomorphic ferrite, pearlite, Widmanstatten ferrite, bainite and martensite, differentiated by morphological...

  16. Study of Alumina in Austenitic Stainless Steels

    E-Print Network [OSTI]

    Wang, Chung

    2014-12-18

    transformation through temperature, as opposed to mechanical stresses, the martensite start temperature is calculated through the Ishida model. The addition of aluminum to an austenitic stainless steel composition can alloy for the growth of alumina oxide...

  17. Prevention of Hydrogen Embrittlement in Steels

    E-Print Network [OSTI]

    Bhadeshia, H. K. D. H.

    2015-01-01

    The essential facts about the nature of the hydrogen embrittlement of steels have now been known for 140 years. It is diffusible hydrogen that is harmful to the toughness of iron. It follows, therefore, that the harmful influence of diffusible...

  18. HotEyeģ Steel Surface Inspection System

    Broader source: Energy.gov [DOE]

    A new inspection system, the HotEyeģ Rolled Steel Bar (RSB) System, has been developed and demonstrated by OG Technologies (OGT) Inc., with the help of both a NICE3 grant and a project under the...

  19. Instrumentation of Steel Const. Award to CE†

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    Overheight vehicle impact to bridge decks is a major problem in the transportation networks in the United States. An important factor that causes this problem is inadequate vertical clearance of bridges. Using steel pedestals to elevate bridge decks...

  20. Surface Roughness of Stainless Steel Bender Mirrors for Focusing Soft X-rays

    E-Print Network [OSTI]

    2005-01-01

    Surface Roughness of Stainless Steel Bender Mirrors forWe have used polished stainless steel as a mirror substratefor smooth polishing. Stainless steel is stronger and can be

  1. Beam Energy Scaling on Ion-Induced Electron Yield from K+ Impact on Stainless Steel

    E-Print Network [OSTI]

    2006-01-01

    Yield from K + Impact on Stainless Steel Michel Kireeff CovoThe K + ions hit the stainless steel target with energy upenergies hitting stainless steel target obtained from

  2. THE DEVELOPMENT OF NICKEL-FREE AUSTENITIC STAINLESS STEELS FOR AMBIENT AND CRYOGENIC APPLICATIONS

    E-Print Network [OSTI]

    Haddick, Glen T.

    2011-01-01

    OF NICKEL-FREE AUSTENITIC STAINLESS STEELS FOR AMBIENT ANDOF NICKEL-FREE AUSTENITIC STAINLESS STEELS FOR AMBIENT ANDOF NICKEL-FREE AUSTENITIC STAINLESS STEELS FOR AMBIENT AND

  3. Protective coating on stainless steel interconnect for SOFCs: Oxidation kinetics and electrical properties

    E-Print Network [OSTI]

    Chen, Xuan; Hou, Peggy Y.; Jacobson, Craig P.; Visco, Steven J.; De Jonghe, Lutgard C.

    2004-01-01

    PROTECTIVE COATING ON STAINLESS STEEL INTERCONNECT FORcoatings on commercial stainless steel alloys that allow forTABLES Table 1. Stainless steel composition in Weight%

  4. EFFECTS OF MORPHOLOGY ON THE MECHANICAL BEHAVIOR OF DUAL PHASE Fe/Si/C STEELS

    E-Print Network [OSTI]

    Kim, N.J.

    2012-01-01

    and ductility in dual phase steels. However, it seems thatmechanical behavior of dual phase steels. ACKNOWLEDGEMENTSL INTRODUCTION Dual phase steels whose structures consist of

  5. Mechanical properties and microstructures of dual phase steels containing silicon, aluminum and molybdenum

    E-Print Network [OSTI]

    Neill, Thomas John O'

    2011-01-01

    AND MICROSTRUCTURES OF DUAL PHASE STEELS CONTAINING SILICON,and Microstructures of Dual Phase Steels Containing Silicon,microstructures of selected dual-phase steels in which the

  6. High strength, high ductility low carbon steel

    DOE Patents [OSTI]

    Koo, Jayoung (Berkeley, CA); Thomas, Gareth (Berkeley, CA)

    1978-01-01

    A high strength, high ductility low carbon steel consisting essentially of iron, 0.05-0.15 wt% carbon, and 1-3 wt% silicon. Minor amounts of other constituents may be present. The steel is characterized by a duplex ferrite-martensite microstructure in a fibrous morphology. The microstructure is developed by heat treatment consisting of initial austenitizing treatment followed by annealing in the (.alpha. + .gamma.) range with intermediate quenching.

  7. Irradiation Assisted Grain Boundary Segregation in Steels

    SciTech Connect (OSTI)

    Lu, Zheng; Faulkner, Roy G.

    2008-07-01

    The understanding of radiation-induced grain boundary segregation (RIS) has considerably improved over the past decade. New models have been introduced and much effort has been devoted to obtaining comprehensive information on segregation from the literature. Analytical techniques have also improved so that chemical analysis of layers 1 nm thick is almost routine. This invited paper will review the major methods used currently for RIS prediction: namely, Rate Theory, Inverse Kirkendall, and Solute Drag approaches. A summary is made of the available data on phosphorus RIS in reactor pressure vessel (RPV) steels. This will be discussed in the light of the predictions of the various models in an effort to show which models are the most reliable and easy to use for forecasting P segregation behaviour in steels. A consequence of RIS in RPV steels is a radiation induced shift in the ductile to brittle transition temperature (DBTT). It will be shown how it is possible to relate radiation-induced P segregation levels to DBTT shift. Examples of this exercise will be given for RPV steels and for ferritic steels being considered for first wall fusion applications. Cr RIS in high alloy stainless steels and associated irradiation-assisted stress corrosion cracking (IASCC) will be briefly discussed. (authors)

  8. Development of Steel Foam Materials and Structures

    SciTech Connect (OSTI)

    Kenneth Kremer; Anthony Liszkiewicz; James Adkins

    2004-10-20

    In the past few years there has been a growing interest in lightweight metal foams. Demands for weight reduction, improved fuel efficiency, and increased passenger safety in automobiles now has manufacturers seriously considering the use of metal foams, in contrast to a few years ago, when the same materials would have been ruled out for technical or economical reasons. The objective of this program was to advance the development and use of steel foam materials, by demonstrating the advantages of these novel lightweight materials in selected generic applications. Progress was made in defining materials and process parameters; characterization of physical and mechanical properties; and fabrication and testing of generic steel foam-filled shapes with compositions from 2.5 wt.% to 0.7 wt.% carbon. A means of producing steel foam shapes with uniform long range porosity levels of 50 to 60 percent was demonstrated and verified with NDE methods. Steel foam integrated beams, cylinders and plates were mechanically tested and demonstrated advantages in bend stiffness, bend resistance, and crush energy absorption. Methods of joining by welding, adhesive bonding, and mechanical fastening were investigated. It is important to keep in mind that steel foam is a conventional material in an unconventional form. A substantial amount of physical and mechanical properties are presented throughout the report and in a properties database at the end of the report to support designer's in applying steel foam in unconventional ways.

  9. A steelmaker's view of 1/2-percent molybdenum steels

    SciTech Connect (OSTI)

    Brooks, R.L.

    1982-05-01

    This paper addresses the viewpoint of a producing steel mill worker and the conclusion that all the 1/2-percent molybdenum plate materials are useful specifications. The steelmaker emphasizes that the quality of the plate materials must be designed in by the producing metallurgists if optimum performance is expected from the materials. If 1/2-percent molybdenum plates are to be used in critical services it is suggested that certain considerations be made including vacuum degassing; treatment for low sulfur and shape-controlled inclusions; allowing fine grain practice; normalizing in all gages; Charpy impact testing, when required.

  10. Oxidation resistant high creep strength austenitic stainless steel

    DOE Patents [OSTI]

    Brady, Michael P.; Pint, Bruce A.; Liu, Chain-Tsuan; Maziasz, Philip J.; Yamamoto, Yukinori; Lu, Zhao P.

    2010-06-29

    An austenitic stainless steel displaying high temperature oxidation and creep resistance has a composition that includes in weight percent 15 to 21 Ni, 10 to 15 Cr, 2 to 3.5 Al, 0.1 to 1 Nb, and 0.05 to 0.15 C, and that is free of or has very low levels of N, Ti and V. The alloy forms an external continuous alumina protective scale to provide a high oxidation resistance at temperatures of 700 to 800.degree. C. and forms NbC nanocarbides and a stable essentially single phase fcc austenitic matrix microstructure to give high strength and high creep resistance at these temperatures.

  11. FEA Simulations of Magnets with Grain Oriented Steel

    SciTech Connect (OSTI)

    Witte H.

    2012-08-06

    One of the potential successors of the Large Hadron Collider is a Muon Col- lider. Muons are short-lived particles, which therefore require fast acceleration. One potential avenue is a very fast cycling cyclotron, where the bending is sup- plied by a combination of fixed-field superconducting magnets and fast ramping normal conducting iron-cored coils. Due to the high ramping rate (around 1 kHz) eddy current and hysteresis losses are a concern. One way to overcome these is by using grain-oriented soft-iron, which promises superior magnetic properties in the direction of the grains. This note summarizes efforts to include the anisotropic material properties of grain-oriented steel in finite element analysis to predict the behaviour of the dipole magnets for this accelerator. It was found that including anisotropic material properties has a detrimental effect on model convergence. During this study it was not possible to include grain oriented steel with an accuracy necessary to study the field quality of a dipole magnet.

  12. Tensile-property characterization of thermally aged cast stainless steels

    SciTech Connect (OSTI)

    Michaud, W.F.; Toben, P.T.; Soppet, W.K.; Chopra, O.K.

    1994-02-01

    The effect of thermal aging on tensile properties of cast stainless steels during service in light water reactors has been evaluated. Tensile data for several experimental and commercial heats of cast stainless steels are presented. Thermal aging increases the tensile strength of these steels. The high-C Mo-bearing CF-8M steels are more susceptible to thermal aging than the Mo-free CF-3 or CF-8 steels. A procedure and correlations are presented for predicting the change in tensile flow and yield stresses and engineering stress-vs.-strain curve of cast stainless steel as a function of time and temperature of service. The tensile properties of aged cast stainless steel are estimated from known material information, i.e., chemical composition and the initial tensile strength of the steel. The correlations described in this report may be used for assessing thermal embrittlement of cast stainless steel components.

  13. Corrosion morphology of A516 carbon steel in H[sub 2]S solution

    SciTech Connect (OSTI)

    Huang, H.H.; Tsai, W.T.; Lee, J.T. . Dept. of Materials Science and Engineering)

    1994-10-01

    Various types of corrosion, including hydrogen sulfide corrosion, sulfide stress corrosion cracking, and hydrogen-induced cracking, of carbon steel in an H[sub 2]S solution are of great concern in the oil and gas industry; many investigations have been undertaken to better understand the mechanism. Generally speaking, the formation of iron sulfide film on the metal surface appears to play an important role in the corrosion behavior of carbon steel in an H[sub 2]S solution. Several reports are available regarding the sulfide film formation of carbon steel in the H[sub 2]S solution. For instance, Petelot et al. reported that a film of iron sulfide does not cover the whole metal surface during the early stages of immersion, whereas the sample surface is wholly covered with iron sulfide film during the later stages of immersion. At the initial stage of immersion, iron sulfide film grows continuously; after longer immersion, a steady state is reached where the growth rate of sulfide film equals its dissolution rate. On the other hand, according to Tewari and Campbell, a smooth black film of iron sulfide is first obtained on the steel surface with a preferred orientation, whereas cracks develop on the surface. Lifting and peeling off of the film from the surface is found after exposure to the H[sub 2]S solution as brief as 6--8 h. A sulfide film deposited on carbon steel continues to grow even after a 48 h immersion in an H[sub 2]S solution. Current studies on the corrosion of carbon steel in an H[sub 2]S solution are based on the overall surface process. In this study, the local corrosion cell reaction between dissimilar phases and morphology of the local surface of A516 carbon steel in an H[sub 2]S solution were investigated.

  14. ITP Steel: Steel Industry Energy Bandwidth Study October 2004

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (or 15.9 MBtuton) a Good practice data for ironmaking includes pelletizing; includes lime production (6.1 10 6 tons x 6.25 MBtuton 0.038 Q); oxygen production (3 x 10 8 1,000...

  15. #include #include

    E-Print Network [OSTI]

    Kessler, Christoph

    ] (where a[n] = +infty). C's * bsearch() can't be used, it requires a[j]==key. */ int findloc( void *key Combine≠CRCW BSP≠Quicksort * variant by Gerbessiotis/Valiant JPDC 22(1994) * implemented in NestStep≠C. */ int N=10; // default value /** findloc(): find largest index j in [0..n≠1] with * a[j

  16. Communication Origin of the thermoelectric behavior of steel fiber cement paste

    E-Print Network [OSTI]

    Chung, Deborah D.L.

    Communication Origin of the thermoelectric behavior of steel fiber cement paste Sihai Wen, D fiber cement. The scattering sites include the fiber≠matrix interface, which is like a pn junction, since the fiber and cement paste have opposite signs of the absolute thermoelectric power

  17. Improved Criteria for Acceptable Yield Point Elongation in Surface Critical Steels

    SciTech Connect (OSTI)

    Dr. David Matlock; Dr. John Speer

    2007-05-30

    Yield point elongation (YPE) is considered undesirable in surface critical applications where steel is formed since "strain lines" or Luders bands are created during forming. This project will examine in detail the formation of luders bands in industrially relevant strain states including the influence of substrate properties and coatings on Luders appearance. Mechanical testing and surface profilometry were the primary methods of investigation.

  18. Metallurgical Research Engineer AK Steel, a leading producer of carbon, stainless and electrical steels, has an

    E-Print Network [OSTI]

    Prodiś, Aleksandar

    and carrying out laboratory and plant-based experiments ∑ Qualifying new process routings for existing products and electrical steels, has an immediate opening for an Engineer in its Research & Innovation Center located Send Resume to: molly.keith@aksteel.com AK Steel is an Equal Opportunity Employer. All qualified

  19. ITP Steel: Theoretical Minimum Energies to Produce Steel for Selected Conditions, March 2000

    Broader source: Energy.gov [DOE]

    The absolute theoretical minimum energies to produce liquid steel from idealized scrap (100% Fe) and ore (100% Fe2O3) are much lower than consumed in practice, as are the theoretical minimum energies to roll the steel into its final shape.

  20. Metallurgical and acoustical characterization of a hydroformed, 304 stainless steel, Caribbean-style musical pan

    SciTech Connect (OSTI)

    Murr, L.E. Gaytan, S.M.; Lopez, M.I.; Bujanda, D.E.; Martinez, E.Y.; Whitmyre, G.; Price, H.

    2008-03-15

    We report herein the metallurgical and acoustical characterization of hydroformed 304 stainless steel, Caribbean pans. These pans were fully tuned to chromatic tones and compared to a manufactured, low-carbon, Caribbean steel pan standard. Hydroformed platforms had a Vickers microindentation hardness of HV 345, which was reduced by annealing during pan fabrication to HV 270. Skirts welded to the hydroformed head had a microindentation hardness of HV 440. Microstructural characterization by light optical metallography and transmission electron microscopy illustrated microstructures (including grain structures) characteristic of these pan microindentation hardnesses.

  1. Corrosion effects of hydrogen sulfide on coiled tubing and carbon steel in hydrochloric acid

    SciTech Connect (OSTI)

    1997-09-01

    Coiled tubing is commonly used in oilwell drilling and stimulation. It has been reported to be less susceptible to acid attack than carbon steel in acidizing. Corrosion problems are frequently reported from field activities and include corrosion/erosion, galvanic attack, brine/oxygen/acid attack, and HCl/H{sub 2}S attack. In this study, coiled tubing was exposed to inhibited HCl acid in the presence and absence of H{sub 2}S. Four HCl inhibitors and one H{sub 2}S inhibitor were evaluated, and the corrosion rates of coiled tubing, carbon steel (J-55), and carburized steel were compared. Tests were conducted at atmospheric pressure for temperatures less than and equal to 200 F. At temperatures greater than 200 F; tests were conducted at 4,000 psi.

  2. Brazing open cell reticulated copper foam to stainless steel tubing with vacuum furnace brazed gold/indium alloy plating

    DOE Patents [OSTI]

    Howard, Stanley R. (Windsor, SC); Korinko, Paul S. (Aiken, SC)

    2008-05-27

    A method of fabricating a heat exchanger includes brush electroplating plated layers for a brazing alloy onto a stainless steel tube in thin layers, over a nickel strike having a 1.3 .mu.m thickness. The resultant Au-18 In composition may be applied as a first layer of indium, 1.47 .mu.m thick, and a second layer of gold, 2.54 .mu.m thick. The order of plating helps control brazing erosion. Excessive amounts of brazing material are avoided by controlling the electroplating process. The reticulated copper foam rings are interference fit to the stainless steel tube, and in contact with the plated layers. The copper foam rings, the plated layers for brazing alloy, and the stainless steel tube are heated and cooled in a vacuum furnace at controlled rates, forming a bond of the copper foam rings to the stainless steel tube that improves heat transfer between the tube and the copper foam.

  3. Aging and Embrittlement of High Fluence Stainless Steels

    SciTech Connect (OSTI)

    Was, gary; Jiao, Zhijie; der ven, Anton Van; Bruemmer, Stephen; Edwards, Dan

    2012-12-31

    Irradiation of austenitic stainless steels results in the formation of dislocation loops, stacking fault tetrahedral, Ni-Si clusters and radiation-induced segregation (RIS). Of these features, it is the formation of precipitates which is most likely to impact the mechanical integrity at high dose. Unlike dislocation loops and RIS, precipitates exhibit an incubation period that can extend from 10 to 46 dpa, above which the cluster composition changes and a separate phase, (G-phase) forms. Both neutron and heavy ion irradiation showed that these clusters develop slowly and continue to evolve beyond 100 dpa. Overall, this work shows that the irradiated microstructure features produced by heavy ion irradiation are remarkably comparable in nature to those produced by neutron irradiation at much lower dose rates. The use of a temperature shift to account for the higher damage rate in heavy ion irradiation results in a fairly good match in the dislocation loop microstructure and the precipitate microstructure in austenitic stainless steels. Both irradiations also show segregation of the same elements and in the same directions, but to achieve comparable magnitudes, heavy ion irradiation must be conducted at a much higher temperature than that which produces a match with loops and precipitates. First-principles modeling has confirmed that the formation of Ni-Si precipitates under irradiation is likely caused by supersaturation of solute to defect sinks caused by highly correlated diffusion of Ni and Si. Thus, the formation and evolution of Ni-Si precipitates at high dose in austenitic stainless steels containing Si is inevitable.

  4. Safe Use Limits for Advanced Ferritic Steels in Ultra-Supercritical Power Boilers.

    SciTech Connect (OSTI)

    Swindeman, RW

    2003-11-03

    In 2000, a Cooperative Research and Development Agreement (CRADA) was undertaken between the Oak Ridge National Laboratory (ORNL) and the Babcock & Wilcox Company to examine the databases for advanced ferritic steels and determine the safe limits for operation in supercritical steam power boilers. The materials of interest included the vanadium-modified 9-12% Cr steels with 1-2% Mo or W. The first task involved a review of pertinent information and the down-selection of a steel of special interest. The long-time database for 9Cr-1Mo-V steel was found to be most satisfactory for the examinations, and this steel was taken to be representative of the group. The second task involved the collection of aged and service exposed samples for metallurgical and mechanical testing. Here, aged samples to 75,000 hours, laboratory-tested samples to 83,000 hours, and service-exposed sample with up to 143,000 hours exposure were collected. The third task involved mechanical testing of exposed samples. Creep-rupture testing to long times was undertaken. Variable stress and temperature testing was included. Results were compared against the prediction of damage models. These models seemed to be adequate for life prediction. The fourth task involved the metallurgical examination of exposed specimens. Changes in microstructure were compared against published information on the evolution of microstructures in 9Cr-Mo-V steels and the results were found to be consistent with expectations. The fifth task involved a survey of steam and fireside corrosion. Data from the service-exposed tubing was examined, and a literature survey was undertaken as part of an activity in support of ultra-supercritical steam boiler technology. The corrosion study indicated some concerns about long-time fireside corrosion and suggested temperature limits were needed for corrosive coal ash conditions.

  5. Fracture toughness properties of low Charpy energy shelf steels

    SciTech Connect (OSTI)

    Witt, F.J.

    1980-04-01

    A low Charpy shelf steel is defined in this report as a steel which has a Charpy impact energy sufficiently low (less than 50 ft-lbs) to mitigate the determination of RT/sub NDT/ as defined by Appendix G of Section III of the ASME code. Six steels (one in both the irradiated and the unirradiated states) with Charpy shelf energies between 30 and 60 ft-lbs are evaluated. The evluation is based on an examination of the Charpy impact curves and fracture toughness parameters such as K/sub Ic/ and K/sub Ia/. One material was a low Charpy shelf steel for which both unirradiated and irradiated results are considered. Two of the materials are degraded (quenched only) carbon steels while a third is a high strength rotor forging steel. One material is a pipe steel and one is an ordinary carbon structural steel.

  6. Ferritic-martensitic steel subjected to equal channel angular extrusion†

    E-Print Network [OSTI]

    Foley, David Christopher

    2009-05-15

    Modified 9Cr-1Mo ferritic-martensitic steel (T91) has been extensively investigated as a structural material for GenIV nuclear reactors and Accelerator Driven Transmutation systems. One attractive characteristic of this steel in these applications...

  7. Friction Stir Spot Welding of Advanced High Strength Steels II...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Friction Stir Spot Welding of Advanced High Strength Steels II Friction Stir Spot Welding of Advanced High Strength Steels II 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle...

  8. First Structural Steel Erected at NSLS-II

    ScienceCinema (OSTI)

    None

    2010-01-08

    Ten steel columns were incorporated into the ever-growing framework for the National Synchrotron Light Source II last week, the first structural steel erected for the future 400,000-square-foot facility.

  9. Analytical modeling of composite steel-concrete frame systems†

    E-Print Network [OSTI]

    Atahan, Ali Osman

    1996-01-01

    of reinforced concrete or composite steel shapes encased in reinforced concrete (SRC), structural steel beams, and composite beam-column joints. To facilitate the modeling of inelastic deformations in joint regions, a panel element capable of representing joint...

  10. Specific grinding energy causing thermal damage in helicopter gear steels

    E-Print Network [OSTI]

    Purushothaman, Ganesh Kumaran

    2001-01-01

    to the workpiece. From microhardness distributions in the subsurface of hardened steels, visible burn is found to be accompanied by reaustenitization of the workpiece. With burning, rehardening of the steel also occurs. Rehardening is a consequence...

  11. Enhanced Incluison Removal from Steel in the Tundish

    SciTech Connect (OSTI)

    R.C. Bradt; M.A.R. Sharif

    2009-09-25

    The objective of this project was to develop an effective chemical filtering system for significantly reducing the content of inclusion particles in the steel melts exiting the tundish for continuous casting. This project combined a multi-process approach that aimed to make significant progress towards an "inclusion free" steel by incorporating several interdependent concepts to reduce the content of inclusions in the molten steel exiting the tundish for the caster. The goal is to produce "cleaner" steel.

  12. Enhanced Inclusion Removal from Steel in the Tundish

    SciTech Connect (OSTI)

    R. C. Bradt; M.A.R. Sharif

    2009-09-25

    The objective of this project was to develop an effective chemical filtering system for significantly reducing the content of inclusion particles in the steel melts exiting the tundish for continuous casting. This project combined a multi-process approach that aimed to make significant progress towards an "inclusion free" steel by incorporating several interdependent concepts to reduce the content of inclusions in the molten steel exiting the tundish for the caster. The goal is to produce "cleaner" steel.

  13. Auto/Steel Partnership: Hydroforming Materials and Lubricant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydroforming Materials and Lubricant Lightweight Rear Chassis Structures Future Generation Passenger Compartment AutoSteel Partnership: Hydroforming Materials and Lubricant...

  14. Neutron Irradiation Resistance of RAFM Steels

    SciTech Connect (OSTI)

    Gaganidze, Ermile; Dafferner, Bernhard; Aktaa, Jarir

    2008-07-01

    The neutron irradiation resistance of the reduced-activation ferritic/martensitic (RAFM) steel EUROFER97 and international reference steels (F82H-mod, OPTIFER-Ia, GA3X and MANET-I) have been investigated after irradiation in the Petten High Flux Reactor up to 16.3 dpa at different irradiation temperatures (250-450 deg. C). The embrittlement behavior and hardening are investigated by instrumented Charpy-V tests with sub-size specimens. Neutron irradiation-induced embrittlement and hardening of EUROFER97 was studied under different heat treatment conditions. Embrittlement and hardening of as-delivered EUROFER97 steel are comparable to those of reference steels. Heat treatment of EUROFER97 at a higher austenitizing temperature substantially improves the embrittlement behaviour at low irradiation temperatures. Analysis of embrittlement vs. hardening behavior of RAFM steels within a proper model in terms of the parameter C={delta}DBTT/{delta}{sigma} indicates hardening-dominated embrittlement at irradiation temperatures below 350 deg. C with 0.17 {<=} C {<=} 0.53 deg. C/MPa. Scattering of C at irradiation temperatures above 400 deg. C indicates non hardening embrittlement. A role of He in a process of embrittlement is investigated in EUROFER97 based steels, that are doped with different contents of natural B and the separated {sup 10}B-isotope (0.008-0.112 wt.%). Testing on small scale fracture mechanical specimens for determination of quasi-static fracture toughness will be also presented in a view of future irradiation campaigns. (authors)

  15. Corrosion of carbon steels, stainless steels, and titanium in aqueous lithium bromide solution

    SciTech Connect (OSTI)

    Guinon, J.L.; Garcia-Anton, J.; Perez-Herranz, V. (Univ. Politecnica de Valencia (Spain). Dept. de Ingenieria Quimica y Nuclear); Lacoste, G. (ENSIGC, Toulouse (France))

    1994-03-01

    Effects of lithium bromide (LiBr) concentration, pH, temperature, exposure time, and the action of some inhibitors on corrosion of several carbon (C) steels, stainless steels (SS), and a titanium (Ti) alloy were studied. Corrosion rates were determined by the polarization resistance method and compared to rates determined by weight-loss measurements. Pitting potentials (E[sub p]) were evaluated in neutral LiBr solution and with different inhibitors. Pit density and average pit depth depended on the metal tested, with lowest values for Ti, the next lowest values for type 316 SS (UNS S31600), and the highest values for UNS G41350 tempered steel.

  16. THE SENSITIVITY OF CARBON STEELS' SUSCEPTIBILITY TO LOCALIZED CORROSION TO THE PH OF NITRATE BASED NUCLEAR WASTES

    SciTech Connect (OSTI)

    BOOMER KD

    2010-01-14

    The Hanford tank reservation contains approximately 50 million gallons of liquid legacy radioactive waste from cold war weapons production, which is stored in 177 underground storage tanks. The tanks will be in use until waste processing operations are completed. The wastes tend to be high pH (over 10) and nitrate based. Under these alkaline conditions carbon steels tend to be passive and undergo relatively slow uniform corrosion. However, the presence of nitrate and other aggressive species, can lead to pitting and stress corrosion cracking. This work is a continuation of previous work that investigated the propensity of steels to suffer pitting and stress corrosion cracking in various waste simulants. The focus of this work is an investigation of the sensitivity of the steels' pitting and stress corrosion cracking susceptibility tosimulant pH. Previous work demonstrated that wastes that are high in aggressive nitrate and low in inhibitory nitrite are susceptible to localized corrosion. However, the previous work involved wastes with pH 12 or higher. The current work involves wastes with lower pH of 10 or 11. It is expected that at these lower pHs that a higher nitrite-to-nitrate ratio will be necessary to ensure tank integrity. This experimental work involved both electrochemical testing, and slow strain rate testing at either the free corrosion potential or under anodic polarization. The results of the current work will be discussed, and compared to work previously presented.

  17. The Signifance of Retained Austenite in Steels

    E-Print Network [OSTI]

    Bhadeshia, H K D H

    1980-02-05

    . Introduction 90 2. Experimental Method and Techniques 91 3. Results and Discussion 92 4. Summary 94 VIII. An Analysis o£ the Mechanical Properties and Microstructure o£ a High-Silicon Dual-Phase Steel 1. Introduction 2. De£ormation Models 3. Experimental... £ects such that the extent o£ twinning was the greatest when adjacent martensite units had twin-related lattices. The thermodynamics o£ dislocated martensites have been briefly examined, The inhomogeneous de£ormation behaviour o£ dual-phase steels has been analysed in terms...

  18. Casting Engineer Process Research AK Steel, a leading producer of carbon, stainless and electrical steels, has an

    E-Print Network [OSTI]

    Prodiś, Aleksandar

    AK Steel Casting Engineer ≠ Process Research AK Steel, a leading producer of carbon, stainless, will act in support of primary and secondary steelmaking as well as casting operations for carbon

  19. The College of Engineering's mission is to do purposeful work that impacts our global society. This important work includes

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    , ∑ generating new knowledge, ∑ applying that knowledge to develop and implement solutions for global problems ...............................................................................................10 The sky is the limit when managing and supervising the configuration of runways, terminals overseeing major projects such as the construction of Hoover Dam. A Nuclear Power

  20. MICROSTRUCTURAL STABILITY OF STRONG 912 wt% Cr STEELS

    E-Print Network [OSTI]

    Cambridge, University of

    viewpoint, the factors determining the long≠term (105 h) stability of martensitic creep≠resistant steels≠design procedures. Although the paper deals with the martensitic steels, its conclusions are general ≠ for this reason it is necessary to briefly explain why martensitic steels are so popular in the modern power

  1. Technical Reference on Hydrogen Compatibility of Materials Austenitic Stainless Steels

    E-Print Network [OSTI]

    Siefert, Chris

    of martensite on hydrogen embrittlement in austenitic stainless steels has not been firmly established. Although stainless steels, ' martensite, in both sensitized and nonsensitized microstructures, is associated-induced martensite [6- 8]. The role of high-nickel compositions in type 316 stainless steels can then be said

  2. Mechanisms of Tempered Martensite Embrittlement in Low Alloy Steels

    E-Print Network [OSTI]

    Ritchie, Robert

    Mechanisms of Tempered Martensite Embrittlement in Low Alloy Steels R. M. HORN AND ROBERT O strength martensitic steels, heat-treated to achieve optimum combinations of strength, ductility, and tough-quenched alloy steels in the range 250 to 450~ (tempered martensite embrittlement). Whereas there is now a large

  3. Analysis of deformation induced martensitic transformation in stainless steels

    E-Print Network [OSTI]

    Cambridge, University of

    Analysis of deformation induced martensitic transformation in stainless steels A. Das1,2,3 , P. C that the crystallographic texture due to martensitic transformation can be predicted for 18/8 austenitic stainless steel steel was prestrained and then tested in tension at a temperature where martensite was induced

  4. Technical Reference on Hydrogen Compatibility of Materials Austenitic Stainless Steels

    E-Print Network [OSTI]

    Siefert, Chris

    and corrosion resistance. Type 304 stainless steel is, however, susceptible to strain- induced martensitic in austenitic stainless steels, a' martensite, is associated with lower resistance to hydrogen embrittlementTechnical Reference on Hydrogen Compatibility of Materials Austenitic Stainless Steels: Type 304

  5. Water Modeling of Steel Flow, Air Entrainment and Filtration

    E-Print Network [OSTI]

    Beckermann, Christoph

    Water Modeling of Steel Flow, Air Entrainment and Filtration Christoph Beckermann Associate Beckermann, C., "Water Modeling of Steel Flow, Air Entrainment and Filtration," in Proceedings of the 46th, 1992. #12;Abstract This paper presents an analysis of water modeling of steel pouring to study (1) air

  6. Improving the Performance of Creep-Strength-Enhanced Ferritic Steels

    E-Print Network [OSTI]

    Pennycook, Steve

    to maximize performance of CSEF steels ∑ Activities combine basic & applied R&D with strong power industry Steels Approach to improved CSEF steels relies on two strategies 1. Modified heat treatments: ≠ Could stress-rupture results suggested reduced tendency for HAZ failures ∑ "Standard" heat treatment: 760įC

  7. Effect of Shrinkage on Service Performance of Steel Castings

    E-Print Network [OSTI]

    Beckermann, Christoph

    Effect of Shrinkage on Service Performance of Steel Castings Richard Hardin and Christoph are summarized. Hardin, R., and Beckermann, C., "Effect of Shrinkage on Service Performance of Steel Castings An overview of the objectives and progress made by the "Integrated Design of Steel Castings for Service

  8. Prediction of Reoxidation Inclusion Composition in Casting of Steel

    E-Print Network [OSTI]

    Beckermann, Christoph

    in the production of steel castings. Removing inclusions and refilling the defect areas with the weld metal account in steel with oxygen during pouring of the (deoxidized) steel from the ladle into the mold. Oxy- gen may come from the surrounding atmosphere, refracto- ries, slag, or the sand mold.[3] The atmosphere

  9. Spheroidisation of Hypereutectoid State of Nanostructured Bainitic Steel

    E-Print Network [OSTI]

    Cambridge, University of

    annealing [16] but such processes are impractical to adopt for general use. Nanostructured bainitic steels retards the spheroidisation process in high carbon steel during isothermal annealing [17], making it allSpheroidisation of Hypereutectoid State of Nanostructured Bainitic Steel D. Luoa , M.J. Peeta , S

  10. Characterisation of severely deformed austenitic stainless steel wire

    E-Print Network [OSTI]

    Cambridge, University of

    . Experimental procedure Stainless steel (316L) wires with 190 mm diameter in the annealed state are usedCharacterisation of severely deformed austenitic stainless steel wire H. S. Wang1 , J. R. Yang1 of 316L austenitic stainless steel has been examined using TEM and X-ray diffraction. The deformation

  11. High Surface Area Stainless Steel Brushes as Cathodes in Microbial

    E-Print Network [OSTI]

    High Surface Area Stainless Steel Brushes as Cathodes in Microbial Electrolysis Cells D O U G L show here that high surface area stainless steel brush cathodes produce hydrogen at rates. Using a stainless steel brush cathode with a specific surface area of 810 m2 /m3 , hydrogen was produced

  12. Microstructural Investigation of Co-rolled Nanocrystalline Stainless Steel Sheets

    E-Print Network [OSTI]

    Paris-Sud XI, Universitť de

    Microstructural Investigation of Co-rolled Nanocrystalline Stainless Steel Sheets Delphine RetraintL austenitic stainless steel is commonly used in the food, chemical or petrochemical industries stainless steel plates of dimensions 120 ◊ 120 ◊ 1 mmand chemical composition (wt.%) 0.025 C, 0.38 Si, 1

  13. Microstructural Development during Solidification of Stainless Steel Alloys

    E-Print Network [OSTI]

    Eagar, Thomas W.

    ) Microstructural Development during Solidification of Stainless Steel Alloys J.W. ELMER, S.M. ALLEN, and T.W. EAGAR The microstructures that develop during the solidification of stainless steel investigates the influence of cooling rate on the microstructure of stainless steel alloys and describes

  14. Weldability Of New Ferritic Stainless Steel For Exhaust Manifold Application

    E-Print Network [OSTI]

    Paris-Sud XI, Universitť de

    Weldability Of New Ferritic Stainless Steel For Exhaust Manifold Application Vincent Villaret1-2, a-marie.fortain@airliquide.com, e gilles.fras@iut-nimes.fr, f fabien.januard@airliquide.com Keywords: ferritic stainless steel, efficiency and small size. To achieve such requirements, ferritic stainless steels with high chromium content

  15. Low Temperature Air Bake of Stainless Steel for Very Low

    E-Print Network [OSTI]

    Low Temperature Air Bake of Stainless Steel for Very Low Outgassing Rates Surface Conditioning will describe the process used for cleaning and processing stainless steel. As examples I will use our as good as ever. #12;Summary of the Cleaning Process for Stainless Steel (e.g. 316 L) 1. Keep the items

  16. absolute reaction rate theory 156 accelerated cooled steels 3538

    E-Print Network [OSTI]

    Cambridge, University of

    Ī4 dislocation density 26Ī9, 70Ī1 distribution of carbon 71Ī2 driving forces 202Ī4 dual phase steels 358absolute reaction rate theory 156 accelerated cooled steels 353Ī8 acicular ferrites 237Ī76 forging steels 273Ī4 growth 240Ī3 inoculation 267Ī75 lattice matches 245 morphology 237Ī40 nucleation 243

  17. Material property evaluations of bimetallic welds, stainless steel saw fusion lines, and materials affected by dynamic strain aging

    SciTech Connect (OSTI)

    Rudland, D.; Scott, P.; Marschall, C.; Wilkowski, G. [Battelle Memorial Institute, Columbus, OH (United States)

    1997-04-01

    Pipe fracture analyses can often reasonably predict the behavior of flawed piping. However, there are material applications with uncertainties in fracture behavior. This paper summarizes work on three such cases. First, the fracture behavior of bimetallic welds are discussed. The purpose of the study was to determine if current fracture analyses can predict the response of pipe with flaws in bimetallic welds. The weld joined sections of A516 Grade 70 carbon steel to F316 stainless steel. The crack was along the carbon steel base metal to Inconel 182 weld metal fusion line. Material properties from tensile and C(T) specimens were used to predict large pipe response. The major conclusion from the work is that fracture behavior of the weld could be evaluated with reasonable accuracy using properties of the carbon steel pipe and conventional J-estimation analyses. However, results may not be generally true for all bimetallic welds. Second, the toughness of austenitic steel submerged-arc weld (SAW) fusion lines is discussed. During large-scale pipe tests with flaws in the center of the SAW, the crack tended to grow into the fusion line. The fracture toughness of the base metal, the SAW, and the fusion line were determined and compared. The major conclusion reached is that although the fusion line had a higher initiation toughness than the weld metal, the fusion-line J-R curve reached a steady-state value while the SAW J-R curve increased. Last, carbon steel fracture experiments containing circumferential flaws with periods of unstable crack jumps during steady ductile tearing are discussed. These instabilities are believed to be due to dynamic strain aging (DSA). The paper discusses DSA, a screening criteria developed to predict DSA, and the ability of the current J-based methodologies to assess the effect of these crack instabilities. The effect of loading rate on the strength and toughness of several different carbon steel pipes at LWR temperatures is also discussed.

  18. Attachment 1 - Performance Work Statement

    National Nuclear Security Administration (NNSA)

    including TTR. Waste acceptance services will be performed at the NNSS and at waste generator sites. DE-SOL-0005982 Attachment 1 Page 1 2. Scope of Work 2.1 Requirement: The EPS...

  19. Structural Analysis of LargeStructural Analysis of Large Caliber Hybrid Ceramic/SteelCaliber Hybrid Ceramic/Steel

    E-Print Network [OSTI]

    Grujicic, Mica

    Structural Analysis of LargeStructural Analysis of Large Caliber Hybrid Ceramic/SteelCaliber Hybrid Ceramic/Steel Gun BarrelsGun Barrels MS ThesisMS Thesis Jon DeLongJon DeLong Department of Mechanical ∑Merger of ceramics into the conventional steel gun barrel design ∑Use of a probabilistic structural

  20. Working Group Report: Sensors

    SciTech Connect (OSTI)

    Artuso, M.; et al.,

    2013-10-18

    Sensors play a key role in detecting both charged particles and photons for all three frontiers in Particle Physics. The signals from an individual sensor that can be used include ionization deposited, phonons created, or light emitted from excitations of the material. The individual sensors are then typically arrayed for detection of individual particles or groups of particles. Mounting of new, ever higher performance experiments, often depend on advances in sensors in a range of performance characteristics. These performance metrics can include position resolution for passing particles, time resolution on particles impacting the sensor, and overall rate capabilities. In addition the feasible detector area and cost frequently provides a limit to what can be built and therefore is often another area where improvements are important. Finally, radiation tolerance is becoming a requirement in a broad array of devices. We present a status report on a broad category of sensors, including challenges for the future and work in progress to solve those challenges.

  1. CLEAN CAST STEEL TECHNOLOGY: DETERMINATION OF TRANSFORMATION DIAGRAMS FOR DUPLEX STAINLESS STEEL.

    SciTech Connect (OSTI)

    Chumbley. L., S.

    2005-09-18

    Duplex stainless steels (DSS) constitute both ferrite and austenite as a matrix. Such a microstructure confers a high corrosion resistance with favorable mechanical properties. However, intermetallic phases such as sigma (√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Į√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ā√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬≥) and chi (√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Į√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ā√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬£) can also form during casting or high-temperature processing and can degrade the properties of the DSS. This research was initiated to develop time-temperature-transformation (TTT) and continuous-cooling- transformation (CCT) diagrams of two types of cast duplex stainless steels, CD3MN (Fe 22Cr-5Ni-Mo-N) and CD3MWCuN (Fe-25Cr-7Ni-Mo-W-Cu-N), in order to understand the time and temperature ranges for intermetallic phase formation. The alloys were heat treated isothermally or under controlled cooling conditions and then characterized using conventional metallographic methods that included tint etching, and also using electron microscopy (SEM, TEM) and wavelength dispersive spectroscopy (WDS). The kinetics of intermetallic-phase (√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Į√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ā√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬≥ + √?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Į√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ā√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬£) formation were analyzed using the Johnson-Mehl-Avrami (JMA) equation in the case of isothermal transformations and a modified form of this equation in the case of continuous cooling transformations, The rate of intermetallic-phase formation was found to be much faster in CD3MWCuN than CD3MN due mainly to differences in the major alloying contents such as Cr, Ni and Mo. To examine in more detail the effects of these elements of the phase stabilities, a series of eight steel castings was designed with the Cr, Ni and Mo contents systematically varied with respect to the nominal composition of CD3MN. The effects of varying the contents of alloying additions on the formation of intermetallic phases were also studied computationally using the commercial thermodynamic software package, Thermo-Calc. In general, √?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Į√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ā√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬≥ was stabilized with increasing Cr addition and by increasing Mo addition. However, a delicate balance among Ni and other minor elements such as N and Si also exists. Phase equilibria in DSS can be affected by local composition fluctuations in the cast alloy. This may cause discrepancy between thermodynamic prediction and experimental observation.

  2. James Hannay: His Life and Works

    E-Print Network [OSTI]

    Worth, George J.

    1964-01-01

    of warfare undreamed of by its earlier European attackers, men like Baldwin, Guy de Lusignan, and Richard Coeur de Lion. "It was the work of centuries condens ed into an afternoonóthe spectacle of ruins made in an hour. The poor Egyptians met death... name and reputation worth redeeming from the obscurity into which they have fallen. Soon after his death in 1873, two of James Hannay's friends, Annie Thomas Cudlip and Dr. James Steele, projected biogra phies, neither of which, unfortunately, came...

  3. Steel Innovations Conference 2013 Christchurch, New Zealand

    E-Print Network [OSTI]

    Bruneau, Michel

    to transform seismic design in many applications. However, in spite of all the foreseen excellent attributesSteel Innovations Conference 2013 Christchurch, New Zealand 21-22 February 2013 SEISMIC BEHAVIOR of the structural system, lack of knowledge on its expected seismic performance has been an absolute impediment

  4. Hydrogen Susceptibility of Nanostructured Bainitic Steels

    E-Print Network [OSTI]

    Peet, Matthew; Hojo, Tomohiko

    2015-01-01

    to 2-5% and UTS to 65-70% of prior value. Thermal desorption measurements confirmed the higher solubility of hydrogen in the steel with higher austenite content. The level of hydrogen saturation was found to correlate to the total area of grain...

  5. Selection of Processes for Welding Steel Rails

    E-Print Network [OSTI]

    Eagar, Thomas W.

    structure. ∑ Particular attention is given to thermit, flash and oxyacetylene processes with some discussion for welding of steel rail. The traditional pro- cesses of thermit, oxacetylene and flash welding are well is brought to an elevated temperature, and the heat diffuses into the bulk of the metal. Thermit, electroslag

  6. Simulation of Dimensional Changes in Steel Casting

    E-Print Network [OSTI]

    Beckermann, Christoph

    casting due to thermal effects (temperature differences) and volume changes (e.g., shrinkage, sand are the primary reasons for dimensional changes during casting. In the case such shrinkage is free or unrestrained of the sand and the solidifying steel. Such hindered shrinkage of restrained casting features is usually less

  7. Energy Flow Models for the Steel Industry†

    E-Print Network [OSTI]

    Hyman, B.; Andersen, J. P.

    1998-01-01

    Energy patterns in the U. S. steel industry are examined using several models. First is an end-use model based on data in the 1994 Manufacturing Energy Consumption Survey (MECS). Then a seven-step process model is presented and material flow through...

  8. Forsterite film formation and grain growth in 3% Si steel

    SciTech Connect (OSTI)

    Cunha, M.A.; Cesar, M.G.M.M. )

    1994-11-01

    The forsterite film in 3% Si steel is formed by a solid state reaction of the annealing separator, MgO, with SiO[sub 2] that results from the reduction of the fayalite layer in the hydrogen atmosphere in the high temperature anneal. In this work, secondary recrystallization was about complete at 1,000 C. After that temperature tertiary recrystallization can occur if the boundary drag of the second phase particles can be overcome. Addition of phosphates to the annealing separator affects the morphology of the forsterite film and can have an important effect on tertiary recrystallization by affecting the rate of decrease of the boundary-drag and/or the surface energy relationship.

  9. Sensitivity of ultrasonic nonlinearity to irradiated, annealed, and re-irradiated microstructure changes in RPV steels

    SciTech Connect (OSTI)

    Matlack, Katie; Kim, J-Y.; Wall, J.J.; Jacobs, L.J.; Sokolov, Mikhail A

    2014-05-01

    The planned life extension of nuclear reactors throughout the US and abroad will cause reactor vessel and internals materials to be exposed to more neutron irradiation than was originally intended. A nondestructive evaluation (NDE) method to monitor radiation damage would enable safe and cost-effective continued operation of nuclear reactors. Radiation damage in reactor pressure vessel (RPV) steels causes microstructural changes that leave the material in an embrittled state. Nonlinear ultrasound is an NDE technique quantified by the measurable acoustic nonlinearity parameter, which is sensitive to microstructural changes in metallic materials such as dislocations, precipitates and their combinations. Recent research has demonstrated the sensitivity of the acoustic nonlinearity parameter to increasing neutron fluence in representative RPV steels. The current work considers nonlinear ultrasonic experiments conducted on similar RPV steel samples that had a combination of irradiation, annealing, re-irradiation, and/or re-annealing to a total neutron fluence of 0.5 5 1019 n/cm2 (E > 1 MeV) at an irradiation temperature of 290 C. The acoustic nonlinearity parameter generally increased with increasing neutron fluence, and consistently decreased from the irradiated to the annealed state over different levels of neutron fluence. Results of the measured acoustic nonlinearity parameter are compared with those from previous measurements on other RPV steel samples. This comprehensive set of results illustrates the dependence of the measured acoustic nonlinearity parameter on neutron fluence, material composition, irradiation temperature and annealing.

  10. Crack stability analysis of low alloy steel primary coolant pipe

    SciTech Connect (OSTI)

    Tanaka, T.; Kameyama, M. [Kansai Electric Power Company, Osaka (Japan); Urabe, Y. [Mitsubishi Heavy Industries, Ltd., Takasago (Japan)] [and others

    1997-04-01

    At present, cast duplex stainless steel has been used for the primary coolant piping of PWRs in Japan and joints of dissimilar material have been applied for welding to reactor vessels and steam generators. For the primary coolant piping of the next APWR plants, application of low alloy steel that results in designing main loops with the same material is being studied. It means that there is no need to weld low alloy steel with stainless steel and that makes it possible to reduce the welding length. Attenuation of Ultra Sonic Wave Intensity is lower for low alloy steel than for stainless steel and they have advantageous inspection characteristics. In addition to that, the thermal expansion rate is smaller for low alloy steel than for stainless steel. In consideration of the above features of low alloy steel, the overall reliability of primary coolant piping is expected to be improved. Therefore, for the evaluation of crack stability of low alloy steel piping to be applied for primary loops, elastic-plastic future mechanics analysis was performed by means of a three-dimensioned FEM. The evaluation results for the low alloy steel pipings show that cracks will not grow into unstable fractures under maximum design load conditions, even when such a circumferential crack is assumed to be 6 times the size of the wall thickness.

  11. Temperature and Material Flow Prediction in Friction-Stir Spot Welding of Advanced High-Strength Steel

    SciTech Connect (OSTI)

    Miles, Michael; Karki, U.; Hovanski, Yuri

    2014-10-01

    Friction-stir spot welding (FSSW) has been shown to be capable of joining advanced high-strength steel, with its flexibility in controlling the heat of welding and the resulting microstructure of the joint. This makes FSSW a potential alternative to resistance spot welding if tool life is sufficiently high, and if machine spindle loads are sufficiently low that the process can be implemented on an industrial robot. Robots for spot welding can typically sustain vertical loads of about 8 kN, but FSSW at tool speeds of less than 3000 rpm cause loads that are too high, in the range of 11Ė14 kN. Therefore, in the current work, tool speeds of 5000 rpm were employed to generate heat more quickly and to reduce welding loads to acceptable levels. Si3N4 tools were used for the welding experiments on 1.2-mm DP 980 steel. The FSSW process was modeled with a finite element approach using the Forge* software. An updated Lagrangian scheme with explicit time integration was employed to predict the flow of the sheet material, subjected to boundary conditions of a rotating tool and a fixed backing plate. Material flow was calculated from a velocity field that is two-dimensional, but heat generated by friction was computed by a novel approach, where the rotational velocity component imparted to the sheet by the tool surface was included in the thermal boundary conditions. An isotropic, viscoplastic Norton-Hoff law was used to compute the material flow stress as a function of strain, strain rate, and temperature. The model predicted welding temperatures to within percent, and the position of the joint interface to within 10 percent, of the experimental results.

  12. Prices include compostable serviceware and linen tablecloths

    E-Print Network [OSTI]

    California at Davis, University of

    APPETIZERS Prices include compostable serviceware and linen tablecloths for the food tables.ucdavis.edu. BUTTERNUT SQUASH & BLACK BEAN ENCHILADAS #12;BUFFETS Prices include compostable serviceware and linen

  13. Making energy mortgages work

    SciTech Connect (OSTI)

    Luboff, J.A.

    1995-05-01

    At a time when many energy efficiency projects face an uncertain future, home energy ratings and energy mortgages are receiving more attention than ever. Will enthusiasm in the industry and new programs from conventional lenders and the federal government finally open up the market? This article describes the energy morgage marketplace, how energy mortages work, and what the future holds. Topics include the following: Who`s who and what`s what in the EM marketplace; initial Freddie Mac and Fannie Mae guidelines; past and present home energy rating system; how do you score a house; how an energy mortage works; energy improvement loans; sample rating certificate; fixing the system; Colorado`s conventional market approach; US DOE`s pilot group; energy mortages set to take off.

  14. CEBAF energy upgrade program including re-work of CEBAF cavities

    SciTech Connect (OSTI)

    Joseph Preble

    2008-02-12

    The Thomas Jefferson National Accelerator Facility, Jefferson Lab, is planning an upgrade of the CEBAF accelerator from a maximum energy of 6 GeV to 12 GeV and from 3 to 4 experimental halls. This paper will discuss the plans for upgrading the energy of the machine which requires improvements of the existing Super Conducting Radio Frequency (SRF) cryomodules and the additions of ten newly designed high performance SRF cryomodules.

  15. Example Retro-Commissioning Scope of Work to Include Services as Part of an

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015 InfographiclighbulbsDepartmentDeveloping11, 20125

  16. A comparison of dilatometry and in-situ neutron diffraction in tracking bulk phase transformations in a martensitic stainless steel

    SciTech Connect (OSTI)

    Christien, F.; Telling, M.T.F.; Knight, K.S.

    2013-08-15

    Phase transformations in the 17-4PH martensitic stainless steel have been studied using different in-situ techniques, including dilatometry and high resolution neutron diffraction. Neutron diffraction patterns were quantitatively processed using the Rietveld refinement method, allowing the determination of the temperature-dependence of martensite (??, bcc) and austenite (?, fcc) phase fractions and lattice parameters on heating to 1000 įC and then cooling to room temperature. It is demonstrated in this work that dilatometry doesn't permit an accurate determination of the end temperature (Ac3) of the ?? ? ? transformation which occurs upon heating to high temperature. The analysis of neutron diffraction data has shown that the respective volumes of the two phases become very close to each other at high temperature, thus making the dilatometric technique almost insensitive in that temperature range. However, there is a very good agreement between neutron diffraction and dilatometry at lower temperature. The martensitic transformation occurring upon cooling has been analysed using the KoistinenĖMarburger equation. The thermal expansion coefficients of the two phases have been determined in addition. A comparison of the results obtained in this work with data from literature is presented. - Highlights: ē Martensite is still present at very high temperature (> 930 įC) upon heating. ē The end of austenitisation cannot be accurately monitored by dilatometry. ē The martensite and austenite volumes become similar at high temperature (> ? 850 įC)

  17. Working Woodlands: Public Demand, Owner Management, and Government

    E-Print Network [OSTI]

    , including environmental and self-consumption values. Work in California has revealed that self-consumption

  18. Joining techniques for a reduced activation 12Cr steel for inertial fusion energy

    SciTech Connect (OSTI)

    Hunt, R. M.; El-Dasher, B.; Choi, B. W.; Torres, S. G.

    2014-10-01

    At Lawrence Livermore National Laboratory, we are developing a reduced activation ferritic martensitic steel that is based on the ferritic martensitic steel HT-9. As a part of the development of this steel, we tested a series of welding processes for characterization, including conventional welds (electron beam, tungsten inert gas, and laser) as well as solid-state welds (hot isostatic pressing). We also heat treated the joints at various temperatures between 750 įC and 1050 įC to find a suitable normalization scheme. The modified HT-9 reduced activation ferritic martensitic steel appears highly suitable to welding and diffusion bonding. All welds showed good quality fusion zones with insignificant cracking or porosity. Additionally, a heat treatment schedule of 950 įC for one hour caused minimal grain growth while still converging the hardness of the base metal with that of the fusion and heat-affected zones. Also, modified HT-9 diffusion bonds that were created at temperatures of at least 950 įC for two hours at 103 MPa had interface tensile strengths of greater than 600 MPa. The diffusion bonds showed no evidence of increased hardness nor void formation at the diffusion bonded interface.

  19. Microscale investigation of the corrosion performances of low-carbon and stainless steels in highly alkaline concretes

    E-Print Network [OSTI]

    Itty, Pierre-Adrien

    2012-01-01

    Corrosion Behaviour of New Stainless Steels Reinforcing BarsSpecification for Stainless Steel Bars and Shapes. Ē ASTMFilms of Different Stainless Steels Developed on Alkaline

  20. Alternatives to reduce corrosion of carbon steel storage drums

    SciTech Connect (OSTI)

    Zirker, L.R.; Beitel, G.A.

    1995-11-01

    The major tasks of this research were (a) pollution prevention opportunity assessments on the overpacking operations for failed or corroded drums, (b) research on existing container corrosion data, (c) investigation of the storage environment of the new Resource Conservation and Recovery Act Type II storage modules, (d) identification of waste streams that demonstrate deleterious corrosion affects on drum storage life, and (e) corrosion test cell program development. Twenty-one waste streams from five US Department of Energy (DOE) sites within the DOE Complex were identified to demonstrate a deleterious effect to steel storage drums. The major components of these waste streams include acids, salts, and solvent liquids, sludges, and still bottoms. The solvent-based waste streams typically had the shortest time to failure: 0.5 to 2 years. The results of this research support the position that pollution prevention evaluations at the front end of a project or process will reduce pollution on the back end.

  1. Texture evolution in Fe-3% Si steel treated under unconventional annealing conditions

    SciTech Connect (OSTI)

    Stoyka, Vladimir; Kovac, Frantisek; Stupakov, Oleksandr; Petryshynets, Ivan

    2010-11-15

    The present work investigates texture evolution stages in grain-oriented steel heat-treated using unconventional conditions. The Fe-3%Si steel taken after final cold rolling reduction from an industrial line was subjected to a laboratory isothermal annealing at different temperatures. The annealing temperatures were varied in a range of 850-1150 deg. C. During the annealing each specimen was heated at 10 deg. C/s and kept at the stated temperature for 5 min. Development of microstructure and texture in the annealed specimens were followed by the DC measurements of magnetic properties. The grain oriented steel, taken from the same industrial line after final box annealing was also analyzed and compared with the laboratory annealed specimens. It was shown that there is an optimal temperature region that, with combination of a fast heating rate, led to the best conditions of a drastically reduced development time of the {l_brace}110{r_brace} < 001 > crystallographic texture in the cold rolled grain-oriented steel. Materials heat treated below the optimum temperature region account for a primary recrystallization, while applying heat above this region leads to a secondary recrystallization without abnormal grain growth. Moreover, in the optimum temperature range, there was a particular temperature leading to the most optimal microstructure and texture. The magnetic properties, measured after the optimal heat treatment, were close to that measured on specimens taken after the final box annealing. The electron back scattered diffraction measurement technique revealed that sharpness of the {l_brace}110{r_brace} < 001 > crystallographic texture, developed at the optimum temperature is comparable to the steel taken after the industrial final box annealing. This fact is evidence that there is a temperature where the abnormal grain growth proceeds optimally.

  2. Standard Test Method for Measurement of Hydrogen Embrittlement Threshold in Steel by the Incremental Step Loading Technique

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This test method establishes a procedure to measure the susceptibility of steel to a time-delayed failure such as that caused by hydrogen. It does so by measuring the threshold for the onset of subcritical crack growth using standard fracture mechanics specimens, irregular-shaped specimens such as notched round bars, or actual product such as fasteners (2) (threaded or unthreaded) springs or components as identified in SAE J78, J81, and J1237. 1.2 This test method is used to evaluate quantitatively: 1.2.1 The relative susceptibility of steels of different composition or a steel with different heat treatments; 1.2.2 The effect of residual hydrogen in the steel as a result of processing, such as melting, thermal mechanical working, surface treatments, coatings, and electroplating; 1.2.3 The effect of hydrogen introduced into the steel caused by external environmental sources of hydrogen, such as fluids and cleaners maintenance chemicals, petrochemical products, and galvanic coupling in an aqueous enviro...

  3. Progress in the R and D Project on Oxide Dispersion Strengthened and Precipitation Hardened Ferritic Steels for Sodium Cooled Fast Breeder Reactor Fuels

    SciTech Connect (OSTI)

    Kaito, Takeji; Ohtsuka, Satoshi; Inoue, Masaki

    2007-07-01

    High burnup capability of sodium cooled fast breeder reactor (SFR) fuels depends significantly on irradiation performance of their component materials. Japan Atomic Energy Agency (JAEA) has been developing oxide dispersion strengthened (ODS) ferritic steels and a precipitation hardened (PH) ferritic steel as the most prospective materials for fuel pin cladding and duct tubes, respectively. Technology for small-scale manufacturing is already established, and several hundreds of ODS steel cladding tubes and dozens of PH steel duct tubes were successfully produced. We will step forward to develop manufacturing technology for mass production to supply these steels for future SFR fuels. Mechanical properties of the products were examined by out-of-pile and in-pile tests including material irradiation tests in the experimental fast reactor JOYO and foreign fast reactors. The material strength standards (MSSs) were tentatively compiled in 2005 for ODS steels and in 1993 for PH steel. In order to upgrade the MSSs and to demonstrate high burnup capability of the materials, we will perform a series of irradiation tests in BOR-60 and JOYO until 2015 and contribute to design study for a demonstration SFR of which operation is expected after 2025. (authors)

  4. Transformation Strain and Crystallographic Texture in Steels

    E-Print Network [OSTI]

    Kundu, Saurabh

    . . . . . . . . . . . . . . . . . . . . . . 29 2.5.2 Fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.6 Evolution of martensitic transformation . . . . . . . . . . . . . 34 v CONTENTS vi 2.6.1 Koistinen-Marburger equation . . . . . . . . . . . . . . 34 2.6.2 Justification... TEXTURE . . . . . . . . . . . . . . 195 Chapter 1 Introduction Displacive transformations in steels such as bainite and martensite gener- ate dilatational and shear strains of about 0.03 and 0.22-0.26 respectively [1]. However, the shear strains associated...

  5. Phase transformations in welded supermartensitic stainless steels

    E-Print Network [OSTI]

    Carrouge, Dominique

    steels, show a marked temperature dependence of the fracture toughness, as indicated in figure 1.11. At high temperatures fracture occurs normally by ductile rupture, whereas cleavage is the dominating fracture mode at low temperatures. The low carbon con... ductile metal experiences brittle frac- ture when exposed to both a tensile stress and hydrogen resulting from metal dissolu- tion in a corrosive atmosphere. Hydrogen-induced cracks are most often transgranu- lar, although intergranular fracture...

  6. Residuals in steel products -- Impacts on properties and measures to minimize them

    SciTech Connect (OSTI)

    Emi, Toshihiko [Tohoku Univ., Sendai (Japan). Inst. for Advanced Materials Processing; Wijk, O. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Process Metallurgy

    1996-12-31

    The effect of major residual elements on the properties of steel products is summarized. Measures to minimize these elements are discussed including the pretreatment of raw materials, innovative refining processes and environmental issues. This paper addresses (1) scrap situation, (2) upper limit of residual concentrations acceptable for processing and product quality, (3) possible means to reduce the residuals, and (4) consideration on the practicable measures to solve the residuals problem in a systematic way. 52 refs.

  7. Heat treatment giving a stable high temperature micro-structure in cast austenitic stainless steel

    DOE Patents [OSTI]

    Anton, Donald L. (Toland, CT); Lemkey, Franklin D. (Windsor, CT)

    1988-01-01

    A novel micro-structure developed in a cast austenitic stainless steel alloy and a heat treatment thereof are disclosed. The alloy is based on a multicomponent Fe-Cr-Mn-Mo-Si-Nb-C system consisting of an austenitic iron solid solution (.gamma.) matrix reinforced by finely dispersed carbide phases and a heat treatment to produce the micro-structure. The heat treatment includes a prebraze heat treatment followed by a three stage braze cycle heat treatment.

  8. Integrating Steel Production with Mineral Carbon Sequestration

    SciTech Connect (OSTI)

    Klaus Lackner; Paul Doby; Tuncel Yegulalp; Samuel Krevor; Christopher Graves

    2008-05-01

    The objectives of the project were (i) to develop a combination iron oxide production and carbon sequestration plant that will use serpentine ores as the source of iron and the extraction tailings as the storage element for CO2 disposal, (ii) the identification of locations within the US where this process may be implemented and (iii) to create a standardized process to characterize the serpentine deposits in terms of carbon disposal capacity and iron and steel production capacity. The first objective was not accomplished. The research failed to identify a technique to accelerate direct aqueous mineral carbonation, the limiting step in the integration of steel production and carbon sequestration. Objective (ii) was accomplished. It was found that the sequestration potential of the ultramafic resource surfaces in the US and Puerto Rico is approximately 4,647 Gt of CO2 or over 500 years of current US production of CO2. Lastly, a computer model was developed to investigate the impact of various system parameters (recoveries and efficiencies and capacities of different system components) and serpentinite quality as well as incorporation of CO2 from sources outside the steel industry.

  9. Development of a robust modeling tool for radiation-induced segregation in austenitic stainless steels

    SciTech Connect (OSTI)

    Yang, Ying; Field, Kevin G; Allen, Todd R.; Busby, Jeremy T

    2015-09-01

    Irradiation-assisted stress corrosion cracking (IASCC) of austenitic stainless steels in Light Water Reactor (LWR) components has been linked to changes in grain boundary composition due to irradiation induced segregation (RIS). This work developed a robust RIS modeling tool to account for thermodynamics and kinetics of the atom and defect transportation under combined thermal and radiation conditions. The diffusion flux equations were based on the Perks model formulated through the linear theory of the thermodynamics of irreversible processes. Both cross and non-cross phenomenological diffusion coefficients in the flux equations were considered and correlated to tracer diffusion coefficients through Manningís relation. The preferential atomvacancy coupling was described by the mobility model, whereas the preferential atom-interstitial coupling was described by the interstitial binding model. The composition dependence of the thermodynamic factor was modeled using the CALPHAD approach. Detailed analysis on the diffusion fluxes near and at grain boundaries of irradiated austenitic stainless steels suggested the dominant diffusion mechanism for chromium and iron is via vacancy, while that for nickel can swing from the vacancy to the interstitial dominant mechanism. The diffusion flux in the vicinity of a grain boundary was found to be greatly influenced by the composition gradient formed from the transient state, leading to the oscillatory behavior of alloy compositions in this region. This work confirms that both vacancy and interstitial diffusion, and segregation itself, have important roles in determining the microchemistry of Fe, Cr, and Ni at irradiated grain boundaries in austenitic stainless steels.

  10. Impact Tensile Testing of Stainless Steels at Various Temperatures

    SciTech Connect (OSTI)

    D. K. Morton

    2008-03-01

    Stainless steels are used for the construction of numerous spent nuclear fuel or radioactive material containers that may be subjected to high strains and moderate strain rates during accidental drop events. Mechanical characteristics of these base materials and their welds under dynamic loads in the strain rate range of concern (1 to 300 per second) are not well documented. However, research is being performed at the Idaho National Laboratory to quantify these characteristics. The work presented herein discusses tensile impact testing of dual-marked 304/304L and 316/316L stainless steel material specimens. Both base material and welded material specimens were tested at -20 oF, room temperature, 300 oF, and 600 oF conditions. Utilizing a drop weight impact test machine and 1/4-inch and 1/2-inch thick dog bone-shaped test specimens, a strain rate range of approximately 4 to 40 per second (depending on initial temperature conditions) was achieved. Factors were determined that reflect the amount of increased strain energy the material can absorb due to strain rate effects. Using the factors, elevated true stress-strain curves for these materials at various strain rates and temperatures were generated. By incorporating the strain rate elevated true stress-strain material curves into an inelastic finite element computer program as the defined material input, significant improvement in the accuracy of the computer analyses was attained. However, additional impact testing is necessary to achieve higher strain rates (up to 300 per second) before complete definition of strain rate effects can be made for accidental drop events and other similar energy-limited impulsive loads. This research approach, using impact testing and a total energy analysis methodology to quantify strain rate effects, can be applied to many other materials used in government and industry.

  11. Optimization of ferrous burden high temperature properties to meet blast furnace requirements in British Steel

    SciTech Connect (OSTI)

    Bergstrand, R.

    1996-12-31

    The high temperature properties of ferrous burden materials have long been an important consideration in the operation of British Steel blast furnaces. Previous research presented at this conference has shown that the behavior of materials in the lower stack and bosh can have a significant effect on furnace permeability and stability of operation. However, with increasing levels of hydrocarbon injection via the tuyeres, the reduction conditions inside British Steel blast furnaces have significantly altered over recent years. This paper focuses on the further work that has been undertaken to study the effect on ferrous burden high temperatures properties of the widely differing reduction regimes which can be experienced in today`s blast furnaces. The implications of the findings, and how they have been used in optimizing blast furnace operation and burden quality, are discussed.

  12. Innovative residential floor construction: Structural evaluation of steel joists with pre-formed web openings

    SciTech Connect (OSTI)

    Elhajj, N.R.

    1999-03-01

    Since 1992, the US Department of Housing and Urban Development has sponsored numerous studies to identify, evaluate, and implement innovative structural materials, such as cold-formed steel (CFS), in the residential market. The use of CFS is still very limited, partly because steel is not being effectively integrated into conventional home construction. One of the major barriers to the use of CFS floor joists is the impact it has on placement of large waste drains and ductwork installed in floor systems. This report provides an overview of tests conducted by the NAHB to integrate these systems with CFS. A brief literature review of relevant work followed by a detailed overview of the experimental and analytical approach are also provided. The report recommends adoption of the research findings in residential and commercial applications.

  13. Mechanical Characteristics of Submerged Arc Weldment in API Gas Pipeline Steel of Grade X65

    SciTech Connect (OSTI)

    Hashemi, S. H.; Mohammadyani, D.

    2011-01-17

    The mechanical properties of submerged arc weldment (SAW) in gas transportation pipeline steel of grade API X65 (65 ksi yield strength) were investigated. This steel is produced by thermo mechanical control rolled (TMC), and is largely used in Iran gas piping systems and networks. The results from laboratory study on three different regions; i.e. base metal (BM), fusion zone (FZ) and heat affected zone (HAZ) were used to compare weldment mechanical characteristics with those specified by API 5L (revision 2004) standard code. Different laboratory experiments were conducted on test specimens taken from 48 inch outside diameter and 14.3 mm wall thickness gas pipeline. The test results showed a gradient of microstructure and Vickers hardness data from the centerline of FZ towards the unaffected MB. Similarly, lower Charpy absorbed energy (compared to BM) was observed in the FZ impact specimens. Despite this, the API specifications were fulfilled in three tested zones, ensuring pipeline structural integrity under working conditions.

  14. Safety analysis report for packaging (onsite) steel drum

    SciTech Connect (OSTI)

    McCormick, W.A.

    1998-09-29

    This Safety Analysis Report for Packaging (SARP) provides the analyses and evaluations necessary to demonstrate that the steel drum packaging system meets the transportation safety requirements of HNF-PRO-154, Responsibilities and Procedures for all Hazardous Material Shipments, for an onsite packaging containing Type B quantities of solid and liquid radioactive materials. The basic component of the steel drum packaging system is the 208 L (55-gal) steel drum.

  15. A technique for calculating the effective thermal resistance of steel stud walls for code compliance

    SciTech Connect (OSTI)

    Brown, W.C.; Swinton, M.C.; Haysom, J.C. [National Research Council, Ottawa, Ontario (Canada)

    1998-12-31

    Canada`s Model National Energy Codes for Houses and for Buildings contain prescriptive requirements in the form of minimum thermal characteristics of envelope assemblies, including steel stud walls. To assist in the uniform enforcement of these requirements, it was necessary for the codes to prescribe acceptable methods of calculating the thermal resistance of steel and assemblies. The ASHRAE Handbook--Fundamentals proposes a simple method for predicting the thermal performance of stud walls, which is based on a weighted average of the values predicted by isothermal planes and parallel path calculation methods. The thermal resistance of 2440 mm x 2440 mm (8 ft x 8 ft) wall specimens, with 92 mm (3-5/8 in.) steel studs, was measured in a series of guarded hot box tests. Two stud gauges were evaluated, as well as two stud spacings, with one wood-based and three insulating sheathings. The measurements demonstrated that a weighting of 2:1 (isothermal planes:parallel path) provided an/ accurate prediction of the thermal resistance of walls with steel studs at 406 mm (16 in.) o.c., but that a 1:1 weighting best predicted the thermal resistance of walls with steel studs at 610 mm (24 in.) o.c. These results applied to walls with wood-based sheathing directly applied to the studs, whether or not the walls had insulating sheathing. Finally, the measurements demonstrated that an intermediate weighting of 3:2 best predicted the thermal resistance of walls with insulating sheathing installed directly onto the studs, i.e., without intermediate structural sheathing.

  16. FY 1994 Annual Work Plan

    SciTech Connect (OSTI)

    Not Available

    1993-09-30

    In accordance with the Inspector General`s Strategic Planning Policy directive, the Office of Inspector General (OIG) annually updates its Strategic Plan with budgetary and program guidance for the next fiscal year. The program guidance identifies and establishes priorities for OIG coverage of important DOE issues and operations, provides the basis for assigning OIG resources, and is the source for issues covered in Assistant Inspectors General annual work plans. The Office of the Assistant Inspector General for Audits (AIGA) publishes an Annual Work Plan in September of each year. The plan includes the OIG program guidance and shows the commitment of resources necessary to accomplish the assigned work and meet our goals. The program guidance provides the framework within which the AIGA work will be planned and accomplished. Audits included in this plan are designed to help insure that the requirements of our stakeholders have been considered and blended into a well balanced audit program.

  17. Auto/Steel Partnership: Fatigue of AHSS Strain Rate Characterization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fatigue of AHSS Strain Rate Characterization AutoSteel Partnership: Fatigue of AHSS Strain Rate Characterization 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual...

  18. ITP Steel: Hydrogen and Nitrogen Control in Ladle and Casting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Nitrogen Control in Ladle and Casting Operations ITP Steel: Hydrogen and Nitrogen Control in Ladle and Casting Operations castingops.pdf More Documents & Publications...

  19. Blast damage mitigation of steel structures from near- contact charges

    E-Print Network [OSTI]

    Wolfson, Janet Crumrine

    2008-01-01

    OF CALIFORNIA, SAN DIEGO Blast Damage Mitigation of Steel35† Damage Levels Observed in LaboratoryFigure 3.34: Progression of damage for a Ballistic Loading

  20. Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Collaboration to Enable a Carbon-Neutral Energy Economy Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation Hydrogen permeability and Integrity of hydrogen...

  1. Bandwidth Study U.S. Iron and Steel Manufacturing | Department...

    Broader source: Energy.gov (indexed) [DOE]

    (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. iron and steel...

  2. New Austenitic Stainless Steels for Exhaust Components (Agreement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maryland. merit08maziasz9112.pdf More Documents & Publications CF8C PLus: A New Cast Stainless Steel for High-Temperature Diesel Exhaust Components Vehicle Technologies Office...

  3. Stainless steel 304 cladding mechanical properties and limitations...

    Office of Scientific and Technical Information (OSTI)

    mechanical properties and limitations during steady state operation of U-ZrH TRIGA type fuel. Citation Details In-Document Search Title: Stainless steel 304 cladding mechanical...

  4. Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector

    SciTech Connect (OSTI)

    Xu, T.T.; Sathaye, J.; Galitsky, C.

    2010-09-30

    Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. With the working of energy programs and policies on carbon regulation, how to effectively analyze and manage the costs associated with GHG reductions become extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions (e.g., carbon emission) for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models. In this report, we first conduct brief overview on different representations of end-use technologies (mitigation measures) in various energy-climate models, followed by problem statements, and a description of the basic concepts of quantifying the cost of conserved energy including integrating non-regrets options. A non-regrets option is defined as a GHG reduction option that is cost effective, without considering their additional benefits related to reducing GHG emissions. Based upon these, we develop information on costs of mitigation measures and technological change. These serve as the basis for collating the data on energy savings and costs for their future use in integrated assessment models. In addition to descriptions of the iron and steel making processes, and the mitigation measures identified in this study, the report includes tabulated databases on costs of measure implementation, energy savings, carbon-emission reduction, and lifetimes. The cost curve data on mitigation measures are available over time, which allows an estimation of technological change over a decade-long historical period. In particular, the report will describe new treatment of technological change in energy-climate modeling for this industry sector, i.e., assessing the changes in costs and energy-savings potentials via comparing 1994 and 2002 conservation supply curves. In this study, we compared the same set of mitigation measures for both 1994 and 2002 -- no additional mitigation measure for year 2002 was included due to unavailability of such data. Therefore, the estimated potentials in total energy savings and carbon reduction would most likely be more conservative for year 2002 in this study. Based upon the cost curves, the rate of change in the savings potential at a given cost can be evaluated and be used to estimate future rates of change that can be the input for energy-climate models. Through characterizing energy-efficiency technology costs and improvement potentials, we have developed and presented energy cost curves for energy efficiency measures applicable to the U.S. iron and steel industry for the years 1994 and 2002. The cost curves can change significantly under various scenarios: the baseline year, discount rate, energy intensity, production, industry structure (e.g., integrated versus secondary steel making and number of plants), efficiency (or mitigation) measures, share of iron and steel production to which the individual measures can be applied, and inclusion of other non-energy benefits. Inclusion of other non-energy benefits from implementing mitigation measures can reduce the costs of conserved energy significantly. In addition, costs of conserved energy (CCE) for individual mitigation measures increase with the increases in discount rates, resulting in a general increase in total cost of mitigation measures for implementation and operation with a higher discount rate. In 1994, integrated steel mills in the U.S. produced 55.

  5. PublishedbyManeyPublishing(c)IOMCommunicationsLtd Stainless steel weld metal designed to

    E-Print Network [OSTI]

    Cambridge, University of

    to be significantly better than commercially available martensitic stainless steel welding consumables, and it has transformation, Residual stress, Stainless steel, Martensitic, Transformation plasticity Introduction Residual weld metal could be based on a martensitic stainless steel. Although such alloys are available

  6. ITP Steel: Energy and Environmental Profile fo the U.S. Iron...

    Energy Savers [EERE]

    U.S. Iron and Steel Industry steelprofile.pdf More Documents & Publications ITP Steel: Energy and Environmental Profile fo the U.S. Iron and Steel Industry Bandwidth Study U.S....

  7. Design of duplex low-carbon steels with carbide forming elements

    E-Print Network [OSTI]

    Costello, Peter K.

    2012-01-01

    molybdenum steel is more sensitive to annealing temperatureannealing with selected commercial and experimental low-carbon steels.annealing and the resultant volume fraction of the strong phase, played a major role in the duplex processing of steel.

  8. Mechanical properties and microstructures of dual phase steels containing silicon, aluminum and molybdenum

    E-Print Network [OSTI]

    Neill, Thomas John O'

    2011-01-01

    annealing, This signifi- cantly increased the strength of commercial 1010 steel andtwo- phase annealing. The Mo containing steels (Figures 5(a)steels containing retained austenite in the martensitic structure, the austenite formed during the two-phase annealing

  9. DESIGN OF DUAL PHASE Fe/Mn/C STEEL FOR LOW TEMPERATURE APPLICATION

    E-Print Network [OSTI]

    Kim, Nack-Joon

    2013-01-01

    I Ferritic-Martensitic Steel Annealing temp (įC) Oy eu eTa+ y) phase annealing for dual phase steels when good impactphase annealing temperatures. The boron-treated steel shows

  10. In vitro Corrosion and Haemocompatibility of Bulk Nanocrystalline 304 Stainless Steel by Severe Rolling

    E-Print Network [OSTI]

    Zheng, Yufeng

    In vitro Corrosion and Haemocompatibility of Bulk Nanocrystalline 304 Stainless Steel by Severe; haemocompatibility. Abstract. Bulk nanocrystalline 304 stainless steel (nanocrystalline 304ss) discs had been successfully prepared by the commercial microcrystalline 304 stainless steel (microcrystalline 304ss) plate

  11. Measuring the Residual Ferrite Content of Rapidly Solidified Stainless Steel Alloys-

    E-Print Network [OSTI]

    Eagar, Thomas W.

    ) ) Measuring the Residual Ferrite Content of Rapidly Solidified Stainless Steel Alloys. Electron beam welds, laser beam welds and rapidly solidified stainless steel alloys have small physical Fe content by measur- ing the magnetic properties of fully ferritic stainless steel specimens

  12. CARBON ATOM DISTRIBUTION IN A DUAL PHASE STEEL: AN ATOM PROBE STUDY

    E-Print Network [OSTI]

    Barnard, S.J.

    2014-01-01

    ATOM DISTRIBUTION IN A DUAL PHASE STEEL: AN ATOM PROBE STUDY~4720 1 U.S.A. IntroductioE. Dual Phase steels are currentlymartensite-austenite dual phase steel, although the results

  13. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF 0.1C STEEL WITH Nb

    E-Print Network [OSTI]

    Gau, Jing-Sheng

    2014-01-01

    and Properties of Dual-Phase Steels, R. A. Kot and J. W.and Prooerties of Dual-Phase Steels, R. A. Kot and J. W.Prooerties of Vanadium Dual Phase Steel and Cold Pressing

  14. DESIGN OF DUAL PHASE Fe/Mn/C STEEL FOR LOW TEMPERATURE APPLICATION

    E-Print Network [OSTI]

    Kim, Nack-Joon

    2013-01-01

    and Properties of Dual- Phase Steels, R. A. Kot and J. \\4.and Properties of Dual Phase Steels, R. A. Kot and J. W. ~Formable HSLA and Dual- Phase Steels, A. T. Davenport, ed. ,

  15. Influence of steel type on the propensity for tribochemical wear in boundary lubrication with a wind turbine gear oil

    SciTech Connect (OSTI)

    Evans, Ryan D.; Doll, Gary L.; Hager, C H; Howe, Jane Y

    2010-01-01

    Tribochemical wear may occur at the interface between a surface and a lubricant as a result of chemical and mechanical interactions in a tribological contact. Understanding the onset of tribochemical wear damage on component surfaces requires the use of high resolution techniques such as transmission electron microscopy (TEM). In this study, two steel types, case carburized AISI 3310 and through-hardened AISI 52100, were wear tested using a ball-on-disk rolling/sliding contact tribometer in fully formulated commercial wind turbine gearbox oil under boundary lubrication conditions with 10% slip. With the exception of steel type, all other test conditions were held constant. Conventional tribofilm analysis in the wear tracks was performed using X-ray photoelectron spectroscopy, and no significant composition differences were detected in the tribofilms for the different steel disk types. However, TEM analysis revealed significant tribochemical wear differences between the two steel types at multiple length scales, from the near-surface material microstructure (depth < 500 nm) to the tribofilm nanostructure. Nanometer-scale interfacial cracking and surface particle detachment was observed for the AISI 52100 case, whereas the tribofilm/substrate interface was abrupt and undamaged for the AISI 3310 case. Differences in tribofilm structure, including the location and orientation of MoS{sub 2} single sheet inclusions, were observed as a function of steel type as well. It is suggested that the tribochemical wear modes observed in these experiments may be origins of macroscopic surface-initiated damage such as micropitting in bearings and gears.

  16. THE USE OF MICROSTRUCTURE CONTROL TO TOUGHEN FERRITIC STEELS FOR CRYOGENIC USE. II. Fe-Mn STEELS

    E-Print Network [OSTI]

    Hwang, S.K.

    2010-01-01

    steels in current use at LNG temperatures and below containtemperature to below LNG temperature. The resulting alloysis suitable for use to below LNG temperature in the grain-

  17. INSTRUMENTATION, INCLUDING NUCLEAR AND PARTICLE DETECTORS; RADIATION

    Office of Scientific and Technical Information (OSTI)

    interval technical basis document Chiaro, P.J. Jr. 44 INSTRUMENTATION, INCLUDING NUCLEAR AND PARTICLE DETECTORS; RADIATION DETECTORS; RADIATION MONITORS; DOSEMETERS;...

  18. Reduction in Energy Consumption & Variability in Steel Foundry Operations

    SciTech Connect (OSTI)

    Frank Peters

    2005-05-04

    This project worked to improve the efficiency of the steel casting industry by reducing the variability that occurs because of process and product variation. The project focused on the post shakeout operations since roughly half of the production costs are in this area. These improvements will reduce the amount of variability, making it easier to manage the operation and improve the competitiveness. The reduction in variability will also reduce the need for many rework operations, which will result in a direct reduction of energy usage, particularly by the reduction of repeated heat treatment operations. Further energy savings will be realized from the reduction of scrap and reduced handling. Field studies were conducted at ten steel foundries that represented the U.S. steel casting industry, for a total of over 100 weeks of production observation. These studies quantified the amount of variability, and looked toward determining the source. A focus of the data collected was the grinding operations since this is a major effort in the cleaning room, and it represents the overall casting quality. The grinding was divided into two categories, expected and unexpected. Expected grinding is that in which the location of the effort is known prior to making the casting, such as smoothing parting lines, gates, and riser contacts. Unexpected grinding, which was approximately 80% of the effort, was done to improve the surfaces at weld repair locations, to rectify burnt on sand, and other surface anomalies at random locations. Unexpected grinding represents about 80% of the grinding effort. By quantifying this effort, the project raised awareness within the industry and the industry is continuing to make improvements. The field studies showed that the amount of variation of grinding operations (normalized because of the diverse set of parts studied) was very consistent across the industry. The field studies identified several specific sources that individually contributed to large process variation. This indicates the need for ongoing monitoring of the process and system to quantify the effort being expended. A system to measure the grinding effort was investigated but did not prove to be successful. A weld wire counting system was shown to be very successful in tracking casting quality by monitoring the quantity of weld wire being expended on a per casting basis. Further use of such systems is highly recommended. The field studies showed that the visual inspection process for the casting surface was a potentially large source of process variation. Measurement system analysis studies were conducted at three steel casting producers. The tests measured the consistency of the inspectors in identifying the same surface anomalies. The repeatability (variation of the same operator inspecting the same casting) was found to be relatively consistent across the companies at about 60-70%. However, this is still are very large amount of variation. Reproducibility (variation of different operators inspecting the same casting) was worse, ranging between 20 to 80% at the three locations. This large amount of variation shows that there is a great opportunity for improvement. Falsely identifying anomalies for reworking will cause increased expense and energy consumption. This is particularly true if a weld repair and repeated heat treatment is required. However, not identifying an anomaly could also result in future rework processing, a customer return, or scrap. To help alleviate this problem, casting surface comparator plates were developed and distributed to the industry. These plates are very inexpensive which enables them to be provided to all those involved with casting surface quality, such as operators, inspectors, sales, and management.

  19. Friction Stir Welding High Strength Low Alloy Steel using a Multilayer...

    Office of Scientific and Technical Information (OSTI)

    Friction Stir Welding High Strength Low Alloy Steel using a Multilayer Approach Citation Details In-Document Search Title: Friction Stir Welding High Strength Low Alloy Steel using...

  20. Quantitative evaluation of general corrosion of Type 304 stainless steel in subcritical and

    E-Print Network [OSTI]

    Benning, Liane G.

    Quantitative evaluation of general corrosion of Type 304 stainless steel in subcritical the corrosion rate of Type 304 stainless steel (SS) in subcritical and supercritical environments. The EN

  1. CURRENT PROJECTS 1) Numerical Work:-

    E-Print Network [OSTI]

    Bone, Gary

    Master Steel Research Center ∑ General Motors Corp. ∑ Members of McMaster Heat Treating Consortium:- 1. NITREX Metal Treating 2. VAC AERO International 3. ABERFOYLE Heat Treaters 4. EXACTATHERM Ltd. 5. A & M Heat

  2. AISI/DOE Technology Roadmap Program: Improved Surface Quality of Exposed Automotive Sheet Steels

    SciTech Connect (OSTI)

    John G. Speer; David K. Matlock; Noel Meyers; Young-Min Choi

    2002-10-10

    Surface quality of sheet steels is an important economic and technical issue for applications such as critical automotive surfaces. This project was therefore initiated to develop a more quantitative methodology for measuring surface imperfections, and to assess their response to forming and painting, particularly with respect to their visibility or invisibility after painting. The objectives were met, and included evaluation of a variety of imperfections present on commercial sheet surfaces or simulated using methods developed in the laboratory. The results are expected to have significant implications with respect to the methodology for assessing surface imperfections, development of quantitative criteria for surface inspection, and understanding and improving key painting process characteristics that influence the perceived quality of sheet steel surfaces.

  3. Ultrasonic inspection of austenitic stainless steel welds with artificially produced stress corrosion cracks

    SciTech Connect (OSTI)

    Dugan, Sandra; Wagner, Sabine [Materials Testing Institute University of Stuttgart (MPA), Pfaffenwaldring 32, 70569 Stuttgart (Germany)

    2014-02-18

    Austenitic stainless steel welds and nickel alloy welds, which are widely used in nuclear power plants, present major challenges for ultrasonic inspection due to the grain structure in the weld. Large grains in combination with the elastic anisotropy of the material lead to increased scattering and affect sound wave propagation in the weld. This results in a reduced signal-to-noise ratio, and complicates the interpretation of signals and the localization of defects. Mechanized ultrasonic inspection was applied to study austenitic stainless steel test blocks with different types of flaws, including inter-granular stress corrosion cracks (IGSCC). The results show that cracks located in the heat affected zone of the weld are easily detected when inspection from both sides of the weld is possible. In cases of limited accessibility, when ultrasonic inspection can be carried out only from one side of a weld, it may be difficult to distinguish between signals from scattering in the weld and signals from cracks.

  4. Using Phased Array Ultrasonic Testing in Lieu of Radiography for Acceptance of Carbon Steel Piping Welds

    SciTech Connect (OSTI)

    Moran, Traci L.; Anderson, Michael T.; Cinson, Anthony D.; Crawford, Susan L.; Nove, Carol A.

    2014-08-01

    The Pacific Northwest National Laboratory (PNNL) is conducting studies for the U.S. Nuclear Regulatory Commission (NRC) to assess the capability, effectiveness, and reliability of ultrasonic testing (UT) as a replacement method for radiographic testing (RT) for volumetric examination of nuclear power plant (NPP) components. This particular study focused on evaluating the use of UT on carbon steel plate welds. Welding fabrication flaws included a combination of planar and volumetric types, e.g., incomplete fusion, lack of penetration, cracks, porosity, and slag inclusions. The examinations were conducted using phased-array (PA) UT techniques applied primarily for detection and flaw type characterization. This paper will discuss the results of using UT in lieu of RT for detection and classification of fabrication flaws in carbon steel plate welds.

  5. Simplified dynamic buckling assessment of steel containments

    SciTech Connect (OSTI)

    Farrar, C.R.; Duffey, T.A.; Renick, D.H.

    1993-01-01

    A simplified, three-degree-of-freedom analytical procedure for performing a response spectrum buckling analysis of a thin containment shell is developed. Two numerical examples with R/t values which bound many existing steel containments are used to illustrate the procedure. The role of damping on incipient buckling acceleration level is evaluated for a regulatory seismic spectrum using the two numerical examples. The zero-period acceleration level that causes incipient buckling in either of the two containments increases 31% when damping is increased from 1% to 4% of critical. Comparisons with finite element results on incipient buckling levels are favorable.

  6. Simplified dynamic buckling assessment of steel containments

    SciTech Connect (OSTI)

    Farrar, C.R.; Duffey, T.A.; Renick, D.H.

    1993-02-01

    A simplified, three-degree-of-freedom analytical procedure for performing a response spectrum buckling analysis of a thin containment shell is developed. Two numerical examples with R/t values which bound many existing steel containments are used to illustrate the procedure. The role of damping on incipient buckling acceleration level is evaluated for a regulatory seismic spectrum using the two numerical examples. The zero-period acceleration level that causes incipient buckling in either of the two containments increases 31% when damping is increased from 1% to 4% of critical. Comparisons with finite element results on incipient buckling levels are favorable.

  7. Method for machining steel with diamond tools

    DOE Patents [OSTI]

    Casstevens, J.M.

    1984-01-01

    The present invention is directed to a method for machine optical quality finishes and contour accuracies of workpieces of carbon-containing metals such as steel with diamond tooling. The wear rate of the diamond tooling is significantly reduced by saturating the atmosphere at the interface of the workpiece and the diamond tool with a gaseous hydrocarbon during the machining operation. The presence of the gaseous hydrocarbon effectively eliminates the deterioration of the diamond tool by inhibiting or preventing the conversion of the diamond carbon to graphite carbon at the point of contact between the cutting tool and the workpiece.

  8. Method for machining steel with diamond tools

    DOE Patents [OSTI]

    Casstevens, John M. (Greenville, TX)

    1986-01-01

    The present invention is directed to a method for machining optical quality inishes and contour accuracies of workpieces of carbon-containing metals such as steel with diamond tooling. The wear rate of the diamond tooling is significantly reduced by saturating the atmosphere at the interface of the workpiece and the diamond tool with a gaseous hydrocarbon during the machining operation. The presence of the gaseous hydrocarbon effectively eliminates the deterioration of the diamond tool by inhibiting or preventing the conversion of the diamond carbon to graphite carbon at the point of contact between the cutting tool and the workpiece.

  9. Microstructure of Super-duplex Stainless Steels

    E-Print Network [OSTI]

    Sharafi, Shahriar

    1993-12-07

    -DUPLEX STAINLESS STEELS By Shahriar Sharafi St. Edmund College Department of Materials Science and Metallurgy Pelnbroke Street Calnbridge CB23QZ A dissertation submitted for the degree of Doctor of Philosophy at the University of Calnbridge September 1993... The experts of Science and Culture are like candles Which light the way through the darkness for humanity But they never find daylight They just tell a tale and leave. OMAR KHAYYAM The great Persian Scienti3t, Philosopher and Poet Late 11th/early 12th Century...

  10. Communication Seebeck effect in steel fiber reinforced cement

    E-Print Network [OSTI]

    Chung, Deborah D.L.

    Communication Seebeck effect in steel fiber reinforced cement Sihai Wen, D.D.L. Chung* Composite Abstract Cement pastes containing short steel fibers, which contribute to electron conduction, exhibit.0% by mass of cement gives a higher value of the absolute thermoelectric power than a content of 0.5% by mass

  11. Modelling of reoxidation inclusion formation in steel sand casting

    E-Print Network [OSTI]

    Beckermann, Christoph

    Modelling of reoxidation inclusion formation in steel sand casting A. J. Melendez, K. D. Carlson pouring, as well as their final locations on the surface of steel sand castings. Inclusions originate. The inclusion model is implemented in a general-purpose casting simulation code. The model is validated

  12. MODELLING OF MICROSTRUCTURE IN NOVEL HIGH STRENGTH STEEL WELDS

    E-Print Network [OSTI]

    Cambridge, University of

    MODELLING OF MICROSTRUCTURE IN NOVEL HIGH STRENGTH STEEL WELDS by Gethin Rees Ernmanuel College . . . . Nomenclature List CHAPTER 1 Introduction 1.1 An Introduction to the Welding Process 1.1.1 The Welding Processes . . 1.1.2 The Welding Thermal Cycle 1.2 An Introduction to the Metallurgy of Steel 1.2.1 Pure Iron

  13. DESIGN OF PARTIALLY RESTRAINED STEEL FRAMES USING ADVANCED ANALYSIS AND

    E-Print Network [OSTI]

    Foley, Christopher M.

    DESIGN OF PARTIALLY RESTRAINED STEEL FRAMES USING ADVANCED ANALYSIS AND AN OBJECT by the experience and intuition of the designer. However, researchers are continually developing analysis of the steel frames in lieu of design specification and code requirements. The advanced analysis based design

  14. The limit of strength and toughness of steel

    SciTech Connect (OSTI)

    Guo, Zhen

    2001-12-17

    The ideal structural steel combines high strength with high fracture toughness. This dissertation discusses the governing principles of strength and toughness, along with the approaches that can be used to improve these properties and the inherent limits to how strong and tough a steel can be.

  15. Steamside Oxidation Behavior of Experimental 9%Cr Steels

    SciTech Connect (OSTI)

    Dogan, O.N.; Holcomb, G.R.; Alman, D.E.; Jablonski, P.D.

    2007-10-01

    Reducing emissions and increasing economic competitiveness require more efficient steam power plants that utilize fossil fuels. One of the major challenges in designing these plants is the availability of materials that can stand the supercritical and ultra-supercritical steam conditions at a competitive cost. There are several programs around the world developing new ferritic and austenitic steels for superheater and reheater tubes exposed to the advanced steam conditions. The new steels must possess properties better than current steels in terms of creep strength, steamside oxidation resistance, fireside corrosion resistance, and thermal fatigue resistance. This paper introduces a series of experimental 9%Cr steels containing Cu, Co, and Ti. Stability of the phases in the new steels is discussed and compared to the phases in the commercially available materials. The steels were tested under both the dry and moist conditions at 650ļC for their cyclical oxidation resistance. Results of oxidation tests are presented. Under the moist conditions, the experimental steels exhibited significantly less mass gain compared to the commercial P91 steel. Microstructural characterization of the scale revealed different oxide compositions.

  16. Variant selection in samples of austenitic stainless steel cold

    E-Print Network [OSTI]

    Cambridge, University of

    austenitic stainless steels such as AISI- 304L and 301L partially transform to martensite when deformed. #12Variant selection in samples of austenitic stainless steel cold rolled and deformed by tension of martensite crystallography (PMTC ) and Patel-Cohenīs theory for variant selection to predict crystallographic

  17. DESIGN PHILOSOPHY FOR STEEL STRUCTURES IN MODERATE SEISMIC REGIONS

    E-Print Network [OSTI]

    Hines, Eric

    DESIGN PHILOSOPHY FOR STEEL STRUCTURES IN MODERATE SEISMIC REGIONS E.M. Hines1 and L.A. Fahnestock2 ABSTRACT The authors propose a design philosophy for steel buildings in moderate seismic regions that draws of the International Building Code has introduced seismic design to regions of North America that heretofore have

  18. Plastic strain due to twinning in austenitic TWIP steels

    E-Print Network [OSTI]

    Cambridge, University of

    Plastic strain due to twinning in austenitic TWIP steels B. Qin and H. K. D. H. Bhadeshia* Twinning induced plasticity steels are austenitic alloys in which mechanical twinning is a prominent deformation, Twinning, Twinning induced plasticity, Automobiles Introduction Mechanical twinning is a plastic

  19. EFFECT OF POROSITY ON MECHANICAL PROPERTIES OF 8630 CAST STEEL

    E-Print Network [OSTI]

    Beckermann, Christoph

    of steel castings. Likewise there are no guidelines relating non-destructive testing or non- destructive radiographs of 8630 steel fatigue test specimens taken prior to fatigue testing. The measurement procedure well with the fatigue test specimens' measured elastic modulus. Converting the elastic modulus

  20. MODELING OF POROSITY FORMATION AND FEEDING FLOW IN STEEL CASTING

    E-Print Network [OSTI]

    Beckermann, Christoph

    , or even larger shrinkage cavities found in inadequately fed cast sections. Microporosity can cause leaksMODELING OF POROSITY FORMATION AND FEEDING FLOW IN STEEL CASTING Kent D. Carlson, Zhiping Lin pressure, feeding flow, and porosity formation and growth in steel castings during solidification

  1. INTEGRATED DESIGN OF STEEL CASTINGS FOR SERVICE PERFORMANCE

    E-Print Network [OSTI]

    Beckermann, Christoph

    Bellet TMS (The Minerals, Metals & Materials Society), 2006 #12;Casting Simulation (Shrinkage PredictionINTEGRATED DESIGN OF STEEL CASTINGS FOR SERVICE PERFORMANCE Richard. A. Hardin1 , Richard K. Huff2, USA 2 Caterpillar Inc., Champaign, IL 61820, USA Keywords: steel casting, porosity, fatigue life

  2. Prediction of Reoxidation Inclusion Composition in Casting of Steel

    E-Print Network [OSTI]

    Beckermann, Christoph

    and refilling the defect areas with weld metal account for approximately 20% of the direct cost of steel pouring of the (deoxidized) steel from the ladle into the mold. Oxygen may come from the surrounding atmosphere, refractories, slag, or the sand mold (Sommerville and McKeogh, 1981). The atmosphere is generally

  3. Clean Cast Steel Technology - Machinability and Technology Transfer

    SciTech Connect (OSTI)

    C. E. Bates; J. A. Griffin

    2000-05-01

    There were two main tasks in the Clean Cast Steel Technology - Machinability and Technology Transfer Project. These were (1) determine the processing facts that control the machinability of cast steel and (2) determine the ability of ladle stirring to homogenize ladle temperature, reduce the tap and pouring temperatures, and reduce casting scrap.

  4. Rutherford backscattering analysis of gallium implanted 316 stainless steel

    E-Print Network [OSTI]

    Ortensi, Javier

    2000-01-01

    Ion implantation of Ga ions into 316 stainless steel was performed at fluences ranging from 8x10Ļ? to 10Ļ? ions/cm≤. The depth profile of Ga in the steel was analyzed via Rutherford Backscattering and ToFSIMS. The surface effects were...

  5. Optimization of Steel Production Scheduling with Complex Time-

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    in the prices of energy might significantly affect the profitability as shown for a stainless-steel productionOptimization of Steel Production Scheduling with Complex Time- Sensitive Electricity Cost Hubert Research, Wallstadter Str. 59, 68526 Ladenburg, Germany b Technische Universität Dortmund, Emil-Figge Str

  6. He Transport and Fate of Tempered Martensitic Steels: Summary of Recent TEM Observations

    SciTech Connect (OSTI)

    Edwards, Danny J.; Kurtz, Richard J.; Odette, G Robert; Yamamoto, Takuya

    2010-02-26

    As an extension of prior work [1-4], we summarize recent observations made on a He-implanted tempered martensitic steel (TMS), F82H mod 3, irradiated in the HFIR, in both as-tempered (AT) and cold-worked (CW) conditions. A novel implantation technique was used to uniformly inject He into 3-mm diameter TEM discs to depths ranging from ? 5-8 Ķm. The He is generated by two-step transmutation reactions in Ni contained in a NiAl coating layer adjacent to paired 3 mm TEM discs. NiAl layers from 1 to 4 ?m thick produced He/dpa ratios between 5 and 40 appm/dpa. The irradiations were at temperatures of 300, 400 and 500įC from 3.9 to 9 dpa and 90 to 380 appm He. Electron transparent samples were prepared by a cross-sectional thinning technique that allowed investigating microstructural evolution over a range of implantation depths. Irradiation of the AT alloy to 9 dpa at 500įC and 380 appm He resulted in relatively large, faceted cavities, that are likely voids, along with a much higher density of smaller He bubbles. The cavities were most often aligned in pearl necklace like strings, presumably due to their formation on pre-existing dislocations. A finer distribution of cavities was also present on precipitate interfaces, lath and grain boundaries. Nine dpa irradiations that produced 190 appm He resulted in a somewhat more random distribution and lower density of smaller matrix cavities; but lower He levels had a less noticeable effect on bubbles in the lath and precipitate boundaries. Corresponding irradiations of the CW F82H produced a larger number of smaller cavities. Irradiation of the AT alloy to 3.9 dpa and 90 ppm He at 400įC produced a similar cavity population to that observed at 500įC at 190 appm He, while the corresponding cavities at 500įC are slightly larger and more numerous at 380 appm He. The cavity strings were less obvious for the 400įC irradiations, and the bubble distribution appeared to be more random. No cavities were observed in the case of the 300įC irradiations. Overall the cavity number densities compare favorably with those previously reported [4], but details, including size distributions, are still under investigation. Dislocation structures were complex and varied greatly as a function of irradiation dose and temperature, and will be more thoroughly characterized in the next phase of the work.

  7. Los Alamos National Laboratory (LANL) Safety Conscious Work Environmen...

    Office of Environmental Management (EM)

    Safety Conscious Work Environment (SCWE) Self-Assessment Los Alamos National Laboratory (LANL) Safety Conscious Work Environment (SCWE) Self-Assessment The documents included in...

  8. Radioactive Contamination Control Work Practices

    SciTech Connect (OSTI)

    WAGGONER, L.O.

    2002-10-01

    At Hanford, loose radioactive material can be found in plant systems, rooms, ventilation ducts, fuel pools, and outside radiological work facilities. Work practices used to accomplish radiological work in nuclear facilities often concern keeping radioactive contamination from spreading. This is not an easy task as the contamination activity levels can be very high and the material can be very unstable. Most of the time, the contamination is not visible, so we have to rely on surveys taken by Radiological Controls personnel to tell workers where the contamination is located and the activity levels present. The work practices used by workers are critical in controlling contamination spread, but it is impossible to document all of the work practices a worker should use. Many times, something will happen during the job that could result in a contamination spread. We rely on the workers knowledge and experience to realize when a potential spread of contamination is occurring, and take the actions necessary to prevent it from happening. It is important that a worker understand the concepts of contamination control in order to make the right decisions when work is accomplished. In facilities that work with ''fissile'' materials there is increased concern that nothing be done that increases the chance that a ''criticality accident'' might occur during work. Criticality safety personnel need to be consulted and approve contamination control practices that could increase the potential for a criticality accident. This Workshop includes a discussion of fundamental contamination control practices and new techniques used for radiological work. This is intended to be very informative and include hands-on exercises to provide the attendees with an appreciation of the methods being used to confine contamination spread.

  9. Course may include: Research in Education

    E-Print Network [OSTI]

    Course may include: Research in Education Statistics in Education Theories of Educational Admin Policy Analysis Sociological Aspects of Education Approaches to Literacy Development Information and Communication Technologies Issues in Education Final Project Seminar Master of Education Educational

  10. Effects of LWR coolant environments on fatigue design curves of carbon and low-alloy steels

    SciTech Connect (OSTI)

    Chopra, O.K.; Shack, W.J. [Argonne National Lab., IL (United States)

    1998-03-01

    The ASME Boiler and Pressure Vessel Code provides rules for the construction of nuclear power plant components. Figures I-9.1 through I-9.6 of Appendix I to Section III of the code specify fatigue design curves for structural materials. While effects of reactor coolant environments are not explicitly addressed by the design curves, test data indicate that the Code fatigue curves may not always be adequate in coolant environments. This report summarizes work performed by Argonne National Laboratory on fatigue of carbon and low-alloy steels in light water reactor (LWR) environments. The existing fatigue S-N data have been evaluated to establish the effects of various material and loading variables such as steel type, dissolved oxygen level, strain range, strain rate, temperature, orientation, and sulfur content on the fatigue life of these steels. Statistical models have been developed for estimating the fatigue S-N curves as a function of material, loading, and environmental variables. The results have been used to estimate the probability of fatigue cracking of reactor components. The different methods for incorporating the effects of LWR coolant environments on the ASME Code fatigue design curves are presented.

  11. A simplified LBB evaluation procedure for austenitic and ferritic steel piping

    SciTech Connect (OSTI)

    Gamble, R.M.; Wichman, K.R.

    1997-04-01

    The NRC previously has approved application of LBB analysis as a means to demonstrate that the probability of pipe rupture was extremely low so that dynamic loads associated with postulated pipe break could be excluded from the design basis (1). The purpose of this work was to: (1) define simplified procedures that can be used by the NRC to compute allowable lengths for circumferential throughwall cracks and assess margin against pipe fracture, and (2) verify the accuracy of the simplified procedures by comparison with available experimental data for piping having circumferential throughwall flaws. The development of the procedures was performed using techniques similar to those employed to develop ASME Code flaw evaluation procedures. The procedures described in this report are applicable to pipe and pipe fittings with: (1) wrought austenitic steel (Ni-Cr-Fe alloy) having a specified minimum yield strength less than 45 ksi, and gas metal-arc, submerged arc and shielded metal-arc austentic welds, and (2) seamless or welded wrought carbon steel having a minimum yield strength not greater than 40 ksi, and associated weld materials. The procedures can be used for cast austenitic steel when adequate information is available to place the cast material toughness into one of the categories identified later in this report for austenitic wrought and weld materials.

  12. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2014-11-25

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  13. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  14. Simulation of Distortion and Residual Stress Development During Heat Treatment of Steel Castings

    SciTech Connect (OSTI)

    Christoph Beckermann; Kent Carlson

    2011-07-22

    Heat treatment and associated processing, such as quenching, are critical during high strength steel casting production. These processes must be managed closely to prevent thermal and residual stresses that may result in distortion, cracking (particularly after machining), re-work, and weld repair. The risk of casting distortion limits aggressive quenching that can be beneficial to the process and yield an improved outcome. As a result of these distortions, adjustments must be made to the casting or pattern design, or tie bars must be added. Straightening castings after heat treatments can be both time-consuming and expensive. Residual stresses may reduce a casting√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?s overall service performance, possibly resulting in catastrophic failure. Stress relieving may help, but expends additional energy in the process. Casting software is very limited in predicting distortions during heat treatment, so corrective measures most often involve a tedious trial-and-error procedure. An extensive review of existing heat treatment residual stress and distortion modeling revealed that it is vital to predict the phase transformations and microstructure of the steel along with the thermal stress development during heat treatment. After reviewing the state-of-the-art in heat treatment residual stress and distortion modeling, an existing commercial code was selected because of its advanced capabilities in predicting phase transformations, the evolving microstructure and related properties along with thermal stress development during heat treatment. However, this software was developed for small parts created from forgings or machined stock, and not for steel castings. Therefore, its predictive capabilities for heat treatment of steel castings were investigated. Available experimental steel casting heat treatment data was determined to be of insufficient detail and breadth, and so new heat treatment experiments were designed and performed, casting and heat treating modified versions of the Navy-C ring (a classical test shape for heat treatment experiments) for several carbon and low alloy steels in order to generate data necessary to validate the code. The predicted distortions were in reasonable agreement with the experimentally measured values. However, the final distortions in the castings were small, making it difficult to determine how accurate the predictions truly are. It is recommended that further validation of the software be performed with the aid of additional experiments with large production steel castings that experience significant heat treatment distortions. It is apparent from this research that the mechanical properties of the bonded sand used for cores and sand molds are key in producing accurate stress simulation results. Because of this, experiments were performed to determine the temperature-dependent elastic modulus of a resin-bonded sand commonly utilized in the steel casting industry. The elastic modulus was seen to vary significantly with heating and cooling rates. Also, the retained room temperature elastic modulus after heating was seen to degrade significantly when the sand was heated above 125√?¬?√?¬?√?¬?√?¬įC. The elastic modulus curves developed in this work can readily be utilized in casting simulation software. Additional experiments with higher heating rates are recommended to determine the behavior of the elastic modulus in the sand close to the mold-metal interface. The commercial heat treatment residual stress and distortion code, once fully validated, is expected to result in an estimated energy savings of 2.15 trillion BTU√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?s/year. Along with these energy savings, reduction of scrap and improvement in casting yield will result in a reduction of the environmental emissions associated with the melting and pouring of the metal which will be saved as a result of this technology.

  15. Wrought stainless steel compositions having engineered microstructures for improved heat resistance

    DOE Patents [OSTI]

    Maziasz, Philip J [Oak Ridge, TN; Swindeman, Robert W [Oak Ridge, TN; Pint, Bruce A [Knoxville, TN; Santella, Michael L [Knoxville, TN; More, Karren L [Knoxville, TN

    2007-08-21

    A wrought stainless steel alloy composition includes 12% to 25% Cr, 8% to 25% Ni, 0.05% to 1% Nb, 0.05% to 10% Mn, 0.02% to 0.15% C, 0.02% to 0.5% N, with the balance iron, the composition having the capability of developing an engineered microstructure at a temperature above 550.degree. C. The engineered microstructure includes an austenite matrix having therein a dispersion of intragranular NbC precipitates in a concentration in the range of 10.sup.10 to 10.sup.17 precipitates per cm.sup.3.

  16. Energy Assessments under the Top 10,000 Program - A Case Study for a Steel Mill in China

    SciTech Connect (OSTI)

    Lu, Hongyou; Price, Lynn; Nimbalkar, Sachin U; Thekdi, Arvind; Degroot, Matthew; Shi, Jun

    2014-01-01

    One of the largest energy-savings programs for the Chinese industrial sector was the Top-1,000 Program, which targeted the 1,000 largest industrial enterprises in China. This program was launched in 2006, implemented through 2010, and covered 33% of national energy usage. Because of the success of the Top-1000 initiative, the program has now been expanded to the Top-10,000 program in the 12th Five-Year Plan period (2011-2015). The Top-10,000 program covers roughly 15,000 industrial enterprises, or about two-thirds of China s total energy consumption. Implementing energy audit systems and conducting industrial energy efficiency assessments are key requirements of the Top-10,000 program. Previous research done by Lawrence Berkeley National Laboratory (LBNL) has shown that there is a significant potential for improvement in energy assessment practices and applications in China. Issues such as lack of long term policy mechanisms, insufficient motivation for industrial enterprises, limited technical scope of energy assessments, and lack of systematic standardization have been identified. Through the support of the U.S. Department of Energy (DOE) and the U.S. State Department (with additional co-funding from the Energy Foundation China), LBNL, Oak Ridge National Laboratory, the Institute for Sustainable Communities (ISC), and DOE Energy Experts worked collaboratively with Chinese local organizations and conducted a series of industrial energy efficiency assessment demonstrations in selected Chinese industrial plants. The project aimed to not only introduce standardized methodologies and tools for energy assessments, but also to bring the systems approach for energy system analysis to the Top 10,000 enterprises. Through the project, five energy system assessments were conducted, and more than 300 Chinese experts from local energy conservation centers, universities, research organizations, energy service companies, and plant engineers were trained. This paper begins by introducing China s national energy intensity and carbon intensity reduction targets. Then, this paper explains the development of Top 10,000 program, including program requirements, the method for target allocation, key supporting policies, as well as challenges in implementing the program. By focusing on a process heating energy system assessment conducted in a Chinese steel mill, this paper presents an example of an energy system assessment conducted on steel reheating furnaces, including overall energy efficiency levels, areas of heat loss, and the potential for energy savings. In addition, the paper provides energy-savings recommendations that were identified during the assessment, as well as potential energy and energy costs savings. To conclude, this paper presents key findings that could further improve the Top 10,000 program by implementing a systems approach for energy assessments.

  17. Cast alumina forming austenitic stainless steels

    DOE Patents [OSTI]

    Muralidharan, Govindarajan; Yamamoto, Yukinori; Brady, Michael P

    2013-04-30

    An austenitic stainless steel alloy consisting essentially of, in terms of weight percent ranges 0.15-0.5C; 8-37Ni; 10-25Cr; 2.5-5Al; greater than 0.6, up to 2.5 total of at least one element selected from the group consisting of Nb and Ta; up to 3Mo; up to 3Co; up to 1W; up to 3Cu; up to 15Mn; up to 2Si; up to 0.15B; up to 0.05P; up to 1 total of at least one element selected from the group consisting of Y, La, Ce, Hf, and Zr; <0.3Ti+V; <0.03N; and, balance Fe, where the weight percent Fe is greater than the weight percent Ni, and wherein the alloy forms an external continuous scale comprising alumina, and a stable essentially single phase FCC austenitic matrix microstructure, the austenitic matrix being essentially delta-ferrite free and essentially BCC-phase-free. A method of making austenitic stainless steel alloys is also disclosed.

  18. Engineer HR/CR Process Research AK Steel, a leading producer of carbon, stainless and electrical steels, has an

    E-Print Network [OSTI]

    Prodiś, Aleksandar

    & Technology Center located in Middletown, Ohio. This position, reporting to the Manager of Process Research facilities. Travel may be required in support of AK Steel's manufacturing plants. The ideal candidate of this position. Send Resume to: molly.keith@aksteel.com AK Steel is an Equal Opportunity Employer. All qualified

  19. Up-grade of process control system, U.S. Steel Fairfield No. 8 blast furnace

    SciTech Connect (OSTI)

    Camlic, R.L. [U.S. Steel, Fairfield, AL (United States). Fairfield Works; Goodman, N.J. [Kvaerner Davy, Pittsburgh, PA (United States)

    1997-12-31

    The No. 8 blast furnace at US Steel`s Fairfield, AL facility is the only blast furnace remaining in operating at the plant. The blast furnace has a production capacity of 5,500 tons per day of hot metal and provides 100% of the iron requirements for the steel plant that has an annual production capacity of 2,200,000 tons of steel. Therefore, any outage on No. 8 blast furnace has a major impact on the operation of the total Fairfield facility. During the planning stages of the latest reline outage of No. 8 blast furnace, significant measures were taken to insure that maximum production of iron was maintained before and immediately after the outage. A significant portion of the reline activity was centered on the total replacement of the existing process control system. The scope of replacement was so extensive that it was determined that if all areas of the process control system were replaced during the reline outage, then the installation and commissioning of the new system would have been the critical path on the project. In addition, the requirements for training and start-up of the new process control system would have imposed risks to obtaining maximum production after the reline outage, as operators experienced the learning curve of the new system. It was therefore decided that the critical areas of the new process control system would be installed before the reline outage. In addition, all training and start-up activities would take place on the new working system while it was operating in a `shadow` mode in parallel with the existing system. This would provide a proven process control system for blast furnace operations before the reline outage, and eliminate the learning curve after the outage. The reline outage is described.

  20. Characterization of bulk stainless steel joints developed through microwave hybrid heating

    SciTech Connect (OSTI)

    Bansal, Amit, E-mail: amit.bansal978@gmail.com [Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee 247667 (India); Sharma, Apurbba Kumar, E-mail: akshafme@iitr.ernet.in [Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee 247667 (India); Kumar, Pradeep, E-mail: kumarfme@iitr.ernet.in [Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee 247667 (India); Das, Shantanu, E-mail: shantanu@barc.gov.in [Reactor Control Division, BARC, Mumbai (India)

    2014-05-01

    Processing of metallic materials through microwave heating is a challenging area of research. In the present work, joining of stainless steel-316 to stainless steel-316 in the bulk form has been carried out by placing stainless steel-316 powder at the interface and through targeted heating using microwave hybrid heating. The trials were carried out in a multimode microwave applicator at a frequency of 2.45 GHz and power 900 W. The developed joints were characterized using X-ray diffraction, field emission scanning electron microscopy equipped with energy dispersive X-ray spectroscope and measurement of Vicker's microhardness, porosity and tensile strength. The X-ray diffraction spectrum of the developed joint shows the presence of chromium carbide, iron carbide and iron silicide phases that eventually contribute to enhancement of the microhardness of the joint. The scanning electron microscope micrographs confirm classical metallurgical bonding between the substrate and the interface (molten powder) layer; the epitaxial growth rate was observed adjacent to the fusion zone. The average observed Vicker's microhardness in the joint zone on the grain boundary was significantly higher than that inside the grains due to the presence of various hard phases at the grain boundaries. Evaluation of the tensile strength of the joints showed an average ultimate tensile strength of 425.0 MPa with an average elongation of 9.44%. - Highlights: ē Joining of stainless steel (SS-316) plates using microwave hybrid heating ē Epitaxial growth rate observed adjacent to the fusion zone of welded joint ē The ultimate tensile strength of the order of 425.0 MPa with 9.44% elongation.

  1. Control of SOx emission in tail gas of the Claus Plant at Kwangyang Steel Works

    SciTech Connect (OSTI)

    Kang, H.S.; Park, J.W.; Hyun, H.D. [POSCO, Cheonnam (Korea, Republic of). Kwangyang Works; Lee, D.S. [RIST, Pohang (Korea, Republic of). Div. of Environmental Catalysis; Paik, S.C. [POSTECH, Pohang (Korea, Republic of). Dept. of Chemical Engineering; Chung, J.S. [RIST, Pohang (Korea, Republic of). Div. of Environmental Catalysis; [POSTECH, Pohang (Korea, Republic of). Dept. of Chemical Engineering

    1995-12-01

    Pilot and/or laboratory studies were conducted in order to find methods for reducing the SOx emission in the Claus tail gas of the cokes unit. The TGT process which is based on the complete hydrogenation of the sulfur-containing compounds (SO{sub 2}, S) into H{sub 2}S and returning to the COG main line can reduce the SOx emission to zero. In case the return to the COG main is impossible, the SPOR process (Sulfur removal based on Partial Oxidation and Reduction) can be successfully applied to reduce the SOx emission.

  2. Summary Report of Summer Work: High Purity Single Crystal Growth & Microstructure of Ferritic-Martensitic Steels

    SciTech Connect (OSTI)

    Pestovich, Kimberly Shay

    2015-08-18

    Harnessing the power of the nuclear sciences for national security and to benefit others is one of Los Alamos National Laboratoryís missions. MST-8 focuses on manipulating and studying how the structure, processing, properties, and performance of materials interact at the atomic level under nuclear conditions. Within this group, single crystal scintillators contribute to the safety and reliability of weapons, provide global security safeguards, and build on scientific principles that carry over to medical fields for cancer detection. Improved cladding materials made of ferritic-martensitic alloys support the mission of DOE-NEís Fuel Cycle Research and Development program to close the nuclear fuel cycle, aiming to solve nuclear waste management challenges and thereby increase the performance and safety of current and future reactors.

  3. Scramjet including integrated inlet and combustor

    SciTech Connect (OSTI)

    Kutschenreuter, P.H. Jr.; Blanton, J.C.

    1992-02-04

    This patent describes a scramjet engine. It comprises: a first surface including an aft facing step; a cowl including: a leading edge and a trailing edge; an upper surface and a lower surface extending between the leading edge and the trailing edge; the cowl upper surface being spaced from and generally parallel to the first surface to define an integrated inlet-combustor therebetween having an inlet for receiving and channeling into the inlet-combustor supersonic inlet airflow; means for injecting fuel into the inlet-combustor at the step for mixing with the supersonic inlet airflow for generating supersonic combustion gases; and further including a spaced pari of sidewalls extending between the first surface to the cowl upper surface and wherein the integrated inlet-combustor is generally rectangular and defined by the sidewall pair, the first surface and the cowl upper surface.

  4. Electric Power Monthly, August 1990. [Glossary included

    SciTech Connect (OSTI)

    Not Available

    1990-11-29

    The Electric Power Monthly (EPM) presents monthly summaries of electric utility statistics at the national, Census division, and State level. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data includes generation by energy source (coal, oil, gas, hydroelectric, and nuclear); generation by region; consumption of fossil fuels for power generation; sales of electric power, cost data; and unusual occurrences. A glossary is included.

  5. Recent developments in blast furnace process control within British Steel

    SciTech Connect (OSTI)

    Warren, P.W. [British Steel Technical, Middlesbrough (United Kingdom). Teesside Labs.

    1995-12-01

    British Steel generally operates seven blast furnaces on four integrated works. All furnaces have been equipped with comprehensive instrumentation and data logging computers over the past eight years. The four Scunthorpe furnaces practice coal injection up to 170 kg/tHM (340 lb/THM), the remainder injecting oil at up to 100 kg/tHM (200 lb/THM). Distribution control is effected by Paul Wurth Bell-Less Tops on six of the seven furnaces, and Movable Throat Armour with bells on the remaining one. All have at least one sub burden probe. The blast furnace operator has a vast quantity of data and signals to consider and evaluate when attempting to achieve the objective of providing a consistent supply of hot metal. Techniques have been, and are being, developed to assist the operator to interpret large numbers of signals. A simple operator guidance system has been developed to provide advice, based on current operating procedures and interpreted data. Further development will involve the use of a sophisticated Expert System software shell.

  6. Modeling of Late Blooming Phases and Precipitation Kinetics in Aging Reactor Pressure Vessel (RPV) Steels

    SciTech Connect (OSTI)

    Yongfeng Zhang; Pritam Chakraborty; S. Bulent Biner

    2013-09-01

    The principle work at the atomic scale is to develop a predictive quantitative model for the microstructure evolution of RPV steels under thermal aging and neutron radiation. We have developed an AKMC method for the precipitation kinetics in bcc-Fe, with Cu, Ni, Mn and Si being the alloying elements. In addition, we used MD simulations to provide input parameters (if not available in literature). MMC simulations were also carried out to explore the possible segregation/precipitation morphologies at the lattice defects. First we briefly describe each of the simulation algorithms, then will present our results.

  7. Effects of helium content of microstructural development in Type 316 stainless steel under neutron irradiation

    SciTech Connect (OSTI)

    Maziasz, P.J.

    1985-11-01

    This work investigated the sensitivity of microstructural evolution, particularly precipitate development, to increased helium content during thermal aging and during neutron irradiation. Helium (110 at. ppM) was cold preinjected into solution annealed (SA) DO-heat type 316 stainess steel (316) via cyclotron irradiation. These specimens were then exposed side by side with uninjected samples. Continuous helium generation was increased considerably relative to EBR-II irradiation by irradiation in HFIR. Data were obtained from quantitative analytical electron microscopy (AEM) in thin foils and on extraction replicas. 480 refs., 86 figs., 19 tabs.

  8. Irradiation-induced grain growth in nanocrystalline reduced activation ferrite/martensite steel

    SciTech Connect (OSTI)

    Liu, W. B.; Chen, L. Q. [Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Zhang, C., E-mail: chizhang@tsinghua.edu.cn; Yang, Z. G. [Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Ji, Y. Z. [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Zang, H. [Department of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an 710049 (China); Shen, T. L. [Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000 (China)

    2014-09-22

    In this work, we investigate the microstructure evolution of surface-nanocrystallized reduced activation ferrite/martensite steels upon high-dose helium ion irradiation (24.3 dpa). We report a significant irradiation-induced grain growth in the irradiated buried layer at a depth of 300Ė500?nm, rather than at the peak damage region (at a depth of ?840?nm). This phenomenon can be explained by the thermal spike model: minimization of the grain boundary (GB) curvature resulting from atomic diffusion in the cascade center near GBs.

  9. AISI/DOE Technology Roadmap Program: Development of Appropriate Resistance Spot Welding Practice for Transformation-Hardened Steels

    SciTech Connect (OSTI)

    Wayne Chuko; Jerry Gould

    2002-07-08

    This report describes work accomplished in the project, titled ''Development of Appropriate Resistance Spot Welding Practice for Transformation-Hardened Steels.'' The Phase 1 of the program involved development of in-situ temper diagrams for two gauges of representative dual-phase and martensitic grades of steels. The results showed that tempering is an effective way of reducing hold-time sensitivity (HTS) in hardenable high-strength sheet steels. In Phase 2, post-weld cooling rate techniques, incorporating tempering, were evaluated to reduce HTS for the same four steels. Three alternative methods, viz., post-heating, downsloping, and spike tempering, for HTS reduction were investigated. Downsloping was selected for detailed additional study, as it appeared to be the most promising of the cooling rate control methods. The downsloping maps for each of the candidate steels were used to locate the conditions necessary for the peak response. Three specific downslope conditions (at a fix ed final current for each material, timed for a zero-, medium-, and full-softening response) were chosen for further metallurgical and mechanical testing. Representative samples, were inspected metallographically, examining both local hardness variations and microstructures. The resulting downslope diagrams were found to consist largely of a C-curve. The softening observed in these curves, however, was not supported by subsequent metallography, which showed that all welds made, regardless of material and downslope condition, were essentially martensitic. CCT/TTT diagrams, generated based on microstructural modeling done at Oak Ridge National Laboratories, showed that minimum downslope times of 2 and 10 s for the martensitic and dual-phase grades of steels, respectively, were required to avoid martensite formation. These times, however, were beyond those examined in this study. These results show that downsloping is not an effective means of reducing HTS for production resistance spot welding (RSW). The necessary downslope times (2-10s) are prohibited by the welding rates currently used today (up to 60 welds/s). Based on the observations made in this study, spike tempering appears to be the best compromise of microstructural improvement and short cycle time. It is recommended that future work be focused on exploring the robustness of this approach, and its applicability for a wider range of steels.

  10. MOTIVATION INCLUDED OR EXCLUDED FROM Mihaela Cocea

    E-Print Network [OSTI]

    Cocea, Mihaela

    MOTIVATION ­ INCLUDED OR EXCLUDED FROM E-LEARNING Mihaela Cocea National College of Ireland Mayor, Dublin 1, Ireland sweibelzahl@ncirl.ie ABSTRACT The learners' motivation has an impact on the quality-Learning, motivation has been mainly considered in terms of instructional design. Research in this direction suggests

  11. Energy Consumption of Personal Computing Including Portable

    E-Print Network [OSTI]

    Namboodiri, Vinod

    processing unit (CPU) processing power and capacity of mass storage devices doubles every 18 months. Such growth in both processing and storage capabilities fuels the production of ever more powerful portableEnergy Consumption of Personal Computing Including Portable Communication Devices Pavel Somavat1

  12. Course may include: Research in Education

    E-Print Network [OSTI]

    Development Information and Communication Technologies Issues in Education Final Project Seminar Master, the Final Project Seminar. This graduate program will allow you to develop your skills and knowledgeCourse may include: Research in Education Qualitative Methods in Educational Research Fundamentals

  13. Communication in automation, including networking and wireless

    E-Print Network [OSTI]

    Antsaklis, Panos

    Communication in automation, including networking and wireless Nicholas Kottenstette and Panos J and networking in automation is given. Digital communication fundamentals are reviewed and networked control are presented. 1 Introduction 1.1 Why communication is necessary in automated systems Automated systems use

  14. Technical Reference on Hydrogen Compatibility of Materials High-Alloy Ferritic Steels

    E-Print Network [OSTI]

    Siefert, Chris

    Technical Reference on Hydrogen Compatibility of Materials High-Alloy Ferritic Steels: Martensitic on Hydrogen Compatibility of Materials High-Alloy Ferritic Steels: Martensitic Stainless Steels Heat Treatable (Fe-Cr type) (code 1820) 1. General The martensitic stainless steels with low nickel are hardenable

  15. Oxidation behavior of ferriticmartensitic and ODS steels in supercritical water Jeremy Bischoff

    E-Print Network [OSTI]

    Motta, Arthur T.

    Oxidation behavior of ferritic≠martensitic and ODS steels in supercritical water Jeremy Bischoff swelling under irradiation and to stress cor- rosion cracking, ferritic≠martensitic steels, such as HCM12A such as the 9CrODS (JAEA) and the 14CrODS (CEA) steels are ferritic≠martensitic steels that contain a fine

  16. Design and identification of high performance steel alloys for structures subjected to underwater impulsive loading

    E-Print Network [OSTI]

    Espinosa, Horacio D.

    Necking Dynamic fracture a b s t r a c t Martensitic and austenitic steel alloys were designed to optimize under various loading paths. The model was calibrated for two high performance martensitic steels (HSLA-100 and BA-160) and an austenitic steel (TRIP-120). The martensitic steel (BA-160) was designed

  17. d TRIP steel S. Chatterjee, M. Murugananth and H. K. D. H. Bhadeshia*

    E-Print Network [OSTI]

    Cambridge, University of

    of 23%. Keywords: TRIP assisted steel, Martensite, Bainite, d Ferrite Introduction Steels into martensite during deformation.1≠10 The critical solute in TRIP assisted steels is silicon, whichd TRIP steel S. Chatterjee, M. Murugananth and H. K. D. H. Bhadeshia* A combination of neural

  18. Slide diamond burnishing of tool steels with adhesive coatings and diffusion layers

    E-Print Network [OSTI]

    North Texas, University of

    Slide diamond burnishing of tool steels with adhesive coatings and diffusion layers W. Brostow*1 modification of selected tool steels. The steels were covered with adhesive coatings of the hard chrome type was determined by a profilometer before and after burnishing. Adhesion of coatings to steel was determined

  19. Numerical simulations of welds of thick steel pieces of interest for the thermonuclear fusion ITER machine

    E-Print Network [OSTI]

    Carmignani, B

    2005-01-01

    Numerical simulations of welds of thick steel pieces of interest for the thermonuclear fusion ITER machine

  20. Author's personal copy Magnetic properties of stainless steels at room and cryogenic temperatures

    E-Print Network [OSTI]

    Oxley, Paul

    temperature and at 77 K. The steel samples studied were in the annealed state as received from quoted in the ASM International Handbook, which studied fully annealed stainless steel samples. Despite having harder magnetic properties than fully annealed steels some of the as-received steels still display

  1. Copper precipitation in cobalt-alloyed precipitation-hardened stainless steel

    E-Print Network [OSTI]

    Medvedeva, Julia E.

    Copper precipitation in cobalt-alloyed precipitation-hardened stainless steel Arpana S. Murthy-strength stainless steel was investigated using three-dimen- sional atom probe tomography. A decrease in copper; Stainless steels; First-principle electron theory; Casting; Precipitation Precipitation-hardened (PH) steels

  2. Evaluation of chlorines' impact on biofilms on scratched stainless steel surfaces

    E-Print Network [OSTI]

    Schreuders, Paul

    Evaluation of chlorines' impact on biofilms on scratched stainless steel surfaces Andrea Lomander Escherichia coli were grown on 316 stainless steel slides in a nutrient starved medium. The stainless steel 6 and 24 h. A 3≠6 h old biofilm on a polished stainless steel surface detached when 200 ppm sodium

  3. The Size of the Sensitization Zone in 304 Stainless Steel Welds

    E-Print Network [OSTI]

    Eagar, Thomas W.

    ) ) viS i tf. f. t ~ I~ i \\ ! l The Size of the Sensitization Zone in 304 Stainless Steel Welds N stainless steel welds have been studied through a swtistical/y desigm∑d experimellt. Tire resuits indicate stainless steel plates using argon shielding gas. The chemical com- position of the stainless steel is given

  4. DEFORMATION LOCALIZATION AND DISLOCATION CHANNEL DYNAMICS IN NEUTRON IRRADIATED AUSTENITIC STAINLESS STEELS

    SciTech Connect (OSTI)

    Gussev, Maxim N [ORNL; Field, Kevin G [ORNL; Busby, Jeremy T [ORNL

    2015-01-01

    The dynamics of deformation localization and dislocation channel formation were investigated in situ in a neutron irradiated AISI 304 austenitic stainless steel and a model 304-based austenitic alloy by combining several analytical techniques including optic microscopy and laser confocal microscopy, scanning electron microscopy, electron backscatter diffraction and transmission electron microscopy. Channel formation was observed at 70% of the formal tensile yield stress for both alloys. It was shown that triple junction points do not always serve as a source of dislocation channels; at stress levels below the yield stress, channels often formed near the middle of the grain boundary. For a single grain, the role of elastic stiffness value (Young modulus) in the channel formation was analyzed; it was shown that in the irradiated 304 steels the initial channels appeared in soft grains with a high Schmid factor located near stiff grains with high elastic stiffness. The spatial organization of channels in a single grain was analyzed; it was shown that secondary channels operating in the same slip plane as primary channels often appeared at the middle or at one third of the way between primary channels. The twinning nature of dislocation channels was analyzed for grains of different orientation using TEM. It was shown that in the AISI 304 steel, channels were twin-free in grains oriented close to [001] and [101] of standard unit triangle; [111]-grains and grains oriented close to Schmid factor maximum contained deformation twins.

  5. Surface Treatments for Improved Performance of Spinel-coated AISI 441 Ferritic Stainless Steel

    SciTech Connect (OSTI)

    Stevenson, Jeffry W.; Riel, Eric M.; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2013-01-01

    Ferritic stainless steels are promising candidates for IT-SOFC interconnect applications due to their low cost and resistance to oxidation at SOFC operating temperatures. However, steel candidates face several challenges; including long term oxidation under interconnect exposure conditions, which can lead to increased electrical resistance, surface instability, and poisoning of cathodes due to volatilization of Cr. To potentially extend interconnect lifetime and improve performance, a variety of surface treatments were performed on AISI 441 ferritic stainless steel coupons prior to application of a protective spinel coating. The coated coupons were then subjected to oxidation testing at 800 and 850įC in air, and electrical testing at 800įC in air. While all of the surface-treatments resulted in improved surface stability (i.e., increased spallation resistance) compared to untreated AISI 441, the greatest degree of improvement (through 20,000 hours of testing at 800įC and 14,000 hours of testing at 850įC) was achieved by surface blasting.

  6. Radiological Work Planning and Procedure

    SciTech Connect (OSTI)

    KURTZ, J.E.

    2000-01-01

    Each facility is tasked with maintaining personnel radiation exposure as low as reasonably achievable (ALARA). A continued effort is required to meet this goal by developing and implementing improvements to technical work documents (TWDs) and work performance. A review of selected TWDs from most facilities shows there is a need to incorporate more radiological control requirements into the TWD. The Radioactive Work Permit (RWP) provides a mechanism to place some of the requirements but does not provide all the information needed by the worker as he/she is accomplishing the steps of the TWD. Requiring the engineers, planners and procedure writers to put the radiological control requirements in the work steps would be very easy if all personnel had a strong background in radiological work planning and radiological controls. Unfortunately, many of these personnel do not have the background necessary to include these requirements without assistance by the Radiological Control organization at each facility. In addition, there seems to be confusion as to what should be and what should not be included in the TWD.

  7. Yield improvement and defect reduction in steel casting

    SciTech Connect (OSTI)

    Kent Carlson

    2004-03-16

    This research project investigated yield improvement and defect reduction techniques in steel casting. Research and technology development was performed in the following three specific areas: (1) Feeding rules for high alloy steel castings; (2) Unconventional yield improvement and defect reduction techniques--(a) Riser pressurization; and (b) Filling with a tilting mold; and (3) Modeling of reoxidation inclusions during filling of steel castings. During the preparation of the proposal for this project, these areas were identified by the High Alloy Committee and Carbon and Low Alloy Committee of the Steel Founders' Society of America (SFSA) as having the highest research priority to the steel foundry industry. The research in each of the areas involved a combination of foundry experiments, modeling and simulation. Numerous SFSA member steel foundries participated in the project through casting trials and meetings. The technology resulting from this project will result in decreased scrap and rework, casting yield improvement, and higher quality steel castings produced with less iteration. This will result in considerable business benefits to steel foundries, primarily due to reduced energy and labor costs, increased capacity and productivity, reduced lead-time, and wider use and application of steel castings. As estimated using energy data provided by the DOE, the technology produced as a result of this project will result in an energy savings of 2.6 x 10{sup 12} BTU/year. This excludes the savings that were anticipated from the mold tilting research. In addition to the energy savings, and corresponding financial savings this implies, there are substantial environmental benefits as well. The results from each of the research areas listed above are summarized.

  8. Application of nonlinear ultrasonics to inspection of stainless steel for dry storage

    SciTech Connect (OSTI)

    Ulrich, Timothy James II; Anderson, Brain E.; Remillieux, Marcel C.; Le Bas, Pierre -Yves; Pieczonka, Lukasz

    2015-09-22

    This report summarized technical work conducted by LANL staff an international collaborators in support of the UFD Storage Experimentation effort. The focus of the current technical work is on the detection and imaging of a failure mechanism known as stress corrosion cracking (SCC) in stainless steel using the nonlinear ultrasonic technique known as TREND. One of the difficulties faced in previous work is in finding samples that contain realistically sized SCC. This year such samples were obtained from EPRI. Reported here are measurements made on these samples. One of the key findings is the ability to detect subsurface changes to the direction in which a crack is penetrating into the sample. This result follows from last year's report that demonstrated the ability of TREND techniques to image features below the sample surface. A new collaboration was established with AGH University of Science and Technology, Krakow, Poland.

  9. Characterization of transition carbides in quench and partitioned steel microstructures by MŲssbauer spectroscopy and complementary techniques

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pierce, D. T.; Coughlin, D. R.; Williamson, D. L.; Clarke, K. D.; Clarke, A. J.; Speer, J. G.; De Moor, E.

    2015-05-01

    Quenching and partitioning (Q&P) produces steel microstructures with martensite and austenite that exhibit promising property combinations for third generation advanced high strength steels. Understanding the kinetics of reactions that compete for available carbon, such as carbide formation, is critical for alloying and processing design and achieving austenite enrichment and retention during Q&P. MŲssbauer effect spectroscopy (MES) was used to characterize Q&P microstructures in a 0.38C-1.54Mn-1.48Si wt.% steel after quenching to 225 įC and partitioning at 400 įC for 10 or 300 s, with an emphasis on transition carbides. The recoilless fraction for ?-carbide was calculated and a correction for saturationmore†Ľof the MES absorption spectrum was applied, making quantitative measurements of small amounts of ?-carbide, including non-stoichiometric ?-carbide, possible in Q&P microstructures. Complementary transmission electron microscopy confirmed the presence of ?-carbides, and MES and X-ray diffraction were used to characterize the austenite. The amount of ?-carbide formed during Q&P ranged from 1.4 to 2.4 at.%, accounting for a substantial portion (~24% to 41%) of the bulk carbon content of the steel. The amount (5.0 at.%) of ?-carbide that formed after quenching and tempering (Q&T) at 400 įC for 300 s was significantly greater than after partitioning at 400 įC for 300 s (2.4 at.%), suggesting that carbon partitioning from martensite to austenite occurs in conjunction with ?-carbide formation during Q&P in these specimens.ę†less

  10. Characterization of transition carbides in quench and partitioned steel microstructures by MŲssbauer spectroscopy and complementary techniques

    SciTech Connect (OSTI)

    Pierce, D. T.; Coughlin, D. R.; Williamson, D. L.; Clarke, K. D.; Clarke, A. J.; Speer, J. G.; De Moor, E.

    2015-05-01

    Quenching and partitioning (Q&P) produces steel microstructures with martensite and austenite that exhibit promising property combinations for third generation advanced high strength steels. Understanding the kinetics of reactions that compete for available carbon, such as carbide formation, is critical for alloying and processing design and achieving austenite enrichment and retention during Q&P. MŲssbauer effect spectroscopy (MES) was used to characterize Q&P microstructures in a 0.38C-1.54Mn-1.48Si wt.% steel after quenching to 225 įC and partitioning at 400 įC for 10 or 300 s, with an emphasis on transition carbides. The recoilless fraction for ?-carbide was calculated and a correction for saturation of the MES absorption spectrum was applied, making quantitative measurements of small amounts of ?-carbide, including non-stoichiometric ?-carbide, possible in Q&P microstructures. Complementary transmission electron microscopy confirmed the presence of ?-carbides, and MES and X-ray diffraction were used to characterize the austenite. The amount of ?-carbide formed during Q&P ranged from 1.4 to 2.4 at.%, accounting for a substantial portion (~24% to 41%) of the bulk carbon content of the steel. The amount (5.0 at.%) of ?-carbide that formed after quenching and tempering (Q&T) at 400 įC for 300 s was significantly greater than after partitioning at 400 įC for 300 s (2.4 at.%), suggesting that carbon partitioning from martensite to austenite occurs in conjunction with ?-carbide formation during Q&P in these specimens.

  11. MCSE Project Report COMPUTER SUPPORTED COLLABORATIVE WORK (CSCW) ENVIRONMENT

    E-Print Network [OSTI]

    technology research because a conventional CSCW environment normally supports a group of users working of online 3D technology include electronic commerce, collaborative working environment, educationMCSE Project Report COMPUTER SUPPORTED COLLABORATIVE WORK (CSCW) ENVIRONMENT USING VRML AND CGI

  12. Subterranean barriers including at least one weld

    DOE Patents [OSTI]

    Nickelson, Reva A.; Sloan, Paul A.; Richardson, John G.; Walsh, Stephanie; Kostelnik, Kevin M.

    2007-01-09

    A subterranean barrier and method for forming same are disclosed, the barrier including a plurality of casing strings wherein at least one casing string of the plurality of casing strings may be affixed to at least another adjacent casing string of the plurality of casing strings through at least one weld, at least one adhesive joint, or both. A method and system for nondestructively inspecting a subterranean barrier is disclosed. For instance, a radiographic signal may be emitted from within a casing string toward an adjacent casing string and the radiographic signal may be detected from within the adjacent casing string. A method of repairing a barrier including removing at least a portion of a casing string and welding a repair element within the casing string is disclosed. A method of selectively heating at least one casing string forming at least a portion of a subterranean barrier is disclosed.

  13. Photoactive devices including porphyrinoids with coordinating additives

    DOE Patents [OSTI]

    Forrest, Stephen R; Zimmerman, Jeramy; Yu, Eric K; Thompson, Mark E; Trinh, Cong; Whited, Matthew; Diev, Vlacheslav

    2015-05-12

    Coordinating additives are included in porphyrinoid-based materials to promote intermolecular organization and improve one or more photoelectric characteristics of the materials. The coordinating additives are selected from fullerene compounds and organic compounds having free electron pairs. Combinations of different coordinating additives can be used to tailor the characteristic properties of such porphyrinoid-based materials, including porphyrin oligomers. Bidentate ligands are one type of coordinating additive that can form coordination bonds with a central metal ion of two different porphyrinoid compounds to promote porphyrinoid alignment and/or pi-stacking. The coordinating additives can shift the absorption spectrum of a photoactive material toward higher wavelengths, increase the external quantum efficiency of the material, or both.

  14. Diode laser welding of aluminum to steel

    SciTech Connect (OSTI)

    Santo, Loredana; Quadrini, Fabrizio; Trovalusci, Federica [University of Rome Tor Vergata, Department of Mechanical Engineering, Via del Politecnico 1, 00133 Rome (Italy)

    2011-05-04

    Laser welding of dissimilar materials was carried out by using a high power diode laser to join aluminum to steel in a butt-joint configuration. During testing, the laser scan rate was changed as well as the laser power: at low values of fluence (i.e. the ratio between laser power and scan rate), poor joining was observed; instead at high values of fluence, an excess in the material melting affected the joint integrity. Between these limiting values, a good aesthetics was obtained; further investigations were carried out by means of tensile tests and SEM analyses. Unfortunately, a brittle behavior was observed for all the joints and a maximum rupture stress about 40 MPa was measured. Apart from the formation of intermeltallic phases, poor mechanical performances also depended on the chosen joining configuration, particularly because of the thickness reduction of the seam in comparison with the base material.

  15. Radiation resistant austenitic stainless steel alloys

    DOE Patents [OSTI]

    Maziasz, Philip J. (Oak Ridge, TN); Braski, David N. (Oak Ridge, TN); Rowcliffe, Arthur F. (Oak Ridge, TN)

    1989-01-01

    An austenitic stainless steel alloy, with improved resistance to radiation-induced swelling and helium embrittlement, and improved resistance to thermal creep at high temperatures, consisting essentially of, by weight percent: from 16 to 18% nickel; from 13 to 17% chromium; from 2 to 3% molybdenum; from 1.5 to 2.5% manganese; from 0.01 to 0.5% silicon; from 0.2 to 0.4% titanium; from 0.1 to 0.2% niobium; from 0.1 to 0.6% vanadium; from 0.06 to 0.12% carbon; from 0.01% to 0.03% nitrogen; from 0.03 to 0.08% phosphorus; from 0.005 to 0.01% boron; and the balance iron, and wherein the alloy may be thermomechanically treated to enhance physical and mechanical properties.

  16. Radiation resistant austenitic stainless steel alloys

    DOE Patents [OSTI]

    Maziasz, P.J.; Braski, D.N.; Rowcliffe, A.F.

    1987-02-11

    An austenitic stainless steel alloy, with improved resistance to radiation-induced swelling and helium embrittlement, and improved resistance to thermal creep at high temperatures, consisting essentially of, by weight percent: from 16 to 18% nickel; from 13 to 17% chromium; from 2 to 3% molybdenum; from 1.5 to 2.5% manganese; from 0.01 to 0.5% silicon; from 0.2 to 0.4% titanium; from 0.1 to 0.2% niobium; from 0.1 to 0.6% vanadium; from 0.06 to 0.12% carbon; from 0.01 to 0.03% nitrogen; from 0.03 to 0.08% phosphorus; from 0.005 to 0.01% boron; and the balance iron, and wherein the alloy may be thermomechanically treated to enhance physical and mechanical properties. 4 figs.

  17. Modern structural steels with improved properties through accelerated cooling

    SciTech Connect (OSTI)

    Tschersich, H.J.; Schriever, U.; Bobbert, J.; Kuntze, C. [Thyssen Stahl AG, Duisburg (Germany)

    1995-12-31

    The last decade has seen an enormous increase in the stringency of the demands placed on steels. The main characteristics involved are higher strength and toughness, better suitability for welding and, in certain cases, corrosion resistance. The reason for these heightened demands resides in the higher strains to which the material is exposed in structural applications and in a greater need for safety. In many areas, the steel industry has succeeded in offering appropriate solutions through improved metallurgical and rolling techniques. Accelerated cooled steel grades are one example.

  18. Shear band structure in ballistically tested bainitic steels

    E-Print Network [OSTI]

    Fielding, L. C. D.; Bhadeshia, H. K. D. H.

    and simple process to obtain nano-structured bulk low-carbon steel with superior mechan- ical propertyí, Scripta Materialia, 2002, 46, 305Ė310. 18. X. Zhao, T. Jing, Y. Gao, G. Qiao, J. Zhou, and W. Wang: ĎAnnealing behavior of nano-layered steel produced... by heavy cold-rolling of lath martensiteí, Materials Science & Engineering A, 2005, 397, 117Ė121. 19. R. Ueji, N. Tsuji, Y. Minamino, and Y. Koizumi: ĎUltragrain refinement of plain low carbon steel by cold-rolling and annealing of martensite...

  19. Power generation method including membrane separation

    DOE Patents [OSTI]

    Lokhandwala, Kaaeid A. (Union City, CA)

    2000-01-01

    A method for generating electric power, such as at, or close to, natural gas fields. The method includes conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas by means of a membrane separation step. This step creates a leaner, sweeter, drier gas, which is then used as combustion fuel to run a turbine, which is in turn used for power generation.

  20. Rotor assembly including superconducting magnetic coil

    DOE Patents [OSTI]

    Snitchler, Gregory L. (Shrewsbury, MA); Gamble, Bruce B. (Wellesley, MA); Voccio, John P. (Somerville, MA)

    2003-01-01

    Superconducting coils and methods of manufacture include a superconductor tape wound concentrically about and disposed along an axis of the coil to define an opening having a dimension which gradually decreases, in the direction along the axis, from a first end to a second end of the coil. Each turn of the superconductor tape has a broad surface maintained substantially parallel to the axis of the coil.

  1. Nuclear reactor shield including magnesium oxide

    DOE Patents [OSTI]

    Rouse, Carl A. (Del Mar, CA); Simnad, Massoud T. (La Jolla, CA)

    1981-01-01

    An improvement in nuclear reactor shielding of a type used in reactor applications involving significant amounts of fast neutron flux, the reactor shielding including means providing structural support, neutron moderator material, neutron absorber material and other components as described below, wherein at least a portion of the neutron moderator material is magnesium in the form of magnesium oxide either alone or in combination with other moderator materials such as graphite and iron.

  2. Electric power monthly, September 1990. [Glossary included

    SciTech Connect (OSTI)

    Not Available

    1990-12-17

    The purpose of this report is to provide energy decision makers with accurate and timely information that may be used in forming various perspectives on electric issues. The power plants considered include coal, petroleum, natural gas, hydroelectric, and nuclear power plants. Data are presented for power generation, fuel consumption, fuel receipts and cost, sales of electricity, and unusual occurrences at power plants. Data are compared at the national, Census division, and state levels. 4 figs., 52 tabs. (CK)

  3. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work with Biological Materials Print Planning A complete Experiment Safety Sheet (ESS) is required before work can be done at the ALS. This ESS is either a part of the proposal...

  4. Construction work process management†

    E-Print Network [OSTI]

    Soares, Jorge Barbosa

    1994-01-01

    for organizationand project-level work processes. Data to support the analysis were collected through a mailed questionnaire sent to construction executives and managers who were asked to provide information on organizational and project work processes, respectively....

  5. Team work: Construction

    E-Print Network [OSTI]

    Berdichevsky, Victor

    teamwork outside the classroom as well. Construction Management at Wayne StateTeam work: Construction Management The Division of Engineering Technology! Your coursework is just the beginning. Construction management students work

  6. Administering Work Force Discipline

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-05-14

    The order provides requirements and responsibilities for administering work force discipline and corrective actions. Supersedes DOE O 3750.1.

  7. Appointment Future work

    E-Print Network [OSTI]

    Phillips, David

    1/17 Appointment scheduling Example: a glaucoma clinic Future work Appointment scheduling #12;2/17 Appointment scheduling Example: a glaucoma clinic Future work Have you heard this one? So: a glaucoma clinic Future work Have you heard this one? So a mathematician walks into a room full

  8. Methodological Research Future Work

    E-Print Network [OSTI]

    Wolfe, Patrick J.

    Outline Background Methodological Research Results Future Work New Dataset 1878 PCA for 1000 rmfs Background Methodological Research Results Future Work New Dataset 1878 PCA for 1000 rmfs Background Quasar Analysis Future Work Doubly-intractable Distribution Other Calibration Uncertainty New Dataset

  9. Stainless steel anodes for alkaline water electrolysis and methods of making

    DOE Patents [OSTI]

    Soloveichik, Grigorii Lev

    2014-01-21

    The corrosion resistance of stainless steel anodes for use in alkaline water electrolysis was increased by immersion of the stainless steel anode into a caustic solution prior to electrolysis. Also disclosed herein are electrolyzers employing the so-treated stainless steel anodes. The pre-treatment process provides a stainless steel anode that has a higher corrosion resistance than an untreated stainless steel anode of the same composition.

  10. Technology Roadmap Research Program for the Steel Industry

    SciTech Connect (OSTI)

    Joseph R. Vehec

    2010-12-30

    The steel industry's Technology Roadmap Program (TRP) is a collaborative R&D effort jointly sponsored by the steel industry and the United States Department of Energy. The TRP program was designed to develop new technologies to save energy , increase competitiveness, and improve the environment. TRP ran from July, 1997 to December, 2008, with a total program budget of $38 million dollars. During that period 47 R&D projects were performed by 28 unique research organizations; co-funding was provided by DOE and 60 industry partners. The projects benefited all areas of steelmaking and much know-how was developed and transferred to industry. The American Iron and Steel Institute is the owner of all intellectual property developed under TRP and licenses it at commercial rates to all steelmakers. TRP technologies are in widespread use in the steel industry as participants received royalty-free use of intellectual property in return for taking the risk of funding this research.

  11. Structural Reliability of Bridges Elevated with Steel Pedestals†

    E-Print Network [OSTI]

    Bisadi, Vahid 1980-

    2012-09-19

    Overheight vehicle impact to bridge decks is a major problem in the transportation networks in the United States. An important factor that causes this problem is inadequate vertical clearance of bridges. Using steel pedestals to elevate bridge decks...

  12. Energy intensity in China's iron and steel sector

    E-Print Network [OSTI]

    Xu, Jingsi, M.C.P. Massachusetts Institute of Technology

    2011-01-01

    In this study, I examine the spatial and economic factors that influence energy intensity in China's iron and steel sector, namely industrial value added, renovation investment, coke consumption, and local coke supply. ...

  13. Transformations in TRIP-assisted Steels: Microstructure and Properties

    E-Print Network [OSTI]

    Chatterjee, Sourabh

    Despite the presence of high-carbon martensite, TRIP-assisted steels possess large uniform elongation. High-carbon martensite is normally brittle. In this thesis, it has been demonstrated that this apparent anomaly is due to the fine size...

  14. Low temperature type new TMCP steel plate for LPG carriers

    SciTech Connect (OSTI)

    Suzuki, Shuichi; Bessyo, Kiyoshi; Arimochi, Kazushige; Yajima, Hiroshi; Tada, Masuo; Sakai, Daisuke

    1994-12-31

    New Thermo-Mechanical Control Process (TMCP) steel plate for LPG carriers of completely liquefied type was developed with non-nickel chemistry. The new steel plate has a capability to arrest a long running brittle crack at {minus}46 C (which is the design temperature of the liquefied LPG tanks). A high heat-input one-pass welding can be applied to this steel despite its nickel-less chemistry. These capabilities were enabled by microalloying technology with low aluminum-medium nitrogen-boron, as well as by the advanced Thermo-Mechanical Control Process. This paper describes the new concept of utilizing the trace elements and the evaluation test results as the steel plate for the LPG tank and hull, especially from the standpoints of the fracture safe reliability at high heat input welding and from that of the shop workability.

  15. A structural analysis of the Cardington British Steel corner test†

    E-Print Network [OSTI]

    Gillie, Martin; Usmani, Asif; Rotter, J Michael

    2002-01-01

    This paper presents a structural analysis of the Cardington British Steel corner test. The test is a analyzes using ABAQUS, the commercial finite element program. The results of the analysis indicate that the response of ...

  16. Analysis of steel silo structures on discrete supports†

    E-Print Network [OSTI]

    Li, Hongyu

    The objective of this thesis is to broaden current knowledge of the strength and buckling/collapse of shells, with special reference to steel silo structures on discrete supports, and thus to provide design guidance of ...

  17. Optimal Panel Zone Participation in Steel Moment Frames†

    E-Print Network [OSTI]

    Ngo, Thanh Tat

    2014-01-03

    the overall seismic performance of that frame. As a result, the safety or reliability of a steel moment frame under earthquakes can be improved while maintaining the fabrication of the structure at an effective cost....

  18. 1D subsurface electromagnetic fields excited by energized steel casing

    E-Print Network [OSTI]

    Torres-VerdŪn, Carlos

    1D subsurface electromagnetic fields excited by energized steel casing Wei Yang1 , Carlos Torres-cased well is energized at the surface or within the borehole at an arbitrary depth with an electrode

  19. the university of iowa College of engineering Man of steel

    E-Print Network [OSTI]

    Beckermann, Christoph

    critical issues facing the engineering profession. Whether living in Iowa or in other parts of the world, treelike appearance. Photo by fisheye. this page: A microscopic photo of dendrites in steel. inside Iowa

  20. Eddy sensors for small diameter stainless steel tubes.

    SciTech Connect (OSTI)

    Skinner, Jack L.; Morales, Alfredo Martin; Grant, J. Brian; Korellis, Henry James; LaFord, Marianne Elizabeth; Van Blarigan, Benjamin; Andersen, Lisa E.

    2011-08-01

    The goal of this project was to develop non-destructive, minimally disruptive eddy sensors to inspect small diameter stainless steel metal tubes. Modifications to Sandia's Emphasis/EIGER code allowed for the modeling of eddy current bobbin sensors near or around 1/8-inch outer diameter stainless steel tubing. Modeling results indicated that an eddy sensor based on a single axial coil could effectively detect changes in the inner diameter of a stainless steel tubing. Based on the modeling results, sensor coils capable of detecting small changes in the inner diameter of a stainless steel tube were designed, built and tested. The observed sensor response agreed with the results of the modeling and with eddy sensor theory. A separate limited distribution SAND report is being issued demonstrating the application of this sensor.

  1. Low-Temperature Colossal Supersaturation of Stainless Steels

    Broader source: Energy.gov [DOE]

    Austenitic stainless steels in the 300 Series are the primary materials used for a very broad range of applications when corrosion resistance is needed in aqueous solutions at ambient temperatures....

  2. Process to Continuously Melt, Refine, and Cast High Quality Steel

    Broader source: Energy.gov [DOE]

    This factsheet describes a project to conduct research and development targeted at designing an innovative steelmaking process to produce higher quality steel faster than traditional batch processes while consuming less energy and other resources.

  3. The effects of alpha particle irradiation on stainless steel

    E-Print Network [OSTI]

    Shipp, John Douglas

    1999-01-01

    A Monte Carlo code was developed to calculate the alpha particle emission rate from WGPu. It yielded information pertaining to the alpha particle source strength at the WGPU and stainless steel interface as well as the damage production and He...

  4. Making Steel Framing as Thermally Efficient as Wood†

    E-Print Network [OSTI]

    Kosny, J.; Childs, P.

    2002-01-01

    In many world regions like North America and Scandinavia wood framing is dominant technology for residential buildings. During last two decades several companies around the world started to promote a low-gage steel framing for residential...

  5. Quantification of phase transformation in stainless steel 301LN sheets

    E-Print Network [OSTI]

    Beese, Allison M

    2008-01-01

    This thesis investigates the large deformation behavior of stainless steel 301LN cold-rolled sheets which is largely governed by the initial anisotropy combined with the phase transformation during deformation. Stainless ...

  6. Development of sodium silicate adhesives for electrical steel bonding

    E-Print Network [OSTI]

    Marks, Jordan (Jordan Christine)

    2014-01-01

    Inorganic adhesives have several benefits over traditional joining methods for joining electrical steels used in magnetic cores of numerous industrial applications. As insulators with very high melting temperatures, the ...

  7. Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector

    E-Print Network [OSTI]

    Xu, T.T.

    2011-01-01

    Improved Product Quality,Ē Ironmaking and Steel making 18(pound Investment,Ē Ironmaking and Steel making,Ē Anonymous,Oil Through Sintering," Ironmaking and Steel making Dawson,

  8. Steel-SiC Metal Matrix Composite Development

    SciTech Connect (OSTI)

    Smith, Don D.

    2005-07-17

    The goal of this project is to develop a method for fabricating SiC-reinforced high-strength steel. We are developing a metal-matrix composite (MMC) in which SiC fibers are be embedded within a metal matrix of steel, with adequate interfacial bonding to deliver the full benefit of the tensile strength of the SiC fibers in the composite.

  9. Safety Analysis Report for packaging (onsite) steel waste package

    SciTech Connect (OSTI)

    BOEHNKE, W.M.

    2000-07-13

    The steel waste package is used primarily for the shipment of remote-handled radioactive waste from the 324 Building to the 200 Area for interim storage. The steel waste package is authorized for shipment of transuranic isotopes. The maximum allowable radioactive material that is authorized is 500,000 Ci. This exceeds the highway route controlled quantity (3,000 A{sub 2}s) and is a type B packaging.

  10. Procedure for flaw detection in cast stainless steel

    DOE Patents [OSTI]

    Kupperman, David S. (Oak Park, IL)

    1988-01-01

    A method of ultrasonic flaw detection in cast stainless steel components incorporating the steps of determining the nature of the microstructure of the cast stainless steel at the site of the flaw detection measurements by ultrasonic elements independent of the component thickness at the site; choosing from a plurality of flaw detection techniques, one such technique appropriate to the nature of the microstructure as determined and detecting flaws by use of the chosen technique.

  11. Optical panel system including stackable waveguides

    DOE Patents [OSTI]

    DeSanto, Leonard (Dunkirk, MD); Veligdan, James T. (Manorville, NY)

    2007-11-20

    An optical panel system including stackable waveguides is provided. The optical panel system displays a projected light image and comprises a plurality of planar optical waveguides in a stacked state. The optical panel system further comprises a support system that aligns and supports the waveguides in the stacked state. In one embodiment, the support system comprises at least one rod, wherein each waveguide contains at least one hole, and wherein each rod is positioned through a corresponding hole in each waveguide. In another embodiment, the support system comprises at least two opposing edge structures having the waveguides positioned therebetween, wherein each opposing edge structure contains a mating surface, wherein opposite edges of each waveguide contain mating surfaces which are complementary to the mating surfaces of the opposing edge structures, and wherein each mating surface of the opposing edge structures engages a corresponding complementary mating surface of the opposite edges of each waveguide.

  12. Thermovoltaic semiconductor device including a plasma filter

    DOE Patents [OSTI]

    Baldasaro, Paul F. (Clifton Park, NY)

    1999-01-01

    A thermovoltaic energy conversion device and related method for converting thermal energy into an electrical potential. An interference filter is provided on a semiconductor thermovoltaic cell to pre-filter black body radiation. The semiconductor thermovoltaic cell includes a P/N junction supported on a substrate which converts incident thermal energy below the semiconductor junction band gap into electrical potential. The semiconductor substrate is doped to provide a plasma filter which reflects back energy having a wavelength which is above the band gap and which is ineffectively filtered by the interference filter, through the P/N junction to the source of radiation thereby avoiding parasitic absorption of the unusable portion of the thermal radiation energy.

  13. Simple Model of Membrane Proteins Including Solvent

    E-Print Network [OSTI]

    D. L. Pagan; A. Shiryayev; T. P. Connor; J. D. Gunton

    2006-03-04

    We report a numerical simulation for the phase diagram of a simple two dimensional model, similar to one proposed by Noro and Frenkel [J. Chem. Phys. \\textbf{114}, 2477 (2001)] for membrane proteins, but one that includes the role of the solvent. We first use Gibbs ensemble Monte Caro simulations to determine the phase behavior of particles interacting via a square-well potential in two dimensions for various values of the interaction range. A phenomenological model for the solute-solvent interactions is then studied to understand how the fluid-fluid coexistence curve is modified by solute-solvent interactions. It is shown that such a model can yield systems with liquid-liquid phase separation curves that have both upper and lower critical points, as well as closed loop phase diagrams, as is the case with the corresponding three dimensional model.

  14. Broadening Industry Governance to Include Nonproliferation

    SciTech Connect (OSTI)

    Hund, Gretchen; Seward, Amy M.

    2008-11-11

    As industry is the first line of defense in detecting and thwarting illicit trade networks, the engagement of the private sector is critical to any government effort to strengthen existing mechanisms to protect goods and services throughout the supply chain. This study builds on previous PNNL work to continue to evaluate means for greater industry engagement to complement and strengthen existing governmental efforts to detect and stem the trade of illicit goods and to protect and secure goods that could be used in making a weapon of mass destruction. Specifically, the study evaluates the concept of Industry Self Regulation, defined as a systematic voluntary program undertaken by an industry or by individual companies to anticipate, implement, supplement, or substitute for regulatory requirements in a given field, generally through the adoption of best practices. Through a series of interviews with companies with a past history of non-compliance, trade associations and NGOs, the authors identify gaps in the existing regulatory infrastructure, drivers for a self regulation approach and the form such an approach might take, as well as obstacles to be overcome. The authors conclude that it is at the intersection of industry, government, and security thatóthrough collaborative meansóthe effectiveness of the international nonproliferation systemócan be most effectively strengthened to the mutual benefit of both government and the private sector. Industry has a critical stake in the success of this regime, and has the potential to act as an integrating force that brings together the existing mechanisms of the global nonproliferation regime: export controls, physical protection, and safeguards. The authors conclude that industry compliance is not enough; rather, nonproliferation must become a central tenant of a companyís corporate culture and be viewed as an integral component of corporate social responsibility (CSR).

  15. INL @ work: Archaeologist

    ScienceCinema (OSTI)

    Lowrey, Dino

    2013-05-28

    INL @ work features jobs performed at the lab. For more information about INL careers, visit http://www.facebook.com/idahonationallaboratory.

  16. Work Area Policy

    E-Print Network [OSTI]

    2005-04-19

    POLICY X.X.X. Volume V, Information Technology. Chapter 6, Acceptable Safety Work Locations. Issuing Office: Department of Mathematics. Responsible†...

  17. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricNCubictheThepresented in the7 Table7WorkWork withWork

  18. Tribological properties of CrN coatings deposited by nitro-chromizing treatment on AISI D2 steel

    SciTech Connect (OSTI)

    Durmaz, M. Abakay, E.; Sen, U.; Sen, S.; Kilinc, B.

    2015-03-30

    In this work, the wear test of uncoated and chromium nitride coated AISI D2 cold work tool steel against alumina ball realized at 0.1?m/s sliding speeds and under the loads of 2.5N, 5N and 10N. Steel samples were nitrided at 575įC for 8?h in the first step of the coating process, and then chromium nitride coating was performed thermo-reactive deposition technique (TRD) in a powder mixture consisting of ferro-chromium, ammonium chloride and alumina at 1000įC for 2?h. Nitro-chromized samples were characterized by X-Ray diffraction analysis (XRD), scanning electron microscopy (SEM), micro-hardness and ball on disk wear tests. The coating layer formed on the AISI D2 steel was compact and homogeneous. X-ray studies showed that the phase formed in the coated layer is Cr{sub 2}N. The depth of the layer was 8.15?Ķm. The average hardness of the layer was 2160Ī15 HV{sub 0.025}. For uncoated and chromium nitride materials, wear rate increased with increasing load. The results of friction coefficient and wear rate of the tested materials showed that the CrN coating presents the lowest results.

  19. Engine lubrication circuit including two pumps

    DOE Patents [OSTI]

    Lane, William H.

    2006-10-03

    A lubrication pump coupled to the engine is sized such that the it can supply the engine with a predetermined flow volume as soon as the engine reaches a peak torque engine speed. In engines that operate predominately at speeds above the peak torque engine speed, the lubrication pump is often producing lubrication fluid in excess of the predetermined flow volume that is bypassed back to a lubrication fluid source. This arguably results in wasted power. In order to more efficiently lubricate an engine, a lubrication circuit includes a lubrication pump and a variable delivery pump. The lubrication pump is operably coupled to the engine, and the variable delivery pump is in communication with a pump output controller that is operable to vary a lubrication fluid output from the variable delivery pump as a function of at least one of engine speed and lubrication flow volume or system pressure. Thus, the lubrication pump can be sized to produce the predetermined flow volume at a speed range at which the engine predominately operates while the variable delivery pump can supplement lubrication fluid delivery from the lubrication pump at engine speeds below the predominant engine speed range.

  20. White-Etching Matter in Bearing Steel. Part I: Controlled Cracking of 52100 Steel

    E-Print Network [OSTI]

    Solano-Alvarez, W.; Bhadeshia, H. K. D. H.

    2014-07-08

    :!Steel!with!a!composition!of!iron,!carbon,!phosphorus!and!molybdenum:!Tech.!Rep.!US!Patent!4,961,904:!U.!S.!Patent!Office!1990.!![15]!Z.!Lei,!A.!Zhao,!J.!Xie,!C.!Sun,!Y.!Hong:!Theoretical!and!Applied!Mechanics!Letters!2012,!vol.!2,!pp.!031003.!![16]!W... .!Solano(Alvarez,!E.!J.!Song,!D.!K.!Han,!D.(W.!Suh,!H.!K.!D.!H.!Bhadeshia:!Submitted!2014.!![17]!B.!Chalmers,!R.!King,!R.!Shuttleworth:!Proceedings!of!the!Royal!Society!A!1948,!vol.!193,!pp.!465Ė483.!![18]!K.!Ryttberg,!M.!K.!Wedel,!V...

  1. DOE - Office of Legacy Management -- Sutton Steele and Steele Co - TX 09

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and Myers Co - OHStar Cutter Corp -Sutton Steele and

  2. Financial Policy and Procedures for Reimbursable Work

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1988-08-15

    The directive establishes Department-wide financial policy and procedural guidance applicable to performing reimbursable work for other Federal agencies and with non-Federal Government entities, including foreign and commercial entities, State, and political subdivisions.

  3. Steel Creek primary producers: Periphyton and seston, L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1991

    SciTech Connect (OSTI)

    Bowers, J.A. [Westinghouse Savannah River Co., Aiken, SC (United States); Toole, M.A.; van Duyn, Y. [Normandeau Associates Inc., New Ellenton, SC (United States)

    1992-02-01

    The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal Plain in west-central South Carolina. Five major tributaries of the Savannah River -- Upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor and to protect the lower reaches from thermal impacts. The Steel Creek Biological Monitoring Program was designed to assess various components of the system and identify and changes due to the operation of L-Reactor or discharge from L Lake. An intensive ecological assessment program prior to the construction of the lake provided baseline data with which to compare data accumulated after the lake was filled and began discharging into the creek. The Department of Energy must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems. This report summarizes the results of six years` data from Steel Creek under the L-Lake/Steel Creek Monitoring Program. L Lake is discussed separately from Steel Creek in Volumes NAI-SR-138 through NAI-SR-143.

  4. Heavy-section steel technology program. Quarterly progress report, October-December 1982. Volume 4. [PWR; BWR

    SciTech Connect (OSTI)

    Whitman, G.D.; Pugh, C.E.; Bryan, R.H.

    1983-05-01

    The investigation focuses on the behavior and structural integrity of steel pressure vessels containing cracklike flaws. Current work is organized into seven tasks: (1) program administration and procurement, (2) fracture-mechanics analyses and investigations, (3) investigations of irradiated materials, (4) thermal-shock investigations, (5) pressure vessel investigations, (6) stainless steel cladding investigations, and (7) environmentally assisted crack growth studies. A superposition solution technique for determining stress-intensity factors for semielliptical surface cracks in cylinders was implemented in pressurized thermal-shock (PTS) analyses. Subcontractors continued studies on crack arrest, cleavage fracture initiation, and cleavage transition. Specimens of the ORNL single-wire cladding were fabricated for irradiation. Pretest analyses were carried out for the upcoming thermal-shock test, TSE-7, and posttest analyses and examinations were under way for intermediate vessel test ITV-8A. Preparations for the first PTS experiment continued with design, procurement, and construction of the test facility, test vessels, and experimental apparatus.

  5. Development of A New Class of Fe-3Cr-W(V)Ferritic Steels for Industrial Process Applications

    SciTech Connect (OSTI)

    Sikka, V.J.; Jawad, M.H. (Nooter Corp.)

    2005-06-15

    The project, 'Development of a New Class of Fe-Cr-W(V) Ferritic Steels for Industrial Process Applications', was a Cooperative Research and Development Agreement (CRADA) between Oak Ridge National Laboratory (ORNL) and Nooter Corporation. This project dealt with improving the materials performance and fabrication for the hydrotreating reactor vessels, heat recovery systems, and other components for the petroleum and chemical industries. The petroleum and chemical industries use reactor vessels that can approach the ship weights of approximately 300 tons with vessel wall thicknesses of 3 to 8 in. These vessels are typically fabricated from Fe-Cr-Mo steels with chromium ranging from 1.25 to 12% and molybdenum from 1 to 2%. Steels in this composition have great advantages of high thermal conductivity, low thermal expansion, low cost, and properties obtainable by heat treatment. With all of the advantages of Fe-Cr-Mo steels, several issues are faced in design and fabrication of vessels and related components. These issues include the following: (1) low strength properties of current alloys require thicker sections; (2) increased thickness causes heat-treatment issues related to nonuniformity across the thickness and thus not achieving the optimum properties; (3) fracture toughness (ductile-to-brittle transition ) is a critical safety issue for these vessels, and it is affected in thick sections due to nonuniformity of microstructure; (4) PWHT needed after welding and makes fabrication more time-consuming with increased cost; and (5) PWHT needed after welding also limits any modifications of the large vessels in service. The goal of this project was to reduce the weight of large-pressure vessel components (ranging from 100 to 300 tons) by approximately 25% and reduce fabrication cost and improve in-service modification feasibility through development of Fe-3Cr-W(V) steels with combination of nearly a 50% higher strength, a lower DBTT and a higher upper-shelf energy, ease of heat treating, and a strong potential for not requiring PWHT.

  6. Stirling engine with air working fluid

    DOE Patents [OSTI]

    Corey, John A. (North Troy, NY)

    1985-01-01

    A Stirling engine capable of utilizing air as a working fluid which includes a compact heat exchange module which includes heating tube units, regenerator and cooler positioned about the combustion chamber. This arrangement has the purpose and effect of allowing the construction of an efficient, high-speed, high power-density engine without the use of difficult to seal light gases as working fluids.

  7. Ultrasonic Sound Field Mapping Through Coarse Grained Cast Austenitic Stainless Steel Components

    SciTech Connect (OSTI)

    Crawford, Susan L.; Prowant, Matthew S.; Cinson, Anthony D.; Larche, Michael R.; Diaz, Aaron A.

    2014-08-01

    The Pacific Northwest National Laboratory (PNNL) has been involved with nondestructive examination (NDE) of coarse-grained cast austenitic stainless steel (CASS) components for over 30 years. More recent work has focused on mapping the ultrasonic sound fields generated by low-frequency phased array probes that are typically used for the evaluation of CASS materials for flaw detection and characterization. The casting process results in the formation of large grained material microstructures that are nonhomogeneous and anisotropic. The propagation of ultrasonic energy for examination of these materials results in scattering, partitioning and redirection of these sound fields. The work reported here provides an assessment of sound field formation in these materials and provides recommendations on ultrasonic inspection parameters for flaw detection in CASS components.

  8. Austenitic stainless steel for high temperature applications

    DOE Patents [OSTI]

    Johnson, Gerald D. (Kennewick, WA); Powell, Roger W. (Pasco, WA)

    1985-01-01

    This invention describes a composition for an austenitic stainless steel which has been found to exhibit improved high temperature stress rupture properties. The composition of this alloy is about (in wt. %): 12.5 to 14.5 Cr; 14.5 to 16.5 Ni; 1.5 to 2.5 Mo; 1.5 to 2.5 Mn; 0.1 to 0.4 Ti; 0.02 to 0.08 C; 0.5 to 1.0 Si; 0.01 maximum, N; 0.02 to 0.08 P; 0.002 to 0.008 B; 0.004-0.010 S; 0.02-0.05 Nb; 0.01-0.05 V; 0.005-0.02 Ta; 0.02-0.05 Al; 0.01-0.04 Cu; 0.02-0.05 Co; 0.03 maximum, As; 0.01 maximum, O; 0.01 maximum, Zr; and with the balance of the alloy being essentially iron. The carbon content of the alloy is adjusted such that wt. % Ti/(wt. % C+wt. % N) is between 4 and 6, and most preferably about 5. In addition the sum of the wt. % P+wt. % B+wt. % S is at least 0.03 wt. %. This alloy is believed to be particularly well suited for use as fast breeder reactor fuel element cladding.

  9. WORKPLACE GUIDES GLOBAL WORKING

    E-Print Network [OSTI]

    Roelleke, Thomas

    of Stonewall good practice publications ≠ profiles some of the employers paving the way for gay staff to work do arise. This guide provides clear, practical tips on how gay employees can access internationalWORKPLACE GUIDES GLOBAL WORKING Supporting lesbian, gay and bisexual staff on overseas assignments

  10. Work Authorization System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-04-21

    To establish a work authorization and control process for work performed by designated site and facility management contractors, and other contractors as determined by the procurement executive, consistent with the budget execution and program evaluation requirements of the Department of Energy's (DOE's) Planning, Programming, Budgeting, and Evaluation process. Cancels DOE O 412.1.

  11. Work Authorization System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-04-21

    To establish a work authorization and control process for work performed by designated site and facility management contractors, and other contractors as determined by the procurement executive, consistent with the budget execution and program evaluation requirements of the Department of Energy's Planning, Programming, Budgeting, and Evaluation process. Admin Chg 1, dated 5-21-2014, cancels DOE O 412.1A.

  12. Mathematical Future work

    E-Print Network [OSTI]

    Phillips, David

    1/15 Mathematical modeling Example: Glaucoma clinic Future work Scheduling and resource planning;2/15 Mathematical modeling Example: Glaucoma clinic Future work So a mathematician walks into a room full of healthcare providers... ∑ Mathematical modeling ∑ A model for the glaucoma clinic ∑ Future possibilities #12

  13. Work Authorization System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-04-20

    It establishes a work authorization and control process for work performed by designated management and operating (M&O), management and integrating (M&I), environmental restoration management contracts (ERMC) and other contracts determined by the Procurement Executive (hereafter referred to as M&O contractors). Cancels DOE O 5700.7C. Canceled by DOE O 412.1A.

  14. Weld solidification cracking in 304 to 204L stainless steel

    SciTech Connect (OSTI)

    Hochanadel, Patrick W [Los Alamos National Laboratory; Lienert, Thomas J [Los Alamos National Laboratory; Martinez, Jesse N [Los Alamos National Laboratory; Johnson, Matthew Q [Los Alamos National Laboratory

    2010-09-15

    A series of annulus welds were made between 304 and 304L stainless steel coaxial tubes using both pulsed laser beam welding (LBW) and pulsed gas tungsten arc welding (GTAW). In this application, a change in process from pulsed LBW to pulsed gas tungsten arc welding was proposed to limit the possibility of weld solidification cracking since weldability diagrams developed for GTAW display a greater range of compositions that are not crack susceptible relative to those developed for pulsed LBW. Contrary to the predictions of the GTAW weldability diagram, cracking was found.This result was rationalized in terms of the more rapid solidification rate of the pulsed gas tungsten arc welds. In addition, for the pulsed LBW conditions, the material compositions were predicted to be, by themselves, 'weldable' according to the pulsed LBW weldability diagram. However, the composition range along the tie line connecting the two compositions passed through the crack susceptible range. Microstructurally, the primary solidification mode (PSM) of the material processed with higher power LBW was determined to be austenite (A), while solidification mode of the materials processed with lower power LBW apparently exhibited a dual PSM of both austenite (A) and ferrite-austenite (FA) within the same weld. The materials processed by pulsed GTAW showed mostly primary austenite solidification, with some regions of either primary austenite-second phase ferrite (AF) solidification or primary ferrite-second phase austenite (FA) solidification. This work demonstrates that variations in crack susceptibility may be realized when welding different heats of 'weldable' materials together, and that slight variations in processing can also contribute to crack susceptibility.

  15. Weld solidification cracking in 304 to 304L stainless steel

    SciTech Connect (OSTI)

    Hochanadel, Patrick W [Los Alamos National Laboratory; Lienert, Thomas J [Los Alamos National Laboratory; Martinez, Jesse N [Los Alamos National Laboratory; Martinez, Raymond J [Los Alamos National Laboratory; Johnson, Matthew Q [Los Alamos National Laboratory

    2010-01-01

    A series of annulus welds were made between 304 and 304L stainless steel coaxial tubes using both pulsed laser beam welding (LBW) and pulsed gas tungsten arc welding (GTAW). In this application, a change in process from pulsed LBW to pulsed gas tungsten arc welding was proposed to limit the possibility of weld solidification cracking since weldability diagrams developed for GTAW display a greater range of compositions that are not crack susceptible relative to those developed for pulsed LBW. Contrary to the predictions of the GTAW weldability diagram, cracking was found. This result was rationalized in terms of the more rapid solidification rate of the pulsed gas tungsten arc welds. In addition, for the pulsed LBW conditions, the material compositions were predicted to be, by themselves, 'weldable' according to the pulsed LBW weldability diagram. However, the composition range along the tie line connecting the two compositions passed through the crack susceptible range. Microstructurally, the primary solidification mode (PSM) of the material processed with higher power LBW was determined to be austenite (A), while solidification mode of the materials processed with lower power LBW apparently exhibited a dual PSM of both austenite (A) and ferrite-austenite (FA) within the same weld. The materials processed by pulsed GT A W showed mostly primary austenite solidification, with some regions of either primary austenite-second phase ferrite (AF) solidification or primary ferrite-second phase austenite (FA) solidification. This work demonstrates that variations in crack susceptibility may be realized when welding different heats of 'weldable' materials together, and that slight variations in processing can also contribute to crack susceptibility.

  16. UNIVERSITY OF TORONTO WORKING AT ELEVATED PLACES

    E-Print Network [OSTI]

    Chan, Hue Sun

    in elevated locations at the University are faced with a potential risk of falling. Persons below these work areas may be at risk from falling objects. These hazards must be significantly reduced through the use including a site specific work plan; Provide notice to the Ontario Ministry of Labour of the nature

  17. Steel-framed buildings: Impacts of wall detail configurations on the whole wall thermal performance

    SciTech Connect (OSTI)

    Kosny, J.; Desjarlais, A.O.; Christian, J.E.

    1998-06-01

    The main objective of this paper is the influence of architectural wall details on the whole wall thermal performance. Whole wall thermal performance analysis was performed for six light gage steel-framed wall systems (some with wood components). For each wall system, all wall details were simulated using calibrated 3-D finite difference computer modeling. The thermal performance of the six steel-framed wall systems included various system details and the whole wall system thermal performance for a typical single-story ranch house. Currently, predicted heat losses through building walls are typically based on measurements of the wall system clear wall area using test methods such as ASTM C 236 or are calculated by one of the procedures recommended in the ASHRAE Handbook of Fundamentals that often is carried out for the clear wall area exclusively. In this paper, clear wall area is defined as the part of the wall system that is free of thermal anomalies due to building envelope details or thermally unaffected by intersections with other surfaces of the building envelope. Clear wall experiments or calculations normally do not include the effects of building envelope details such as corners, window and door openings, and structural intersections with roofs, floors, ceilings, and other walls. In steel-framed wall systems, these details typically consist of much more structural components than the clear wall. For this situation, the thermal properties measured or calculated for the clear wall area do not adequately represent the total wall system thermal performance. Factors that would impact the ability of today`s standard practice to accurately predict the total wall system thermal performance are the accuracy of the calculation methods, the area of the total wall that is clear wall, and the quantity and thermal performance of the various wall system details.

  18. Scalable Work Stealing

    SciTech Connect (OSTI)

    Dinan, James S.; Larkins, D. B.; Sadayappan, Ponnuswamy; Krishnamoorthy, Sriram; Nieplocha, Jaroslaw

    2009-11-14

    Irregular and dynamic parallel applications pose significant challenges to achieving scalable performance on large-scale multicore clusters. These applications often require ongoing, dynamic load balancing in order to maintain efficiency. While effective at small scale, centralized load balancing schemes quickly become a bottleneck on large-scale clusters. Work stealing is a popular approach to distributed dynamic load balancing; however its performance on large-scale clusters is not well understood. Prior work on work stealing has largely focused on shared memory machines. In this work we investigate the design and scalability of work stealing on modern distributed memory systems. We demonstrate high efficiency and low overhead when scaling to 8,192 processors for three benchmark codes: a producer-consumer benchmark, the unbalanced tree search benchmark, and a multiresolution analysis kernel.

  19. EFFECT OF VANADIUM ON STRUCTURE-PROPERTY RELATIONS OF DUAL PHASE Fe/Mn/Si/0.lC STEELS

    E-Print Network [OSTI]

    Nakagawa, Alvin

    2014-01-01

    Formable HSLA and Dual Phase Steels, Proceedings of AIME,and Properties of Dual Phase Steels, Proceedings of Aifv1E,in intercritically annealed dual phase steels. Many of the

  20. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Worrell, Ernst; Blinde, Paul; Neelis, Maarten; Blomen, Eliane; Masanet, Eric

    2010-10-21

    Energy is an important cost factor in the U.S iron and steel industry. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. iron and steel industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the structure, production trends, energy consumption, and greenhouse gas emissions of the iron and steel industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the steel and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. iron and steel industry reduce energy consumption and greenhouse gas emissions in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures?and on their applicability to different production practices?is needed to assess their cost effectiveness at individual plants.

  1. Heavy reflector experiments in the IPEN/MB-01 reactor: Stainless steel, carbon steel and nickel

    SciTech Connect (OSTI)

    Santos, Adimir dos; Andrade e Silva, Graciete Simoes de; Jerez, Rogerio; Liambos Mura, Luis Felipe; Fuga, Rinaldo [Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP Av. Prof. Lineu Prestes 2242 - CEP 05508-000 Sao Paulo, SP (Brazil)

    2013-05-06

    New experiments devoted to the measurements of physical parameters of a light water core surrounded by a heavy reflector were performed in the IPEN/MB-01 research reactor facility. These experiments comprise three sets of heavy reflector (SS-304, Carbon Steel, and Nickel) in a form of laminates around 3 mm thick. Each set was introduced individually in the west face of the core of the IPEN/MB-01 reactor. The aim here is to provide high quality experimental data for the interpretation and validation of the SS-304 heavy reflector calculation methods. The experiments of Carbon Steel, which is composed mainly of iron, and Nickel were performed to provide a consistent and an interpretative check for the SS-304 reflector experiment. The experimental results comprise critical control bank positions, temperatures and reactivities as a function of the number of the plates. Particularly to the case of Nickel, the experimental data are unique of its kind. The theoretical analysis was performed by MCNP-5 with the nuclear data library ENDF/B-VII.0. It was shown that this nuclear data library has a very good performance up to thirteen plates and overestimates the reactivity for higher number of plates independently of the type of the reflector.

  2. Active wear and failure mechanisms of TiN-coated high speed steel and TiN-coated cemented carbide tools when machining powder metallurgically made stainless steels

    SciTech Connect (OSTI)

    Jiang, L.; Haenninen, H.; Paro, J.; Kauppinen, V.

    1996-09-01

    In this study, active wear and failure mechanisms of both TiN-coated high speed steel and TiN-coated cemented carbide tools when machining stainless steels made by powder metallurgy in low and high cutting speed ranges, respectively, have been investigated. Abrasive wear mechanisms, fatigue-induced failure, and adhesive and diffusion wear mechanisms mainly affected the tool life of TiN-coated high speed steel tools at cutting speeds below 35 m/min, between 35 and 45 m/min, and over 45 m/min, respectively. Additionally, fatigue-induced failure was active at cutting speeds over 45 m/min in the low cutting speed range when machining powder metallurgically made duplex stainless steel 2205 and austenitic stainless steel 316L. In the high cutting speed range, from 100 to 250 m/min, fatigue-induced failure together with diffusion wear mechanism, affected the tool life of TiN-coated cemented carbide tools when machining both 316L and 2205 stainless steels. It was noticed that the tool life of TiN-coated high speed steel tools used in the low cutting speed range when machining 2205 steel was longer than that when machining 316L steel, whereas the tool life of TiN-coated cemented carbide tools used in the high cutting speed range when machining 316L steel was longer than that when machining 2205 steel.

  3. Ionic liquids, electrolyte solutions including the ionic liquids, and energy storage devices including the ionic liquids

    DOE Patents [OSTI]

    Gering, Kevin L.; Harrup, Mason K.; Rollins, Harry W.

    2015-12-08

    An ionic liquid including a phosphazene compound that has a plurality of phosphorus-nitrogen units and at least one pendant group bonded to each phosphorus atom of the plurality of phosphorus-nitrogen units. One pendant group of the at least one pendant group comprises a positively charged pendant group. Additional embodiments of ionic liquids are disclosed, as are electrolyte solutions and energy storage devices including the embodiments of the ionic liquid.

  4. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricNCubictheThepresented in the7 Table7WorkWork with

  5. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricNCubictheThepresented in the7 Table7WorkWork

  6. Putting Science to Work

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that 'bright kid' whose advice I have always sought and mostly followed." Putting Science to Work SafeTy remINDer Filigenzi, Gergel on the Job for TTED T wo new ORNL staff...

  7. How Fusion Energy Works

    Broader source: Energy.gov [DOE]

    Fusion energy is the energy source of the sun and all of the stars. As part of How Energy Works, we'll cover everything from fuel sources to plasma physics and beyond.

  8. Clean Energy Works

    Broader source: Energy.gov [DOE]

    Through Clean Energy Works, homeowners can finance up to $30,000 at a fixed interest rate for home energy efficiency retrofits for a variety of measures. Customers have varying lender and loan op...

  9. Fermilab: Science at Work

    ScienceCinema (OSTI)

    Brendan Casey; Herman White; Craig Hogan; Denton Morris; Mary Convery; Bonnie Fleming; Deborah Harris; Dave Schmitz; Brenna Flaugher; Aron Soha

    2013-02-14

    Six days. Three frontiers. One amazing lab. From 2010 to 2012, a film crew followed a group of scientists at the Department of Energy's Fermilab and filmed them at work and at home. This 40-minute documentary shows the diversity of the people, research and work at Fermilab. Viewers catch a true behind-the-scenes look of the United States' premier particle physics laboratory while scientists explain why their research is important to them and the world.

  10. Fermilab: Science at Work

    SciTech Connect (OSTI)

    Brendan Casey; Herman White; Craig Hogan; Denton Morris; Mary Convery; Bonnie Fleming; Deborah Harris; Dave Schmitz; Brenna Flaugher; Aron Soha

    2013-02-01

    Six days. Three frontiers. One amazing lab. From 2010 to 2012, a film crew followed a group of scientists at the Department of Energy's Fermilab and filmed them at work and at home. This 40-minute documentary shows the diversity of the people, research and work at Fermilab. Viewers catch a true behind-the-scenes look of the United States' premier particle physics laboratory while scientists explain why their research is important to them and the world.

  11. Micromechanisms of ductile fracturing of DH-36 steel plates under impulsive loads and influence of polyurea reinforcing

    E-Print Network [OSTI]

    Amini, M. R.; Nemat-Nasser, S.

    2010-01-01

    Micromechanisms of ductile fracturing of DH-36 steel platesMicromechanisms of ductile fracturing of DH-36 steel platesundergoes controllable fracturing, generally initiated near

  12. Energy Saving Melting and Revert Reduction Technology (Energy-SMARRT): Clean Steel Casting Production

    SciTech Connect (OSTI)

    Kuyucak, Selcuk; Li, Delin

    2013-12-31

    Inclusions in steel castings can cause rework, scrap, poor machining, and reduced casting performance, which can obviously result in excess energy consumption. Significant progress in understanding inclusion source, formation and control has been made. Inclusions can be defined as non-metallic materials such as refractory, sand, slag, or coatings, embedded in a metallic matrix. This research project has focused on the mold filling aspects to examine the effects of pouring methods and gating designs on the steel casting cleanliness through water modeling, computer modeling, and melting/casting experiments. Early in the research project, comprehensive studies of bottom-pouring water modeling and low-alloy steel casting experiments were completed. The extent of air entrainment in bottom-poured large castings was demonstrated by water modeling. Current gating systems are designed to prevent air aspiration. However, air entrainment is equally harmful and no prevention measures are in current practice. In this study, new basin designs included a basin dam, submerged nozzle, and nozzle extension. The entrained air and inclusions from the gating system were significantly reduced using the new basin method. Near the end of the project, there has been close collaboration with Wescast Industries Inc., a company manufacturing automotive exhaust components. Both computer modeling using Magma software and melting/casting experiments on thin wall turbo-housing stainless steel castings were completed in this short period of time. Six gating designs were created, including the current gating on the pattern, non-pressurized, partially pressurized, naturally pressurized, naturally pressurized without filter, and radial choke gating without filter, for Magma modeling. The melt filling velocity and temperature were determined from the modeling. Based on the simulation results, three gating designs were chosen for further melting and casting experiments on the same casting pattern using the lip pouring method. It was observed again that gating designs greatly influenced the melt filling velocity and the number of inclusion defects. The radial choked gating showed improvements in casting cleanliness and yield over the other gatings, even though no mold filters were used in the gating system.

  13. Differential two-body compound nuclear cross section, including the width-fluctuation corrections

    SciTech Connect (OSTI)

    Brown, D.; Herman, M.

    2014-09-02

    We figure out the compound angular differential cross sections, following mainly FrŲbrich and Lipperheide, but with the angular momentum couplings that make sense for optical model work. We include the width-fluctuation correction along with calculations.

  14. Growing a Language Guy L. Steele Jr.

    E-Print Network [OSTI]

    Wadler, Philip

    " These are names of persons: Alan Turing, Alonzo Church, Charles Kay Ogden, Christo- pher Alexander, Eric Raymond know this thanks to the work of such persons as Alan Turing and Alonzo Church. A vocabulary is a set

  15. Growing a Language Guy L. Steele Jr.

    E-Print Network [OSTI]

    Wadler, Philip

    \\es" These are names of persons: Alan Turing, Alonzo Church, Charles Kay Ogden, Christo- pher know this thanks to the work of such persons as Alan Turing and Alonzo Church. A vocabulary is a set

  16. SCHOOL OF SOCIAL WORK WHAt YOu WILL LeARn

    E-Print Network [OSTI]

    Thompson, Michael

    , family and societal problems ≠ including how social work and social welfare institutions affect acquired in academic courses n understand how social service organizations and networks work n collaborate and policy analysts Social workers work in many different settings, including: n Health care settings

  17. Alumina-Forming Austenitics: A New Approach to Thermal and Degradation Resistant Stainless Steels for Industrial Use

    SciTech Connect (OSTI)

    David A Helmick; John H Magee; Michael P Brady

    2012-05-31

    A series of developmental AFA alloys was selected for study based on: 25 Ni wt.% (alloys A-F), 20 wt% Ni (alloys G-H), and 12 Ni wt.% (alloys I-L). An emphasis in this work was placed on the lower alloy content direction for AFA alloys to reduce alloy raw material cost, rather than more highly alloyed and costly AFA alloys for higher temperature performance. Alloys A-D explored the effects of Al (3-4 wt.%) and C (0.05-0.2 wt.%) in the Fe-25Ni-14Cr-2Mn-2Mo-1W-1Nb wt.% base range; alloys E and F explored the effects of removing costly Mo and W additions in a Fe-25Ni-14Cr-4Al-2.5Nb-2Mn-0.2C base, alloys G and H examined Nb (1-2.5wt.%) and removal of Mo, W in a Fe-20Ni-14Cr-3Al-2Mn-0.2 C wt.% base; and alloys I-L examined effects of C (0.1-0.2 wt.%) and Mn (5-10 wt.%) on a low cost Fe-14Cr-12Ni-3Cu-2.5Al wt.% base (no Mo, W additions). Creep testing resulted in elemental trends that included the beneficial effect of higher carbon and lower niobium in 20-25%Ni AFA alloys and, the beneficial of lower Mn in 12%Ni AFA alloys. Corrosion tests in steam and sulfidation-oxidation environments showed, in general, these alloys were capable of a ten-fold improvement in performance when compared to conventional austenitic stainless steels. Also, corrosion test results in metal-dusting environments were promising and, warrant further investigation.

  18. Mobile machine hazardous working zone warning system

    DOE Patents [OSTI]

    Schiffbauer, William H. (Connellsville, PA); Ganoe, Carl W. (Pittsburgh, PA)

    1999-01-01

    A warning system is provided for a mobile working machine to alert an individual of a potentially dangerous condition in the event the individual strays into a hazardous working zone of the machine. The warning system includes a transmitter mounted on the machine and operable to generate a uniform magnetic field projecting beyond an outer periphery of the machine in defining a hazardous working zone around the machine during operation thereof. A receiver, carried by the individual and activated by the magnetic field, provides an alarm signal to alert the individual when he enters the hazardous working zone of the machine.

  19. Mobile machine hazardous working zone warning system

    DOE Patents [OSTI]

    Schiffbauer, W.H.; Ganoe, C.W.

    1999-08-17

    A warning system is provided for a mobile working machine to alert an individual of a potentially dangerous condition in the event the individual strays into a hazardous working zone of the machine. The warning system includes a transmitter mounted on the machine and operable to generate a uniform magnetic field projecting beyond an outer periphery of the machine in defining a hazardous working zone around the machine during operation. A receiver, carried by the individual and activated by the magnetic field, provides an alarm signal to alert the individual when he enters the hazardous working zone of the machine. 3 figs.

  20. STATEMENT OF WORK (SOW)

    National Nuclear Security Administration (NNSA)

    including TTR. Waste acceptance services will be performed at the NNSS and at waste generator sites across the DOE Complex. 1.4 Performance Requirements: Performance requirements...

  1. Energy use and carbon dioxide emissions in the steel sector in key developing countries

    E-Print Network [OSTI]

    Price, Lynn; Phylipsen, Dian; Worrell, Ernst

    2001-01-01

    Li, 2001. Energy Use and Carbon Dioxide Emissions from SteelEnergy Efficiency and Carbon Dioxide Emissions ReductionEnergy Use and Carbon Dioxide Emissions in the Steel Sector

  2. Wear-Resistant NanoCompositeStainless Steel Coatings and Bits...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wear-Resistant NanoCompositeStainless Steel Coatings and Bits Wear-Resistant NanoCompositeStainless Steel Coatings and Bits Project objective: To develop ultra-hard and wear...

  3. Inventory management of steel plates at an oil rig construction company

    E-Print Network [OSTI]

    Tan, Chien Yung

    2006-01-01

    Keppel Fels produces make-to-order oil exploration rigs for the global market. Each rig requires close to 6000 metric tons of steel in the course of its production. Optimal management of this steel is very critical in this ...

  4. Stress corrosion cracking and hydrogen embrittlement of thick section high strength low alloy steel

    E-Print Network [OSTI]

    Needham, William Donald

    1986-01-01

    An experimental study was conducted to evaluate the corrosion performance of weldments of a high strength low alloy(HSLA) steel in a simulated seawater environment. This steel, designated HSLA80, was developed by the United ...

  5. ITP Steel: Hydrogen and Nitrogen Control in Ladle and Casting Operations

    Broader source: Energy.gov [DOE]

    In recent years there has been an increasing demand to reduce and control the amount of dissolved gases in steel. Hydrogen and nitrogen are two of the most important gases which when dissolved in liquid steel affect its properties significantly

  6. DESIGN OF DUPLEX LOW CARBON STEELS FOR IMPROVED STRENGTH: WEIGHT APPLICATIONS

    E-Print Network [OSTI]

    Koo, J.

    2010-01-01

    of all the Cr steels is about Upon annealing of the initialCr bearing steels to attain similar initial of the annealingsteel) and martensite lath boundaries, coupled with the gradual evo- lution of austenite particles with annealing

  7. Case Study of Optimal Byproduct Gas Distribution in Integrated Steel Mill Using Multi-Period Optimization†

    E-Print Network [OSTI]

    Makinen, K.; Kymalainen, T.; Junttila, J.

    2012-01-01

    Energy constitutes about 20 % of the total production cost in an integrated steel mill, and therefore energy efficiency is crucial for profitability within the environmental policy context. An integrated steel mill generates high calorific value...

  8. Experiments to Separate the Effect of Texture on Anisotropy of Pipeline Steel

    E-Print Network [OSTI]

    Cambridge, University of

    Experiments to Separate the Effect of Texture on Anisotropy of Pipeline Steel M. S. Jooa , D the anisotropy of Charpy test energy. Keywords: pipeline steel, anisotropy, crystallographic texture, memory

  9. Identification and probabilistic modeling of mesocrack initiations in 304L stainless steel

    E-Print Network [OSTI]

    Identification and probabilistic modeling of mesocrack initiations in 304L stainless steel J. Rupil the growth of fa- tigue damage in an austenitic stainless steel at a mesoscopic scale. Several fatigue

  10. CF8C PLus: A New Cast Stainless Steel for High-Temperature Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CF8C PLus: A New Cast Stainless Steel for High-Temperature Diesel Exhaust Components CF8C PLus: A New Cast Stainless Steel for High-Temperature Diesel Exhaust Components...

  11. The hardening of Type 316L stainless steel welds with thermal aging

    E-Print Network [OSTI]

    Ayers, Lauren Juliet

    2012-01-01

    Welded stainless steel piping is a component of boiling water reactors (BWRs). Reirculation and other large diameter piping are fabricated from Type 304 or 316 stainless steels. Delta ferrite is present in welds, because ...

  12. Modelling precipitation sequences in power plant steels Part 2 -Application of kinetic theory

    E-Print Network [OSTI]

    Cambridge, University of

    Modelling precipitation sequences in power plant steels Part 2 - Application of kinetic theory J. D to predictthevastdifferencesin precipitation kineticsreportedin thepublishedliteraturefor powerplant steels.By implication, the precipitate phases usually present are metastable. Indeed,it is well establishedthat thereis

  13. Effect of stainless steel weld overlay cladding on the structural integrity of flawed steel plates in bending. Series 1

    SciTech Connect (OSTI)

    Corwin, W.R.; Robinson, G.C.; Nanstad, R.K.; Merkle, J.G.; Berggren, R.G.; Goodwin, G.M.; Swain, R.L.; Owings, T.D.

    1985-04-01

    The Heavy-Section Steel Technology (HSST) Stainless Steel Cladding Evaluations were undertaken to study the interaction of stainless steel cladding on the inside surface of a reactor pressure vessel with flaws initiating and propagating in base metal. With the more recent focus of safety studies on overcooling type transients, for which the behavior of small flaws is important, stainless steel cladding may have a key role in controlling the propagation and/or arrest of propagating flaws. A complicating factor in understanding the role of stainless steel cladding in this setting is the scarcity of data on its fracture toughness as a function of radiation dose and the fabrication process. The initial phase of the HSST evaluations addresses this question by testing the response of 51-mm-thick flawed plates clad with single-wire, submerged-arc weld overlays of different toughness levels. The tests completed indicate that cladding of moderate toughness had a limited ability to enhance the structural arrest toughness of a beam in bending. The specimen design and fabrication techniques employed for this first completed series of tests resulted in flaw and specimen configurations that prevented adequate control of the stress state at pop-in of the hydrogen-charged electron-beam welds. As a result, analyses of the tests by two approximate techniques and by the ORMGEN-ADINA-ORVIRT finite-element programs were not completely consistent.

  14. Rebuilding Our Local Economy One Home at a Time-- Clean Energy Works Oregon

    Broader source: Energy.gov [DOE]

    Provides an overview of the Clean Energy Works Oregon program including progress and rebates offered.

  15. Protoplanetary disks including radiative feedback from accreting planets

    E-Print Network [OSTI]

    Montesinos, Matias; Perez, Sebastian; Baruteau, Clement; Casassus, Simon

    2015-01-01

    While recent observational progress is converging on the detection of compact regions of thermal emission due to embedded protoplanets, further theoretical predictions are needed to understand the response of a protoplanetary disk to the planet formation radiative feedback. This is particularly important to make predictions for the observability of circumplanetary regions. In this work we use 2D hydrodynamical simulations to examine the evolution of a viscous protoplanetary disk in which a luminous Jupiter-mass planet is embedded. We use an energy equation which includes the radiative heating of the planet as an additional mechanism for planet formation feedback. Several models are computed for planet luminosities ranging from $10^{-5}$ to $10^{-3}$ Solar luminosities. We find that the planet radiative feedback enhances the disk's accretion rate at the planet's orbital radius, producing a hotter and more luminous environement around the planet, independently of the prescription used to model the disk's turbul...

  16. Energy and materials flows in the iron and steel industry

    SciTech Connect (OSTI)

    Sparrow, F.T.

    1983-06-01

    Past energy-consumption trends and future energy-conservation opportunities are investigated for the nation's iron and steel industry. It is estimated that, in 1980, the industry directly consumed approximately 2.46 x 10/sup 15/ Btu of energy (roughly 3% of total US energy consumption) to produce 111 million tons of raw steel and to ship 84 million tons of steel products. Direct plus indirect consumption is estimated to be about 3.1 x 10/sup 15/ Btu. Of the set of conservation technologies identified, most are judged to be ready for commercialization if and when the industry's capital formation and profitability problems are solved and the gradual predicted increase in energy prices reduces the payback periods to acceptable levels.

  17. An alternative to the crystallographic reconstruction of austenite in steels

    SciTech Connect (OSTI)

    Bernier, Nicolas, E-mail: n.bernier@yahoo.fr [OCAS N.V., ArcelorMittal R and D Gent, Pres. J.F. Kennedylaan 3, 9060 Zelzate (Belgium); Bracke, Lieven, E-mail: lieven.bracke@arcelormittal.com [OCAS N.V., ArcelorMittal R and D Gent, Pres. J.F. Kennedylaan 3, 9060 Zelzate (Belgium); Malet, LoÔc; Godet, Stťphane [Universitť Libre de Bruxelles, 4 MAT (Materials Engineering, Characterisation, Synthesis and Recycling), Avenue F.D. Roosevelt 50, CP 194/03, 1050 Brussels (Belgium)

    2014-03-01

    An alternative crystallographic austenite reconstruction programme written in Matlab is developed by combining the best features of the existing models: the orientation relationship refinement, the local pixel-by-pixel analysis and the nuclei identification and spreading strategy. This programme can be directly applied to experimental electron backscatter diffraction mappings. Its applicability is demonstrated on both quenching and partitioning and as-quenched lath-martensite steels. - Highlights: ē An alternative crystallographic austenite reconstruction program is developed. ē The method combines a local analysis and a nuclei identification/spreading strategy. ē The validity of the calculated orientation relationship is verified on a Q and P steel. ē The accuracy of the reconstructed microtexture is investigated on a martensite steel.

  18. Dry film lubricant for difficult drawing applications of galvanized steels

    SciTech Connect (OSTI)

    Wakano, Shigeru; Sakane, Tadashi; Hirose, Yozou . Iron and Steel Research Lab.); Matsuda, Naomichi; Onodera, Show . Oleo Chemicals Research Lab.)

    1993-09-01

    Press formability of metals sheets is considered to depend on surface lubricity, press forming condition and mechanical properties of the metal sheets. In Zn and Zn-alloy plated steel sheets with heavy coatings, surface lubricity is the most important property. This is because the low melting temperature and low hardness of the plated layer occasionally cause microscopic galling through deformation at the beads of dies which may, consequently, result in sheet breakage. Press formability of Zn and Zn-alloy plated steel sheets with heavy coating weight has been improved by the use of a high viscosity lubricant oil and a Fe-Zn alloy flash-plating on galvannealed steel. However, the use of high viscosity lubricant oils created problems with oil staining and removal before painting. An alloy flash plating results in appreciably higher production costs. This article describes the characteristics of a thin film dry lubricant, Super S-coat, as a new countermeasure, which will overcome these problems.

  19. Quantification of stress history in type 304L stainless steel using positron annihilation spectroscopy

    SciTech Connect (OSTI)

    Walters, Thomas W.; Walters, Leon C.; Schoen, Marco P.; Naidu, D. Subbaram; Dickerson, Charles; Perrenoud, Ben C.

    2011-04-15

    Five Type 304L stainless steel specimens were subjected to incrementally increasing values of plastic strain. At each value of strain, the associated static stress was recorded and the specimen was subjected to positron annihilation spectroscopy (PAS) using the Doppler Broadening method. A calibration curve for the 'S' parameter as a function of stress was developed based on the five specimens. Seven different specimens (blind specimens labeled B1-B7) of 304L stainless steel were subjected to values of stress inducing plastic deformation. The values of stress ranged from 310 to 517 MPa. The seven specimens were subjected to PAS post-loading using the Doppler Broadening method, and the results were compared against the developed curve from the previous five specimens. It was found that a strong correlation exists between the 'S' parameter, stress, and strain up to a strain value of 15%, corresponding to a stress value of 500 MPa, beyond which saturation of the 'S' parameter occurs. Research Highlights: {yields} Specimens were initially in an annealed/recrystallized condition. {yields} Calibration results indicate positron annihilation measurements yield correlation. {yields} Deformation produced by cold work was likely larger than the maximum strain.

  20. Steel slag carbonation in a flow-through reactor system: The role of fluid-flux

    E-Print Network [OSTI]

    Steel Association, 2010), comprising ~275 kg of slag from the iron-making stage (namely, blast furnace

  1. HotStrength of Ferritic CreepResistant Steels Comparison of Neural Network and Genetic Programming

    E-Print Network [OSTI]

    Cambridge, University of

    to 1 #12;testing [1]. Such steels form the back≠bone of steam turbines used in electricity generation

  2. Manufacturing Energy and Carbon Footprint- Sector: Iron and Steel (NAICS 3311, 3312), October 2012 (MECS 2006)

    Broader source: Energy.gov [DOE]

    Manufacturing Energy and Carbon Footprint for Iron and Steel Sector (NAICS 3311, 3312) with Total Energy Input

  3. Vacuum Furnace Brazing Open Cell Reticulated Foam to Stainless Steel Tubing

    SciTech Connect (OSTI)

    Korinko, P.S.

    2002-09-13

    This paper describes the intended application and development effort required to braze the copper foam to the stainless steel tubing.

  4. Wear-Resistant NanoCompositeStainless Steel Coatings and Bits

    Office of Energy Efficiency and Renewable Energy (EERE)

    Project objective: To develop ultra-hard and wear resistant nanocompositestainless steel coatings and bulk components for geothermal drilling applications.

  5. Hydrogen trapping in bearing steels: mechanisms and alloy design

    E-Print Network [OSTI]

    Szost, Blanka Angelika

    2013-02-05

    diffusion into the steel microstructure from lubricant decomposi- tion [1]. 8 Embrittlement caused by hydrogen entering the steel from oil was reported also in an oil-hydraulic unit [16], and the feeding line of an oil refinery [17]. The results show... of dislocations against a grain boundary in vacuum (black numbers and dislocation lines) and an image taken from the same pile-up at constant stress, after introduction of 95 torr of hydrogen gas in the environmental cell (white numbers and dislocation lines...

  6. Simulation of Convection and Macrosegregation in Steel Casting C. Beckermann* and M. C. Schneider**

    E-Print Network [OSTI]

    Beckermann, Christoph

    Simulation of Convection and Macrosegregation in Steel Casting C. Beckermann* and M. C. Schneider.C., "Simulation of Convection and Macrosegregation in Steel Casting," in Proceedings of the 50th SFSA Technical and the mushy zone. This is particularly true in heavy steel castings which have very large cross sections

  7. TRP 9904 - Constitutive Behavior of High Strength Multiphase Sheel Steel Under High Strain Rate Deformation

    SciTech Connect (OSTI)

    David Matlock; John Speer

    2005-03-31

    The focus of the research project was to systematically assess the strain rate dependence of strengthening mechanisms in new advanced high strength sheet steels. Data were obtained on specially designed and produced Duel Phase and TRIP steels and compared to the properties of automotive steels currently in use.

  8. Cryorolling effect on microstructure and mechanical properties of Fe25Cr20Ni austenitic stainless steel

    E-Print Network [OSTI]

    Volinsky, Alex A.

    dealing with micro- structure and mechanical properties of austenitic stainless steels, since martensitic steel Yi Xiong a,b, , Tiantian He c , Junbei Wang a , Yan Lu a , Lufei Chen a , Fengzhang Ren a Accepted 7 September 2015 Available online 11 September 2015 Keywords: Austenitic stainless steel

  9. Microstructure effect on hydrogen-induced cracking in TM210 maraging steel

    E-Print Network [OSTI]

    Volinsky, Alex A.

    August 2013 Keywords: Maraging steel Hydrogen embrittlement Reverted austenite Martensite lath boundaries formability. Solution- treated maraging steels have martensite with high dislocation density and a pronouncedMicrostructure effect on hydrogen-induced cracking in TM210 maraging steel Gang Wang a , Yu Yan

  10. Effect of Deformation on Hydrogen Trapping and Effusion in TRIPAssisted Steel

    E-Print Network [OSTI]

    Cambridge, University of

    pronounced in TRIP steel containing austenite which is relatively less stable to martensitic transformationEffect of Deformation on Hydrogen Trapping and Effusion in TRIP≠Assisted Steel Joo Hyun Ryua of hydrogen at a variety of sites in multiphase transformation≠induced plasticity (TRIP) steels has been

  11. Technical Reference on Hydrogen Compatibility of Materials Carbon and Alloy Steels

    E-Print Network [OSTI]

    Siefert, Chris

    martensitic steel used primarily in the aerospace industry [1, 2]. Screening tests indicate that this alloyTechnical Reference on Hydrogen Compatibility of Materials Carbon and Alloy Steels: 9Ni-4Co (code of this information, whether direct, indirect, special, incidental or consequential. #12;Carbon and Alloy Steels 9Ni-4

  12. Controlled Rocking System for Seismic Retrofit of Steel Truss Bridge Piers

    E-Print Network [OSTI]

    Bruneau, Michel

    1 Controlled Rocking System for Seismic Retrofit of Steel Truss Bridge Piers Michael Pollino1 and Michel Bruneau2 ABSTRACT In assessments of the seismic adequacy of existing steel bridges, the steel, especially for bridges deemed critical for response and recovery efforts following an earthquake. While

  13. FATIGUE OF 8630 CAST STEEL IN THE PRESENCE OF SHRINKAGE POROSITY

    E-Print Network [OSTI]

    Beckermann, Christoph

    FATIGUE OF 8630 CAST STEEL IN THE PRESENCE OF SHRINKAGE POROSITY K.M. Sigl1 , R.A. Hardin2 , R of shrinkage porosity on the mechanical performance of the cast steel. Axial fatigue tests were conducted under.I., and Beckermann, C., "Fatigue of 8630 Cast Steel in the Presence of Shrinkage Porosity," in Proceedings of the 57

  14. Effect of Porosity on Deformation, Damage, and Fracture of Cast Steel

    E-Print Network [OSTI]

    Beckermann, Christoph

    shrinkage porosity on deformation, damage, and fracture of cast steel under tensile testing. Steel plates containing shrinkage porosity are cast in sand molds, machined into test coupons, and tensile testedEffect of Porosity on Deformation, Damage, and Fracture of Cast Steel R.A. HARDIN and C. BECKERMANN

  15. Prediction of Riser Carbon Macrosegregation due to Shrinkage Flow in Steel Casting

    E-Print Network [OSTI]

    Beckermann, Christoph

    1 Prediction of Riser Carbon Macrosegregation due to Shrinkage Flow in Steel Casting Kent D Carbon Macrosegregation due to Shrinkage Flow in Steel Casting," in Proceedings of the 64th SFSA macrosegregation in and below risers due to feeding flow in steel castings. The model uses feeding flow velocities

  16. Effect of mould expansion on pattern allowances in sand casting of steel

    E-Print Network [OSTI]

    Beckermann, Christoph

    properties of the sand and the solidifying steel. Such hindered shrinkage of restrained casting featuresEffect of mould expansion on pattern allowances in sand casting of steel F. Peters1 , R. Voigt2 , S. Z. Ou3 and C. Beckermann*3 For steel castings produced in sand moulds, the expansion of the sand

  17. Rayleigh Number Criterion for Formation of A-Segregates in Steel Castings and Ingots

    E-Print Network [OSTI]

    Beckermann, Christoph

    steel sand castings. By comparing the predictions with observations made in the actual castingsRayleigh Number Criterion for Formation of A-Segregates in Steel Castings and Ingots M. TORABI RAD the formation of A-segregates in steel castings and ingots. The criterion is calibrated using available

  18. Rayleigh Number Criterion for Formation of A-Segregates in Steel Castings M. Torabi Rad1

    E-Print Network [OSTI]

    Beckermann, Christoph

    in a casting simulation code and used to predict A-segregates in three different shaped steel sand castings1 Rayleigh Number Criterion for Formation of A-Segregates in Steel Castings and Ingots M. Torabi the formation of A-segregates in steel castings and ingots. The criterion is calibrated using available

  19. A CORRELATION STUDY BETWEEN INTERGRANULAR STRAINS AND MAGNETIC PROPERTIES OF MILD STEEL

    E-Print Network [OSTI]

    Clapham, Lynann

    that low temperature annealing (400-500ļC) is associated with recovery processes in steels [9A CORRELATION STUDY BETWEEN INTERGRANULAR STRAINS AND MAGNETIC PROPERTIES OF MILD STEEL R. Hutanu1 directions [1-4]. Interestingly, is the magnetic easy axis in steels as determined by the Magnetic

  20. Oxidation and decarburisation of high-carbon-chromium steel under charcoal protection

    E-Print Network [OSTI]

    Volinsky, Alex A.

    -carbon-chromium bearing steel is often annealed in a sealed pot with a small amount of charcoal without physically for the bearing steel is suggested. Keywords: Annealing, Oxidation, Decarburisation, Charcoal, Non of carbon steels during annealing in air at temperatures between 900 and 1200uC. Gong et al.4 investigated