Sample records for includes steel works

  1. Example Retro-Commissioning Scope of Work to Include Services...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retro-Commissioning Scope of Work to Include Services as Part of an ESPC Investment-Grade Audit Example Retro-Commissioning Scope of Work to Include Services as Part of an ESPC...

  2. A new direct steel making process based upon the blast furnace (Including scrap processing with recovery of tramp elements)

    SciTech Connect (OSTI)

    Nabi, G.

    1996-12-31T23:59:59.000Z

    Steel is produced from raw materials containing iron and alloying elements with direct elimination of oxygen and impurities in the blast furnace process. The blast furnace shaft is modified to take off load from the liquid bath and carbon is prevented from going into the liquid steel. In the gas purification system sulphur and CO{sub 2} removal facilities are included and purified reducing gases so obtained are combusted in the hearth with oxygen to produce heat for smelting. Scrap can be charged as raw material with the recovery of tramp elements with continuous production of liquid steel.

  3. Proposal for the award of a contract for civil-engineering and steel work for the construction of Building 245

    E-Print Network [OSTI]

    2015-01-01T23:59:59.000Z

    Proposal for the award of a contract for civil-engineering and steel work for the construction of Building 245

  4. Proceedings of the IEA Working Group meeting on ferritic/martensitic steels

    SciTech Connect (OSTI)

    Klueh, R.L.

    1996-12-31T23:59:59.000Z

    An IEA working group on ferritic/martensitic steels for fusion applications, consisting of researchers from Japan, European Union, USA, and Switzerland, met at the headquarters of the Joint European Torus, Culham, UK. At the meeting, preliminary data generated on the large heats of steels purchased for the IEA program and on other heats of steels were presented and discussed. Second purpose of the meeting was to continue planning and coordinating the collaborative test program in progress on reduced-activation ferritic/martensitic steels. The majority of this report consists of viewographs for the presentations.

  5. Climate VISION: Private Sector Initiatives: Iron and Steel: Work...

    Office of Scientific and Technical Information (OSTI)

    Institute (AISI) has developed a work plan based on AISI's commitment letter and the Climate Challenge Program which addresses the overall elements of the Climate VISION program...

  6. Lab Safety/Hazardous Waste Training Persons (including faculty, staff and students) working in a lab and work-

    E-Print Network [OSTI]

    Tennessee, University of

    Lab Safety/Hazardous Waste Training Persons (including faculty, staff and students) working in a lab and work- ing with hazardous materials should receive annual training that address- es lab safety, personal protective equipment, storage, use, and disposal of hazardous materials, emergency procedures

  7. Simulating the Inelastic Seismic Behavior of Steel Braced Frames Including the Effects of Low-Cycle Fatigue

    E-Print Network [OSTI]

    Huang, Yuli

    2009-01-01T23:59:59.000Z

    6 Studies of Steel Braced Frame Behavior 6.1 Brace3 Structural Steel Deterioration 3.1 Plastic behavior andv List of Figures Schematic steel building comprising braced

  8. Microstructural study and densification analysis of hot work tool steel matrix composites reinforced with TiB{sub 2} particles

    SciTech Connect (OSTI)

    Fedrizzi, A., E-mail: anna.fedrizzi@ing.unitn.it [Department of Industrial Engineering, University of Trento, Via Mesiano 77, 38123 Trento (Italy); Pellizzari, M. [Department of Industrial Engineering, University of Trento, Via Mesiano 77, 38123 Trento (Italy); Zadra, M. [K4Sint, Start-up of the University of Trento, Viale Dante 300, 38057 Pergine Valsugana (Italy); Marin, E. [Department of Chemistry, Physics and Environment, University of Udine, Via Cotonificio 108, 33100 Udine (Italy)

    2013-12-15T23:59:59.000Z

    Hot work tool steels are characterized by good toughness and high hot hardness but are less wear resistant than other tooling materials, such as high speed steel. Metal matrix composites show improved tribological behavior, but not much work has been done in the field of hot work tool steels. In this paper TiB{sub 2}-reinforced hot work tool steel matrix composites were produced by spark plasma sintering (SPS). Mechanical alloying (MA) was proposed as a suited process to improve the composite microstructure. Density measurements and microstructure confirmed that MA promotes sintering and produces a fine and homogeneous dispersion of reinforcing particles. X-ray diffraction patterns of the sintered composites highlighted the formation of equilibrium Fe{sub 2}B and TiC, as predicted by thermodynamic calculations using Thermo-Calcģ software. Scanning electron microscopy as well as scanning Kelvin probe force microscopy highlighted the reaction of the steel matrix with TiB{sub 2} particles, showing the formation of a reaction layer at the TiB{sub 2}-steel interface. Phase investigations pointed out that TiB{sub 2} is not chemically stable in steel matrix because of the presence of carbon even during short time SPS. - Highlights: ē TiB{sub 2} reinforced steel matrix composites were produced by spark plasma sintering. ē TiB{sub 2} was successfully dispersed in the steel matrix by mechanical alloying. ē Steel and TiB{sub 2} react during sintering forming equilibrium Fe{sub 2}B and TiC. ē The new phases were investigated by means of AFM, Volta potential and XRD analyses.

  9. Microstructural and mechanical behavior of a duplex stainless steel under hot working conditions

    SciTech Connect (OSTI)

    Iza-Mendia, A. [Centro de Estudios e Investigaciones Tecnicas de Gipuzkoa, San Sebastian (Spain). Dept. of Materials]|[Univ. of Navarra, San Sebastian (Spain); Pinol-Juez, A. [Centro de Estudios e Investigaciones Tecnicas de Gipuzkoa, San Sebastian (Spain). Dept. of Materials; Urcola, J.J.; Gutierrez, I. [Univ. of Navarra, San Sebastian (Spain)

    1998-12-01T23:59:59.000Z

    In the hot deformation of the duplex stainless steels, the complexity of the microstructure evolution and mechanical response is increased as compared with those of single-phase ferritic or austenitic stainless steels. In the present work, plane strain compression and torsion deformation modes have been used to analyze the microstructural evolution and the mechanical behavior of a duplex stainless steel in as-cast and wrought conditions, as a function of spatial phase distribution, the nature of interface, and the relative mechanical properties of both phases. The law of mixtures has been used to explain the different flow curves obtained when changing the phase distribution and/or the deformation mode. On deforming as-cast microstructures, the deformation partitions vary heterogeneously between both phases and some austenite areas act as hard nondeforming particles. Cracks have been observed to occur at the interface of such regions, from relatively low strains, for which the initial Kurdjumov-Sachs orientation relationship between ferrite and austenite is still present.

  10. #include #include

    E-Print Network [OSTI]

    Campbell, Andrew T.

    process #12;#include #include pid_t pid = fork(); if (pid () failed */ } else if (pid == 0) { /* parent process */ } else { /* child process */ } #12;thread #12

  11. Coke oven gas treatment and by-product plant of Magnitogorsk Integrated Iron and Steel Works

    SciTech Connect (OSTI)

    Egorov, V.N.; Anikin, G.J. [Magnitogorsk Integrated Iron and Steel Works, (Russian Federation); Gross, M. [Krupp Koppers GmbH, Essen (Germany)

    1995-12-01T23:59:59.000Z

    Magnitogorsk Integrated Iron and Steel Works, Russia, decided to erect a new coke oven gas treatment and by-product plant to replace the existing obsolete units and to improve the environmental conditions of the area. The paper deals with the technological concept and the design requirements. Commissioning is scheduled at the beginning of 1996. The paper describes H{sub 2}S and NH{sub 3} removal, sulfur recovery and ammonia destruction, primary gas cooling and electrostatic tar precipitation, and the distributed control system that will be installed.

  12. #include #include

    E-Print Network [OSTI]

    Poinsot, Laurent

    #include #include //Rappels : "getpid()" permet d'obtenir son propre pid // "getppid()" renvoie le pid du père d'un processus int main (void) { pid_t pid_fils; pid_fils = fork(); if(pid_fils==-1) { printf("Erreur de création du processus fils\

  13. Development of automatic operation system for coke oven machines at Yawata Works of Nippon Steel Corporation

    SciTech Connect (OSTI)

    Matsunaga, Masao; Uematsu, Hiroshi; Nakagawa, Yoji; Ishiharaguchi, Yuji

    1995-12-01T23:59:59.000Z

    The coke plant is a working environment involving heavy dust emissions, high heat and demanding physical labor. The labor-saving operation of the coke plant is an essential issue from the standpoints of not only improvement in working environment, but also reduction in fixed cost by enhancement of labor productivity. Under these circumstances, Nippon Steel has implemented the automation of coke oven machines. The first automatic operation system for coke oven machinery entered service at Oita Works in 1992, followed by the second system at the No. 5 coke oven battery of the coke plant at Yawata Works. The Yawata automatic operation system is characterized by the installation of coke oven machinery to push as many as 140 ovens per day within a short cycle time, such as a preliminary ascension pipe cap opening car and cycle time simulator by the manned operation of the pusher, which is advantageous from the standpoint of investment efficiency, and by the monitoring of other oven machines by the pusher. These measures helped to reduce the manpower requirement to 2 persons per shift from 4 persons per shift. The system entered commercial operation in March, 1994 and has been smoothly working with an average total automatic rate of 97%. Results from the startup to recent operation of the system are reported below.

  14. Zebrafish Facility Work at UMassZebrafish Facility Work at UMass Ensure proper environmental conditions including a wall

    E-Print Network [OSTI]

    Karlstrom, Rolf O.

    conditions including a wall maintained system, clean tanks and proper water quality Goal : Keep fish happy and healthy! Regular feedings 7 days a week - fish don't celebrate holidays! #12;Intro to the the zebrafish: 151 Morrill 2 ~8,500-11,000 fish Approximately 15 mutant lines #12;Jensen Lab: Eye development

  15. Dr. Martha Monroe Dr. Monroe's work in conservation behavior includes understanding perceptions and

    E-Print Network [OSTI]

    Hill, Jeffrey E.

    discussions and workshops to improve public understanding of the possibility of using wood for electricity, social capital and education (Agrawal dissertation 2006), and using neighborhood groups to create. In the realm of environmental education and communication, Martha worked with co-authors Susan Jacobson

  16. Ris-R-1244(EN) Tool Steels

    E-Print Network [OSTI]

    -resistant steels 18 5.5 Hot-work steels 18 5.6 Cold-work steels 19 5.7 High-speed steels (HSSs) 20 Appendix 1 and chromium) furthermore some steel types contains cobalt, which respectively raises the temperature at which.1 Water-hardening steels 17 5.2 Low-alloy special purpose steels 17 5.3 Mould steels 18 5.4 Shock

  17. Reducing the impact of chemical releases: U.S. Steel Clairton Works` Early Warning Plan

    SciTech Connect (OSTI)

    York, R.G.; Hart, C.M.; Graeser, W.C.

    1995-12-01T23:59:59.000Z

    The Early Warning Plan (EWP) is a program designed to alert plant personnel to a release of contaminants to a receiving stream before it becomes significant enough to impinge on the environment or the public. It also provides a method of written documentation of any discharge of contaminants so that rapid corrective action can be taken. The EWP includes procedures for monitoring, rapid analytical turnaround, on-site analysis, statistical process control evaluation, and follow-up investigation. It is related to, but separate from other emergency response plans for the Clairton complex. The plant also uses a Spill Prevention, Control, and Countermeasure Plan (SPCC), an Environmental Emergency Response Plan (EERP), an Oil Pollution Act (OPA) Response Plan, and an EPA Facility Response Plan. Major spills and response activities are described in these other plans, but the EWP has served to concentrate on day-to-day plant operations. The paper discusses the driving forces behind the Plan, the EWP, and results of the program after nearly 10 years of operation.

  18. Development of Next Generation Heating System for Scale Free Steel Reheating

    SciTech Connect (OSTI)

    Dr. Arvind C. Thekdi

    2011-01-27T23:59:59.000Z

    The work carried out under this project includes development and design of components, controls, and economic modeling tools that would enable the steel industry to reduce energy intensity through reduction of scale formation during the steel reheating process. Application of scale free reheating offers savings in energy used for production of steel that is lost as scale, and increase in product yield for the global steel industry. The technology can be applied to a new furnace application as well as retrofit design for conversion of existing steel reheating furnaces. The development work has resulted in the knowledge base that will enable the steel industry and steel forging industry us to reheat steel with 75% to 95% reduction in scale formation and associated energy savings during the reheating process. Scale reduction also results in additional energy savings associated with higher yield from reheat furnaces. Energy used for steel production ranges from 9 MM Btu/ton to 16.6 MM Btu/ton or the industry average of approximately 13 MM Btu/ton. Hence, reduction in scale at reheating stage would represent a substantial energy reduction for the steel industry. Potential energy savings for the US steel industry could be in excess of 25 Trillion Btu/year when the technology is applied to all reheating processes. The development work has resulted in new design of reheating process and the required burners and control systems that would allow use of this technology for steel reheating in steel as well as steel forging industries.

  19. Climate VISION: Private Sector Initiatives: Iron and Steel: Resources...

    Office of Scientific and Technical Information (OSTI)

    Industry Associations American Iron and Steel Institute For over a century, North American steel producers have worked as partners and members of the American Iron and Steel...

  20. AMENDMENT TO WORK PROGRAMME 2009 This amendment to the work programme 2009 is to include the activities in the fission theme

    E-Print Network [OSTI]

    De Cindio, Fiorella

    . The activities related to the fusion theme have been left unchanged from the former version of the work programme. Euratom for Nuclear Research and Training Activities1 (European Commission C(2008)6800 of 17 November 2008) for nuclear research and training activities (2007 to 2011) and Council Decision 2006/976/Euratom of 19

  1. Corrosion protection of steel in ammonia/water heat pumps

    DOE Patents [OSTI]

    Mansfeld, Florian B.; Sun, Zhaoli

    2003-10-14T23:59:59.000Z

    Corrosion of steel surfaces in a heat pump is inhibited by adding a rare earth metal salt to the heat pump's ammonia/water working fluid. In preferred embodiments, the rare earth metal salt includes cerium, and the steel surfaces are cerated to enhance the corrosion-inhibiting effects.

  2. Student Ownership of Work Created in Computer Science Classes and Ownership of software, including the source code, that students create as part of his or

    E-Print Network [OSTI]

    Dyer, Bill

    Student Ownership of Work Created in Computer Science Classes and Projects Ownership of software, including the source code, that students create as part of his or her MSU education activities a perpetual royaltyfree nonexclusive right to use the source code and make derivative works for educational

  3. A steel trap | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    physical and chemical interactions in metallic elements, such as the irradiated ODS steels used in this study. The APT work revealed clear images of the nanoclusters for...

  4. Acknowledging the Input of Core Facilities A common question of labs when working with core facilities is how best to acknowledge or include as authors the

    E-Print Network [OSTI]

    Richardson, David

    Acknowledging the Input of Core Facilities A common question of labs when working with core facilities is how best to acknowledge or include as authors the Core in the publication of results, the decision of inclusion on manuscripts or acknowledgement is up to the senior author (or PI

  5. Ultrahigh carbon steels, Damascus steels, and superplasticity

    SciTech Connect (OSTI)

    Sherby, O.D. [Stanford Univ., CA (United States). Dept. of Materials Science and Engineering; Wadsworth, J. [Lawrence Livermore National Lab., CA (United States)

    1997-04-01T23:59:59.000Z

    The processing properties of ultrahigh carbon steels (UHCSs) have been studied at Stanford University over the past twenty years. These studies have shown that such steels (1 to 2.1% C) can be made superplastic at elevated temperature and can have remarkable mechanical properties at room temperature. It was the investigation of these UHCSs that eventually brought us to study the myths, magic, and metallurgy of ancient Damascus steels, which in fact, were also ultrahigh carbon steels. These steels were made in India as castings, known as wootz, possibly as far back as the time of Alexander the Great. The best swords are believed to have been forged in Persia from Indian wootz. This paper centers on recent work on superplastic UHCSs and on their relation to Damascus steels. 32 refs., 6 figs.

  6. Industrial Sites Work Plan for Leachfield Corrective Action Units: Nevada Test Site and Tonopah Test Range, Nevada (including Record of Technical Change Nos. 1, 2, 3, and 4)

    SciTech Connect (OSTI)

    DOE/NV

    1998-12-18T23:59:59.000Z

    This Leachfield Corrective Action Units (CAUs) Work Plan has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the U.S. Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the U.S. Department of Defense (FFACO, 1996). Under the FFACO, a work plan is an optional planning document that provides information for a CAU or group of CAUs where significant commonality exists. A work plan may be developed that can be referenced by leachfield Corrective Action Investigation Plans (CAIPs) to eliminate redundant CAU documentation. This Work Plan includes FFACO-required management, technical, quality assurance (QA), health and safety, public involvement, field sampling, and waste management documentation common to several CAUs with similar site histories and characteristics, namely the leachfield systems at the Nevada Test Site (NTS) and the Tonopah Test Range (TT R). For each CAU, a CAIP will be prepared to present detailed, site-specific information regarding contaminants of potential concern (COPCs), sampling locations, and investigation methods.

  7. Effect of cold working and isothermal aging on the precipitation of sigma phase in 2205 duplex stainless steel

    SciTech Connect (OSTI)

    Cho, Hoon-Sung [Radiology, Harvard Medical School, Charlestown, MA 02129 (United States)] [Radiology, Harvard Medical School, Charlestown, MA 02129 (United States); Lee, Kwangmin, E-mail: kmlee@jnu.ac.kr [Department of Materials Science and Engineering, Research Institute of Functional Surface Engineering, Chonnam National University, Gwangju 500-757 (Korea, Republic of)] [Department of Materials Science and Engineering, Research Institute of Functional Surface Engineering, Chonnam National University, Gwangju 500-757 (Korea, Republic of)

    2013-01-15T23:59:59.000Z

    A comprehensive understanding of the formation of the sigma phase resulting from the eutectoid reaction ({delta} {yields} {sigma} + {gamma}{sub 2}) is required. The kinetics necessary for the eutectoid reaction are closely related to the amount of plastic deformation in DSS. This work investigates the microstructural evolution of the {sigma} phase in a 22Cr-5Ni SAF 2205 DSS after subsequent plastic deformation and isothermal aging. The precipitation of the {sigma} phase resulted from the higher driving force for precipitating intermetallic compounds and the higher diffusion rate of their elements by cold-rolling, as well as the sufficient supply of molybdenum. The maximum amount of {sigma} phase precipitation remarkably increased with an increasing cold deformation, as compared with the non-cold-rolled materials. - Highlights: Black-Right-Pointing-Pointer The microstructural evolution of sigma phase has been characterized. Black-Right-Pointing-Pointer The chemical compositions of sigma phases were analyzed using TEM-EDX. Black-Right-Pointing-Pointer The effect of cold deformation on the precipitation of sigma phase was investigated.

  8. This list includes a sampling of volunteer opportunities and organizations working in the field of ed-ucation. These opportunities may be suitable for students majoring or interested in these areas. You

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    nights. Volunteers are required to have an interest in science and in working with young children and be a positive adult role model. Volunteers must be interested in working with diverse populations and buildThis list includes a sampling of volunteer opportunities and organizations working in the field

  9. 2169 steel waveform experiments.

    SciTech Connect (OSTI)

    Furnish, Michael David; Alexander, C. Scott; Reinhart, William Dodd; Brown, Justin L.

    2012-11-01T23:59:59.000Z

    In support of LLNL efforts to develop multiscale models of a variety of materials, we have performed a set of eight gas gun impact experiments on 2169 steel (21% Cr, 6% Ni, 9% Mn, balance predominantly Fe). These experiments provided carefully controlled shock, reshock and release velocimetry data, with initial shock stresses ranging from 10 to 50 GPa (particle velocities from 0.25 to 1.05 km/s). Both windowed and free-surface measurements were included in this experiment set to increase the utility of the data set, as were samples ranging in thickness from 1 to 5 mm. Target physical phenomena included the elastic/plastic transition (Hugoniot elastic limit), the Hugoniot, any phase transition phenomena, and the release path (windowed and free-surface). The Hugoniot was found to be nearly linear, with no indications of the Fe - phase transition. Releases were non-hysteretic, and relatively consistent between 3- and 5-mm-thick samples (the 3 mm samples giving slightly lower wavespeeds on release). Reshock tests with explosively welded impactors produced clean results; those with glue bonds showed transient releases prior to the arrival of the reshock, reducing their usefulness for deriving strength information. The free-surface samples, which were steps on a single piece of steel, showed lower wavespeeds for thin (1 mm) samples than for thicker (2 or 4 mm) samples. A configuration used for the last three shots allows release information to be determined from these free surface samples. The sample strength appears to increase with stress from ~1 GPa to ~ 3 GPa over this range, consistent with other recent work but about 40% above the Steinberg model.

  10. Version control Version control is a powerful tool for many kinds of work done over a period of time, including writing

    E-Print Network [OSTI]

    Alavi, Ali

    is a good idea are: ∑ efficient development practices. It is very easy to try things out and experiment of time, including writing papers and theses as well as writing code. This session gives a introduction communication via a central server which stores the repository whereas a DVCS is completely distributed and each

  11. This list includes a sampling of volunteer opportunities and organizations working in the field of Art. These opportunities may be suitable for students majoring or interested in these areas. You

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    ://www.colonialclub.org/volunteer/ Teach a craft or hobby to Adult Day Center participants. Must be interested in working with the frailThis list includes a sampling of volunteer opportunities and organizations working in the field of Art. These opportunities may be suitable for students majoring or interested in these areas. You can

  12. This list includes a sampling of volunteer opportunities and organizations working in the field of agriculture. These opportunities may be suitable for students majoring or interested in these areas.

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    important to our animals and their habitats. Depending on interest and availability, volunteers may workThis list includes a sampling of volunteer opportunities and organizations working in the field of agriculture. These opportunities may be suitable for students majoring or interested in these areas. You can

  13. This list includes a sampling of volunteer opportuni es and organiza ons working in the field of agriculture. These opportuni es may be suitable for students majoring or interested in these areas. You can find full

    E-Print Network [OSTI]

    Sheridan, Jennifer

    to our animals and their habitats. Depending on interest and availability, volunteers may work aloneThis list includes a sampling of volunteer opportuni es and organiza ons working in the field of agriculture. These opportuni es may be suitable for students majoring or interested in these areas. You can

  14. This list includes a sampling of volunteer opportunities and organizations working in the field of business. These opportunities may be suitable for students majoring or interested in these areas.

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    This list includes a sampling of volunteer opportunities and organizations working in the field of business. These opportunities may be suitable for students majoring or interested in these areas. You can, and Education. This unique opportunity will pair you with someone who is currently working on a specific

  15. This list includes a sampling of volunteer opportunities and organizations working in the environ-mental studies field. These opportunities may be suitable for students majoring or interested in

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    This list includes a sampling of volunteer opportunities and organizations working in the environ- mental studies field. These opportunities may be suitable for students majoring or interested restoration team members assist and work alongside the Arboretum's Filed Staff to carry out ecological resto

  16. This list includes a sampling of volunteer opportunities and organizations working in the field of Spanish. These opportunities may be suitable for students majoring or interested in these areas. You

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    This list includes a sampling of volunteer opportunities and organizations working in the field of Spanish. These opportunities may be suitable for students majoring or interested in these areas. You can to coming in and working with students to promote the importance of an education and making good choices

  17. Performance-Based Seismic Demand Assessment of Concentrically Braced Steel Frame Buildings

    E-Print Network [OSTI]

    Chen, Chui-Hsin

    2010-01-01T23:59:59.000Z

    and Ductility Factors for Steel Frames De- signed According1980), Inelastic Buckling of Steel Struts Under Cyclic LoadBS 5950: Structural use of steel work in building. Part1

  18. Supporting steel

    SciTech Connect (OSTI)

    Badra, C. [International Trade Commission, Washington, DC (United States)

    1995-10-01T23:59:59.000Z

    The US Department of Energy (DOE) and the American Iron and Steel Institute (AISI) have just completed a pilot program on the technical and economic viability of direct ironmaking by a process based on bath smelting. In this process, oxygen, prereduced iron ore pellets, coal, and flux are charged into a molten slag bath containing a high percentage of carbon. The carbon removes oxygen from the iron ore and generates carbon monoxide and liquid iron. Oxygen is then injected to burn some of the carbon monoxide gas before it leaves the smelting vessel. The partially combusted gas is sued to preheat and prereduced the ore before it is injected into the bath. There are several competing cokeless ironmaking processes in various stages of development around the world. A brief comparison of these processes provides a useful perspective with which to gauge the progress and objectives of the AISI-DOE research initiative. The principal competing foreign technologies include the Corex process, DIOS, HIsmelt, and Jupiter. The advantages of the direct ironmaking process examined by AISI-DOE were not sufficiently demonstrated to justify commercialization without further research. However, enough knowledge was gained from laboratory and pilot testing to teach researchers how to optimize the direct ironmaking process and to provide the foundation for future research. Researchers now better understand issues such as the dissolution of materials, reduction mechanisms and rates, slag foaming and control, the behavior of sulfur, dust generation, and the entire question of energy efficiency--including post combustion and the role of coal/volatile matter.

  19. Thanks go to Mumtaz Hussain and Dilip Parajuli for excellent research assistance.1 The limited amount of empirical work on transport costs include Sampson and Yeats (1976) and Pace2

    E-Print Network [OSTI]

    amount of empirical work on transport costs include Sampson and Yeats (1976) and Pace2 (1979) on OECD of labor was likely to develop first along sea coasts and navigable rivers, where transport costs were determinants of a country's development prospects? Though interest in transport costs has recently risen

  20. This list includes a sampling of volunteer opportunities and organizations working in language tutor-ing. These opportunities may be suitable for students majoring or interested in cultural-related areas.

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    This list includes a sampling of volunteer opportunities and organizations working in language tutor- ing. These opportunities may be suitable for students majoring or interested in cultural://www.guts.wisc.edu/programs/fll_tutor_info.html Want to meet new people interested in your language, develop cross-cultural communication skills, have

  1. Switch to duplex stainless steels

    SciTech Connect (OSTI)

    Quik, J.M.A.; Geudeke, M.

    1994-11-01T23:59:59.000Z

    Duplex stainless steels contain approximately equal proportions of ferrite and austenite. These stainless steels have become an established material of construction in the chemical process industries (CPI). Duplexes offer benefits over austenitic stainless steels and carbon steels because of their higher strength, and good toughness and ductility, in combination with equivalent resistance to general corrosion, as well as better resistance to localized corrosion and stress corrosion cracking. Additionally, duplex materials have thermal-conductivity and thermal-expansion coefficients similar to those of ferritic materials, are tough at low (sub-zero) temperatures, and have a high resistance to erosion and abrasion. In some of the highly corrosive environments encountered in the CPI, the super duplex stainless steels offer cost-effective options not possible with the standard austenitic stainless steels. The initial applications were almost exclusively as heat exchanger tubing in water-cooled service. In recent times, duplex stainless steels have been used in the oil, gas, and chemical industries. Examples include service in sweet and mildly sour corrosive environments, on offshore platforms where weight savings can be realized, and as a replacement for standard austenitic stainless steel in chemical-processing plants.

  2. HYDROGEN EMBRITTLEMENT IN LOW CARBON STEEL

    E-Print Network [OSTI]

    Rafiq A. Siddiqui; Sabah A. Abdul-wahab; Tasneem Pervez; Sayyad Z. Qamar

    Many metals and alloys absorb hydrogen and diffusion of hydrogen under certain conditions can seriously weaken and produces embrittlement in steel. Hydrogen embrittlement is a type of metal deterioration that is related to stress corrosion cracking. Although steels are well known for their susceptibility to hydrogen embrittlement, the mechanism of transportation of hydrogen is not very clear in low carbon steels. Standard tensile steel specimens were hydrogenated from 1 to 5 hours and deformed by cold worked to 50%,60%,70 % 80 % and were investigated for mechanical properties.

  3. "By the hundred's of thousand's, these unlikely transportation revolutionaries are forgoing the safety of a steel cage with airbags and anti-lock brakes for a wispy two-wheeled exoskeleton as they make their way to work,

    E-Print Network [OSTI]

    Duchowski, Andrew T.

    the safety of a steel cage with airbags and anti-lock brakes for a wispy two-wheeled exoskeleton as they make

  4. Spot weldability of d-TRIP steel containing , K. Y. Lee2

    E-Print Network [OSTI]

    Cambridge, University of

    of the strong dual phase steels,10,11 is large when compared with interstitial free or bake hardening steels in Table 1 according to the common standards.21≠25 A dual phase steel DP-78026 has in this work been-TRIP steel, designed to retain d-ferrite as a stable phase at all temperatures below melting. Fully

  5. Final Scientific Report - "Novel Steels for High Temperature Carburizing"

    SciTech Connect (OSTI)

    McKimpson, Marvin G.; Liu, Tianjun; Maniruzzaman, Md

    2012-07-27T23:59:59.000Z

    This program was undertaken to develop a microalloy-modified grade of standard carburizing steel that can successfully exploit the high temperature carburizing capabilities of current commercial low pressure (i.e. 'vacuum') carburizing systems. Such steels can lower the amount of energy required for commercial carburizing operations by reducing the time required for deep-case carburizing operations. The specific technical objective of the work was to demonstrate a carburizing steel composition capable of maintaining a prior austenite grain size no larger than ASTM grain size number 5 after exposure to simulated carburizing conditions of 1050 C for 8 hr. Such thermal exposure should be adequate for producing carburized case depths up to about 2 mm. Such carburizing steels are expected to be attractive for use across a wide range of industries, including the petroleum, chemical, forest products, automotive, mining and industrial equipment industries. They have potential for reducing energy usage during low pressure carburizing by more than 25%, as well as reducing cycle times and process costs substantially. They also have potential for reducing greenhouse gas emissions from existing low pressure carburizing furnaces by more than 25%. High temperature carburizing can be done in most modern low pressure carburizing systems with no additional capital investment. Accordingly, implementing this technology on carburizing furnaces will provide a return on investment significantly greater than 10%. If disseminated throughout the domestic carburizing community, the technology has potential for saving on the order of 23 to 34 trillion BTU/year in industrial energy usage. Under the program, two compositions of microalloyed, coarsening-resistant low alloy carburizing steels were developed, produced and evaluated. After vacuum annealing at 1050oC for 8 hrs and high pressure gas quenching, both steels exhibited a prior austenite ASTM grain size number of 5.0 or finer. For comparison, a control alloy of similar composition but without the microalloy additions exhibited a duplex prior austenite grain size with grains ranging from ASTM grain size 3 down to ASTM grain size 1 after similar processing and thermal exposure. These results confirm the potential for using microalloy additions of Ti, B, Nb, Al, rare earths and/or N for austenite grain size control in Cr-Mo (i.e. 4000-series) low alloy carburizing steels. They also demonstrate that these microalloy additions will not compromise the processability of the steel; all three materials produced under the program could be hot worked readily using normal steel processing protocols. To fully realize the technical and commercial potential of these steels, there is a need to continue development work using larger-scale heats. These larger-scale heats are needed to provide adequate material for fatigue testing of quenched and tempered alloys, to conduct more complete investigations of potential alloy chemistries and to provide additional material for processing studies. It will also be beneficial to carefully review intellectual property issues associated with this family of steels, since existing Japanese patent literature suggests that significant microstructural and/or process characterization work may be needed on new materials to confirm that these materials fall outside existing patent claims.

  6. ITP Steel: Theoretical Minimum Energies to Produce Steel for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Theoretical Minimum Energies to Produce Steel for Selected Conditions, March 2000 ITP Steel: Theoretical Minimum Energies to Produce Steel for Selected Conditions, March 2000...

  7. Auto/Steel Partnership: Advanced High-Strength Steel Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced High-Strength Steel Research and Development AutoSteel Partnership: Advanced High-Strength Steel Research and Development 2009 DOE Hydrogen Program and Vehicle...

  8. ITP Steel: Steel Industry Marginal Opportunity Study September...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steel Industry Marginal Opportunity Study September 2005 ITP Steel: Steel Industry Marginal Opportunity Study September 2005 steelmarginalopportunity.pdf More Documents &...

  9. Effect of heat treatment on the mechanical properties of modified 9Cr-1Mo steel

    SciTech Connect (OSTI)

    Sultan F. Alsagabi; Triratna Shrestha; Indrajit Charit; Gabriel P. Potirniche; Michael V. Glazoff

    2014-09-01T23:59:59.000Z

    The modified 9Cr-1Mo steel (Grade 91) is a material of choice in fossil-fuel-fired power plants with increased efficiency, service life, and reduction in emission of greenhouse gases. It is also considered a prospective material for the Next Generation Nuclear Power Plant for application in reactor pressure vessels at temperatures up to 650įC. In this paper, heat treatment of the modified 9Cr-1Mo steel was studied by normalizing and tempering the steel at various temperatures and times, with the ultimate goal of improving its creep resistance and optimizing material hardness. The microstructural evolution of the heat treated steels was correlated with the differential scanning calorimetric results. Optical microscopy, scanning and transmission electron microscopy in conjunction with microhardness profiles and calorimetric plots were used to understand the evolution of microstructure including precipitate structures in modified 9Cr-1Mo steel and relate it to the mechanical behavior of the steel. Thermo- CalcTM calculations were used to support experimental work and provide guidance in terms of the precipitate stability and microstructural evolution. Furthermore, the carbon isopleth and temperature dependencies of the volume fraction of different precipitates were constructed. The predicted and experimentally observed results were found to be in good agreement.

  10. Effect of Heat Treatment on Microstructure and Hardness of Grade 91 Steel

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shrestha, Triratna; Alsagabi, Sultan; Charit, Indrajit; Potirniche, Gabriel; Glazoff, Michael

    2015-03-01T23:59:59.000Z

    The modified 9Cr-1Mo steel (Grade 91) is a material of choice in fossil-fuel-fired power plants with increased efficiency, service life, and reduction in emission of greenhouse gases. It is also considered a prospective material for the Next Generation Nuclear Power Plant for application in reactor pressure vessels at temperatures up to 650įC. In this paper, heat treatment of the modified 9Cr-1Mo steel was studied by normalizing and tempering the steel at various temperatures and times, with the ultimate goal of improving its creep resistance and optimizing material hardness. The microstructural evolution of the heat treated steels was correlated with the differential scanning calorimetric results. Optical microscopy, scanning and transmission electron microscopy in conjunction with microhardness profiles and calorimetric plots were used to understand the evolution of microstructure including precipitate structures in modified 9Cr-1Mo steel and relate it to the mechanical behavior of the steel. Thermo- CalcTM calculations were used to support experimental work and provide guidance in terms of the precipitate stability and microstructural evolution. Furthermore, the carbon isopleth and temperature dependencies of the volume fraction of different precipitates were constructed. The predicted and experimentally observed results were found to be in good agreement.

  11. Effect of Heat Treatment on Microstructure and Hardness of Grade 91 Steel

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shrestha, Triratna; Alsagabi, Sultan; Charit, Indrajit; Potirniche, Gabriel; Glazoff, Michael

    2015-03-01T23:59:59.000Z

    The modified 9Cr-1Mo steel (Grade 91) is a material of choice in fossil-fuel-fired power plants with increased efficiency, service life, and reduction in emission of greenhouse gases. It is also considered a prospective material for the Next Generation Nuclear Power Plant for application in reactor pressure vessels at temperatures up to 650įC. In this paper, heat treatment of the modified 9Cr-1Mo steel was studied by normalizing and tempering the steel at various temperatures and times, with the ultimate goal of improving its creep resistance and optimizing material hardness. The microstructural evolution of the heat treated steels was correlated with themore†Ľdifferential scanning calorimetric results. Optical microscopy, scanning and transmission electron microscopy in conjunction with microhardness profiles and calorimetric plots were used to understand the evolution of microstructure including precipitate structures in modified 9Cr-1Mo steel and relate it to the mechanical behavior of the steel. Thermo- CalcTM calculations were used to support experimental work and provide guidance in terms of the precipitate stability and microstructural evolution. Furthermore, the carbon isopleth and temperature dependencies of the volume fraction of different precipitates were constructed. The predicted and experimentally observed results were found to be in good agreement.ę†less

  12. SQA(TM): Surface Quality Assured Steel Bar Program

    SciTech Connect (OSTI)

    Tzyy-Shuh Chang; Jianjun Shi; Shiyu Zhou

    2009-03-03T23:59:59.000Z

    OG Technologies, Inc. (OGT) has led this SQA (Surface Quality Assured Steel Bar) program to solve the major surface quality problems plaguing the US special quality steel bars and rods industry and their customers, based on crosscutting sensors and controls technologies. Surface defects in steel formed in a hot rolling process are one of the most common quality issues faced by the American steel industry, accounting for roughly 50% of the rejects or 2.5% of the total shipment. Unlike other problems such as the mechanical properties of the steel product, most surface defects are sporadic and cannot be addressed based on sampling techniques. This issue hurts the rolling industry and their customers in their process efficiency and operational costs. The goal of this program is to develop and demonstrate an SQA prototype, with synergy of HotEyeģ and other innovations, that enables effective rolling process control and efficient quality control. HotEyeģ, OGTís invention, delivers high definition images of workpieces at or exceeding 1,450?C while the workpieces travel at 100 m/s. The elimination of surface defect rejects will be achieved through the integration of imaging-based quality assessment, advanced signal processing, predictive process controls and the integration with other quality control tools. The SQA program team, composed of entities capable of and experienced in (1) research, (2) technology manufacturing, (3) technology sales and marketing, and (4) technology end users, is very strong. There were 5 core participants: OGT, Georgia Institute of Technology (GIT), University of Wisconsin (UW), Charter Steel (Charter) and ArcelorMittal Indiana Harbor (Inland). OGT served as the project coordinator. OGT participated in both research and commercialization. GIT and UW provided significant technical inputs to this SQA project. The steel mills provided access to their rolling lines for data collection, design of experiments, host of technology test and verification, and first-hand knowledge of the most advanced rolling line operation in the US. This project lasted 5 years with 5 major tasks. The team successfully worked through the tasks with deliverables in detection, data analysis and process control. Technologies developed in this project were commercialized as soon as they were ready. For instance, the advanced surface defect detection algorithms were integrated into OGTís HotEyeģ RSB systems late 2005, resulting in a more matured product serving the steel industry. In addition to the commercialization results, the SQA team delivered 7 papers and 1 patent. OGT was also recognized by two prestigious awards, including the R&D100 Award in 2006. To date, this SQA project has started to make an impact in the special bar quality industry. The resulted product, HotEyeģ RSB systems have been accepted by quality steel mills worldwide. Over 16 installations were completed, including 1 in Argentina, 2 in Canada, 2 in China, 2 in Germany, 2 in Japan, and 7 in the U.S. Documented savings in reduced internal rejects, improved customer satisfaction and simplified processes were reported from various mills. In one case, the mill reported over 50% reduction in its scrap, reflecting a significant saving in energy and reduction in emission. There exist additional applications in the steel industry where the developed technologies can be used. OGT is working toward bringing the developed technologies to more applications. Examples are: in-line inspection and process control for continuous casting, steel rails, and seamless tube manufacturing.

  13. Benefits of recycling galvanized steel scrap for recovery of high-quality steel and zinc metal

    SciTech Connect (OSTI)

    Dudek, F.J.; Daniels, E.J. (Argonne National Lab., IL (United States)); Morgan, W.A. (Metal Recovery Industries, Inc., Hamilton, ON (Canada))

    1991-11-04T23:59:59.000Z

    Argonne National Laboratory (ANL) and Metal Recovery Industries, Inc. (MRII), in cost-sharing collaboration, have developed an electrolytic process to separate and recover steel and zinc from galvanized steel scrap. This work has been supported by the US DOE. An assessment of available dezinc technology was begun in 1987 which (1) screened process concepts for separating and recovering zinc and steel from galvanized ferrous scrap, (2) selected electrochemical stripping in hot caustic as the most promising process, (3) evaluated the technical and economic feasibility of the selected process on the basis of fundamental electrochemical studies, (4) experimentally verified the technical and economic feasibility of the process in a phased evaluation from bench-scale controlled experiments through batch tests of actual scrap up to six ton lots, and (5) concluded that the process has technical and economic merit and requires larger- scale evaluation in a continuous mode as the final phase of process development. This work has attracted worldwide interest. Preliminary economic analysis indicates that the cost of the recovered ferrous scrap would be about $150/ton (at a base cost of $110/ton for galvanized scrap), including credit for the co-product zinc. Concentrations of zinc, lead, cadmium and other coating constituents on loose scrap are reduced by a minimum of 98%, with zinc, in particular, reduced to below 0.1%. Removal efficiencies on baled scrap with bulk densities between 60 and 245 pounds per cubic foot range from 80 to 90%. About 1000 tons of galvanized scrap bales have been treated in batch operation at MRII in Hamilton, Ontario. A pilot plant for continuous treatment of 40 ton/day of loose scrap is being built by MRII in East Chicago, Indiana, with operation starting in early 1992. 9 refs.

  14. Comminuting irradiated ferritic steel

    DOE Patents [OSTI]

    Bauer, Roger E. (Kennewick, WA); Straalsund, Jerry L. (Kennewick, WA); Chin, Bryan A. (Auburn, AL)

    1985-01-01T23:59:59.000Z

    Disclosed is a method of comminuting irradiated ferritic steel by placing the steel in a solution of a compound selected from the group consisting of sulfamic acid, bisulfate, and mixtures thereof. The ferritic steel is used as cladding on nuclear fuel rods or other irradiated components.

  15. Methods of forming steel

    DOE Patents [OSTI]

    Branagan, Daniel J. (Iona, ID); Burch, Joseph V. (Shelley, ID)

    2001-01-01T23:59:59.000Z

    In one aspect, the invention encompasses a method of forming a steel. A metallic glass is formed and at least a portion of the glass is converted to a crystalline steel material having a nanocrystalline scale grain size. In another aspect, the invention encompasses another method of forming a steel. A molten alloy is formed and cooled the alloy at a rate which forms a metallic glass. The metallic glass is devitrified to convert the glass to a crystalline steel material having a nanocrystalline scale grain size. In yet another aspect, the invention encompasses another method of forming a steel. A first metallic glass steel substrate is provided, and a molten alloy is formed over the first metallic glass steel substrate to heat and devitrify at least some of the underlying metallic glass of the substrate.

  16. Automated Steel Cleanliness Analysis Tool (ASCAT)

    SciTech Connect (OSTI)

    Gary Casuccio (RJ Lee Group); Michael Potter (RJ Lee Group); Fred Schwerer (RJ Lee Group); Dr. Richard J. Fruehan (Carnegie Mellon University); Dr. Scott Story (US Steel)

    2005-12-30T23:59:59.000Z

    The objective of this study was to develop the Automated Steel Cleanliness Analysis Tool (ASCATTM) to permit steelmakers to evaluate the quality of the steel through the analysis of individual inclusions. By characterizing individual inclusions, determinations can be made as to the cleanliness of the steel. Understanding the complicating effects of inclusions in the steelmaking process and on the resulting properties of steel allows the steel producer to increase throughput, better control the process, reduce remelts, and improve the quality of the product. The ASCAT (Figure 1) is a steel-smart inclusion analysis tool developed around a customized next-generation computer controlled scanning electron microscopy (NG-CCSEM) hardware platform that permits acquisition of inclusion size and composition data at a rate never before possible in SEM-based instruments. With built-in customized ''intelligent'' software, the inclusion data is automatically sorted into clusters representing different inclusion types to define the characteristics of a particular heat (Figure 2). The ASCAT represents an innovative new tool for the collection of statistically meaningful data on inclusions, and provides a means of understanding the complicated effects of inclusions in the steel making process and on the resulting properties of steel. Research conducted by RJLG with AISI (American Iron and Steel Institute) and SMA (Steel Manufactures of America) members indicates that the ASCAT has application in high-grade bar, sheet, plate, tin products, pipes, SBQ, tire cord, welding rod, and specialty steels and alloys where control of inclusions, whether natural or engineered, are crucial to their specification for a given end-use. Example applications include castability of calcium treated steel; interstitial free (IF) degasser grade slag conditioning practice; tundish clogging and erosion minimization; degasser circulation and optimization; quality assessment/steel cleanliness; slab, billet or bloom disposition; and alloy development. Additional benefits of ASCAT include the identification of inclusions that tend to clog nozzles or interact with refractory materials. Several papers outlining the benefits of the ASCAT have been presented and published in the literature. The paper entitled ''Inclusion Analysis to Predict Casting Behavior'' was awarded the American Iron and Steel Institute (AISI) Medal in 2004 for special merit and importance to the steel industry. The ASCAT represents a quantum leap in inclusion analysis and will allow steel producers to evaluate the quality of steel and implement appropriate process improvements. In terms of performance, the ASCAT (1) allows for accurate classification of inclusions by chemistry and morphological parameters, (2) can characterize hundreds of inclusions within minutes, (3) is easy to use (does not require experts), (4) is robust, and (5) has excellent image quality for conventional SEM investigations (e.g., the ASCAT can be utilized as a dual use instrument). In summary, the ASCAT will significantly advance the tools of the industry and addresses an urgent and broadly recognized need of the steel industry. Commercialization of the ASCAT will focus on (1) a sales strategy that leverages our Industry Partners; (2) use of ''technical selling'' through papers and seminars; (3) leveraging RJ Lee Group's consulting services, and packaging of the product with a extensive consulting and training program; (4) partnering with established SEM distributors; (5) establishing relationships with professional organizations associated with the steel industry; and (6) an individualized plant by plant direct sales program.

  17. int. j. prod. res., 2002, vol. 40, no. 1, 5570 Steel-making process scheduling using Lagrangian relaxation

    E-Print Network [OSTI]

    Luh, Peter

    industries (Balakrishnan and Brown 1996). Iron and steel production includes sev- eral process phases (iron-making

  18. Microstructural studies of advanced austenitic steels

    SciTech Connect (OSTI)

    Todd, J. A.; Ren, Jyh-Ching [University of Southern California, Los Angeles, CA (USA). Dept. of Materials Science

    1989-11-15T23:59:59.000Z

    This report presents the first complete microstructural and analytical electron microscopy study of Alloy AX5, one of a series of advanced austenitic steels developed by Maziasz and co-workers at Oak Ridge National Laboratory, for their potential application as reheater and superheater materials in power plants that will reach the end of their design lives in the 1990's. The advanced steels are modified with carbide forming elements such as titanium, niobium and vanadium. When combined with optimized thermo-mechanical treatments, the advanced steels exhibit significantly improved creep rupture properties compared to commercially available 316 stainless steels, 17--14 Cu--Mo and 800 H steels. The importance of microstructure in controlling these improvements has been demonstrated for selected alloys, using stress relaxation testing as an accelerated test method. The microstructural features responsible for the improved creep strengths have been identified by studying the thermal aging kinetics of one of the 16Ni--14Cr advanced steels, Alloy AX5, in both the solution annealed and the solution annealed plus cold worked conditions. Time-temperature-precipitation diagrams have been developed for the temperature range 600 C to 900 C and for times from 1 h to 3000 h. 226 refs., 88 figs., 10 tabs.

  19. Nickel-free duplex stainless steels

    SciTech Connect (OSTI)

    Wang, J.; Uggowitzer, P.J.; Magdowski, R.; Speidel, M.O. [ETH-Zentrum, Zurich (Switzerland). Inst. of Metallurgy] [ETH-Zentrum, Zurich (Switzerland). Inst. of Metallurgy

    1998-12-04T23:59:59.000Z

    It is well known that nitrogen-alloying in steel produces a variety of exceptional properties such as high strength, high ductility and, eventually, resistance to stress corrosion cracking. High-nitrogen steels (HNS), therefore, have recently been developed to enhance the strength and corrosion resistance of stainless steels. However, due to a low solubility of nitrogen in a liquid steel under atmospheric pressure, the production of such high-nitrogen alloys needs high-pressure facilities that cause an extra cost. A possible route of developing high-nitrogen alloys under atmospheric pressure is to choose a duplex microstructure, where the amount of austenite and ferrite phase is nearly equal. A much lower nitrogen content is needed to maintain a 50% austenite phase compared with the necessary addition of nitrogen to reach a 100% austenitic microstructure. In addition, duplex stainless steels (DSS) with 40--60% ferrite can significantly improve the SCC-resistance. The objective of this work was to develop a new group of nickel-free, high strength and corrosion resistant DSS. Nickel was completely replaced by nitrogen in order to enhance SCC resistance and reduce the alloying element cost. The microstructure, mechanical properties, corrosion resistance and cost analysis of new alloys are investigated in comparison with some commercial stainless steels.

  20. Steel project fact sheet: Steel reheating for further processing

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    Steel reheating is an energy-intensive process requiring uniform temperature distribution within reheating furnaces. Historically, recuperators have ben used to preheat combustion air, thereby conserving energy. More recent innovations include oxygen enrichment and the use of regenerative burners, which provide higher preheat air temperatures than recuperators. These processes have limitations such as equipment deterioration, decreasing energy efficiency over time, high maintenance costs, and increased NO{sub x} emissions with increased air preheat temperature, unless special equipment is used. Praxair, Inc., supplier of oxygen and other industrial gases to the steel industry, proposes to introduce an innovative oxy-fuel burner technology (using 100% oxygen) to the steel reheating industry. Oxy-fuel combustion reduces or eliminates nitrogen in combustion air and substantially reduces waste heat carried out with flue gas. Based on technology currently used in the glass, hazardous waste, and aluminum industries, Praxair has developed and patented low temperature, oxy-fuel burners that can be used in high temperature industrial furnaces where temperature uniformity is critical and extremely low NO{sub x} emissions are desired. The technical goal of the project is to demonstrate the use of oxy-fuel burners in a slab reheat furnace while reducing energy consumption by 45% and NO{sub x} emissions by 90% within the converted furnace zones. Successful implementation of this technology also will eliminate the need to periodically replace recuperators and install NO{sub x} removal equipment.

  1. III.C. 3. A Delphi on the Future of the Steel and Ferroalloy Industries*

    E-Print Network [OSTI]

    Bieber, Michael

    204 III.C. 3. A Delphi on the Future of the Steel and Ferroalloy Industries* NANCY H. GOLDSTEIN for policy issues affecting the use of ferroalloys in steel making and certain other alloy production of the Delphi. The Steel and Ferroalloy Delphi included three rounds. The questions and exercises presented

  2. High temperature mechanical strength and microstructural stability of advanced 9-12%Cr steels and ODS steels.

    E-Print Network [OSTI]

    Paris-Sud XI, Universitť de

    and ODS steels. B. Fournier,1 M. Salvi1 , C. CaŽs1 , J. Malaplate1 , F. Dalle1 , M. Sauzay1 , Y. de Carlan. In the framework of Generation IV nuclear reactors and for fusion reactors, oxide dispersion strengthened (ODS. In the present article advanced 9-12%Cr steels, including their ODS grades, are tested under creep, fatigue

  3. Internship Contract (Includes Practicum)

    E-Print Network [OSTI]

    Thaxton, Christopher S.

    Internship Contract (Includes Practicum) Student's name-mail: _________________________________________ Internship Agency Contact Agency Name: ____________________________________ Address-mail: __________________________________________ Location of Internship, if different from Agency: ________________________________________________ Copies

  4. Pump apparatus including deconsolidator

    DOE Patents [OSTI]

    Sonwane, Chandrashekhar; Saunders, Timothy; Fitzsimmons, Mark Andrew

    2014-10-07T23:59:59.000Z

    A pump apparatus includes a particulate pump that defines a passage that extends from an inlet to an outlet. A duct is in flow communication with the outlet. The duct includes a deconsolidator configured to fragment particle agglomerates received from the passage.

  5. Release of Residues from Melting NORM-Contaminated Steel Scrap - A German Approach

    SciTech Connect (OSTI)

    Quade, U.; Thierfeldt, S.; Wvrlen, S.

    2003-02-24T23:59:59.000Z

    As many raw materials like crude oil, natural gas, mineral sands, phosphor ores and others are contaminated by radionuclides from the Uranium and/or Thorium decay chain (NORM), also plants for processing these materials became contaminated during operation. When plants are shut down, large quantities of pipes, valves, pumps and other components have to be scrapped. As scrap yards and steel mills are equipped by large detector systems to avoid an input of radioactivity into the steel cycle, decontamination is required before recycling. Siempelkamp is operating a melting plant for processing NORM and/or chemically/ toxically contaminated steel scrap. Beside the decontaminated steel as output, residues like slag and filter dust have to be managed within the range of licensed values. Based on the European Safety Standard the European member states have to implement radiation exposure from work activities with NORM in their Radiation Protection Ordinances (RPO). The German government revised the RPO in July 2001. Part 3 describes exposure limits for workers and for the public. Exposures from residues management have to meet 1 mSv/year. Brenk Systemplanung has performed calculations for assessing the radiation exposure from residues of the Siempelkamp melting plant. These calculations have been based on the input of metal from different origins and include all relevant exposure pathways in a number of scenarios. The calculations have been based on the dose criterion of 1 mSv/y as required by the German RPO. The methods and results will be presented.

  6. Living Expenses (includes approximately

    E-Print Network [OSTI]

    Maroncelli, Mark

    & engineering programs All other programs Graduate: MBA/INFSY at Erie & Harrisburg (12 credits) Business Guarantee 3 (Does not include Dependents Costs4 ) Altoona, Berks, Erie, and Harrisburg 12-Month Estimated

  7. Report on thermal aging effects on tensile properties of ferritic-martensitic steels.

    SciTech Connect (OSTI)

    Li, M.; Soppet, W.K.; Rink, D.L.; Listwan, J.T.; Natesan, K. (Nuclear Engineering Division)

    2012-05-10T23:59:59.000Z

    This report provides an update on the evaluation of thermal-aging induced degradation of tensile properties of advanced ferritic-martensitic steels. The report is the first deliverable (level 3) in FY11 (M3A11AN04030103), under the Work Package A-11AN040301, 'Advanced Alloy Testing' performed by Argonne National Laboratory, as part of Advanced Structural Materials Program for the Advanced Reactor Concepts. This work package supports the advanced structural materials development by providing tensile data on aged alloys and a mechanistic model, validated by experiments, with a predictive capability on long-term performance. The scope of work is to evaluate the effect of thermal aging on the tensile properties of advanced alloys such as ferritic-martensitic steels, mod.9Cr-1Mo, NF616, and advanced austenitic stainless steel, HT-UPS. The aging experiments have been conducted over a temperature of 550-750 C for various time periods to simulate the microstructural changes in the alloys as a function of time at temperature. In addition, a mechanistic model based on thermodynamics and kinetics has been used to address the changes in microstructure of the alloys as a function of time and temperature, which is developed in the companion work package at ANL. The focus of this project is advanced alloy testing and understanding the effects of long-term thermal aging on the tensile properties. Advanced materials examined in this project include ferritic-martensitic steels mod.9Cr-1Mo and NF616, and austenitic steel, HT-UPS. The report summarizes the tensile testing results of thermally-aged mod.9Cr-1Mo, NF616 H1 and NF616 H2 ferritic-martensitic steels. NF616 H1 and NF616 H2 experienced different thermal-mechanical treatments before thermal aging experiments. NF616 H1 was normalized and tempered, and NF616 H2 was normalized and tempered and cold-rolled. By examining these two heats, we evaluated the effects of thermal-mechanical treatments on material microstructures and associated mechanical properties during long-term aging at elevated temperatures. Thermal aging experiments at different temperatures and periods of time have been completed: 550 C for up to 5000 h, 600 C for up to 7500 h, and 650 C for more than 10,000 h. Tensile properties were measured on thermally aged specimens and aging effect on tensile behavior was assessed. Effects of thermal aging on deformation and failure mechanisms were investigated by using in-situ straining technique with simultaneous synchrotron XRD measurements.

  8. Buckling of circular steel cylindrical shells under different loading conditions†

    E-Print Network [OSTI]

    Chen, Lei

    2011-06-28T23:59:59.000Z

    Cylindrical shells are widely used in civil engineering. Examples include cooling towers, pipelines, nuclear containment vessels, steel silos and tanks for storage of bulk solids and liquids, and pressure vessels. The ...

  9. Welding type 347 stainless steel -- An interpretive report

    SciTech Connect (OSTI)

    Thomas, R.D. Jr.; Messler, R.W. Jr.

    1997-05-01T23:59:59.000Z

    Stainless steels fall into three major classifications: ferritic, austenitic and martensitic. Type 347 stainless steels are classified as austenitic, though, as well be described later, they may contain small amounts of ferrite as well. They are of the 18-8 chromium-nickel type with up to 1% niobium, an element once referred to as columbium. Type 347 stainless steel is the primary focus of this document. Similar stainless steels containing niobium will be included, such as Types 348 and 309Nb, as these are frequently encountered in certain applications in welded construction. Ferritic and duplex stainless steels, some of which may contain niobium, are not within the scope of this report. This report covers the following topics: applicable welding processes; composition; properties; ferrite potential effect of weld thermal cycle; post-weld heat treatments; cracks and microfissures; and industrial applications.

  10. High productivity injection practices at Rouge Steel

    SciTech Connect (OSTI)

    Barker, D.H.; Hegler, G.L.; Falls, C.E. [Rouge Steel Co., Dearborn, MI (United States)

    1995-12-01T23:59:59.000Z

    Rouge Steel Company, located in Dearborn, Michigan, operates two blast furnaces. The smaller of the pair, ``B`` Furnace, has a hearth diameter of 20 feet and 12 tuyeres. It has averaged 2,290 NTHM (net ton of hot metal) per day of 8.2 NTHM per 100 cubic feet of working volume. ``C`` Furnace has a hearth diameter of 29 feet and 20 tuyeres. Both of these furnaces are single tap hole furnaces. Prior to its reline in 1991, ``C`` Furnace was producing at a rate of 3,300 NTHM/day or about 6.25 NTHM/100 cfwv. In November, 1994 it averaged 5,106 NTHM/day or 9.6 NTHM/100 cfwv. This paper discusses how the current production rates were achieved. Also, the areas that needed to be addressed as production increased will be described. These areas include casthouse arrangement and workload, hot metal ladle capacity, slag pot capacity and charging capability. Coupled with the high blast temperature capability, the furnace was provided with a new natural gas injection system that injected the gas through the blowpipes and a natural gas injection system to enrich the stove gas. Following the furnace reline, natural gas has been used in three ways: tuyere level control; combination injection; and stove gas enrichment. Coke consumption rate has also decreased per NTHM.

  11. Clean steels for fusion

    SciTech Connect (OSTI)

    Gelles, D.S.

    1995-03-01T23:59:59.000Z

    Fusion energy production has an inherent advantage over fission: a fuel supply with reduced long term radioactivity. One of the leading candidate materials for structural applications in a fusion reactor is a tungsten stabilized 9% chromium Martensitic steel. This alloy class is being considered because it offers the opportunity to maintain that advantage in the reactor structure as well as provide good high temperature strength and radiation induced swelling and embrittlement resistance. However, calculations indicate that to obtain acceptable radioactivity levels within 500 years after service, clean steel will be required because the niobium impurity levels must be kept below about 2 appm and nickel, molybdenum, nitrogen, copper, and aluminum must be intentionally restricted. International efforts are addressing the problems of clean steel production. Recently, a 5,000 kg heat was vacuum induction melted in Japan using high purity commercial raw materials giving niobium levels less than 0.7 appm. This paper reviews the need for reduced long term radioactivity, defines the advantageous properties of the tungsten stabilized Martensitic steel class, and describes the international efforts to produce acceptable clean steels.

  12. Continuous steel production and apparatus

    DOE Patents [OSTI]

    Peaslee, Kent D. (Rolla, MO); Peter, Jorg J. (McMinnville, OR); Robertson, David G. C. (Rolla, MO); Thomas, Brian G. (Champaign, IL); Zhang, Lifeng (Trondheim, NO)

    2009-11-17T23:59:59.000Z

    A process for continuous refining of steel via multiple distinct reaction vessels for melting, oxidation, reduction, and refining for delivery of steel continuously to, for example, a tundish of a continuous caster system, and associated apparatus.

  13. Accelerated corrosion of stainless steel in thiocyanate-containing solutions

    SciTech Connect (OSTI)

    Pistorius, P Chris; Li, Wen

    2012-09-19T23:59:59.000Z

    It is known that reduced sulfur compounds (such as thiocyanate and thiosulfate) can accelerate active corrosion of austenitic stainless steel in acid solutions, but before we started this project the mechanism of acceleration was largely unclear. This work combined electrochemical measurements and analysis using scanning electron microscopy (SEM) and X-ray photo-electron spectroscopy (XPS), which provided a comprehensive understanding of the catalytic effect of reduced sulfur species on the active corrosion of stainless steel. Both the behavior of the pure elements and the steel were studied and the work focused on the interaction between the pure elements of the steel, which is the least understood area. Upon completion of this work, several aspects are now much clearer. The main results from this work can be summarized as follows: The presence of low concentrations (around 0.1 mM) of thiocyanate or tetrathionate in dilute sulfuric acid greatly accelerates the anodic dissolution of chromium and nickel, but has an even stronger effect on stainless steels (iron-chromium-nickel alloys). Electrochemical measurements and surface analyses are in agreement with the suggestion that accelerated dissolution really results from suppressed passivation. Even well below the passivation potential, the electrochemical signature of passivation is evident in the electrode impedance; the electrode impedance shows clearly that this pre-passivation is suppressed in the presence of thiocyanate. For the stainless steels, remarkable changes in the morphology of the corroded metal surface and in the surface concentration of chromium support the suggestion that pre-passivation of stainless steels is suppressed because dissolution of chromium is accelerated. Surface analysis confirmed that adsorbed sulfur / sulfide forms on the metal surfaces upon exposure to solutions containing thiocyanate or thiosulfate. For pure nickel, and steels containing nickel (and residual copper), bulk sulfide (visible as a black corrosion product) forms during anodic dissolution. The sulfide is electronically conductive, and gives an increase of several orders of magnitude in the electrode capacitance; the sulfide also causes anodic activation to persist after the pure metals and steels were removed from the thiocyanate-containing electrolyte and transferred to a thiocyanate-free electrolyte. The main practical implications of this work are that low concentrations of reduced sulfur compounds strongly affect anodic dissolution of stainless steels, and that selecting steels with elevated concentrations of chromium, nickel or molybdenum would serve to limit the anodic dissolution rate in the presence of reduced sulfur compounds.

  14. Decontamination of metals by melt refining/slagging. An annotated bibliography: Update on stainless steel and steel

    SciTech Connect (OSTI)

    Worchester, S.A.; Twidwell, L.G.; Paolini, D.J.; Weldon, T.A. [Montana Tech of the Univ., of Montana (United States); Mizia, R.E. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1995-01-01T23:59:59.000Z

    The following presentation is an update to a previous annotation, i.e., WINCO-1138. The literature search and annotated review covers all metals used in the nuclear industries but the emphasis of this update is directed toward work performed on mild steels. As the number of nuclear installations undergoing decontamination and decommissioning (D&D) increases, current radioactive waste storage space is consumed and establishment of new waste storage areas becomes increasingly difficult, the problem of handling and storing radioactive scrap metal (RSM) gains increasing importance in the DOE Environmental Restoration and Waste Management Program. To alleviate present and future waste problems, Lockheed Idaho Technologies Co (LITCO) is managing a program for the recycling of RSM for beneficial use within the DOE complex. As part of that effort, Montana Tech has been awarded a contract to help optimize melting and refining technology for the recycling of stainless steel RSM. The scope of the Montana Tech program includes a literature survey, a decontaminating slag design study, small wide melting studies to determine optimum slag compositions for removal of radioactive contaminant surrogates, analysis of preferred melting techniques, and coordination of large scale melting demonstrations (100--2,000 lbs) to be conducted at selected facilities. The program will support recycling and decontaminating stainless steel RSM for use in waste canisters for Idaho Waste Immobilization Facility densified high level waste and Pit 9/RWMC boxes. This report is the result of the literature search conducted to establish a basis for experimental melt/slag program development. The program plan will be jointly developed by Montana Tech and LITCO.

  15. Nuclear containment steel liner corrosion workshop : final summary and recommendation report.

    SciTech Connect (OSTI)

    Erler, Bryan A. (Erler Engineering Ltd., Chicago, IL); Weyers, Richard E. (Virginia Tech University, Blacksburg, VA); Sagues, Alberto (University of South Florida, Tampa, FL); Petti, Jason P.; Berke, Neal Steven (Tourney Consulting Group, LLC, Kalamazoo, MI); Naus, Dan J. (Oak Ridge National Laboratory, Oak Ridge, TN)

    2011-07-01T23:59:59.000Z

    This report documents the proceedings of an expert panel workshop conducted to evaluate the mechanisms of corrosion for the steel liner in nuclear containment buildings. The U.S. Nuclear Regulatory Commission (NRC) sponsored this work which was conducted by Sandia National Laboratories. A workshop was conducted at the NRC Headquarters in Rockville, Maryland on September 2 and 3, 2010. Due to the safety function performed by the liner, the expert panel was assembled in order to address the full range of issues that may contribute to liner corrosion. This report is focused on corrosion that initiates from the outer surface of the liner, the surface that is in contact with the concrete containment building wall. Liner corrosion initiating on the outer diameter (OD) surface has been identified at several nuclear power plants, always associated with foreign material left embedded in the concrete. The potential contributing factors to liner corrosion were broken into five areas for discussion during the workshop. Those include nuclear power plant design and operation, corrosion of steel in contact with concrete, concrete aging and degradation, concrete/steel non-destructive examination (NDE), and concrete repair and corrosion mitigation. This report also includes the expert panel member's recommendations for future research.

  16. Fusion welding of advanced borated stainless steels. Final report: CRADA No. CR1042

    SciTech Connect (OSTI)

    Robino, C.V.; Cieslak, M.J.

    1994-02-01T23:59:59.000Z

    This work addressed two major areas concerning joining of advanced borated stainless steels. These areas included the development of a understanding of the physical metallurgy of borated stainless steels and the development of welding processes and post-weld heat treatments for these alloys. Differential thermal analysis experiments were conducted on ten heats of borated stainless steel to determine the transformation temperatures and melting behavior of the alloys. On-heating solidus temperatures were measured for all of the alloys and were used to define the temperatures associated with the fusion line during welding. Isothermal heat treatments designed to evaluate the effects of elevated temperature exposures on the toughness of the borated grades were conducted. These tests were used to determine if significant changes in the microstructure or mechanical properties of weld heat-affected zones (HAZ) occur. Specifically, the tests addressed the solid-state region of the HAZ. The test matrix included a variety of alloy compositions and thermal exposures at temperatures near the on-heating solidus (as determined by the DTA experiments). Welding experiments designed to assess the mechanical properties and microstructure of gas-tungsten arc and electron beam welds were conducted.

  17. Iron and steel industry process model

    SciTech Connect (OSTI)

    Sparrow, F.T.; Pilati, D.; Dougherty, T.; McBreen, E.; Juang, L.L.

    1980-01-01T23:59:59.000Z

    The iron and steel industry process model depicts expected energy-consumption characteristics of the iron and steel industry and ancillary industries for the next 25 years by means of a process model of the major steps in steelmaking, from ore mining and scrap recycling to the final finishing of carbon, alloy, and stainless steel into steel products such as structural steel, slabs, plates, tubes, and bars. Two plant types are modeled: fully integrated mills and mini-mills. User-determined inputs into the model are as follows: projected energy and materials prices; projected costs of capacity expansion and replacement; energy-conserving options, both operating modes and investments; the internal rate of return required on investment; and projected demand for finished steel. Nominal input choices in the model for the inputs listed above are as follows: National Academy of Sciences Committee on Nuclear and Alternative Energy Systems Demand Panel nominal energy-price projections for oil, gas, distillates, residuals, and electricity and 1975 actual prices for materials; actual 1975 costs; new technologies added; 15% after taxes; and 1975 actual demand with 1.5%/y growth. The model reproduces the base-year (1975) actual performance of the industry; then, given the above nominal input choices, it projects modes of operation and capacity expansion that minimize the cost of meeting the given final demands for each of 5 years, each year being the midpoint of a 5-year interval. The output of the model includes the following: total energy use and intensity (Btu/ton) by type, by process, and by time period; energy conservation options chosen; utilization rates for existing capacity; capital-investment decisions for capacity expansion.

  18. Must we use ferritic steel in TBM?

    SciTech Connect (OSTI)

    Salavy, Jean-Francois; Boccaccini, Lorenzo V.; Chaudhuri, Paritosh; Cho, Seungyon; Enoeda, Mikio; Giancarli, Luciano; Kurtz, Richard J.; Luo, Tian Y.; Rao, K. Bhanu Sankara; Wong, Clement

    2010-12-13T23:59:59.000Z

    Mock-ups of DEMO breeding blankets, called Test Blanket Modules (TBMs), inserted and tested in ITER in dedicated equatorial ports directly facing the plasma, are expected to provide the first experimental answers on the necessary performance of the corresponding DEMO breeding blankets. Several DEMO breeding blanket designs have been studied and assessed in the last 20 years. At present, after considering various coolant and breeder combinations, all the TBM concepts proposed by the seven ITER Parties use Reduced-Activation Ferritic/Martensitic (RAFM) steel as the structural material. In order to perform valuable tests in ITER, the TBMs are expected to use the same structural material as corresponding DEMO blankets. However, due to the fact that this family of steels is ferromagnetic, their presence in the ITER vacuum vessel will create perturbations of the ITER magnetic fields that could reduce the quality of the plasma confinement during H-mode. As a consequence, a legitimate question has been raised on the necessity of using RAFM steel for TBMs structural material in ITER. By giving a short description of the main TBM testing objectives in ITER and assessing the consequences of not using such a material, this paper gives a comprehensive answer to this question. According to the working group author of the study, the use of RAFM steel as structural material for TBM is judged mandatory.

  19. Reaustenitisation from Bainite in Steels

    E-Print Network [OSTI]

    Takahashi, Manabu

    1993-03-16T23:59:59.000Z

    .7 APPLICATIONS . . . 1.7.1 Ferrite-Martensite dual phase steels 1.7.2 Steels containing some retained austenite 1.7.3 Welding of steels . . . . . . . . . . 1.7.4 Initial austenite grain size . . . . . . . 1.8 TRANSFORMATION FROM AUSTENITE 1.8.1 Widmanstiitten... is important in the production of dual phase steels which have a final microstructure of ferrite and about 20% martensite. These steels have a good combination of strength and uniform ductility, and find applications in the automobile industry. When a fully...

  20. Surface modified stainless steels for PEM fuel cell bipolar plates

    DOE Patents [OSTI]

    Brady, Michael P [Oak Ridge, TN; Wang, Heli [Littleton, CO; Turner, John A [Littleton, CO

    2007-07-24T23:59:59.000Z

    A nitridation treated stainless steel article (such as a bipolar plate for a proton exchange membrane fuel cell) having lower interfacial contact electrical resistance and better corrosion resistance than an untreated stainless steel article is disclosed. The treated stainless steel article has a surface layer including nitrogen-modified chromium-base oxide and precipitates of chromium nitride formed during nitridation wherein oxygen is present in the surface layer at a greater concentration than nitrogen. The surface layer may further include precipitates of titanium nitride and/or aluminum oxide. The surface layer in the treated article is chemically heterogeneous surface rather than a uniform or semi-uniform surface layer exclusively rich in chromium, titanium or aluminum. The precipitates of titanium nitride and/or aluminum oxide are formed by the nitriding treatment wherein titanium and/or aluminum in the stainless steel are segregated to the surface layer in forms that exhibit a low contact resistance and good corrosion resistance.

  1. Measurement of intergranular attack in stainless steel using ultrasonic energy

    DOE Patents [OSTI]

    Mott, Gerry (Pittsburgh, PA); Attaar, Mustan (Monroeville, PA); Rishel, Rick D. (Monroeville, PA)

    1989-08-08T23:59:59.000Z

    Ultrasonic test methods are used to measure the depth of intergranular attack (IGA) in a stainless steel specimen. The ultrasonic test methods include a pitch-catch surface wave technique and a through-wall pulse-echo technique. When used in combination, these techniques can establish the extent of IGA on both the front and back surfaces of a stainless steel specimen from measurements made on only one surface.

  2. Developing Fatigue Pre-crack Procedure to Evaluate Fracture Toughness of Pipeline Steels Using Spiral Notch Torsion Test

    SciTech Connect (OSTI)

    Wang, Jy-An John [ORNL; Tan, Ting [ORNL; Jiang, Hao [ORNL; Zhang, Wei [ORNL; Feng, Zhili [ORNL

    2012-10-01T23:59:59.000Z

    The spiral notch torsion test (SNTT) has been utilized to investigate the crack growth behavior of X52 steel base and welded materials used for hydrogen infrastructures. The X52 steel materials are received from a welded pipe using friction stir welding techniques. Finite element models were established to study the crack growth behavior of steel SNTT steel samples, which were assumed to be isotropic material. A series SNTT models were set up to cover various crack penetration cases, of which the ratios between crack depth to diameter (a/D ratio) ranging from 0.10 to 0.45. The evolution of compliance and energy release rates in the SNTT method have been investigated with different cases, including different geometries and materials. Indices of characteristic compliance and energy release rates have been proposed. Good agreement has been achieved between predictions from different cases in the same trend. These work shed lights on a successful protocol for SNTT application in wide range of structural materials. The further effort needed for compliance function development is to extend the current developed compliance function to the deep crack penetration arena, in the range of 0.55 to 0.85 to effectively determine fracture toughness for extremely tough materials.

  3. Design and analysis of prestressed composite steel beams

    SciTech Connect (OSTI)

    Thammasila, D.

    1992-01-01T23:59:59.000Z

    This study experimentally and analytically examined the behavior of prestressed composite steel beams. Methods for analysis and design of the prestressed composite steel beams with constant and variable eccentricities based on the load and resistance factor design and the working stress design were formulated. Three specimens were tested under static and cyclic loadings to verify the proposed design methods. The results from the cyclic loadings were used to test the feasibility of the prestressed composite steel beams under actual loading conditions. Finite element models were developed to study the behavior of the prestressed composite steel beams and to ensure the validity of the proposed design methods. The modes of failure of the three specimens tested were crushing of concrete slabs and yielding of steel beams and prestressing tendons. The cyclic loads reduced the ultimate strength of the specimens tested by 7.8 percent. Overall, the proposed design methods for the load and resistance factor design and the working stress design adequately predicted the behavior of the prestressed composite steel beams.

  4. Weldment for austenitic stainless steel and method

    DOE Patents [OSTI]

    Bagnall, Christopher (Hempfield, PA); McBride, Marvin A. (Hempfield, PA)

    1985-01-01T23:59:59.000Z

    For making defect-free welds for joining two austenitic stainless steel mers, using gas tungsten-arc welding, a thin foil-like iron member is placed between the two steel members to be joined, prior to making the weld, with the foil-like iron member having a higher melting point than the stainless steel members. When the weld is formed, there results a weld nugget comprising melted and then solidified portions of the joined members with small portions of the foil-like iron member projecting into the solidified weld nugget. The portions of the weld nugget proximate the small portions of the foil-like iron member which project into the weld nugget are relatively rich in iron. This causes these iron-rich nugget portions to display substantial delta ferrite during solidification of the weld nugget which eliminates weld defects which could otherwise occur. This is especially useful for joining austenitic steel members which, when just below the solidus temperature, include at most only a very minor proportion of delta ferrite.

  5. 9 Cr-- 1 Mo steel material for high temperature application

    DOE Patents [OSTI]

    Jablonski, Paul D; Alman, David; Dogan, Omer; Holcomb, Gordon; Cowen, Christopher

    2012-11-27T23:59:59.000Z

    One or more embodiments relates to a high-temperature, titanium alloyed, 9 Cr-1 Mo steel exhibiting improved creep strength and oxidation resistance at service temperatures up to 650.degree. C. The 9 Cr-1 Mo steel has a tempered martensite microstructure and is comprised of both large (0.5-3 .mu.m) primary titanium carbides and small (5-50 nm) secondary titanium carbides in a ratio of. from about 1:1.5 to about 1.5:1. The 9 Cr-1 Mo steel may be fabricated using exemplary austenizing, rapid cooling, and tempering steps without subsequent hot working requirements. The 9 Cr-1 Mo steel exhibits improvements in total mass gain, yield strength, and time-to-rupture over ASTM P91 and ASTM P92 at the temperature and time conditions examined.

  6. The morphology and formation mechanism of pearlite in steels

    SciTech Connect (OSTI)

    Zhang, M.-X., E-mail: Mingxing.Zhang@uq.edu.au [Division of Materials, School of Engineering, University of Queensland, St. Lucia, Queensland 4072 (Australia); Kelly, P.M. [Division of Materials, School of Engineering, University of Queensland, St. Lucia, Queensland 4072 (Australia)

    2009-06-15T23:59:59.000Z

    A number of morphological features of pearlite were revealed through scanning electron microscopy using deeply etched specimens. These include cementite branching, bridging, gaps, holes and curvature. The presence of cementite thin films or networks along the austenite grain boundaries in eutectoid steel and at the interface between pearlite and proeutectoid ferrite in hypoeutectoid steel is another characteristic of pearlite. Furthermore, ferrite thin films surrounding the proeutectoid cementite in hypereutectoid steels are also observed. Hence, it is considered that in hypoeutectoid steels the nucleus for pearlite is a film of cementite rather than the expected proeutectoid ferrite and, similarly, in hypereutectoid steels pearlite forms from a ferrite film rather than from proeutectoid cementite. Convergent beam Kikuchi line diffraction was used to accurately determine the orientation relationships between pearlitic constituents and parent austenite in a Hadfields steel. The results show that neither the pearlitic ferrite nor the cementite is crystallographically related to the austenite grain into which the pearlite was growing and to that into which it was not growing. In addition, a new orientation relationship between pearlitic cementite and ferrite in the Hadfield steel was also observed.

  7. AISI/DOE Technology Roadmap Program: Characterization of Fatigue and Crash Performance of New Generation High Strength Steels for Automotive Applications

    SciTech Connect (OSTI)

    Brenda Yan; Dennis Urban

    2003-04-21T23:59:59.000Z

    A 2-year project (2001-2002) to generate fatigue and high strain data for a new generation of high strength steels (HSS) has been completed in December 2002. The project tested eleven steel grades, including Dual Phase (DP) steels, Transformation-Induced Plasticity (TRIP) steels, Bake Hardenable (BH) steels, and conventional High Strength Low Alloy (HSLA) steels. All of these steels are of great interest in automotive industry due to the potential benefit in weight reduction, improved fuel economy, enhanced crash energy management and total system cost savings. Fatigue behavior includes strain controlled fatigue data notch sensitivity for high strength steels. High strain rate behavior includes stress-strain data for strain rates from 0.001/s to 1000/s, which are considered the important strain rate ranges for crash event. The steels were tested in two phases, seven were tested in Phase 1 and the remaining steels were tested in Phase. In a addition to the fatigue data and high st rain rate data generated for the steels studied in the project, analyses of the testing results revealed that Advanced High Strength Steels (AHSS) exhibit significantly higher fatigue strength and crash energy absorption capability than conventional HSS. TRIP steels exhibit exceptionally better fatigue strength than steels of similar tensile strength but different microstructure, for conditions both with or without notches present

  8. Sigma phase morphologies in cast and aged super duplex stainless steel

    SciTech Connect (OSTI)

    Martins, Marcelo, E-mail: marcelo.martins@sulzer.com [SULZER BRASIL S/A (Brazil); Sao Paulo Salesian University Center (UNISAL), Americana Division, Av. Eng. Joao Fernandes G. Molina, 905 - Distrito Industrial - 13.213-080 Jundiai-SP (Brazil); Casteletti, Luiz Carlos, E-mail: castelet@sc.usp.br [Department of Materials, Aeronautical and Automotive Engineering, Sao Carlos School of Engineering, University of Sao Paulo (USP), Av. Trabalhador Sao Carlense, 400 - 13.566-590 Sao Carlos - SP (Brazil)

    2009-08-15T23:59:59.000Z

    Solution annealed and water quenched duplex and super duplex stainless steels are thermodynamically metastable systems at room temperature. These systems do not migrate spontaneously to a thermodynamically stable condition because an energy barrier separates the metastable and stable states. However, any heat input they receive, for example through isothermal treatment or through prolonged exposure to a voltaic arc in the welding process, cause them to reach a condition of stable equilibrium which, for super duplex stainless steels, means precipitation of intermetallic and carbide phases. These phases include the sigma phase, which is easily identified from its morphology, and its influence on the material's impact strength. The purpose of this work was to ascertain how 2-hour isothermal heat treatments at 920 deg. C and 980 deg. C affect the microstructure of ASTM A890/A890M GR 6A super duplex stainless steel. The sigma phase morphologies were found to be influenced by these two aging temperatures, with the material showing a predominantly lacy microstructure when heat treated at 920 deg. C and block-shaped when heat treated at 980 deg. C.

  9. Hot strength of creep resistant ferritic steels and relationship to creep rupture data

    E-Print Network [OSTI]

    Cambridge, University of

    strength, Ferritic steel, Creep rupture, Power plant, Energy Introduction There have been many studies in the design of power plant components. In recent work, the creep rupture life of such steels was factorised in which the hot strength of austenite has been modelled, primarily as an aid to the simulation of the hot

  10. Microbial Corrosion in Linepipe Steel Under the Influence of a Sulfate-Reducing Consortium Isolated

    E-Print Network [OSTI]

    Microbial Corrosion in Linepipe Steel Under the Influence of a Sulfate-Reducing Consortium Isolated) This work investigates microbiologically influenced corrosion of API 5L X52 linepipe steel by a sulfate the corrosion behavior. Through circuit modeling, EIS results were used to interpret the physicoelectric

  11. Numerical and experimental evaluation of laser forming process for the shape correction in ultra high strength steels

    SciTech Connect (OSTI)

    Song, J. H.; Lee, J.; Lee, S.; Kim, E. Z.; Lee, N. K.; Lee, G. A. [Forming Technology R and D Group, Korea Institute of Industrial Technology, 156, Gaetbeol-ro, Yeonsu-gu, Incheon, 406-840 (Korea, Republic of); Park, S. J. [Dept. of Mechanical Engineering, Korea National University of Transportation, 50, DaeHak-ro, Chungju-si, Chung Buk, 380-702 (Korea, Republic of); Chu, A. [Shin Young Co. Ltd, 440, Bonchon-Dong, Yeongcheon-si, Gyeong Buk, 770-150 (Korea, Republic of)

    2013-12-16T23:59:59.000Z

    In this paper, laser forming characteristics in ultra high strength steel with ultimate strength of 1200MPa are investigated numerically and experimentally. FE simulation is conducted to identify the response related to deformation and characterize the effect of laser power, beam diameter and scanning speed with respect to the bending angle for a square sheet part. The thermo-mechanical behaviors during the straight-line heating process are presented in terms of temperature, stress and strain. An experimental setup including a fiber laser with maximum mean power of 3.0 KW is used in the experiments. From the results in this work, it would be easily adjustment the laser power and the scanning speed by controlling the line energy for a bending operation of CP1180 steel sheets.

  12. Machinability of a Stainless Steel by Electrochemical Discharge Microdrilling

    SciTech Connect (OSTI)

    Coteata, Margareta; Pop, Nicolae; Slatineanu, Laurentiu ['Gheorghe Asachi' Technical University of Iasi, Department of Machine Manufacturing Technology, Blvd. D Mangeron 59A, 700050 Iasi (Romania); Schulze, Hans-Peter [Otto-von-Guericke-University Magdeburg, Institute of Fundamental Electrical Engineering and EMC Universitaetsplatz 2, D-39106 Magdeburg (Germany); Besliu, Irina [University 'Stefan cel Mare' of Suceava, Department of Technologies and Management, Str. Universitatii, 13, 720 229 Suceava (Romania)

    2011-05-04T23:59:59.000Z

    Due to the chemical elements included in their structure for ensuring an increased resistance to the environment action, the stainless steels are characterized by a low machinability when classical machining methods are applied. For this reason, sometimes non-traditional machining methods are applied, one of these being the electrochemical discharge machining. To obtain microholes and to evaluate the machinability by electrochemical discharge microdrilling, test pieces of stainless steel were used for experimental research. The electrolyte was an aqueous solution of sodium silicate with different densities. A complete factorial plan was designed to highlight the influence of some input variables on the sizes of the considered machinability indexes (electrode tool wear, material removal rate, depth of the machined hole). By mathematically processing of experimental data, empirical functions were established both for stainless steel and carbon steel. Graphical representations were used to obtain more suggestive vision concerning the influence exerted by the considered input variables on the size of the machinability indexes.

  13. Process for dezincing galvanized steel

    DOE Patents [OSTI]

    Morgan, William A. (Hamilton, CA); Dudek, Frederick J. (Arlington Heights, IL); Daniels, Edward J. (Oak Lawn, IL)

    1998-01-01T23:59:59.000Z

    A process for removing zinc from galvanized steel. The galvanized steel is immersed in an electrolyte containing at least about 15% by weight of sodium or potassium hydroxide and having a temperature of at least about 75.degree. C. and the zinc is galvanically corroded from the surface of the galvanized steel. The material serving as the cathode is principally a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series. The corrosion rate may be accelerated by (i) increasing the number density of corrosion sites in the galvanized steel by mechanically abrading or deforming the galvanized steel, (ii) heating the galvanized steel to form an alloy of zinc on the surface of the galvanized steel, (iii) mixing the galvanized steel with a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series, or (iv) moving the galvanized steel relative to itself and to the electrolyte while immersed in the electrolyte.

  14. Sandia National Laboratories: stainless steel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stainless steel Sandia-California Partners with Japanese National Institute of Advanced Industrial Science and Technology (AIST) in Hydrogen-Materials Research On July 26, 2013, in...

  15. Process for dezincing galvanized steel

    DOE Patents [OSTI]

    Morgan, W.A.; Dudek, F.J.; Daniels, E.J.

    1998-07-14T23:59:59.000Z

    A process is described for removing zinc from galvanized steel. The galvanized steel is immersed in an electrolyte containing at least about 15% by weight of sodium or potassium hydroxide and having a temperature of at least about 75 C and the zinc is galvanically corroded from the surface of the galvanized steel. The material serving as the cathode is principally a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series. The corrosion rate may be accelerated by (1) increasing the number density of corrosion sites in the galvanized steel by mechanically abrading or deforming the galvanized steel, (2) heating the galvanized steel to form an alloy of zinc on the surface of the galvanized steel, (3) mixing the galvanized steel with a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series, or (4) moving the galvanized steel relative to itself and to the electrolyte while immersed in the electrolyte. 1 fig.

  16. Spider Silk: Sronger than Steel? Nature's Supermaterial

    E-Print Network [OSTI]

    Powers, Alexander

    2013-01-01T23:59:59.000Z

    spider silk were as thick as a steel beam, it would be verysized and much heavier steel. In fact, it would take aboutstrength comparable to that of steel, about 1.5 gigapascals,

  17. Imagining Chivalry: Charles V's Suits of Steel

    E-Print Network [OSTI]

    Machado, Erin Jeannine

    2012-01-01T23:59:59.000Z

    Mail, German, 15 th century. Steel and brass. MetropolitanI. , Innsbruck, ca. 1512-14. Steel, gilded silver, velvet,Elector of Saxony, ca. 1555. Steel, copper alloy (brass),

  18. High Mn austenitic stainless steel

    DOE Patents [OSTI]

    Yamamoto, Yukinori (Oak Ridge, TN) [Oak Ridge, TN; Santella, Michael L (Knoxville, TN) [Knoxville, TN; Brady, Michael P (Oak Ridge, TN) [Oak Ridge, TN; Maziasz, Philip J (Oak Ridge, TN) [Oak Ridge, TN; Liu, Chain-tsuan (Knoxville, TN) [Knoxville, TN

    2010-07-13T23:59:59.000Z

    An austenitic stainless steel alloy includes, in weight percent: >4 to 15 Mn; 8 to 15 Ni; 14 to 16 Cr; 2.4 to 3 Al; 0.4 to 1 total of at least one of Nb and Ta; 0.05 to 0.2 C; 0.01 to 0.02 B; no more than 0.3 of combined Ti+V; up to 3 Mo; up to 3 Co; up to 1W; up to 3 Cu; up to 1 Si; up to 0.05 P; up to 1 total of at least one of Y, La, Ce, Hf, and Zr; less than 0.05 N; and base Fe, wherein the weight percent Fe is greater than the weight percent Ni, and wherein the alloy forms an external continuous scale including alumina, nanometer scale sized particles distributed throughout the microstructure, the particles including at least one of NbC and TaC, and a stable essentially single phase FCC austenitic matrix microstructure that is essentially delta-ferrite-free and essentially BCC-phase-free.

  19. Phase Transformation in Cast Superaustenitic Stainless Steels

    SciTech Connect (OSTI)

    Nathaniel Steven Lee Phillips

    2006-12-12T23:59:59.000Z

    Superaustenitic stainless steels constitute a group of Fe-based alloys that are compositionally balanced to have a purely austenitic matrix and exhibit favorable pitting and crevice corrosion resistant properties and mechanical strength. However, intermetallic precipitates such as sigma and Laves can form during casting or exposure to high-temperature processing, which degrade the corrosion and mechanical properties of the material. The goal of this study was to accurately characterize the solid-solid phase transformations seen in cast superaustenitic stainless steels. Heat treatments were performed to understand the time and temperature ranges for intermetallic phase formations in alloys CN3MN and CK3MCuN. Microstructures were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy and wavelength dispersive spectroscopy (EDS, WDS). The equilibrium microstructures, composed primarily of sigma and Laves within purely austenitic matrices, showed slow transformation kinetics. Factors that determine the extent of transformation, including diffusion, nucleation, and growth, are discussed.

  20. Dimensional variability of production steel castings

    SciTech Connect (OSTI)

    Peters, F.E.; Risteu, J.W.; Vaupel, W.G.; DeMeter, E.C.; Voigt, R.C.

    1994-12-31T23:59:59.000Z

    Work is ongoing to characterize the dimensional variability of steel casting features. Data are being collected from castings produced at representative Steel Founders` Society of America foundries. Initial results based on more than 12,500 production casting feature measurements are presented for carbon and low alloy steel castings produced in green sand, no-bake, and shell molds. A comprehensive database of casting, pattern, and feature variables has been developed so that the influence of the variables on dimensional variability can be determined. Measurement system analysis is conducted to insure that large measurement error is not reported as dimensional variability. Results indicate that the dimensional variability of production casting features is less than indicated in current US (SFSA) and international (ISO) standards. Feature length, casting weight, parting line and molding process all strongly influence dimensional variability. Corresponding pattern measurements indicate that the actual shrinkage amount for casting features varies considerably. This variation in shrinkage will strongly influence the ability of the foundry to satisfy customer dimensional requirements.

  1. Duplex Stainless Steels Margaret Gorog

    E-Print Network [OSTI]

    Das, Suman

    , substituted for 6% mo SS in bleach plant Hyper DSS, Offshore oil applications Super, Hyper ­ Corrosion11/14/2014 1 Duplex Stainless Steels Margaret Gorog Federal Way, WA Pulp and Paper Corrosion for suction rolls Duplex Stainless Steel · Improved corrosion and more importantly, stress corrosion cracking

  2. Method for reducing formation of electrically resistive layer on ferritic stainless steels

    DOE Patents [OSTI]

    Rakowski, James M.

    2013-09-10T23:59:59.000Z

    A method of reducing the formation of electrically resistive scale on a an article comprising a silicon-containing ferritic stainless subjected to oxidizing conditions in service includes, prior to placing the article in service, subjecting the article to conditions under which silica, which includes silicon derived from the steel, forms on a surface of the steel. Optionally, at least a portion of the silica is removed from the surface to placing the article in service. A ferritic stainless steel alloy having a reduced tendency to form silica on at least a surface thereof also is provided. The steel includes a near-surface region that has been depleted of silicon relative to a remainder of the steel.

  3. The Behaviour of Multi-storey Composite Steel Framed Structures in Response to Compartment Fires†

    E-Print Network [OSTI]

    Lamont, Susan

    For many years, the ability of highly redundant composite framed structure to resist the effect of a fire have been undervalued and misunderstood. A great deal of work on the behavior of composite steel-concrete structures ...

  4. Environmental assessment of a BOF steel slag used in road construction: The ECLAIR research program

    E-Print Network [OSTI]

    Boyer, Edmond

    Abstract Steel production generates great amounts of by-products as steel slag. Unlike blast furnace slag silicates. No real toxicity effect of seepage waters has been revealed from eco-toxicological tests carried, environmental assessment. Introduction Steelmaking slag includes blast furnace iron slag, and electric arc

  5. Response of neutron-irradiated RPV steels to thermal annealing

    SciTech Connect (OSTI)

    Iskander, S.K.; Sokolov, M.A.; Nanstad, R.K.

    1997-03-01T23:59:59.000Z

    One of the options to mitigate the effects of irradiation on reactor pressure vessels (RPVs) is to thermally anneal them to restore the fracture toughness properties that have been degraded by neutron irradiation. This paper summarizes experimental results of work performed at the Oak Ridge National Laboratory (ORNL) to study the annealing response of several irradiated RPV steels.

  6. Greenhouse Gas Mitigation Options in ISEEM Global Energy Model: 2010-2050 Scenario Analysis for Least-Cost Carbon Reduction in Iron and Steel Sector

    SciTech Connect (OSTI)

    Karali, Nihan; Xu, Tengfang; Sathaye, Jayant

    2013-12-01T23:59:59.000Z

    The goal of the modeling work carried out in this project was to quantify long-term scenarios for the future emission reduction potentials in the iron and steel sector. The main focus of the project is to examine the impacts of carbon reduction options in the U.S. iron and steel sector under a set of selected scenarios. In order to advance the understanding of carbon emission reduction potential on the national and global scales, and to evaluate the regional impacts of potential U.S. mitigation strategies (e.g., commodity and carbon trading), we also included and examined the carbon reduction scenarios in Chinaís and Indiaís iron and steel sectors in this project. For this purpose, a new bottom-up energy modeling framework, the Industrial Sector Energy Efficiency Modeling (ISEEM), (Karali et al. 2012) was used to provide detailed annual projections starting from 2010 through 2050. We used the ISEEM modeling framework to carry out detailed analysis, on a country-by-country basis, for the U.S., Chinaís, and Indiaís iron and steel sectors. The ISEEM model applicable to iron and steel section, called ISEEM-IS, is developed to estimate and evaluate carbon emissions scenarios under several alternative mitigation options - including policies (e.g., carbon caps), commodity trading, and carbon trading. The projections will help us to better understand emission reduction potentials with technological and economic implications. The database for input of ISEEM-IS model consists of data and information compiled from various resources such as World Steel Association (WSA), the U.S. Geological Survey (USGS), China Steel Year Books, India Bureau of Mines (IBM), Energy Information Administration (EIA), and recent LBNL studies on bottom-up techno-economic analysis of energy efficiency measures in the iron and steel sector of the U.S., China, and India, including long-term steel production in China. In the ISEEM-IS model, production technology and manufacturing details are represented, in addition to the extensive data compiled from recent studies on bottom-up representation of efficiency measures for the sector. We also defined various mitigation scenarios including long-term production trends to project country-specific production, energy use, trading, carbon emissions, and costs of mitigation. Such analyses can provide useful information to assist policy-makers when considering and shaping future emissions mitigation strategies and policies. The technical objective is to analyze the costs of production and CO{sub 2} emission reduction in the U.S, China, and Indiaís iron and steel sectors under different emission reduction scenarios, using the ISEEM-IS as a cost optimization model. The scenarios included in this project correspond to various CO{sub 2} emission reduction targets for the iron and steel sector under different strategies such as simple CO{sub 2} emission caps (e.g., specific reduction goals), emission reduction via commodity trading, and emission reduction via carbon trading.

  7. Final Report, Volume 5, Data Package for ASTM A923 Supporting Inclusion of A890-5 Super Duplex Stainless Steel (Cast Equivalent of 2507)

    SciTech Connect (OSTI)

    Hariharan, Vasudevan; Lundin, Carl, W.

    2005-09-30T23:59:59.000Z

    Volume 5 is the Data Package for the evaluation of Super Duplex Stainless Steel Castings prepared at the end of work comprised in volumes 3 and 4. The document deals with the various evaluation methods used in the work documented in volume 3 and 4. This document covers materials regarding evaluation of the A890-5A material in terms of inclusion in ASTM A923. The various tests which were conducted on the A890-5A material are included in this document.

  8. Final Report, Volume 5, Data Package for ASTM A923 Supporting Inclusion of A890-5A Super Duplex Stainless Steel ( Cast Equivalent of 2507)

    SciTech Connect (OSTI)

    Hariharan, Vasudevan; Lundin, Carl, D.

    2005-09-30T23:59:59.000Z

    Volume 5 is the Data Package for the evaluation of Super Duplex Stainless Steel Castings prepared at the end of work comprised in volumes 3 and 4. The document deals with the various evaluation methods used in the work documented in volume 3 and 4. This document covers materials regarding evaluation of the A890-5A material in terms of inclusion in ASTM A923. The various tests which were conducted on the A890-5A material are included in this document.

  9. Preliminary study of niobium alloy contamination by transport through helium. [Nb-1Zr; Sm-Co; Hiperco 50 steel; alumina

    SciTech Connect (OSTI)

    Scheuermann, C.M.; Moore, T.J.; Wheeler, D.R.

    1987-01-12T23:59:59.000Z

    Preliminary tests were conducted to determine if interstitial element transport through a circulating helium working fluid was a potential problem in Brayton and Stirling space power systems. Test specimens exposed to a thermal gradient for up to 3000 h included Nb-1%Zr, a Sm-Co alloy, Hiperco 50 steel, and alumina to simulate various engine components of the Brayton and Stirling systems. Results indicate that helium transport of interstitial contaminants can be minimized over a 7-y life with monometallic Nb-1%Zr design. Exposure with other materials indicated a potential for interstitial contaminant transport.

  10. Cast Stainless Steel Ferrite and Grain Structure

    SciTech Connect (OSTI)

    Ruud, Clayton O.; Ramuhalli, Pradeep; Meyer, Ryan M.; Mathews, Royce; Diaz, Aaron A.; Anderson, Michael T.

    2012-09-01T23:59:59.000Z

    In-service inspection requirements dictate that piping welds in the primary pressure boundary of light-water reactors be subject to a volumetric examination based on the rules contained within the American Society of Mechanical Engineers Boiler and Pressure Vessel Code, Section XI. The purpose of the inspection is the reliable detection and accurate sizing of service-induced degradation and/or material flaws introduced during fabrication. The volumetric inspection is usually carried out using ultrasonic testing (UT) methods. However, the varied metallurgical macrostructures and microstructures of cast austenitic stainless steel piping and fittings, including statically cast stainless steel and centrifugally cast stainless steel (CCSS), introduce significant variations in the propagation and attenuation of ultrasonic energy. These variations complicate interpretation of the UT responses and may compromise the reliability of UT inspection. A review of the literature indicated that a correlation may exist between the microstructure and the delta ferrite content of the casting alloy. This paper discusses the results of a recent study where the goal was to determine if a correlation existed between measured and/or calculated ferrite content and grain structure in CCSS pipe.

  11. Strain aging behavior of austenitic stainless steels containing strain induced martensite

    SciTech Connect (OSTI)

    Rathbun, R.W.; Matlock, D.K.; Speer, J.G.

    2000-04-01T23:59:59.000Z

    Transformation of austenite to martensite during deformation is widely used to strengthen metastable austenitic stainless steel grades. It has been reported that aging of cold worked material can result in further strength increases through the formation of additional martensite. Alternate interpretations of the effects of aging on the strength of stainless steels containing strain induced martensite may also be hypothesized. It is well known that plastically deformed ferritic steels can be strengthened by the diffusion of interstitial solute atoms (carbon and nitrogen) during aging at low temperatures. It is anticipated that plastically deformed metastable austenitic steels containing the body-centered martensite phase may also be strengthened in a similar manner. This assumption appears reasonable as martensitic steels, with low carbon content similar to the austenitic steels of interest, have been shown to exhibit aging effects similar to those observed in low carbon ferritic steels. Thus the purpose of the present study was to evaluate the effects of time and temperature on the stress-strain behavior and strength of cold worked metastable 300 series stainless steels to determine the degree to which observed strength increases might be attributed to strain aging.

  12. Transformations in TRIP-assisted Steels: Microstructure and Properties

    E-Print Network [OSTI]

    Chatterjee, Sourabh

    and the prevailing state of stress or strain may be much more complex than uniaxial tension. Static and quasi-static tensile tests performed with a slow strain rate of about 0.005 s?1 are therefore not sufficient. Servo-hydraulic testing system, Split Hopkinson Bar... . The justification for the formability criteria is another feature of the present work. Chapter 2 TRIP-assisted steels An overview of TRIP-assisted steels is presented in this chapter. Typical mechanical properties such as proof strength (YS), ultimate tensile...

  13. Effects of thermal annealing and reirradiation on toughness of reactor pressure vessel steels

    SciTech Connect (OSTI)

    Nanstad, R.K.; Iskander, S.K.; Sokolov, M.A. [and others

    1996-12-31T23:59:59.000Z

    One of the options to mitigate the effects of irradiation on reactor pressure vessels (RPV) is to thermally anneal them to restore the toughness properties that have been degraded by neutron irradiation. This paper summarizes recent experimental results from work performed at the Oak Ridge National Laboratory (ORNL) to study the annealing response, or {open_quotes}recovery,{close_quotes} of several irradiated RPV steels; it also includes recent results from both ORNL and the Russian Research Center-Kurchatov Institute (RRC-KI) on a cooperative program of irradiation, annealing and reirradiation of both U.S. and Russian RPV steels. The cooperative program was conducted under the auspices of Working Group 3, U.S./Russia Joint Coordinating Committee for Civilian Nuclear Reactor Safety (JCCCNRS). The materials investigated are an RPV plate and various submerged-arc welds, with tensile, Charpy impact toughness, and fracture toughness results variously determined. Experimental results are compared with applicable prediction guidelines, while observed differences in annealing responses and reirradiation rates are discussed.

  14. Effects of thermal annealing and reirradiation on toughness of reactor pressure vessel steels

    SciTech Connect (OSTI)

    Nanstad, R.K.; Iskander, S.K.; Sokolov, M.A. [Oak Ridge National Lab., TN (United States)] [and others

    1997-02-01T23:59:59.000Z

    One of the options to mitigate the effects of irradiation on reactor pressure vessels (RPV) is to thermally anneal them to restore the toughness properties that have been degraded by neutron irradiation. This paper summarizes recent experimental results from work performed at the Oak Ridge National Laboratory (ORNL) to study the annealing response, or {open_quotes}recovery,{close_quotes} of several irradiated RPV steels; it also includes recent results from both ORNL and the Russian Research Center-Kurchatov Institute (RRC-KI) on a cooperative program of irradiation, annealing and reirradiation of both U.S. and Russian RPV steels. The cooperative program was conducted under the auspices of Working Group 3, U.S./Russia Joint Coordinating Committee for Civilian Nuclear Reactor Safety (JCCCNRS). The materials investigated are an RPV plate and various submerged-arc welds, with tensile, Charpy impact toughness, and fracture toughness results variously determined. Experimental results are compared with applicable prediction guidelines, while observed differences in annealing responses and reirradiation rates are discussed.

  15. Structural integrity assessment of type 201LN stainless steel cryogenic pressure vessels

    SciTech Connect (OSTI)

    Rana, M.D.; Zawierucha, R. [Praxair, Inc., Tonawanda, NY (United States)

    1995-12-01T23:59:59.000Z

    The ASME Boiler and Pressure Vessel Code Committee approved the Code Case 2123 in 1992 which allows the use of Type 201LN stainless steel in the construction of ASME Section VIII, Division 1 and Division 2 pressure vessels for -320{degrees}F applications. Type 201LN stainless steel is a nitrogen strengthened modified version of ASTM A240, Type 201 stainless steel with a restricted chemistry. The Code allowable design stresses for Type 201LN for Division 1 vessels are approximately 27% higher than Type 304 stainless steel and equal to that of the 5 Ni and 9 Ni steels. This paper discusses the important features of the Code Case 2123 and the structural integrity assessment of Type 201LN stainless steel cryogenic vessels. Tensile, Charpy-V-notch and fracture properties have been obtained on several heats of this steel including weldments. A linear-elastic fracture mechanics analysis has been conducted to assess the expected fracture mode and the fracture-critical crack sizes. The results have been compared with Type 304 stainless steel, 5 Ni and 9 Ni steel vessels.

  16. Remedial investigation work plan for Bear Creek Valley Operable Unit 1 (S-3 Ponds, Boneyard/Burnyard, Oil Landfarm, Sanitary Landfill 1, and the Burial Grounds, including Oil Retention Ponds 1 and 2) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1, Main text

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    The intent and scope of the work plan are to assemble all data necessary to facilitate selection of remediation alternatives for the sites in Bear Creek Valley Operable Unit 1 (BCV OU 1) such that the risk to human health and the environment is reduced to acceptable levels based on agreements with regulators. The ultimate goal is to develop a final Record Of Decision (ROD) for all of the OUs in BCV, including the integrator OU. However, the initial aim of the source OUs is to develop a ROD for interim measures. For source OUs such as BCV OU 1, data acquisition will not be carried out in a single event, but will be carried out in three stages that accommodate the schedule for developing a ROD for interim measures and the final site-wide ROD. The three stages are as follows: Stage 1, Assemble sufficient data to support decisions such as the need for removal actions, whether to continue with the remedial investigation (RI) process, or whether no further action is required. If the decision is made to continue the RI/FS process, then: Stage 2, Assemble sufficient data to allow for a ROD for interim measures that reduce risks to the human health and the environment. Stage 3, Provide input from the source OU that allows a final ROD to be issued for all OUs in the BCV hydrologic regime. One goal of the RI work plan will be to ensure that sampling operations required for the initial stage are not repeated at later stages. The overall goals of this RI are to define the nature and extent of contamination so that the impact of leachate, surface water runoff, and sediment from the OU I sites on the integrator OU can be evaluated, the risk to human health and the environment can be defined, and the general physical characteristics of the subsurface can be determined such that remedial alternatives can be screened.

  17. ITP Steel: Energy Use in the U.S. Steel Industry: An Historical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Use in the U.S. Steel Industry: An Historical Perspective and Future Opportunities, September 2000 ITP Steel: Energy Use in the U.S. Steel Industry: An Historical...

  18. THE DEVELOPMENT OF MICROSTRUCTURE IN DUPLEX STAINLESS STEEL WELDS

    E-Print Network [OSTI]

    Cambridge, University of

    THE DEVELOPMENT OF MICROSTRUCTURE IN DUPLEX STAINLESS STEEL WELDS by Naseem Issa Abdallah Haddad;The Development of Microstructure in Duplex Stainless Steel Welds Abstract Duplex stainless steels

  19. Auto/Steel Partnership: AHSS Stamping, Strain Rate Characterization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AHSS Stamping, Strain Rate Characterization, Sheet Steel Fatigue, AHSS Joining AutoSteel Partnership: AHSS Stamping, Strain Rate Characterization, Sheet Steel Fatigue, AHSS...

  20. Nonlinear seismic response analysis of steel-concrete composite frames

    E-Print Network [OSTI]

    Barbato, Michele

    2008-01-01T23:59:59.000Z

    formulation of nonlinear steel- concrete composite beam ele-Behaviour of Composite Steel and Concrete Struc- turalE. (2001). ďAnalysis of steel-concrete composite frames with

  1. SOLID STATE JOINING OF MAGNESIUM TO STEEL

    SciTech Connect (OSTI)

    Jana, Saumyadeep; Hovanski, Yuri; Pilli, Siva Prasad; Field, David P.; Yu, Hao; Pan, Tsung-Yu; Santella, M. L.

    2012-06-04T23:59:59.000Z

    Friction stir welding and ultrasonic welding techniques were applied to join automotive magnesium alloys to steel sheet. The effect of tooling and process parameters on the post-weld microstructure, texture and mechanical properties was investigated. Static and dynamic loading were utilized to investigate the joint strength of both cast and wrought magnesium alloys including their susceptibility and degradation under corrosive media. The conditions required to produce joint strengths in excess of 75% of the base metal strength were determined, and the effects of surface coatings, tooling and weld parameters on weld properties are presented.

  2. Iron and Steel Energy Intensities

    U.S. Energy Information Administration (EIA) Indexed Site

    If you are having trouble, call 202-586-8800 for help. Home > >Energy Users > Energy Efficiency Page > Iron and Steel Energy Intensities First Use of Energy Blue Bullet First Use...

  3. Great Lakes Steel -- PCI facility

    SciTech Connect (OSTI)

    Eichinger, F.T. [BMH Claudius Peters AG, Buxtehude (Germany); Dake, S.H.; Wagner, E.D.; Brown, G.S. [Raytheon Engineers and Constructors, Pittsburgh, PA (United States)

    1997-12-31T23:59:59.000Z

    This paper discusses the planning, design, and start-up of the 90 tph PCI facility for National Steel`s Great Lakes Steel Division in River Rouge, MI. This project is owned and operated by Edison Energy Services, and was implemented on a fast-track basis by Raytheon Engineers and Constructors, Babcock Material Handling, and Babcock and Wilcox. This paper presents important process issues, basic design criteria, an the challenges of engineering and building a state-of-the-art PCI facility in two existing plants. Pulverized coal is prepared at the River Rouge Power Plant of Detroit Edison, is pneumatically conveyed 6,000 feet to a storage silo at Great Lakes Steel, and is injected into three blast furnaces.

  4. Overlay welding irradiated stainless steel

    SciTech Connect (OSTI)

    Kanne, W.R.; Chandler, G.T.; Nelson, D.Z.; Franco-Ferreira, E.A.

    1993-08-01T23:59:59.000Z

    An overlay technique developed for welding irradiated stainless steel may be important for repair or modification of fusion reactor materials. Helium, present due to n,{alpha} reactions, is known to cause cracking using conventional welding methods. Stainless steel impregnated with 3 to 220 appm helium by decay of tritium was used to develop a welding process that could be used for repair. The result was a gas metal arc weld overlay technique with low-heat input and low-penetration into the helium-containing material. Extensive metallurgical and mechanical testing of this technique demonstrated substantial reduction of helium embrittlement damage. The overlay technique was applied to irradiated 304 stainless steel containing 10 appm helium. Surface cracking, present in conventional welds made on the same steel at lower helium concentrations, was eliminated. Underbead cracking, although greater than for tritium charged and aged material, was minimal compared to conventional welding methods.

  5. Toolbox Safety Talk Welding & Metal Work Safety

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Toolbox Safety Talk Welding & Metal Work Safety Environmental Health & Safety Facilities Safety or harmful emission giving metals. Welding Safety When welding outside of a designated welding booth, ensure injury. Avoid welding on materials such as galvanized or stainless steel in order to minimize toxic fume

  6. Corrosion of austenitic and ferritic-martensitic steels exposed to supercritical carbon dioxide

    SciTech Connect (OSTI)

    Tan, Lizhen [ORNL; Anderson, Mark [University of Wisconsin, Madison; Taylor, D [Bechtel Marine Propulsion Corporation; Allen, Todd R. [University of Wisconsin, Madison

    2011-01-01T23:59:59.000Z

    Supercritical carbon dioxide (S-CO{sub 2}) is a potential coolant for advanced nuclear reactors. The corrosion behavior of austenitic steels (alloys 800H and AL-6XN) and ferritic-martensitic (FM) steels (F91 and HCM12A) exposed to S-CO{sub 2} at 650 C and 20.7 MPa is presented in this work. Oxidation was identified as the primary corrosion phenomenon. Alloy 800H had oxidation resistance superior to AL-6XN. The FM steels were less corrosion resistant than the austenitic steels, which developed thick oxide scales that tended to exfoliate. Detailed microstructure characterization suggests the effect of alloying elements such as Al, Mo, Cr, and Ni on the oxidation of the steels.

  7. Applications and experiences with super duplex stainless steel in wet FGD scrubber systems

    SciTech Connect (OSTI)

    Francis, R.; Byrne, G.; Warburton, G.; Hebdon, S. [Weir Materials Ltd., Manchester (United Kingdom)

    1998-12-31T23:59:59.000Z

    The paper presents the properties of the author`s company`s proprietary super duplex stainless steel. Work is presented showing the development of a more realistic laboratory solution representing typical limestone slurries found in real flue gas desulfurization (FGD) systems. The importance of additions of metal ions such as Fe{sup 3+} and Mn{sup 2+} as well as partially oxidized sulfur species is demonstrated. Results are presented comparing the crevice corrosion resistance of super duplex stainless steel in these slurries with other commonly used wrought and cast stainless steels, for both simulated anthracite and lignite type slurries. Data from loop tests on the erosion resistance of a range of alloys in simulated FGD slurries is presented. The results clearly show the superior resistance of super duplex stainless steel to both crevice corrosion and erosion in FGD slurries. Finally the experiences in UK FGD systems with both cast and wrought super duplex stainless steel are presented.

  8. Welding tritium aged stainless steel

    SciTech Connect (OSTI)

    Kanne, W.R. Jr.

    1993-04-01T23:59:59.000Z

    Stainless steels exposed to tritium become unweldable by conventional methods due to He buildup within the metal matrix. With longer service lives expected for new weapon systems, and service life extensions of older systems, methods for welding/repair on tritium-exposed material will become important. Results are reported that indicate that both solid-state resistance welding and low-heat gas metal arc overlay welding are promising methods for repair or modification of tritium-aged stainless steel.

  9. Bond Strength Degradation for CFRP and Steel reinforcing Bars in Concrete at Elevated Temperature†

    E-Print Network [OSTI]

    Maluk, Cristian; Bisby, Luke; Terrasi, Giovanni; Green, Mark

    2011-03-01T23:59:59.000Z

    temperature is a complex phenomenon which is influenced by a number of interrelated factors, including the type of prestressing, degradation of the concrete, CFRP, and steel, differential thermal expansion, thermal gradients and stresses, release of moisture...

  10. Working Paper

    E-Print Network [OSTI]

    2010-07-16T23:59:59.000Z

    Jul 2, 2010 ... Working Paper. Branch and Bound Algorithms for ...... interest when evaluating the performance. First, each derived subproblem means usage†...

  11. 2012 ACCOMPLISHMENTS - TRITIUM AGING STUDIES ON STAINLESS STEELS

    SciTech Connect (OSTI)

    Morgan, M.

    2013-01-31T23:59:59.000Z

    This report summarizes the research and development accomplishments during FY12 for the tritium effects on materials program. The tritium effects on materials program is designed to measure the long-term effects of tritium and its radioactive decay product, helium-3, on the structural properties of forged stainless steels which are used as the materials of construction for tritium reservoirs. The FY12 R&D accomplishments include: (1) Fabricated and Thermally-Charged 150 Forged Stainless Steel Samples with Tritium for Future Aging Studies; (2) Developed an Experimental Plan for Measuring Cracking Thresholds of Tritium-Charged-and-Aged Steels in High Pressure Hydrogen Gas; (3) Calculated Sample Tritium Contents For Laboratory Inventory Requirements and Environmental Release Estimates; (4) Published report on ďCracking Thresholds and Fracture Toughness Properties of Tritium-Charged-and-Aged Stainless SteelsĒ; and, (5) Published report on ďThe Effects of Hydrogen, Tritium, and Heat Treatment on the Deformation and Fracture Toughness Properties of Stainless SteelsĒ. These accomplishments are highlighted here and references given to additional reports for more detailed information.

  12. Saturation in ``nonmagnetic'' stainless steel C. Weber and J. Fajansa)

    E-Print Network [OSTI]

    Fajans, Joel

    Saturation in ``nonmagnetic'' stainless steel C. Weber and J. Fajansa) Department of Physics July 1998 Scientific equipment often uses ``nonmagnetic'' stainless steel, relying on the steel's nonmagnetic behavior to leave external magnetic fields unaltered. However, stainless steel's permeability can

  13. A Comparison of Iron and Steel Production Energy Use and Energy Intensity in China and the U.S.

    SciTech Connect (OSTI)

    Hasanbeigi, Ali; Price, Lynn; Aden, Nathaniel; Chunxia, Zhang; Xiuping, Li; Fangqin, Shangguan

    2011-06-15T23:59:59.000Z

    Production of iron and steel is an energy-intensive manufacturing process. In 2006, the iron and steel industry accounted for 13.6% and 1.4% of primary energy consumption in China and the U.S., respectively (U.S. DOE/EIA, 2010a; Zhang et al., 2010). The energy efficiency of steel production has a direct impact on overall energy consumption and related carbon dioxide (CO2) emissions. The goal of this study is to develop a methodology for making an accurate comparison of the energy intensity (energy use per unit of steel produced) of steel production. The methodology is applied to the steel industry in China and the U.S. The methodology addresses issues related to boundary definitions, conversion factors, and indicators in order to develop a common framework for comparing steel industry energy use. This study uses a bottom-up, physical-based method to compare the energy intensity of China and U.S. crude steel production in 2006. This year was chosen in order to maximize the availability of comparable steel-sector data. However, data published in China and the U.S. are not always consistent in terms of analytical scope, conversion factors, and information on adoption of energy-saving technologies. This study is primarily based on published annual data from the China Iron & Steel Association and National Bureau of Statistics in China and the Energy Information Agency in the U.S. This report found that the energy intensity of steel production is lower in the United States than China primarily due to structural differences in the steel industry in these two countries. In order to understand the differences in energy intensity of steel production in both countries, this report identified key determinants of sector energy use in both countries. Five determinants analyzed in this report include: share of electric arc furnaces in total steel production, sector penetration of energy-efficiency technologies, scale of production equipment, fuel shares in the iron and steel industry, and final steel product mix in both countries. The share of lower energy intensity electric arc furnace production in each country was a key determinant of total steel sector energy efficiency. Overall steel sector structure, in terms of average plant vintage and production capacity, is also an important variable though data were not available to quantify this in a scenario. The methodology developed in this report, along with the accompanying quantitative and qualitative analyses, provides a foundation for comparative international assessment of steel sector energy intensity.

  14. STEEL STRUCTURES FOR BUILDING IN CHINA PROF. HE MINGXUAN

    E-Print Network [OSTI]

    Cambridge, University of

    STEEL STRUCTURES FOR BUILDING IN CHINA PROF. HE MINGXUAN VICE-PRESIDENT OF CHINA STEEL CONSTRUCTION SOCIETY CHIEF ENGINEER OF BAOSTEEL CONSTRUCTION CO., LTD JULY 6, 2012 LONDON #12;1. STEEL AND STEEL STRUCTURES IN CHINA 2. SOME PROJECTS OF STEEL STRUCTURES FOR HIGH- RISE BUILDINGS IN CHINA #12;STEEL

  15. European developments in the application of structural austenitic and duplex stainless steels

    SciTech Connect (OSTI)

    Cochrane, D.J. [Nickel Development Inst., Sidcup (United Kingdom)

    1995-12-31T23:59:59.000Z

    Stainless steel is increasingly being specified for structural applications. Principally, this is due to the aesthetic appeal of the material, no need for surface protection, durability, and the growing awareness, and use, of Life Cycle Cost analysis for assessing costs over the longer term, However, use of stainless steel in the U.K. offshore oil and gas platforms for fire and blast walls, has highlighted valuable properties of stainless steel that may be unfamiliar to structural designers. It is the purpose of this paper to demonstrate these properties. Additionally, new design guidance has become available in Europe as a result of a 4 year research program into the structural use of stainless steel. The ``Design Manual for Structural Stainless Steel`` was issued by Euro Inox and the Nickel Development Institute in 1994. This new manual will be outlined in this paper together with its influence on new European Building Standards and new European material standards for structural stainless steel. Currently in preparation, these include high strength grades with significantly higher strength than structural carbon steels. Finally, this paper will address the use of stainless steel for the reinforcement of concrete structures.

  16. STUDENT STEEL BRIDGE COMPETITION The mission of the Student Steel Bridge Competition (SSBC) is to supplement

    E-Print Network [OSTI]

    Duchowski, Andrew T.

    1 STUDENT STEEL BRIDGE COMPETITION 2012 RULES #12;2 MISSION The mission of the Student Steel Bridge in a steel structure that meets client specifications and optimizes performance and economy. The SSBC are stimulated to innovate, practice professionalism, and use structural steel efficiently. WELCOME ASCE and AISC

  17. Countries Gasoline Prices Including Taxes

    Gasoline and Diesel Fuel Update (EIA)

    Selected Countries (U.S. dollars per gallon, including taxes) Date Belgium France Germany Italy Netherlands UK US 51115 6.15 6.08 6.28 6.83 6.96 6.75 3.06 5415 6.14 6.06...

  18. Sponsorship includes: Agriculture in the

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    Sponsorship includes: · Agriculture in the Classroom · Douglas County Farm Bureau · Gifford Farm · University of Nebraska Agricultural Research and Development Center · University of Nebraska- Lincoln Awareness Coalition is to help youth, primarily from urban communities, become aware of agriculture

  19. Feasibility analysis of recycling radioactive scrap steel

    SciTech Connect (OSTI)

    Nichols, F. [Manufacturing Sciences Corp., Woodland, WA (United States); Balhiser, B. [MSE, Inc., Butte, MT (United States); Cignetti, N. [Cignetti Associates, North Canton, OH (United States)] [and others

    1995-09-01T23:59:59.000Z

    The purpose of this study is to: (1) establish a conceptual design that integrates commercial steel mill technology with radioactive scrap metal (RSM) processing to produce carbon and stainless steel sheet and plate at a grade suitable for fabricating into radioactive waste containers; (2) determine the economic feasibility of building a micro-mill in the Western US to process 30,000 tons of RSM per year from both DOE and the nuclear utilities; and (3) provide recommendations for implementation. For purposes of defining the project, it is divided into phases: economic feasibility and conceptual design; preliminary design; detail design; construction; and operation. This study comprises the bulk of Phase 1. It is divided into four sections. Section 1 provides the reader with a complete overview extracting pertinent data, recommendations and conclusions from the remainder of the report. Section 2 defines the variables that impact the design requirements. These data form the baseline to create a preliminary conceptual design that is technically sound, economically viable, and capitalizes on economies of scale. Priorities governing the design activities are: (1) minimizing worker exposure to radionuclide hazards, (2) maximizing worker safety, (3) minimizing environmental contamination, (4) minimizing secondary wastes, and (5) establishing engineering controls to insure that the plant will be granted a license in the state selected for operation. Section 3 provides details of the preliminary conceptual design that was selected. The cost of project construction is estimated and the personnel needed to support the steel-making operation and radiological and environmental control are identified. Section 4 identifies the operational costs and supports the economic feasibility analysis. A detailed discussion of the resulting conclusions and recommendations is included in this section.

  20. Model for corrosion of carbon steel in lithium bromide absorption refrigeration systems

    SciTech Connect (OSTI)

    Anderko, A.; Young, R.D.

    2000-05-01T23:59:59.000Z

    A comprehensive model has been developed for the computation of corrosion rates of carbon steels in the presence of lithium bromide (LiBr)-based brines that are used as working fluids for absorption refrigeration cycles. The model combines a thermophysical module that provides realistic speciation of aqueous systems with an electrochemical module for partial cathodic and anodic processes on the metal surface. The electrochemical module includes the absorption of halides, which strongly influences the corrosion process. Also, the model takes into account the formation of passive films and their interactions with solution species. The model has been verified by comparing calculated corrosion rates with laboratory data for carbon steels in LiBr solutions. Good agreement between calculated and experimental corrosion rates has been obtained. In particular, the model is capable of reproducing effects of pH-adjusting components and selected inhibitors on the rates of general corrosion. The model has been incorporated into a program that makes it possible to analyze effects of various conditions such as temperature, pressure, solution composition, or flow velocity on corrosion rates.

  1. Microstructural characteristics and corrosion behavior of a super duplex stainless steel casting

    SciTech Connect (OSTI)

    Martins, Marcelo [Industrial Manager of SULZER BRASIL S/A and Professor of the Sao Paulo Salesian University Center (UNISAL), Americana Division, SP (Brazil)], E-mail: marcelo.martins@sulzer.com; Casteletti, Luiz Carlos [Department of Materials, Aeronautical and Automotive Engineering, Sao Carlos School of Engineering, University of Sao Paulo (USP), Sao Carlos, SP Brazil (Brazil)

    2009-02-15T23:59:59.000Z

    The machining of super duplex stainless steel castings is usually complicated by the difficulty involved in maintaining the dimensional tolerances required for given applications. Internal stresses originating from the solidification process and from subsequent heat treatments reach levels that exceed the material's yield strength, promoting plastic strain. Stress relief heat treatments at 520 deg. C for 2 h are an interesting option to solve this problem, but because these materials present a thermodynamically metastable condition, a few precautions should be taken. The main objective of this work was to demonstrate that, after solution annealing at 1130 deg. C and water quenching, stress relief at 520 deg. C for 2 h did not alter the duplex microstructure or impair the pitting corrosion resistance of ASTM A890/A890M Grade 6A steel. This finding was confirmed by microstructural characterization techniques, including light optical and scanning electron microscopy, and X-ray diffraction. Corrosion potential measurements in synthetic sea water containing 20,000 ppm of chloride ions were also conducted at three temperatures: 5 deg. C, 25 deg. C and 60 deg. C.

  2. Multi analysis of the effect of grain size on the dynamic behavior of microalloyed steels

    SciTech Connect (OSTI)

    Zurek, Anna K [Los Alamos National Laboratory; Muszka, K [AGH; Majta, J [AGH; Wielgus, M [AGH

    2009-01-01T23:59:59.000Z

    This study presents some aspects of multiscale analysis and modeling of variously structured materials behavior in quasi-static and dynamic loading conditions. The investigation was performed for two different materials of common application: high strength microalloyed steel (HSLA, X65), and as a reference more ductile material, Ti-IF steel. The MaxStrain technique and one pass hot rolling processes were used to produce ultrafine-grained and coarse-grained materials. The efficiency and inhomogeneity of microstructure refinement were examined because of their important role in work hardening and the initiation and growth of fracture under tensile stresses. It is shown that the combination of microstructures characterized by their different features contributes to the dynamic behavior and final properties of the product. In particular, the role of solute segregation at grain boundaries as well as precipitation of carbonitrides in coarse and ultrafine-grained structures is assessed. The predicted mechanical response of ultrafine-grained structures, using modified KHL model is in reasonable agreement with the experiments. This is a result of proper representation of the role of dislocation structure and the grain boundary and their multiscale effects included in this model.

  3. Working Draft

    Office of Environmental Management (EM)

    gases-including nitrogen, carbon dioxide, hydrogen sulfide, methane, ethane, and propane-and butanes and other volatile liquids) composition, and flash gas composition....

  4. Recovery Act: Waste Energy Project at AK Steel Corporation Middletown

    SciTech Connect (OSTI)

    Joyce, Jeffrey

    2012-06-30T23:59:59.000Z

    In 2008, Air Products and Chemicals, Inc. (ďAir ProductsĒ) began development of a project to beneficially utilize waste blast furnace ďtopgasĒ generated in the course of the iron-making process at AK Steel Corporationís Middletown, Ohio works. In early 2010, Air Products was awarded DOE Assistance Agreement DE-EE002736 to further develop and build the combined-cycle power generation facility. In June 2012, Air Products and AK Steel Corporation terminated work when it was determined that the project would not be economically viable at that time nor in the foreseeable future. The project would have achieved the FOA-0000044 Statement of Project Objectives by demonstrating, at a commercial scale, the technology to capture, treat, and convert blast furnace topgas into electric power and thermal energy.

  5. Reliability-based condition assessment of steel containment and liners

    SciTech Connect (OSTI)

    Ellingwood, B.; Bhattacharya, B.; Zheng, R. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Civil Engineering

    1996-11-01T23:59:59.000Z

    Steel containments and liners in nuclear power plants may be exposed to aggressive environments that may cause their strength and stiffness to decrease during the plant service life. Among the factors recognized as having the potential to cause structural deterioration are uniform, pitting or crevice corrosion; fatigue, including crack initiation and propagation to fracture; elevated temperature; and irradiation. The evaluation of steel containments and liners for continued service must provide assurance that they are able to withstand future extreme loads during the service period with a level of reliability that is sufficient for public safety. Rational methodologies to provide such assurances can be developed using modern structural reliability analysis principles that take uncertainties in loading, strength, and degradation resulting from environmental factors into account. The research described in this report is in support of the Steel Containments and Liners Program being conducted for the US Nuclear Regulatory Commission by the Oak Ridge National Laboratory. The research demonstrates the feasibility of using reliability analysis as a tool for performing condition assessments and service life predictions of steel containments and liners. Mathematical models that describe time-dependent changes in steel due to aggressive environmental factors are identified, and statistical data supporting the use of these models in time-dependent reliability analysis are summarized. The analysis of steel containment fragility is described, and simple illustrations of the impact on reliability of structural degradation are provided. The role of nondestructive evaluation in time-dependent reliability analysis, both in terms of defect detection and sizing, is examined. A Markov model provides a tool for accounting for time-dependent changes in damage condition of a structural component or system. 151 refs.

  6. Measuring the Magnetic Flux Density in the CMS Steel Yoke

    E-Print Network [OSTI]

    V. I. Klyukhin; N. Amapane; A. Ball; B. Curť; A. Gaddi; H. Gerwig; A. Hervť; M. Mulders; R. Loveless

    2012-12-06T23:59:59.000Z

    The Compact Muon Solenoid (CMS) is a general purpose detector, designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive features include a 4 T superconducting solenoid with 6-m-diameter by 12.5-m-length free bore, enclosed inside a 10000-ton return yoke made of construction steel. The return yoke consists of five dodecagonal three-layered barrel wheels and four end-cap disks at each end comprised of steel blocks up to 620 mm thick, which serve as the absorber plates of the muon detection system. Accurate characterization of the magnetic field everywhere in the CMS detector is required. To measure the field in and around the steel, a system of 22 flux-loops and 82 3-D Hall sensors is installed on the return yoke blocks. Fast discharges of the solenoid (190 s time-constant) made during the CMS magnet surface commissioning test at the solenoid central fields of 2.64, 3.16, 3.68 and 4.01 T were used to induce voltages in the flux-loops. The voltages are measured on-line and integrated off-line to obtain the magnetic flux in the steel yoke close to the muon chambers at full excitations of the solenoid. The 3-D Hall sensors installed on the steel-air interfaces give supplementary information on the components of magnetic field and permit to estimate the remanent field in steel to be added to the magnetic flux density obtained by the voltages integration. A TOSCA 3-D model of the CMS magnet is developed to describe the magnetic field everywhere outside the tracking volume measured with the field-mapping machine. The results of the measurements and calculations are presented, compared and discussed.

  7. STEEL: RECENT PUBLICATIONS HAMPSON, G. J., STEEL, R. J., BURGESS,

    E-Print Network [OSTI]

    Yang, Zong-Liang

    , eds., Atlas of Deepwater Outcrops, American Assoc. Petrol. Geol. Studies in Geology 56 YOSHIDA, S of Deepwater Outcrops, American Assoc. Petrol. Geol. Studies in Geology 56 MCLAURIN, B. & STEEL, R. J. (2006 on an Eocene shelf margin, Central Basin, Spitsbergen. Bull. Am. Assoc. Petrol. Geol. 90, 1451-72. #12;

  8. Cleavage-like fracture of austenite in duplex stainless steel

    SciTech Connect (OSTI)

    Foct, J. (Univ. de Lille (France)); Akdut, N. (Inst. fuer Metallkunde und Metallphysik, Aachen (Germany))

    1993-07-15T23:59:59.000Z

    Nitrogen alloying of stainless steel has proved to be extremely successful for mechanical and corrosion properties. For duplex stainless steel, which appears to be very promising for industrial application, the beneficial influence of nitrogen has also been established for contents of about 0.2 wt-%. Duplex structures are found in many alloys and systems as, for instance, in Cu- and Ti-alloys and in stainless steel. They all are characterized by a mixture of similar amounts of two phases whose plastic behaviors are different from one another. In the case of duplex stainless steel the matrix phase is usually ferrite. However, by increasing the nitrogen content and therefore the stability of austenite, it is shown in the present work that austenite can also become the matrix. Because the partition coefficient of nitrogen between [alpha] and [gamma] is large, it is also possible to harden the [gamma] phase more than [alpha]. The question this paper attempts to answer is whether or not nitrogen alloying can exchange the roles of the [alpha] and the [gamma] phases with respect to mechanical properties.

  9. Cast CF8C-Plus Stainless Steel for Turbocharger Applications

    SciTech Connect (OSTI)

    Maziasz, P.J.; Shyam, A.; Evans, N.D.; Pattabiraman, K. (Honeywell Turbo Technologies

    2010-06-30T23:59:59.000Z

    The purpose of this Cooperative Research and Development Agreement (CRADA) project is to provide the critical test data needed to qualify CF8C-Plus cast stainless steel for commercial production and use for turbocharger housings with upgraded performance and durability relative to standard commercial cast irons or stainless steels. The turbocharger technologies include, but are not limited to, heavy-duty highway diesel engines, and passenger vehicle diesel and gasoline engines. This CRADA provides additional critical high-temperature mechanical properties testing and data analysis needed to quality the new CF8C-Plus steels for turbocharger housing applications.

  10. Workshop High Performance Steels 11-12 June 2009 Thursday 11th

    E-Print Network [OSTI]

    Cambridge, University of

    FREng, FRS, FNAE Tata Steel Professor of Metallurgy Cambridge University http://www.msm.cam in mechanical metallurgy, R&D, Sandvik Materials Technology, PhD, Docent Work: material research (responsible processing Lars NylŲf lars.nylof@sandvik.com Title: Senior research engineer in physical metallurgy Work

  11. Superplastic deformation in two microduplex stainless steels

    SciTech Connect (OSTI)

    Lesuer, D.R.; Nieh, T.G.; Syn, C.K. [Lawrence Livermore National Lab., CA (United States); Taleff, E.M. [Texas Univ., Austin, TX (United States)

    1996-09-01T23:59:59.000Z

    The deformation behavior and mechanisms of superplastic flow in two microduplex stainless steels (SuperDux64 and Nitronic 19D) were studied at {similar_to}0.7T{sub m}. The two steels differed in initial grain size by a factor of 3. Both steels exhibited solute-drag-controlled grain boundary sliding in a high temperature {gamma}+{delta} phase field. In a lower temperature {gamma}+{sigma} phase field, the fine-grained steel ({bar L}=5{mu}m) exhibited climb-controlled grain boundary sliding and the coarser- grained steel ({bar L}=15{mu}m) exhibited solute-drag-controlled slip creep.

  12. 60 Years of duplex stainless steel applications

    SciTech Connect (OSTI)

    Olsson, J.; Liljas, M. [Avesta Sheffield AB, Avesta (Sweden)

    1994-12-31T23:59:59.000Z

    In this paper the history of wrought duplex stainless steel development and applications is described. Ferritic-austenitic stainless steels were introduced only a few decades after stainless steels were developed. The paper gives details from the first duplex stainless steels in the 1930`s to the super duplex stainless steel development during the 1980`s. During the years much effort has been devoted to production and welding metallurgy as well as corrosion research of the duplex stainless steels. Therefore, duplex stainless steels are to-day established in a wide product range. Numerous important applications are exemplified. In most cases the selection of a duplex steel has been a result of the combination high strength excellent corrosion resistance. In the pulp and paper industry the most interesting use is as vessel material in digesters. For chemical process industry, the duplex steels are currently used in heat exchangers. The largest application of duplex steels exists in the oil and gas/offshore industry. Hundreds of kms of pipelines are installed and are still being installed. An increased use of duplex steels is foreseen in areas where the strength is of prime importance.

  13. Lessons Learned at the Nevada National Security Site Implementing the EFCOG Activity-level Work Planning and Control Guide

    Broader source: Energy.gov [DOE]

    Slide Presentation by Steele Coddington, Work Planning Manager, National Security Technologies, Nevada National Security Site. Lessons Learned Implementing Work Planning & Control. 6 Step Process for improving WP&C.

  14. Heat treated 9 Cr-1 Mo steel material for high temperature application

    DOE Patents [OSTI]

    Jablonski, Paul D.; Alman, David; Dogan, Omer; Holcomb, Gordon; Cowen, Christopher

    2012-08-21T23:59:59.000Z

    The invention relates to a composition and heat treatment for a high-temperature, titanium alloyed, 9 Cr-1 Mo steel exhibiting improved creep strength and oxidation resistance at service temperatures up to 650.degree. C. The novel combination of composition and heat treatment produces a heat treated material containing both large primary titanium carbides and small secondary titanium carbides. The primary titanium carbides contribute to creep strength while the secondary titanium carbides act to maintain a higher level of chromium in the finished steel for increased oxidation resistance, and strengthen the steel by impeding the movement of dislocations through the crystal structure. The heat treated material provides improved performance at comparable cost to commonly used high-temperature steels such as ASTM P91 and ASTM P92, and requires heat treatment consisting solely of austenization, rapid cooling, tempering, and final cooling, avoiding the need for any hot-working in the austenite temperature range.

  15. Working Copy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires may contribute more to &83 3.3At DOE Working At

  16. Working Copy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires may contribute more to &83 3.3At DOE Working

  17. Work Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat is abigpresented in theWork & Life

  18. Sulfide stress cracking resistance of superduplex stainless steels in oil and gas field simulated environments

    SciTech Connect (OSTI)

    Scoppio, L.; Barteri, M.; Leali, C. [Centro Sviluppo Materiali S.p.A., Rome (Italy); [Dalmine S.p.A., Bergamo (Italy)

    1998-12-31T23:59:59.000Z

    The need to improve stress corrosion cracking resistance in H{sub 2}S/CO{sub 2}/Cl{sup {minus}}, at reasonably low prices and good mechanical properties, has led in the last decade to develop a plethora of superduplex stainless steels for sour oilfield environments application. The outstanding performance of superduplex stainless steels to SSC corrosion is diminished with the increase of chloride concentration and H{sub 2}S partial pressure. In this work the performance of superduplex steel in very harsh oilfield simulated environments (H{sub 2}S up to 20 psi (155 kPa), NaCl 25% and 80 C) were verified, Experimental work was carried out on two grades of superduplex steel seamless tubes, UNS S32760 (80ksi, 560 MPa), as the most commonly used, and UNS S39277, characterized by high strength in the annealed state (90 ksi, 630 MPa). The resistance to sulfide stress cracking (SSC) of duplex and superduplex stainless steels was evaluated in H{sub 2}S/CO{sub 2}/Cl{sup {minus}} bottom hole simulated environments. SSC threshold was determined by means of C-ring (constant strain) testing method. The results were utilized to draw engineering diagrams of superduplex UNS S39277 and UNS S32760. Duplex 22%Cr steel was considered as reference material. SSC resistance of duplex steel was strictly correlated to the acidity of the solution. Critical H{sub 2}S partial pressure in high chloride environments with addition of a buffering agent such as NaHCO{sub 3} is shifted towards higher values. Superduplex steel represents a suitable candidate for the use in the deep high pressure wells with H{sub 2}S partial pressure up to 5 psi (35kPa) and 20% NaCl.

  19. Attack polish for nickel-base alloys and stainless steels

    DOE Patents [OSTI]

    Not Available

    1980-05-28T23:59:59.000Z

    A chemical attack polish and polishing procedure for use on metal surfaces such as nickel base alloys and stainless steels is described. The chemical attack polich comprises FeNO/sub 3/, concentrated CH/sub 3/COOH, concentrated H/sub 2/SO/sub 4/ and H/sub 2/O. The polishing procedure includes saturating a polishing cloth with the chemical attack polish and submicron abrasive particles and buffing the metal surface.

  20. Method of polishing nickel-base alloys and stainless steels

    DOE Patents [OSTI]

    Steeves, Arthur F. (Schenectady, NY); Buono, Donald P. (Schenectady, NY)

    1981-01-01T23:59:59.000Z

    A chemical attack polish and polishing procedure for use on metal surfaces such as nickel base alloys and stainless steels. The chemical attack polish comprises Fe(NO.sub.3).sub.3, concentrated CH.sub.3 COOH, concentrated H.sub.2 SO.sub.4 and H.sub.2 O. The polishing procedure includes saturating a polishing cloth with the chemical attack polish and submicron abrasive particles and buffing the metal surface.

  1. Attack polish for nickel-base alloys and stainless steels

    DOE Patents [OSTI]

    Steeves, Arthur F. (Schenectady, NY); Buono, Donald P. (Schenectady, NY)

    1983-01-01T23:59:59.000Z

    A chemical attack polish and polishing procedure for use on metal surfaces such as nickel base alloys and stainless steels. The chemical attack polish comprises Fe(NO.sub.3).sub.3, concentrated CH.sub.3 COOH, concentrated H.sub.2 SO.sub.4 and H.sub.2 O. The polishing procedure includes saturating a polishing cloth with the chemical attack polish and submicron abrasive particles and buffing the metal surface.

  2. Wrought Cr--W--V bainitic/ferritic steel compositions

    DOE Patents [OSTI]

    Klueh, Ronald L.; Maziasz, Philip J.; Sikka, Vinod Kumar; Santella, Michael L.; Babu, Sudarsanam Suresh; Jawad, Maan H.

    2006-07-11T23:59:59.000Z

    A high-strength, high-toughness steel alloy includes, generally, about 2.5% to about 4% chromium, about 1.5% to about 3.5% tungsten, about 0.1% to about 0.5% vanadium, and about 0.05% to 0.25% carbon with the balance iron, wherein the percentages are by total weight of the composition, wherein the alloy is heated to an austenitizing temperature and then cooled to produce an austenite transformation product.

  3. Fermilab at Work | Work Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb. 13, 2013 NAME:Job Opportunities JoinWork Resources

  4. MICROSTRUCTURE AND MECHANICAL PROPERTY PERFORMANCE OF COMMERCIAL GRADE API PIPELINE STEELS IN HIGH PRESSURE GASEOUS HYDROGEN

    SciTech Connect (OSTI)

    Stalheim, Mr. Douglas [DGS Metallurgical Solutions Inc; Boggess, Todd [Secat; San Marchi, Chris [Sandia National Laboratories (SNL); Jansto, Steven [Reference Metals Company; Somerday, Dr. B [Sandia National Laboratories (SNL); Muralidharan, Govindarajan [ORNL; Sofronis, Prof. Petros [University of Illinois

    2010-01-01T23:59:59.000Z

    The continued growth of the world s developing countries has placed an ever increasing demand on traditional fossil fuel energy sources. This development has lead to increasing research and development of alternative energy sources. Hydrogen gas is one of the potential alternative energy sources under development. Currently the most economical method of transporting large quantities of hydrogen gas is through steel pipelines. It is well known that hydrogen embrittlement has the potential to degrade steel s mechanical properties when hydrogen migrates into the steel matrix. Consequently, the current pipeline infrastructure used in hydrogen transport is typically operated in a conservative fashion. This operational practice is not conducive to economical movement of significant volumes of hydrogen gas as an alternative to fossil fuels. The degradation of the mechanical properties of steels in hydrogen service is known to depend on the microstructure of the steel. Understanding the levels of mechanical property degradation of a given microstructure when exposed to hydrogen gas under pressure can be used to evaluate the suitability of the existing pipeline infrastructure for hydrogen service and guide alloy and microstructure design for new hydrogen pipeline infrastructure. To this end, the 2 Copyright 2010 by ASME microstructures of relevant steels and their mechanical properties in relevant gaseous hydrogen environments must be fully characterized to establish suitability for transporting hydrogen. A project to evaluate four commercially available pipeline steels alloy/microstructure performance in the presences of gaseous hydrogen has been funded by the US Department of Energy along with the private sector. The microstructures of four pipeline steels were characterized and then tensile testing was conducted in gaseous hydrogen and helium at pressures of 800, 1600 and 3000 psi. Based on measurements of reduction of area, two of the four steels that performed the best across the pressure range were selected for evaluation of fracture and fatigue performance in gaseous hydrogen at 800 and 3000 psi. This paper will describe the work performed on four commercially available pipeline steels in the presence of gaseous hydrogen at pressures relevant for transport in pipelines. Microstructures and mechanical property performances will be compared. In addition, recommendations for future work related to gaining a better understanding of steel pipeline performance in hydrogen service will be discussed.

  5. Characterization of liquefied natural gas tanker steel from cryogenic to fire temperatures.

    SciTech Connect (OSTI)

    Dempsey, J. Franklin (Sandia National Laboratories, Albuquerque, NM); Wellman, Gerald William (Sandia National Laboratories, Albuquerque, NM); Antoun, Bonnie R.; Connelly, Kevin; Kalan, Robert J. (Sandia National Laboratories, Albuquerque, NM)

    2010-03-01T23:59:59.000Z

    The increased demand for Liquefied Natural Gas (LNG) as a fuel source in the U.S. has prompted a study to improve our capability to predict cascading damage to LNG tankers from cryogenic spills and subsequent fire. To support this large modeling and simulation effort, a suite of experiments were conducted on two tanker steels, ABS Grade A steel and ABS Grade EH steel. A thorough and complete understanding of the mechanical behavior of the tanker steels was developed that was heretofore unavailable for the span of temperatures of interest encompassing cryogenic to fire temperatures. This was accomplished by conducting several types of experiments, including tension, notched tension and Charpy impact tests at fourteen temperatures over the range of -191 C to 800 C. Several custom fixtures and special techniques were developed for testing at the various temperatures. The experimental techniques developed and the resulting data will be presented, along with a complete description of the material behavior over the temperature span.

  6. Duplex stainless steel: From specialty to commodity

    SciTech Connect (OSTI)

    Quick, J.M.A.; Geudeke, M. [Shell Internationale Petroleum Mij. B.V., The Hague (Netherlands)

    1994-12-31T23:59:59.000Z

    Important applications of duplex stainless steel in the oil and chemical industry date from the seventies. Duplex stainless steel is attractive because it combines high mechanical strength, about the same as for carbon steel, and good corrosion resistance particularly against chloride stress corrosion cracking up to about 100 C. This paper highlights a number of examples that are typical for the potential as well as the problems associated with this type of material.

  7. Natural and synthetic rubber coatings for steel: Properties and compositions. (Latest citations from World Surface Coatings abstracts). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-04-01T23:59:59.000Z

    The bibliography contains citations concerning the application of compositions containing natural and synthetic rubbers to steel. Polyurethane elastomers, chlorinated rubber coatings, and rubber containing acrylic adhesives are among the coatings discussed. Studies of the degradation of rubber coatings applied to steel are included. Bonding properties, adhesion strength, weathering, and anticorrosive properties are discussed. Additional information on anticorrosive coatings may be found in other bibliographies. (Contains a minimum of 180 citations and includes a subject term index and title list.)

  8. Natural and synthetic rubber coatings for steel: Properties and compositions. (Latest citations from World Surface Coatings abstracts). Published Search

    SciTech Connect (OSTI)

    NONE

    1995-07-01T23:59:59.000Z

    The bibliography contains citations concerning the development and fabrication of natural and synthetic rubbers for use in coatings on steel. Coating materials include polyurethane elastomers, chlorinated rubber, and rubber-containing acrylic adhesives. References to bonding properties, mechanical strength, steel-wire reinforced rubbers, anticorrosion, and weather-resistance are covered. (Contains 50-250 citations and includes a subject term index and title list.)

  9. Natural and synthetic rubber coatings for steel: Properties and compositions. (Latest citations from World Surface Coatings Abstracts). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-03-01T23:59:59.000Z

    The bibliography contains citations concerning the application of compositions containing natural and synthetic rubbers to steel. Polyurethane elastomers, chlorinated rubber coatings, and rubber containing acrylic adhesives are among the coatings discussed. Studies of the degradation of rubber coatings applied to steel are included. Bonding properties, adhesion strength, weathering, and anticorrosive properties are discussed. Additional information on anticorrosive coatings may be found in other bibliographies. (Contains a minimum of 147 citations and includes a subject term index and title list.)

  10. Phase Transformations in Cast Duplex Stainless Steels

    SciTech Connect (OSTI)

    Yoon-Jun Kim

    2004-12-19T23:59:59.000Z

    Duplex stainless steels (DSS) constitute both ferrite and austenite as a matrix. Such a microstructure confers a high corrosion resistance with favorable mechanical properties. However, intermetallic phases such as {sigma} and {chi} can also form during casting or high-temperature processing and can degrade the properties of the DSS. This research was initiated to develop time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams of two types of cast duplex stainless steels, CD3MN (Fe-22Cr-5Ni-Mo-N) and CD3MWCuN (Fe-25Cr-7Ni-Mo-W-Cu-N), in order to understand the time and temperature ranges for intermetallic phase formation. The alloys were heat treated isothermally or under controlled cooling conditions and then characterized using conventional metallographic methods that included tint etching, and also using electron microscopy (SEM, TEM) and wavelength dispersive spectroscopy (WDS). The kinetics of intermetallic-phase ({sigma} + {chi}) formation were analyzed using the Johnson-Mehl-Avrami (MA) equation in the case of isothermal transformations and a modified form of this equation in the case of continuous cooling transformations. The rate of intermetallic-phase formation was found to be much faster in CD3MWCuN than CD3MN due mainly to differences in the major alloying contents such as Cr, Ni and Mo. To examine in more detail the effects of these elements of the phase stabilities; a series of eight steel castings was designed with the Cr, Ni and Mo contents systematically varied with respect to the nominal composition of CD3MN. The effects of varying the contents of alloying additions on the formation of intermetallic phases were also studied computationally using the commercial thermodynamic software package, Thermo-Calc. In general, {sigma} was stabilized with increasing Cr addition and {chi} by increasing Mo addition. However, a delicate balance among Ni and other minor elements such as N and Si also exists. Phase equilibria in DSS can be affected by local composition fluctuations in the cast alloy. This may cause discrepancy between thermodynamic prediction and experimental observation.

  11. Improving the toughness of ultrahigh strength steel

    E-Print Network [OSTI]

    Soto, Koji

    2002-01-01T23:59:59.000Z

    of the low-alloy steels used in aerospace applications. Thisalloys of each category and their compositions are shown in Table 1.1 with their Aerospace

  12. MICROSTRUCTURE AND PROPERTIES OF DUAL PHASE STEELS CONTAINING FINE PRECIPITATES

    E-Print Network [OSTI]

    Gau, J.S.

    2014-01-01T23:59:59.000Z

    and Properties of Dual-Phase Steels, R. A. Kot and J. W.of Niobium Microalloyed Dual- Phase Steel, MetallurgicalAND PROPERTIES OF DUAL PHASE STEELS CONTAINING FINE

  13. FERRITE STRUCTURE AND MECHANICAL PROPERTIES OF LOW ALLOY DUPLEX STEELS

    E-Print Network [OSTI]

    Hoel, R.H.

    2013-01-01T23:59:59.000Z

    and Properties of Dual-Phase Steels, R. A. Kot and J. W.Formable HSLA and Dual Phase Steels, A. T. Davenport, ed. ,Formable HSLA and Dual Phase Steels, A. T. Davenport, ed. ,

  14. Mag-Foot: a steel bridge inspection robot

    E-Print Network [OSTI]

    Asada, Harry

    A legged robot that moves across a steel structure is developed for steel bridge inspection. Powerful permanent magnets imbedded in each foot allow the robot to hang from a steel ceiling powerlessly. Although the magnets ...

  15. Blast damage mitigation of steel structures from near- contact charges

    E-Print Network [OSTI]

    Wolfson, Janet Crumrine

    2008-01-01T23:59:59.000Z

    Depth 6.5 in. 6.5 in. 3 in. .625 in. 1.5 in. Material SteelSteelAluminum Steel Polyurethane Weight 472 lb 472 lb 73 lb 45 lb

  16. PROTON INDUCED SWELLING IN TYPE 316 STAINLESS STEEL

    E-Print Network [OSTI]

    Srivastava, A.K.

    2010-01-01T23:59:59.000Z

    an Austenitic Stainless Steel, USAEC Report ORNL-4580, Oakin Austenitic Stainless Steel, Ref. 5, p. 142. D. I. R.Irradiated 304 Stainless Steel, Ref. 5, p. 499. Table 1.

  17. CRAD, Nuclear Facility Construction - Structural Steel, May 29...

    Broader source: Energy.gov (indexed) [DOE]

    Steel, May 29, 2009 CRAD, Nuclear Facility Construction - Structural Steel, May 29, 2009 May 29, 2009 Nuclear Facility Construction - Structural Steel (HSS CRAD 64-16, Rev. 0) This...

  18. Overview: STEEL Auto/Steel Partnership | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartmentOutreachDepartment ofProgram |Department ofAuto/Steel

  19. ITP Steel: Steel Industry Energy Bandwidth Study October 2004

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),Energy Petroleum Technology Vision 2020 ITPandSteel Industry

  20. ITP Steel: Steel Industry Marginal Opportunity Study September 2005 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),Energy Petroleum Technology Vision 2020 ITPandSteel

  1. ITP Steel: Theoretical Minimum Energies to Produce Steel for Selected

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),Energy Petroleum Technology Vision 2020 ITPandSteelConditions,

  2. annealed stainless steels: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: of stainless steel container materials is a potential problem for long-term radioactive waste storage-to-failure of relevant stainless steels in the annealed...

  3. BACKGROUND GLOBAL STEEL OVERCAPACITY and OIL COUNTRY TUBULAR...

    Broader source: Energy.gov (indexed) [DOE]

    surging-steel-imports Strong trade enforcement is especially critical in the market for oil country tubular goods (OCTG), the pipe and steel products used for energy exploration....

  4. advanced bar steels: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This thesis is devoted to the numerical investigation of mechanical behavior of Dual phase (DP) steels. Such grade of advanced high strength steels (AHSS) is favorable to the...

  5. Friction Stir Spot Welding of Advanced High Strength Steels II...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steels II Friction Stir Spot Welding of Advanced High Strength Steels II 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer...

  6. Development of Steel Fastener Nano-Ceramic Coatings for Corrosion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steel Fastener Nano-Ceramic Coatings for Corrosion Protection of Magnesium Parts (AMD-704) Development of Steel Fastener Nano-Ceramic Coatings for Corrosion Protection of Magnesium...

  7. Climate VISION: Private Sector Initiatives: Iron and Steel: GHG...

    Office of Scientific and Technical Information (OSTI)

    GHG Inventory Protocols Principles for a Steel Industry Methodology for Reporting Carbon-Related Energy Sources and Raw Materials (PDF 48 KB) Download Acrobat Reader Steel Industry...

  8. Monitoring of Fracture Cri0cal Steel Bridges

    E-Print Network [OSTI]

    Minnesota, University of

    #12;Monitoring of Fracture Cri0cal Steel Bridges: Acous0c Emission Sensors system on other fracture cri0cal steel bridges #12;Project Impact #12;Thank

  9. alloy tool steel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of weldments of a high strength low alloy(HSLA) steel in a simulated seawater environment. This steel, designated HSLA80, was developed by the United ... Needham, William...

  10. Aluminium Electroplating on Steel from a Fused Bromide Electrolyte

    SciTech Connect (OSTI)

    Prabhat Tripathy; Laura Wurth; Eric Dufek; Toni Y. Gutknecht; Natalie Gese; Paula Hahn; Steven Frank; Guy Fredrickson; J Stephen Herring

    2014-08-01T23:59:59.000Z

    A quaternary bromide bath (LiBr-KBr-CsBr-AlBr3) was used to electro-coat aluminium on steel substrates. The electrolyte was prepared by the addition of AlBr3 into the eutectic LiBr-KBr-CsBr melt. A smooth, thick, adherent and shiny aluminium coating could be obtained with 80 wt.% AlBr3 in the ternary melt. The SEM photographs of the coated surfaces suggest the formation of thick and dense coatings with good aluminium coverage. Both salt immersion and open circuit potential measurement suggest that the coatings did display good corrosion-resistance behavior. Annealing of the coated surfaces, prior to corrosion tests, suggested the robustness of the metallic aluminium coating in preventing the corrosion of the steel surfaces. Studies also indicated that the quaternary bromide plating bath can potentially provide a better aluminium coating on both ferrous and non-ferrous metals, including complex surfaces/geometries.

  11. STAINLESS STEEL INTERACTIONS WITH SALT CONTAINING PLUTONIUM OXIDES

    SciTech Connect (OSTI)

    Nelson, Z.; Chandler, G.; Dunn, K.; Stefek, T.; Summer, M.

    2010-02-01T23:59:59.000Z

    Salt containing plutonium oxide materials are treated, packaged and stored within nested, stainless steel containers based on requirements established in the DOE 3013 Standard. The moisture limit for the stored materials is less than 0.5 weight %. Surveillance activities which are conducted to assess the condition of the containers and assure continuing 3013 container integrity include the destructive examination of a select number of containers to determine whether corrosion attack has occurred as a result of stainless steel interactions with salt containing plutonium oxides. To date, some corrosion has been observed on the innermost containers, however, no corrosion has been noted on the outer containers and the integrity of the 3013 container systems is not expected to be compromised over a 50 year storage lifetime.

  12. Thermal performance of steel-framed walls. Final report

    SciTech Connect (OSTI)

    Barbour, E. [NAHB Research Center, Inc., Upper Marlboro, MD (United States); Goodrow, J. [Holometrix, Inc., Bedford, MA (United States); Kosny, J.; Christian, J.E. [Oak Ridge National Lab., TN (United States)

    1994-11-21T23:59:59.000Z

    In wall construction, highly conductive members spaced along the wall, which allow higher heat transfer than that through less conductive areas, are referred to as thermal bridges. Thermal bridges in walls tend to increase heat loss and, under certain adverse conditions, can cause dust streaking (``ghosting``) on interior walls over studs due to temperature differentials, as well as condensation in and on walls. Although such adverse conditions can be easily avoided by proper thermal design of wall systems, these effects have not been well understood and thermal data has been lacking. Therefore, the present study was initiated to provide (1) a better understanding of the thermal behavior of steel-framed walls, (2) a set of R-values for typical wall constructions, and (3) information that could be used to develop improved methods of predicting R-values. An improved method for estimating R-value would allow an equitable comparison of thermal performance with other construction types and materials. This would increase the number of alternative materials for walls available to designers, thus allowing them to choose the optimum choice for construction. Twenty-three wall samples were tested in a calibrated hot box (ASTM C9761) to measure the thermal performance of steel-framed wall systems. The tests included an array of stud frame configurations, exterior sheathing and fiberglass batt insulations. Other studies have not included the use of insulating sheathing, which reduces the extent of the thermal bridges and improves total thermal performance. The purpose of the project was to provide measured R-values for commonly used steel-framed wall configurations and to improve R-value estimating methods. Test results were compared to R-value estimates using the parallel path method, the isothermal planes method and the ASHRAE Zone method. The comparison showed that the known procedures do not fully account for the three-dimensional effects created by steel framing in a wall.

  13. Controlled powder morphology experiments in megabar 304 stainless steel compaction

    SciTech Connect (OSTI)

    Staudhammer, K.P.; Johnson, K.A.

    1985-01-01T23:59:59.000Z

    Experiments with controlled morphology including shape, size, and size distribution were made on 304L stainless steel powders. These experiments involved not only the powder variables but pressure variables of 0.08 to 1.0 Mbar. Also included are measured container strain on the material ranging from 1.5% to 26%. Using a new strain controllable design it was possible to seperate and control, independently, strain and pressure. Results indicate that powder morphology, size distribution, packing density are among the pertinent parameters in predicting compaction of these powders.

  14. Evaluation of Oxidation and Hydrogen Permeation of Al Containing Duplex Stainless Steels

    SciTech Connect (OSTI)

    Adams, Thad M.; Korinko, Paul; Duncan, Andrew

    2005-06-17T23:59:59.000Z

    As the National Hydrogen Economy continues to develop and evolve the need for structural materials that can resist hydrogen assisted degradation will become critical. To date austenitic stainless steel materials have been shown to be mildly susceptible to hydrogen attack which results in lower mechanical and fracture strengths. As a result, hydrogen permeation barrier coatings are typically applied to these steel to retard hydrogen ingress. The focal point of the reported work was to evaluate the potential for intentional alloying of commercial 300-series stainless steels to promote hydrogen permeation resistant oxide scales. Previous research on the Cr- and Fe-oxide scales inherent to 300-series stainless steels has proven to be inconsistent in effecting permeation resistance. The approach undertaken in this research was to add aluminum to the 300-series stainless steels in an attempt to promote a pure Al-oxide or and Al-rich oxide scale. Aloxide had been previously demonstrated to be an effective hydrogen permeation barrier. Results for 304L and 347H alloys doped with Al in concentration from 0.5-3.0 wt% with respect to oxidation kinetic studies, cyclic oxidation and characterization of the oxide scale chemistry are reported herein. Gaseous hydrogen permeation testing of the Al-doped alloys in both the unoxidized and oxidized (600 C, 30 mins) conditions are reported. A critical finding from this work is that at concentration as low as 0.5 wt% Al, the Al stabilizes the ferrite phase in these steels thus producing duplex austenitic-ferritic microstructures. As the Al-content increases the amount of measured ferrite increases thus resulting in hydrogen permeabilities more closely resembling ferritic steels.

  15. acids composition including: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MEASURE BOND BETWEEN COMPOSITE AND STEEL GIRDERS???..5 1.3 USE OF COMPOSITE MATERIALS TO PREVENT CRACK PROPOGATION???.9 1.4 CFRP OVERLAY...

  16. Method for welding chromium molybdenum steels

    DOE Patents [OSTI]

    Sikka, Vinod K. (Clinton, TN)

    1986-01-01T23:59:59.000Z

    Chromium-molybdenum steels exhibit a weakening after welding in an area adjacent to the weld. This invention is an improved method for welding to eliminate the weakness by subjecting normalized steel to a partial temper prior to welding and subsequently fully tempering the welded article for optimum strength and ductility.

  17. A recycling process for dezincing steel scrap

    SciTech Connect (OSTI)

    Dudek, F.J.; Daniels, E.J. (Argonne National Lab., IL (United States)); Morgan, W.A.; Kellner, A.W.; Harrison, J. (Metal Recovery Industries, Inc., Hamilton, ON (Canada))

    1992-01-01T23:59:59.000Z

    In response to the several-fold increase in consumption of galvanized steel in the last decade and the problems associated with refurnacing larger quantities of galvanized steel scrap, a process is being developed to separate and recover the steel and zinc from galvanized ferrous scrap. The zinc is dissolved from the scrap in hot caustic using anodic assistance and is electrowon as dendritic powder. The process is effective for zinc, lead, aluminum, and cadmium removal on loose and baled scrap and on all types of galvanized steel. The process has been pilot tested for batch treatment of 1,000 tons of mostly baled scrap. A pilot plant to continuously treat loose scrap is under construction. Use of degalvanized steel scrap decreases raw materials and environmental compliance costs to steel- and iron-makers, may enable integrated steel producers to recycle furnace dusts to the sinter plant, and may enable EAF production of flat products without use of DRI or pig iron. Recycling the components of galvanized steel scrap saves primary energy, decreases zinc imports, and adds value to the scrap.

  18. A recycling process for dezincing steel scrap

    SciTech Connect (OSTI)

    Dudek, F.J.; Daniels, E.J. [Argonne National Lab., IL (United States); Morgan, W.A.; Kellner, A.W.; Harrison, J. [Metal Recovery Industries, Inc., Hamilton, ON (Canada)

    1992-08-01T23:59:59.000Z

    In response to the several-fold increase in consumption of galvanized steel in the last decade and the problems associated with refurnacing larger quantities of galvanized steel scrap, a process is being developed to separate and recover the steel and zinc from galvanized ferrous scrap. The zinc is dissolved from the scrap in hot caustic using anodic assistance and is electrowon as dendritic powder. The process is effective for zinc, lead, aluminum, and cadmium removal on loose and baled scrap and on all types of galvanized steel. The process has been pilot tested for batch treatment of 1,000 tons of mostly baled scrap. A pilot plant to continuously treat loose scrap is under construction. Use of degalvanized steel scrap decreases raw materials and environmental compliance costs to steel- and iron-makers, may enable integrated steel producers to recycle furnace dusts to the sinter plant, and may enable EAF production of flat products without use of DRI or pig iron. Recycling the components of galvanized steel scrap saves primary energy, decreases zinc imports, and adds value to the scrap.

  19. High-Temperature Performance of Cast CF8C-Plus Austenitic Stainless Steel

    SciTech Connect (OSTI)

    Maziasz, Philip J [ORNL; Pint, Bruce A [ORNL

    2011-01-01T23:59:59.000Z

    Covers and casings of small to medium size gas turbines can be made from cast austenitic stainless steels, including grades such as CF8C, CF3M, or CF10M. Oak Ridge National Laboratory and Caterpillar have developed a new cast austenitic stainless steel, CF8C-Plus, which is a fully austenitic stainless steel, based on additions of Mn and N to the standard Nb-stabilized CF8C steel grade. The Mn addition improves castability, as well as increases the alloy solubility for N, and both Mn and N synergistically act to boost mechanical properties. CF8C-Plus steel has outstanding creep-resistance at 600-900 C, which compares well with Ni-based superalloys such as alloys X, 625, 617, and 230. CF8C-Plus also has very good fatigue and thermal fatigue resistance. It is used in the as-cast condition, with no additional heat-treatments. While commercial success for CF8C-Plus has been mainly for diesel exhaust components, this steel can also be considered for gas turbine and microturbine casings. The purposes of this paper are to demonstrate some of the mechanical properties, to update the long-term creep-rupture data, and to present new data on the high-temperature oxidation behavior of these materials, particularly in the presence of water vapor.

  20. Interaction between stainless steel and plutonium metal

    SciTech Connect (OSTI)

    Dunwoody, John T [Los Alamos National Laboratory; Mason, Richard E [Los Alamos National Laboratory; Freibert, Franz J [Los Alamos National Laboratory; Willson, Stephen P [Los Alamos National Laboratory; Veirs, Douglas K [Los Alamos National Laboratory; Worl, Laura A [Los Alamos National Laboratory; Archuleta, Alonso [Los Alamos National Laboratory; Conger, Donald J [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    Long-term storage of excess plutonium is of great concern in the U.S. as well as abroad. The current accepted configuration involves intimate contact between the stored material and an iron-bearing container such as stainless steel. While many safety scenario studies have been conducted and used in the acceptance of stainless steel containers, little information is available on the physical interaction at elevated temperatures between certain forms of stored material and the container itself. The bulk of the safety studies has focused on the ability of a package to keep the primary stainless steel containment below the plutonium-iron eutectic temperature of approximately 410 C. However, the interactions of plutonium metal with stainless steel have been of continuing interest. This paper reports on a scoping study investigating the interaction between stainless steel and plutonium metal in a pseudo diffusion couple at temperatures above the eutectic melt-point.

  1. MICROSTRUCTURAL EXAMINATION OF LOW ACTIVATION FERRITIC STEELS FOLLOWING IRRADIATION IN ORR

    SciTech Connect (OSTI)

    Gelles, David S.

    2002-09-01T23:59:59.000Z

    Microstructural examinations are reported for a series of low activation steels containing Mn following irradiation in the Oak Ridge Reactor at 330 and 400 degrees C to approximately 10 dpa. Alloy compositions included 2Cr, 9Cr and 12Cr steels with V to 1.5 percent and W to 1.0 percent. Results include compositional changes in precipitates and microstructural changes as a function of composition and irradiation temperature. It is concluded that temperatures in ORR are on the order of 50 degrees C higher than anticipated.

  2. Mechanism of collapse of tall steel moment frame buildings under earthquake excitation Swaminathan Krishnan1

    E-Print Network [OSTI]

    Krishnan, Swaminathan

    . Classical energy balance analysis shows that only long- period excitation imparts energy to tall buildings significant story-overlap, typically separated by just one story. It is shown that a simple work-energy tall steel buildings in the 1985 Mexico City earthquake, there has been sustained interest

  3. Interaction of aluminium with hydrogen in twinning-induced plasticity steel

    E-Print Network [OSTI]

    Cambridge, University of

    of Cambridge, CB2 3QZ, U.K. Abstract Alloying with aluminium can mitigate the hydrogen embrittlement that the amount of hydrogen absorbed in the aluminium-containing steel is greater than in the alloys without alu]. That work indicated that aluminium-alloyed ferrite should be more resistant to hydrogen than silicon-alloyed

  4. Characterization of the deformation and annealing of 304L stainless steel. Final report

    SciTech Connect (OSTI)

    Smith, W.H.

    1994-08-01T23:59:59.000Z

    Stainless steel, type 304L, was deformed at room temperature using the two processes of semi-piercing and cold-rolling and then annealed at various temperatures and times. The three metallurgical areas of work hardening, age hardening, and anneal softening were observed and characterized using metallography techniques of macrohardness, optical and transmission electron microscopy, and X-ray diffraction.

  5. Laser infrared photothermal radiometric depth profilometry of steels and its potential in rail track evaluation

    E-Print Network [OSTI]

    Mandelis, Andreas

    -scattering or in the transmission mode using a variety of sensor probes. In this work we used the infrared (IR) photothermal radioLaser infrared photothermal radiometric depth profilometry of steels and its potential in rail track evaluation A. Mandelis*, M. Munidasa, L. Nicolaides Photothermal and Optoelectronic Diagnostics

  6. 1. Introduction Fluid flow in continuous casting of steel is of great inter-

    E-Print Network [OSTI]

    Thomas, Brian G.

    -phase fluid flow owing to the simulation kinematic viscosity of steel and water, the flow pattern itself and entrainment of the mold slag, · transient fluctuations and waves in the top surface level, and their effect, such as intermixing during a grade change and segregation. Extensive past work has employed physical water models

  7. Determination of Fire Induced Collapse Mechanisms of Multi-Storey Steel Framed Structures†

    E-Print Network [OSTI]

    Jowsey, Allan; Torero, Jose L; Usmani, Asif; Lane, Barbara; Lamont, Susan

    for several hours (WTC-7). Owners of high-rise buildings are seeking assurance that integrity can be maintained during similar elevated temperature situations. This work is part of a much larger study to evaluate the performance of high-rise steel...

  8. Effectiveness of advanced coating systems for mitigating blast effects on steel components

    E-Print Network [OSTI]

    Effectiveness of advanced coating systems for mitigating blast effects on steel components C. Chen1 of this work is to study the effectiveness of an advanced coating material, polyurea, as a blast mitigation. Effects of thicknesses and locations of the polyurea on the blast mitigation are also studied

  9. Apparatus and process for ultrasonic seam welding stainless steel foils

    DOE Patents [OSTI]

    Leigh, Richard W. (New York, NY)

    1992-01-01T23:59:59.000Z

    An ultrasonic seam welding apparatus having a head which is rotated to form contact, preferably rolling contact, between a metallurgically inert coated surface of the head and an outside foil of a plurality of layered foils or work materials. The head is vibrated at an ultrasonic frequency, preferably along a longitudinal axis of the head. The head is constructed to transmit vibration through a contacting surface of the head into each of the layered foils. The contacting surface of the head is preferably coated with aluminum oxide to prevent the head from becoming welded to layered stainless steel foils.

  10. The performance of a surface-applied corrosion inhibitor for the carbon steel in saturated Ca(OH){sub 2} solutions

    SciTech Connect (OSTI)

    Zheng, Haibing [Qingdao Technological University, Qingdao 266033 (China)] [Qingdao Technological University, Qingdao 266033 (China); Li, Weihua, E-mail: liweihua@qdio.ac.cn [Qingdao Technological University, Qingdao 266033 (China) [Qingdao Technological University, Qingdao 266033 (China); Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071 (China); Ma, Fubin [Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071 (China)] [Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071 (China); Kong, Qinglin [University of Melbourne, Melbourne 3010 (Australia)] [University of Melbourne, Melbourne 3010 (Australia)

    2014-01-15T23:59:59.000Z

    In the present work, the performance of an amino alcohol based surface applied inhibitor was studied by the electrochemical techniques in saturated Ca(OH){sub 2} solutions. The surface morphology of the carbon steel was observed by scanning electron microscope, and the energy diffraction spectrum was also tested. Results showed that the inhibitor used in this work demonstrated obvious inhibition efficiency on the carbon steel in saturated Ca(OH){sub 2} solutions. The inhibition mechanism of the inhibitor lies in the quick adsorption of the active component on carbon steel surface.

  11. Utility Security & Resiliency: Working Together

    Broader source: Energy.gov [DOE]

    Presentationógiven at the Federal Utility Partnership Working Group (FUPWG) Fall 2008 meetingódiscusses Edison Electric Institute (EEI), including its key security objectives, key activities, cybersecurity activities, and spare transformer equipment program (STEP).

  12. Working Group Report: Sensors

    SciTech Connect (OSTI)

    Artuso, M.; et al.,

    2013-10-18T23:59:59.000Z

    Sensors play a key role in detecting both charged particles and photons for all three frontiers in Particle Physics. The signals from an individual sensor that can be used include ionization deposited, phonons created, or light emitted from excitations of the material. The individual sensors are then typically arrayed for detection of individual particles or groups of particles. Mounting of new, ever higher performance experiments, often depend on advances in sensors in a range of performance characteristics. These performance metrics can include position resolution for passing particles, time resolution on particles impacting the sensor, and overall rate capabilities. In addition the feasible detector area and cost frequently provides a limit to what can be built and therefore is often another area where improvements are important. Finally, radiation tolerance is becoming a requirement in a broad array of devices. We present a status report on a broad category of sensors, including challenges for the future and work in progress to solve those challenges.

  13. Assessing the effect of cement-steel interface on well casing corrosion in aqueous CO2 environments

    SciTech Connect (OSTI)

    Han, Jiabin [Los Alamos National Laboratory; Carey, James W [Los Alamos National Laboratory; Zhang, Jinsuo [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    CO{sub 2} leakage is a critical safety concern for geologic storage. In wellbore environments, important leakage paths include the rock-cement and cement-casing interfaces. If the cement-casing interface is filled with escaping CO{sub 2}, the well casing directly contacts the CO{sub 2}. This can cause severe corrosion in the presence of water. This paper studies the effect of steel-cement interface gaps, ranging from 1 mm to 0 um, on casing corrosion. Corrosion kinetics were measured employing electrochemical techniques including linear polarization resistance, open circuit potential and electrochemical impedance spectroscopy. The experimental results showed that the corrosion of steel is not significant where the gap between steel and cement is small ({le} 100 {micro}m). Corrosion rates are controlled by the diffusion of corrosive species (H{sub 2}CO{sub 3} and H{sup +}) along the interface. In contrast, steel corrosion is severe in a broad gap where the corrosion process is limited only by the reaction kinetics of steel and corrosive species. The threshold leading to severe corrosion in terms of the cement-steel interface size (100 {micro}m) was determined. Our research clarifies a corrosion scenario at the cement-steel interface. Casing steel corrosion is initiated when attacked by corrosive species at the cement-steel interface. For relatively tight interfaces, this results in a slow thinning of the casing and expansion of the interface width. If the gap increases beyond the critical threshold size, the corrosion rate increases significantly, and a potentially damaging cycle of corrosion and interface expansion is developed.

  14. Examination of the 1970 National Bureau of Standards Underground Corrosion Test Welded Stainless STeel Coupons from Site D

    SciTech Connect (OSTI)

    L. R. Zirker; M. K. Adler Flitton; T. S. Yoder; T. L. Trowbridge

    2008-01-01T23:59:59.000Z

    A 1970 study initiated by the National Bureau of Standards (NBS), now known as the National Institute of Standards and Technology (NIST), buried over 6000 corrosion coupons or specimens of stainless steel Types 201, 202, 301, 304, 316, 409, 410, 430, and 434. The coupons were configured as sheet metal plates, coated plates, cross-welded plates, U-bend samples, sandwiched materials, and welded tubes. All coupons were of various heat-treatments and cold worked conditions and were buried at six distinctive soil-type sites throughout the United States. The NBS scientists dug five sets of two trenches at each of the six sites. In each pair of trenches, they buried duplicate sets of stainless steel coupons. The NBS study was designed to retrieve coupons after one year, two years, four years, eight years, and x years in the soil. During the first eight years of the study, four of five planned removals were completed. After the fourth retrieval, the NBS study was abandoned, and the fifth and final set of specimens remained undisturbed for over 33 years. In 2003, an interdisciplinary research team of industrial, university, and national laboratory investigators were funded under the United States Department of Energyís Environmental Management Science Program (EMSP; Project Number 86803) to extract part of the remaining set of coupons at one of the test sites, characterize the stainless steel underground corrosion rates, and examine the fate and transport of metal ions into the soil. Extraction of one trench at one of the test sites occurred in April 2004. This report details only the characterization of corrosion found on the 14 welded couponsĖtwo cross welded plates, six U-bends, and six welded tubesĖthat were retrieved from Site D, located near Wildwood, NJ. The welded coupons included Type 301, 304, 316, and 409 stainless steels. After 33 years in the soil, corrosion on the coupons varied according to alloy. This report discusses the stress corrosion cracking and crevice corrosion cracking of the U-bend coupons; the minimal corrosion found on the cross-bead plates; and the general, pitting, and crevice corrosion found on the welded tubes. In general, the austenitic Type 301, 304 and 316 samples showed little if any corrosion after 33+-years in the soil, whereas the ferritic alloys-Type 409 and 434Ė showed a spectrum of corrosion.

  15. Effects of metallurgical variables on swelling of modified 316 and higher Ni austenitic stainless steels

    SciTech Connect (OSTI)

    Shibahara, Itaru; Akasaka, Naoaki; Onose, Shoji [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan)

    1996-12-31T23:59:59.000Z

    The effects of solute elements and cold-work on swelling in modified 316 and higher Ni advanced austenitic stainless steels developed for FBR core material were investigated together with the posted model alloys. The Si, P, B, Ti, Nb modified and cold-worked steels exhibited an improved swelling resistance. In the temperature range between 400 and 500 C, the swelling was suppressed significantly by an addition of 0.8 wt% Si. The beneficial effect of Si appears to be reduced in the steels without Ti and Nb tending to form {gamma}{prime} precipitates. In the temperature range between 500 and 600 C, a needle-like phosphide precipitates played an important role in suppressing void growth. Additions of Ti and/or Nb were found to stabilize the phosphide phase and extended the swelling incubation period. In the improved austenitic steels, the synergistic effect of cold-working and P, B, Ti, Nb additions act beneficially to stabilize the dislocation structure and to form finely dispersed precipitates during irradiation.

  16. Microstructural characterization in dissimilar friction stir welding between 304 stainless steel and st37 steel

    SciTech Connect (OSTI)

    Jafarzadegan, M. [Department of Materials Eng., Tarbiat Modares University, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of) [Department of Materials Eng., Tarbiat Modares University, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of); State Key Laboratory of Advanced Welding Production Technology, School of Materials Science and Eng., Harbin Institute of Technology, P.O. Box: 150001, Harbin (China); Feng, A.H. [State Key Laboratory of Advanced Welding Production Technology, School of Materials Science and Eng., Harbin Institute of Technology, P.O. Box: 150001, Harbin (China)] [State Key Laboratory of Advanced Welding Production Technology, School of Materials Science and Eng., Harbin Institute of Technology, P.O. Box: 150001, Harbin (China); Abdollah-zadeh, A., E-mail: zadeh@modares.ac.ir [Department of Materials Eng., Tarbiat Modares University, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of); Saeid, T. [Advanced Materials Research Center, Sahand University of Technology, P.O. Box: 51335-1996, Tabriz (Iran, Islamic Republic of)] [Advanced Materials Research Center, Sahand University of Technology, P.O. Box: 51335-1996, Tabriz (Iran, Islamic Republic of); Shen, J. [State Key Laboratory of Advanced Welding Production Technology, School of Materials Science and Eng., Harbin Institute of Technology, P.O. Box: 150001, Harbin (China)] [State Key Laboratory of Advanced Welding Production Technology, School of Materials Science and Eng., Harbin Institute of Technology, P.O. Box: 150001, Harbin (China); Assadi, H. [Department of Materials Eng., Tarbiat Modares University, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of)] [Department of Materials Eng., Tarbiat Modares University, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of)

    2012-12-15T23:59:59.000Z

    In the present study, 3 mm-thick plates of 304 stainless steel and st37 steel were welded together by friction stir welding at a welding speed of 50 mm/min and tool rotational speed of 400 and 800 rpm. X-ray diffraction test was carried out to study the phases which might be formed in the welds. Metallographic examinations, and tensile and microhardness tests were used to analyze the microstructure and mechanical properties of the joint. Four different zones were found in the weld area except the base metals. In the stir zone of the 304 stainless steel, a refined grain structure with some features of dynamic recrystallization was evidenced. A thermomechanically-affected zone was characterized on the 304 steel side with features of dynamic recovery. In the other side of the stir zone, the hot deformation of the st37 steel in the austenite region produced small austenite grains and these grains transformed to fine ferrite and pearlite and some products of displacive transformations such as Widmanstatten ferrite and martensite by cooling the material after friction stir welding. The heat-affected zone in the st37 steel side showed partially and fully refined microstructures like fusion welding processes. The recrystallization in the 304 steel and the transformations in the st37 steel enhanced the hardness of the weld area and therefore, improved the tensile properties of the joint. - Highlights: Black-Right-Pointing-Pointer FSW produced sound welds between st37 low carbon steel and 304 stainless steel. Black-Right-Pointing-Pointer The SZ of the st37 steel contained some products of allotropic transformation. Black-Right-Pointing-Pointer The material in the SZ of the 304 steel showed features of dynamic recrystallization. Black-Right-Pointing-Pointer The finer microstructure in the SZ increased the hardness and tensile strength.

  17. NanoComposite Stainless Steel Powder Technologies

    SciTech Connect (OSTI)

    DeHoff, R.; Glasgow, C. (MesoCoat, Inc.)

    2012-07-25T23:59:59.000Z

    Oak Ridge National Laboratory has been investigating a new class of Fe-based amorphous material stemming from a DARPA, Defense Advanced Research Projects Agency initiative in structural amorphous metals. Further engineering of the original SAM materials such as chemistry modifications and manufacturing processes, has led to the development of a class of Fe based amorphous materials that upon processing, devitrify into a nearly homogeneous distribution of nano sized complex metal carbides and borides. The powder material is produced through the gas atomization process and subsequently utilized by several methods; laser fusing as a coating to existing components or bulk consolidated into new components through various powder metallurgy techniques (vacuum hot pressing, Dynaforge, and hot isostatic pressing). The unique fine scale distribution of microstructural features yields a material with high hardness and wear resistance compared to material produced through conventional processing techniques such as casting while maintaining adequate fracture toughness. Several compositions have been examined including those specifically designed for high hardness and wear resistance and a composition specifically tailored to devitrify into an austenitic matrix (similar to a stainless steel) which poses improved corrosion behavior.

  18. Final Report, Volume 3, Guidance Document for the Evaluation of Cast Super Duplex Stainless Steel

    SciTech Connect (OSTI)

    Hariharan, Vasudevan; Lundin, Carl, D.

    2005-09-30T23:59:59.000Z

    Volume 3 comprises of the Development of Qualification Standards for Cast Super Duplex Stainless Steel (A890-5A) which is equivalent to wrought 2507. The objective of this work was to determine the suitability of ASTM A923 Standard Test methods for Detecting Detrimental Intermetallic Phase in Duplex Austenitic-Ferritic Stainless Steels for 25 Cr Cast Super Duplex Stainless Steels (ASTM A890-5A). The various tests which were carried out were ASTM A923 Test Method A, B and C (Sodium Hydroxide Etch Test, Charpy Impact Test and Ferric Chloride Corrosion Test), ferrite measurement using Feritscope{reg_sign}, ASTM E562 Manual Point Count Method and X-Ray Diffraction, hardness measurement using Rockwell B and C and microstructural analysis using SEM and EDS.

  19. Mechanical properties and microstructures of dual phase steels containing silicon, aluminum and molybdenum

    E-Print Network [OSTI]

    Neill, Thomas John O'

    2011-01-01T23:59:59.000Z

    AND MICROSTRUCTURES OF DUAL PHASE STEELS CONTAINING SILICON,and Microstructures of Dual Phase Steels Containing Silicon,microstructures of selected dual-phase steels in which the

  20. EFFECTS OF MORPHOLOGY ON THE MECHANICAL BEHAVIOR OF DUAL PHASE Fe/Si/C STEELS

    E-Print Network [OSTI]

    Kim, N.J.

    2012-01-01T23:59:59.000Z

    and ductility in dual phase steels. However, it seems thatmechanical behavior of dual phase steels. ACKNOWLEDGEMENTSL INTRODUCTION Dual phase steels whose structures consist of

  1. THE EROSION BEHAVIOR OF STEEL AS A FUNCTION OF MICROSTRUCTURE ON SOLID PARTICLE EROSION

    E-Print Network [OSTI]

    Levy, Alan V.

    2013-01-01T23:59:59.000Z

    of the spheroidized 1075 steel by rolling prior to erosionAbrasive Wear Resistance of Steels. A Review, ~Jear, FIGUREelectron micrographs of 1075 steel in the coarse pearlite,

  2. Beam Energy Scaling on Ion-Induced Electron Yield from K+ Impact on Stainless Steel

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    K + Impact on Stainless Steel Michel Kireeff Covo Lawrence+ ions hit the stainless steel target with energy up to 400energies hitting stainless steel target obtained from

  3. Testing and analysis of structural steel columns subjected to blast loads

    E-Print Network [OSTI]

    Stewart, Lauren K.

    2010-01-01T23:59:59.000Z

    Blast Simulator Testing of Steel Columns and Components. ĒTesting of Structural Steel Columns. Ē 8 th Internationaland Analysis of Structural Steel Columns Subjected to Blast

  4. A direct displacement-based design of low-rise seismic resistant steel moment frames

    E-Print Network [OSTI]

    Harris, John L.

    2006-01-01T23:59:59.000Z

    The Bending Resistance of Steel Beams. Ē J. Struct. Div. ,in the Design of Steel Structures. Ē Engineering715- American Institute of Steel Construction (AISC) (2001).

  5. Cyclic behavior and design of steel columns subjected to large drift

    E-Print Network [OSTI]

    Newell, James David

    2008-01-01T23:59:59.000Z

    The Bending Resistance of Steel Beams,Ē Journal of the2007). ďBolted Flange Plate Steel Moment Connections forSeismic Upgrade of a 15-Story Steel Moment Frame Building Ė

  6. Summary of current research interests Much of our work includes the morphological characterisation of human

    E-Print Network [OSTI]

    Saunders, Mark

    , Bailey T, Zhang J, Knupp C, Cheetham ME, Greenwood J, Luthert PJ. Modulation of Sub-RPE deposits in vitro-related macular degeneration. Prog Ret Eye Res (2001) 20: 705-732. Chong NHV, Alexander RA, Waters L, Barnett KC in hereditary retinal degeneration. IOVS (1999) 40: 1298-1305 Bailey A, Luthert P, Dean A, Harding B, Janota I

  7. CEBAF energy upgrade program including re-work of CEBAF cavities

    SciTech Connect (OSTI)

    Joseph Preble

    2008-02-12T23:59:59.000Z

    The Thomas Jefferson National Accelerator Facility, Jefferson Lab, is planning an upgrade of the CEBAF accelerator from a maximum energy of 6 GeV to 12 GeV and from 3 to 4 experimental halls. This paper will discuss the plans for upgrading the energy of the machine which requires improvements of the existing Super Conducting Radio Frequency (SRF) cryomodules and the additions of ten newly designed high performance SRF cryomodules.

  8. The University of Mississippi-Grenada offers graduate degree programs geared to working adults, including

    E-Print Network [OSTI]

    Tchumper, Gregory S.

    and Instruction (MACI) is for students who currently hold a bachelor's degree in a field other than education-Grenada ITC Building Find us on Facebook! #12;UM/ School District Bank Hours The UM School of Education offers

  9. Example Retro-Commissioning Scope of Work to Include Services as Part of an

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandardGeneration |10Examinationof Energy Measurement andESPC

  10. Use of duplex stainless steel castings in control valves

    SciTech Connect (OSTI)

    Gossett, J.L. [Fisher Controls International, Inc., Marshalltown, IA (United States)

    1996-07-01T23:59:59.000Z

    Duplex stainless steels have enjoyed rapidly increasing popularity in recent years. For numerous reasons the availability of these alloys in the cast form has lagged behind the availability of the wrought form. Commercial demand for control valves in these alloys has driven development of needed information to move into production. A systematic approach was used to develop specifications, suppliers and weld procedures. Corrosion, stress corrosion cracking (SCC), sulfide stress cracking (SSC) and hardness results are also presented for several alloys including; CD3MN (UNS J92205), CD4MCu (UNS J93370) and CD7MCuN (cast UNS S32550).

  11. Oxidation resistant high creep strength austenitic stainless steel

    DOE Patents [OSTI]

    Brady, Michael P.; Pint, Bruce A.; Liu, Chain-Tsuan; Maziasz, Philip J.; Yamamoto, Yukinori; Lu, Zhao P.

    2010-06-29T23:59:59.000Z

    An austenitic stainless steel displaying high temperature oxidation and creep resistance has a composition that includes in weight percent 15 to 21 Ni, 10 to 15 Cr, 2 to 3.5 Al, 0.1 to 1 Nb, and 0.05 to 0.15 C, and that is free of or has very low levels of N, Ti and V. The alloy forms an external continuous alumina protective scale to provide a high oxidation resistance at temperatures of 700 to 800.degree. C. and forms NbC nanocarbides and a stable essentially single phase fcc austenitic matrix microstructure to give high strength and high creep resistance at these temperatures.

  12. New developments in microwave treatment of steel mill sludges

    SciTech Connect (OSTI)

    Goodwill, J.E.; Schmitt, R.J. [EPRI Center for Materials Production, Pittsburgh, PA (United States); Purta, D.A. [Carnegie Mellon Research Inst., Pittsburgh, PA (United States)

    1996-02-01T23:59:59.000Z

    Steel mills in the US generate approximately 1 million tons of sludge annually. This is mainly a residue of cooling water, lubricating oils, and metallic fines from hot strip rolling mills and other operations. Currently, the separation of sludge from the liquid requires large settling tanks, takes several hours of time and produces a residue that must be disposed of at high cost. The EPRI Center for Materials Production, sponsored by the Electric Power Research Institute (EPRI), has supported development of a microwave-based treatment system. This new process, developed by Carnegie Mellon Research Institute, and patented by EPRI is 30 times faster, requires 90% less space and eliminates land-filling by producing materials of value. Electricity usage is only 0.5 kwhr/gal. A review by the American Iron and Steel Institute Waste Recycle Technology Task Force concluded that further work on the microwave technology was justified. Subsequently, additional work was undertaken toward optimizing the process for treating metallic waste sludges containing lime and polymers. This effort, cofunded by EPRI and AISI, was successfully concluded in late 1994. EPRI/CMP is proceeding to license and commercialize this technology, and to continue research to improve efficiency. A follow-on project is now being organized by CMP to confirm long term recyclability of the oil-release agent and to conduct a large scale (25-ton sample) test of the process.

  13. Estimation of fracture toughness of cast stainless steels during thermal aging in LWR systems - Revison 1.

    SciTech Connect (OSTI)

    Chopra, O. K.; Energy Technology

    1994-10-05T23:59:59.000Z

    This report presents a revision of the procedure and correlations presented earlier in NUREG/CR-4513, ANL-90/42 (June 1991) for predicting the change in mechanical properties of cast stainless steel components due to thermal aging during service in light water reactors at 280-330 C (535-625 F). The correlations presented in this report are based on an expanded data base and have been optimized with mechanical-property data on cast stainless steels aged up to {approx}58,000 h at 290-350 C (554-633 F). The correlations for estimating the change in tensile stress, including the Ramberg/Osgood parameters for strain hardening, are also described. The fracture toughness J-R curve, tensile stress, and Charpy-impact energy of aged cast stainless steels are estimated from known material information. Mechanical properties of a specific cast stainless steel are estimated from the extent and kinetics of thermal embrittlement. Embrittlement of cast stainless steels is characterized in terms of room-temperature Charpy-impact energy. The extent or degree of thermal embrittlement at 'saturation,' i.e., the minimum impact energy that can be achieved for a material after long-term aging, is determined from the chemical composition of the steel. Charpy-impact energy as a function of time and temperature of reactor service is estimated from the kinetics of thermal embrittlement, which are also determined from the chemical composition. The initial impact energy of the unaged steel is required for these estimations. Initial tensile flow stress is needed for estimating the flow stress of the aged material. The fracture toughness J-R curve for the material is then obtained by correlating room-temperature Charpy-impact energy with fracture toughness parameters. The values of JIC are determined from the estimated J-R curve and flow stress. A common 'predicted lower-bound' J-R curve for cast stainless steels of unknown chemical composition is also defined for a given grade of steel, range of ferrite content, and temperature. Examples of estimating mechanical properties of cast stainless steel components during reactor service are presented.

  14. Lightweight Steel Solutions for Automotive Industry

    SciTech Connect (OSTI)

    Lee, Hong Woo; Kim, Gyosung; Park, Sung Ho [Technical Research Laboratories, POSCO, 699, Gumho-dong, Gwangyang-si, Jeonnam, 545-090 (Korea, Republic of)

    2010-06-15T23:59:59.000Z

    Recently, improvement in fuel efficiency and safety has become the biggest issue in worldwide automotive industry. Although the regulation of environment and safety has been tightened up more and more, the majority of vehicle bodies are still manufactured from stamped steel components. This means that the optimized steel solutions enable to demonstrate its ability to reduce body weight with high crashworthiness performance instead of expensive light weight materials such as Al, Mg and composites. To provide the innovative steel solutions for automotive industry, POSCO has developed AHSS and its application technologies, which is directly connected to EVI activities. EVI is a technical cooperation program with customer covering all stages of new car project from design to mass production. Integrated light weight solutions through new forming technologies such as TWB, hydroforming and HPF are continuously developed and provided for EVI activities. This paper will discuss the detailed status of these technologies especially light weight steel solutions based on innovative technologies.

  15. Case hardenable nickel-cobalt steel

    DOE Patents [OSTI]

    Qian, Yana (Sunnyvale, CA); Olson, Gregory B. (Evanston, IL)

    2012-04-17T23:59:59.000Z

    An advanced secondary hardening carburized Ni--Co steel achieves an improved case hardness of about 68-69 Rc together with nominal core hardness of about 50 Rc.

  16. Light Steel Framing: Improving the Integral Design†

    E-Print Network [OSTI]

    Amundarain, Aitor; Torero, Jose L; Usmani, Asif; Al-Remal, Ahmad M

    2006-09-11T23:59:59.000Z

    Light Steel Framing has been extensively used in cold climate countries due to its good thermal and structural behaviour. Improved thermal behaviour results in positive environmental impact essential for sustainable ...

  17. FEA Simulations of Magnets with Grain Oriented Steel

    SciTech Connect (OSTI)

    Witte H.

    2012-08-06T23:59:59.000Z

    One of the potential successors of the Large Hadron Collider is a Muon Col- lider. Muons are short-lived particles, which therefore require fast acceleration. One potential avenue is a very fast cycling cyclotron, where the bending is sup- plied by a combination of fixed-field superconducting magnets and fast ramping normal conducting iron-cored coils. Due to the high ramping rate (around 1 kHz) eddy current and hysteresis losses are a concern. One way to overcome these is by using grain-oriented soft-iron, which promises superior magnetic properties in the direction of the grains. This note summarizes efforts to include the anisotropic material properties of grain-oriented steel in finite element analysis to predict the behaviour of the dipole magnets for this accelerator. It was found that including anisotropic material properties has a detrimental effect on model convergence. During this study it was not possible to include grain oriented steel with an accuracy necessary to study the field quality of a dipole magnet.

  18. Transformation Strain and Crystallographic Texture in Steels

    E-Print Network [OSTI]

    Kundu, Saurabh

    Transformation Strain and Crystallographic Texture in Steels By Saurabh Kundu Darwin College, Cambridge University of Cambridge Department of Materials Science and Metallurgy Pembroke Street, Cambridge CB2 3QZ A dissertation submitted for the degree... , Crystallographic tex- ture of stress-affected bainite, Proceedings of the Royal Society of London A, (submitted). Saurabh Kundu March, 2007 ii Acknowledgments I am grateful to the EPSRC, UK and TATA STEEL, India for funding this project. I would also like to thank...

  19. Improved Criteria for Acceptable Yield Point Elongation in Surface Critical Steels

    SciTech Connect (OSTI)

    Dr. David Matlock; Dr. John Speer

    2007-05-30T23:59:59.000Z

    Yield point elongation (YPE) is considered undesirable in surface critical applications where steel is formed since "strain lines" or Luders bands are created during forming. This project will examine in detail the formation of luders bands in industrially relevant strain states including the influence of substrate properties and coatings on Luders appearance. Mechanical testing and surface profilometry were the primary methods of investigation.

  20. Effect of debonded interfaces on corrosion of mild steel composites in supercritical CO2-saturated brines

    SciTech Connect (OSTI)

    John, Han [Los Alamos National Laboratory; Carey, James W [Los Alamos National Laboratory; Zhang, Jinsuo [Los Alamos National Laboratory

    2010-10-07T23:59:59.000Z

    The geologic sequestration of CO{sub 2} is a proposed method to limit greenhouse gas emissions and has been the subject of many studies in the last decade. Wellbore systems achieve isolation of the storage reservoir through a combination of steel (generally carbon steel) and Portland cement. CO{sub 2} leakage along the steel-cement interface has the potential to accelerate corrosion. We conduct experiments to assess the corrosion risk at cement-steel interface under in situ wellbore conditions. Wellbore interfaces were simulated by assemblies constructed of J55 mild steel and Portland class G (Epoxy was used in this study to separate) cement and corrosion was investigated in supercritical CO{sub 2} saturated brines, (NaCl = 1 wt%) at T = 50 C, pCO{sub 2} = 1200 psi with interface gap size = 100 {micro}m and {infinity} (open surface). The experiments were carried out in a high-pressure, 1.8 L autoclave. The corrosion kinetics were measured employing electrochemical techniques including linear polarization resistance and electrochemical impedance spectroscopy techniques. The corrosion scales were analyzed using secondary electron microscopy, back scattering electron microscopy, energy dispersive spectroscopy and x-ray diffraction. Corrosion rates decreased as time with or without interface gap. In this case corrosion rates are controlled by scale protectivity through the interface gap. Scaled steel corrosion rates were two orders of magnitude less compared with fresh steel. The corrosion scale is pseudo crystalline at the open interface. Well-crystallized scale was observed at interface gap sizes 100 {micro}m. All corrosion scales were composed of iron carbonates.

  1. Development of Steel Foam Materials and Structures

    SciTech Connect (OSTI)

    Kenneth Kremer; Anthony Liszkiewicz; James Adkins

    2004-10-20T23:59:59.000Z

    In the past few years there has been a growing interest in lightweight metal foams. Demands for weight reduction, improved fuel efficiency, and increased passenger safety in automobiles now has manufacturers seriously considering the use of metal foams, in contrast to a few years ago, when the same materials would have been ruled out for technical or economical reasons. The objective of this program was to advance the development and use of steel foam materials, by demonstrating the advantages of these novel lightweight materials in selected generic applications. Progress was made in defining materials and process parameters; characterization of physical and mechanical properties; and fabrication and testing of generic steel foam-filled shapes with compositions from 2.5 wt.% to 0.7 wt.% carbon. A means of producing steel foam shapes with uniform long range porosity levels of 50 to 60 percent was demonstrated and verified with NDE methods. Steel foam integrated beams, cylinders and plates were mechanically tested and demonstrated advantages in bend stiffness, bend resistance, and crush energy absorption. Methods of joining by welding, adhesive bonding, and mechanical fastening were investigated. It is important to keep in mind that steel foam is a conventional material in an unconventional form. A substantial amount of physical and mechanical properties are presented throughout the report and in a properties database at the end of the report to support designer's in applying steel foam in unconventional ways.

  2. Irradiation Assisted Grain Boundary Segregation in Steels

    SciTech Connect (OSTI)

    Lu, Zheng; Faulkner, Roy G. [IPTME, Loughborough University, Loughborough, Leics (United Kingdom)

    2008-07-01T23:59:59.000Z

    The understanding of radiation-induced grain boundary segregation (RIS) has considerably improved over the past decade. New models have been introduced and much effort has been devoted to obtaining comprehensive information on segregation from the literature. Analytical techniques have also improved so that chemical analysis of layers 1 nm thick is almost routine. This invited paper will review the major methods used currently for RIS prediction: namely, Rate Theory, Inverse Kirkendall, and Solute Drag approaches. A summary is made of the available data on phosphorus RIS in reactor pressure vessel (RPV) steels. This will be discussed in the light of the predictions of the various models in an effort to show which models are the most reliable and easy to use for forecasting P segregation behaviour in steels. A consequence of RIS in RPV steels is a radiation induced shift in the ductile to brittle transition temperature (DBTT). It will be shown how it is possible to relate radiation-induced P segregation levels to DBTT shift. Examples of this exercise will be given for RPV steels and for ferritic steels being considered for first wall fusion applications. Cr RIS in high alloy stainless steels and associated irradiation-assisted stress corrosion cracking (IASCC) will be briefly discussed. (authors)

  3. Coating thickness measurement by XRF in vacuum strip steel metallizing plants

    SciTech Connect (OSTI)

    Wenzel, D. [Von Ardenne Anlagentechnik GmbH, Dresden (Germany); Esche, H.J.; Pilz, J. [Amtec AnalysenmeBtechnik GmbH, Leipzig (Germany)

    1994-12-31T23:59:59.000Z

    Devised for use in vacuum equipment of PVD strip steel coaters is a multichannel counting technique for the continuous XRF measurement of the coating thickness. This XRF coating thickness gage is used in a batch-type strip steel coater. It measures the thickness of single-side, double-side and alloy coatings (element contents included). The new XRF method operates without etalons. It is also possible to measure adjacent elements in the periodic law of chemical elements without difficulty. With only minor deviations from the nominal value the new XRF measuring system allows to keep the coating thickness practically constant.

  4. Shear Punch Properties of Low Activation Ferritic Steels Following Irradiation in ORR

    SciTech Connect (OSTI)

    Ermi, Ruby M.; Hamilton, Margaret L.; Gelles, David S.; Ermi, August M.

    2001-10-01T23:59:59.000Z

    Shear punch post-irradiation test results are reported for a series of low activation steels containing Mn following irradiation in the Oak Ridge Reactor at 330 and 400 degrees centigrade to {approx}10 dpa. Alloy compositions included 2Cr, 9Cr and 12Cr steels with V to 1.5% and W to 1.0%. Comparison of results with tensile test results showed good correlations with previously observed trends except where disks were improperly manufactured because they were too thin or because engraving was faulty.

  5. Spatial distribution of MnS inclusions in HY-100 steel

    SciTech Connect (OSTI)

    Everett, R.K. [Naval Research Lab., Washington, DC (United States). Multifunctional Materials Branch] [Naval Research Lab., Washington, DC (United States). Multifunctional Materials Branch; Geltmacher, A.B. [FM Technologies, Inc., Fairfax, VA (United States)] [FM Technologies, Inc., Fairfax, VA (United States)

    1999-02-05T23:59:59.000Z

    High strength steels have been shown to fail by a ductile fracture process which includes void nucleation, growth, and linking by coalescence and void sheeting. Since the voids are thought to nucleate at MnS inclusions and initial void nucleating strains are considered small, some relationship between the inclusion spatial distribution and the initial void spatial distribution appears reasonable. The initial void spatial distribution is desired for improved models of void growth and coalescence behavior. This paper reports on the density, and size and spatial distributions of MnS inclusions in an HY-100 steel.

  6. SAFETY AND HEALTH PROGRAM Including the Chemical Hygiene Plan

    E-Print Network [OSTI]

    Evans, Paul G.

    SAFETY AND HEALTH PROGRAM Including the Chemical Hygiene Plan Wisconsin Center for Applied, Technical Staff & Chemical Hygiene Officer kakupcho@wisc.edu 262-2982 Lab Facility Website http..........................................................................................................3 CHEMICAL HYGIENE PLAN III. Work-site Analysis and Hazard Identification 3.1 Hazardous Chemical

  7. Effects of loading mode on the critical cracking potential of duplex ([alpha] + [gamma]) stainless steel in a hot chloride solution

    SciTech Connect (OSTI)

    Kwon, Hyuk Sang (Korea Advanced Inst. of Science and Tech., Taejon (Korea, Republic of))

    1993-08-01T23:59:59.000Z

    One of the common characteristics in stress corrosion cracking (SCC) between austenitic and ferritic stainless steels in chloride environments is that cracking occurs at potentials noble to a critical value which has been designated as the critical cracking potential, E[sub cc]. For austenitic stainless steels, E[sub cc] is insensitive to prior cold work with or without the generation of martensite and has been interpreted as the minimum potential for crack propagation. On the other hand, for low interstitial ferritic stainless steels., E[sub cc] is extremely sensitive to microstructural variations induced by small amounts of cold work or grain coarsening. It has been demonstrated that E[sub cc] for the low interstitial ferritic stainless steels, when it is measured at constant load, is that for crack initiation and is determined by the competing rates of generation of a new surface by slip induced film breakdown and repassivation. However, the physical and/or electrochemical meaning for E[sub cc] of duplex stainless steels has not yet been studied. It is the purpose of this work to determine if E[sub cc] for duplex stainless is a potential for crack initiation or one for crack propagation in a hot chloride environment and to examine the effects of loading modes on the E[sub cc] of these alloys.

  8. Development of Stronger and More Reliable Cast Austenitic Stainless Steels (H-Series) Based on Scientific and Design Methodology

    SciTech Connect (OSTI)

    Pankiw, Roman I; Muralidharan, G. (Murali); Sikka, Vinod K.

    2006-06-30T23:59:59.000Z

    The goal of this project was to increase the high-temperature strength of the H-Series of cast austenitic stainless steels by 50% and the upper use temperature by 86 to 140 degrees fahrenheit (30 to 60 degrees celsius). Meeting this goal is expected to result in energy savings of 35 trillion Btu/year by 2020 and energy cost savings of approximately $230 million/year. The higher-strength H-Series cast stainless steels (HK and HP type) have applications for the production of ethylene in the chemical industry, for radiant burner tubes and transfer rolls for secondary processing of steel in the steel industry, and for many applications in the heat treating industry, including radiant burner tubes. The project was led by Duraloy Technologies, Inc., with research participation by Oak Ridge National Laboratory (ORNL) and industrial participation by a diverse group of companies.

  9. Brazing open cell reticulated copper foam to stainless steel tubing with vacuum furnace brazed gold/indium alloy plating

    DOE Patents [OSTI]

    Howard, Stanley R. (Windsor, SC); Korinko, Paul S. (Aiken, SC)

    2008-05-27T23:59:59.000Z

    A method of fabricating a heat exchanger includes brush electroplating plated layers for a brazing alloy onto a stainless steel tube in thin layers, over a nickel strike having a 1.3 .mu.m thickness. The resultant Au-18 In composition may be applied as a first layer of indium, 1.47 .mu.m thick, and a second layer of gold, 2.54 .mu.m thick. The order of plating helps control brazing erosion. Excessive amounts of brazing material are avoided by controlling the electroplating process. The reticulated copper foam rings are interference fit to the stainless steel tube, and in contact with the plated layers. The copper foam rings, the plated layers for brazing alloy, and the stainless steel tube are heated and cooled in a vacuum furnace at controlled rates, forming a bond of the copper foam rings to the stainless steel tube that improves heat transfer between the tube and the copper foam.

  10. Corrosion of Ferritic Steels in High Temperature Molten Salt Coolants for Nuclear Applications

    SciTech Connect (OSTI)

    Farmer, J; El-Dasher, B; de Caro, M S; Ferreira, J

    2008-11-25T23:59:59.000Z

    Corrosion of ferritic steels in high temperature molten fluoride salts may limit the life of advanced reactors, including some hybrid systems that are now under consideration. In some cases, the steel may be protected through galvanic coupling with other less noble materials with special neutronic properties such a beryllium. This paper reports the development of a model for predicting corrosion rates for various ferritic steels, with and without oxide dispersion strengthening, in FLiBe (Li{sub 2}BeF{sub 4}) and FLiNaK (Li-Na-K-F) coolants at temperatures up to 800 C. Mixed potential theory is used to account for the protection of steel by beryllium, Tafel kinetics are used to predict rates of dissolution as a function of temperature and potential, and the thinning of the mass-transfer boundary layer with increasing Reynolds number is accounted for with dimensionless correlations. The model also accounts for the deceleration of corrosion as the coolants become saturated with dissolved chromium and iron. This paper also reports electrochemical impedance spectroscopy of steels at their corrosion potentials in high-temperature molten salt environments, with the complex impedance spectra interpreted in terms of the interfacial charge transfer resistance and capacitance, as well as the electrolyte conductivity. Such in situ measurement techniques provide valuable insight into the degradation of materials under realistic conditions.

  11. Prevention of crevice corrosion in duplex SS flanges using carbon steel bolts with cathodic protection

    SciTech Connect (OSTI)

    Thomason, W.H.; Ivie, R.G.; Marlow, J.A.

    1999-07-01T23:59:59.000Z

    Achieving reliable long-term performance of high strength bolts for flange connections in subsea service is a critical issue for the offshore industry. Viable bolting materials with high strength that are not susceptible to embrittlement or galvanic corrosion when the flanges are made of stainless steels are limited. A laboratory study was performed to determine the viability of using B7 carbon steel stud bolts and 316 stainless steel (SS) seal rings in a Duplex SS flange for subsea service The laboratory test system used full size commercial flanges, bolts and seal rings to simulate electrochemical conditions that will occur in crevices associated with carbon steel bolts in a Duplex SS flange and with the use of a 316 stainless steel seal ring in a Duplex SS flange. The flange systems were instrumented to enable monitoring of current densities and potentials at precise locations within the crevices throughout the tests as test parameters were changed. Test parameters included cathodic protection level, temperature, and sealing the outer flange gap. Cathodic protection was provided by remote aluminum sacrificial anodes to achieve potentials typical for a sub sea manifold. Both electrochemical data and examination of the components at the end of the 164 day exposure indicated that sufficient cathodic protection occurred in the crevices to provide long term corrosion control to all of the components involved. The capability to use B7 bolts rather than high alloy bolts enables a significant project savings.

  12. Aging and Embrittlement of High Fluence Stainless Steels

    SciTech Connect (OSTI)

    Was, gary; Jiao, Zhijie; der ven, Anton Van; Bruemmer, Stephen; Edwards, Dan

    2012-12-31T23:59:59.000Z

    Irradiation of austenitic stainless steels results in the formation of dislocation loops, stacking fault tetrahedral, Ni-Si clusters and radiation-induced segregation (RIS). Of these features, it is the formation of precipitates which is most likely to impact the mechanical integrity at high dose. Unlike dislocation loops and RIS, precipitates exhibit an incubation period that can extend from 10 to 46 dpa, above which the cluster composition changes and a separate phase, (G-phase) forms. Both neutron and heavy ion irradiation showed that these clusters develop slowly and continue to evolve beyond 100 dpa. Overall, this work shows that the irradiated microstructure features produced by heavy ion irradiation are remarkably comparable in nature to those produced by neutron irradiation at much lower dose rates. The use of a temperature shift to account for the higher damage rate in heavy ion irradiation results in a fairly good match in the dislocation loop microstructure and the precipitate microstructure in austenitic stainless steels. Both irradiations also show segregation of the same elements and in the same directions, but to achieve comparable magnitudes, heavy ion irradiation must be conducted at a much higher temperature than that which produces a match with loops and precipitates. First-principles modeling has confirmed that the formation of Ni-Si precipitates under irradiation is likely caused by supersaturation of solute to defect sinks caused by highly correlated diffusion of Ni and Si. Thus, the formation and evolution of Ni-Si precipitates at high dose in austenitic stainless steels containing Si is inevitable.

  13. Development of Next Generation Heating System for Scale Free Steel Reheating

    SciTech Connect (OSTI)

    Dr. Arvind C. Thekdi

    2006-09-26T23:59:59.000Z

    Teh report describes methods of reheating of steel billets and slabs for hot rolling or forging without forming steel scale.

  14. THE SENSITIVITY OF CARBON STEELS' SUSCEPTIBILITY TO LOCALIZED CORROSION TO THE PH OF NITRATE BASED NUCLEAR WASTES

    SciTech Connect (OSTI)

    BOOMER KD

    2010-01-14T23:59:59.000Z

    The Hanford tank reservation contains approximately 50 million gallons of liquid legacy radioactive waste from cold war weapons production, which is stored in 177 underground storage tanks. The tanks will be in use until waste processing operations are completed. The wastes tend to be high pH (over 10) and nitrate based. Under these alkaline conditions carbon steels tend to be passive and undergo relatively slow uniform corrosion. However, the presence of nitrate and other aggressive species, can lead to pitting and stress corrosion cracking. This work is a continuation of previous work that investigated the propensity of steels to suffer pitting and stress corrosion cracking in various waste simulants. The focus of this work is an investigation of the sensitivity of the steels' pitting and stress corrosion cracking susceptibility tosimulant pH. Previous work demonstrated that wastes that are high in aggressive nitrate and low in inhibitory nitrite are susceptible to localized corrosion. However, the previous work involved wastes with pH 12 or higher. The current work involves wastes with lower pH of 10 or 11. It is expected that at these lower pHs that a higher nitrite-to-nitrate ratio will be necessary to ensure tank integrity. This experimental work involved both electrochemical testing, and slow strain rate testing at either the free corrosion potential or under anodic polarization. The results of the current work will be discussed, and compared to work previously presented.

  15. MHK technologies include current energy conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research leverages decades of experience in engineering and design and analysis (D&A) of wind power technologies, and its vast research complex, including high-performance...

  16. FY 1994 Annual Work Plan

    SciTech Connect (OSTI)

    Not Available

    1993-09-30T23:59:59.000Z

    In accordance with the Inspector General`s Strategic Planning Policy directive, the Office of Inspector General (OIG) annually updates its Strategic Plan with budgetary and program guidance for the next fiscal year. The program guidance identifies and establishes priorities for OIG coverage of important DOE issues and operations, provides the basis for assigning OIG resources, and is the source for issues covered in Assistant Inspectors General annual work plans. The Office of the Assistant Inspector General for Audits (AIGA) publishes an Annual Work Plan in September of each year. The plan includes the OIG program guidance and shows the commitment of resources necessary to accomplish the assigned work and meet our goals. The program guidance provides the framework within which the AIGA work will be planned and accomplished. Audits included in this plan are designed to help insure that the requirements of our stakeholders have been considered and blended into a well balanced audit program.

  17. Dislocation substructure in fatigued duplex stainless steel

    SciTech Connect (OSTI)

    Polak, J. (Ecole Centrale de Lille, Villeneuve d'Ascq (France). Lab. de Mecanique de Lille Inst. of Physical Metallurgy, Brno (Czechoslovakia). Academy of Sciences); Degallaix, S. (Ecole Centrale de Lille, Villeneuve d'Ascq (France). Lab. de Mecanique de Lille); Kruml, T. (Inst. of Physical Metallurgy, Brno (Czechoslovakia). Academy of Sciences)

    1993-12-15T23:59:59.000Z

    Cyclic plastic straining of crystalline materials results in the formation of specific dislocation structures. Considerable progress in mapping and understanding internal dislocation structures has been achieved by studying single crystal behavior: however, most structural materials have a polycrystalline structure and investigations of polycrystals in comparison to single crystal behavior of simple metals prove to be very useful in understanding more complex materials. There are some classes of materials, however, with complicated structure which do not have a direct equivalent in single crystalline form. Moreover, the specific dimensions and shapes of individual crystallites play an important role both in the cyclic stress-strain response of these materials and in the formation of their interior structure in cyclic straining. Austenitic-ferritic duplex stainless steel, which is a kind of a natural composite, is a material of this type. The widespread interest in the application of duplex steels is caused by approximately doubled mechanical properties and equal corrosion properties, when compared with classical austenitic stainless steels. Fatigue resistance of these steels as well as the surface damage evolution in cyclic straining have been studied; however, much less is known about the internal substructure development in cyclic straining. In this study the dislocation arrangement in ferritic and austenitic grains of the austenitic-ferritic duplex steel alloyed with nitrogen and cyclically strained with two strain amplitudes, is reported and compared to the dislocation arrangement found in single and polycrystals of austenitic and ferritic materials of a similar composition and with the surface relief produced in cyclic plastic straining.

  18. Laminar inclusions of duplex stainless steels

    SciTech Connect (OSTI)

    Hudson, M.E. [Fluor Daniel Canada Inc., Calgary, Alberta (Canada)

    1993-12-31T23:59:59.000Z

    Duplex Stainless Steel have been utilized in the offshore petrochemical industries for over twenty years. The steels are normally manufactured to produce a 50:50 duplex austenitic and ferritic microstructure. The microstructure yields the benefits of high strength, corrosion resistance and low thermal expansion. While constructing a high pressure header box for an air cooled heat exchanger, linear indications were observed along the weld preparation faces. These laminations were parallel to the plate surfaces, reminiscent to oxide inclusions found in carbon steel plates manufactured 20 years ago. Concern over premature failure at the highly stressed corner joints resulted in the rejection of the plates. A metallurgical investigation followed. From scanning electron microscopy and energy dispersive x-ray, the indications were shown to be rich in Cr, Mn and Si. The inclusions occurred during steel manufacturing and were most likely due to incorrect removal of oxides at the top of the ingot and/or the exclusion of a secondary remelting process. New plates were ordered with tighter production controls on steel processing. The plates were ultrasonically inspected prior to fabrication and no further problems were discovered.

  19. Nitrogen containing shielding gases for GTAW duplex stainless steels

    SciTech Connect (OSTI)

    Creffield, G.K.; Cole, M.H.; Paciej, R.; Huang, W.; Urmston, S. [BOC Ltd., London (United Kingdom)

    1993-12-31T23:59:59.000Z

    The duplex stainless steel are alloys characterized as consisting of two phases; austenite and ferrite. As such, they combine the benefits of both phases i.e. good ductility and general corrosion resistance of austenite, but with improved stress corrosion cracking resistance and strength associate with ferrite. Carefully controlled manufacturing techniques are employed to produce this combination in roughly equal proportions to ensure optimum properties. The range of duplex alloys studied in this work covered both the standard grade (2205) and the latest generation of super duplex (2507) alloys; typical compositions are shown in Table 1. Although the standard duplex is the most commonly available and widely used, super duplexes, which are characterized by higher chromium, nickel, molybdenum and nitrogen contents, have even better corrosion properties and are finding increasing applications in the offshore industry. To benefit from the superior properties of duplex, it is vital that these alloys can be welded effectively and that the properties of the welded joint match those of the parent weld. The objective of the current investigation was to study the effect of nitrogen, in both the shielding and purge gas, on the weld metal nitrogen content, microstructure and corrosion resistance, with the eventual aim of recommending an effective shielding gas mixture for duplex stainless steels.

  20. Electrodynamics in Iron and Steel

    E-Print Network [OSTI]

    John Paul Wallace

    2009-06-03T23:59:59.000Z

    In order to calculate the reflected EM fields at low amplitudes in iron and steel, more must be understood about the nature of long wavelength excitations in these metals. A bulk piece of iron is a very complex material with microstructure, a split band structure, magnetic domains and crystallographic textures that affect domain orientation. Probing iron and other bulk ferromagnetic materials with weak reflected and transmitted inductive low frequency fields is an easy operation to perform but the responses are difficult to interpret because of the complexity and variety of the structures affected by the fields. First starting with a simple single coil induction measurement and classical EM calculation to show the error is grossly under estimating the measured response. Extending this experiment to measuring the transmission of the induced fields allows the extraction of three dispersion curves which define these internal fields. One dispersion curve yielded an exceedingly small effective mass of 1.8 10^{-39}kg (1.3 10^{-9} m_e) for those spin waves. There is a second distinct dispersion curve more representative of the density function of a zero momentum bound state rather than a propagating wave. The third dispersion curve describes a magneto-elastic coupling to a very long wave length propagating mode. These experiments taken together display the characteristics of a high temperature Bose-Einstein like condensation that can be initiated by pumping two different states. A weak time dependent field drives the formation of coupled J=0 spin wave pairs with the reduced effective mass reflecting the increased size of the coherent state. These field can dominate induction measurements well past the Curie temperature.

  1. austenitic steel tp: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    problem, namely, learning to control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut,...

  2. afa stainless steels: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    problem, namely, learning to control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut,...

  3. austenitic steels reaction: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    problem, namely, learning to control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut,...

  4. a 285 steel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    namely, learning to control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut, Claude 46...

  5. aisi steel vliyanie: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut, Claude 203 Flexural...

  6. aisi 316l steel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut, Claude 238 Flexural...

  7. activation austenitic steels: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    problem, namely, learning to control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut,...

  8. austenitic stainless steel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    problem, namely, learning to control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut,...

  9. aisi h13 steel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut, Claude 209 Flexural...

  10. austenitic steels approche: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    problem, namely, learning to control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut,...

  11. alloy steel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut, Claude 357 Flexural...

  12. alloy steel weldment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut, Claude 370 Flexural...

  13. austenitic steels wirkung: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    problem, namely, learning to control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut,...

  14. aisi-304 stainless steel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    problem, namely, learning to control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut,...

  15. area stainless steel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    problem, namely, learning to control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut,...

  16. austenitic steel aisi: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    problem, namely, learning to control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut,...

  17. austenitic steels final: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    problem, namely, learning to control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut,...

  18. algeciras spain steel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut, Claude 311 Flexural...

  19. activation ferritic steels: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    problem, namely, learning to control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut,...

  20. activation ferritic steel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    problem, namely, learning to control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut,...

  1. aged stainless steel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    problem, namely, learning to control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut,...

  2. austenitic stainless steels: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    problem, namely, learning to control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut,...

  3. austenitic steel irradiated: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    problem, namely, learning to control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut,...

  4. alloy steel exposed: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut, Claude 434 Flexural...

  5. aisi52100 hardened steel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut, Claude 324 Flexural...

  6. austenitic steel type: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut, Claude 120 Flexural...

  7. austenite stainless steel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    problem, namely, learning to control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut,...

  8. austenitic steels amorcage: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    problem, namely, learning to control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut,...

  9. austenitic steels: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    problem, namely, learning to control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut,...

  10. alloy steel primary: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut, Claude First Page Previous Page...

  11. austenitic steels irradiated: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    problem, namely, learning to control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut,...

  12. austentic stainless steels: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    problem, namely, learning to control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut,...

  13. Climate VISION: Private Sector Initiatives: Iron and Steel: Results

    Office of Scientific and Technical Information (OSTI)

    and the Energy Information Agency website for updates. Read the U.S. Steel Industry Energy Efficiency Fact Sheet (PDF 83 KB) Download Acrobat Reader Read Steel Is The New...

  14. Transformation induced plasticity assisted steels: stress or strain affected martensitic

    E-Print Network [OSTI]

    Cambridge, University of

    Transformation induced plasticity assisted steels: stress or strain affected martensitic transformation? S. Chatterjee and H. K. D. H. Bhadeshia* Transformation induced plasticity (TRIP) assisted steels contain a small quantity of carbon enriched retained austenite, which transforms into martensite during

  15. First Structural Steel Erected at NSLS-II

    ScienceCinema (OSTI)

    None

    2010-01-08T23:59:59.000Z

    Ten steel columns were incorporated into the ever-growing framework for the National Synchrotron Light Source II last week, the first structural steel erected for the future 400,000-square-foot facility.

  16. advanced ferritic steel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    behavior of ferrite and dual phase steels Engineering Websites Summary: and dual phase steels C.F. Kuang a,n , J. Li b , S.G. Zhang a , J. Wang b , H.F. Liu b , A.A....

  17. alloy ferritic steels: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    behavior of ferrite and dual phase steels Engineering Websites Summary: and dual phase steels C.F. Kuang a,n , J. Li b , S.G. Zhang a , J. Wang b , H.F. Liu b , A.A....

  18. advanced ferritic steels: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    behavior of ferrite and dual phase steels Engineering Websites Summary: and dual phase steels C.F. Kuang a,n , J. Li b , S.G. Zhang a , J. Wang b , H.F. Liu b , A.A....

  19. Friction Stir Spot Welding of Advanced High Strength Steels ...

    Energy Savers [EERE]

    Stir Spot Welding of Advanced High Strength Steels (AHSS) Friction Stir Spot Welding of Advanced High Strength Steels (AHSS) Presentation from the U.S. DOE Office of Vehicle...

  20. Structural Reliability of Bridges Elevated with Steel Pedestals

    E-Print Network [OSTI]

    Bisadi, Vahid 1980-

    2012-09-19T23:59:59.000Z

    seismic regions using statistical tests. Then, to provide a general framework, which can be applied to all bridges that are elevated with steel pedestals, this dissertation develops probabilistic capacity and demand models for steel pedestals considering...

  1. Cartwright on Causality: Methods, Metaphysics, and Modularity Daniel Steel

    E-Print Network [OSTI]

    Steel, Daniel

    Cartwright on Causality: Methods, Metaphysics, and Modularity Daniel Steel Department of Philosophy 503 S Kedzie Hall Michigan State University East Lansing, MI 48824-1032 USA Email: steel@msu.edu #12

  2. G odel's legacy in set theory John R. Steel

    E-Print Network [OSTI]

    Koellner, Peter

    Gň? odel's legacy in set theory John R. Steel University of California, Berkeley August 2006 1 #12 generalizes the theory of L, has been developed. (Silver, Kunen, Mitchell, Dodd, Jensen, Martin, Steel, Woodin

  3. Must a Bayesian Accept the Likelihood Principle? Daniel Steel

    E-Print Network [OSTI]

    Fitelson, Branden

    Must a Bayesian Accept the Likelihood Principle? Daniel Steel Department of Philosophy 503 S. Kedzie Hall Michigan State University East Lansing, MI 48824-1032 Email: steel@msu.edu #12;1 1

  4. Inductive Rules, Background Knowledge, and Skepticism Daniel Steel

    E-Print Network [OSTI]

    Steel, Daniel

    Inductive Rules, Background Knowledge, and Skepticism Daniel Steel Department of Philosophy 503 S. Kedzie Hall Michigan State University East Lansing, MI 48823-1032 Email: steel@msu.edu #12;Abstract

  5. Material property evaluations of bimetallic welds, stainless steel saw fusion lines, and materials affected by dynamic strain aging

    SciTech Connect (OSTI)

    Rudland, D.; Scott, P.; Marschall, C.; Wilkowski, G. [Battelle Memorial Institute, Columbus, OH (United States)

    1997-04-01T23:59:59.000Z

    Pipe fracture analyses can often reasonably predict the behavior of flawed piping. However, there are material applications with uncertainties in fracture behavior. This paper summarizes work on three such cases. First, the fracture behavior of bimetallic welds are discussed. The purpose of the study was to determine if current fracture analyses can predict the response of pipe with flaws in bimetallic welds. The weld joined sections of A516 Grade 70 carbon steel to F316 stainless steel. The crack was along the carbon steel base metal to Inconel 182 weld metal fusion line. Material properties from tensile and C(T) specimens were used to predict large pipe response. The major conclusion from the work is that fracture behavior of the weld could be evaluated with reasonable accuracy using properties of the carbon steel pipe and conventional J-estimation analyses. However, results may not be generally true for all bimetallic welds. Second, the toughness of austenitic steel submerged-arc weld (SAW) fusion lines is discussed. During large-scale pipe tests with flaws in the center of the SAW, the crack tended to grow into the fusion line. The fracture toughness of the base metal, the SAW, and the fusion line were determined and compared. The major conclusion reached is that although the fusion line had a higher initiation toughness than the weld metal, the fusion-line J-R curve reached a steady-state value while the SAW J-R curve increased. Last, carbon steel fracture experiments containing circumferential flaws with periods of unstable crack jumps during steady ductile tearing are discussed. These instabilities are believed to be due to dynamic strain aging (DSA). The paper discusses DSA, a screening criteria developed to predict DSA, and the ability of the current J-based methodologies to assess the effect of these crack instabilities. The effect of loading rate on the strength and toughness of several different carbon steel pipes at LWR temperatures is also discussed.

  6. Enhanced Inclusion Removal from Steel in the Tundish

    SciTech Connect (OSTI)

    R. C. Bradt; M.A.R. Sharif

    2009-09-25T23:59:59.000Z

    The objective of this project was to develop an effective chemical filtering system for significantly reducing the content of inclusion particles in the steel melts exiting the tundish for continuous casting. This project combined a multi-process approach that aimed to make significant progress towards an "inclusion free" steel by incorporating several interdependent concepts to reduce the content of inclusions in the molten steel exiting the tundish for the caster. The goal is to produce "cleaner" steel.

  7. The anisotropic fatigue behaviour of forged steel ETIENNE PESSARDa

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    . This variation has been reported as being 35% for 42CrMo4 steel [7] and 15% for a duplex stainless steel [4] From in the matrix. For instance, Mateo and L√ľtjering [3-4] showed that for a duplex stainless steel and an aluminium(¬į)/D(0¬į) Mateo Duplex Stainless Steel Yield Stress= 610MPa L√ľtjering Al 7475 Yield Stress= 450MPa

  8. Auto/Steel Partnership: Hydroforming Materials and Lubricant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lightweight Rear Chassis Structures Future Generation Passenger Compartment AutoSteel Partnership: Hydroforming Materials and Lubricant Lightweight Rear Chassis Structures...

  9. Radiological Work Planning and Procedures

    E-Print Network [OSTI]

    Kurtz, J E

    2000-01-01T23:59:59.000Z

    Each facility is tasked with maintaining personnel radiation exposure as low as reasonably achievable (ALARA). A continued effort is required to meet this goal by developing and implementing improvements to technical work documents (TWDs) and work performance. A review of selected TWDs from most facilities shows there is a need to incorporate more radiological control requirements into the TWD. The Radioactive Work Permit (RWP) provides a mechanism to place some of the requirements but does not provide all the information needed by the worker as he/she is accomplishing the steps of the TWD. Requiring the engineers, planners and procedure writers to put the radiological control requirements in the work steps would be very easy if all personnel had a strong background in radiological work planning and radiological controls. Unfortunately, many of these personnel do not have the background necessary to include these requirements without assistance by the Radiological Control organization at each facility. In add...

  10. Simulating the Inelastic Seismic Behavior of Steel Braced Frames Including the Effects of Low-Cycle Fatigue

    E-Print Network [OSTI]

    Huang, Yuli

    2009-01-01T23:59:59.000Z

    and axial load, lateral buckling, and local buckling. Uriz (because of lateral and local buckling; therefore, thelongitudinal axis (lateral-torsional buckling), in accor-

  11. Corrosion of carbon steels, stainless steels, and titanium in aqueous lithium bromide solution

    SciTech Connect (OSTI)

    Guinon, J.L.; Garcia-Anton, J.; Perez-Herranz, V. (Univ. Politecnica de Valencia (Spain). Dept. de Ingenieria Quimica y Nuclear); Lacoste, G. (ENSIGC, Toulouse (France))

    1994-03-01T23:59:59.000Z

    Effects of lithium bromide (LiBr) concentration, pH, temperature, exposure time, and the action of some inhibitors on corrosion of several carbon (C) steels, stainless steels (SS), and a titanium (Ti) alloy were studied. Corrosion rates were determined by the polarization resistance method and compared to rates determined by weight-loss measurements. Pitting potentials (E[sub p]) were evaluated in neutral LiBr solution and with different inhibitors. Pit density and average pit depth depended on the metal tested, with lowest values for Ti, the next lowest values for type 316 SS (UNS S31600), and the highest values for UNS G41350 tempered steel.

  12. High temperature oxidation behavior of austenitic stainless steel AISI 304 in steam of nanofluids contain nanoparticle ZrO2

    SciTech Connect (OSTI)

    Prajitno, Djoko Hadi, E-mail: djokohp@batan.go.id; Syarif, Dani Gustaman, E-mail: djokohp@batan.go.id [Research Center for Nuclear Materials and Radiometry, Jl. Tamansari 71, Bandung 40132 (Indonesia)

    2014-03-24T23:59:59.000Z

    The objective of this study is to evaluate high temperature oxidation behavior of austenitic stainless steel SS 304 in steam of nanofluids contain nanoparticle ZrO{sub 2}. The oxidation was performed at high temperatures ranging from 600 to 800įC. The oxidation time was 60 minutes. After oxidation the surface of the samples was analyzed by different methods including, optical microscope, scanning electron microscope (SEM) and X-ray diffraction (XRD). X-ray diffraction examination show that the oxide scale formed during oxidation of stainless steel AISI 304 alloys is dominated by iron oxide, Fe{sub 2}O{sub 3}. Minor element such as Cr{sub 2}O{sub 3} is also appeared in the diffraction pattern. Characterization by optical microscope showed that cross section microstructure of stainless steel changed after oxidized with the oxide scale on the surface stainless steels. SEM and x-ray diffraction examination show that the oxide of ZrO{sub 2} appeared on the surface of stainless steel. Kinetic rate of oxidation of austenite stainless steel AISI 304 showed that increasing oxidation temperature and time will increase oxidation rate.

  13. Corrosion Phenomena of Eurofeer Steel in Pb-17Li Stationary Flow at Magnetic Field

    SciTech Connect (OSTI)

    Platacis, E.; Bucenieks, I.; Muktepavela, F.; Shishko, A. [University of Latvia, Riga (Latvia)

    2006-07-01T23:59:59.000Z

    Search of new energy sources draws the increasing attention to use for this purpose of reactors. In the Europe some years the program EUROATOM uniting scientific of the many countries for the decision of constructive problems at designing of fusion reactors operates. One of the main things in this program is the problem of liquid metals breeder blanket behaviour. Structural material of blanket should meet high requirements because of extreme operating conditions. Therefore the knowledge of the effect of metals flow velocity, temperatures and also a neutron irradiation and a magnetic field on the corrosion processes are necessary. At the moment the eutectic lead -lithium (Pb-17Li) is considered as the most suitable tritium breeder material. In turn as a structural material have been tested both many austenitic and ferritic-martensitic steels. As the optimum variant is considered steel EUROFER 97, which corrosion rate in liquid Pb-17Li eutectic is the least. However, these results have been received without taking into account influence of a strong magnetic field. At the same time, this influence should be essential, as because of change of hydrodynamics of a liquid metal flow, and because of interaction of a magnetic field with a ferromagnetic steel. It has been shown that the magnetic field leads to increase of corrosion rate for austenitic (316L) and martensitic (1,4914) steels. Experimental data for EUROFER 97, and also a theoretical substantiation of the phenomenon are absent, that creates essential difficulties for forecasting working capacity of blanket construction. The aim of presented work were the theoretical and experimental investigations of magnetic field influence on the corrosion of EUROFER 97 steel exposed to flowing Pb-17Li in specific designed loop. (authors)

  14. CE 4990 -Construction Scheduling Week 1: Steel Frame Project

    E-Print Network [OSTI]

    Mukherjee, Amlan

    CE 4990 - Construction Scheduling Week 1: Steel Frame Project Fall 2011 January 13, 2012 Introduction You are a construction manager for a project to build a steel frame for an office building1 of 964 pre-fabricated structural steel members will be used in the construction. The standard bay size

  15. Model coupling friction and adhesion for steel-concrete interfaces

    E-Print Network [OSTI]

    Boyer, Edmond

    Model coupling friction and adhesion for steel- concrete interfaces Michel Raous Laboratoire de: In this paper the interface behaviour between steel and concrete, during pull out tests, is numerically a variable friction coefficient in order to simulate the behaviour of the steel-concrete interface during

  16. Water Modeling of Steel Flow, Air Entrainment and Filtration

    E-Print Network [OSTI]

    Beckermann, Christoph

    Water Modeling of Steel Flow, Air Entrainment and Filtration Christoph Beckermann Associate Beckermann, C., "Water Modeling of Steel Flow, Air Entrainment and Filtration," in Proceedings of the 46th, 1992. #12;Abstract This paper presents an analysis of water modeling of steel pouring to study (1) air

  17. 1D subsurface electromagnetic fields excited by energized steel casing

    E-Print Network [OSTI]

    Torres-VerdŪn, Carlos

    1D subsurface electromagnetic fields excited by energized steel casing Wei Yang1 , Carlos Torres the possibility of enabling steel-cased wells as galvanic sources to detect and quantify spatial variations of electrical conductivity in the subsurface. The study assumes a vertical steel-cased well that penetrates

  18. Reuse of steel and aluminium without melting

    E-Print Network [OSTI]

    Cooper, Daniel

    2014-01-07T23:59:59.000Z

    -of-life metal components that could be reused for each product, the catalogue formed the basis of a set of semi-structured interviews with industrial experts. The results suggest that approximately 30% of steel and aluminium used in current products could... Allwood J.M., Cullen J.M., Cooper D.R., Milford R.L., Patel A.C.H., Carruth M.A., McBrien M., 2010. Conserving our metal energy: avoiding melting steel and aluminium scrap to save energy and carbon. University of Cambridge, ISBN 978-0-903428-30-9 Allwood...

  19. Carbon Diffusion Across Dissimilar Steel Welds

    E-Print Network [OSTI]

    Race, Julia Margaret

    1992-12-08T23:59:59.000Z

    CrMo 0.056 0.40 0.77 0.010 0.012 1.11 0.44 0.035 0.015 lCr1MolV 0.13 0.23 0.50 0.033 0.055 0.41 0.58 0.25 0.252 2 4 Table 1.2: Typical compositions of the commonly used high strength low alloy steels. 1.3.2 High Cr ferritie steels Increasing...

  20. The Signifance of Retained Austenite in Steels

    E-Print Network [OSTI]

    Bhadeshia, H K D H

    1980-02-05T23:59:59.000Z

    . Introduction 90 2. Experimental Method and Techniques 91 3. Results and Discussion 92 4. Summary 94 VIII. An Analysis o£ the Mechanical Properties and Microstructure o£ a High-Silicon Dual-Phase Steel 1. Introduction 2. De£ormation Models 3. Experimental... £ects such that the extent o£ twinning was the greatest when adjacent martensite units had twin-related lattices. The thermodynamics o£ dislocated martensites have been briefly examined, The inhomogeneous de£ormation behaviour o£ dual-phase steels has been analysed in terms...

  1. Multistructural examination of low activation ferritic steels following irradiation in ORR at 330 and 400 degrees C to ~ 10 dpa

    SciTech Connect (OSTI)

    Gelles, David S.

    2004-08-01T23:59:59.000Z

    Microstructural examinations are reported for a series of low activation steels containing Mn following irradiation in the Oak Ridge Reactor at 330 and 400 C to {approx}10 dpa. Alloy compositions included 2% Cr, 9% Cr and 12% Cr steels with V to 1.5% and W to 1.0%. Results include compositional changes in precipitates and microstructural changes as a function of composition and irradiation temperature. It is concluded that temperatures in ORR are on the order of 50 C higher than anticipated.

  2. EE Regional Technology Roadmap Includes comparison

    E-Print Network [OSTI]

    EE Regional Technology Roadmap Includes comparison against 6th Power Plan (Update cyclically Data Clearinghouse BPA/RTF NEEA/Regional Programs Group Update Regional EE Technology Roadmap Lighting

  3. DIDACTICAL HOLOGRAPHIC EXHIBIT INCLUDING (HOLOGRAPHIC TELEVISION)

    E-Print Network [OSTI]

    de Aguiar, Marcus A. M.

    DIDACTICAL HOLOGRAPHIC EXHIBIT INCLUDING HoloTV (HOLOGRAPHIC TELEVISION) José J. Lunazzi , DanielCampinasSPBrasil Abstract: Our Institute of Physics exposes since 1980 didactical exhibitions of holography in Brazil where

  4. Sessions include: Beginning Farmer and Rancher

    E-Print Network [OSTI]

    Watson, Craig A.

    Sessions include: ≠ Beginning Farmer and Rancher ≠ New Markets and Regulations ≠ Food Safety ≠ Good Bug, Bad Bug ID ≠ Horticulture ≠ Hydroponics ≠ Livestock and Pastured Poultry ≠ Mushrooms ≠ Organic ≠ Live animal exhibits ≠ Saturday evening social, and ≠ Local foods Florida Small Farms and Alternative

  5. Going to Work: Understanding Work Schedules

    E-Print Network [OSTI]

    Hoffman, Rosemarie

    2000-07-20T23:59:59.000Z

    have to work: John, Joyce, Jessie and Mary are full- time employees, and Jan is part-time. Each employee is required to report to This is an example of a work schedule that tells you when and what you have to do: It is best to arrive at least 5 to 15... John, Jessie Joyce Mary Wednesday Joyce, Mary John Jan Thursday Jessie, Joyce Jan Mary Friday Jan, Jessie Joyce John Saturday Mary, Joyce John Jessie Please answer the following questions about the work schedule: 1. What week is this work schedule...

  6. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2014-11-25T23:59:59.000Z

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  7. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19T23:59:59.000Z

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  8. " Rotating, In Plane Magnetization and Magneto-Optic Imaging of Cracks in Thick-Section Steel Under Stainless-Steel Cladding".

    SciTech Connect (OSTI)

    Gerald Fitzpatrick & Richard Skaugset

    2000-10-13T23:59:59.000Z

    The nondestructive inspection (NDI) of thick-section steel nuclear reactor pressure vessels (RPV'S) is rendered difficult by rough stainless steel cladding. Because the cladding condition is poorly known in most RPV's, an NDI technique that is unaffected by cladding roughness would be a major advance. Magneto-optic imaging is one such technique. The purpose of this project was to develop a novel method to induce rotating, in-plane magnetization, and to combine this capability with magneto-optic imaging to produce a self-contained inspection system. Imaging of cracks under thick cladding (0.250 inches) was demonstrated using a system capable, in principle, of performing robotic inspections, both inside & outside a typical boiling water reactor (BWR) RPV. This report, together publications listed, constitutes a comprehensive account of this work.

  9. Effects Of Milling On Surface Integrity Of Low-Carbon Steel

    SciTech Connect (OSTI)

    Rodrigues, Alessandro Roger; Matsumoto, Hidekasu; Yamakami, Wyser Jose; Tokimatsu, Ruis Camargo; Menezes, Miguel Angelo; Suyama, Daniel Iwao; Norcino, Adriana Bruno; Vendrame, Saimon [UNESP-Univ Estatual Paulista, Engineering Faculty of Ilha Solteira, Av. Brasil Centro, 56-Zip Code 15.385-000-Ilha Solteira, Sao Paulo (Brazil)

    2011-01-17T23:59:59.000Z

    This work measured the effect of milling parameters on the surface integrity of low-carbon alloy steel. The Variance Analysis showed that only depth of cut did not influence on the workpiece roughness and the Pearson's Coefficient indicated that cutting speed was more influent than tool feed. All cutting parameters introduced tensile residual stress in workpiece surface. The chip formation mechanism depended specially on cutting speed and influenced on the roughness and residual stress of workpiece.

  10. Recycling of electric arc furnace dust: Jorgensen steel facility

    SciTech Connect (OSTI)

    Jackson, T.W.; Chapman, J.S.

    1995-01-01T23:59:59.000Z

    This document is an evaluation of the Ek Glassification(TM) Process to recycle and convert K061-listed waste (Electric Arc Furnace or EAF dust) and other byproducts of the steel-making industry into usable products. The Process holds potential for replacing the need for expensive disposal costs associated with the listed waste with the generation of marketable products. The products include colored glass and glass-ceramics; ceramic glazes, colorants, and fillers; roofing granules and sandblasting grit; and materials for Portland cement production. Field testing of the technology was conducted by the U.S. Environmental Protection Agency (U.S. EPA) in early July of 1991 at the Earle M. Jorgensen Steel Co. (EMJ) plant in Seattle, Washington, and both technical and economic aspects of the technology were examined. TCLP testing of the product determined that leachability characteristics of metals in the product meet treatment standards for K061-listed waste. The Process was also shown to be economically viable, based on capital and operating cost estimates, and profit and revenue forecasts for a 21,000 ton-per-year operation. Although this effort showed that the technology holds promise, regulatory compliance should be evaluated on the basis of the actual hardware configuration and operating procedures along with the leachability of the specific product formulations to be used.

  11. CLEAN CAST STEEL TECHNOLOGY: DETERMINATION OF TRANSFORMATION DIAGRAMS FOR DUPLEX STAINLESS STEEL.

    SciTech Connect (OSTI)

    Chumbley. L., S.

    2005-09-18T23:59:59.000Z

    Duplex stainless steels (DSS) constitute both ferrite and austenite as a matrix. Such a microstructure confers a high corrosion resistance with favorable mechanical properties. However, intermetallic phases such as sigma (√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Į√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ā√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬≥) and chi (√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Į√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ā√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬£) can also form during casting or high-temperature processing and can degrade the properties of the DSS. This research was initiated to develop time-temperature-transformation (TTT) and continuous-cooling- transformation (CCT) diagrams of two types of cast duplex stainless steels, CD3MN (Fe 22Cr-5Ni-Mo-N) and CD3MWCuN (Fe-25Cr-7Ni-Mo-W-Cu-N), in order to understand the time and temperature ranges for intermetallic phase formation. The alloys were heat treated isothermally or under controlled cooling conditions and then characterized using conventional metallographic methods that included tint etching, and also using electron microscopy (SEM, TEM) and wavelength dispersive spectroscopy (WDS). The kinetics of intermetallic-phase (√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Į√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ā√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬≥ + √?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Į√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ā√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬£) formation were analyzed using the Johnson-Mehl-Avrami (JMA) equation in the case of isothermal transformations and a modified form of this equation in the case of continuous cooling transformations, The rate of intermetallic-phase formation was found to be much faster in CD3MWCuN than CD3MN due mainly to differences in the major alloying contents such as Cr, Ni and Mo. To examine in more detail the effects of these elements of the phase stabilities, a series of eight steel castings was designed with the Cr, Ni and Mo contents systematically varied with respect to the nominal composition of CD3MN. The effects of varying the contents of alloying additions on the formation of intermetallic phases were also studied computationally using the commercial thermodynamic software package, Thermo-Calc. In general, √?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Į√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ā√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬≥ was stabilized with increasing Cr addition and by increasing Mo addition. However, a delicate balance among Ni and other minor elements such as N and Si also exists. Phase equilibria in DSS can be affected by local composition fluctuations in the cast alloy. This may cause discrepancy between thermodynamic prediction and experimental observation.

  12. Sensitivity of ultrasonic nonlinearity to irradiated, annealed, and re-irradiated microstructure changes in RPV steels

    SciTech Connect (OSTI)

    Matlack, Katie [Georgia Institute of Technology, Atlanta] [Georgia Institute of Technology, Atlanta; Kim, J-Y. [Georgia Institute of Technology, Atlanta] [Georgia Institute of Technology, Atlanta; Wall, J.J. [Electric Power Research Institute (EPRI)] [Electric Power Research Institute (EPRI); Jacobs, L.J. [Georgia Institute of Technology, Atlanta] [Georgia Institute of Technology, Atlanta; Sokolov, Mikhail A [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    The planned life extension of nuclear reactors throughout the US and abroad will cause reactor vessel and internals materials to be exposed to more neutron irradiation than was originally intended. A nondestructive evaluation (NDE) method to monitor radiation damage would enable safe and cost-effective continued operation of nuclear reactors. Radiation damage in reactor pressure vessel (RPV) steels causes microstructural changes that leave the material in an embrittled state. Nonlinear ultrasound is an NDE technique quantified by the measurable acoustic nonlinearity parameter, which is sensitive to microstructural changes in metallic materials such as dislocations, precipitates and their combinations. Recent research has demonstrated the sensitivity of the acoustic nonlinearity parameter to increasing neutron fluence in representative RPV steels. The current work considers nonlinear ultrasonic experiments conducted on similar RPV steel samples that had a combination of irradiation, annealing, re-irradiation, and/or re-annealing to a total neutron fluence of 0.5 5 1019 n/cm2 (E > 1 MeV) at an irradiation temperature of 290 C. The acoustic nonlinearity parameter generally increased with increasing neutron fluence, and consistently decreased from the irradiated to the annealed state over different levels of neutron fluence. Results of the measured acoustic nonlinearity parameter are compared with those from previous measurements on other RPV steel samples. This comprehensive set of results illustrates the dependence of the measured acoustic nonlinearity parameter on neutron fluence, material composition, irradiation temperature and annealing.

  13. STUDY OF AGING EFFECTS IN 2205 DUPLEX STAINLESS STEEL USING THERMOELECTRIC POWER MEASUREMENT

    SciTech Connect (OSTI)

    Lara, N.; Ruiz, A.; Carreon, H.; Medina, A. [NDE Group, Instituto de Investigaciones Metalurgicas, UMSNH (Mexico); Sanchez, A. [Department of Mechanical Engineering, UMSNH (Mexico)

    2010-02-22T23:59:59.000Z

    Thermoelectric power (TEP) measurements have been used as an effective method for evaluating the metallurgical state of various alloys. In the steel industry, some fabrication processes promote phase transformation and second phase precipitations which affect the material properties. Assessment of mechanical properties is critical in order to ensure quality of components. This work was conducted in order to evaluate the influence of the aging state of 2205 duplex stainless steel on TEP values. Commercial 2205 duplex steel was isothermally aged at 650 deg. C 700 deg. C and 900 deg. C at different aging times. TEP measurement technique was applied as a non destructive assessment technique to characterize the aging kinetics of the aged 2205 duplex stainless steel, hardness Rockwell (RC) and Charpy impact test were preformed to observe the effect of aging time on the specimens. Metallographic analysis was used to monitor phase transformation and sigma phase precipitation caused by the spinodal decomposition process of ferrite into secondary austenite and sigma phase. Results indicate that that the TEP is sensitive to gradual microstructural changes produced by the aging treatments.

  14. Qualification of large diameter duplex stainless steel girth welds intended for low temperature service

    SciTech Connect (OSTI)

    Prosser, K.; Robinson, A.G.; Rogers, P.F.

    1996-12-31T23:59:59.000Z

    British Gas recently had a requirement to fabricate some UNS31803 duplex stainless steel pipework for an offshore topsides process plant. The pipework had a maximum diameter of 600mm, with a corresponding wall thickness of 18mm, and it was designed to operate at a minimum temperature of {minus}40 C. There is a lack of published toughness data for girth welds in duplex stainless steel at this thickness and minimum design temperature. Additionally, toughness requirements for girth welds in current pipework and pressure vessel codes are based on experience with carbon steels. As a result, a program of work has been carried out to study the Charpy, CTOD and wide plate toughness of girth welds in 22%Cr duplex stainless steel pipework. The welds were produced using a typical gas tungsten arc/gas metal arc pipework fabrication procedure. In addition, non-destructive evaluation trials have been carried out on a deliberately defective weld using radiography and ultrasonics. It was demonstrated that double wall single image {gamma}-radiography, single wall single image and panoramic X-radiography, and conventional shear wave ultrasonics were all able to detect planar root defects varying from 3 to 7mm in depth. There was good agreement between the sizes recorded by ultrasonics and those measured from macrosections. Small scale mechanical tests demonstrated that welds with overmatching tensile properties, and low temperature toughness properties which were acceptable to specification, could be produced. Wide plate tests demonstrated that defect size calculations from BS PD7493 were conservative.

  15. Evaluation of the start of transformation in carburized steels by means of mathematical modelling

    SciTech Connect (OSTI)

    Palafox, M.G.; Colas, R. [Univ. Autonoma de Nuevo Leon (Mexico); Grinberg, D.M.K. de; Grinberg, A.

    1995-12-31T23:59:59.000Z

    Superficial enrichment with carbon in steels is done in order to increase the local hardness and resistance by promoting the transformation to martensite in steels of low carbon content. The transformation during quenching normally proceeds from the surface of the piece to the interior, due to the heat transfer conditions, but in some cases, the transformation might start at a given position within the interior of the piece, a feature which will be responsible for the appearance of cracks at the surface. In this work a diffusion and a heat transfer model are coupled together in order to evaluate the tendency for the above mentioned feature to occur. The diffusion model calculates the enrichment of carbon as a function of the carburizing potential of the atmospheres, as well as the temperatures and times employed during a two stage carburizing treatment. The heat transfer model calculates the heat flow in pieces of steel of different size which have the carbon profiles calculated by the former model, and predicts the start of the transformation to martensite (M{sub s}) from mathematical regressions. The heat transfer coefficients which have to be applied as the piece of steel is quenched in different media were deduced from experimental cooling curves.

  16. Reduced-activation austenitic stainless steels: The Fe--Mn--Cr--C system

    SciTech Connect (OSTI)

    Klueh, R.L.; Maziasz, P.J.

    1988-01-01T23:59:59.000Z

    Nickel-free manganese-stabilized steels are being developed for fusion-reactor applications. As the first part of this effort, the austenite-stable region in the Fe--Mn--Cr--C system was determined. Results indicated that the Schaeffler diagram developed for Fe--Ni--Cr--C alloys cannot be used to predict the constituents expected for high-manganese steels. This is true because manganese is not as strong an austenite stabilizer relative to delta-ferrite formation as predicted by the diagram, but it is a stronger austenite stabilizer relative to martensite than predicted. Therefore, the austenite-stable region for Ne--Mn--Cr--C alloys occurs at lower chromium and hugher combinations of manganese and carbon than predicted by the Schaeffler diagram. Development of a manganese-stabilized stainless steel should be possible in the composition range of 20 to 25% Mn, 10 to 15% Cr, and 0.01 to 0.25%C. Tensile behavior of an Fe--20%Mn--12%Cr--0.25%C alloy was determined. The strength and ductility of this possible base composition was comparable to type 316 stainless steel in both the solution-annealed and cold-worked condition.

  17. QEP WORKING GROUP CHARGES Assessment Working Group

    E-Print Network [OSTI]

    Liu, Paul

    and a framework that details timelines, leadership, resource allocation, and an assessment plan that is clearlyQEP WORKING GROUP CHARGES Assessment Working Group The topic of the QEP should fit should be supported by a thorough understanding of the institutional context and by assessment data

  18. Review: [Untitled] Reviewed Work(s)

    E-Print Network [OSTI]

    Elman, Benjamin

    Review: [Untitled] Reviewed Work(s): Dodonæus in Japan: Translation and the Scientific Mind to leading academic journals and scholarly literature from around the world. The Archive is supported-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more

  19. Final Report, Volume 1, Metallurgical Evaluation of Cast Duplex Stainless Steels and their Weldments

    SciTech Connect (OSTI)

    Wen, Songqing; Lundin, Carl, W.; Batten, Greg, W.

    2005-09-30T23:59:59.000Z

    Duplex stainless steels (DSS) are being specified for chloride containing environments due to their enhanced pitting and stress corrosion cracking resistance. They exhibit improved corrosion performance over the austenitic stainless steels. Duplex stainless steels also offer improved strength properties and are available in various wrought and cast forms. Selected grades of duplex stainless steel castings and their welds, in comparison with their wrought counterparts, were evaluated, regarding corrosion performance and mechanical properties and weldability. Multiple heats of cast duplex stainless steel were evaluated in the as-cast, solution annealed (SA) static cast and SA centrifugal cast conditions, while their wrought counterparts were characterized in the SA condition and in the form of as-rolled plate. Welding, including extensive assessment of autogenous welds and a preliminary study of composite welds (shielded metal arc weld (SMAW)), was performed. The evaluations included critical pitting temperature (CPT) testing, intergranular corrosion (IGC) testing, ASTM A923 (Methods A, B and C), Charpy impact testing, weldability testing (ASTM A494), ferrite measurement and microstructural evaluations. In the study, the corrosion performances of DSS castings were characterized and assessed, including the wrought counterparts for comparison. The evaluation filled the pore of lack of data for cast duplex stainless steels compared to wrought materials. A database of the pitting corrosion and IGC behavior of cast and wrought materials was generated for a greater depth of understanding for the behavior of cast duplex stainless steel. In addition, improved evaluation methods for DSS castings were developed according to ASTM A923, A262, G48 and A494. The study revealed that when properly heat treated according to the specification, (1) DSS castings have equal or better pitting and intergranular corrosion resistance than their wrought counterparts; (2) Welding reduces the pitting and intergranular corrosion resistance for both the wrought and cast duplex alloys; (3) Castings generally have better toughness than their wrought counterparts in the temperature range of √?¬?√?¬?√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?80√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬įC to +20√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬įC; (4) All shield metal arc (SMA) test welds in DSS castings, with recommended or over matching filler metal, indicate that welding is not a significant factor when considering DSS applications.

  20. Final Report, Volume 1, Metallurgical Evaluation of Cast Duplex Stainless Steels and their Weldments

    SciTech Connect (OSTI)

    Wen, Songqing; Lundin, Carl, W.; Batten, Greg, W.

    2005-09-30T23:59:59.000Z

    Duplex stainless steels (DSS) are being specified for chloride containing environments due to their enhanced pitting and stress corrosion cracking resistance. They exhibit improved corrosion performance over the austenitic stainless steels. Duplex stainless steels also offer improved strength properties and are available in various wrought and cast forms. Selected grades of duplex stainless steel castings and their welds, in comparison with their wrought counterparts, were evaluated, regarding corrosion performance and mechanical properties and weldability. Multiple heats of cast duplex stainless steel were evaluated in the as-cast, solution annealed (SA) static cast and SA centrifugal cast conditions, while their wrought counterparts were characterized in the SA condition and in the form of as-rolled plate. Welding, including extensive assessment of autogenous welds and a preliminary study of composite welds (shielded metal arc weld (SMAW)), was performed. The evaluations included critical pitting temperature (CPT) testing, intergranular corrosion (IGC) testing, ASTM A923 (Methods A, B and C), Charpy impact testing, weldability testing (ASTM A494), ferrite measurement and microstructural evaluations. In the study, the corrosion performances of DSS castings were characterized and assessed, including the wrought counterparts for comparison. The evaluation filled the pore of lack of data for cast duplex stainless steels compared to wrought materials. A database of the pitting corrosion and IGC behavior of cast and wrought materials was generated for a greater depth of understanding for the behavior of cast duplex stainless steel. In addition, improved evaluation methods for DSS castings were developed according to ASTM A923, A262, G48 and A494. The study revealed that when properly heat treated according to the specification, (1) DSS castings have equal or better pitting and intergranular corrosion resistance than their wrought counterparts; (2) Welding reduces the pitting and intergranular corrosion resistance for both the wrought and cast duplex alloys; (3) Castings generally have better toughness than their wrought counterparts in the temperature range of -80 C to +20 C; (4) All shield metal arc (SMA) test welds in DSS castings, with recommended or over matching filler metal, indicate that welding is not a significant factor when considering DSS applications.

  1. A comparison of dilatometry and in-situ neutron diffraction in tracking bulk phase transformations in a martensitic stainless steel

    SciTech Connect (OSTI)

    Christien, F., E-mail: frederic.christien@univ-nantes.fr [Institut des Matťriaux Jean Rouxel (IMN), Universitť de Nantes, CNRS, Rue Christian Pauc, BP 50609, 44306 Nantes Cedex 3 (France); Telling, M.T.F. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, OX11 0QX (United Kingdom); Department of Materials, University of Oxford, Parks Road, Oxford (United Kingdom); Knight, K.S. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, OX11 0QX (United Kingdom); Department of Earth Sciences, The Natural History Museum, Cromwell Road, London (United Kingdom)

    2013-08-15T23:59:59.000Z

    Phase transformations in the 17-4PH martensitic stainless steel have been studied using different in-situ techniques, including dilatometry and high resolution neutron diffraction. Neutron diffraction patterns were quantitatively processed using the Rietveld refinement method, allowing the determination of the temperature-dependence of martensite (??, bcc) and austenite (?, fcc) phase fractions and lattice parameters on heating to 1000 įC and then cooling to room temperature. It is demonstrated in this work that dilatometry doesn't permit an accurate determination of the end temperature (Ac3) of the ?? ? ? transformation which occurs upon heating to high temperature. The analysis of neutron diffraction data has shown that the respective volumes of the two phases become very close to each other at high temperature, thus making the dilatometric technique almost insensitive in that temperature range. However, there is a very good agreement between neutron diffraction and dilatometry at lower temperature. The martensitic transformation occurring upon cooling has been analysed using the KoistinenĖMarburger equation. The thermal expansion coefficients of the two phases have been determined in addition. A comparison of the results obtained in this work with data from literature is presented. - Highlights: ē Martensite is still present at very high temperature (> 930 įC) upon heating. ē The end of austenitisation cannot be accurately monitored by dilatometry. ē The martensite and austenite volumes become similar at high temperature (> ? 850 įC)

  2. The corrosion of some stainless steels in a marine mud

    SciTech Connect (OSTI)

    Francis, R.; Byrne, G. [Weir Materials and Foundries Park Works, Manchester (United Kingdom); Campbell, H.S. [Univ. of Surrey (United Kingdom). Dept. of Materials Science and Engineering

    1999-11-01T23:59:59.000Z

    The report presents the results for three alloys: carbon steel, 316L stainless steel and a proprietary super duplex stainless steel (UNS S32760), exposed in a marine mud off the south coast of England for 5 years. Analysis of the mud showed it to be very aggressive using a corrosion index developed at the University of Manchester. Carbon steel showed a typical corrosion rate for microbial attack with pits up to 0.64mm deep. The 316L stainless steel had extensive broad, shallow attack with a few, deeper pits. The Z100 parent pipe and weldments showed no evidence of corrosion attack.

  3. Long-term embrittlement of cast duplex stainless steels in LWR systems. Semiannual report, April--September 1992: Volume 7, No. 2

    SciTech Connect (OSTI)

    Chopra, O.K. [Argonne National Lab., IL (United States)

    1993-07-01T23:59:59.000Z

    This progress report summarizes work performed by Argonne National Laboratory on longterm thermal embrittlement of cast duplex stainless steels in LWR systems during the six months from April--September 1992. A procedure and correlations are presented for predicting Charpy-impact energy, tensile flow stress, fracture toughness J-R curve, tearing modulus, and J{sub IC} of aged cast stainless steels from known material information. The ``saturation`` impact strength and fracture toughness of a specific cast stainless steel, i.e., the minimum value that would be achieved for the material after long-term service, is estimated from the chemical composition of the steel. Mechanical properties as a function of time and temperature of reactor service are estimated from impact energy and flow stress of the unaged material and the kinetics of embrittlement, which are also determined from chemical composition. The J{sub IC} values are determined from the estimated J-R curve and flow stress. Examples of estimating mechanical properties of cast stainless steel components during reactor service are presented. A common ``lower-bound`` J-R curve for cast stainless steels of unknown chemical composition is also defined for a given grade of steel, ferrite content, and temperature.

  4. Electric Power Monthly, August 1990. [Glossary included

    SciTech Connect (OSTI)

    Not Available

    1990-11-29T23:59:59.000Z

    The Electric Power Monthly (EPM) presents monthly summaries of electric utility statistics at the national, Census division, and State level. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data includes generation by energy source (coal, oil, gas, hydroelectric, and nuclear); generation by region; consumption of fossil fuels for power generation; sales of electric power, cost data; and unusual occurrences. A glossary is included.

  5. Microstructural Evolution in Power Plant Steels

    E-Print Network [OSTI]

    Cambridge, University of

    energy of the steam is converted to electrical energy by a system of turbines and a generator. Figure 2 temperature as possible. Progress in power-plant alloy design has allowed T1 to be increased from 370 C Steels Pump Cooling water Cooling water Electrical output Condenser Reheat Coal Boiler Superheater Ash HP

  6. Extraordinary Ductility in Albearing TRIP Steel

    E-Print Network [OSTI]

    Cambridge, University of

    .K. Abstract An iron≠based alloy system has been developed which exhibits impressive combina- tions of tensile is research in progress on the stronger steels in order to enhance ductility and assess other engineering cooling transformation (DeCooman, 2004; Jacques, 2004; Matsumura et al., 1987a,b; Sakuma et al., 1991

  7. Selection of Processes for Welding Steel Rails

    E-Print Network [OSTI]

    Eagar, Thomas W.

    ...._ _) Selection of Processes for Welding Steel Rails by N.S. Tsai* and T.W. Eagar* ABSTRACT 421 The advantages and limitations ofseveral conventional and prospective rail welding processes are reviewed with emphasis on the heat input rate, on joint preparation, on post weld grinding and on resultant metallurgical

  8. The Steel Market Today And Tomorrow

    E-Print Network [OSTI]

    Eagar, Thomas W.

    a liability as a benefit. Mature Industry Many observers suggest that the metals industry is based on old straddled the traditional metals industries, as well as the newer "high technol- ogy'' industries, the claim problems have been solved." For example, the scrap rate for the steel industry is extremely low, esp~ dally

  9. Energy Flow Models for the Steel Industry

    E-Print Network [OSTI]

    Hyman, B.; Andersen, J. P.

    Energy patterns in the U. S. steel industry are examined using several models. First is an end-use model based on data in the 1994 Manufacturing Energy Consumption Survey (MECS). Then a seven-step process model is presented and material flow through...

  10. Transformation texture of allotriomorphic ferrite in steel

    E-Print Network [OSTI]

    Cambridge, University of

    Transformation texture of allotriomorphic ferrite in steel D. W. Kim1 , R. S. Qin1 and H. K. D. H into that of the product is mathematically defined. This is not the case when the ferrite forms by a reconstructive mechanism. The allotriomorphic ferrite nucleates heterogeneously at austenite grain boundaries, and although

  11. Avoid stainless steel failures in FGD systems

    SciTech Connect (OSTI)

    Mills, J.P.; Schillmoller, C.M.

    1995-11-01T23:59:59.000Z

    Preventing pitting and localized corrosion is the key to success where low maintenance and high reliability are rime considerations in flue-gas desulfurization (FGD) designs. Knowing when to use a stainless steel, and when not to, is crucial. Operating parameters and environmental factors greatly affect alloy performance, especially pH, temperature, and chloride and oxygen levels. Failures of stainless steels can be avoided by understanding their limits in light of these variables. This article will focus on the capabilities of Types 316L, 317L, 317LM, 317LMN, 904L, and 6% Mo stainless steels and their applications, as well as provide details on unique combination of mechanical properties and corrosion resistance of the 22% Cr duplex and 25% Cr super-duplex stainless steels in acid chloride systems. Guidelines will be presented on methods to prevent intergranular corrosion, stress corrosion cracking, and pitting and crevice corrosion, and what process steps can be taken to assure reasonable performance of marginal alloy selections. Emphasis will be on the lime/limestone wet scrubbing process and the quencher/absorber.

  12. Modelling of Simultaneous Transformations in Steels

    E-Print Network [OSTI]

    Cambridge, University of

    submitted for the degree of Doctor of Philosophy Department of Materials Science and Metallurgy Univesity of Professor H. K. D. H. Bhadeshia in the Department of Materi- als Science and Metallurgy, University in the proceedings of the conference on New Development on Metallurgy and Applications of High Strength Steels

  13. Modelling Precipitation of Carbides in Martensitic Steels

    E-Print Network [OSTI]

    Cambridge, University of

    of Materials Science and Metallurgy, University of Cambridge, between October 2000 and November 2003. Except facilities in the Department of Materials Science and Metallurgy at the University of Cambridge. I would like of the physical metallurgy of secondary hardening steels and the phenomena of hydrogen embrittlement and hydrogen

  14. Mechanical Behavior and Microstructural Development of Low-Carbon Steel and Microcomposite Steel Reinforcement Bars Deformed under Quasi-Static and Dynamic Shear Loading

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    pp. 66Ė77. 44. G. Krauss: Steels: Processing, Structure, andConf. Super High Strength Steels, AIM, Rome, Italy, 2005,cation for Epoxy-Coated Steel Reinforcing Bars,íí Annual

  15. Crack stability analysis of low alloy steel primary coolant pipe

    SciTech Connect (OSTI)

    Tanaka, T.; Kameyama, M. [Kansai Electric Power Company, Osaka (Japan); Urabe, Y. [Mitsubishi Heavy Industries, Ltd., Takasago (Japan)] [and others

    1997-04-01T23:59:59.000Z

    At present, cast duplex stainless steel has been used for the primary coolant piping of PWRs in Japan and joints of dissimilar material have been applied for welding to reactor vessels and steam generators. For the primary coolant piping of the next APWR plants, application of low alloy steel that results in designing main loops with the same material is being studied. It means that there is no need to weld low alloy steel with stainless steel and that makes it possible to reduce the welding length. Attenuation of Ultra Sonic Wave Intensity is lower for low alloy steel than for stainless steel and they have advantageous inspection characteristics. In addition to that, the thermal expansion rate is smaller for low alloy steel than for stainless steel. In consideration of the above features of low alloy steel, the overall reliability of primary coolant piping is expected to be improved. Therefore, for the evaluation of crack stability of low alloy steel piping to be applied for primary loops, elastic-plastic future mechanics analysis was performed by means of a three-dimensioned FEM. The evaluation results for the low alloy steel pipings show that cracks will not grow into unstable fractures under maximum design load conditions, even when such a circumferential crack is assumed to be 6 times the size of the wall thickness.

  16. Communication in automation, including networking and wireless

    E-Print Network [OSTI]

    Antsaklis, Panos

    Communication in automation, including networking and wireless Nicholas Kottenstette and Panos J and networking in automation is given. Digital communication fundamentals are reviewed and networked control are presented. 1 Introduction 1.1 Why communication is necessary in automated systems Automated systems use

  17. Electrochemical cell including ribbed electrode substrates

    SciTech Connect (OSTI)

    Breault, R.D.; Goller, G.J.; Roethlein, R.J.; Sprecher, G.C.

    1981-07-21T23:59:59.000Z

    An electrochemical cell including an electrolyte retaining matrix layer located between and in contact with cooperating anode and cathode electrodes is disclosed herein. Each of the electrodes is comprised of a ribbed (or grooved) substrate including a gas porous body as its main component and a catalyst layer located between the substrate and one side of the electrolyte retaining matrix layer. Each substrate body includes a ribbed section for receiving reactant gas and lengthwise side portions on opposite sides of the ribbed section. Each of the side portions includes a channel extending along its entire length from one surface thereof (e.g., its outer surface) to but stopping short of an opposite surface (e.g., its inner surface) so as to provide a web directly between the channel and the opposite surface. Each of the channels is filled with a gas impervious substance and each of the webs is impregnated with a gas impervious substance so as to provide a gas impervious seal along the entire length of each side portion of each substrate and between the opposite faces thereof (e.g., across the entire thickness thereof).

  18. Prices include compostable serviceware and linen tablecloths

    E-Print Network [OSTI]

    California at Davis, University of

    & BLACK BEAN ENCHILADAS Fresh corn tortillas stuffed with tender brown butter sautťed butternut squash, black beans and yellow on- ions, garnished with avocado and sour cream. $33 per person EDAMAME & CORN SQUASH & BLACK BEAN ENCHILADA FREE RANGE CHICK- EN SANDWICH PLATED ENTREES All plated entrees include

  19. Energy Consumption of Personal Computing Including Portable

    E-Print Network [OSTI]

    Namboodiri, Vinod

    Energy Consumption of Personal Computing Including Portable Communication Devices Pavel Somavat1 consumption, questions are being asked about the energy contribution of computing equipment. Al- though studies have documented the share of energy consumption by this type of equipment over the years, research

  20. Effect of Magnetic Field on The Friction and Wear Displayed by The Scratch of Oil Lubricated Steel

    E-Print Network [OSTI]

    unknown authors

    Abstract ó The present work discusses the effect of magnetic field on the friction and wear of steel scratched by TiC insert. The steel was lubricated by oil and dispersed by iron, copper and aluminium powders as well as polymeric powders such as high density polyethylene (PE), polymethyl methacrylate (PMMA) and polyamide (PA6). Molybdenum disulphide (MoS 2) and graphite (C) were added to the oil as dispersant. Paraffin oil was used as lubricant. Friction coefficient and wear of the tested composites were investigated using a tribometer designed and manufactured for that purpose. It was found that application of induction magnetic field decreased friction coefficient. The decrease was significant for oil lubricated steel and oil dispersed by aluminium, copper, PMMA and PA6 + 10 wt. % C, while addition of iron, PE and MoS 2 particles showed slight friction decrease. At no magnetic field friction coefficient for oil dispersed by aluminium and copper particles showed values lower than that observed for oil dispersed by iron particles. The lowest values of friction coefficient were displayed by oil dispersed by PE particles. Magnetic field caused significant wear increase for oil lubricated steel, where aluminium, copper and PA6 + C particles displayed relatively higher wear, while addition of iron, PE, PMMA and MoS 2 particles showed slight wear increase. At no magnetic field wear decreased due to the action of aluminium particles which formed a continuous layer on the steel surface and consequently decreased wear. Wear of oil lubricated steel dispersed by PE particles displayed relatively low values. Magnetic field showed no significant change on wear of the steel surface. Index Term-- Induction, magnetic field, scratch, friction coefficient, wear, iron, copper, aluminium polymethyl methacrylate, polyethylene, polyamide, molybdenum disulphide, paraffin oil. I.

  1. Subterranean barriers including at least one weld

    DOE Patents [OSTI]

    Nickelson, Reva A.; Sloan, Paul A.; Richardson, John G.; Walsh, Stephanie; Kostelnik, Kevin M.

    2007-01-09T23:59:59.000Z

    A subterranean barrier and method for forming same are disclosed, the barrier including a plurality of casing strings wherein at least one casing string of the plurality of casing strings may be affixed to at least another adjacent casing string of the plurality of casing strings through at least one weld, at least one adhesive joint, or both. A method and system for nondestructively inspecting a subterranean barrier is disclosed. For instance, a radiographic signal may be emitted from within a casing string toward an adjacent casing string and the radiographic signal may be detected from within the adjacent casing string. A method of repairing a barrier including removing at least a portion of a casing string and welding a repair element within the casing string is disclosed. A method of selectively heating at least one casing string forming at least a portion of a subterranean barrier is disclosed.

  2. Power generation method including membrane separation

    DOE Patents [OSTI]

    Lokhandwala, Kaaeid A. (Union City, CA)

    2000-01-01T23:59:59.000Z

    A method for generating electric power, such as at, or close to, natural gas fields. The method includes conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas by means of a membrane separation step. This step creates a leaner, sweeter, drier gas, which is then used as combustion fuel to run a turbine, which is in turn used for power generation.

  3. Rotor assembly including superconducting magnetic coil

    DOE Patents [OSTI]

    Snitchler, Gregory L. (Shrewsbury, MA); Gamble, Bruce B. (Wellesley, MA); Voccio, John P. (Somerville, MA)

    2003-01-01T23:59:59.000Z

    Superconducting coils and methods of manufacture include a superconductor tape wound concentrically about and disposed along an axis of the coil to define an opening having a dimension which gradually decreases, in the direction along the axis, from a first end to a second end of the coil. Each turn of the superconductor tape has a broad surface maintained substantially parallel to the axis of the coil.

  4. Electric power monthly, September 1990. [Glossary included

    SciTech Connect (OSTI)

    Not Available

    1990-12-17T23:59:59.000Z

    The purpose of this report is to provide energy decision makers with accurate and timely information that may be used in forming various perspectives on electric issues. The power plants considered include coal, petroleum, natural gas, hydroelectric, and nuclear power plants. Data are presented for power generation, fuel consumption, fuel receipts and cost, sales of electricity, and unusual occurrences at power plants. Data are compared at the national, Census division, and state levels. 4 figs., 52 tabs. (CK)

  5. Microscale investigation of the corrosion performances of low-carbon and stainless steels in highly alkaline concretes

    E-Print Network [OSTI]

    Itty, Pierre-Adrien

    2012-01-01T23:59:59.000Z

    FILM FORMED ON DUPLEX STAINLESS STEEL IN HIGHLY ALKALINEouter-layer. On duplex stainless steel (UNS S32101), theto corrosion. Finally, duplex stainless steels contain both

  6. Performance of steel-polymer and ceramic-polymer layered composites and concrete under high strain rate loadings

    E-Print Network [OSTI]

    Samiee, Ahsan

    2010-01-01T23:59:59.000Z

    Performance of Steel-Polyurea Bi-layers Subjected to Impul-Performance of Steel-Polymer-Steel Sandwich Structures Sub- jected to Impulsive

  7. Fabrication procedure effects on fatigue resistance of rib -to-deck welded joints of steel orthotropic bridge decks

    E-Print Network [OSTI]

    Sim, Hyoung-Bo

    2010-01-01T23:59:59.000Z

    details of orthotropic steel deck. Ē Proc. , Internationalnew approaches to fatigue evaluation of steel bridges. ĒInternational Journal of Steel Structures, KSSC, Vol. 6, No.

  8. Micromechanisms of ductile fracturing of DH-36 steel plates under impulsive loads and influence of polyurea reinforcing

    E-Print Network [OSTI]

    Amini, M. R.; Nemat-Nasser, S.

    2010-01-01T23:59:59.000Z

    of ductile fracturing of DH-36 steel plates under impulsiveductile fracturing of DH-36 steel plates subjected to blast-microstructure of the deformed steel samples also revealed

  9. Radiological Work Planning and Procedure

    SciTech Connect (OSTI)

    KURTZ, J.E.

    2000-01-01T23:59:59.000Z

    Each facility is tasked with maintaining personnel radiation exposure as low as reasonably achievable (ALARA). A continued effort is required to meet this goal by developing and implementing improvements to technical work documents (TWDs) and work performance. A review of selected TWDs from most facilities shows there is a need to incorporate more radiological control requirements into the TWD. The Radioactive Work Permit (RWP) provides a mechanism to place some of the requirements but does not provide all the information needed by the worker as he/she is accomplishing the steps of the TWD. Requiring the engineers, planners and procedure writers to put the radiological control requirements in the work steps would be very easy if all personnel had a strong background in radiological work planning and radiological controls. Unfortunately, many of these personnel do not have the background necessary to include these requirements without assistance by the Radiological Control organization at each facility. In addition, there seems to be confusion as to what should be and what should not be included in the TWD.

  10. SOCIOLOGICAL WORK ON ENERGY: THE OPPORTUNITY AND SOME PRESCRIPTIONS

    E-Print Network [OSTI]

    Lacy, Michael G.

    1982-04-01T23:59:59.000Z

    The opportunity for sociological work on energy is demonstrated by a critical review of several bodies ofnon-sociological work on energy. Included in this review is the crisis genre, the energy primer, the political economy of energy, the work...

  11. 1 INTRODUCTION The cold forging processes, including extrusion,

    E-Print Network [OSTI]

    Paris-Sud XI, Universitť de

    forging of steel which induces high contact pressure and new surface generation. So the billets, forward extrusion, upsetting-sliding test, spike test, double cup extrusion and T-shape compression by using them. Forward extrusion and double cup extrusion [2] can induce the large contact pressure and new

  12. Residuals in steel products -- Impacts on properties and measures to minimize them

    SciTech Connect (OSTI)

    Emi, Toshihiko [Tohoku Univ., Sendai (Japan). Inst. for Advanced Materials Processing; Wijk, O. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Process Metallurgy

    1996-12-31T23:59:59.000Z

    The effect of major residual elements on the properties of steel products is summarized. Measures to minimize these elements are discussed including the pretreatment of raw materials, innovative refining processes and environmental issues. This paper addresses (1) scrap situation, (2) upper limit of residual concentrations acceptable for processing and product quality, (3) possible means to reduce the residuals, and (4) consideration on the practicable measures to solve the residuals problem in a systematic way. 52 refs.

  13. Multiverse rate equation including bubble collisions

    E-Print Network [OSTI]

    Michael P. Salem

    2013-02-19T23:59:59.000Z

    The volume fractions of vacua in an eternally inflating multiverse are described by a coarse-grain rate equation, which accounts for volume expansion and vacuum transitions via bubble formation. We generalize the rate equation to account for bubble collisions, including the possibility of classical transitions. Classical transitions can modify the details of the hierarchical structure among the volume fractions, with potential implications for the staggering and Boltzmann-brain issues. Whether or not our vacuum is likely to have been established by a classical transition depends on the detailed relationships among transition rates in the landscape.

  14. Nuclear plant irradiated steel handbook

    SciTech Connect (OSTI)

    Oldfield, W.; Oldfield, F.M.; Lombrozo, P.M.; McConnell, P.

    1986-09-01T23:59:59.000Z

    This reference handbook presents selected information extracted from the EPRI reactor surveillance program database, which contains the results from surveillance program reports on 57 plants and 116 capsules. Tabulated data includes radiation induced temperature shifts, capsule irradiation conditions and statistical features of the Charpy V-notch curves. General information on the surveillance materials is provided and the Charpy V-notch energy results are presented graphically.

  15. Broadening the Statistical Search for Metal Price Super Cycles to Steel and Related Metals

    E-Print Network [OSTI]

    Broadening the Statistical Search for Metal Price Super Cycles to Steel and Related Metals of industrial development and urbanization: steel, pig iron, and molybdenum (a key ingredient in many steel's (2008) econometric search for super cycles in metals prices to our `steel group', defined here as steel

  16. Federal Utility Partnership Working Group Overview (FUPWG) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-07-01T23:59:59.000Z

    Fact sheet overview of the Federal Utility Partnership Working Group (FUPWG), including group objectives, activities, and services.

  17. Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector

    SciTech Connect (OSTI)

    Xu, T.T.; Sathaye, J.; Galitsky, C.

    2010-09-30T23:59:59.000Z

    Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. With the working of energy programs and policies on carbon regulation, how to effectively analyze and manage the costs associated with GHG reductions become extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions (e.g., carbon emission) for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models. In this report, we first conduct brief overview on different representations of end-use technologies (mitigation measures) in various energy-climate models, followed by problem statements, and a description of the basic concepts of quantifying the cost of conserved energy including integrating non-regrets options. A non-regrets option is defined as a GHG reduction option that is cost effective, without considering their additional benefits related to reducing GHG emissions. Based upon these, we develop information on costs of mitigation measures and technological change. These serve as the basis for collating the data on energy savings and costs for their future use in integrated assessment models. In addition to descriptions of the iron and steel making processes, and the mitigation measures identified in this study, the report includes tabulated databases on costs of measure implementation, energy savings, carbon-emission reduction, and lifetimes. The cost curve data on mitigation measures are available over time, which allows an estimation of technological change over a decade-long historical period. In particular, the report will describe new treatment of technological change in energy-climate modeling for this industry sector, i.e., assessing the changes in costs and energy-savings potentials via comparing 1994 and 2002 conservation supply curves. In this study, we compared the same set of mitigation measures for both 1994 and 2002 -- no additional mitigation measure for year 2002 was included due to unavailability of such data. Therefore, the estimated potentials in total energy savings and carbon reduction would most likely be more conservative for year 2002 in this study. Based upon the cost curves, the rate of change in the savings potential at a given cost can be evaluated and be used to estimate future rates of change that can be the input for energy-climate models. Through characterizing energy-efficiency technology costs and improvement potentials, we have developed and presented energy cost curves for energy efficiency measures applicable to the U.S. iron and steel industry for the years 1994 and 2002. The cost curves can change significantly under various scenarios: the baseline year, discount rate, energy intensity, production, industry structure (e.g., integrated versus secondary steel making and number of plants), efficiency (or mitigation) measures, share of iron and steel production to which the individual measures can be applied, and inclusion of other non-energy benefits. Inclusion of other non-energy benefits from implementing mitigation measures can reduce the costs of conserved energy significantly. In addition, costs of conserved energy (CCE) for individual mitigation measures increase with the increases in discount rates, resulting in a general increase in total cost of mitigation measures for implementation and operation with a higher discount rate. In 1994, integrated steel mills in the U.S. produced 55.

  18. Team work: Construction

    E-Print Network [OSTI]

    Berdichevsky, Victor

    Team work: Construction Management The Division of Engineering Technology in an construction technology area, an associate degree in construction science, or college- level course work equivalent to an associate degree in construction related area

  19. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work with Biological Materials Print Planning A complete Experiment Safety Sheet (ESS) is required before work can be done at the ALS. This ESS is either a part of the proposal...

  20. Steel Creek fish: L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1987

    SciTech Connect (OSTI)

    Paller, M.H.; Heuer, J.H.; Kissick, L.A.

    1988-03-01T23:59:59.000Z

    Fish samples were collected from Steel Creek during 1986 and 1987 following the impoundment of the headwaters of the stream to form L-Lake, a cooling reservoir for L-Reactor which began operating late in 1985. Electrofishing and ichthyoplankton sample stations were located throughout the creek. Fykenetting sample stations were located in the creek mouth and just above the Steel Creek swamp. Larval fish and fish eggs were collected with 0.5 m plankton nets. Multivariate analysis of the electrofishing data suggested that the fish assemblages in Steel Creek exhibited structural differences associated with proximity to L-Lake, and habitat gradients of current velocity, depth, and canopy cover. The Steel Creek corridor, a lotic reach beginning at the base of the L-Lake embankment was dominated by stream species and bluegill. The delta/swamp, formed where Steel Creek enters the Savannah River floodplain, was dominated by fishes characteristic of slow flowing waters and heavily vegetated habitats. The large channel draining the swamp supported many of the species found in the swamp plus riverine and anadromous forms.

  1. Steel Creek fish, L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1991

    SciTech Connect (OSTI)

    Sayers, R.E. Jr.; Mealing, H.G. III [Normandeau Associates, Inc., New Ellenton, SC (United States)

    1992-04-01T23:59:59.000Z

    The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal plain in west-central South Carolina. The Savannah River forms the western boundary of the site. Five major tributaries of the Savannah River -- Upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. All but Upper Three Runs Creek receive, or in the past received, thermal effluents from nuclear production reactors. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor, and protect the lower reaches from thermal impacts. The lake has an average width of approximately 600 m and extends along the Steel Creek valley approximately 7000 m from the dam to the headwaters. Water level is maintained at a normal pool elevation of 58 m above mean sea level by overflow into a vertical intake tower that has multilevel discharge gates. The intake tower is connected to a horizontal conduit that passes through the dam and releases water into Steel Creek. The Steel Creek Biological Monitoring Program was designed to meet environmental regulatory requirements associated with the restart of L-Reactor and complements the Biological Monitoring Program for L Lake. This extensive program was implemented to address portions of Section 316(a) of the Clean Water Act. The Department of Energy (DOE) must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems.

  2. Microstructure/property relationships in dissimilar welds between duplex stainless steels and carbon steels

    SciTech Connect (OSTI)

    Barnhouse, E.J. [Weirton Steel Corp., WV (United States); Lippold, J.C. [Ohio State Univ., Columbus, OH (United States)

    1998-12-01T23:59:59.000Z

    The metallurgical characteristics, toughness and corrosion resistance of dissimilar welds between duplex stainless steel Alloy 2205 and carbon steel A36 have been evaluated. Both duplex stainless steel ER2209 and Ni-based Alloy 625 filler metals were used to join this combination using a multipass, gas tungsten arc welding (GTAW) process. Defect-free welds were made with each filler metal. The toughness of both the 625 and 2209 deposits were acceptable, regardless of heat input. A narrow martensitic region with high hardness was observed along the A36/2209 fusion boundary. A similar region was not observed in welds made with the 625 filler metal. The corrosion resistance of the welds made with 2209 filler metal improved with increasing heat input, probably due to higher levels of austenite and reduced chromium nitride precipitation. Welds made with 625 exhibited severe attack in the root pass, while the bulk of the weld was resistant. This investigation has shown that both filler metals can be used to joint carbon steel to duplex stainless steels, but that special precautions may be necessary in corrosive environments.

  3. Impact Tensile Testing of Stainless Steels at Various Temperatures

    SciTech Connect (OSTI)

    D. K. Morton

    2008-03-01T23:59:59.000Z

    Stainless steels are used for the construction of numerous spent nuclear fuel or radioactive material containers that may be subjected to high strains and moderate strain rates during accidental drop events. Mechanical characteristics of these base materials and their welds under dynamic loads in the strain rate range of concern (1 to 300 per second) are not well documented. However, research is being performed at the Idaho National Laboratory to quantify these characteristics. The work presented herein discusses tensile impact testing of dual-marked 304/304L and 316/316L stainless steel material specimens. Both base material and welded material specimens were tested at -20 oF, room temperature, 300 oF, and 600 oF conditions. Utilizing a drop weight impact test machine and 1/4-inch and 1/2-inch thick dog bone-shaped test specimens, a strain rate range of approximately 4 to 40 per second (depending on initial temperature conditions) was achieved. Factors were determined that reflect the amount of increased strain energy the material can absorb due to strain rate effects. Using the factors, elevated true stress-strain curves for these materials at various strain rates and temperatures were generated. By incorporating the strain rate elevated true stress-strain material curves into an inelastic finite element computer program as the defined material input, significant improvement in the accuracy of the computer analyses was attained. However, additional impact testing is necessary to achieve higher strain rates (up to 300 per second) before complete definition of strain rate effects can be made for accidental drop events and other similar energy-limited impulsive loads. This research approach, using impact testing and a total energy analysis methodology to quantify strain rate effects, can be applied to many other materials used in government and industry.

  4. Interagency Sustainability Working Group

    Broader source: Energy.gov [DOE]

    The Interagency Sustainability Working Group (ISWG) is the coordinating body for sustainable buildings in the federal government.

  5. Superfluid helium testing of a stainless steel to titanium piping transition joint

    E-Print Network [OSTI]

    Soyars, W; Bedeschi, F; Budagov, J; Foley, M; Harms, E; Klebaner, A; Nagaitsev, S; Sabirov, B; 10.1063/1.3422408

    2012-01-01T23:59:59.000Z

    Stainless steel-to-titanium bimetallic transitions have been fabricated with an explosively bonded joint. This novel joining technique was conducted by the Russian Federal Nuclear Center, working under contract for the Joint Institute for Nuclear Research. These bimetallic transitions are being considered for use in future superconducting radio-frequency cavity cryomodule assemblies. This application requires cryogenic testing to demonstrate that this transition joint remains leak-tight when sealing superfluid helium. To simulate a titanium cavity vessel connection to a stainless steel service pipe, bimetallic transition joints were paired together to fabricate piping assemblies. These piping assemblies were then tested in superfluid helium conditions at Fermi National Accelerator Laboratory test facilities. The transition joint test program will be described. Fabrication experience and test results will be presented.

  6. Effect of Fluid Flow on Inclusion Coarsening in Low-Alloy Steel Welds

    SciTech Connect (OSTI)

    Babu, S.S.; David, S.A.; DebRoy, T.; Hong, T.

    1998-02-28T23:59:59.000Z

    Oxide inclusions form in welds because of deoxidation reactions in the weld pool. These inclusions control the weld microstructure development. Thermodynamic and kinetic calculation of oxidation reaction can describe inclusion characteristics such as number density, size, and composition. Experimental work has shown that fluid-flow velocity gradients in the weld pool can accelerate inclusion growth by collision and coalescence. Moreover, fluid flow in welds can transport inclusions to different temperature regions that may lead to repeated dissolution and growth of inclusions. These phenomena are being studied with the help of computational coupled heat transfer, fluid-flow, thermodynamic, and kinetic models. The results show that the inclusion formation in steel welds can be described as a function of the welding processes, process parameters, and steel composition.

  7. Mechanical Characteristics of Submerged Arc Weldment in API Gas Pipeline Steel of Grade X65

    SciTech Connect (OSTI)

    Hashemi, S. H. [Department of Mechanical Engineering, University of Birjand, POBOX 97175-376, Birjand (Iran, Islamic Republic of); Mohammadyani, D. [Materials and Energy Research Center (MERC) POBOX 14155-4777, Tehran (Iran, Islamic Republic of)

    2011-01-17T23:59:59.000Z

    The mechanical properties of submerged arc weldment (SAW) in gas transportation pipeline steel of grade API X65 (65 ksi yield strength) were investigated. This steel is produced by thermo mechanical control rolled (TMC), and is largely used in Iran gas piping systems and networks. The results from laboratory study on three different regions; i.e. base metal (BM), fusion zone (FZ) and heat affected zone (HAZ) were used to compare weldment mechanical characteristics with those specified by API 5L (revision 2004) standard code. Different laboratory experiments were conducted on test specimens taken from 48 inch outside diameter and 14.3 mm wall thickness gas pipeline. The test results showed a gradient of microstructure and Vickers hardness data from the centerline of FZ towards the unaffected MB. Similarly, lower Charpy absorbed energy (compared to BM) was observed in the FZ impact specimens. Despite this, the API specifications were fulfilled in three tested zones, ensuring pipeline structural integrity under working conditions.

  8. Optimization of ferrous burden high temperature properties to meet blast furnace requirements in British Steel

    SciTech Connect (OSTI)

    Bergstrand, R.

    1996-12-31T23:59:59.000Z

    The high temperature properties of ferrous burden materials have long been an important consideration in the operation of British Steel blast furnaces. Previous research presented at this conference has shown that the behavior of materials in the lower stack and bosh can have a significant effect on furnace permeability and stability of operation. However, with increasing levels of hydrocarbon injection via the tuyeres, the reduction conditions inside British Steel blast furnaces have significantly altered over recent years. This paper focuses on the further work that has been undertaken to study the effect on ferrous burden high temperatures properties of the widely differing reduction regimes which can be experienced in today`s blast furnaces. The implications of the findings, and how they have been used in optimizing blast furnace operation and burden quality, are discussed.

  9. Internal friction study of decomposition kinetics of SAF 2507 type duplex stainless steel

    SciTech Connect (OSTI)

    Smuk, O.; Smuk, S.; Hanninen, H. [Helsinki Univ. of Technology (Finland). Lab. of Engineering Materials] [Helsinki Univ. of Technology (Finland). Lab. of Engineering Materials; Jagodzinski, Yu.; Tarasenko, O. [National Academy of Sciences, Kiev (Ukraine). Inst. for Metal Physics] [National Academy of Sciences, Kiev (Ukraine). Inst. for Metal Physics

    1999-01-08T23:59:59.000Z

    During the last decade, super duplex stainless steels (DSSs) with increased nitrogen content have been an object of intensive studies. Present work is devoted to the study of the peculiarities of {delta}-ferrite decomposition in SAF 2507 type duplex steel, and redistribution of nitrogen between ferrite and austenite phases in a wide temperature range by means of internal fraction (IF). Unlike local methods of electron microscopy or engineering methods of hardness or impact toughness testing, which give basically information on the formation of brittle intermetallic phases, the internal friction technique allows to study the state of solid solution and kinetics of changes in the relative amounts of ferrite and austenite phases during thermal treatment.

  10. Superfluid helium testing of a stainless steel to titanium piping transition joint

    SciTech Connect (OSTI)

    Soyars, W.; /Fermilab; Basti, A.; Bedeschi, F.; /INFN, Pisa; Budagov, J.; /Dubna, JINR; Foley, M.; Harms, E.; Klebaner, A.; Nagaitsev, S.; /Fermilab; Sabirov, B.; Dubna, JINR

    2009-11-01T23:59:59.000Z

    Stainless steel-to-titanium bimetallic transitions have been fabricated with an explosively bonded joint. This novel joining technique was conducted by the Russian Federal Nuclear Center, working under contract for the Joint Institute for Nuclear Research. These bimetallic transitions are being considered for use in future superconducting radio-frequency cavity cryomodule assemblies. This application requires cryogenic testing to demonstrate that this transition joint remains leak-tight when sealing superfluid helium. To simulate a titanium cavity vessel connection to a stainless steel service pipe, bimetallic transition joints were paired together to fabricate piping assemblies. These piping assemblies were then tested in superfluid helium conditions at Fermi National Accelerator Laboratory test facilities. The transition joint test program will be described. Fabrication experience and test results will be presented.

  11. Using electroless nickel to coat reinforcing steel in chloride contaminated concrete

    SciTech Connect (OSTI)

    Sanchez, M.A.; Parra, L.A.; Perez, O.A.; Rincon, O. de [Univ. del Zulia, Maracaibo (Venezuela)

    1998-12-31T23:59:59.000Z

    This work is a study of the behavior of steel rebar coated by electroless nickel in chloride-contaminated concrete. The steel rebars were coated in an electroless nickel bath for 1, 2 and 3 hours. They were then subjected to heat treatment at 400 C for periods of 1, 2 and 3 hours. The nickel-coated rebars were embedded in concrete samples with NaCl concentrations at 0.00; 0.10; 0.15 and 0.20 %, based on concrete weight. Their behavior was evaluated by measurement of potentials, polarization resistance, potentiodynamic polarization curves, electrical resistance and visual inspection. Corrosion rates were less than 0.01 {micro}A/cm{sup 2} after 40 months` testing.

  12. Metallurgical evaluation of recycled stainless steel

    SciTech Connect (OSTI)

    Imrich, K.J.

    1997-01-22T23:59:59.000Z

    Recycled Type 304 stainless steel from both Carolina Metals Inc. (CMI) and Manufacturing Science Corporation (MSC) met all the requirements of ASTM A-240 required by Procurement Specification G-SPP-K-00005 Rev. 4. Mechanical strength and corrosion resistance of the material are adequate for service as burial boxes, overpacks, and drums. Inclusion content of both manufacturer`s material was high, resulting in a corresponding decrease in the corrosion resistance. Therefore, an evaluation of the service conditions should be performed before this material is approved for other applications. These heats of stainless steel are not suitable for fabricating DWPF glass canisters because the inclusion and carbon contents are high. However, MSC has recently installed a vacuum induction furnace capable of producing L grade material with a low inclusion content. Material produced from this furnace should be suitable for canister material if appropriate care is taken during the melting/casting process.

  13. Optical panel system including stackable waveguides

    DOE Patents [OSTI]

    DeSanto, Leonard (Dunkirk, MD); Veligdan, James T. (Manorville, NY)

    2007-11-20T23:59:59.000Z

    An optical panel system including stackable waveguides is provided. The optical panel system displays a projected light image and comprises a plurality of planar optical waveguides in a stacked state. The optical panel system further comprises a support system that aligns and supports the waveguides in the stacked state. In one embodiment, the support system comprises at least one rod, wherein each waveguide contains at least one hole, and wherein each rod is positioned through a corresponding hole in each waveguide. In another embodiment, the support system comprises at least two opposing edge structures having the waveguides positioned therebetween, wherein each opposing edge structure contains a mating surface, wherein opposite edges of each waveguide contain mating surfaces which are complementary to the mating surfaces of the opposing edge structures, and wherein each mating surface of the opposing edge structures engages a corresponding complementary mating surface of the opposite edges of each waveguide.

  14. Optical panel system including stackable waveguides

    DOE Patents [OSTI]

    DeSanto, Leonard; Veligdan, James T.

    2007-03-06T23:59:59.000Z

    An optical panel system including stackable waveguides is provided. The optical panel system displays a projected light image and comprises a plurality of planar optical waveguides in a stacked state. The optical panel system further comprises a support system that aligns and supports the waveguides in the stacked state. In one embodiment, the support system comprises at least one rod, wherein each waveguide contains at least one hole, and wherein each rod is positioned through a corresponding hole in each waveguide. In another embodiment, the support system comprises at least two opposing edge structures having the waveguides positioned therebetween, wherein each opposing edge structure contains a mating surface, wherein opposite edges of each waveguide contain mating surfaces which are complementary to the mating surfaces of the opposing edge structures, and wherein each mating surface of the opposing edge structures engages a corresponding complementary mating surface of the opposite edges of each waveguide.

  15. Thermovoltaic semiconductor device including a plasma filter

    DOE Patents [OSTI]

    Baldasaro, Paul F. (Clifton Park, NY)

    1999-01-01T23:59:59.000Z

    A thermovoltaic energy conversion device and related method for converting thermal energy into an electrical potential. An interference filter is provided on a semiconductor thermovoltaic cell to pre-filter black body radiation. The semiconductor thermovoltaic cell includes a P/N junction supported on a substrate which converts incident thermal energy below the semiconductor junction band gap into electrical potential. The semiconductor substrate is doped to provide a plasma filter which reflects back energy having a wavelength which is above the band gap and which is ineffectively filtered by the interference filter, through the P/N junction to the source of radiation thereby avoiding parasitic absorption of the unusable portion of the thermal radiation energy.

  16. Modelling Precipitation of Carbides in Martensitic Steels

    E-Print Network [OSTI]

    Yamasaki, Shingo

    is greater than the yield stress of many commercial steels. II Sulfide stress corrosion cracking (SSCC) There were cases in which joints of pipes used in oil wells ruptured only a few days after the commencement of operation [45, 46]. These accidents were... -composition IG Intergranular fracture MVC Microvoid coalescence rupture MTDATA Metallurgical and Thermochemical Databank PC Pre-stressed concrete QC Quasi-cleavage fracture SSCC Sulfide stress corrosion cracking TEM Transmission electron microscope TMCP...

  17. Integrating Steel Production with Mineral Carbon Sequestration

    SciTech Connect (OSTI)

    Klaus Lackner; Paul Doby; Tuncel Yegulalp; Samuel Krevor; Christopher Graves

    2008-05-01T23:59:59.000Z

    The objectives of the project were (i) to develop a combination iron oxide production and carbon sequestration plant that will use serpentine ores as the source of iron and the extraction tailings as the storage element for CO2 disposal, (ii) the identification of locations within the US where this process may be implemented and (iii) to create a standardized process to characterize the serpentine deposits in terms of carbon disposal capacity and iron and steel production capacity. The first objective was not accomplished. The research failed to identify a technique to accelerate direct aqueous mineral carbonation, the limiting step in the integration of steel production and carbon sequestration. Objective (ii) was accomplished. It was found that the sequestration potential of the ultramafic resource surfaces in the US and Puerto Rico is approximately 4,647 Gt of CO2 or over 500 years of current US production of CO2. Lastly, a computer model was developed to investigate the impact of various system parameters (recoveries and efficiencies and capacities of different system components) and serpentinite quality as well as incorporation of CO2 from sources outside the steel industry.

  18. EAF steel producers and the K061 dilemma

    SciTech Connect (OSTI)

    Prichard, L.C.

    1995-12-31T23:59:59.000Z

    The scrap based steel producers in the United States generate an estimated 650,000 tons of electric arc furnace (EAF) dust annually which is classified as hazardous waste, K061. These scrap based producers commonly referred to as mini-mills represented 39% of the steel produced in 1994. Based upon the EAF plants being installed or planned today, it is a reasonable projection to anticipate 50% of the steel produced in the United States will be by EAF`S. Using a straight line projection of percent of steel produced to tonnage of EAF dust generated, this will result in 833,000 tons of dust being generated upon the completion of these new EAF producing plants, presumably by the year 2000. Because the United States is a capitalistic economy, a steel producer is in business to make a profit therefore dust management becomes a very important variable in the cost of making steel.

  19. The performance of duplex stainless steels in chemical environments

    SciTech Connect (OSTI)

    Francis, R. [Weir Materials Ltd., Manchester (United Kingdom). Park Works

    1994-12-31T23:59:59.000Z

    The process industries have used 300 series stainless steels for many years where the corrosion resistance of carbon steel is inadequate. Where stainless steels have proved inadequate there has been a tendency to utilize high nickel alloys, with a greatly increased cost. The present paper reviews the different grades of duplex stainless steel and shows how their superior corrosion and stress corrosion cracking resistance, plus their high strength, can be utilized to provide cost effective alternatives to the high nickel alloys. The use of alternative design codes to take advantages of the properties of duplex alloys is discussed. Data is presented to show the resistance of duplex stainless steels to a variety of chemical environments. The use of duplex stainless steels and the reason for their selection in a number of applications is reviewed.

  20. Broadening Industry Governance to Include Nonproliferation

    SciTech Connect (OSTI)

    Hund, Gretchen; Seward, Amy M.

    2008-11-11T23:59:59.000Z

    As industry is the first line of defense in detecting and thwarting illicit trade networks, the engagement of the private sector is critical to any government effort to strengthen existing mechanisms to protect goods and services throughout the supply chain. This study builds on previous PNNL work to continue to evaluate means for greater industry engagement to complement and strengthen existing governmental efforts to detect and stem the trade of illicit goods and to protect and secure goods that could be used in making a weapon of mass destruction. Specifically, the study evaluates the concept of Industry Self Regulation, defined as a systematic voluntary program undertaken by an industry or by individual companies to anticipate, implement, supplement, or substitute for regulatory requirements in a given field, generally through the adoption of best practices. Through a series of interviews with companies with a past history of non-compliance, trade associations and NGOs, the authors identify gaps in the existing regulatory infrastructure, drivers for a self regulation approach and the form such an approach might take, as well as obstacles to be overcome. The authors conclude that it is at the intersection of industry, government, and security thatóthrough collaborative meansóthe effectiveness of the international nonproliferation systemócan be most effectively strengthened to the mutual benefit of both government and the private sector. Industry has a critical stake in the success of this regime, and has the potential to act as an integrating force that brings together the existing mechanisms of the global nonproliferation regime: export controls, physical protection, and safeguards. The authors conclude that industry compliance is not enough; rather, nonproliferation must become a central tenant of a companyís corporate culture and be viewed as an integral component of corporate social responsibility (CSR).

  1. Safety analysis report for packaging (onsite) steel drum

    SciTech Connect (OSTI)

    McCormick, W.A.

    1998-09-29T23:59:59.000Z

    This Safety Analysis Report for Packaging (SARP) provides the analyses and evaluations necessary to demonstrate that the steel drum packaging system meets the transportation safety requirements of HNF-PRO-154, Responsibilities and Procedures for all Hazardous Material Shipments, for an onsite packaging containing Type B quantities of solid and liquid radioactive materials. The basic component of the steel drum packaging system is the 208 L (55-gal) steel drum.

  2. Characterization of thermal aging of duplex stainless steel by SQUID

    SciTech Connect (OSTI)

    Isobe, Y.; Kamimura, A.; Aoki, K.; Nakayasu, F. [Nuclear Fuel Industries, Ltd., Osaka (Japan)

    1995-08-01T23:59:59.000Z

    Thermal aging is a growing concern for long-term-aged duplex stainless steel piping in nuclear power plants. Superconducting QUantum Interference Device (SQUID) was used for the detection of thermal aging of SUS329 rolled duplex stainless steel and SCS16 cast duplex stainless steel. It was found that the SQUID output signal pattern in the presence of AC magnetic field applied to the specimen was sensitive to the changes in electromagnetic properties due to thermal aging.

  3. Engine lubrication circuit including two pumps

    DOE Patents [OSTI]

    Lane, William H.

    2006-10-03T23:59:59.000Z

    A lubrication pump coupled to the engine is sized such that the it can supply the engine with a predetermined flow volume as soon as the engine reaches a peak torque engine speed. In engines that operate predominately at speeds above the peak torque engine speed, the lubrication pump is often producing lubrication fluid in excess of the predetermined flow volume that is bypassed back to a lubrication fluid source. This arguably results in wasted power. In order to more efficiently lubricate an engine, a lubrication circuit includes a lubrication pump and a variable delivery pump. The lubrication pump is operably coupled to the engine, and the variable delivery pump is in communication with a pump output controller that is operable to vary a lubrication fluid output from the variable delivery pump as a function of at least one of engine speed and lubrication flow volume or system pressure. Thus, the lubrication pump can be sized to produce the predetermined flow volume at a speed range at which the engine predominately operates while the variable delivery pump can supplement lubrication fluid delivery from the lubrication pump at engine speeds below the predominant engine speed range.

  4. Models of Procyon A including seismic constraints

    E-Print Network [OSTI]

    P. Eggenberger; F. Carrier; F. Bouchy

    2005-01-14T23:59:59.000Z

    Detailed models of Procyon A based on new asteroseismic measurements by Eggenberger et al (2004) have been computed using the Geneva evolution code including shellular rotation and atomic diffusion. By combining all non-asteroseismic observables now available for Procyon A with these seismological data, we find that the observed mean large spacing of 55.5 +- 0.5 uHz favours a mass of 1.497 M_sol for Procyon A. We also determine the following global parameters of Procyon A: an age of t=1.72 +- 0.30 Gyr, an initial helium mass fraction Y_i=0.290 +- 0.010, a nearly solar initial metallicity (Z/X)_i=0.0234 +- 0.0015 and a mixing-length parameter alpha=1.75 +- 0.40. Moreover, we show that the effects of rotation on the inner structure of the star may be revealed by asteroseismic observations if frequencies can be determined with a high precision. Existing seismological data of Procyon A are unfortunately not accurate enough to really test these differences in the input physics of our models.

  5. Seepage Model for PA Including Dift Collapse

    SciTech Connect (OSTI)

    G. Li; C. Tsang

    2000-12-20T23:59:59.000Z

    The purpose of this Analysis/Model Report (AMR) is to document the predictions and analysis performed using the Seepage Model for Performance Assessment (PA) and the Disturbed Drift Seepage Submodel for both the Topopah Spring middle nonlithophysal and lower lithophysal lithostratigraphic units at Yucca Mountain. These results will be used by PA to develop the probability distribution of water seepage into waste-emplacement drifts at Yucca Mountain, Nevada, as part of the evaluation of the long term performance of the potential repository. This AMR is in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (CRWMS M&O 2000 [153447]). This purpose is accomplished by performing numerical simulations with stochastic representations of hydrological properties, using the Seepage Model for PA, and evaluating the effects of an alternative drift geometry representing a partially collapsed drift using the Disturbed Drift Seepage Submodel. Seepage of water into waste-emplacement drifts is considered one of the principal factors having the greatest impact of long-term safety of the repository system (CRWMS M&O 2000 [153225], Table 4-1). This AMR supports the analysis and simulation that are used by PA to develop the probability distribution of water seepage into drift, and is therefore a model of primary (Level 1) importance (AP-3.15Q, ''Managing Technical Product Inputs''). The intended purpose of the Seepage Model for PA is to support: (1) PA; (2) Abstraction of Drift-Scale Seepage; and (3) Unsaturated Zone (UZ) Flow and Transport Process Model Report (PMR). Seepage into drifts is evaluated by applying numerical models with stochastic representations of hydrological properties and performing flow simulations with multiple realizations of the permeability field around the drift. The Seepage Model for PA uses the distribution of permeabilities derived from air injection testing in niches and in the cross drift to stochastically simulate the 3D flow of water in the fractured host rock (in the vicinity of potential emplacement drifts) under ambient conditions. The Disturbed Drift Seepage Submodel evaluates the impact of the partial collapse of a drift on seepage. Drainage in rock below the emplacement drift is also evaluated.

  6. automotive sheet steels: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and 90, elongated Paris-Sud XI, Universit de 88 Spot weldability of TRIP assisted steels with high carbon and aluminium contents Materials Science Websites Summary:...

  7. ITP Steel: Hydrogen and Nitrogen Control in Ladle and Casting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Nitrogen Control in Ladle and Casting Operations ITP Steel: Hydrogen and Nitrogen Control in Ladle and Casting Operations castingops.pdf More Documents & Publications...

  8. Climate VISION: Private Sector Initiatives: Iron and Steel: GHG...

    Office of Scientific and Technical Information (OSTI)

    chemicals, forest products (such as paper and wood products), glass, metal casting, petroleum and coal products, and steel. As soon as the current briefs are available, we...

  9. analog stainless steel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (more) Naraghi, Reza 2009-01-01 2 Quantification of phase transformation in stainless steel 301LN sheets MIT - DSpace Summary: This thesis investigates the large deformation...

  10. arc stainless steel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (more) Naraghi, Reza 2009-01-01 2 Quantification of phase transformation in stainless steel 301LN sheets MIT - DSpace Summary: This thesis investigates the large deformation...

  11. Friction Stir Spot Welding of Advanced High Strength Steels ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    does not contain any proprietary or confidential information Friction Stir Spot Welding of Advanced High Strength Steels (AHSS) (13056 ORNL, 13055 PNNL) Friction Stir Spot...

  12. Production design for plate products in the steel industry

    E-Print Network [OSTI]

    Sanjeeb Dash

    2007-04-05T23:59:59.000Z

    Apr 5, 2007 ... Abstract: We describe an optimization tool for a multistage production process for rectangular steel plates. The problem we solve yields a†...

  13. activation martensitic steels: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    modeling and experimental study of brittle fracture in tempered martensitic steels for thermonuclear fusion applications. Open Access Theses and Dissertations Summary: ??In this...

  14. activation martensitic steel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    modeling and experimental study of brittle fracture in tempered martensitic steels for thermonuclear fusion applications. Open Access Theses and Dissertations Summary: ??In this...

  15. New Austenitic Stainless Steels for Exhaust Components (Agreement...

    Energy Savers [EERE]

    Documents & Publications CF8C PLus: A New Cast Stainless Steel for High-Temperature Diesel Exhaust Components Vehicle Technologies Office Merit Review 2014: Materials for...

  16. Blast damage mitigation of steel structures from near- contact charges

    E-Print Network [OSTI]

    Wolfson, Janet Crumrine

    2008-01-01T23:59:59.000Z

    OF CALIFORNIA, SAN DIEGO Blast Damage Mitigation of Steel35† Damage Levels Observed in LaboratoryFigure 3.34: Progression of damage for a Ballistic Loading

  17. a537 carbon steel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    T300: C strength 4340 steel, carbon-carbon composite, and Carbon-Silicon Carbide composite were tested to examine materials. MATERIALS AND DESIRED DATA Carbon-Carbon...

  18. Strain Rate Characterization of Advanced High Strength Steels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    design factor - New materials do not have design history available for conventional automotive materials (e.g. mild steel) - This lack of knowledge is compensated by...

  19. Auto/Steel Partnership: Fatigue of AHSS Strain Rate Characterization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fatigue of AHSS Strain Rate Characterization AutoSteel Partnership: Fatigue of AHSS Strain Rate Characterization 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual...

  20. alloyed stainless steel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Paris-Sud XI, Universit de 3 Standard test methods for pitting and crevice corrosion resistance of stainless steels and related alloys by use of ferric Chloride solution...

  1. alloy steels etudes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    y-dend rites. (Note: primary y Cambridge, University of 2 Estimation of Atmospheric Corrosion of High-Strength, Low-Alloy Steels Engineering Websites Summary: Estimation of...

  2. alloy coated steels: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    y-dend rites. (Note: primary y Cambridge, University of 2 Estimation of Atmospheric Corrosion of High-Strength, Low-Alloy Steels Engineering Websites Summary: Estimation of...

  3. alloy steel transition: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    y-dend rites. (Note: primary y Cambridge, University of 2 Estimation of Atmospheric Corrosion of High-Strength, Low-Alloy Steels Engineering Websites Summary: Estimation of...

  4. alloy coated steel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    y-dend rites. (Note: primary y Cambridge, University of 2 Estimation of Atmospheric Corrosion of High-Strength, Low-Alloy Steels Engineering Websites Summary: Estimation of...

  5. alloys stainless steel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Paris-Sud XI, Universit de 3 Standard test methods for pitting and crevice corrosion resistance of stainless steels and related alloys by use of ferric Chloride solution...

  6. ITP Steel: Energy and Environmental Profile fo the U.S. Iron...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy and Environmental Profile fo the U.S. Iron and Steel Industry ITP Steel: Energy and Environmental Profile fo the U.S. Iron and Steel Industry steelprofile.pdf More...

  7. CARBON ATOM DISTRIBUTION IN A DUAL PHASE STEEL: AN ATOM PROBE STUDY

    E-Print Network [OSTI]

    Barnard, S.J.

    2014-01-01T23:59:59.000Z

    ATOM DISTRIBUTION IN A DUAL PHASE STEEL: AN ATOM PROBE STUDY~4720 1 U.S.A. IntroductioE. Dual Phase steels are currentlymartensite-austenite dual phase steel, although the results

  8. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF 0.1C STEEL WITH Nb

    E-Print Network [OSTI]

    Gau, Jing-Sheng

    2014-01-01T23:59:59.000Z

    and Properties of Dual-Phase Steels, R. A. Kot and J. W.and Prooerties of Dual-Phase Steels, R. A. Kot and J. W.Prooerties of Vanadium Dual Phase Steel and Cold Pressing

  9. DESIGN OF DUAL PHASE Fe/Mn/C STEEL FOR LOW TEMPERATURE APPLICATION

    E-Print Network [OSTI]

    Kim, Nack-Joon

    2013-01-01T23:59:59.000Z

    and Properties of Dual- Phase Steels, R. A. Kot and J. \\4.and Properties of Dual Phase Steels, R. A. Kot and J. W. ~Formable HSLA and Dual- Phase Steels, A. T. Davenport, ed. ,

  10. A MOSSBAUER STUDY OF AUSTENITE STABILITY AND IMPACT FRACTURE IN Fe - 6 Ni STEEL

    E-Print Network [OSTI]

    Fultz, Brent

    2011-01-01T23:59:59.000Z

    IMPACT FRACTURE IN Fe-6Ni STEEL Brent Thomas Fultz Materialscommercial cryogenic alloy steel was studied with regard toThe Experiments Fe-6Ni-lMn steel plate was received from the

  11. THE EFFECT OF SILICON ON THE ENVIRONMENTAL CRACKING BEHAVIOR OF A HIGH STRENGTH STEEL

    E-Print Network [OSTI]

    Cedeno, M.H.C.

    2010-01-01T23:59:59.000Z

    Low-Alloy, High-Strength Steel, Advanced Research ProjectsTests of High Strength Steels, BISRA Report September 1971.Cracking in High Strength Steels and in Titanium and

  12. People of Steel: The Support of a Town during the Homestead Strike

    E-Print Network [OSTI]

    Partida, Jason

    2013-01-01T23:59:59.000Z

    the riot between the steel strikers and the Pinkertons afterNovember 19, 1892. People of Steel 126 The position you1892, between the Carnegie Steel Company, Limited, and the

  13. WELDABILITY OF GRAIN-REFINED Fe-12Ni-0.25Ti STEEL FOR CRYOGENIC APPLICATIONS

    E-Print Network [OSTI]

    Morris Jr., J.W.

    2013-01-01T23:59:59.000Z

    of the Cryogenic Nickel Steels, WRC Bull, 205, May, 1975.REFINED Fe-12Ni-0.25Ti STEEL FOR CRYOGENIC APPLICATIONS D.E.REFINED Fe-12Ni-0.25Ti STEEL FOR CRYOGENIC APPLICATIONS D.

  14. Effect of polyurea on dynamic response and fracture resistance of steel plates under impulsive loads

    E-Print Network [OSTI]

    Amini, Mahmoud Reza

    2007-01-01T23:59:59.000Z

    on the dynamic response of steel plates, 2006 SEM AnnualPenetration protection of steel plates with polyurea layer,the post-failure motion of steel plates subjected to blast

  15. Propagating Waves Recorded in the Steel, Moment-Frame Factor Building During Earthquakes

    E-Print Network [OSTI]

    Kohler, Monica; Heaton, Thomas H.; Samuel C. Bradford

    2007-01-01T23:59:59.000Z

    studies of damage to tall steel moment-frame buildings inan instrumented 15-story steel- frame building, EarthquakePropagating Waves in the Steel, Moment-Frame Factor Building

  16. DESIGN OF DUAL PHASE Fe/Mn/C STEEL FOR LOW TEMPERATURE APPLICATION

    E-Print Network [OSTI]

    Kim, Nack-Joon

    2013-01-01T23:59:59.000Z

    and Properties of Dual- Phase Steels, R. A. Kot and J. \\4.Properties of Dual Phase Steels, R. A. Kot and J. W. ~lorrisand Hardenability in Steels, Symp. ASt~. ~. Garvey, Trans.

  17. Identification, Model Updating, and Response Prediction of an Instrumented 15-Story Steel-Frame Building

    E-Print Network [OSTI]

    Skolnik, Derek; Lei, Ying; Yu, Eunjong; Wallace, J W

    2006-01-01T23:59:59.000Z

    A. , 1998. Ductile Design of Steel Structure, McGraw Hill,monitoring of the steel-frame UCLA Factor Building,an Instrumented 15-Story Steel-Frame Building Derek Skolnik,

  18. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF AISI 4340 STEEL MODIFIED WITH ALUMINUM AND SILICON

    E-Print Network [OSTI]

    Bhat, M.S.

    2010-01-01T23:59:59.000Z

    1968), G, Thomas. Iron and Steel Int, 46. 451 (1973), G,Containing High-Strength Steels, Cobalt Monograph Series, A.Strength Structural j Steels," ASTM Spec, Tech, PubL 498,

  19. THE USE OF MICROSTRUCTURE CONTROL TO TOUGHEN FERRITIC STEELS FOR CRYOGENIC USE. II. Fe-Mn STEELS

    E-Print Network [OSTI]

    Hwang, S.K.

    2010-01-01T23:59:59.000Z

    steels in current use at LNG temperatures and below containtemperature to below LNG temperature. The resulting alloysis suitable for use to below LNG temperature in the grain-

  20. Financial Policy and Procedures for Reimbursable Work

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1988-08-15T23:59:59.000Z

    The directive establishes Department-wide financial policy and procedural guidance applicable to performing reimbursable work for other Federal agencies and with non-Federal Government entities, including foreign and commercial entities, State, and political subdivisions.

  1. Editorial Resources in Work and Welfare†

    E-Print Network [OSTI]

    PUDIACwowe

    2010-01-01T23:59:59.000Z

    This paper collates information on the top English-language publishing outlets in the field of work and welfare, including peer-reviewed journals and book series with large academic publishers. It is intended as a bookshelf ...

  2. A process for creating Celtic knot work

    E-Print Network [OSTI]

    Parks, Hunter Guymin

    2004-09-30T23:59:59.000Z

    Celtic art contains mysterious and fascinating aesthetic elements including complex knot work motifs. The problem is that creating and exploring these motifs require substantial human effort. One solution to this problem is to create a process...

  3. Work-Life Balance | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    benefits that help you do that include on-site child care, a credit union, flexible work schedules, generous leave and vacation programs, and much more. A wide variety...

  4. Work Area Policy

    E-Print Network [OSTI]

    2005-04-19T23:59:59.000Z

    POLICY X.X.X. Volume V, Information Technology. Chapter 6, Acceptable Safety Work Locations. Issuing Office: Department of Mathematics. Responsible†...

  5. INL @ work: Archaeologist

    SciTech Connect (OSTI)

    Lowrey, Dino

    2008-01-01T23:59:59.000Z

    INL @ work features jobs performed at the lab. For more information about INL careers, visit http://www.facebook.com/idahonationallaboratory.

  6. Job or Work Formulas

    E-Print Network [OSTI]

    Bailey, Charlotte M

    2014-09-16T23:59:59.000Z

    Job or Work Problems. (Needed equations or formulas). Worker's rate = 1 total time alone. Examples: Joe completes a job in 11 hours; his rate is job/hour.

  7. INL @ work: Archaeologist

    ScienceCinema (OSTI)

    Lowrey, Dino

    2013-05-28T23:59:59.000Z

    INL @ work features jobs performed at the lab. For more information about INL careers, visit http://www.facebook.com/idahonationallaboratory.

  8. Probabilistic modeling of the corrosion of steel structures in marine water-development works

    SciTech Connect (OSTI)

    Bekker, A. T.; Lyubimov, V. S.; Kovalenko, R. G.; Aleksandrov, A. V.

    2011-09-15T23:59:59.000Z

    Considering that corrosion takes place as a random process over time, a a probabilistic approach was utilized in this paper. The corrosion of metallic sheet piling employed in the fascia wall of a bulwerk is considered as an example. A stochastic model is constructed on the base of a modified Weibull distribution function with consideration of parameters of the corrosion process as a function of time. One of the factors defining the corrosion rate of the sheet piling is the degree of access of a section of the wall to the zone of variable water level, or the underwater zone. The type of corrosion-continuous or local-is another factor. The accuracy of corrosion prediction in the underwater zone is higher than that in the zone of variable water level.

  9. Control of SOx emission in tail gas of the Claus Plant at Kwangyang Steel Works

    SciTech Connect (OSTI)

    Kang, H.S.; Park, J.W.; Hyun, H.D. [POSCO, Cheonnam (Korea, Republic of). Kwangyang Works; Lee, D.S. [RIST, Pohang (Korea, Republic of). Div. of Environmental Catalysis; Paik, S.C. [POSTECH, Pohang (Korea, Republic of). Dept. of Chemical Engineering; Chung, J.S. [RIST, Pohang (Korea, Republic of). Div. of Environmental Catalysis; [POSTECH, Pohang (Korea, Republic of). Dept. of Chemical Engineering

    1995-12-01T23:59:59.000Z

    Pilot and/or laboratory studies were conducted in order to find methods for reducing the SOx emission in the Claus tail gas of the cokes unit. The TGT process which is based on the complete hydrogenation of the sulfur-containing compounds (SO{sub 2}, S) into H{sub 2}S and returning to the COG main line can reduce the SOx emission to zero. In case the return to the COG main is impossible, the SPOR process (Sulfur removal based on Partial Oxidation and Reduction) can be successfully applied to reduce the SOx emission.

  10. Ultrasonic inspection of austenitic stainless steel welds with artificially produced stress corrosion cracks

    SciTech Connect (OSTI)

    Dugan, Sandra; Wagner, Sabine [Materials Testing Institute University of Stuttgart (MPA), Pfaffenwaldring 32, 70569 Stuttgart (Germany)

    2014-02-18T23:59:59.000Z

    Austenitic stainless steel welds and nickel alloy welds, which are widely used in nuclear power plants, present major challenges for ultrasonic inspection due to the grain structure in the weld. Large grains in combination with the elastic anisotropy of the material lead to increased scattering and affect sound wave propagation in the weld. This results in a reduced signal-to-noise ratio, and complicates the interpretation of signals and the localization of defects. Mechanized ultrasonic inspection was applied to study austenitic stainless steel test blocks with different types of flaws, including inter-granular stress corrosion cracks (IGSCC). The results show that cracks located in the heat affected zone of the weld are easily detected when inspection from both sides of the weld is possible. In cases of limited accessibility, when ultrasonic inspection can be carried out only from one side of a weld, it may be difficult to distinguish between signals from scattering in the weld and signals from cracks.

  11. Using Phased Array Ultrasonic Testing in Lieu of Radiography for Acceptance of Carbon Steel Piping Welds

    SciTech Connect (OSTI)

    Moran, Traci L.; Anderson, Michael T.; Cinson, Anthony D.; Crawford, Susan L.; Nove, Carol A.

    2014-08-01T23:59:59.000Z

    The Pacific Northwest National Laboratory (PNNL) is conducting studies for the U.S. Nuclear Regulatory Commission (NRC) to assess the capability, effectiveness, and reliability of ultrasonic testing (UT) as a replacement method for radiographic testing (RT) for volumetric examination of nuclear power plant (NPP) components. This particular study focused on evaluating the use of UT on carbon steel plate welds. Welding fabrication flaws included a combination of planar and volumetric types, e.g., incomplete fusion, lack of penetration, cracks, porosity, and slag inclusions. The examinations were conducted using phased-array (PA) UT techniques applied primarily for detection and flaw type characterization. This paper will discuss the results of using UT in lieu of RT for detection and classification of fabrication flaws in carbon steel plate welds.

  12. AISI/DOE Technology Roadmap Program: Improved Surface Quality of Exposed Automotive Sheet Steels

    SciTech Connect (OSTI)

    John G. Speer; David K. Matlock; Noel Meyers; Young-Min Choi

    2002-10-10T23:59:59.000Z

    Surface quality of sheet steels is an important economic and technical issue for applications such as critical automotive surfaces. This project was therefore initiated to develop a more quantitative methodology for measuring surface imperfections, and to assess their response to forming and painting, particularly with respect to their visibility or invisibility after painting. The objectives were met, and included evaluation of a variety of imperfections present on commercial sheet surfaces or simulated using methods developed in the laboratory. The results are expected to have significant implications with respect to the methodology for assessing surface imperfections, development of quantitative criteria for surface inspection, and understanding and improving key painting process characteristics that influence the perceived quality of sheet steel surfaces.

  13. Irradiation effects on base metal and welds of 9Cr-1Mo (EM10) martensitic steel

    SciTech Connect (OSTI)

    Alamo, A.; Seran, J.L.; Rabouille, O.; Brachet, J.C.; Maillard, A.; Touron, H.; Royer, J. [CEA Saclay, Gif-sur-Yvette (France)

    1996-12-31T23:59:59.000Z

    9Cr martensitic steels are being developed for core components (wrapper tubes) of fast breeder reactors as well as for fusion reactor structures. Here, the effects of fast neutron irradiation on the mechanical behavior of base metal and welds of 9Cr-1Mo (EM10) martensitic steel have been studied. Two types of weldments have been produced by TIG and electron beam techniques. Half of samples have been post-weld heat treated to produce a stress-relieved structure. The irradiation has been conducted in the Phenix reactor to doses of 63--65 dpa in the temperature range 450--459 C. The characterization of the welds, before and after irradiation, includes metallographic observations, hardness measurements, tensile and Charpy tests. It is shown that the mechanical properties of the welds after irradiation are in general similar to the characteristics obtained on the base metal, which is little affected by neutron irradiation.

  14. Stirling engine with air working fluid

    SciTech Connect (OSTI)

    Corey, J. A.

    1985-08-06T23:59:59.000Z

    A Stirling engine capable of utilizing air as a working fluid which includes a compact heat exchange module which includes heating tube units, regenerator and cooler positioned about the combustion chamber. This arrangement has the purpose and effect of allowing the construction of an efficient, high-speed, high power-density engine without the use of difficult to seal light gases as working fluids.

  15. Stirling engine with air working fluid

    DOE Patents [OSTI]

    Corey, John A. (North Troy, NY)

    1985-01-01T23:59:59.000Z

    A Stirling engine capable of utilizing air as a working fluid which includes a compact heat exchange module which includes heating tube units, regenerator and cooler positioned about the combustion chamber. This arrangement has the purpose and effect of allowing the construction of an efficient, high-speed, high power-density engine without the use of difficult to seal light gases as working fluids.

  16. Energy Assessments under the Top 10,000 Program - A Case Study for a Steel Mill in China

    SciTech Connect (OSTI)

    Lu, Hongyou [Lawrence Berkeley National Laboratory (LBNL); Price, Lynn [Lawrence Berkeley National Laboratory (LBNL); Nimbalkar, Sachin U [ORNL; Thekdi, Arvind [E3M Inc; Degroot, Matthew [Institute for Sustainable Communitities; Shi, Jun [Shaanxi Province Energy Conservation and Supervision Center, China

    2014-01-01T23:59:59.000Z

    One of the largest energy-savings programs for the Chinese industrial sector was the Top-1,000 Program, which targeted the 1,000 largest industrial enterprises in China. This program was launched in 2006, implemented through 2010, and covered 33% of national energy usage. Because of the success of the Top-1000 initiative, the program has now been expanded to the Top-10,000 program in the 12th Five-Year Plan period (2011-2015). The Top-10,000 program covers roughly 15,000 industrial enterprises, or about two-thirds of China s total energy consumption. Implementing energy audit systems and conducting industrial energy efficiency assessments are key requirements of the Top-10,000 program. Previous research done by Lawrence Berkeley National Laboratory (LBNL) has shown that there is a significant potential for improvement in energy assessment practices and applications in China. Issues such as lack of long term policy mechanisms, insufficient motivation for industrial enterprises, limited technical scope of energy assessments, and lack of systematic standardization have been identified. Through the support of the U.S. Department of Energy (DOE) and the U.S. State Department (with additional co-funding from the Energy Foundation China), LBNL, Oak Ridge National Laboratory, the Institute for Sustainable Communities (ISC), and DOE Energy Experts worked collaboratively with Chinese local organizations and conducted a series of industrial energy efficiency assessment demonstrations in selected Chinese industrial plants. The project aimed to not only introduce standardized methodologies and tools for energy assessments, but also to bring the systems approach for energy system analysis to the Top 10,000 enterprises. Through the project, five energy system assessments were conducted, and more than 300 Chinese experts from local energy conservation centers, universities, research organizations, energy service companies, and plant engineers were trained. This paper begins by introducing China s national energy intensity and carbon intensity reduction targets. Then, this paper explains the development of Top 10,000 program, including program requirements, the method for target allocation, key supporting policies, as well as challenges in implementing the program. By focusing on a process heating energy system assessment conducted in a Chinese steel mill, this paper presents an example of an energy system assessment conducted on steel reheating furnaces, including overall energy efficiency levels, areas of heat loss, and the potential for energy savings. In addition, the paper provides energy-savings recommendations that were identified during the assessment, as well as potential energy and energy costs savings. To conclude, this paper presents key findings that could further improve the Top 10,000 program by implementing a systems approach for energy assessments.

  17. Wrought stainless steel compositions having engineered microstructures for improved heat resistance

    DOE Patents [OSTI]

    Maziasz, Philip J [Oak Ridge, TN; Swindeman, Robert W [Oak Ridge, TN; Pint, Bruce A [Knoxville, TN; Santella, Michael L [Knoxville, TN; More, Karren L [Knoxville, TN

    2007-08-21T23:59:59.000Z

    A wrought stainless steel alloy composition includes 12% to 25% Cr, 8% to 25% Ni, 0.05% to 1% Nb, 0.05% to 10% Mn, 0.02% to 0.15% C, 0.02% to 0.5% N, with the balance iron, the composition having the capability of developing an engineered microstructure at a temperature above 550.degree. C. The engineered microstructure includes an austenite matrix having therein a dispersion of intragranular NbC precipitates in a concentration in the range of 10.sup.10 to 10.sup.17 precipitates per cm.sup.3.

  18. Work Authorization System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-04-20T23:59:59.000Z

    It establishes a work authorization and control process for work performed by designated management and operating (M&O), management and integrating (M&I), environmental restoration management contracts (ERMC) and other contracts determined by the Procurement Executive (hereafter referred to as M&O contractors). Cancels DOE O 5700.7C. Canceled by DOE O 412.1A.

  19. WORKPLACE GUIDES GLOBAL WORKING

    E-Print Network [OSTI]

    Roelleke, Thomas

    of Stonewall good practice publications ≠ profiles some of the employers paving the way for gay staff to work do arise. This guide provides clear, practical tips on how gay employees can access internationalWORKPLACE GUIDES GLOBAL WORKING Supporting lesbian, gay and bisexual staff on overseas assignments

  20. Work Authorization System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-04-21T23:59:59.000Z

    To establish a work authorization and control process for work performed by designated site and facility management contractors, and other contractors as determined by the procurement executive, consistent with the budget execution and program evaluation requirements of the Department of Energy's (DOE's) Planning, Programming, Budgeting, and Evaluation process. Cancels DOE O 412.1.

  1. Work Authorization System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-04-21T23:59:59.000Z

    To establish a work authorization and control process for work performed by designated site and facility management contractors, and other contractors as determined by the procurement executive, consistent with the budget execution and program evaluation requirements of the Department of Energy's Planning, Programming, Budgeting, and Evaluation process. Admin Chg 1, dated 5-21-2014, cancels DOE O 412.1A.

  2. Analysis of local warm forming of high strength steel using near infrared ray energy

    SciTech Connect (OSTI)

    Yang, W. H., E-mail: whyang21@hyundai.com [Hyundai Motor Company, 700 Yeompo-ro, Buk-Gu, Ulsan, 683-791 (Korea, Republic of); Lee, K., E-mail: klee@deform.co.kr [Solution Lab, 502, 102, Dunsan-daero 117 beon-gil, Seo-Gu, Daejeon, 302-834 (Korea, Republic of); Lee, E. H., E-mail: mtgs2@kaist.ac.kr, E-mail: dyyang@kaist.ac.kr; Yang, D. Y., E-mail: mtgs2@kaist.ac.kr, E-mail: dyyang@kaist.ac.kr [KAIST, Science Town291, Daehak-ro, Yuseong-Gu, Daejeon 305-701 (Korea, Republic of)

    2013-12-16T23:59:59.000Z

    The automotive industry has been pressed to satisfy more rigorous fuel efficiency requirements to promote energy conservation, safety features and cost containment. To satisfy this need, high strength steel has been developed and used for many different vehicle parts. The use of high strength steels, however, requires careful analysis and creativity in order to accommodate its relatively high springback behavior. An innovative method, called local warm forming with near infrared ray, has been developed to help promote the use of high strength steels in sheet metal forming. For this method, local regions of the work piece are heated using infrared ray energy, thereby promoting the reduction of springback behavior. In this research, a V-bend test is conducted with DP980. After springback, the bend angles for specimens without local heating are compared to those with local heating. Numerical analysis has been performed using the commercial program, DEFORM-2D. This analysis is carried out with the purpose of understanding how changes to the local stress distribution will affect the springback during the unloading process. The results between experimental and computational approaches are evaluated to assure the accuracy of the simulation. Subsequent numerical simulation studies are performed to explore best practices with respect to thermal boundary conditions, timing, and applicability to the production environment.

  3. A simplified LBB evaluation procedure for austenitic and ferritic steel piping

    SciTech Connect (OSTI)

    Gamble, R.M.; Wichman, K.R.

    1997-04-01T23:59:59.000Z

    The NRC previously has approved application of LBB analysis as a means to demonstrate that the probability of pipe rupture was extremely low so that dynamic loads associated with postulated pipe break could be excluded from the design basis (1). The purpose of this work was to: (1) define simplified procedures that can be used by the NRC to compute allowable lengths for circumferential throughwall cracks and assess margin against pipe fracture, and (2) verify the accuracy of the simplified procedures by comparison with available experimental data for piping having circumferential throughwall flaws. The development of the procedures was performed using techniques similar to those employed to develop ASME Code flaw evaluation procedures. The procedures described in this report are applicable to pipe and pipe fittings with: (1) wrought austenitic steel (Ni-Cr-Fe alloy) having a specified minimum yield strength less than 45 ksi, and gas metal-arc, submerged arc and shielded metal-arc austentic welds, and (2) seamless or welded wrought carbon steel having a minimum yield strength not greater than 40 ksi, and associated weld materials. The procedures can be used for cast austenitic steel when adequate information is available to place the cast material toughness into one of the categories identified later in this report for austenitic wrought and weld materials.

  4. Final Report, Volume 3, Guidance Document for the Evaluation of Cast Super Duplex Stainless Steel

    SciTech Connect (OSTI)

    Hariharan, Vasudevan; Lundin, Carl, W.

    2005-09-30T23:59:59.000Z

    Volume 3 is comprised of the Development of Qualification Standards for Cast Super Duplex Stainless Steel (A890-5A) which is equivalent to wrought 2507. The objective of this work was to determine the suitability of ASTM A923 √?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?Standard Test methods for Detecting Detrimental Intermetallic Phase in Duplex Austenitic-Ferritic Stainless Steels√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬Ě for 25 Cr Cast Super Duplex Stainless Steels (ASTM A890-5A). The various tests which were carried out were ASTM A923 Test Method A, B and C (Sodium Hydroxide Etch Test, Charpy Impact Test and Ferric Chloride Corrosion Test), ferrite measurement using Feritscope√?¬?√?¬?√?¬?√?¬ģ, ASTM E562 Manual Point Count Method and X-Ray Diffraction, hardness measurement using Rockwell B and C and microstructural analysis using SEM and EDS.

  5. Simulation of Distortion and Residual Stress Development During Heat Treatment of Steel Castings

    SciTech Connect (OSTI)

    Christoph Beckermann; Kent Carlson

    2011-07-22T23:59:59.000Z

    Heat treatment and associated processing, such as quenching, are critical during high strength steel casting production. These processes must be managed closely to prevent thermal and residual stresses that may result in distortion, cracking (particularly after machining), re-work, and weld repair. The risk of casting distortion limits aggressive quenching that can be beneficial to the process and yield an improved outcome. As a result of these distortions, adjustments must be made to the casting or pattern design, or tie bars must be added. Straightening castings after heat treatments can be both time-consuming and expensive. Residual stresses may reduce a casting√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?s overall service performance, possibly resulting in catastrophic failure. Stress relieving may help, but expends additional energy in the process. Casting software is very limited in predicting distortions during heat treatment, so corrective measures most often involve a tedious trial-and-error procedure. An extensive review of existing heat treatment residual stress and distortion modeling revealed that it is vital to predict the phase transformations and microstructure of the steel along with the thermal stress development during heat treatment. After reviewing the state-of-the-art in heat treatment residual stress and distortion modeling, an existing commercial code was selected because of its advanced capabilities in predicting phase transformations, the evolving microstructure and related properties along with thermal stress development during heat treatment. However, this software was developed for small parts created from forgings or machined stock, and not for steel castings. Therefore, its predictive capabilities for heat treatment of steel castings were investigated. Available experimental steel casting heat treatment data was determined to be of insufficient detail and breadth, and so new heat treatment experiments were designed and performed, casting and heat treating modified versions of the Navy-C ring (a classical test shape for heat treatment experiments) for several carbon and low alloy steels in order to generate data necessary to validate the code. The predicted distortions were in reasonable agreement with the experimentally measured values. However, the final distortions in the castings were small, making it difficult to determine how accurate the predictions truly are. It is recommended that further validation of the software be performed with the aid of additional experiments with large production steel castings that experience significant heat treatment distortions. It is apparent from this research that the mechanical properties of the bonded sand used for cores and sand molds are key in producing accurate stress simulation results. Because of this, experiments were performed to determine the temperature-dependent elastic modulus of a resin-bonded sand commonly utilized in the steel casting industry. The elastic modulus was seen to vary significantly with heating and cooling rates. Also, the retained room temperature elastic modulus after heating was seen to degrade significantly when the sand was heated above 125√?¬?√?¬?√?¬?√?¬įC. The elastic modulus curves developed in this work can readily be utilized in casting simulation software. Additional experiments with higher heating rates are recommended to determine the behavior of the elastic modulus in the sand close to the mold-metal interface. The commercial heat treatment residual stress and distortion code, once fully validated, is expected to result in an estimated energy savings of 2.15 trillion BTU√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?s/year. Along with these energy savings, reduction of scrap and improvement in casting yield will result in a reduction of the environmental emissions associated with the melting and pouring of the metal which will be saved as a result of this technology.

  6. Method for machining steel with diamond tools

    DOE Patents [OSTI]

    Casstevens, J.M.

    1984-01-01T23:59:59.000Z

    The present invention is directed to a method for machine optical quality finishes and contour accuracies of workpieces of carbon-containing metals such as steel with diamond tooling. The wear rate of the diamond tooling is significantly reduced by saturating the atmosphere at the interface of the workpiece and the diamond tool with a gaseous hydrocarbon during the machining operation. The presence of the gaseous hydrocarbon effectively eliminates the deterioration of the diamond tool by inhibiting or preventing the conversion of the diamond carbon to graphite carbon at the point of contact between the cutting tool and the workpiece.

  7. Method for machining steel with diamond tools

    DOE Patents [OSTI]

    Casstevens, John M. (Greenville, TX)

    1986-01-01T23:59:59.000Z

    The present invention is directed to a method for machining optical quality inishes and contour accuracies of workpieces of carbon-containing metals such as steel with diamond tooling. The wear rate of the diamond tooling is significantly reduced by saturating the atmosphere at the interface of the workpiece and the diamond tool with a gaseous hydrocarbon during the machining operation. The presence of the gaseous hydrocarbon effectively eliminates the deterioration of the diamond tool by inhibiting or preventing the conversion of the diamond carbon to graphite carbon at the point of contact between the cutting tool and the workpiece.

  8. Heavy-Section Steel Irradiation Program

    SciTech Connect (OSTI)

    Rosseel, T.M.

    2000-04-01T23:59:59.000Z

    Maintaining the integrity of the reactor pressure vessel (RPV) in a light-water-cooled nuclear power plant is crucial in preventing and controlling severe accidents that have the potential for major contamination release. Because the RPV is the only key safety-related component of the plant for which a redundant backup system does not exist, it is imperative to fully understand the degree of irradiation-induced degradation of the RPV's fracture resistance that occurs during service. For this reason, the Heavy-Section Steel Irradiation (HSSI) Program has been established.

  9. Gas Atomization of Stainless Steel - Slow Motion

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    Stainless steel liquid atomized by supersonic argon gas into a spray of droplets at ~1800ļC. Atomization of metal requires high pressure gas and specialized chambers for cooling and collecting the powders without contamination. The critical step for morphological control is the impingement of the gas on the melt stream. The video is a black and white high speed video of a liquid metal stream being atomized by high pressure gas. This material was atomized at the Ames Laboratory's Materials Preparation Center http://www.mpc.ameslab.gov

  10. Automated inspection of hot steel slabs

    DOE Patents [OSTI]

    Martin, Ronald J. (Burnsville, MN)

    1985-01-01T23:59:59.000Z

    The disclosure relates to a real time digital image enhancement system for performing the image enhancement segmentation processing required for a real time automated system for detecting and classifying surface imperfections in hot steel slabs. The system provides for simultaneous execution of edge detection processing and intensity threshold processing in parallel on the same image data produced by a sensor device such as a scanning camera. The results of each process are utilized to validate the results of the other process and a resulting image is generated that contains only corresponding segmentation that is produced by both processes.

  11. Automated inspection of hot steel slabs

    DOE Patents [OSTI]

    Martin, R.J.

    1985-12-24T23:59:59.000Z

    The disclosure relates to a real time digital image enhancement system for performing the image enhancement segmentation processing required for a real time automated system for detecting and classifying surface imperfections in hot steel slabs. The system provides for simultaneous execution of edge detection processing and intensity threshold processing in parallel on the same image data produced by a sensor device such as a scanning camera. The results of each process are utilized to validate the results of the other process and a resulting image is generated that contains only corresponding segmentation that is produced by both processes. 5 figs.

  12. Microstructure of Super-duplex Stainless Steels

    E-Print Network [OSTI]

    Sharafi, Shahriar

    1993-12-07T23:59:59.000Z

    .1 Introduction 24 3.2 The Fe-Cr-Ni System . . . . . . . . . . . . 25 3.3 The Alloying Elements in Duplex Stainless Steels 33 3.4 Chromium and Nickel Equivalents . . . . . . . 42 3.5 The Effect of Creq/Nieq Ratio on Equilibrium Volume Fraction of Austenite 43 3... / Austenite Balance 6.1 Introduction . 6.2 Thermodynamic Calculations . . . . . 6.3 Equilibrium Isothermal Heat Treatments 6.4 Effect of Ferrite/ Austenite Balance on Hardness 6.5 Equilibrium Partitioning of Alloying Elements 6.6 Precipitation of Cr2N 6...

  13. Carbon Emissions: Iron and Steel Industry

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain (Million Cubic Feet)Iron and Steel

  14. Kobe Steel Ltd Kobelco | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation, search GEOTHERMALTexas: Energy Resources JumpKobe Steel Ltd

  15. JFE Steel Corp | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunanInformation sourceInvensysIsland GasItron IncJFEJFE Steel

  16. Steel Industry Profile | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo ¬ĽUsageSecretaryVideosSpringoutAPBF-DEC NOxBestPractices SteamOfficeSteel

  17. Collection sir Samuel Steele university of alberta libraries

    E-Print Network [OSTI]

    MacMillan, Andrew

    carriŤre de milicien, de policier ŗ cheval et de soldat. La vaste correspondance entre Steele et sa femme nature personnelle de leur fils, Harwood Steele (1897 ŗ 1978), qui fut soldat, explorateur de l. R #12;7 Le gouvernement canadien envoya une expťdition armťe de la milice canadienne et des soldats

  18. STEEL PLATE SHEAR WALL BUILDINGS: DESIGN REQUIREMENTS AND RESEARCH

    E-Print Network [OSTI]

    Bruneau, Michel

    , University at Buffalo, Buffalo, NY 14260. #12;plate shear wall design and use of light-gage cold form platesSTEEL PLATE SHEAR WALL BUILDINGS: DESIGN REQUIREMENTS AND RESEARCH Michel Bruneau, P.E. 1 Dr areas. This paper provides an overview of the current state-of-the-art in steel plate shear wall design

  19. Rutherford backscattering analysis of gallium implanted 316 stainless steel

    E-Print Network [OSTI]

    Ortensi, Javier

    2000-01-01T23:59:59.000Z

    Ion implantation of Ga ions into 316 stainless steel was performed at fluences ranging from 8x10Ļ? to 10Ļ? ions/cm≤. The depth profile of Ga in the steel was analyzed via Rutherford Backscattering and ToFSIMS. The surface effects were...

  20. Welding residual stresses in ferritic power plant steels

    E-Print Network [OSTI]

    Cambridge, University of

    REVIEW Welding residual stresses in ferritic power plant steels J. A. Francis*1 , H. K. D. H require therefore, an accounting of residual stresses, which often are introduced during welding. To do in the estimation of welding residual stresses in austenitic stainless steels. The progress has been less convincing

  1. Cinematography of Resistance Spot Welding of Galvanized Steel Sheet

    E-Print Network [OSTI]

    Eagar, Thomas W.

    Cinematography of Resistance Spot Welding of Galvanized Steel Sheet Preweld and postweld current modifications on the resistance spot welding of galvanized steel sheet ∑are analyzed using high phenomena through∑ out the weld process are discussed. In addition. the duration of current modifi∑ cation

  2. Plastic strain due to twinning in austenitic TWIP steels

    E-Print Network [OSTI]

    Cambridge, University of

    Plastic strain due to twinning in austenitic TWIP steels B. Qin and H. K. D. H. Bhadeshia* Twinning induced plasticity steels are austenitic alloys in which mechanical twinning is a prominent deformation, Twinning, Twinning induced plasticity, Automobiles Introduction Mechanical twinning is a plastic

  3. CLEAVAGE FRACTURE MICROMECHANISMS RELATED TO WPS EFFECT IN RPV STEEL

    E-Print Network [OSTI]

    Boyer, Edmond

    CLEAVAGE FRACTURE MICROMECHANISMS RELATED TO WPS EFFECT IN RPV STEEL S. R. Bordet1 , B. Tanguy1 , S vessel (RPV) steel. In this purpose, different WPS fracture test results obtained on compact tensile (CT fractographic investigations and finite element (FE) calculations, demonstrate a strong material aspect to WPS

  4. Sigma phase formation kinetics in stainless steel laminate composites

    SciTech Connect (OSTI)

    Wenmen, D.W.; Olson, D.L.; Matlock, D.K. [Colorado School of Mines, Golden, CO (United States)] [and others

    1994-12-31T23:59:59.000Z

    Stainless steel laminate composites were made to simulate weld microstructures. The use of laminates with variations in chemical composition allows for one dimensional analysis of phase transformation associated with the more complex three-dimensional solidification experience of weld metal. Alternate layers of austenitic (304L and 316L) and ferritic (Ebrite) stainless steels allowed for the study of sigma phase formation at the austenite-ferrite interface in duplex stainless steel. Two austenitic stainless steels, 304L (18.5Cr-9.2Ni-0.3Mo) and 316L (16.2Cr-10.1Ni-2.6Mo), and one ferritic stainless steel, Ebrite (26.3Cr-0Ni-1.0Mo) were received in the form of sheet which was laboratory cold rolled to a final thickness of 0.25 mm (0.030 in.). Laminate composites were prepared by laboratory hot rolling a vacuum encapsulated compact of alternating layers of the ferrite steel with either 304L or 316L stainless steel sheets. Laminate composite specimens, which simulate duplex austenite-ferrite weld metal structure, were used to establish the kinetics of nucleation and growth of sigma phase. The factors affecting sigma phase formation were identified. The effects of time, temperature, and transport of chromium and nickel were evaluated and used to establish a model for sigma phase formation in the austenite-ferrite interfacial region. Information useful for designing stainless steel welding consumables to be used for high temperature service was determined.

  5. Protoplanetary disks including radiative feedback from accreting planets

    E-Print Network [OSTI]

    Montesinos, Matias; Perez, Sebastian; Baruteau, Clement; Casassus, Simon

    2015-01-01T23:59:59.000Z

    While recent observational progress is converging on the detection of compact regions of thermal emission due to embedded protoplanets, further theoretical predictions are needed to understand the response of a protoplanetary disk to the planet formation radiative feedback. This is particularly important to make predictions for the observability of circumplanetary regions. In this work we use 2D hydrodynamical simulations to examine the evolution of a viscous protoplanetary disk in which a luminous Jupiter-mass planet is embedded. We use an energy equation which includes the radiative heating of the planet as an additional mechanism for planet formation feedback. Several models are computed for planet luminosities ranging from $10^{-5}$ to $10^{-3}$ Solar luminosities. We find that the planet radiative feedback enhances the disk's accretion rate at the planet's orbital radius, producing a hotter and more luminous environement around the planet, independently of the prescription used to model the disk's turbul...

  6. Early Detection of Steel Rebar Corrosion by Acoustic Emission Monitoring Early Detection of Steel Rebar Corrosion by Acoustic Emission

    E-Print Network [OSTI]

    Early Detection of Steel Rebar Corrosion by Acoustic Emission Monitoring Early Detection of Steel Rebar Corrosion by Acoustic Emission Monitoring Alan D. Zdunek and David Prine BIRL Industrial Research, Evanston, IL 60201 Paper No. 547 presented at CORROSION95, the NACE International Annual Conference

  7. October 14 WA Division Newsletter Page 4 Tool durability and steel microstructure in friction stir welding of mild steel

    E-Print Network [OSTI]

    Cambridge, University of

    ) of aluminium alloys are cost effective and durable, whereas the much larger market for welding of steels for the welding of 7075 aluminium alloy. The results were presented as easy to use maps of "tool durability index- ium alloys has been applied to the FSW of steel. The calculations were extended to predict

  8. Heat Treatment Procedure Qualification for Steel Castings

    SciTech Connect (OSTI)

    Professor Robert C. Voigt

    2003-02-02T23:59:59.000Z

    The science of heat treatment has been well studied and is the basis from which existing specifications and practices for the heat treatment of steel castings have been developed. Although these existing specifications address the general needs of steel castings to be heat-treated, they do not take into account the variability in the parameters that govern the processes. The need for a heat treatment qualification procedure that accounts for this variability during heat treatment is an important step toward heat treatment quality assurance. The variability in temperatures within a heat treatment furnace is one such variable that a foundry has to contend with in its day-to-day activity. Though specifications indicate the temperatures at which a particular heat treatment has to be conducted, heat treatment specifications do not adequately account for all aspects of heat treatment quality assurance. The heat treatment qualification procedure will comprise of a robust set of rules and guidelines that ensure that foundries will still be able to operate within the set of constraints imposed on them by non-deterministic elements within the processes.

  9. Cast alumina forming austenitic stainless steels

    DOE Patents [OSTI]

    Muralidharan, Govindarajan; Yamamoto, Yukinori; Brady, Michael P

    2013-04-30T23:59:59.000Z

    An austenitic stainless steel alloy consisting essentially of, in terms of weight percent ranges 0.15-0.5C; 8-37Ni; 10-25Cr; 2.5-5Al; greater than 0.6, up to 2.5 total of at least one element selected from the group consisting of Nb and Ta; up to 3Mo; up to 3Co; up to 1W; up to 3Cu; up to 15Mn; up to 2Si; up to 0.15B; up to 0.05P; up to 1 total of at least one element selected from the group consisting of Y, La, Ce, Hf, and Zr; <0.3Ti+V; <0.03N; and, balance Fe, where the weight percent Fe is greater than the weight percent Ni, and wherein the alloy forms an external continuous scale comprising alumina, and a stable essentially single phase FCC austenitic matrix microstructure, the austenitic matrix being essentially delta-ferrite free and essentially BCC-phase-free. A method of making austenitic stainless steel alloys is also disclosed.

  10. Clean Energy Works (Oregon)

    Broader source: Energy.gov [DOE]

    Clean Energy Works began in 2009 as a pilot program run by the City of Portland. In 2010, the US department of Energy awarded $20 million to create a statewide nonprofit to expand the program...

  11. How Fusion Energy Works

    Broader source: Energy.gov [DOE]

    Fusion energy is the energy source of the sun and all of the stars. As part of How Energy Works, we'll cover everything from fuel sources to plasma physics and beyond.

  12. Parametric Studies Of Weld Quality Of Tungsten Inert Gas Arc Welding Of Stainless Steel

    SciTech Connect (OSTI)

    Kumar Pal, Pradip; Nandi, Goutam; Ghosh, Nabendu [Mechanical Engineering Department, Jadavpur University, Kolkata-700032 (India)

    2011-01-17T23:59:59.000Z

    Effect of current and gas flow rate on quality of weld in tungsten inter gas arc welding of austenitic stainless steel has been studied in the present work through experiments and analyses. Butt welded joints have been made by using several levels of current and gas flow rate. The quality of the weld has been evaluated in terms of ultimate and breaking strengths of the welded specimens. The observed data have been interpreted, discussed and analyzed by using Grey--Taguchi methodology. Optimum parametric setting has been predicted and validated as well.

  13. Effects of helium content of microstructural development in Type 316 stainless steel under neutron irradiation

    SciTech Connect (OSTI)

    Maziasz, P.J.

    1985-11-01T23:59:59.000Z

    This work investigated the sensitivity of microstructural evolution, particularly precipitate development, to increased helium content during thermal aging and during neutron irradiation. Helium (110 at. ppM) was cold preinjected into solution annealed (SA) DO-heat type 316 stainess steel (316) via cyclotron irradiation. These specimens were then exposed side by side with uninjected samples. Continuous helium generation was increased considerably relative to EBR-II irradiation by irradiation in HFIR. Data were obtained from quantitative analytical electron microscopy (AEM) in thin foils and on extraction replicas. 480 refs., 86 figs., 19 tabs.

  14. Modeling of Late Blooming Phases and Precipitation Kinetics in Aging Reactor Pressure Vessel (RPV) Steels

    SciTech Connect (OSTI)

    Yongfeng Zhang; Pritam Chakraborty; S. Bulent Biner

    2013-09-01T23:59:59.000Z

    The principle work at the atomic scale is to develop a predictive quantitative model for the microstructure evolution of RPV steels under thermal aging and neutron radiation. We have developed an AKMC method for the precipitation kinetics in bcc-Fe, with Cu, Ni, Mn and Si being the alloying elements. In addition, we used MD simulations to provide input parameters (if not available in literature). MMC simulations were also carried out to explore the possible segregation/precipitation morphologies at the lattice defects. First we briefly describe each of the simulation algorithms, then will present our results.

  15. Fermilab: Science at Work

    ScienceCinema (OSTI)

    Brendan Casey; Herman White; Craig Hogan; Denton Morris; Mary Convery; Bonnie Fleming; Deborah Harris; Dave Schmitz; Brenna Flaugher; Aron Soha

    2013-02-14T23:59:59.000Z

    Six days. Three frontiers. One amazing lab. From 2010 to 2012, a film crew followed a group of scientists at the Department of Energy's Fermilab and filmed them at work and at home. This 40-minute documentary shows the diversity of the people, research and work at Fermilab. Viewers catch a true behind-the-scenes look of the United States' premier particle physics laboratory while scientists explain why their research is important to them and the world.

  16. Mobile machine hazardous working zone warning system

    DOE Patents [OSTI]

    Schiffbauer, W.H.; Ganoe, C.W.

    1999-08-17T23:59:59.000Z

    A warning system is provided for a mobile working machine to alert an individual of a potentially dangerous condition in the event the individual strays into a hazardous working zone of the machine. The warning system includes a transmitter mounted on the machine and operable to generate a uniform magnetic field projecting beyond an outer periphery of the machine in defining a hazardous working zone around the machine during operation. A receiver, carried by the individual and activated by the magnetic field, provides an alarm signal to alert the individual when he enters the hazardous working zone of the machine. 3 figs.

  17. Mobile machine hazardous working zone warning system

    DOE Patents [OSTI]

    Schiffbauer, William H. (Connellsville, PA); Ganoe, Carl W. (Pittsburgh, PA)

    1999-01-01T23:59:59.000Z

    A warning system is provided for a mobile working machine to alert an individual of a potentially dangerous condition in the event the individual strays into a hazardous working zone of the machine. The warning system includes a transmitter mounted on the machine and operable to generate a uniform magnetic field projecting beyond an outer periphery of the machine in defining a hazardous working zone around the machine during operation thereof. A receiver, carried by the individual and activated by the magnetic field, provides an alarm signal to alert the individual when he enters the hazardous working zone of the machine.

  18. Characteristics of steel slag under different cooling conditions

    SciTech Connect (OSTI)

    Tossavainen, M. [Division of Mineral Processing, Lulea University of Technology, SE-971 87 Lulea (Sweden); Engstrom, F. [Division of Process Metallurgy, Lulea University of Technology, SE-971 87 Lulea (Sweden)], E-mail: Fredrik.i.engstrom@ltu.se; Yang, Q.; Menad, N.; Lidstrom Larsson, M.; Bjorkman, B. [Division of Process Metallurgy, Lulea University of Technology, SE-971 87 Lulea (Sweden)

    2007-07-01T23:59:59.000Z

    Four types of steel slags, a ladle slag, a BOF (basic oxygen furnace) slag and two different EAF (electric arc furnace) slags, were characterized and modified by semi-rapid cooling in crucibles and rapid cooling by water granulation. The aim of this work was to investigate the effect of different cooling conditions on the properties of glassy slags with respect to their leaching and volume stability. Optical microscopy, X-ray diffraction, scanning electron microscope and a standard test leaching (prEN 12457-2/3) have been used for the investigation. The results show that the disintegrated ladle slag was made volume stable by water granulation, which consisted of 98% glass. However EAF slag 1, EAF slag 2 and the BOF slag formed 17%, 1% and 1% glass, respectively. The leaching test showed that the glass-containing matrix did not prevent leaching of minor elements from the modified slags. The solubility of chromium, molybdenum and vanadium varied in the different modifications, probably due to their presence in different minerals and their different distributions.

  19. Recent developments in blast furnace process control within British Steel

    SciTech Connect (OSTI)

    Warren, P.W. [British Steel Technical, Middlesbrough (United Kingdom). Teesside Labs.

    1995-12-01T23:59:59.000Z

    British Steel generally operates seven blast furnaces on four integrated works. All furnaces have been equipped with comprehensive instrumentation and data logging computers over the past eight years. The four Scunthorpe furnaces practice coal injection up to 170 kg/tHM (340 lb/THM), the remainder injecting oil at up to 100 kg/tHM (200 lb/THM). Distribution control is effected by Paul Wurth Bell-Less Tops on six of the seven furnaces, and Movable Throat Armour with bells on the remaining one. All have at least one sub burden probe. The blast furnace operator has a vast quantity of data and signals to consider and evaluate when attempting to achieve the objective of providing a consistent supply of hot metal. Techniques have been, and are being, developed to assist the operator to interpret large numbers of signals. A simple operator guidance system has been developed to provide advice, based on current operating procedures and interpreted data. Further development will involve the use of a sophisticated Expert System software shell.

  20. Crack growth rates and fracture toughness of irradiated austenitic stainless steels in BWR environments.

    SciTech Connect (OSTI)

    Chopra, O. K.; Shack, W. J.

    2008-01-21T23:59:59.000Z

    In light water reactors, austenitic stainless steels (SSs) are used extensively as structural alloys in reactor core internal components because of their high strength, ductility, and fracture toughness. However, exposure to high levels of neutron irradiation for extended periods degrades the fracture properties of these steels by changing the material microstructure (e.g., radiation hardening) and microchemistry (e.g., radiation-induced segregation). Experimental data are presented on the fracture toughness and crack growth rates (CGRs) of wrought and cast austenitic SSs, including weld heat-affected-zone materials, that were irradiated to fluence levels as high as {approx} 2x 10{sup 21} n/cm{sup 2} (E > 1 MeV) ({approx} 3 dpa) in a light water reactor at 288-300 C. The results are compared with the data available in the literature. The effects of material composition, irradiation dose, and water chemistry on CGRs under cyclic and stress corrosion cracking conditions were determined. A superposition model was used to represent the cyclic CGRs of austenitic SSs. The effects of neutron irradiation on the fracture toughness of these steels, as well as the effects of material and irradiation conditions and test temperature, have been evaluated. A fracture toughness trend curve that bounds the existing data has been defined. The synergistic effects of thermal and radiation embrittlement of cast austenitic SS internal components have also been evaluated.