Sample records for includes personal vehicles

  1. William and Mary Athletics State Vehicle / Rental Vehicle / Personal Vehicle Policies

    E-Print Network [OSTI]

    Swaddle, John

    William and Mary Athletics State Vehicle / Rental Vehicle / Personal Vehicle Policies Last Update: 2/14/14 W&M's vehicle use policy requires that a driver authorization form be completed and approved before driving any vehicle (including a personal vehicle) for university business or a university

  2. Energy Consumption of Personal Computing Including Portable

    E-Print Network [OSTI]

    Namboodiri, Vinod

    Energy Consumption of Personal Computing Including Portable Communication Devices Pavel Somavat1 consumption, questions are being asked about the energy contribution of computing equipment. Al- though studies have documented the share of energy consumption by this type of equipment over the years, research

  3. Idling Reduction for Personal Vehicles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)Hydrogen StorageITERITER Subscribe toVEHICLE TECHNOLOGIES

  4. The Evolution of Sustainable Personal Vehicles

    E-Print Network [OSTI]

    Jungers, Bryan D

    2009-01-01T23:59:59.000Z

    Propulsion Systems for Hybrid Vehicles. The Institution ofA.B. (1996). Ultralight-Hybrid Vehicle Design: OvercomingLightweight Electric/Hybrid Vehicle Design. Reel Educational

  5. Composite armor, armor system and vehicle including armor system

    DOE Patents [OSTI]

    Chu, Henry S.; Jones, Warren F.; Lacy, Jeffrey M.; Thinnes, Gary L.

    2013-01-01T23:59:59.000Z

    Composite armor panels are disclosed. Each panel comprises a plurality of functional layers comprising at least an outermost layer, an intermediate layer and a base layer. An armor system incorporating armor panels is also disclosed. Armor panels are mounted on carriages movably secured to adjacent rails of a rail system. Each panel may be moved on its associated rail and into partially overlapping relationship with another panel on an adjacent rail for protection against incoming ordnance from various directions. The rail system may be configured as at least a part of a ring, and be disposed about a hatch on a vehicle. Vehicles including an armor system are also disclosed.

  6. Detecting persons concealed in a vehicle

    DOE Patents [OSTI]

    Tucker, Jr., Raymond W.

    2005-03-29T23:59:59.000Z

    An improved method for detecting the presence of humans or animals concealed within in a vehicle uses a combination of the continuous wavelet transform and a ratio-based energy calculation to determine whether the motion detected using seismic sensors placed on the vehicle is due to the presence of a heartbeat within the vehicle or is the result of motion caused by external factors such as the wind. The method performs well in the presence of light to moderate ambient wind levels, producing far fewer false alarm indications. The new method significantly improves the range of ambient environmental conditions under which human presence detection systems can reliably operate.

  7. The Evolution of Sustainable Personal Vehicles

    E-Print Network [OSTI]

    Jungers, Bryan D

    2009-01-01T23:59:59.000Z

    consideration of a product's lifecycle, including thewhich pertain mostly to lifecycle product costs, materials

  8. Fact #778: May 6, 2013 Vehicles per Thousand Persons Rising Quickly...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8: May 6, 2013 Vehicles per Thousand Persons Rising Quickly in China and India Fact 778: May 6, 2013 Vehicles per Thousand Persons Rising Quickly in China and India The number of...

  9. Limited Personal Use of Government Office Equipment including Information Technology

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-01-07T23:59:59.000Z

    The Order establishes requirements and assigns responsibilities for employees' limited personal use of Government resources (office equipment and other resources including information technology) within DOE, including NNSA. The Order is required to provide guidance on appropriate and inappropriate uses of Government resources. This Order was certified 04/23/2009 as accurate and continues to be relevant and appropriate for use by the Department. Certified 4-23-09. No cancellation.

  10. Person-based Adaptive Priority Signal Control with Connected-vehicle Information 

    E-Print Network [OSTI]

    Sun, Xin

    2014-12-17T23:59:59.000Z

    This thesis proposes a TSP (transit signal priority) strategy of person-based adaptive priority signal control with connected-vehicle information (PAPSCCI). By minimizing the total person delay at an isolated intersection, PAPSCCI can assign signal...

  11. Person-based Adaptive Priority Signal Control with Connected-vehicle Information

    E-Print Network [OSTI]

    Sun, Xin

    2014-12-17T23:59:59.000Z

    This thesis proposes a TSP (transit signal priority) strategy of person-based adaptive priority signal control with connected-vehicle information (PAPSCCI). By minimizing the total person delay at an isolated intersection, PAPSCCI can assign signal...

  12. Accounting for the Energy Consumption of Personal Computing Including Portable Devices

    E-Print Network [OSTI]

    Namboodiri, Vinod

    Accounting for the Energy Consumption of Personal Computing Including Portable Devices Pavel.S.A vinod.namboodiri@wichita.edu ABSTRACT In light of the increased awareness of global energy consumption the share of energy consumption due to these equipment over the years, these have rarely characterized

  13. Safety First Safety Last Safety Always Personal fall-protection systems include a body harness (safe-

    E-Print Network [OSTI]

    Minnesota, University of

    did it that way doesn't make it right. Personal fall-protection equipment is the only thing between, general requirements 1910.269 Electric power generation, transmission, and distribution 1915.159 Personal

  14. Lab Safety/Hazardous Waste Training Persons (including faculty, staff and students) working in a lab and work-

    E-Print Network [OSTI]

    Tennessee, University of

    Lab Safety/Hazardous Waste Training Persons (including faculty, staff and students) working in a lab and work- ing with hazardous materials should receive annual training that address- es lab safety, personal protective equipment, storage, use, and disposal of hazardous materials, emergency procedures

  15. Autonomous personal vehicle for the first- and last-mile transportation services

    E-Print Network [OSTI]

    Chong, Z. J.

    This paper describes an autonomous vehicle testbed that aims at providing the first- and last- mile transportation services. The vehicle mainly operates in a crowded urban environment whose features can be extracted a ...

  16. #include #include

    E-Print Network [OSTI]

    Campbell, Andrew T.

    process #12;#include #include pid_t pid = fork(); if (pid () failed */ } else if (pid == 0) { /* parent process */ } else { /* child process */ } #12;thread #12

  17. Vehicle Technologies Office Merit Review 2015: Developing Kinetic Mechanisms for New Fuels and Biofuels, Including CFD Modeling

    Broader source: Energy.gov [DOE]

    Presentation given by Lawrence Livermore National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and vehicle technologies office annual merit review and peer evaluation meeting about...

  18. #include #include

    E-Print Network [OSTI]

    Poinsot, Laurent

    #include #include //Rappels : "getpid()" permet d'obtenir son propre pid // "getppid()" renvoie le pid du père d'un processus int main (void) { pid_t pid_fils; pid_fils = fork(); if(pid_fils==-1) { printf("Erreur de création du processus fils\

  19. The University has a number of dedicated automotive research centres, including the Powertrain and Vehicle Research Centre, the Turbo Centre and LARG (Lean and Agile

    E-Print Network [OSTI]

    Burton, Geoffrey R.

    The University has a number of dedicated automotive research centres, including the Powertrain and Vehicle Research Centre, the Turbo Centre and LARG (Lean and Agile Research Group) Automotive. The research carried out through these centres addresses the broad issues associated with the automotive

  20. Electric-Drive Vehicle Basics (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-04-01T23:59:59.000Z

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  1. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP)

    Broader source: Energy.gov [DOE]

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  2. Rental rate includes liability insurance (LDW), vehicle licensing fees, unlimited roundtrip mileage; $0.25/mile for one-way rentals and no drop fees for vehicles that are picked up and returned in the

    E-Print Network [OSTI]

    Arnold, Jonathan

    ; $0.25/mile for one-way rentals and no drop fees for vehicles that are picked up and returned in setting up direct billing for your department, please click link below: http://www

  3. Renting Vehicles Renting Vehicles from MSU Motor Pool

    E-Print Network [OSTI]

    Lawrence, Rick L.

    Renting Vehicles Renting Vehicles from MSU Motor Pool Motor Pool/Transportation Services Motor Pool vehicles may ONLY be used for club-related travel). 2) Valid U.S. driver's license in good standing; 3) Completed Vehicle Use Authorization form for all drivers; and 4) Personal medical insurance

  4. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-05-01T23:59:59.000Z

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  5. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  6. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (Oak Ridge, TN)

    1998-01-01T23:59:59.000Z

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  7. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (Oak Ridge, TN)

    1997-01-01T23:59:59.000Z

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  8. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1998-08-11T23:59:59.000Z

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendible appendages, each of which is radially extendible relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendible members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  9. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1997-02-11T23:59:59.000Z

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  10. Demonstration of Automated Heavy-Duty Vehicles

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    a future in which vehicle automation technologies are ableto support the heavy vehicle automation including PrecisionCommittee on Vehicle-Highway Automation, and the attendees

  11. Vehicle Repair Policy Outline the policy regarding vehicle repair on University of Michigan (U-M) vehicles.

    E-Print Network [OSTI]

    Kirschner, Denise

    Vehicle Repair Policy Objective Outline the policy regarding vehicle repair on University of Michigan (U-M) vehicles. Policy 1. All vehicle repairs performed on U-M vehicles must be coordinated facility to repair their fleet vehicles. 2. U-M vehicles leased through Fleet Services include routine

  12. Shai Agassi's story of his evolving personal interest in energy issues, and the evolv-ing business plan of his electric vehicle company, Better Place, provides an impor-

    E-Print Network [OSTI]

    Kammen, Daniel M.

    plan of his electric vehicle company, Better Place, provides an impor- tant lens on the pace short-lived efforts at developing electric vehicles. All this can be seen, in retrospect, as a clarion electric vehicles--is notable and challenging at the same time. The benefit of pure EV technology

  13. MKV Carrier Vehicle Sensor Calibration

    E-Print Network [OSTI]

    Plotnik, Aaron M.

    The Multiple Kill Vehicle (MKV) system, which is being developed by the US Missile Defense Agency (MDA), is a midcourse payload that includes a carrier vehicle and a number of small kill vehicles. During the mission, the ...

  14. Georgia Tech Vehicle Acquisition and

    E-Print Network [OSTI]

    1 2012 Georgia Tech 10/10/2012 Vehicle Acquisition and Disposition Manual #12;2 Vehicle Procedures Regardless of value, all vehicles should be included in this process. Acquisition of a Vehicle 1. Contact Fleet Coordinator to guide the departments in the purchasing process for all vehicles. 2. Fill out

  15. Vehicle Operation and Parking Policy

    E-Print Network [OSTI]

    Vehicle Operation and Parking Policy Responsible Administrative Unit: Finance & Administration in this policy. 2.0 POLICY STATEMENT This policy is intended to promote safe driving by operators of all vehicles are in effect at all times and apply to all persons and vehicles physically present on the CSM campus

  16. UWO Vehicle ACCIDENT REPORTING FORM

    E-Print Network [OSTI]

    Sinnamon, Gordon J.

    UWO Vehicle ­ ACCIDENT REPORTING FORM To be completed at the scene. (Important: Do not admit liability or discuss any settlement.) If there are personal injuries or severe damage to the vehicle, call 911. If vehicle is drivable and if it's safe to do so, pull to the side of road away from traffic. Put

  17. Vehicle Operation and Parking Policy

    E-Print Network [OSTI]

    Vehicle Operation and Parking Policy Responsible Administrative Unit: Finance & Administration STATEMENT This policy is intended to promote safe driving by operators of all vehicles utilizing streets and apply to all persons and vehicles physically present on the CSM campus. For the purpose of this policy

  18. Energy 101: Electric Vehicles

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. For more information on electric vehicles from the Office of Energy Efficiency and Renewable Energy, visit the Vehicle Technologies Program website: http://www1.eere.energy.gov/vehiclesandfuels/

  19. Automotive vehicle sensors

    SciTech Connect (OSTI)

    Sheen, S.H.; Raptis, A.C.; Moscynski, M.J.

    1995-09-01T23:59:59.000Z

    This report is an introduction to the field of automotive vehicle sensors. It contains a prototype data base for companies working in automotive vehicle sensors, as well as a prototype data base for automotive vehicle sensors. A market analysis is also included.

  20. Powertrain & Vehicle Research Centre

    E-Print Network [OSTI]

    Burton, Geoffrey R.

    Powertrain & Vehicle Research Centre Low Carbon Powertrain Development S. Akehurst, EPSRC Advanced Research Fellow A vehicles powertrain is a complex combination of interacting sub-systems which include complexity ·More efficient Vehicles, quicker to market, reduced cost to consumer The Optimisation Task

  1. Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008

    E-Print Network [OSTI]

    Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

    2008-01-01T23:59:59.000Z

    detour? Presentation at SAE 2008 Hybrid Vehicle Technologiesdrive vehicles, including plug-in hybrid vehicles. -vi-including plug-in hybrid vehicles. 7.0 References Anderman,

  2. Energy 101: Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs.

  3. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (115 Newhaven Rd., Oak Ridge, TN 37830)

    1994-01-01T23:59:59.000Z

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  4. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (Oak Ridge, TN)

    1996-01-01T23:59:59.000Z

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  5. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1996-03-12T23:59:59.000Z

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 14 figs.

  6. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1994-03-15T23:59:59.000Z

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 11 figures.

  7. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector...

  8. Intelligent Systems Software for Unmanned Air Vehicles

    E-Print Network [OSTI]

    classes of vehicles including autonomous underwater vehicles, autonomous ground vehicles, and unmanned airIntelligent Systems Software for Unmanned Air Vehicles Gregory L. Sinsley , Lyle N. Long , Albert F describes a software architecture for mission-level control of autonomous unmanned air vehicles (UAVs

  9. MOTOR VEHICLE USE PROGRAM DRIVER SAFETY TIPS

    E-Print Network [OSTI]

    MOTOR VEHICLE USE PROGRAM DRIVER SAFETY TIPS Observe Speed Limits and Traffic Laws ­ Allow - Employees who drive Institute or privately owned vehicles on Institute business must possess and carry person. Insurance - Employees who operate their privately owned vehicles on Institute business shall

  10. Vehicle Fleet Policy Responsible Administrative Unit: Finance & Administration

    E-Print Network [OSTI]

    Vehicle Fleet Policy Responsible Administrative Unit: Finance & Administration Policy Contact, and established campus vehicle fleet service under Facilities Management operations. The purpose of the fleet vehicles. This policy is applicable to the entire Mines fleet, which includes department vehicles. 2

  11. Apparatus for stopping a vehicle

    DOE Patents [OSTI]

    Wattenburg, Willard H. (Walnut Creek, CA); McCallen, David B. (Livermore, CA)

    2007-03-20T23:59:59.000Z

    An apparatus for externally controlling one or more brakes on a vehicle having a pressurized fluid braking system. The apparatus can include a pressurizable vessel that is adapted for fluid-tight coupling to the braking system. Impact to the rear of the vehicle by a pursuit vehicle, shooting a target mounted on the vehicle or sending a signal from a remote control can all result in the fluid pressures in the braking system of the vehicle being modified so that the vehicle is stopped and rendered temporarily inoperable. A control device can also be provided in the driver's compartment of the vehicle for similarly rendering the vehicle inoperable. A driver or hijacker of the vehicle preferably cannot overcome the stopping action from the driver's compartment.

  12. Vehicle Technologies Office: 2008 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2008 Advanced Vehicle...

  13. Vehicle Maintenance Policy Outline the policy regarding vehicle maintenance at University of Michigan (U-M).

    E-Print Network [OSTI]

    Kirschner, Denise

    Vehicle Maintenance Policy Objective Outline the policy regarding vehicle maintenance at University of Michigan (U-M). Policy 1. All maintenance performed on U-M vehicles must be coordinated through Garage to repair their fleet vehicles. 2. U-M vehicles leased through Fleet Services include routine maintenance

  14. Blast resistant vehicle seat

    DOE Patents [OSTI]

    Ripley, Edward B

    2013-02-12T23:59:59.000Z

    Disclosed are various seats for vehicles particularly military vehicles that are susceptible to attack by road-bed explosive devices such as land mines or improvised explosive devices. The seats often have rigid seat shells and may include rigid bracing for rigidly securing the seat to the chassis of the vehicle. Typically embodiments include channels and particulate media such as sand disposed in the channels. A gas distribution system is generally employed to pump a gas through the channels and in some embodiments the gas is provided at a pressure sufficient to fluidize the particulate media when an occupant is sitting on the seat.

  15. Armored Vehicle 

    E-Print Network [OSTI]

    Unknown

    2011-09-05T23:59:59.000Z

    This research is focused on designing a new generation of CAD tools that could help a ”hybrid vehicle” designer with the design process to come up with better vehicle configurations. The conventional design process for any type of hybrid...

  16. Assessment of institutional barriers to the use of natural gas in automotive vehicle fleets

    SciTech Connect (OSTI)

    Jablonski, J.; Lent, L.; Lawrence, M.; White, L.

    1983-08-01T23:59:59.000Z

    Institutional barriers to the use of natural gas as a fuel for motor vehicle fleets were identified and assessed. Recommendations for barrier removal were then developed. The research technique was a combination of literature review and interviews of knowledgeable persons in government and industry, including fleet operators and marketers of natural gas vehicles and systems. Eight types of institutional barriers were identified and assessed. The most important were two safety-related barriers: (1) lack of a national standard for the safety design and certification of natural gas vehicles and refueling stations; and (2) excessively conservative or misapplied state and local regulations, including bridge and tunnel restrictions, restrictions on types of vehicles that may be fueled by natural gas, zoning regulations that prohibit operation of refueling stations, parking restrictions, application of LPG standards to LNG vehicles, and unintentionally unsafe vehicle or refueling station requirements. Other barriers addressed include: (3) need for clarification of EPA's tampering enforcement policy; (4) the US hydrocarbon standard; (5) uncertainty concerning state utility commission jurisdiction; (6) sale-for-resale prohibitions imposed by natural gas utility companies or state utility commissions; (7) uncertainty of the effects of conversions to natural gas on vehicle manufacturers warranties; and (8) need for a natural gas to gasoline-equivalent-units conversion factor for use in calculation of state road use taxes. Insurance on natural gas vehicles, and state emissions and anti-tampering regulations were also investigated as part of the research but were not found to be barriers.

  17. Electric and Hydrogen Vehicles Past and Progress

    E-Print Network [OSTI]

    Kammen, Daniel M.

    status and TSRC research ­ Future? · Hydrogen Fuel Cell Vehicles ­ 20 years ago ­ 10 years ago ­ Current · Transportation Propulsion, Fuels, & Emissions ­ Electric-drive vehicles (including plug-in hybrid and fuel-cell Electric and Fuel Cell Vehicles?Why Electric and Fuel Cell Vehicles? · Transportation accounts for about 33

  18. Electric vehicles

    SciTech Connect (OSTI)

    Not Available

    1990-03-01T23:59:59.000Z

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

  19. Electric Vehicles

    ScienceCinema (OSTI)

    Ozpineci, Burak

    2014-07-23T23:59:59.000Z

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  20. Electric Vehicles

    SciTech Connect (OSTI)

    Ozpineci, Burak

    2014-05-02T23:59:59.000Z

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  1. Vehicle Technologies Office: AVTA - Electric Vehicle Charging...

    Energy Savers [EERE]

    Charging Equipment (EVSE) Testing Data Vehicle Technologies Office: AVTA - Electric Vehicle Charging Equipment (EVSE) Testing Data Electric vehicle chargers (otherwise known as...

  2. Vehicle Technologies Office: 2009 Advanced Vehicle Technology...

    Broader source: Energy.gov (indexed) [DOE]

    Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Vehicle Technologies Office: 2008 Advanced Vehicle Technology Analysis...

  3. Commercial Vehicle Classification using Vehicle Signature Data

    E-Print Network [OSTI]

    Liu, Hang; Jeng, Shin-Ting; Andre Tok, Yeow Chern; Ritchie, Stephen G.

    2008-01-01T23:59:59.000Z

    Traffic Measurement and Vehicle Classification with SingleG. Ritchie. Real-time Vehicle Classification using InductiveReijmers, J.J. , "On-line vehicle classification," Vehicular

  4. Personal Genomics, Personalized Medicine,

    E-Print Network [OSTI]

    Napp, Nils

    Personal Genomics, Personalized Medicine, & YOU Carrie Iwema, PhD, MLS 21st May 2012 AAAS/Science Translational Medicine panel discussion; MLA 2012 #12;Timeline: Human Genome Sequence HSLS, U.Pitt 1995 2014 2000 2003 2007 2007 2010 Human Genome Draft Sequence Complete Human Reference Genome Individual Human

  5. Hybrid Vehicle Program. Final report

    SciTech Connect (OSTI)

    None

    1984-06-01T23:59:59.000Z

    This report summarizes the activities on the Hybrid Vehicle Program. The program objectives and the vehicle specifications are reviewed. The Hybrid Vehicle has been designed so that maximum use can be made of existing production components with a minimum compromise to program goals. The program status as of the February 9-10 Hardware Test Review is presented, and discussions of the vehicle subsystem, the hybrid propulsion subsystem, the battery subsystem, and the test mule programs are included. Other program aspects included are quality assurance and support equipment. 16 references, 132 figures, 47 tables.

  6. Vehicle System Dynamics Vol. 00, No. 00, April 2008, 129

    E-Print Network [OSTI]

    Brennan, Sean

    Vehicle System Dynamics Vol. 00, No. 00, April 2008, 1­29 Fidelity of using scaled vehicles (April 2008) There are many situations where physical testing of a vehicle or vehicle controller is necessary, yet use of a full-size vehicle is not practical. Some situations include implementation testing

  7. Advanced Vehicle Testing and Evaluation

    SciTech Connect (OSTI)

    Garetson, Thomas

    2013-03-31T23:59:59.000Z

    The objective of the United States (U.S.) Department of Energy?s (DOEs) Advanced Vehicle Testing and Evaluation (AVTE) project was to provide test and evaluation services for advanced technology vehicles, to establish a performance baseline, to determine vehicle reliability, and to evaluate vehicle operating costs in fleet operations. Vehicles tested include light and medium-duty vehicles in conventional, hybrid, and all-electric configurations using conventional and alternative fuels, including hydrogen in internal combustion engines. Vehicles were tested on closed tracks and chassis dynamometers, as well as operated on public roads, in fleet operations, and over prescribed routes. All testing was controlled by procedures developed specifically to support such testing. Testing and evaluations were conducted in the following phases: ? Development of test procedures, which established testing procedures; ? Baseline performance testing, which established a performance baseline; ? Accelerated reliability testing, which determined vehicle reliability; ? Fleet testing, used to evaluate vehicle economics in fleet operation, and ? End of test performance evaluation. Test results are reported by two means and posted by Idaho National Laboratory (INL) to their website: quarterly progress reports, used to document work in progress; and final test reports. This final report documents work conducted for the entirety of the contract by the Clarity Group, Inc., doing business as ECOtality North America (ECOtality). The contract was performed from 1 October 2005 through 31 March 2013. There were 113 light-duty on-road (95), off-road (3) and low speed (15) vehicles tested.

  8. Retail Infrastructure Costs Comparison for Hydrogen and Electricity for Light-Duty Vehicles: Preprint

    SciTech Connect (OSTI)

    Melaina, M.; Sun, Y.; Bush, B.

    2014-08-01T23:59:59.000Z

    Both hydrogen and plug-in electric vehicles offer significant social benefits to enhance energy security and reduce criteria and greenhouse gas emissions from the transportation sector. However, the rollout of electric vehicle supply equipment (EVSE) and hydrogen retail stations (HRS) requires substantial investments with high risks due to many uncertainties. We compare retail infrastructure costs on a common basis - cost per mile, assuming fueling service to 10% of all light-duty vehicles in a typical 1.5 million person city in 2025. Our analysis considers three HRS sizes, four distinct types of EVSE and two distinct EVSE scenarios. EVSE station costs, including equipment and installation, are assumed to be 15% less than today's costs. We find that levelized retail capital costs per mile are essentially indistinguishable given the uncertainty and variability around input assumptions. Total fuel costs per mile for battery electric vehicle (BEV) and plug-in hybrid vehicle (PHEV) are, respectively, 21% lower and 13% lower than that for hydrogen fuel cell electric vehicle (FCEV) under the home-dominant scenario. Including fuel economies and vehicle costs makes FCEVs and BEVs comparable in terms of costs per mile, and PHEVs are about 10% less than FCEVs and BEVs. To account for geographic variability in energy prices and hydrogen delivery costs, we use the Scenario Evaluation, Regionalization and Analysis (SERA) model and confirm the aforementioned estimate of cost per mile, nationally averaged, but see a 15% variability in regional costs of FCEVs and a 5% variability in regional costs for BEVs.

  9. Abstract--The need for intelligent unmanned vehicles has been steadily increasing. These vehicles could be air-, ground-, space-,

    E-Print Network [OSTI]

    air vehicles (UAV), unmanned ground vehicles (UGV), unmanned spacecraft, and unmanned underwater1 Abstract--The need for intelligent unmanned vehicles has been steadily increasing. These vehicles, or autonomous vehicles, are becoming widely used in the military and civilian sectors. These include unmanned

  10. Fact #843: October 20, 2014 Cumulative Plug-in Electric Vehicle...

    Broader source: Energy.gov (indexed) [DOE]

    Plug-in Electric Vehicles include plug-in hybrid vehicles and all-electric vehicles. Hybrid Electric Vehicles derive all of their energy from gasoline and cannot be plugged...

  11. Project Fever - Fostering Electric Vehicle Expansion in the Rockies

    SciTech Connect (OSTI)

    Swalnick, Natalia

    2013-06-30T23:59:59.000Z

    Project FEVER (Fostering Electric Vehicle Expansion in the Rockies) is a part of the Clean Cities Community Readiness and Planning for Plug-in Electric Vehicles and Charging Infrastructure Funding Opportunity funded by the U.S. Department of Energy (DOE) for the state of Colorado. Tasks undertaken in this project include: Electric Vehicle Grid Impact Assessment; Assessment of Electrical Permitting and Inspection for EV/EVSE (electric vehicle/electric vehicle supply equipment); Assessment of Local Ordinances Pertaining to Installation of Publicly Available EVSE;Assessment of Building Codes for EVSE; EV Demand and Energy/Air Quality Impacts Assessment; State and Local Policy Assessment; EV Grid Impact Minimization Efforts; Unification and Streamlining of Electrical Permitting and Inspection for EV/EVSE; Development of BMP for Local EVSE Ordinances; Development of BMP for Building Codes Pertaining to EVSE; Development of Colorado-Specific Assessment for EV/EVSE Energy/Air Quality Impacts; Development of State and Local Policy Best Practices; Create Final EV/EVSE Readiness Plan; Develop Project Marketing and Communications Elements; Plan and Schedule In-person Education and Outreach Opportunities.

  12. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    DOE Patents [OSTI]

    Bockelmann, Thomas R. (Battle Creek, MI); Beaty, Kevin D. (Kalamazoo, MI); Zou, Zhanijang (Battle Creek, MI); Kang, Xiaosong (Battle Creek, MI)

    2009-07-21T23:59:59.000Z

    A battery control system for controlling a state of charge of a hybrid vehicle battery includes a detecting arrangement for determining a vehicle operating state or an intended vehicle operating state and a controller for setting a target state of charge level of the battery based on the vehicle operating state or the intended vehicle operating state. The controller is operable to set a target state of charge level at a first level during a mobile vehicle operating state and at a second level during a stationary vehicle operating state or in anticipation of the vehicle operating in the stationary vehicle operating state. The invention further includes a method for controlling a state of charge of a hybrid vehicle battery.

  13. Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tractor Vehicles Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a...

  14. Vehicle Technologies Office: Hybrid and Vehicle Systems | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid and Vehicle Systems Vehicle Technologies Office: Hybrid and Vehicle Systems Hybrid and vehicle systems research provides an overarching vehicle systems perspective to the...

  15. The Evolution of Sustainable Personal Vehicles

    E-Print Network [OSTI]

    Jungers, Bryan D

    2009-01-01T23:59:59.000Z

    sector (e.g. CRUISE, Modelica, and a newly privatizedAn open-source version of Modelica (OpenModelica) is also

  16. The Evolution of Sustainable Personal Vehicles

    E-Print Network [OSTI]

    Jungers, Bryan D

    2009-01-01T23:59:59.000Z

    to, the conditions of sustainable living systems. From theliving organisms and systems, as evidenced by accelerating rates of species extinction worldwide. If sustainable

  17. The Evolution of Sustainable Personal Vehicles

    E-Print Network [OSTI]

    Jungers, Bryan D

    2009-01-01T23:59:59.000Z

    by adding additional battery storage, the fuel efficiency ofEquation 5: Estimation for battery storage capacity based onrates, inflation, battery storage capacity, and fluctuations

  18. The Evolution of Sustainable Personal Vehicles

    E-Print Network [OSTI]

    Jungers, Bryan D

    2009-01-01T23:59:59.000Z

    carbon dioxide emissions CPE- criteria pollutant emissions DC- direct current DSM- demand-side management EESD- electrochemical energy storage

  19. The Evolution of Sustainable Personal Vehicles

    E-Print Network [OSTI]

    Jungers, Bryan D

    2009-01-01T23:59:59.000Z

    local energy resources to optimally connect diverse agents coexisting within the system (Holling, 2001). The development

  20. The Evolution of Sustainable Personal Vehicles

    E-Print Network [OSTI]

    Jungers, Bryan D

    2009-01-01T23:59:59.000Z

    Future fuel cell and internal combustion engine automobilevehicle ICE- internal combustion engine ICV- internalwhen compared to internal combustion engines. The result is

  1. The Evolution of Sustainable Personal Vehicles

    E-Print Network [OSTI]

    Jungers, Bryan D

    2009-01-01T23:59:59.000Z

    chloride batteries. Lead-acid batteries are used primarilyvehicles typically use lead-acid batteries as they are mostThe cycle life of the lead acid batteries is much shorter,

  2. The Evolution of Sustainable Personal Vehicles

    E-Print Network [OSTI]

    Jungers, Bryan D

    2009-01-01T23:59:59.000Z

    afford the first one. Car sharing programs seem attractivejust as easily from the car sharing collective. Incentivesdesigned specifically with car sharing programs in mind (

  3. The Evolution of Sustainable Personal Vehicles

    E-Print Network [OSTI]

    Jungers, Bryan D

    2009-01-01T23:59:59.000Z

    bamboo and hemp composite bikes. 108particularly in California, are hemp and bamboo. Both plantsbikes made from bamboo and hemp (Illustration 49), claiming

  4. The Evolution of Sustainable Personal Vehicles

    E-Print Network [OSTI]

    Jungers, Bryan D

    2009-01-01T23:59:59.000Z

    Presentation to CARB’s ZEV Technology Symposium. BMWGroup, BMW CleanEnergy – Fuel Systems. Sacramento, CA95% mechanistic No Yes BMW, Renault, Ford + 80 others 80

  5. Autonomous vehicles

    SciTech Connect (OSTI)

    Meyrowitz, A.L. [Navy Center for Applied Research in Artificial Intelligence, Washington, DC (United States)] [Navy Center for Applied Research in Artificial Intelligence, Washington, DC (United States); Blidberg, D.R. [Autonomous Undersea Systems Inst., Lee, NH (United States)] [Autonomous Undersea Systems Inst., Lee, NH (United States); Michelson, R.C. [Georgia Tech Research Inst., Smyrna, GA (United States)] [Georgia Tech Research Inst., Smyrna, GA (United States); [International Association for Unmanned Vehicle Systems, Smyrna, GA (United States)

    1996-08-01T23:59:59.000Z

    There are various kinds of autonomous vehicles (AV`s) which can operate with varying levels of autonomy. This paper is concerned with underwater, ground, and aerial vehicles operating in a fully autonomous (nonteleoperated) mode. Further, this paper deals with AV`s as a special kind of device, rather than full-scale manned vehicles operating unmanned. The distinction is one in which the AV is likely to be designed for autonomous operation rather than being adapted for it as would be the case for manned vehicles. The authors provide a survey of the technological progress that has been made in AV`s, the current research issues and approaches that are continuing that progress, and the applications which motivate this work. It should be noted that issues of control are pervasive regardless of the kind of AV being considered, but that there are special considerations in the design and operation of AV`s depending on whether the focus is on vehicles underwater, on the ground, or in the air. The authors have separated the discussion into sections treating each of these categories.

  6. This program is designed to loan bicycles to employees that are staying on-site and have no vehicle for transportation.

    E-Print Network [OSTI]

    Ohta, Shigemi

    of the use of this bicycle, including any claim for personal injury or property damage. I further agree off-the-shelf from Property & Procurement Management conform to this standard. Only staff who rideThis program is designed to loan bicycles to employees that are staying on-site and have no vehicle

  7. Introduction to LNG vehicle safety. Topical report

    SciTech Connect (OSTI)

    Bratvold, D.; Friedman, D.; Chernoff, H.; Farkhondehpay, D.; Comay, C.

    1994-03-01T23:59:59.000Z

    Basic information on the characteristics of liquefied natural gas (LNG) is assembled in this report to provide an overview of safety issues and practices for the use of LNG vehicles. This document is intended for those planning or considering the use of LNG vehicles, including vehicle fleet owners and operators, public transit officials and boards, local fire and safety officials, manufacturers and distributors, and gas industry officials. Safety issues and mitigation measures that should be considered for candidate LNG vehicle projects are addressed.

  8. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    DOE Patents [OSTI]

    Bockelmann, Thomas R. (Battle Creek, MI); Hope, Mark E. (Marshall, MI); Zou, Zhanjiang (Battle Creek, MI); Kang, Xiaosong (Battle Creek, MI)

    2009-02-10T23:59:59.000Z

    A battery control system for hybrid vehicle includes a hybrid powertrain battery, a vehicle accessory battery, and a prime mover driven generator adapted to charge the vehicle accessory battery. A detecting arrangement is configured to monitor the vehicle accessory battery's state of charge. A controller is configured to activate the prime mover to drive the generator and recharge the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a first predetermined level, or transfer electrical power from the hybrid powertrain battery to the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a second predetermined level. The invention further includes a method for controlling a hybrid vehicle powertrain system.

  9. Prospects for plug-in hybrid electric vehicles in the United States : a general equilibrium analysis

    E-Print Network [OSTI]

    Karplus, Valerie Jean

    2008-01-01T23:59:59.000Z

    The plug-in hybrid electric vehicle (PHEV) could significantly contribute to reductions in carbon dioxide emissions from personal vehicle transportation in the United States over the next century, depending on the ...

  10. E-Print Network 3.0 - aerial vehicle air Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Designing the air vehicle is only a relative small part... design of a Personal Aerial Vehicle The myCopter project will investigate User-centered design of human... , Max...

  11. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01T23:59:59.000Z

    vehicles except the methanol/fuel cell vehicle and the BPEVe estimates for the methanol/fuel cell vehicle are based onbiomass-derived methanol used in fuel cell vehicles. Several

  12. Vehicle Technologies Office: Advanced Vehicle Testing Activity...

    Energy Savers [EERE]

    (AVTA) Data and Results The Vehicle Technologies Office (VTO) supports work to develop test procedures and carry out testing on a wide range of advanced vehicles and technologies...

  13. Vehicle Technologies Office | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    which include plug-in electric vehicles (also known as EVs or electric cars), batteries, electric drive technologies, advanced combustion engines, lightweight materials, and...

  14. Vehicle Technologies Office: Fuels and Lubricants | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuels Data Center provides basic information on alternative fuels, including Biodiesel, Ethanol, Natural Gas, Propane, and Hydrogen. The Vehicle Technologies Office (VTO)...

  15. Emission control cost-effectiveness of alternative-fuel vehicles

    SciTech Connect (OSTI)

    Wang, Q. [Argonne National Lab., IL (United States); Sperling, D.; Olmstead, J. [California Univ., Davis, CA (United States). Inst. of Transportation Studies

    1993-06-14T23:59:59.000Z

    Although various legislation and regulations have been adopted to promote the use of alternative-fuel vehicles for curbing urban air pollution problems, there is a lack of systematic comparisons of emission control cost-effectiveness among various alternative-fuel vehicle types. In this paper, life-cycle emission reductions and life-cycle costs were estimated for passenger cars fueled with methanol, ethanol, liquefied petroleum gas, compressed natural gas, and electricity. Vehicle emission estimates included both exhaust and evaporative emissions for air pollutants of hydrocarbon, carbon monoxide, nitrogen oxides, and air-toxic pollutants of benzene, formaldehyde, 1,3-butadiene, and acetaldehyde. Vehicle life-cycle cost estimates accounted for vehicle purchase prices, vehicle life, fuel costs, and vehicle maintenance costs. Emission control cost-effectiveness presented in dollars per ton of emission reduction was calculated for each alternative-fuel vehicle types from the estimated vehicle life-cycle emission reductions and costs. Among various alternative-fuel vehicle types, compressed natural gas vehicles are the most cost-effective vehicle type in controlling vehicle emissions. Dedicated methanol vehicles are the next most cost-effective vehicle type. The cost-effectiveness of electric vehicles depends on improvements in electric vehicle battery technology. With low-cost, high-performance batteries, electric vehicles are more cost-effective than methanol, ethanol, and liquified petroleum gas vehicles.

  16. Aerodynamic Drag Reduction Apparatus For Wheeled Vehicles In Ground Effect

    DOE Patents [OSTI]

    Ortega, Jason M. (Pacifica, CA); Salari, Kambiz (Livermore, CA)

    2005-12-13T23:59:59.000Z

    An apparatus for reducing the aerodynamic drag of a wheeled vehicle in a flowstream, the vehicle having a vehicle body and a wheel assembly supporting the vehicle body. The apparatus includes a baffle assembly adapted to be positioned upstream of the wheel assembly for deflecting airflow away from the wheel assembly so as to reduce the incident pressure on the wheel assembly.

  17. Headquarters Personal Property Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-10-25T23:59:59.000Z

    To establish procedures for managing Government personal property owned or leased by the Department of Energy and in the custody of DOE Headquarters employees, including those in the National Nuclear Security Administration. Cancels DOE HQ O 580.1A

  18. DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Systems DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle Systems Merit review of DOE Vehicle Technologies Program research efforts 2009meritreview1.p...

  19. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Describes...

  20. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...

  1. 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle...

    Energy Savers [EERE]

    - Vehicle Systems Simulation and Testing 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle Systems Simulation and Testing Vehicle systems research and development...

  2. Vehicle Technologies Office: 2013 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: 2013 Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office: 2013 Vehicle and Systems Simulation and Testing...

  3. "Bait vehicle" technologies and motor vehicle theft along the southwest border.

    SciTech Connect (OSTI)

    Aldridge, Chris D.

    2007-09-01T23:59:59.000Z

    In 2005, over 33% of all the vehicles reported stolen in the United States occurred in the four southwestern border states of California, Arizona, New Mexico, and Texas, which all have very high vehicle theft rates in comparison to the national average. This report describes the utilization of 'bait vehicles' and associated technologies in the context of motor vehicle theft along the southwest border of the U.S. More than 100 bait vehicles are estimated to be in use by individual agencies and auto theft task forces in the southwestern border states. The communications, tracking, mapping, and remote control technologies associated with bait vehicles provide law enforcement with an effective tool to obtain arrests in vehicle theft 'hot spots'. Recorded audio and video from inside the vehicle expedite judicial proceedings as offenders rarely contest the evidence presented. At the same time, law enforcement is very interested in upgrading bait vehicle technology through the use of live streaming video for enhanced officer safety and improved situational awareness. Bait vehicle effectiveness could be enhanced by dynamic analysis of motor theft trends through exploitation of geospatial, timeline, and other analytical tools to better inform very near-term operational decisions, including the selection of particular vehicle types. This 'information-led' capability would especially benefit from more precise and timely information on the location of vehicles stolen in the United States and found in Mexico. Introducing Automated License Plate Reading (ALPR) technology to collect information associated with stolen motor vehicles driven into Mexico could enhance bait vehicle effectiveness.

  4. Leading by Example: Argonne Senior Management Makes "Green" Vehicle Choices

    ScienceCinema (OSTI)

    Peters, Mark; Kearns, Paul;

    2013-04-19T23:59:59.000Z

    Argonne's senior management shows leadership in the sustainability arena with their own personal choices in "green" vehicles. They don't just talk the talk ? they walk the walk.

  5. Leading by Example: Argonne Senior Management Makes "Green" Vehicle Choices

    SciTech Connect (OSTI)

    Peters, Mark; Kearns, Paul

    2011-01-01T23:59:59.000Z

    Argonne's senior management shows leadership in the sustainability arena with their own personal choices in "green" vehicles. They don't just talk the talk — they walk the walk.

  6. Vehicle hydraulic system that provides heat for passenger compartment

    DOE Patents [OSTI]

    Bartley, Bradley E. (Manito, IL); Blass, James R. (Bloomington, IL); Gibson, Dennis H. (Chillicothe, IL)

    2001-01-01T23:59:59.000Z

    A vehicle includes a vehicle housing which defines a passenger compartment. Attached to the vehicle housing is a hydraulic system, that includes a hydraulic fluid which flows through at least one passageway within the hydraulic system. Also attached to the vehicle housing is a passenger compartment heating system. The passenger compartment heating system includes a heat exchanger, wherein a portion of the heat exchanger is a segment of the at least one passageway of the hydraulic system.

  7. Argonne National Laboratory puts alternative-fuel vehicles to the test

    SciTech Connect (OSTI)

    NONE

    1997-07-01T23:59:59.000Z

    This paper describes the participation in the alternative-fueled vehicles (AFV) program at Argonne National Laboratory. Argonne maintains a fleet of 300 vehicles, including AFV`s.

  8. Vehicle Technologies Office: 2014 DEER Overview of the U.S. DOE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the U.S. DOE Vehicle Technologies Program DOE rationale for addressing transportation oil dependency, programs, specifically Vehicle Technologies Program, R&D areas, including...

  9. E-Print Network 3.0 - automatic vehicle location Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Remote Software Upload in Summary: 12;control of the vehicle to avoid collision and a vehicle automation system includes automatic... -to-day operations. Intelligent...

  10. E-Print Network 3.0 - automatic vehicle identification Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Remote Software Upload in Summary: 12;control of the vehicle to avoid collision and a vehicle automation system includes automatic... -to-day operations. Intelligent...

  11. E-Print Network 3.0 - automatic vehicle monitoring Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    group as well as generate... 12;control of the vehicle to avoid collision and a vehicle automation system includes automatic... -to-day operations. Intelligent...

  12. Next Generation Natural Gas Vehicle Activity: Natural Gas Engine and Vehicle Research & Development (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2003-09-01T23:59:59.000Z

    This fact sheet describes the status of the Next Generation Natural Gas Vehicle (NGNGV) activity, including goals, R&D progress, NGV implementation, and the transition to hydrogen.

  13. Vehicle barrier with access delay

    DOE Patents [OSTI]

    Swahlan, David J; Wilke, Jason

    2013-09-03T23:59:59.000Z

    An access delay vehicle barrier for stopping unauthorized entry into secure areas by a vehicle ramming attack includes access delay features for preventing and/or delaying an adversary from defeating or compromising the barrier. A horizontally deployed barrier member can include an exterior steel casing, an interior steel reinforcing member and access delay members disposed within the casing and between the casing and the interior reinforcing member. Access delay members can include wooden structural lumber, concrete and/or polymeric members that in combination with the exterior casing and interior reinforcing member act cooperatively to impair an adversarial attach by thermal, mechanical and/or explosive tools.

  14. Final 8-12-11 VEHICLE USE POLICY

    E-Print Network [OSTI]

    Kasman, Alex

    of use of, tangible property. 3.4 College Employee or Employee -- shall mean all persons who.13 State Fleet Vehicle ­ shall mean a vehicle available through the South Carolina Fleet Management Program of the College. 3.3 Casualty or Property Coverage ­ shall mean insurance coverage for damage to, or the loss

  15. Control of Multiple Robotic Sentry Vehicles

    SciTech Connect (OSTI)

    Feddema, J.; Klarer, P.; Lewis, C.

    1999-04-01T23:59:59.000Z

    As part of a project for the Defense Advanced Research Projects Agency, Sandia National Laboratories is developing and testing the feasibility of using of a cooperative team of robotic sentry vehicles to guard a perimeter and to perform surround and diversion tasks. This paper describes on-going activities in the development of these robotic sentry vehicles. To date, we have developed a robotic perimeter detection system which consists of eight ''Roving All Terrain Lunar Explorer Rover'' (RATLER{trademark}) vehicles, a laptop-based base-station, and several Miniature Intrusion Detection Sensors (MIDS). A radio frequency receiver on each of the RATLER vehicles alerts the sentry vehicles of alarms from the hidden MIDS. When an alarm is received, each vehicle decides whether it should investigate the alarm based on the proximity of itself and the other vehicles to the alarm. As one vehicle attends an alarm, the other vehicles adjust their position around the perimeter to better prepare for another alarm. We have also demonstrated the ability to drive multiple vehicles in formation via tele-operation or by waypoint GPS navigation. This is currently being extended to include mission planning capabilities. At the base-station, the operator can draw on an aerial map the goal regions to be surrounded and the repulsive regions to be avoided. A potential field path planner automatically generates a path from the vehicles' current position to the goal regions while avoiding the repulsive regions and the other vehicles. This path is previewed to the operator before the regions are downloaded to the vehicles. The same potential field path planner resides on the vehicle, except additional repulsive forces from on-board proximity sensors guide the vehicle away from unplanned obstacles.

  16. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01T23:59:59.000Z

    Hydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September bycost than both. Solar-hydrogen fuel- cell vehicles would becost than both. Solar-hydrogen fuel- cell vehicles would be

  17. Think City Electric Vehicle Demonstration Program

    SciTech Connect (OSTI)

    Ford Motor Company

    2005-03-01T23:59:59.000Z

    The THINK city Electric Vehicle (EV) Demonstration Program Project, initiated late 2001, has been successfully completed as of April 2005. US. Partners include Federal, State and Municipal agencies as well as commercial partners. Phase I, consisting of placement of the vehicles in demonstration programs, was completed in 2002. Phase II, the monitoring of these programs was completed in 2004. Phase III, the decommissioning and/or exporting of vehicles concluded in 2005. Phase I--the Program successfully assigned 192 EV's with customers (including Hertz) in the state of California, 109 in New York (including loaner and demo vehicles), 16 in Georgia, 7 to customers outside of the US and 52 in Ford's internal operations in Dearborn Michigan for a total of 376 vehicles. The Program was the largest operating Urban EV Demonstration Project in the United States. Phase II--the monitoring of the operational fleet was ongoing and completed in 2004, and all vehicles were returned throughout 2004 and 2005. The Department of Energy (DOE) was involved with the monitoring of the New York Power Authority/THINK Clean Commute Program units through partnership with Electric Transportation Engineering Corporation (ETEC), which filed separate reports to DOE. The remainder of the field fleet was monitored through Ford's internal operations. Vehicles were retired from lease operation throughout the program for various operator reasons. Some of the vehicles were involved in re-leasing operations. At the end of the program, 376 vehicles had been involved, 372 of which were available for customer use while 4 were engineering prototype and study vehicles. Phase III--decommissioning and/or export of vehicles. In accordance with the NHTSA requirement, City vehicles could not remain in the United States past their three-year allowed program timeframe. At the end of leases, City vehicles have been decommissioned and/or exported to KamKorp in Norway.

  18. 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or

    E-Print Network [OSTI]

    Robbiano, Lorenzo

    -Replay vs. Programmable Web Testing: An Empirical Assessment during Test Case Evolution Maurizio Leotta functional web testing and the choice among them depends on a number of factors, including the tools used for web testing and the costs associated with their adoption. In this paper, we present an empirical cost

  19. Symbolism in California’s Early Market for Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

    2008-01-01T23:59:59.000Z

    new-cars/ high-cost-of-hybrid-vehicles-406/overview.htm>.For Tony and Ellen, a hybrid vehicle category exists thata larger category of hybrid vehicles, which includes compact

  20. Project Information Form Project Title White Paper on Strategies for Transitioning to Zero-Emission Vehicles--

    E-Print Network [OSTI]

    California at Davis, University of

    fuel-cell-electric vehicles (HFCVs). These technologies can be used in passenger cars, trucks (ZEVs) include battery-electric vehicles (BEVs), plug-in hybrid-electric vehicles (PHEVs), and hydrogen

  1. Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Accelerated Reliability Test Battery Electric Vehicle Fast Charge Test Battery Energy Storage Performance Test For DC Fast Charge Demand Reduction...

  2. Vehicle Modeling and Simulation

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Modeling and Simulation Vehicle Modeling and Simulation Matthew Thornton National Renewable Energy Laboratory matthewthornton@nrel.gov phone: 303.275.4273 Principal...

  3. PASSIVE DETECTION OF VEHICLE LOADING

    SciTech Connect (OSTI)

    Garrett, A.

    2012-01-03T23:59:59.000Z

    The Digital Imaging and Remote Sensing Laboratory (DIRS) at the Rochester Institute of Technology, along with the Savannah River National Laboratory is investigating passive methods to quantify vehicle loading. The research described in this paper investigates multiple vehicle indicators including brake temperature, tire temperature, engine temperature, acceleration and deceleration rates, engine acoustics, suspension response, tire deformation and vibrational response. Our investigation into these variables includes building and implementing a sensing system for data collection as well as multiple full-scale vehicle tests. The sensing system includes; infrared video cameras, triaxial accelerometers, microphones, video cameras and thermocouples. The full scale testing includes both a medium size dump truck and a tractor-trailer truck on closed courses with loads spanning the full range of the vehicle's capacity. Statistical analysis of the collected data is used to determine the effectiveness of each of the indicators for characterizing the weight of a vehicle. The final sensing system will monitor multiple load indicators and combine the results to achieve a more accurate measurement than any of the indicators could provide alone.

  4. innovati nNREL Helps Cool the Power Electronics in Electric Vehicles

    E-Print Network [OSTI]

    innovati nNREL Helps Cool the Power Electronics in Electric Vehicles Researchers at the National for cooling power electronics devices in hybrid and electric vehicles. In collaboration with 3M and Wolverine vehicles. Widespread use of advanced electric-drive vehicles--including electric vehicles (EVs) and hybrid

  5. Tracking Progress Last updated 7/26/2013 Plug-in Electric Vehicle 1

    E-Print Network [OSTI]

    ) by 2025. ZEVs include all-electric vehicles, plug-in hybrid vehicles, and fuel cell electric vehicles. The Alternative and Renewable Fuel and Vehicle Technology Program (ARFVTP), authorized by Assembly Bill 118 (Nunez, advanced technology cars and trucks, vehicle manufacturing, and fueling infrastructure are intended

  6. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15LiquidBG 0 20Year Jan Feb Mar

  7. Natural Gas Delivered to Consumers in Alabama (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot)Feet) Year Jan(Million Cubic

  8. Natural Gas Delivered to Consumers in Alaska (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot)Feet) Year Jan(Million

  9. Natural Gas Delivered to Consumers in Arizona (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot)Feet) Year Jan(Million(Million

  10. Natural Gas Delivered to Consumers in Arkansas (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot)Feet) Year

  11. Natural Gas Delivered to Consumers in California (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot)Feet) Year(Million Cubic

  12. Natural Gas Delivered to Consumers in Colorado (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot)Feet) Year(Million Cubic(Million

  13. Natural Gas Delivered to Consumers in Connecticut (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot)Feet) Year(Million

  14. Natural Gas Delivered to Consumers in Delaware (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot)Feet) Year(Million(Million Cubic

  15. Natural Gas Delivered to Consumers in Florida (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot)Feet) Year(Million(Million

  16. Natural Gas Delivered to Consumers in Georgia (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot)Feet)

  17. Natural Gas Delivered to Consumers in Hawaii (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot)Feet)(Million Cubic Feet)

  18. Natural Gas Delivered to Consumers in Idaho (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot)Feet)(Million Cubic

  19. Natural Gas Delivered to Consumers in Illinois (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot)Feet)(Million Cubic(Million

  20. Natural Gas Delivered to Consumers in Indiana (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot)Feet)(Million

  1. Natural Gas Delivered to Consumers in Iowa (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot)Feet)(Million(Million Cubic

  2. Natural Gas Delivered to Consumers in Kansas (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot)Feet)(Million(Million

  3. Natural Gas Delivered to Consumers in Kentucky (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot)Feet)(Million(Million(Million

  4. Natural Gas Delivered to Consumers in Louisiana (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of

  5. Natural Gas Delivered to Consumers in Maine (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million Cubic Feet) Year Jan Feb Mar Apr May

  6. Natural Gas Delivered to Consumers in Maryland (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million Cubic Feet) Year Jan Feb Mar Apr

  7. Natural Gas Delivered to Consumers in Massachusetts (Including Vehicle

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million Cubic Feet) Year Jan Feb Mar AprFuel)

  8. Natural Gas Delivered to Consumers in Michigan (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million Cubic Feet) Year Jan Feb Mar

  9. Natural Gas Delivered to Consumers in Minnesota (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million Cubic Feet) Year Jan Feb Mar(Million

  10. Natural Gas Delivered to Consumers in Mississippi (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million Cubic Feet) Year Jan Feb

  11. Natural Gas Delivered to Consumers in Missouri (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million Cubic Feet) Year Jan Feb(Million Cubic

  12. Natural Gas Delivered to Consumers in Montana (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million Cubic Feet) Year Jan Feb(Million

  13. Natural Gas Delivered to Consumers in Nebraska (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million Cubic Feet) Year Jan

  14. Natural Gas Delivered to Consumers in Nevada (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million Cubic Feet) Year Jan(Million Cubic

  15. Natural Gas Delivered to Consumers in New Hampshire (Including Vehicle

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million Cubic Feet) Year Jan(Million CubicFuel)

  16. Natural Gas Delivered to Consumers in North Carolina (Including Vehicle

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million Cubic Feet) YearFuel) (Million Cubic

  17. Natural Gas Delivered to Consumers in Ohio (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million Cubic Feet) YearFuel) (Million(Million

  18. Natural Gas Delivered to Consumers in Oklahoma (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million Cubic Feet) YearFuel)

  19. Natural Gas Delivered to Consumers in Oregon (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million Cubic Feet) YearFuel)(Million Cubic

  20. Natural Gas Delivered to Consumers in Pennsylvania (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million Cubic Feet) YearFuel)(Million

  1. Natural Gas Delivered to Consumers in South Carolina (Including Vehicle

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million Cubic Feet)

  2. Natural Gas Delivered to Consumers in Tennessee (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million Cubic Feet)(Million Cubic

  3. Natural Gas Delivered to Consumers in Texas (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million Cubic Feet)(Million Cubic(Million Cubic

  4. Natural Gas Delivered to Consumers in Utah (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million Cubic Feet)(Million Cubic(Million

  5. Natural Gas Delivered to Consumers in Vermont (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million Cubic Feet)(Million

  6. Natural Gas Delivered to Consumers in Virginia (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million Cubic Feet)(Million(Million Cubic

  7. Natural Gas Delivered to Consumers in Washington (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million Cubic Feet)(Million(Million

  8. Natural Gas Delivered to Consumers in West Virginia (Including Vehicle

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million Cubic Feet)(Million(MillionFuel)

  9. Natural Gas Delivered to Consumers in Wisconsin (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million Cubic

  10. Natural Gas Delivered to Consumers in Wyoming (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million Cubic(Million Cubic Feet) Year Jan Feb

  11. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million Cubic(Million Cubic Feet)700through

  12. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million Cubic(Million Cubic

  13. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million Cubic(Million Cubicthrough 1996) in Arizona

  14. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million Cubic(Million Cubicthrough 1996) in

  15. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million Cubic(Million Cubicthrough 1996) inthrough

  16. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million Cubic(Million Cubicthrough 1996)

  17. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million Cubic(Million Cubicthrough 1996)through

  18. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million Cubic(Million Cubicthrough

  19. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million Cubic(Million Cubicthroughthrough 1996) in

  20. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million Cubic(Million Cubicthroughthrough 1996)

  1. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million Cubic(Million Cubicthroughthrough

  2. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million Cubic(Million Cubicthroughthroughthrough

  3. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million Cubic(Million

  4. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million Cubic(Millionthrough 1996) in Indiana

  5. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million Cubic(Millionthrough 1996) in

  6. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million Cubic(Millionthrough 1996) inthrough 1996)

  7. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million Cubic(Millionthrough 1996) inthrough

  8. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million Cubic(Millionthrough 1996) inthroughthrough

  9. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million Cubic(Millionthrough 1996)

  10. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million Cubic(Millionthrough 1996)through 1996) in

  11. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million Cubic(Millionthrough 1996)through 1996)

  12. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million Cubic(Millionthrough 1996)through

  13. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million Cubic(Millionthrough 1996)throughthrough

  14. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million Cubic(Millionthrough

  15. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million Cubic(Millionthroughthrough 1996) in

  16. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million Cubic(Millionthroughthrough 1996) inthrough

  17. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million Cubic(Millionthroughthrough 1996)

  18. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million Cubic(Millionthroughthrough 1996)through

  19. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million Cubic(Millionthroughthrough

  20. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million Cubic(Millionthroughthroughthrough 1996) in

  1. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million Cubic(Millionthroughthroughthrough 1996)

  2. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million Cubic(Millionthroughthroughthrough

  3. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million Cubic(Millionthroughthroughthroughthrough

  4. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Million

  5. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough 1996) in Ohio (Million Cubic

  6. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough 1996) in Ohio (Million Cubicthrough

  7. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough 1996) in Ohio (Million

  8. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough 1996) in Ohio (Millionthrough 1996)

  9. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough 1996) in Ohio (Millionthrough

  10. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough 1996) in Ohio (Millionthroughthrough

  11. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough 1996) in Ohio

  12. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough 1996) in Ohiothrough 1996) in

  13. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough 1996) in Ohiothrough 1996) inthrough

  14. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough 1996) in Ohiothrough 1996)

  15. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough 1996) in Ohiothrough 1996)through

  16. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough 1996) in Ohiothrough

  17. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough 1996) in Ohiothroughthrough 1996) in

  18. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough 1996) in Ohiothroughthrough 1996)

  19. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough 1996) in Ohiothroughthrough

  20. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough 1996) in Ohiothroughthroughthrough

  1. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough 1996) in

  2. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough 1996) inthrough 1996) in the U.S.

  3. Natural Gas Delivered to Consumers in Alabama (Including Vehicle Fuel)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb MarDecadeDecade9 2010 2011 2012 2013

  4. Natural Gas Delivered to Consumers in Alaska (Including Vehicle Fuel)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb MarDecadeDecade9 2010 2011 2012

  5. Natural Gas Delivered to Consumers in Arizona (Including Vehicle Fuel)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb MarDecadeDecade9 2010 2011 2012(Million

  6. Natural Gas Delivered to Consumers in Arkansas (Including Vehicle Fuel)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb MarDecadeDecade9 2010 2011

  7. Natural Gas Delivered to Consumers in California (Including Vehicle Fuel)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb MarDecadeDecade9 2010 2011(Million Cubic

  8. Natural Gas Delivered to Consumers in Colorado (Including Vehicle Fuel)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb MarDecadeDecade9 2010 2011(Million

  9. Natural Gas Delivered to Consumers in Connecticut (Including Vehicle Fuel)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb MarDecadeDecade9 2010

  10. Natural Gas Delivered to Consumers in Delaware (Including Vehicle Fuel)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb MarDecadeDecade9 2010(Million Cubic

  11. Natural Gas Delivered to Consumers in Florida (Including Vehicle Fuel)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb MarDecadeDecade9 2010(Million

  12. Natural Gas Delivered to Consumers in Georgia (Including Vehicle Fuel)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb MarDecadeDecade9 2010(Million(Million

  13. Natural Gas Delivered to Consumers in Hawaii (Including Vehicle Fuel)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb MarDecadeDecade9

  14. Natural Gas Delivered to Consumers in Idaho (Including Vehicle Fuel)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb MarDecadeDecade9(Million Cubic Feet)

  15. Natural Gas Delivered to Consumers in Illinois (Including Vehicle Fuel)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb MarDecadeDecade9(Million Cubic

  16. Natural Gas Delivered to Consumers in Indiana (Including Vehicle Fuel)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb MarDecadeDecade9(Million Cubic(Million

  17. Natural Gas Delivered to Consumers in Iowa (Including Vehicle Fuel)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb MarDecadeDecade9(Million

  18. Natural Gas Delivered to Consumers in Kansas (Including Vehicle Fuel)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb MarDecadeDecade9(Million(Million Cubic

  19. Natural Gas Delivered to Consumers in Kentucky (Including Vehicle Fuel)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb MarDecadeDecade9(Million(Million

  20. Natural Gas Delivered to Consumers in Louisiana (Including Vehicle Fuel)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb MarDecadeDecade9(Million(Million(Million

  1. Natural Gas Delivered to Consumers in Maine (Including Vehicle Fuel)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb

  2. Natural Gas Delivered to Consumers in Maryland (Including Vehicle Fuel)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb(Million Cubic Feet) Decade Year-0

  3. Natural Gas Delivered to Consumers in Massachusetts (Including Vehicle

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb(Million Cubic Feet) Decade

  4. Natural Gas Delivered to Consumers in Michigan (Including Vehicle Fuel)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb(Million Cubic Feet) Decade(Million

  5. Natural Gas Delivered to Consumers in Minnesota (Including Vehicle Fuel)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb(Million Cubic Feet)

  6. Natural Gas Delivered to Consumers in Mississippi (Including Vehicle Fuel)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb(Million Cubic Feet)(Million Cubic

  7. Natural Gas Delivered to Consumers in Missouri (Including Vehicle Fuel)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb(Million Cubic Feet)(Million

  8. Natural Gas Delivered to Consumers in Montana (Including Vehicle Fuel)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb(Million Cubic Feet)(Million(Million

  9. Natural Gas Delivered to Consumers in Nebraska (Including Vehicle Fuel)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb(Million Cubic

  10. Natural Gas Delivered to Consumers in Nevada (Including Vehicle Fuel)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb(Million Cubic(Million Cubic Feet)

  11. Natural Gas Delivered to Consumers in New Hampshire (Including Vehicle

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb(Million Cubic(Million Cubic

  12. Natural Gas Delivered to Consumers in North Carolina (Including Vehicle

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb(Million Cubic(MillionFuel) (Million Cubic

  13. Natural Gas Delivered to Consumers in Ohio (Including Vehicle Fuel)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb(Million Cubic(MillionFuel)

  14. Natural Gas Delivered to Consumers in Oklahoma (Including Vehicle Fuel)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb(Million Cubic(MillionFuel)(Million Cubic

  15. Natural Gas Delivered to Consumers in Oregon (Including Vehicle Fuel)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb(Million Cubic(MillionFuel)(Million

  16. Natural Gas Delivered to Consumers in Pennsylvania (Including Vehicle Fuel)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb(Million

  17. Natural Gas Delivered to Consumers in South Carolina (Including Vehicle

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb(Million(Million Cubic Feet)

  18. Natural Gas Delivered to Consumers in Tennessee (Including Vehicle Fuel)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb(Million(Million Cubic

  19. Natural Gas Delivered to Consumers in Texas (Including Vehicle Fuel)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb(Million(Million Cubic(Million Cubic

  20. Natural Gas Delivered to Consumers in Utah (Including Vehicle Fuel)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb(Million(Million Cubic(Million

  1. Natural Gas Delivered to Consumers in Vermont (Including Vehicle Fuel)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb(Million(Million Cubic(Million(Million

  2. Natural Gas Delivered to Consumers in Virginia (Including Vehicle Fuel)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb(Million(Million

  3. Natural Gas Delivered to Consumers in Washington (Including Vehicle Fuel)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb(Million(Million(Million Cubic Feet)

  4. Natural Gas Delivered to Consumers in West Virginia (Including Vehicle

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb(Million(Million(Million Cubic

  5. Natural Gas Delivered to Consumers in Wisconsin (Including Vehicle Fuel)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb(Million(Million(Million Cubic(Million

  6. Natural Gas Delivered to Consumers in Wyoming (Including Vehicle Fuel)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb(Million(Million(Million

  7. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb(Million(Million(MillionVehiclethrough

  8. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan

  9. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996) in Arizona (Million Cubic

  10. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996) in Arizona (Million Cubicthrough

  11. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996) in Arizona (Million

  12. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996) in Arizona (Millionthrough 1996)

  13. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996) in Arizona (Millionthrough

  14. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996) in Arizona

  15. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996) in Arizonathrough 1996) in

  16. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996) in Arizonathrough 1996)

  17. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996) in Arizonathrough 1996)through

  18. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996) in Arizonathrough

  19. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996) in Arizonathroughthrough 1996)

  20. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996) in Arizonathroughthrough

  1. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996) in Arizonathroughthroughthrough

  2. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996) in

  3. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996) inthrough 1996) in Kentucky

  4. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996) inthrough 1996) in

  5. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996) inthrough 1996) inthrough 1996)

  6. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996) inthrough 1996) inthrough

  7. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996) inthrough 1996) inthroughthrough

  8. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996) inthrough 1996)

  9. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996) inthrough 1996)through 1996) in

  10. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996) inthrough 1996)through 1996)

  11. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996) inthrough 1996)through

  12. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996) inthrough 1996)throughthrough

  13. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996) inthrough

  14. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996) inthroughthrough 1996) in Nevada

  15. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996) inthroughthrough 1996) in

  16. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996) inthroughthrough 1996) inthrough

  17. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996) inthroughthrough 1996)

  18. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996) inthroughthrough 1996)through

  19. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996) inthroughthrough

  20. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996) inthroughthroughthrough 1996) in

  1. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996) inthroughthroughthrough 1996)

  2. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996) inthroughthroughthrough

  3. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996) inthroughthroughthroughthrough

  4. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996)

  5. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996)through 1996) in Rhode Island

  6. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996)through 1996) in Rhode

  7. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996)through 1996) in Rhodethrough

  8. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996)through 1996) in

  9. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996)through 1996) inthrough 1996) in

  10. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996)through 1996) inthrough 1996)

  11. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996)through 1996) inthrough

  12. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996)through 1996) inthroughthrough

  13. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996)through 1996)

  14. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996)through 1996)through 1996) in

  15. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996)through 1996)through 1996)

  16. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996)through 1996)through 1996)through

  17. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996)through 1996)through

  18. The Canadian Plug-in Electric Vehicle Survey (CPEVS 2013): Anticipating Purchase, Use, and Grid Interactions

    E-Print Network [OSTI]

    The Canadian Plug-in Electric Vehicle Survey (CPEVS 2013): Anticipating Purchase, Use, and Grid investigates consumer interest in plug-in electric vehicles (PEVs), summarizing preliminary results from ownership, electricity use, familiarity with PEV technology, and personal values and lifestyle; vehicle

  19. Electric vehicle drive train with rollback detection and compensation

    DOE Patents [OSTI]

    Konrad, Charles E. (Roanoke, VA)

    1994-01-01T23:59:59.000Z

    An electric vehicle drive train includes a controller for detecting and compensating for vehicle rollback, as when the vehicle is started upward on an incline. The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement. A gear selector permits the driver to select an intended or desired direction of vehicle movement. If a speed and rotational sensor associated with the motor indicates vehicle movement opposite to the intended direction of vehicle movement, the motor is driven to a torque output magnitude as a nonconstant function of the rollback speed to counteract the vehicle rollback. The torque function may be either a linear function of speed or a function of the speed squared.

  20. Electric vehicle drive train with rollback detection and compensation

    DOE Patents [OSTI]

    Konrad, C.E.

    1994-12-27T23:59:59.000Z

    An electric vehicle drive train includes a controller for detecting and compensating for vehicle rollback, as when the vehicle is started upward on an incline. The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement. A gear selector permits the driver to select an intended or desired direction of vehicle movement. If a speed and rotational sensor associated with the motor indicates vehicle movement opposite to the intended direction of vehicle movement, the motor is driven to a torque output magnitude as a nonconstant function of the rollback speed to counteract the vehicle rollback. The torque function may be either a linear function of speed or a function of the speed squared. 6 figures.

  1. Hybrid vehicle powertrain system with power take-off driven vehicle accessory

    DOE Patents [OSTI]

    Beaty, Kevin D.; Bockelmann, Thomas R.; Zou, Zhanijang; Hope, Mark E.; Kang, Xiaosong; Carpenter, Jeffrey L.

    2006-09-12T23:59:59.000Z

    A hybrid vehicle powertrain system includes a first prime mover, a first prime mover driven power transmission mechanism having a power take-off adapted to drive a vehicle accessory, and a second prime mover. The second prime mover is operable to drive the power transmission mechanism alone or in combination with the first prime mover to provide power to the power take-off through the power transmission mechanism. The invention further includes methods for operating a hybrid vehicle powertrain system.

  2. Low floor mass transit vehicle

    DOE Patents [OSTI]

    Emmons, J. Bruce (Beverly Hills, MI); Blessing, Leonard J. (Rochester, MI)

    2004-02-03T23:59:59.000Z

    A mass transit vehicle includes a frame structure that provides an efficient and economical approach to providing a low floor bus. The inventive frame includes a stiff roof panel and a stiff floor panel. A plurality of generally vertical pillars extend between the roof and floor panels. A unique bracket arrangement is disclosed for connecting the pillars to the panels. Side panels are secured to the pillars and carry the shear stresses on the frame. A unique seating assembly that can be advantageously incorporated into the vehicle taking advantage of the load distributing features of the inventive frame is also disclosed.

  3. AVTA: 2010 Electric Vehicles International Neighborhood Electric...

    Energy Savers [EERE]

    10 Electric Vehicles International Neighborhood Electric Vehicle Testing Results AVTA: 2010 Electric Vehicles International Neighborhood Electric Vehicle Testing Results The...

  4. Massachusetts Electric Vehicle Efforts

    E-Print Network [OSTI]

    California at Davis, University of

    Massachusetts Electric Vehicle Efforts Christine Kirby, MassDEP ZE-MAP Meeting October 24, 2014 #12 · Provide Clean Air · Grow the Clean Energy Economy · Electric vehicles are a key part of the solution #12 is promoting EVs 4 #12;TCI and Electric Vehicles · Established the Northeast Electric Vehicle Network through

  5. > 070131-073Vehicle

    E-Print Network [OSTI]

    Marques, Eduardo R. B.

    on collaborative control ofAutonomous Underwater Vehicles (AUV), Unmanned Aerial Vehicles (UAV) and Autonomous. In another configuration, Swordfish mounts a docking station for the autonomous underwater vehicle Isurus Terms-Autonomous Surface Vehicles, ocean robotics, marine science operations, unmanned survey vessels. I

  6. Alternative Fuel Vehicle Data

    Reports and Publications (EIA)

    2013-01-01T23:59:59.000Z

    Annual data released on the number of on-road alternative fuel vehicles and hybrid vehicles made available by both the original equipment manufacturers and aftermarket vehicle conversion facilities. Data on the use of alternative fueled vehicles and the amount of fuel they consume is also available.

  7. Vehicle to Grid Demonstration Project

    SciTech Connect (OSTI)

    Willett Kempton; Meryl Gardner; Michael Hidrue; Fouad Kamilev; Sachin Kamboj; Jon Lilley; Rodney McGee; George Parsons; Nat Pearre; Keith Trnka

    2010-12-31T23:59:59.000Z

    This report summarizes the activities and accomplishments of a two-year DOE-funded project on Grid-Integrated Vehicles (GIV) with vehicle to grid power (V2G). The project included several research and development components: an analysis of US driving patterns; an analysis of the market for EVs and V2G-capable EVs; development and testing of GIV components (in-car and in-EVSE); interconnect law and policy; and development and filing of patents. In addition, development activities included GIV manufacturing and licensing of technologies developed under this grant. Also, five vehicles were built and deployed, four for the fleet of the State of Delaware, plus one for the University of Delaware fleet.

  8. AGGREGATION ALGORITHMS IN A VEHICLE-TO-VEHICLE-TO-

    E-Print Network [OSTI]

    Miller, Jeffrey A.

    -to-infrastructure (V2V2I) architecture, which is a hybrid of the vehicle-to-vehicle (V2V) and vehicle proposing is a hybrid of the V2I and V2V architectures, which is the vehicle-to-vehicle-to-infrastructure (VAGGREGATION ALGORITHMS IN A VEHICLE-TO-VEHICLE-TO- INFRASTRUCTURE (V2V2I) INTELLIGENT

  9. Electric and Hybrid Vehicle Technology: TOPTEC

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today's electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between refueling'' stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

  10. Electric and Hybrid Vehicle Technology: TOPTEC

    SciTech Connect (OSTI)

    Not Available

    1992-12-01T23:59:59.000Z

    Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today`s electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between ``refueling`` stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of ``Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

  11. Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

    2005-01-01T23:59:59.000Z

    The Images of Hybrid Vehicles Each of the householdsbetween hybrid and non-hybrid vehicles was observed in smallowned Honda Civic Hybrids, vehicles that are virtually

  12. Vehicle Technologies Office: 2012 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2012vsstreport.pdf More Documents & Publications Vehicle Technologies Office:...

  13. Vehicle Technologies Office: 2011 Vehicle and Systems Simulation...

    Energy Savers [EERE]

    vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2011vsstreport.pdf More Documents & Publications Vehicle Technologies Office:...

  14. myCopter Enabling Technologies for Personal Aerial Transportation Systems

    E-Print Network [OSTI]

    towards a Personal Aerial Transportation System, in which vehicles would also have vertical space into account the required operational infrastructure, instead of starting with the design of a vehicle. By investigating human-machine interfaces and training, automation technologies, and socio-economic impact, the my

  15. Richmond Electric Vehicle Initiative Electric Vehicle Readiness...

    Broader source: Energy.gov (indexed) [DOE]

    The REVi plan addresses the electric vehicle market in Richmond and then addresses a regional plan, policies, and analysis of the the communities readiness. richmondevinitiative....

  16. Vehicle Technologies Office: AVTA - Electric Vehicle Community...

    Broader source: Energy.gov (indexed) [DOE]

    to maximize usage, educating the public and coordinating with utilities. The Vehicle Technologies Office is partnering with city governments, local organizations, and...

  17. Richmond Electric Vehicle Initiative Electric Vehicle Readiness...

    Broader source: Energy.gov (indexed) [DOE]

    reflect those of the United States Government or any agency thereof. Richmond Electric Vehicle Initiative Readiness Plan | 1 Table of Contents Executive Summary...

  18. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt072vssmackie2012...

  19. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Office of Environmental Management (EM)

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt072vssmackie2011...

  20. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    EVSE Designed And Manufactured To Allow Power And Energy Data Collection And Demand Response Control Residential EVSE Installed For All Vehicles 1,300...

  1. Vehicle Technologies Office: AVTA - Diesel Internal Combusion...

    Energy Savers [EERE]

    Vehicle Technologies Office: AVTA - Diesel Internal Combusion Engine Vehicles Vehicle Technologies Office: AVTA - Diesel Internal Combusion Engine Vehicles The Advanced Vehicle...

  2. Superpressure stratospheric vehicle

    SciTech Connect (OSTI)

    Chocol, C.; Robinson, W.; Epley, L.

    1990-09-15T23:59:59.000Z

    Our need for wide-band global communications, earth imaging and sensing, atmospheric measurements and military reconnaissance is extensive, but growing dependence on space-based systems raises concerns about vulnerability. Military commanders require space assets that are more accessible and under local control. As a result, a robust and low cost access to space-like capability has become a national priority. Free floating buoyant vehicles in the middle stratosphere can provide the kind of cost effective access to space-like capability needed for a variety of missions. These vehicles are inexpensive, invisible, and easily launched. Developments in payload electronics, atmospheric modeling, and materials combined with improving communications and navigation infrastructure are making balloon-borne concepts more attractive. The important milestone accomplished by this project was the planned test flight over the continental United States. This document is specifically intended to review the technology development and preparations leading up to the test flight. Although the test flight experienced a payload failure just before entering its assent altitude, significant data were gathered. The results of the test flight are presented here. Important factors included in this report include quality assurance testing of the balloon, payload definition and characteristics, systems integration, preflight testing procedures, range operations, data collection, and post-flight analysis. 41 figs., 5 tabs.

  3. The Case for Electric Vehicles

    E-Print Network [OSTI]

    Sperling, Daniel

    2001-01-01T23:59:59.000Z

    land Press, 1995 TESTING ELECTRIC VEHICLE DEMAND IN " HYBRIDThe Case for Electric Vehicles DanieI Sperlmg Reprint UCTCor The Case for Electric Vehicles Darnel Sperling Institute

  4. Electric Vehicle Smart Charging Infrastructure

    E-Print Network [OSTI]

    Chung, Ching-Yen

    2014-01-01T23:59:59.000Z

    for Multiplexed Electric Vehicle Charging”, US20130154561A1,Chynoweth, ”Intelligent Electric Vehicle Charging System”,of RFID Mesh Network for Electric Vehicle Smart Charging

  5. Coordinating Automated Vehicles via Communication

    E-Print Network [OSTI]

    Bana, Soheila Vahdati

    2001-01-01T23:59:59.000Z

    1.1 Vehicle Automation . . . . . . . . . . . 1.1.1 Controlareas of technology in vehicle automation and communicationChapter 1 Introduction Vehicle Automation Automation is an

  6. Sandia National Laboratories: Vehicle Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EfficiencyVehicle Technologies Vehicle Technologies Combustion Research Facility (CRF) Vehicle Technology programs at Sandia share a common goal: reducing dependence on...

  7. Evaluating the Potential for Vehicle Transport of Propagules

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    Evaluating the Potential for Vehicle Transport of Propagules of Invasive Species Harold Balbach ­ U by a variety of natural and human actions. Roads and vehi- cles, including military vehicles and off-road recreational vehicles, are often regarded as important dispersal vectors. The danger of introducing new species

  8. Micro-unmanned aerodynamic vehicle

    DOE Patents [OSTI]

    Reuel, Nigel (Rio Rancho, NM); Lionberger, Troy A. (Ann Arbor, MI); Galambos, Paul C. (Albuquerque, NM); Okandan, Murat (Albuquerque, NM); Baker, Michael S. (Albuquerque, NM)

    2008-03-11T23:59:59.000Z

    A MEMS-based micro-unmanned vehicle includes at least a pair of wings having leading wing beams and trailing wing beams, at least two actuators, a leading actuator beam coupled to the leading wing beams, a trailing actuator beam coupled to the trailing wing beams, a vehicle body having a plurality of fulcrums pivotally securing the leading wing beams, the trailing wing beams, the leading actuator beam and the trailing actuator beam and having at least one anisotropically etched recess to accommodate a lever-fulcrum motion of the coupled beams, and a power source.

  9. VEHICLE USAGE LOG Department ________________________________________ Vehicle Homebase ____________________________ Week Ended (Sunday) _________________

    E-Print Network [OSTI]

    Yang, Zong-Liang

    VEHICLE USAGE LOG Department ________________________________________ Vehicle Homebase ____________________________ Week Ended (Sunday) _________________ Door #____________ License Plate ____________________ Vehicle/Supplies (Enter Description such as grade sheets, artifacts, money, etc.) 6. Taking vehicle to Automotive Shop

  10. TECHNOLOGY NEEDS FOR AUTONOMOUS UNDERWATER VEHICLES

    E-Print Network [OSTI]

    Griffiths, Gwyn

    , `composite materials' or `fuel cells'. The time horizon for the adoption of candidate solutions probably. In essence, these may be classed as remotely controlled autonomous vehicles. Examples include: · Marlin

  11. Optimal trajectories for maneuvering reentry vehicles

    E-Print Network [OSTI]

    Undurti, Aditya

    2007-01-01T23:59:59.000Z

    Many demanding aerospace missions today require maneuverable re-entry vehicles that can fly trajectories that have stringent path and terminal constraints, including those that cannot be written as drag or energy constraints. ...

  12. Social networking in vehicles

    E-Print Network [OSTI]

    Liang, Philip Angus

    2006-01-01T23:59:59.000Z

    In-vehicle, location-aware, socially aware telematic systems, known as Flossers, stand to revolutionize vehicles, and how their drivers interact with their physical and social worlds. With Flossers, users can broadcast and ...

  13. Department of Energy Personal Property Management Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-07T23:59:59.000Z

    This Order provides responsibilities and requirements for personal property management at the Department. Change 1, dated 5-8-08, includes responsibilities for heads of Departmental elements to be accountable for personal property inventories. Cancels DOE O 580.1.

  14. Department of Energy Personal Property Management Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-07T23:59:59.000Z

    This Order provides responsibilities and requirements for personal property management at the Department. Change 1, dated 5-8-08, includes responsibilities for heads of Departmental elements to be accountable for personal property inventories.

  15. Automated Vehicle-to-Vehicle Collision Avoidance at Intersections

    E-Print Network [OSTI]

    Del Vecchio, Domitilla

    Automated Vehicle-to-Vehicle Collision Avoidance at Intersections M. R. Hafner1 , D. Cunningham2 on modified Lexus IS250 test vehicles. The system utilizes vehicle-to-vehicle (V2V) Dedicated Short the velocities of both vehicles with automatic brake and throttle commands. Automatic commands can never cause

  16. Motor Vehicle Record Procedure Objective

    E-Print Network [OSTI]

    Kirschner, Denise

    Motor Vehicle Record Procedure Objective Outline the procedure for obtaining motor vehicle record (MVR) through Fleet Services. Vehicle Operator Policy 3. Operators with 7 or more points on their motor vehicle record

  17. Washington State Electric Vehicle

    E-Print Network [OSTI]

    California at Davis, University of

    Washington State Electric Vehicle Implementation Bryan Bazard Maintenance and Alternate Fuel Technology Manager #12;Executive Order 14-04 Requires the procurement of electric vehicles where and equipment with electricity or biofuel to the "extent practicable" by June 2015 1. The vehicle is due

  18. Powertrain & Vehicle Research Centre

    E-Print Network [OSTI]

    Burton, Geoffrey R.

    Powertrain & Vehicle Research Centre Low Carbon Powertrain Development S Akehurst, EPSRC Advanced Viewing Trade-Offs and Finding Optima Realism Advanced Engine Test Vehicle Test Rolling Road Powertrain Simulation Basic Engine Test Vehicle Test Cost & Complexity Towards Final Product Lean Powertrain Development

  19. Personal Property

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-10-16T23:59:59.000Z

    This Guide provides non-regulatory guidance and information to assist DOE organizations and contractors in implementing the DOE-wide and site-specific personal property management programs. It supplements the policy, requirements, and responsibilities information contained in the DOE Order cited above and clarifies the regulatory requirements contained in the Federal Property Management Regulation (FMR) and specific contracts.

  20. air vehicle propulsion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This paper reports the overall vehicle design and design elements including ceramic pressure housings and flotation spheres; manipulator and sampling system; light fiber...

  1. 2007 Nissan Altima-7982 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Grey; Chester Motloch; James Francfort

    2010-01-01T23:59:59.000Z

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Nissan Altima hybrid electric vehicle (Vin Number 1N4CL21E27C177982). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  2. 2006 Toyota Highlander-5681 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01T23:59:59.000Z

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Highlander hybrid electric vehicle (Vin Number JTEDW21A860005681). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  3. 2006 Toyota Highlander-6395 Hyrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01T23:59:59.000Z

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Highlander hybrid electric vehicle (Vin Number JTEDW21A160006395). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  4. 2007 Toyota Camry-7129 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01T23:59:59.000Z

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Camry hybrid electric vehicle (Vin Number JTNBB46K773007129). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  5. Heavy and Overweight Vehicle Defects Interim Report

    SciTech Connect (OSTI)

    Siekmann, Adam [ORNL; Capps, Gary J [ORNL

    2012-12-01T23:59:59.000Z

    The Federal Highway Administration (FHWA), along with the Federal Motor Carrier Safety Administration (FMCSA), has an interest in overweight commercial motor vehicles, how they affect infrastructure, and their impact on safety on the nation s highways. To assist both FHWA and FMCSA in obtaining more information related to this interest, data was collected and analyzed from two separate sources. A large scale nationwide data collection effort was facilitated by the Commercial Vehicle Safety Alliance as part of a special study on overweight vehicles and an additional, smaller set, of data was collected from the state of Tennessee which included a much more detailed set of data. Over a six-month period, 1,873 Level I inspections were performed in 18 different states that volunteered to be a part of this study. Of the 1,873 inspections, a vehicle out-of-service (OOS) violation was found on 44.79% of the vehicles, a rate significantly higher than the national OOS rate of 27.23%. The main cause of a vehicle being placed OOS was brake-related defects, with approximately 30% of all vehicles having an OOS brake violation. Only about 4% of vehicles had an OOS tire violation, and even fewer had suspension and wheel violations. Vehicle weight violations were most common on an axle group as opposed to a gross vehicle weight violation. About two thirds of the vehicles cited with a weight violation were overweight on an axle group with an average amount of weight over the legal limit of about 2,000 lbs. Data collection is scheduled to continue through January 2014, with more potentially more states volunteering to collect data. More detailed data collections similar to the Tennessee data collection will also be performed in multiple states.

  6. Electric Vehicle Preparedness Task 3: Detailed Assessment of Target Electrification Vehicles at Joint Base Lewis McChord Utilization

    SciTech Connect (OSTI)

    Stephen Schey; Jim Francfort

    2014-08-01T23:59:59.000Z

    Task 2 involved identifying daily operational characteristics of select vehicles and initiating data logging of vehicle movements in order to characterize the vehicle’s mission. Individual observations of these selected vehicles provide the basis for recommendations related to PEV adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively PEVs) can fulfill the mission requirements and provides observations related to placement of PEV charging infrastructure. This report provides the results of the data analysis and observations related to the replacement of current vehicles with PEVs. This fulfills part of the Task 3 requirements. Task 3 also includes an assessment of charging infrastructure required to support this replacement. That is the subject of a separate report.

  7. Comparative analysis of selected fuel cell vehicles

    SciTech Connect (OSTI)

    NONE

    1993-05-07T23:59:59.000Z

    Vehicles powered by fuel cells operate more efficiently, more quietly, and more cleanly than internal combustion engines (ICEs). Furthermore, methanol-fueled fuel cell vehicles (FCVs) can utilize major elements of the existing fueling infrastructure of present-day liquid-fueled ICE vehicles (ICEVs). DOE has maintained an active program to stimulate the development and demonstration o fuel cell technologies in conjunction with rechargeable batteries in road vehicles. The purpose of this study is to identify and assess the availability of data on FCVs, and to develop a vehicle subsystem structure that can be used to compare both FCVs and ICEV, from a number of perspectives--environmental impacts, energy utilization, materials usage, and life cycle costs. This report focuses on methanol-fueled FCVs fueled by gasoline, methanol, and diesel fuel that are likely to be demonstratable by the year 2000. The comparative analysis presented covers four vehicles--two passenger vehicles and two urban transit buses. The passenger vehicles include an ICEV using either gasoline or methanol and an FCV using methanol. The FCV uses a Proton Exchange Membrane (PEM) fuel cell, an on-board methanol reformer, mid-term batteries, and an AC motor. The transit bus ICEV was evaluated for both diesel and methanol fuels. The transit bus FCV runs on methanol and uses a Phosphoric Acid Fuel Cell (PAFC) fuel cell, near-term batteries, a DC motor, and an on-board methanol reformer. 75 refs.

  8. US residential charging potential for electric vehicles Elizabeth J. Traut a

    E-Print Network [OSTI]

    Michalek, Jeremy J.

    US residential charging potential for electric vehicles Elizabeth J. Traut a , TsuWei Charlie market, conventional vehicles (CV) make up the vast majority of market share, hy- brid electric vehicles (HEVs) represent less than 4% share, and sales of plug-in electric vehicles (PEVs), including plug-in hy

  9. Analysis, Modeling and Neural Network Traction Control of an Electric Vehicle

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Analysis, Modeling and Neural Network Traction Control of an Electric Vehicle without Differential Terms--Electric vehicle, electric motor, speed estimation, neural networks, traction control. I. INTRODUCTION Recently, Electric Vehicles (EVs) including fuel-cell and hybrid vehicles have been developed very

  10. An Almost Global Tracking Control Scheme for Maneuverable Autonomous Vehicles and its

    E-Print Network [OSTI]

    Chyba, Monique

    . While applications of this control scheme include autonomous aerial and underwater vehicles, we focus on an autonomous underwater vehicle (AUV) application because of its richer, more nonlinearly coupled, dynamics of unmanned vehicles are expanding as these vehicles become more maneuverable with the passage of time. Recent

  11. 2011 Hyundai Sonata 3539 - Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Matthew Shirk; Tyler Gray; Jeffrey Wishart

    2014-09-01T23:59:59.000Z

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing hybrid electric vehicle batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Hyundai Sonata Hybrid (VIN KMHEC4A47BA003539). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  12. Cost-Benefit Analysis of Plug-In Hybrid-Electric Vehicle Technology (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.; Markel, T.; Simpson, A.

    2006-10-01T23:59:59.000Z

    Presents a cost-benefit of analysis of plug-in hybrid electric vehicle technology, including potential petroleum use reduction.

  13. Vehicle Technologies Office: AVTA- Hybrid Electric Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. This page provides data on the hybrid electric versions of the Volkswagen Jetta, Ford C-Max, Chevrolet Malibu, Honda Civic, Hyundai Sonata, Honda CRZ, Honda Civic with Advanced Experimental Ultra Lead Acid Battery, Mercedes Benz, Toyota Prius Gen III, Ford Fusion, Honda Insight and Honda CR-Z.

  14. Advanced Wireless Power Transfer Vehicle and Infrastructure Analysis (Presentation)

    SciTech Connect (OSTI)

    Gonder, J.; Brooker, A.; Burton, E.; Wang, J.; Konan, A.

    2014-06-01T23:59:59.000Z

    This presentation discusses current research at NREL on advanced wireless power transfer vehicle and infrastructure analysis. The potential benefits of E-roadway include more electrified driving miles from battery electric vehicles, plug-in hybrid electric vehicles, or even properly equipped hybrid electric vehicles (i.e., more electrified miles could be obtained from a given battery size, or electrified driving miles could be maintained while using smaller and less expensive batteries, thereby increasing cost competitiveness and potential market penetration). The system optimization aspect is key given the potential impact of this technology on the vehicles, the power grid and the road infrastructure.

  15. Clean Cities 2012 Vehicle Buyer's Guide (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01T23:59:59.000Z

    The expanding availability of alternative fuels and advanced vehicles makes it easier than ever to reduce petroleum use, cut emissions, and save on fuel costs. The Clean Cities 2012 Vehicle Buyer's Guide features a comprehensive list of model year 2012 vehicles that can run on ethanol, biodiesel, electricity, propane or natural gas. Drivers and fleet managers across the country are looking for ways to reduce petroleum use, fuel costs, and vehicle emissions. As you'll find in this guide, these goals are easier to achieve than ever before, with an expanding selection of vehicles that use gasoline or diesel more efficiently, or forego them altogether. Plug-in electric vehicles made a grand entrance onto U.S. roadways in model year (MY) 2011, and their momentum in the market is poised for continued growth in 2012. Sales of the all-electric Nissan Leaf surpassed 8,000 in the fall of 2011, and the plug-in hybrid Chevy Volt is now available nationwide. Several new models from major automakers will become available throughout MY 2012, and drivers are benefiting from a rapidly growing network of charging stations, thanks to infrastructure development initiatives in many states. Hybrid electric vehicles, which first entered the market just a decade ago, are ubiquitous today. Hybrid technology now allows drivers of all vehicle classes, from SUVs to luxury sedans to subcompacts, to slash fuel use and emissions. Alternative fueling infrastructure is expanding in many regions, making natural gas, propane, ethanol, and biodiesel attractive and convenient choices for many consumers and fleets. And because fuel availability is the most important factor in choosing an alternative fuel vehicle, this growth opens up new possibilities for vehicle ownership. This guide features model-specific information about vehicle specs, manufacturer suggested retail price (MSRP), fuel economy, and emissions. You can use this information to compare vehicles and help inform your buying decisions. This guide includes city and highway fuel economy estimates from the U.S. Environmental Protection Agency (EPA). The estimates are based on laboratory tests conducted by manufacturers in accordance with federal regulations. EPA retests about 10% of vehicle models to confirm manufacturer results. Fuel economy estimates are also available on FuelEconomy.gov. For some newer vehicle models, EPA data was not available at the time of this guide's publication; in these cases, manufacturer estimates are provided, if available.

  16. Nissan Hypermini Urban Electric Vehicle Testing

    SciTech Connect (OSTI)

    James Francfort; Robert Brayer

    2006-01-01T23:59:59.000Z

    The U.S. Department of Energy’s (DOE’s) Advanced Vehicle Testing Activity (AVTA), which is part of DOE’s FreedomCAR and Vehicle Technologies Program, in partnership with the California cities of Vacaville and Palm Springs, collected mileage and maintenance and repairs data for a fleet of eleven Nissan Hypermini urban electric vehicles (UEVs). The eleven Hyperminis were deployed for various periods between January 2001 and June 2005. During the combined total of 439 months of use, the eleven Hyperminis were driven a total of 41,220 miles by staff from both cities. This equates to an average use of about 22 miles per week per vehicle. There were some early problems with the vehicles, including a charging problem and a need to upgrade the electrical system. In addition, six vehicles required drive system repairs. However, the repairs were all made under warranty. The Hyperminis were generally well-liked and provided drivers with the ability to travel any of the local roads. Full charging of the Hypermini’s lithiumion battery pack required up to 4 hours, with about 8–10 miles of range available for each hour of battery charging. With its right-side steering wheel, some accommodation of the drivers’ customary driving methods was required to adapt for different blind spots and vehicle manipulation. For that reason, the drivers received orientation and training before using the vehicle. The Hypermini is instrumented in kilometers rather than in miles, which required an adjustment for the drivers to calculate speed and range. As the drivers gained familiarity with the vehicles, there was increased acceptance and a preference for using it over traditional city vehicles. In all cases, the Hyperminis attracted a great amount of attention and interest from the general public.

  17. General Vehicle Performance Specifications for the UPRM AUV Vehicle Specifications

    E-Print Network [OSTI]

    Gilbes, Fernando

    General Vehicle Performance Specifications for the UPRM AUV Vehicle Specifications Vehicle Characteristics Specification Maximum Depth 700m with 1.5 safety factor Vehicle power 2kWHr Li Ion Rechargeable Transducer 700m rated Paroscientific Depth Sensor will be integrated into the vehicle navigation stream

  18. VEHICLE USE RECORD M/Y DEPARTMENT VEHICLE LOCATION

    E-Print Network [OSTI]

    Watson, Craig A.

    VEHICLE USE RECORD M/Y DEPARTMENT VEHICLE LOCATION Date Origin/Destination Purpose Time Out Time) Accuracy of Information (b) Valid Driver's License VEHICLE # TAG # VEHICLE MAKE, MODEL, AND YEAR NOTE: Vehicle logs must be maintained for audit purposes. It is important that all of the required information

  19. Zero-emission vehicle technology assessment. Final report

    SciTech Connect (OSTI)

    Woods, T.

    1995-08-01T23:59:59.000Z

    This is the final report in the Zero-Emission Vehicle (ZEV) Technology Assessment, performed for NYSERDA by Booz-Allen & Hamilton Inc. Booz-Allen wrote the final report, and performed the following tasks as part of the assessment: assembled a database of key ZEV organizations, their products or services, and plans; described the current state of ZEV technologies; identified barriers to widespread ZEV deployment and projected future ZEV technical capabilities; and estimated the cost of ZEVs from 1998 to 2004. Data for the ZEV Technology Assessment were obtained from several sources, including the following: existing ZEV industry publications and Booz-Allen files; major automotive original equipment manufacturers; independent electric vehicle manufacturers; battery developers and manufacturers; infrastructure and component developers and manufacturers; the U.S. Department of Energy, the California Air Resources Board, and other concerned government agencies; trade associations such as the Electric Power Research Institute and the Electric Transportation Coalition; and public and private consortia. These sources were contacted by phone, mail, or in person. Some site visits of manufacturers also were conducted. Where possible, raw data were analyzed by Booz-Allen staff and/or verified by independent sources. Performance data from standardized test cycles were used as much as possible.

  20. Advanced Vehicle Electrification and Transportation Sector Electrifica...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity Advanced Vehicle...

  1. Vehicle underbody fairing

    DOE Patents [OSTI]

    Ortega, Jason M. (Pacifica, CA); Salari, Kambiz (Livermore, CA); McCallen, Rose (Livermore, CA)

    2010-11-09T23:59:59.000Z

    A vehicle underbody fairing apparatus for reducing aerodynamic drag caused by a vehicle wheel assembly, by reducing the size of a recirculation zone formed under the vehicle body immediately downstream of the vehicle wheel assembly. The fairing body has a tapered aerodynamic surface that extends from a front end to a rear end of the fairing body with a substantially U-shaped cross-section that tapers in both height and width. Fasteners or other mounting devices secure the fairing body to an underside surface of the vehicle body, so that the front end is immediately downstream of the vehicle wheel assembly and a bottom section of the tapered aerodynamic surface rises towards the underside surface as it extends in a downstream direction.

  2. Vehicle for carrying an object of interest

    DOE Patents [OSTI]

    Zollinger, W.T.; Ferrante, T.A.

    1998-10-13T23:59:59.000Z

    A vehicle for carrying an object of interest across a supporting surface including a frame having opposite first and second ends; a first pair of wheels fixedly mounted on the first end of the frame; a second pair of wheels pivotally mounted on the second end of the frame; and a pair of motors borne by the frame, each motor disposed in driving relation relative to one of the pairs of wheels, the motors propelling the vehicle across the supporting surface. 8 figs.

  3. Vehicle for carrying an object of interest

    DOE Patents [OSTI]

    Zollinger, W. Thor (Idaho Falls, ID); Ferrante, Todd A. (Westerville, OH)

    1998-01-01T23:59:59.000Z

    A vehicle for carrying an object of interest across a supporting surface including a frame having opposite first and second ends; a first pair of wheels fixedly mounted on the first end of the frame; a second pair of wheels pivotally mounted on the second end of the frame; and a pair of motors borne by the frame, each motor disposed in driving relation relative to one of the pairs of wheels, the motors propelling the vehicle across the supporting surface.

  4. Market penetration scenarios for fuel cell vehicles

    SciTech Connect (OSTI)

    Thomas, C.E.; James, B.D.; Lomax, F.D. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

    1997-12-31T23:59:59.000Z

    Fuel cell vehicles may create the first mass market for hydrogen as an energy carrier. Directed Technologies, Inc., working with the US Department of Energy hydrogen systems analysis team, has developed a time-dependent computer market penetration model. This model estimates the number of fuel cell vehicles that would be purchased over time as a function of their cost and the cost of hydrogen relative to the costs of competing vehicles and fuels. The model then calculates the return on investment for fuel cell vehicle manufacturers and hydrogen fuel suppliers. The model also projects the benefit/cost ratio for government--the ratio of societal benefits such as reduced oil consumption, reduced urban air pollution and reduced greenhouse gas emissions to the government cost for assisting the development of hydrogen energy and fuel cell vehicle technologies. The purpose of this model is to assist industry and government in choosing the best investment strategies to achieve significant return on investment and to maximize benefit/cost ratios. The model can illustrate trends and highlight the sensitivity of market penetration to various parameters such as fuel cell efficiency, cost, weight, and hydrogen cost. It can also illustrate the potential benefits of successful R and D and early demonstration projects. Results will be shown comparing the market penetration and return on investment estimates for direct hydrogen fuel cell vehicles compared to fuel cell vehicles with onboard fuel processors including methanol steam reformers and gasoline partial oxidation systems. Other alternative fueled vehicles including natural gas hybrids, direct injection diesels and hydrogen-powered internal combustion hybrid vehicles will also be analyzed.

  5. Accomodating Electric Vehicles

    E-Print Network [OSTI]

    Aasheim, D.

    2011-01-01T23:59:59.000Z

    Accommodating Electric Vehicles Dave Aasheim 214-551-4014 daasheim@ecotality.com A leader in clean electric transportation and storage technologies ECOtality North America Overview Today ? Involved in vehicle electrification... ECOtality North America Overview Today ?Warehouse Material Handling ? Lift trucks ? Pallet Jacks ? Over 200 Customers ? Over 5,000 Installations ECOtality North America Overview Today ? 1990?s involved in EV1 ? EV Chargers ? Vehicle & battery...

  6. Accomodating Electric Vehicles 

    E-Print Network [OSTI]

    Aasheim, D.

    2011-01-01T23:59:59.000Z

    Accommodating Electric Vehicles Dave Aasheim 214-551-4014 daasheim@ecotality.com A leader in clean electric transportation and storage technologies ECOtality North America Overview Today ? Involved in vehicle electrification... ECOtality North America Overview Today ?Warehouse Material Handling ? Lift trucks ? Pallet Jacks ? Over 200 Customers ? Over 5,000 Installations ECOtality North America Overview Today ? 1990?s involved in EV1 ? EV Chargers ? Vehicle & battery...

  7. Vehicle Technologies Office: AVTA - Evaluating Military Bases...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Military Bases and Fleet Readiness for Electric Vehicles Vehicle Technologies Office: AVTA - Evaluating Military Bases and Fleet Readiness for Electric Vehicles The Vehicle...

  8. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01T23:59:59.000Z

    Research Institute 1990 Fuel Cell Status," Proceedings ofMiller, "Introduction: Fuel-Cell-Powered Vehicle DevelopmentPrograms," presented at Fuel Cells for Transportation,

  9. Flex Fuel Vehicle Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flex Fuel Vehicle Systems * Bosch FFV Project Structure and Partners * Purpose of Work - Project Highlights * Barriers - Existing Flex Fuel Systems and Problems * Approach - Bosch...

  10. E-Print Network 3.0 - aerial vehicle piloting Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the European Union under the 7th Framework Programme Summary: design of a Personal Aerial Vehicle The myCopter project will investigate User-centered design of human... , Max...

  11. Stop and Restart Effects on Modern Vehicle Starting System Components

    SciTech Connect (OSTI)

    Windover, Paul R. [Argonne National Lab. (ANL), Argonne, IL (United States); Owens, Russell J. [Argonne National Lab. (ANL), Argonne, IL (United States); Levinson, Terry M. [Argonne National Lab. (ANL), Argonne, IL (United States); Laughlin, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Gaines, Linda [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-01-01T23:59:59.000Z

    Many drivers of personal and commercial vehicles believe that turning the vehicle off and on frequently instead of idling will cause premature wear of the starter system (starter motor and starter battery). As a result, they are concerned that the replacement cost of the starter motor and/or battery due to increased manual engine cycling would be more than the cumulative cost of the fuel saved by not idling unnecessarily. A number of variables play a role in addressing this complex concern, including the number of starting cycles per day, the time between starting cycles, the intended design life of the starting system, the amount of fuel used to restart an engine, and the cumulative cost of the saved fuel. Qualitative and quantitative information from a variety of sources was used to develop a life-cycle economic model to evaluate the cost and quantify the realistic factors that are related to the permissible frequency of starter motor cycles for the average vehicle to economically minimize engine idle time. Annual cost savings can be calculated depending on shutdown duration and the number of shutdown cycles per day. Analysis shows that cost savings are realized by eliminating idling exceeding one minute by shutting down the engine and restarting it. For a typical motorist, the damage to starting system components resulting from additional daily start cycles will be negligible. Overall, it was found that starter life is mostly dependent on the total number of start cycles, while battery life is more dependent on ensuring a full charge between start events.

  12. Vehicle Technologies Office: AVTA - Plug-in Electric Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plug-in Electric Vehicle On-Road Demonstration Data Vehicle Technologies Office: AVTA - Plug-in Electric Vehicle On-Road Demonstration Data Through the American Recovery and...

  13. Laboratory to change vehicle traffic-screening regimen at vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Changes to vehicle traffic-screening Laboratory to change vehicle traffic-screening regimen at vehicle inspection station Lanes two through five will be open 24 hours a day and...

  14. Prices include compostable serviceware and linen tablecloths

    E-Print Network [OSTI]

    California at Davis, University of

    & BLACK BEAN ENCHILADAS Fresh corn tortillas stuffed with tender brown butter sautéed butternut squash, black beans and yellow on- ions, garnished with avocado and sour cream. $33 per person EDAMAME & CORN SQUASH & BLACK BEAN ENCHILADA FREE RANGE CHICK- EN SANDWICH PLATED ENTREES All plated entrees include

  15. Internship Contract (Includes Practicum)

    E-Print Network [OSTI]

    Thaxton, Christopher S.

    Internship Contract (Includes Practicum) Student's name-mail: _________________________________________ Internship Agency Contact Agency Name: ____________________________________ Address-mail: __________________________________________ Location of Internship, if different from Agency: ________________________________________________ Copies

  16. Vehicle Technologies Office Merit Review 2015: Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov [DOE]

    Presentation given by Intertek at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced vehicle testing and...

  17. Vehicle Technologies Office: 2010 Vehicle and Systems Simulation...

    Broader source: Energy.gov (indexed) [DOE]

    vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2010vsstreport.pdf More Documents & Publications AVTA PHEV Demonstrations and...

  18. Vehicle Technologies Office: 2013 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and field evaluations, codes and standards, industry projects, and vehicle systems optimization. 2013vsstreport.pdf More Documents & Publications Vehicle Technologies Office:...

  19. The Vehicle Technologies Market Report

    E-Print Network [OSTI]

    The Vehicle Technologies Market Report Center for Transportation Analysis 2360 Cherahala Boulevard Efficiency Transportation: Energy Environment Safety Security Vehicle Technologies T he Oak Ridge National Laboratory's Center for Transportation Analysis developed and published the first Vehicle Technologies Market

  20. Pump apparatus including deconsolidator

    DOE Patents [OSTI]

    Sonwane, Chandrashekhar; Saunders, Timothy; Fitzsimmons, Mark Andrew

    2014-10-07T23:59:59.000Z

    A pump apparatus includes a particulate pump that defines a passage that extends from an inlet to an outlet. A duct is in flow communication with the outlet. The duct includes a deconsolidator configured to fragment particle agglomerates received from the passage.

  1. Vehicle to Electric Vehicle Supply Equipment Smart Grid Communications Interface Research and Testing Report

    SciTech Connect (OSTI)

    Kevin Morrow; Dimitri Hochard; Jeff Wishart

    2011-09-01T23:59:59.000Z

    Plug-in electric vehicles (PEVs), including battery electric, plug-in hybrid electric, and extended range electric vehicles, are under evaluation by the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) and other various stakeholders to better understand their capability and potential petroleum reduction benefits. PEVs could allow users to significantly improve fuel economy over a standard hybrid electric vehicles, and in some cases, depending on daily driving requirements and vehicle design, PEVs may have the ability to eliminate petroleum consumption entirely for daily vehicle trips. The AVTA is working jointly with the Society of Automotive Engineers (SAE) to assist in the further development of standards necessary for the advancement of PEVs. This report analyzes different methods and available hardware for advanced communications between the electric vehicle supply equipment (EVSE) and the PEV; particularly Power Line Devices and their physical layer. Results of this study are not conclusive, but add to the collective knowledge base in this area to help define further testing that will be necessary for the development of the final recommended SAE communications standard. The Idaho National Laboratory and the Electric Transportation Applications conduct the AVTA for the United States Department of Energy's Vehicle Technologies Program.

  2. Vehicle Technologies Office: Propulsion Systems

    Broader source: Energy.gov [DOE]

    Vehicle Technologies Office research focuses much of its effort on improving vehicle fuel economy while meeting increasingly stringent emissions standards. Achieving these goals requires a...

  3. Gasoline Ultra Fuel Efficient Vehicle

    Broader source: Energy.gov (indexed) [DOE]

    Strategy Phase 2 Demonstrator Vehicle (GDCI) 2011 Sonata 6MT, 2.0L GDI Theta Turbo Technologies on Vehicle: Stop start EMS Control Algorithms Calibration GDi pump...

  4. Sandia National Laboratories: Vehicle Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle Technologies Energy Efficiency On November 11, 2010, in Solid-State Lighting Vehicle Technologies Energy Efficiency News Energy Frontier Research Center for Solid-State...

  5. Living Expenses (includes approximately

    E-Print Network [OSTI]

    Maroncelli, Mark

    & engineering programs All other programs Graduate: MBA/INFSY at Erie & Harrisburg (12 credits) Business Guarantee 3 (Does not include Dependents Costs4 ) Altoona, Berks, Erie, and Harrisburg 12-Month Estimated

  6. A Verified Hybrid Controller For Automated Vehicles

    E-Print Network [OSTI]

    Lygeros, J.; Godbole, D. N.; Sastry, S.

    1997-01-01T23:59:59.000Z

    con- trollers for vehicle automation," in American ControlTomizuka, Vehicle lateral control for highway automation,"

  7. Autonomous adaptation and collaboration of unmanned vehicles for tracking submerged contacts

    E-Print Network [OSTI]

    Privette, Andrew Jamie

    2012-01-01T23:59:59.000Z

    Autonomous operations are vital to future naval operations. Unmanned systems, including autonomous underwater vehicles (AUVs) and autonomous surface vehicles (ASVs), are anticipated to play a key role for critical tasks ...

  8. General Information: Person Reporting: Phone #: Email

    E-Print Network [OSTI]

    Dyer, Bill

    Information: Assigned Driver Name: Assigned Driver GID# (last 4 digits only): Vehicle Information: Vehicle Year: License Plate #: VIN # of Vehicle: Vehicle Make: Vehicle Model: Vehicle Leased? Yes/No Vehicle a Loaner? Yes/No Owner of Vehicle: Market Value of Vehicle: Monthly Lease Amount: Vehicle Type: Subtype

  9. Development and applications of GREET 2.7 -- The Transportation Vehicle-CycleModel.

    SciTech Connect (OSTI)

    Burnham, A.; Wang, M. Q.; Wu, Y.

    2006-12-20T23:59:59.000Z

    Argonne National Laboratory has developed a vehicle-cycle module for the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model. The fuel-cycle GREET model has been cited extensively and contains data on fuel cycles and vehicle operations. The vehicle-cycle model evaluates the energy and emission effects associated with vehicle material recovery and production, vehicle component fabrication, vehicle assembly, and vehicle disposal/recycling. With the addition of the vehicle-cycle module, the GREET model now provides a comprehensive, lifecycle-based approach to compare the energy use and emissions of conventional and advanced vehicle technologies (e.g., hybrid electric vehicles and fuel cell vehicles). This report details the development and application of the GREET 2.7 model. The current model includes six vehicles--a conventional material and a lightweight material version of a mid-size passenger car with the following powertrain systems: internal combustion engine, internal combustion engine with hybrid configuration, and fuel cell with hybrid configuration. The model calculates the energy use and emissions that are required for vehicle component production; battery production; fluid production and use; and vehicle assembly, disposal, and recycling. This report also presents vehicle-cycle modeling results. In order to put these results in a broad perspective, the fuel-cycle model (GREET 1.7) was used in conjunction with the vehicle-cycle model (GREET 2.7) to estimate total energy-cycle results.

  10. Vehicle Technologies Office: AVTA- Neighborhood All-Electric Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Data on the following vehicles is available in downloadable form: 2013 BRP Commander Electric, 2010 Electric Vehicles International E-Mega, 2009 Vantage Pickup EVX1000, and 2009 Vantage Van EVC1000.

  11. ROBUST SCALABLE VEHICLE CONTROL VIA NON-DIMENSIONAL VEHICLE DYNAMICS

    E-Print Network [OSTI]

    Brennan, Sean

    - 1 - ROBUST SCALABLE VEHICLE CONTROL VIA NON-DIMENSIONAL VEHICLE DYNAMICS S. Brennan & A. Alleyne and spatial re-parameterization of the linear vehicle Bicycle Model is presented utilizing non-dimensional ratios of vehicle parameters called -groups. Investigation of the -groups using compiled data from 44

  12. ROBUST SCALABLE VEHICLE CONTROL VIA NON-DIMENSIONAL VEHICLE DYNAMICS

    E-Print Network [OSTI]

    Brennan, Sean

    ROBUST SCALABLE VEHICLE CONTROL VIA NON-DIMENSIONAL VEHICLE DYNAMICS S. Brennan & A. Alleyne Dept, IL 61801 ABSTRACT A temporal and spatial re-parameterization of the well- known linear vehicle Bicycle Model is presented. This parameterization utilizes non-dimensional ratios of vehicle parameters

  13. Rapid road repair vehicle

    DOE Patents [OSTI]

    Mara, Leo M. (Livermore, CA)

    1999-01-01T23:59:59.000Z

    Disclosed are improvments to a rapid road repair vehicle comprising an improved cleaning device arrangement, two dispensing arrays for filling defects more rapidly and efficiently, an array of pre-heaters to heat the road way surface in order to help the repair material better bond to the repaired surface, a means for detecting, measuring, and computing the number, location and volume of each of the detected surface imperfection, and a computer means schema for controlling the operation of the plurality of vehicle subsystems. The improved vehicle is, therefore, better able to perform its intended function of filling surface imperfections while moving over those surfaces at near normal traffic speeds.

  14. Vehicle having hydraulic and power steering systems using a single high pressure pump

    DOE Patents [OSTI]

    Bartley, Bradley E. (Manito, IL); Blass, James R. (Bloomington, IL); Gibson, Dennis H. (Chillicothe, IL)

    2001-06-22T23:59:59.000Z

    A vehicle comprises a plurality of wheels attached to a vehicle housing. Also attached to the vehicle housing is a power steering system, including a fluid flow circuit, which is operably coupled to a number of the wheels. An internal combustion engine attached to the vehicle housing is connected to a hydraulically actuated system that includes a high pressure pump. An outlet of the high pressure pump is in fluid communication with the fluid flow circuit.

  15. Vehicle Technologies Office Merit Review 2014: Smith Electric...

    Office of Environmental Management (EM)

    Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification Vehicle Technologies Office Merit Review 2014: Smith Electric Vehicles: Advanced...

  16. OPTIMAL DESIGN OF HYBRID FUEL CELL VEHICLES

    E-Print Network [OSTI]

    Jeongwoo Han; Michael Kokkolaras; Panos Papalambros

    Fuel cells are being considered increasingly as a viable alternative energy source for automobiles because of their clean and efficient power generation. Numerous technological concepts have been developed and compared in terms of safety, robust operation, fuel economy, and vehicle performance. However, several issues still exist and must be addressed to improve the viability of this emerging technology. Despite the relatively large number of models and prototypes, a model-based vehicle design capability with sufficient fidelity and efficiency is not yet available in the literature. In this article we present an analysis and design optimization model for fuel cell vehicles that can be applied to both hybrid and non-hybrid vehicles by integrating a fuel cell vehicle simulator with a physics-based fuel cell model. The integration is achieved via quasi-steady fuel cell performance maps, and provides the ability to modify the characteristics of fuel cell systems with sufficient accuracy (less than 5 % error) and efficiency (98 % computational time reduction on average). Thus, a vehicle can be optimized subject to constraints that include various performance metrics and design specifications so that the overall efficiency of the hybrid fuel cell vehicle can be improved by 14 % without violating any constraints. The obtained optimal fuel cell system is also compared to other, not vehicle-related, fuel cell systems optimized for maximum power density or maximum efficiency. A tradeoff between power density and efficiency can be observed depending on the size of compressors. Typically, a larger compressor results in higher fuel cell power density at the cost of fuel cell efficiency because it operates in a wider current region. When optimizing the fuel cell

  17. Electric-Drive Vehicle engineering

    E-Print Network [OSTI]

    Berdichevsky, Victor

    Electric-Drive Vehicle engineering COLLEGE of ENGINEERING Electric-driveVehicleEngineering engineers for 80 years t Home to nation's first electric-drive vehicle engineering program and alternative-credit EDGE Engineering Entrepreneur Certificate Program is a great addition to an electric-drive vehicle

  18. Alternative Fuel Vehicles: The Case of Compressed Natural Gas (CNG) Vehicles in California Households

    E-Print Network [OSTI]

    Abbanat, Brian A.

    2001-01-01T23:59:59.000Z

    VEHICLES: THE CASE OF COMPRESSED NATURAL GAS (CNG) VEHICLESyou first learn about compressed natural gas (CNG) vehicles?VEHICLES: THE CASE OF COMPRESSED NATURAL GAS (CNG) VEHICLES

  19. Director, Vehicle Technologies Office

    Broader source: Energy.gov [DOE]

    This position is located within the Vehicle Technologies Office (VTO), within the Office of Energy Efficiency and Renewable Energy (EERE). The Office reports to the Deputy Assistant Secretary for...

  20. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01T23:59:59.000Z

    Rechargeable Zinc-Air Battery System for Electric Vehicles,"hthium/polymer* Zinc-air battery (Electric Fuel)* NickelThe discharge rate for the zinc/air battery was 5 hours at a

  1. Personalized medicine: selected Web resources

    E-Print Network [OSTI]

    Stimson, Nancy F

    2009-01-01T23:59:59.000Z

    Genomic and Personalized Medicine. 1 st ed. Amsterdam, thePersonalized medicine: selected Web resources Nancy F.Keywords: personalized medicine; personalized health care;

  2. Passive cooling system for a vehicle

    DOE Patents [OSTI]

    Hendricks, Terry Joseph; Thoensen, Thomas

    2005-11-15T23:59:59.000Z

    A passive cooling system for a vehicle (114) transfers heat from an overheated internal component, for example, an instrument panel (100), to an external portion (116) of the vehicle (114), for example, a side body panel (126). The passive cooling system includes one or more heat pipes (112) having an evaporator section (118) embedded in the overheated internal component and a condenser section (120) at the external portion (116) of the vehicle (114). The evaporator (118) and condenser (120) sections are in fluid communication. The passive cooling system may also include a thermally conductive film (140) for thermally connecting the evaporator sections (118) of the heat pipes (112) to each other and to the instrument panel (100).

  3. Passive Cooling System for a Vehicle

    DOE Patents [OSTI]

    Hendricks, T. J.; Thoensen, T.

    2005-11-15T23:59:59.000Z

    A passive cooling system for a vehicle (114) transfers heat from an overheated internal component, for example, an instrument panel (100), to an external portion (116) of the vehicle (114), for example, a side body panel (126). The passive cooling system includes one or more heat pipes (112) having an evaporator section (118) embedded in the overheated internal component and a condenser section (120) at the external portion (116) of the vehicle (114). The evaporator (118) and condenser (120) sections are in fluid communication. The passive cooling system may also include a thermally conductive film (140) for thermally connecting the evaporator sections (118) of the heat pipes (112) to each other and to the instrument panel (100).

  4. Fluid cooled vehicle drive module

    DOE Patents [OSTI]

    Beihoff, Bruce C.; Radosevich, Lawrence D.; Meyer, Andreas A.; Gollhardt, Neil; Kannenberg, Daniel G.

    2005-11-15T23:59:59.000Z

    An electric vehicle drive includes a support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support, in conjunction with other packaging features may form a shield from both external EM/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  5. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice (Revised)

    SciTech Connect (OSTI)

    Not Available

    2008-06-01T23:59:59.000Z

    Clean Cities fact sheet describing aspects of flexible fuel vehicles such as use of E85, special features, benefits of use, costs, and fueling locations. It includes discussion on performance and how to identify these vehicles as well as listing additional resources.

  6. New Developments in the Debate on Pavement-Vehicle

    E-Print Network [OSTI]

    de Weck, Olivier L.

    New Developments in the Debate on Pavement-Vehicle Interaction: The Impact of Pavement Design aerodynamics Improve energy efficiency Reduce rolling resistance, including pavement-vehicle interaction #12 standards for big trucks" February 18, 2014 What about fuel efficiency standards for pavements? #12;Slide 5

  7. 2007 Toyota Camry-6330 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01T23:59:59.000Z

    The U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) conducts several different types of tests on hybrid electric vehicles (HEVs), including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Camry hybrid electric vehicle (Vin Number JTNBB46K673006330). Testing was performed by the Electric Transportation Engineering Corporation. The AVTA is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct AVTA for the U.S. Department of Energy.

  8. Electric vehicle regenerative antiskid braking and traction control system

    DOE Patents [OSTI]

    Cikanek, S.R.

    1995-09-12T23:59:59.000Z

    An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydraulic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control. 10 figs.

  9. Electric vehicle regenerative antiskid braking and traction control system

    DOE Patents [OSTI]

    Cikanek, Susan R. (Wixom, MI)

    1995-01-01T23:59:59.000Z

    An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydrualic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control.

  10. Lifecycle-analysis for heavy vehicles.

    SciTech Connect (OSTI)

    Gaines, L.

    1998-04-16T23:59:59.000Z

    Various alternative fuels and improved engine and vehicle systems have been proposed in order to reduce emissions and energy use associated with heavy vehicles (predominantly trucks). For example, oil companies have proposed improved methods for converting natural gas to zero-aromatics, zero-sulfur diesel fuel via the Fischer-Tropsch process. Major heavy-duty diesel engine companies are working on ways to simultaneously reduce particulate-matter and NOX emissions. The trend in heavy vehicles is toward use of lightweight materials, tires with lower rolling resistance, and treatments to reduce aerodynamic drag. In this paper, we compare the Mecycle energy use and emissions from trucks using selected alternatives, such as Fisher-Tropsch diesel fuel and advanced fuel-efficient engines. We consider heavy-duty, Class 8 tractor-semitrailer combinations for this analysis. The total life cycle includes production and recycling of the vehicle itself, extraction, processing, and transportation of the fuel itself, and vehicle operation and maintenance. Energy use is considered in toto, as well as those portions that are imported, domestic, and renewable. Emissions of interest include greenhouse gases and criteria pollutants. Angonne's Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model is used to generate per-vehicle fuel cycle impacts. Energy use and emissions for materials manufacturing and vehicle disposal are estimated by means of materials information from Argonne studies. We conclude that there are trade-offs among impacts. For example, the lowest fossil energy use does not necessarily result in lowest total energy use, and lower tailpipe emissions may not necessarily result in lower lifecycle emissions of all criteria pollutants.

  11. Impact of Solar Control PVB Glass on Vehicle Interior Temperatures, Air-Conditioning Capacity, Fuel Consumption, and Vehicle Range

    SciTech Connect (OSTI)

    Rugh, J.; Chaney, L.; Venson, T.; Ramroth, L.; Rose, M.

    2013-04-01T23:59:59.000Z

    The objective of the study was to assess the impact of Saflex1 S-series Solar Control PVB (polyvinyl butyral) configurations on conventional vehicle fuel economy and electric vehicle (EV) range. The approach included outdoor vehicle thermal soak testing, RadTherm cool-down analysis, and vehicle simulations. Thermal soak tests were conducted at the National Renewable Energy Laboratory's Vehicle Testing and Integration Facility in Golden, Colorado. The test results quantified interior temperature reductions and were used to generate initial conditions for the RadTherm cool-down analysis. The RadTherm model determined the potential reduction in air-conditioning (A/C) capacity, which was used to calculate the A/C load for the vehicle simulations. The vehicle simulation tool identified the potential reduction in fuel consumption or improvement in EV range between a baseline and modified configurations for the city and highway drive cycles. The thermal analysis determined a potential 4.0% reduction in A/C power for the Saflex Solar PVB solar control configuration. The reduction in A/C power improved the vehicle range of EVs and fuel economy of conventional vehicles and plug-in hybrid electric vehicles.

  12. Electric Vehicle Preparedness: Task 1, Assessment of Fleet Inventory for Marine Corps Base Camp Lejeune

    SciTech Connect (OSTI)

    Stephen Schey; Jim Francfort

    2015-01-01T23:59:59.000Z

    Several U.S. Department of Defense-based studies were conducted to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). Task 1 included a survey of the inventory of non-tactical fleet vehicles at the Marine Corps Base Camp Lejeune (MCBCL) to characterize the fleet. This information and characterization will be used to select vehicles for monitoring that takes place during Task 2. This monitoring involves data logging of vehicle operation in order to identify the vehicle’s mission and travel requirements. Individual observations of these selected vehicles provide the basis for recommendations related to PEV adoption. It also identifies whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements and provides observations related to placement of PEV charging infrastructure.

  13. AVTA: 2010 Electric Vehicles International Neighborhood Electric Vehicle Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe testing results of the 2010 Electric Vehicles International neighborhood electric vehicle. Neighborhood electric vehicles reach speeds of no more than 35 miles per hour and are only allowed on roads with speed limits of up to 35 miles per hour. This research was conducted by Idaho National Laboratory.

  14. Personal Services Agreements Waivers

    E-Print Network [OSTI]

    , State Controller's Office). All personal services contract activity will be reported through the state

  15. Environmental Assessment of the US Department of Energy Electric and Hybrid Vehicle Program

    SciTech Connect (OSTI)

    Singh, M.K.; Bernard, M.J. III; Walsh, R.F

    1980-11-01T23:59:59.000Z

    This environmental assessment (EA) focuses on the long-term (1985-2000) impacts of the US Department of Energy (DOE) electric and hybrid vehicle (EHV) program. This program has been designed to accelerate the development of EHVs and to demonstrate their commercial feasibility as required by the Electric and Hybrid Vehicle Research, Development and Demonstration Act of 1976 (P.L. 94-413), as amended (P.L. 95-238). The overall goal of the program is the commercialization of: (1) electric vehicles (EVs) acceptable to broad segments of the personal and commercial vehicle markets, (2) hybrid vehicles (HVs) with range capabilities comparable to those of conventional vehicles (CVs), and (3) advanced EHVs completely competitive with CVs with respect to both cost and performance. Five major EHV projects have been established by DOE: market demonstration, vehicle evaluation and improvement, electric vehicle commercialization, hybrid vehicle commercialization, and advanced vehicle development. Conclusions are made as to the effects of EV and HV commercialization on the: consumption and importation of raw materials; petroleum and total energy consumption; ecosystems impact from the time of obtaining raw material through vehicle use and materials recycling; environmental impacts on air and water quality, land use, and noise; health and safety aspects; and socio-economic factors. (LCL)

  16. Methylotroph cloning vehicle

    DOE Patents [OSTI]

    Hanson, Richard S. (Deephaven, MN); Allen, Larry N. (Excelsior, MN)

    1989-04-25T23:59:59.000Z

    A cloning vehicle comprising: a replication determinant effective for replicating the vehicle in a non-C.sub.1 -utilizing host and in a C.sub.1 -utilizing host; DNA effective to allow the vehicle to be mobilized from the non-C.sub.1 -utilizing host to the C.sub.1 -utilizing host; DNA providing resistance to two antibiotics to which the wild-type C.sub.1 -utilizing host is susceptible, each of the antibiotic resistance markers having a recognition site for a restriction endonuclease; a cos site; and a means for preventing replication in the C.sub.1 -utilizing host. The vehicle is used for complementation mapping as follows. DNA comprising a gene from the C.sub.1 -utilizing organism is inserted at the restriction nuclease recognition site, inactivating the antibiotic resistance marker at that site. The vehicle can then be used to form a cosmid structure to infect the non-C.sub.1 -utilizing (e.g., E. coli) host, and then conjugated with a selected C.sub.1 -utilizing mutant. Resistance to the other antibiotic by the mutant is a marker of the conjugation. Other phenotypical changes in the mutant, e.g., loss of an auxotrophic trait, is attributed to the C.sub.1 gene. The vector is also used to inactivate genes whose protein products catalyze side reactions that divert compounds from a biosynthetic pathway to a desired product, thereby producing an organism that makes the desired product in higher yields.

  17. Vehicle Technologies Office - AVTA: All Electric USPS Long Life...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    USPS Long Life Vehicle Conversions Vehicle Technologies Office - AVTA: All Electric USPS Long Life Vehicle Conversions The Vehicle Technologies Office's Advanced Vehicle Testing...

  18. Vehicle Technologies Office - AVTA: Hybrid-Electric Delivery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delivery Vehicles Vehicle Technologies Office - AVTA: Hybrid-Electric Delivery Vehicles The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a...

  19. 2011 Hyundai Sonata 4932 - Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01T23:59:59.000Z

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Hyundai Sonata Hybrid HEV (VIN KMHEC4A43BA004932). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

  20. Vehicle Technologies Office: 2008 Advanced Power Electronics...

    Broader source: Energy.gov (indexed) [DOE]

    waste heat recovery devices for vehicles Vehicle Technologies Office Merit Review 2014: Thermal Control of Power Electronics of Electric Vehicles with Small Channel Coolant Boiling...

  1. Achieving and Demonstrating Vehicle Technologies Engine Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Technologies Engine Fuel Efficiency Milestones Achieving and Demonstrating Vehicle Technologies Engine Fuel Efficiency Milestones 2010 DOE Vehicle Technologies and Hydrogen...

  2. Vehicle Technologies Office: AVTA - Evaluating National Parks...

    Energy Savers [EERE]

    Vehicle Technologies Office: AVTA - Evaluating National Parks and Forest Service Fleets for Plug-in Electric Vehicles Vehicle Technologies Office: AVTA - Evaluating National Parks...

  3. Advanced Vehicle Technologies | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    activities that provide data critical to the development and commercialization of next-generation vehicles Vehicle Electrification Advancing the future of electric vehicles...

  4. Vehicle Technologies Office: Power Electronics and Electrical...

    Broader source: Energy.gov (indexed) [DOE]

    overview of electric drive vehicles, see the Alternative Fuels Data Center's pages on Hybrid and Plug-in Electric Vehicles. The Vehicle Technologies Office (VTO) supports...

  5. Vehicle-Grid Interoperability | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle-Grid Interoperability Charging a test vehicle using the laboratory's solar-powered charging station. Charging a test vehicle using the laboratory's solar-powered charging...

  6. Specialty Vehicles and Material Handling Equipment

    Broader source: Energy.gov (indexed) [DOE]

    Benefits Environmental Benefits "Well-to-Tank" Greenhouse Gas Factors Hydrogen fuel cell vehicles Hydrogen fuel cell vehicles Hydrogen fuel cell vehicles Hydrogen fuel cell...

  7. Commercial Motor Vehicle Brake-Related Research

    E-Print Network [OSTI]

    Commercial Motor Vehicle Brake-Related Research Commercial Motor Vehicle Roadside Technology Corridor Safety Technology Showcase October 14, 2010 Commercial Motor Vehicle Roadside Technology Corridor

  8. Vehicle Technologies Office: Annual Progress Reports | Department...

    Energy Savers [EERE]

    Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program DOE Vehicle Technologies Office Annual Merit Review Energy Storage Research...

  9. Hydrogen Vehicle and Infrastructure Demonstration and Validation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle and Infrastructure Demonstration and Validation Hydrogen Vehicle and Infrastructure Demonstration and Validation 2009 DOE Hydrogen Program and Vehicle Technologies Program...

  10. Administrative Policy: Use of University-Owned Vehicles Page 1 of 2

    E-Print Network [OSTI]

    Hardy, Christopher R.

    Administrative Policy: Use of University-Owned Vehicles Page 1 of 2 Governance & Policies Effective: May 1, 2007 Administrative Policy USE OF UNIVERSITY-OWNED VEHICLES Approved: May 1, 2007 President policy and procedures for the use of University-owned vehicles, including authorized drivers, appropriate

  11. Meals included in Conference Registrations

    E-Print Network [OSTI]

    Arnold, Jonathan

    Vehicles Car rentals can be utilized when it is determined that renting a car is the most advantageous form is located at: http://www.enterprise.com/ car_rental/deeplinkmap.do? bid=028&refId=UGA2009 For inter-state travel, National Rental Car should be utilized. Call 1-800-328-4300 for reservations and use ID# 5004625

  12. Meals included in Conference Registrations

    E-Print Network [OSTI]

    Arnold, Jonathan

    Vehicles Car rentals can be utilized when it is determined that renting a car is the most advantageous form is located at: http://www.enterprise.com/ car_rental/deeplinkmap.do? bid=028&refId=UGA2009 For inter-state travel, National Rental Car should be utilized. Call 1-800-328-4300 for reservations and use ID# 004625

  13. Vehicle Technologies Office Merit Review 2015: Vehicle Technologies Office Overview

    Broader source: Energy.gov [DOE]

    Presentation given by U.S. Department of Energy  at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation meeting about Vehicle...

  14. Headquarters Personal Property Asset Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-09-26T23:59:59.000Z

    To establish procedures for managing Government personal property owned or leased by the Department of Energy and in the custody of DOE Headquarters employees, including those in the National Nuclear Security Administration. Cancels DOE HQ O 580.1B. Canceled by DOE N 251.69.

  15. Government Personal Property Asset Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-09-23T23:59:59.000Z

    To establish procedures for managing Government personal owned or leased by the Department of Energy (DOE) and in the custody of DOE Headquarters employees, including those in the National Nuclear Security Administration (NNSA), in accordance with Federal and Departmental regulations. Cancels HQ O 580.1.

  16. A guide to surveys of motor vehicle fleets

    SciTech Connect (OSTI)

    NONE

    1996-11-01T23:59:59.000Z

    In response to directives in Section 407 of the Energy Policy Act of 1992 (EPACT), the Energy Information Administration (EIA) developed a data collection program designed to provide information useful to persons interested in the alternative fuels market. The target audience includes those seeking to manufacture, convert, sell, own, or operate alternative-fuel vehicles (AFVs) or alternative fueling facilities. Among the various projects EIA conducted as part of this data collection program were two fleet surveys conducted in Department of Energy-designated Clean Cities. The Clean Cities program is a locally-based government/industry partnership coordinated by the Department of Energy to expand the use of alternative transportation fuels. These surveys were designed to collect a broad range of information regarding the fleets and fleet vehicles in operation in the Atlanta, Georgia and Denver, Colorado areas. One of the objectives of these surveys was to attempt to identify and describe the market for AFVs. Due to inherent limitations associated with AFVs and limited alternative-fuel infrastructure, it`s believed that the first practical applications for AFVs will be within private and government fleets. Another objective in conducting the Clean Cities Fleet surveys was to develop a useful methodology for accessing and surveying private and municipal fleets that would aid other interested parties in conducting similar surveys. This report is intended to provide a description of how EIA gathered information on private and municipal fleets, but the basic survey design could be used to design surveys of other difficult-to-access populations. There are 3 basic steps to any survey: define the target population, constructing the survey frame, and implementing the survey. The procedures outlined in this report are, for the most part, the procedures used for the fleet survey conducted in Denver. The major changes between the two surveys are described in Appendix A.

  17. Brake blending strategy for a hybrid vehicle

    DOE Patents [OSTI]

    Boberg, Evan S. (Hazel Park, MI)

    2000-12-05T23:59:59.000Z

    A hybrid electric powertrain system is provided including a transmission for driving a pair of wheels of a vehicle and a heat engine and an electric motor/generator coupled to the transmission. A friction brake system is provided for applying a braking torque to said vehicle. A controller unit generates control signals to the electric motor/generator and the friction brake system for controllably braking the vehicle in response to a drivers brake command. The controller unit determines and amount of regenerative torque available and compares this value to a determined amount of brake torque requested for determining the control signals to the electric motor/generator and the friction brake system.

  18. Fleet vehicles in the Unites States: composition, operating characteristics, and fueling practices

    SciTech Connect (OSTI)

    Miaou, S.P.; Hu, P.S. (Oak Ridge National Lab., TN (United States)); Young, J.R. (Tennessee Univ., Knoxville, TN (United States))

    1992-05-01T23:59:59.000Z

    As fleets become a larger proportion of the new vehicle population on the road, they have more influence on the characteristics of the total US motor vehicle population. One of the characteristics which fleets are expected to have the most influence on is the overall vehicle fuel economy. In addition, because of the relatively large market share and the high turnover rate of fleet vehicles, fleets have been considered as a useful initial market for alternative fuel vehicles. In order to analyze fleet market potential and likely market penetration of alternative fuel vehicles and to infrastructure requirements for successful operations of these vehicles in the future, information on fleet sizes and composition, fleet vehicle operating characteristics (such as daily/annual miles of travel), fuel efficiency, and refueling practices, is essential. The purpose of this report is to gather and summarize information from the latest data sources available pertaining to fleet vehicles in the US This report presents fleet vehicle data on composition, operating characteristics, and fueling practices. The questions these data are intended to address include: (1) How are fleet vehicles operated (2) Where are they located and (3) What are their usual fueling practices Since a limited number of alternative fuel fleet vehicles are already in use, data on these vehicles are also included in this report. 17 refs.

  19. Fleet vehicles in the Unites States: composition, operating characteristics, and fueling practices

    SciTech Connect (OSTI)

    Miaou, S.P.; Hu, P.S. [Oak Ridge National Lab., TN (United States); Young, J.R. [Tennessee Univ., Knoxville, TN (United States)

    1992-05-01T23:59:59.000Z

    As fleets become a larger proportion of the new vehicle population on the road, they have more influence on the characteristics of the total US motor vehicle population. One of the characteristics which fleets are expected to have the most influence on is the overall vehicle fuel economy. In addition, because of the relatively large market share and the high turnover rate of fleet vehicles, fleets have been considered as a useful initial market for alternative fuel vehicles. In order to analyze fleet market potential and likely market penetration of alternative fuel vehicles and to infrastructure requirements for successful operations of these vehicles in the future, information on fleet sizes and composition, fleet vehicle operating characteristics (such as daily/annual miles of travel), fuel efficiency, and refueling practices, is essential. The purpose of this report is to gather and summarize information from the latest data sources available pertaining to fleet vehicles in the US This report presents fleet vehicle data on composition, operating characteristics, and fueling practices. The questions these data are intended to address include: (1) How are fleet vehicles operated? (2) Where are they located? and (3) What are their usual fueling practices? Since a limited number of alternative fuel fleet vehicles are already in use, data on these vehicles are also included in this report. 17 refs.

  20. BEEST: Electric Vehicle Batteries

    SciTech Connect (OSTI)

    None

    2010-07-01T23:59:59.000Z

    BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-E’s BEEST Project, short for “Batteries for Electrical Energy Storage in Transportation,” could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

  1. Vehicle brake testing system

    DOE Patents [OSTI]

    Stevens, Samuel S. (Harriman, TN); Hodgson, Jeffrey W. (Lenoir City, TN)

    2002-11-19T23:59:59.000Z

    This invention relates to a force measuring system capable of measuring forces associated with vehicle braking and of evaluating braking performance. The disclosure concerns an invention which comprises a first row of linearly aligned plates, a force bearing surface extending beneath and beside the plates, vertically oriented links and horizontally oriented links connecting each plate to a force bearing surface, a force measuring device in each link, a transducer coupled to each force measuring device, and a computing device coupled to receive an output signal from the transducer indicative of measured force in each force measuring device. The present invention may be used for testing vehicle brake systems.

  2. Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  3. Vehicle Mass Impact on Vehicle Losses and Fuel Economy

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  4. CHARACTERIZATION OF WILD PIG VEHICLE COLLISIONS

    SciTech Connect (OSTI)

    Mayer, J; Paul E. Johns, P

    2007-05-23T23:59:59.000Z

    Wild pig (Sus scrofa) collisions with vehicles are known to occur in the United States, but only minimal information describing these accidents has been reported. In an effort to better characterize these accidents, data were collected from 179 wild pig-vehicle collisions from a location in west central South Carolina. Data included accident parameters pertaining to the animals involved, time, location, and human impacts. The age structure of the animals involved was significantly older than that found in the population. Most collisions involved single animals; however, up to seven animals were involved in individual accidents. As the number of animals per collision increased, the age and body mass of the individuals involved decreased. The percentage of males was significantly higher in the single-animal accidents. Annual attrition due to vehicle collisions averaged 0.8 percent of the population. Wild pig-vehicle collisions occurred year-round and throughout the 24-hour daily time period. Most accidents were at night. The presence of lateral barriers was significantly more frequent at the collision locations. Human injuries were infrequent but potentially serious. The mean vehicle damage estimate was $1,173.

  5. Hydrogen Fuel Cell Problems 1) Explain why the hydrogen fuel cell vehicle is not as efficient as the reported "tank

    E-Print Network [OSTI]

    Bowen, James D.

    Hydrogen Fuel Cell Problems 1) Explain why the hydrogen fuel cell vehicle is not as efficient of ethanol? A flex-fuel SUV has a 25 gallon tank. Its sustainably-minded owner has decided to use E85 ethanol? 1 yr/person/450pounds of corn * 461 pounds of corn = 1.02 yrs #12;Electric Vehicle Problems 1

  6. Insurance Coverage Policy Outline the policy regarding insurance coverage on University of Michigan (U-M) vehicles.

    E-Print Network [OSTI]

    Kirschner, Denise

    -M are covered by the U-M self insurance program administered by Risk Management. 3. U-M vehicles owned insured and carries personal protection, residual liability and property protection insurance on all coverage through Risk Management. 5. U-M vehicles owned by the using department and not registered

  7. Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 2: appendices A-D to technical report

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline- powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume II contains additional details on the vehicle, utility, and materials analyses and discusses several details of the methodology.

  8. Comparison of various battery technologies for electric vehicles

    E-Print Network [OSTI]

    Dickinson, Blake Edward

    1993-01-01T23:59:59.000Z

    Battery technologies of different chemistries, manufacture and geometry were evaluated as candidates for use in Electric Vehicles (EV). The candidate batteries that were evaluated include four single cell and seven multi-cell modules representing...

  9. Control and waypoint navigation of an autonomous ground vehicle

    E-Print Network [OSTI]

    Massey, James Patrick

    2006-08-16T23:59:59.000Z

    This thesis describes the initial development of the Texas A&M Autonomous Ground Vehicle test platform and waypoint following software, including the associated controller design. The original goal of the team responsible for the development...

  10. Aerodynamic optimization of a solar powered race vehicle

    E-Print Network [OSTI]

    Augenbergs, Peteris K

    2006-01-01T23:59:59.000Z

    Aerodynamic optimization was performed on Tesseract, the MIT Solar Electric Vehicle Team's 2003-2005 solar car using Wind Tunnel 8 at Jacobs/Sverdrup Drivability Test Facility in Allen Park, MI. These tests include angle ...

  11. Control and waypoint navigation of an autonomous ground vehicle 

    E-Print Network [OSTI]

    Massey, James Patrick

    2006-08-16T23:59:59.000Z

    This thesis describes the initial development of the Texas A&M Autonomous Ground Vehicle test platform and waypoint following software, including the associated controller design. The original goal of the team responsible for the development...

  12. Vehicle Technologies Office: AVTA- Start-Stop (Micro) Hybrid Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Data on the stop-start hybrid versions of the following vehicles is available: 2010 Smart Fortwo, 2010 Volkswagen Golf Diesel, and 2010 Mazda3 Hatchback.

  13. Vehicle Technologies Office: AVTA- Diesel Internal Combusion Engine Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Downloadable data on the following vehicles is available: 2014 Chevrolet Cruze Diesel, 2013 Volkswagen Jetta TDI, and 2009 Volkswagen Jetta TDI.

  14. Parametrized maneuvers for autonomous vehicles

    E-Print Network [OSTI]

    Dever, Christopher W. (Christopher Walden), 1972-

    2004-01-01T23:59:59.000Z

    This thesis presents a method for creating continuously parametrized maneuver classes for autonomous vehicles. These classes provide useful tools for motion planners, bundling sets of related vehicle motions based on a ...

  15. VEHICLE OPERATING PROCEDURES DEPARTMENT OF BIOLOGICAL SCIENCE

    E-Print Network [OSTI]

    Ronquist, Fredrik

    VEHICLE OPERATING PROCEDURES DEPARTMENT OF BIOLOGICAL SCIENCE GENERAL INFORMATION Vehicles resposniblity and disciplinary action. Vehicles may be used by faculty or staff from other departments complete the vehicle usage agreement form certifying that they have a valid driver's license

  16. Commercial Motor Vehicle Roadside Technology Corridor (CMVRTC)

    E-Print Network [OSTI]

    Commercial Motor Vehicle Roadside Technology Corridor (CMVRTC) Oak Ridge National Laboratory Safety Security Vehicle Technologies Research Brief T he Commercial Motor Vehicle Roadside Technology in Tennessee to demonstrate, test, evaluation, and showcase innovative commercial motor vehicle (CMV) safety

  17. Utility vehicle safety Operator training program

    E-Print Network [OSTI]

    Minnesota, University of

    Utility vehicle safety Operator training program #12;Permissible use Utility Vehicles may only Utility Vehicle operator · When equipped with the "Required Equipment" · On public roadways within Drivers" · Obey all traffic regulations · Trained; update training every two years · Operate vehicles

  18. Gasoline Ultra Fuel Efficient Vehicle

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  19. Heavy Vehicle Systems

    SciTech Connect (OSTI)

    Sid Diamond; Richard Wares; Jules Routbort

    2000-04-11T23:59:59.000Z

    Heavy Vehicle (HV) systems are a necessary component of achieving OHVT goals. Elements are in place for a far-ranging program: short, intermediate, and long-term. Solicitation will bring industrial input and support. Future funding trend is positive, outlook for HV systems is good.

  20. Commercial Vehicles Collaboration for

    E-Print Network [OSTI]

    Waliser, Duane E.

    events (level derived from integrated design and safety analysis) · Protection against fire, depress Vehicle Transition Concepts Astronaut Office letter (June, 2010) describes position on crew suit as a resource to expedite this transition to the commercial market The current astronaut corps can be used

  1. Optimal Energy Management Strategy including Battery Health through Thermal

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Optimal Energy Management Strategy including Battery Health through Thermal Management for Hybrid: Energy management strategy, Plug-in hybrid electric vehicles, Li-ion battery aging, thermal management, Pontryagin's Minimum Principle. 1. INTRODUCTION The interest for energy management strategy (EMS) of Hybrid

  2. Hybrid & Hydrogen Vehicle Research Laboratory

    E-Print Network [OSTI]

    Lee, Dongwon

    Hybrid & Hydrogen Vehicle Research Laboratory www.vss.psu.edu/hhvrl Joel R. Anstrom, Director 201 The Pennsylvania Transportation Institute Hybrid and Hydrogen Vehicle Research Laboratory will contribute to the advancement of hybrid and hydrogen vehicle technology to promote the emerging hydrogen economy by providing

  3. VEHICLE NETWORKS: ACHIEVING REGULAR FORMATION

    E-Print Network [OSTI]

    VEHICLE NETWORKS: ACHIEVING REGULAR FORMATION MADALENA CHAVES, ROBERT DAY, LUCIA GOMEZ a network of vehicles exchanging information among themselves with the intention of achieving a specified the performance of the vehicle network. A stochastic model for information flow is also considered, allowing

  4. Vehicle Management Driver Safety Program

    E-Print Network [OSTI]

    Machel, Hans

    Vehicle Management and Driver Safety Program Manual Facilities & Operations / Finance & Administration Version 2 April 2012 #12;© 2012 University of Alberta. #12;The Vehicle Management and Driver of employment. Driver Acknowledgement I have received the University of Alberta, Vehicle Management and Driver

  5. Achieving and Demonstrating Vehicle Technologies Engine Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    Engine Fuel Efficiency Milestones Achieving and Demonstrating Vehicle Technologies Engine Fuel Efficiency Milestones 2009 DOE Hydrogen Program and Vehicle Technologies...

  6. Quadrennial Technology Review Vehicle Efficiency and Electrification...

    Energy Savers [EERE]

    Quadrennial Technology Review Vehicle Efficiency and Electrification Workshop Documents Quadrennial Technology Review Vehicle Efficiency and Electrification Workshop Documents QTR...

  7. Vehicle Technologies Office: Workforce Development and Professional...

    Office of Environmental Management (EM)

    Education & Workforce Development Vehicle Technologies Office: Workforce Development and Professional Education Vehicle Technologies Office: Workforce Development and...

  8. 2012 U.S. Vehicle Analysis

    E-Print Network [OSTI]

    Lam, Ho Yeung Michael

    2012-01-01T23:59:59.000Z

    Vehicles …………………………………………………………….. Ethanol Fuel Mixturesperformance of ethanol fuel mixtures vehicles ……….. Summaryon diesel, electricity, and ethanol fuel mixtures (ethanol/

  9. Advanced Vehicle Electrification & Transportation Sector Electrificati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector Electrification 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies...

  10. Methylotroph cloning vehicle

    DOE Patents [OSTI]

    Hanson, R.S.; Allen, L.N.

    1989-04-25T23:59:59.000Z

    A cloning vehicle comprising: a replication determinant effective for replicating the vehicle in a non-C[sub 1]-utilizing host and in a C[sub 1]-utilizing host; DNA effective to allow the vehicle to be mobilized from the non-C[sub 1]-utilizing host to the C[sub 1]-utilizing host; DNA providing resistance to two antibiotics to which the wild-type C[sub 1]-utilizing host is susceptible, each of the antibiotic resistance markers having a recognition site for a restriction endonuclease; a cos site; and a means for preventing replication in the C[sub 1]-utilizing host. The vehicle is used for complementation mapping as follows. DNA comprising a gene from the C[sub 1]-utilizing organism is inserted at the restriction nuclease recognition site, inactivating the antibiotic resistance marker at that site. The vehicle can then be used to form a cosmid structure to infect the non-C[sub 1]-utilizing (e.g., E. coli) host, and then conjugated with a selected C[sub 1]-utilizing mutant. Resistance to the other antibiotic by the mutant is a marker of the conjugation. Other phenotypical changes in the mutant, e.g., loss of an auxotrophic trait, is attributed to the C[sub 1] gene. The vector is also used to inactivate genes whose protein products catalyze side reactions that divert compounds from a biosynthetic pathway to a desired product, thereby producing an organism that makes the desired product in higher yields. 3 figs.

  11. Apparatus and method for modifying the operation of a robotic vehicle in a real environment, to emulate the operation of the robotic vehicle operating in a mixed reality environment

    SciTech Connect (OSTI)

    Garretson, Justin R. (Albuquerque, NM); Parker, Eric P. (Albuquerque, NM); Gladwell, T. Scott (Albuquerque, NM); Rigdon, J. Brian (Edgewood, NM); Oppel, III, Fred J. (Albuquerque, NM)

    2012-05-29T23:59:59.000Z

    Apparatus and methods for modifying the operation of a robotic vehicle in a real environment to emulate the operation of the robotic vehicle in a mixed reality environment include a vehicle sensing system having a communications module attached to the robotic vehicle for communicating operating parameters related to the robotic vehicle in a real environment to a simulation controller for simulating the operation of the robotic vehicle in a mixed (live, virtual and constructive) environment wherein the affects of virtual and constructive entities on the operation of the robotic vehicle (and vice versa) are simulated. These effects are communicated to the vehicle sensing system which generates a modified control command for the robotic vehicle including the effects of virtual and constructive entities, causing the robot in the real environment to behave as if virtual and constructive entities existed in the real environment.

  12. Overview of Advanced Technology Transportation, 2005 Update. Advanced Vehicle Testing Activity

    SciTech Connect (OSTI)

    Barnitt, R.; Eudy, L.

    2005-08-01T23:59:59.000Z

    Document provides an overview of the transportation market in 2005. Areas covered include hybrid, fuel cell, hydrogen, and alternative fuel vehicles.

  13. Clean Cities' Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-09-01T23:59:59.000Z

    Guide describes the alternative fuel and advanced medium- and heavy-duty vehicles available on the market, including buses, vans, refuse haulers, and more.

  14. Optimal investment and scheduling of distributed energy resources with uncertainty in electric vehicles driving schedules

    E-Print Network [OSTI]

    Cardoso, Goncalo

    2014-01-01T23:59:59.000Z

    management of small electric energy systems including V2Gand renewable energy sources,” Electric Power Systemsof electric-drive vehicles with renewable energy,” Energy,

  15. Heel and toe driving on fuel cell vehicle

    DOE Patents [OSTI]

    Choi, Tayoung; Chen, Dongmei

    2012-12-11T23:59:59.000Z

    A system and method for providing nearly instantaneous power in a fuel cell vehicle. The method includes monitoring the brake pedal angle and the accelerator pedal angle of the vehicle, and if the vehicle driver is pressing both the brake pedal and the accelerator pedal at the same time and the vehicle is in a drive gear, activating a heel and toe mode. When the heel and toe mode is activated, the speed of a cathode compressor is increased to a predetermined speed set-point, which is higher than the normal compressor speed for the pedal position. Thus, when the vehicle brake is removed, the compressor speed is high enough to provide enough air to the cathode, so that the stack can generate nearly immediate power.

  16. 2006 Lexus RX400h-2575 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01T23:59:59.000Z

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Lexus RX900h hybrid electric vehicle (Vin Number JTJHW31U660002575). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  17. 2006 Lexus RX400h-4807 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01T23:59:59.000Z

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Lexus RX900h hybrid electric vehicle (Vin Number JTJHW31U660004807). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  18. Personal annunciation device

    DOE Patents [OSTI]

    Angelo, Peter (Oak Ridge, TN); Younkin, James (Oak Ridge, TN); DeMint, Paul (Kingston, TN)

    2011-01-25T23:59:59.000Z

    A personal annunciation device (PAD) providing, in an area of interest, compensatory annunciation of the presence of an abnormal condition in a hazardous area and accountability of the user of the PAD. Compensatory annunciation supplements primary annunciation provided by an emergency notification system (ENS). A detection system detects an abnormal condition, and a wireless transmission system transmits a wireless transmission to the PAD. The PAD has a housing enclosing the components of the PAD including a communication module for receiving the wireless transmission, a power supply, processor, memory, annunciation system, and RFID module. The RFID module has an RFID receiver that listens for an RFID transmission from an RFID reader disposed in a portal of an area of interest. The PAD identifies the transmission and changes its operating state based on the transmission. The RFID readers recognize, record, and transmit the state of the PAD to a base station providing accountability of the wearer.

  19. Miniature Autonomous Robotic Vehicle (MARV)

    SciTech Connect (OSTI)

    Feddema, J.T.; Kwok, K.S.; Driessen, B.J.; Spletzer, B.L.; Weber, T.M.

    1996-12-31T23:59:59.000Z

    Sandia National Laboratories (SNL) has recently developed a 16 cm{sup 3} (1 in{sup 3}) autonomous robotic vehicle which is capable of tracking a single conducting wire carrying a 96 kHz signal. This vehicle was developed to assess the limiting factors in using commercial technology to build miniature autonomous vehicles. Particular attention was paid to the design of the control system to search out the wire, track it, and recover if the wire was lost. This paper describes the test vehicle and the control analysis. Presented in the paper are the vehicle model, control laws, a stability analysis, simulation studies and experimental results.

  20. Cost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure investment for reducing US gasoline consumption

    E-Print Network [OSTI]

    Michalek, Jeremy J.

    Cost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure online 22 October 2012 Keywords: Plug-in hybrid electric vehicle Charging infrastructure Battery size a b s t r a c t Federal electric vehicle (EV) policies in the United States currently include vehicle