National Library of Energy BETA

Sample records for includes oil gas

  1. Oil and Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil and Gas Oil and Gas R&D focus on the use of conventional and unconventional fossil fuels, including associated environmental challenges Contact thumbnail of Business Development Executive John Russell Business Development Executive Richard P. Feynman Center for Innovation (505) 665-3941 Email thumbnail of Business Development Executive Don Hickmott Business Development Executive Richard P. Feynman Center for Innovation (505) 667-8753 Email Los Alamos' efforts in fossil energy R&D

  2. Oil and Gas Gateway | Open Energy Information

    Open Energy Info (EERE)

    States, oil and gas boards and commissions are the place for finding data related to oil and gas activities. These activities include well records, permitting, and production...

  3. Unconventional Oil and Gas Resources

    SciTech Connect (OSTI)

    2006-09-15

    World oil use is projected to grow to 98 million b/d in 2015 and 118 million b/d in 2030. Total world natural gas consumption is projected to rise to 134 Tcf in 2015 and 182 Tcf in 2030. In an era of declining production and increasing demand, economically producing oil and gas from unconventional sources is a key challenge to maintaining global economic growth. Some unconventional hydrocarbon sources are already being developed, including gas shales, tight gas sands, heavy oil, oil sands, and coal bed methane. Roughly 20 years ago, gas production from tight sands, shales, and coals was considered uneconomic. Today, these resources provide 25% of the U.S. gas supply and that number is likely to increase. Venezuela has over 300 billion barrels of unproven extra-heavy oil reserves which would give it the largest reserves of any country in the world. It is currently producing over 550,000 b/d of heavy oil. Unconventional oil is also being produced in Canada from the Athabasca oil sands. 1.6 trillion barrels of oil are locked in the sands of which 175 billion barrels are proven reserves that can be recovered using current technology. Production from 29 companies now operating there exceeds 1 million barrels per day. The report provides an overview of continuous petroleum sources and gives a concise overview of the current status of varying types of unconventional oil and gas resources. Topics covered in the report include: an overview of the history of Oil and Natural Gas; an analysis of the Oil and Natural Gas industries, including current and future production, consumption, and reserves; a detailed description of the different types of unconventional oil and gas resources; an analysis of the key business factors that are driving the increased interest in unconventional resources; an analysis of the barriers that are hindering the development of unconventional resources; profiles of key producing regions; and, profiles of key unconventional oil and gas producers.

  4. Category:Oil and Gas | Open Energy Information

    Open Energy Info (EERE)

    search This category includes companies and information related to oil (petroleum) or natural gas. Pages in category "Oil and Gas" The following 110 pages are in this category,...

  5. NETL: Oil & Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil & Gas Efficient recovery of our nation's fossil fuel resources in an environmentally safe manner requires the development and application of new technologies that address the unique nature and challenging locations of many of our remaining oil and natural gas accumulations. The National Energy Technology Laboratory's (NETL) research projects are designed to help catalyze the development of these new technologies, provide objective data to help quantify the environmental and safety risks

  6. Finding Hidden Oil and Gas Reserves

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Finding Hidden Oil and Gas Reserves Finding Hidden Oil and Gas Reserves Key Challenges: Seismic imaging methods, vital in our continuing search for deep offshore oil and gas...

  7. Deepwater Oil & Gas Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deepwater Oil & Gas Resources Deepwater Oil & Gas Resources The United States has significant natural gas and oil reserves. But many of these resources are increasingly harder to...

  8. Deepwater Oil & Gas Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deepwater Oil & Gas Resources Deepwater Oil & Gas Resources The United States has significant natural gas and oil reserves. But many of these resources are increasingly harder to ...

  9. Arctic Oil and Natural Gas Potential

    Reports and Publications (EIA)

    2009-01-01

    This paper examines the discovered and undiscovered Arctic oil and natural gas resource base with respect to their location and concentration. The paper also discusses the cost and impediments to developing Arctic oil and natural gas resources, including those issues associated with environmental habitats and political boundaries.

  10. US crude oil, natural gas, and natural gas liquids reserves

    SciTech Connect (OSTI)

    Not Available

    1990-10-05

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1989, and production volumes for the year 1989 for the total United States and for selected states and state sub-divisions. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production reported separately. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. 28 refs., 9 figs., 15 tabs.

  11. Iran Oil and Gas | Open Energy Information

    Open Energy Info (EERE)

    Iran Oil and Gas Jump to: navigation, search Logo: Iran Oil and Gas Name: Iran Oil and Gas Address: Unit 16, 3rd Fl., Bldg. No. 2, 9th Narenjestan St., North Pasdaran Ave. Place:...

  12. oil and gas portfolio reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Gas Research Portfolio Reports Natural Gas & Oil Program Research Portfolio Reports The Office of Fossil Energy (FE)/National Energy Technology Laboratory (NETL) is releasing a series of nine Research Portfolio Reports to provide a snapshot of results and accomplishments completed to-date for active and completed projects under three focus areas: Unconventional Oil & Gas Resources; Ultra-Deepwater; and Small Producers. The reports capture research conducted over the last ten years

  13. Oil and gas journal databook, 1987 edition

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    This book is an annual compendium of surveys and special reports reviewed by experts. The 1987 edition opens with a forward by Gene Kinney, co-publisher of the Oil and Gas Journal and includes the OGJ 400 Report, Crude Oil Assays, Worldwide Petrochemical Survey, the Midyear Forecast and Reviews, the Worldwide Gas Processing Report, the Ethylene Report, Sulfur Survey, the International Refining, Catalyst Compilation, Annual Refining Survey, Worldwide Construction Report, Pipeline Economics Report, Worldwide Production and Refining Report, the Morgan Pipeline Cost Index for Oil and Gas, the Nelson Cost Index, the Hughes Rig Count, the Smith Rig Count, the OGJ Production Report, the API Refinery Report, API Crude and Product Stocks, APU Imports of Crude and Products, and the complete Oil and Gas Journal 1986 Index of articles.

  14. Oil and Gas | Open Energy Information

    Open Energy Info (EERE)

    Oil and Gas Jump to: navigation, search Oil and gas represents a non-renewable energy sector. Retrieved from "http:en.openei.orgwindex.php?titleOilandGas&oldid335172" ...

  15. Oil and gas development in East Siberia

    SciTech Connect (OSTI)

    Sagers, M.J.

    1994-03-01

    The East Siberian region, which comprises nearly 43% of Russia`s territory (including the Sakha (Yakut) republic), has substantial hydrocarbon potential that is impeded by significant logistical problems, the daunting physical environment, and technical challenges posed by the geological complexity of the region. The area`s three major oil and gas provinces are the Lena-Tunguska (with the greatest potential), Lena-Vilyuy, and Yenisey-Anabar. The paper focuses on assessment of reserves, production potential, and history, as well as joint-venture activity involving foreign capital. Foreign investment is targeting gas deposits in the Vilyuy basin and elsewhere in the Sakha republic and small oil deposits serving local markets in the Yakutsk and Noril`sk areas. Forecasts do not envisage substantial production of oil from the region before the year 2010. Future gas production levels are less predictable despite the ambitious plans to export gas from Sakha to South Korea. 14 refs., 1 fig., 1 tab.

  16. Middle East oil and gas

    SciTech Connect (OSTI)

    Not Available

    1984-12-01

    The following subjects are covered in this publication: (1) position of preeminence of the Middle East; (2) history of area's oil operations for Iran, Iraq, Bahrain, Kuwait, Saudi Arabia, neutral zone, Qatar, United Arab Emirates, Oman and Egypt; (3) gas operations of Saudi Arabia, Iran, Kuwait, Qatar, Iraq and United Arab Emirates; (4) changing relationships with producing countries; (5) a new oil pricing environment; (6) refining and other industrial activities; and (7) change and progress. 10 figs., 12 tabs.

  17. Bahrain National Gas and Oil Authority | Open Energy Information

    Open Energy Info (EERE)

    Bahrain National Gas and Oil Authority Jump to: navigation, search Logo: Bahrain National Gas and Oil Authority Name: Bahrain National Gas and Oil Authority Address: 1435...

  18. Alabama Oil and Gas Board | Open Energy Information

    Open Energy Info (EERE)

    Oil and Gas Board Jump to: navigation, search Logo: Alabama Oil and Gas Board Name: Alabama Oil and Gas Board Abbreviation: OGB Address: 420 Hackberry Lane Place: Tuscaloosa,...

  19. Oman Ministry of Oil and Gas | Open Energy Information

    Open Energy Info (EERE)

    of oil and gas. Prepare legislation and regulations governing oil and gas. Oversee oil and gas exploration and production activities. Establish "Petroleum Agreements" with...

  20. Oil and Gas Resources of the Fergana Basin (Uzbekistan, Tadzhikistan, and Kyrgysztan)

    Reports and Publications (EIA)

    1994-01-01

    Provides the most comprehensive assessment publicly available for oil and gas resources in the Fergana Basin. Includes projections of potential oil supply and U.S. Geological Survey estimates of undiscovered recoverable oil and gas.

  1. Oil/gas collector/separator for underwater oil leaks

    DOE Patents [OSTI]

    Henning, Carl D. (Livermore, CA)

    1993-01-01

    An oil/gas collector/separator for recovery of oil leaking, for example, from an offshore or underwater oil well. The separator is floated over the point of the leak and tethered in place so as to receive oil/gas floating, or forced under pressure, toward the water surface from either a broken or leaking oil well casing, line, or sunken ship. The separator is provided with a downwardly extending skirt to contain the oil/gas which floats or is forced upward into a dome wherein the gas is separated from the oil/water, with the gas being flared (burned) at the top of the dome, and the oil is separated from water and pumped to a point of use. Since the density of oil is less than that of water it can be easily separated from any water entering the dome.

  2. U.S. crude oil, natural gas, and natural gas liquids reserves 1997 annual report

    SciTech Connect (OSTI)

    Wood, John H.; Grape, Steven G.; Green, Rhonda S.

    1998-12-01

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1997, as well as production volumes for the US and selected States and State subdivisions for the year 1997. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1997 is provided. 21 figs., 16 tabs.

  3. Oil & Natural Gas Technology

    Office of Scientific and Technical Information (OSTI)

    Oil & Natural Gas Technology DOE A ward N o.: D E---FE0001243 Topical R eport DEVELOPMENT OF CFD-BASED SIMULATION TOOLS FOR IN SITU THERMAL PROCESSING OF OIL SHALE/SANDS Submitted b y: University of Utah Institute f or C lean a nd S ecure E nergy 155 S outh 1 452 E ast, R oom 3 80 Salt L ake C ity, U tah 8 4112 Prepared for: United S tates D epartment o f E nergy National E nergy T echnology L aboratory February 2012 Office of Fossil Energy TOPICAL REPORT: DEVELOPMENT OF CFD-BASED

  4. US crude oil, natural gas, and natural gas liquids reserves, 1992 annual report

    SciTech Connect (OSTI)

    Not Available

    1993-10-18

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1992, as well as production volumes for the United States, and selected States and State subdivisions for the year 1992. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1992 is provided.

  5. Oil and Natural Gas Subsector Cybersecurity Capability Maturity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil and Natural Gas Subsector Cybersecurity Capability Maturity Model (February 2014) Oil and Natural Gas Subsector Cybersecurity Capability Maturity Model (February 2014) The Oil ...

  6. Geothermal Power/Oil & Gas Coproduction Opportunity

    SciTech Connect (OSTI)

    DOE

    2012-02-01

    Coproduced geothermal resources can deliver near-term energy savings, diminish greenhouse gas emissions, extend the economic life of oil and gas fields, and profitably utilize oil and gas field infrastructure. This two-pager provides an overview of geothermal coproduced resources.

  7. Oil and Gas Company Oil and Gas Company Address Place Zip Website

    Open Energy Info (EERE)

    Oil and Gas Company Address Place Zip Website Abu Dhabi National Oil Company Abu Dhabi National Oil Company Abu http www adnoc ae default aspx Al Furat Petroleum Company Al Furat...

  8. Power Plays: Geothermal Energy In Oil and Gas Fields

    Broader source: Energy.gov [DOE]

    The SMU Geothermal Lab is hosting their 7th international energy conference and workshop Power Plays: Geothermal Energy in Oil and Gas Fields May 18-20, 2015 on the SMU Campus in Dallas, Texas. The two-day conference brings together leaders from the geothermal, oil and gas communities along with experts in finance, law, technology, and government agencies to discuss generating electricity from oil and gas well fluids, using the flare gas for waste heat applications, and desalinization of the water for project development in Europe, China, Indonesia, Mexico, Peru and the US. Other relevant topics include seismicity, thermal maturation, and improved drilling operations.

  9. State Oil and Gas Board State Oil and Gas Board Address Place...

    Open Energy Info (EERE)

    Suite Arizona http www azogcc az gov Arkansas Oil and Gas Commission Arkansas Oil and Gas Commission Natural Resources Dr Ste Arkansas http www aogc state ar us JDesignerPro...

  10. Documentation of the Oil and Gas Supply Module (OGSM)

    SciTech Connect (OSTI)

    1998-01-01

    The purpose of this report is to define the objectives of the Oil and Gas Supply Model (OGSM), to describe the model`s basic approach, and to provide detail on how the model works. This report is intended as a reference document for model analysts, users, and the public. Projected production estimates of US crude oil and natural gas are based on supply functions generated endogenously within National Energy Modeling System (NEMS) by the OGSM. OGSM encompasses domestic crude oil and natural gas supply by both conventional and nonconventional recovery techniques. Nonconventional recovery includes enhanced oil recovery (EOR), and unconventional gas recovery (UGR) from tight gas formations, Devonian/Antrim shale and coalbeds. Crude oil and natural gas projections are further disaggregated by geographic region. OGSM projects US domestic oil and gas supply for six Lower 48 onshore regions, three offshore regions, and Alaska. The general methodology relies on forecasted profitability to determine exploratory and developmental drilling levels for each region and fuel type. These projected drilling levels translate into reserve additions, as well as a modification of the production capacity for each region. OGSM also represents foreign trade in natural gas, imports and exports by entry region. Foreign gas trade may occur via either pipeline (Canada or Mexico), or via transport ships as liquefied natural gas (LNG). These import supply functions are critical elements of any market modeling effort.

  11. Iran seeking help in regaining prerevolution oil and gas flow

    SciTech Connect (OSTI)

    Tippee, B.

    1996-02-19

    This paper reviews the goals of the Iranian oil and gas industry to rebuild their oil and gas production facilities by using foreign investment. It discusses the historical consequences of war in the region to diminish the production and postpone the recovery of natural gas which is currently flared. It describes the major projects Iran hopes to develop through international partnerships and includes field development, pipeline construction, gas reinjection, gas treatment facilities, and new offshore operation. The paper also reviews the US policy on Iran and its attempt to apply sanctions towards this country.

  12. Form:International Oil and Gas Board | Open Energy Information

    Open Energy Info (EERE)

    International Oil and Gas Board Jump to: navigation, search International Oil and Gas Board This is the "International Oil and Gas Board" form. To create a page with this form,...

  13. Form:Federal Oil and Gas Regulation | Open Energy Information

    Open Energy Info (EERE)

    Federal Oil and Gas Regulation Jump to: navigation, search Federal Oil and Gas Regulation This is the "Federal Oil and Gas Regulation" form. To create a page with this form, enter...

  14. Form:Oil and Gas Company | Open Energy Information

    Open Energy Info (EERE)

    Oil and Gas Company Jump to: navigation, search Oil and Gas Company This is the "Oil and Gas Company" form. To create a page with this form, enter the page name below; if a page...

  15. Form:Federal Oil and Gas Statute | Open Energy Information

    Open Energy Info (EERE)

    Federal Oil and Gas Statute Jump to: navigation, search Federal Oil and Gas Statute This is the "Federal Oil and Gas Statute" form. To create a page with this form, enter the page...

  16. Form:State Oil and Gas Board | Open Energy Information

    Open Energy Info (EERE)

    State Oil and Gas Board Jump to: navigation, search State Oil and Gas Board This is the "State Oil and Gas Board" form. To create a page with this form, enter the page name below;...

  17. Oil and Gas Field Code Master List - Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    Oil and Gas Field Code Master List With Data for 2015 | Release Date: February 24, 2016 | ... Comprehensive listing of U.S. oil and gas field names. Oil and Gas Field Code Master List ...

  18. US crude oil, natural gas, and natural gas liquids reserves 1996 annual report

    SciTech Connect (OSTI)

    1997-12-01

    The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1996, as well as production volumes for the US and selected States and State subdivisions for the year 1996. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1996 is provided. 21 figs., 16 tabs.

  19. U.S. crude oil, natural gas, and natural gas liquids reserves 1995 annual report

    SciTech Connect (OSTI)

    1996-11-01

    The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1995, as well as production volumes for the US and selected States and State subdivisions for the year 1995. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1995 is provided. 21 figs., 16 tabs.

  20. The Oil and Natural Gas Knowledge Management Database from NETL

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Knowledge Management Database (KMD) Portal provides four options for searching the documents and data that NETL-managed oil and gas research has produced over the years for DOE’s Office of Fossil Energy. Information includes R&D carried out under both historical and ongoing DOE oil and gas research and development (R&D). The Document Repository, the CD/DVD Library, the Project Summaries from 1990 to the present, and the Oil and Natural Gas Program Reference Shelf provide a wide range of flexibility and coverage.

  1. The Oil and Natural Gas Knowledge Management Database from NETL

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Knowledge Management Database (KMD) Portal provides four options for searching the documents and data that NETL-managed oil and gas research has produced over the years for DOE’s Office of Fossil Energy. Information includes R&D carried out under both historical and ongoing DOE oil and gas research and development (R&D). The Document Repository, the CD/DVD Library, the Project Summaries from 1990 to the present, and the Oil and Natural Gas Program Reference Shelf provide a wide range of flexibility and coverage.

  2. Oklahoma Corporate Commission Oil and Gas | Open Energy Information

    Open Energy Info (EERE)

    Corporate Commission Oil and Gas Jump to: navigation, search Name: Oklahoma Corporate Commission Oil and Gas Place: Oklahoma Zip: 73152-2000 Website: www.occeweb.comogoghome.htm...

  3. Oregon Oil, Gas, and Geothermal | Open Energy Information

    Open Energy Info (EERE)

    Oil, Gas, and Geothermal Jump to: navigation, search Name: Oregon Oil, Gas, and Geothermal Address: 229 Broadalbin St. SW Place: Oregon Zip: 97321 Website: www.oregongeology.org...

  4. Arizona Oil and Gas Commission | Open Energy Information

    Open Energy Info (EERE)

    Commission Jump to: navigation, search Logo: Arizona Oil and Gas Commission Name: Arizona Oil and Gas Commission Address: 416 W. Congress Street, Suite 100 Place: Arizona Zip:...

  5. Mississippi State Oil and Gas Board | Open Energy Information

    Open Energy Info (EERE)

    Oil and Gas Board Jump to: navigation, search Name: Mississippi State Oil and Gas Board Address: 500 Greymont Ave., Suite E Place: Mississippi Zip: 39202-3446 Website:...

  6. Montana Board of Oil and Gas Conservation | Open Energy Information

    Open Energy Info (EERE)

    Oil and Gas Conservation Jump to: navigation, search Name: Montana Board of Oil and Gas Conservation Address: 2535 St. Johns Avenue Place: Montana Zip: 59102 Website:...

  7. Wyoming Oil and Gas Conservation Commission | Open Energy Information

    Open Energy Info (EERE)

    Oil and Gas Conservation Commission Jump to: navigation, search Name: Wyoming Oil and Gas Conservation Commission Address: 2211 King Blvd Place: Wyoming Zip: 82602 Website:...

  8. Railroad Commission of Texas, Oil and Gas Division | Open Energy...

    Open Energy Info (EERE)

    Texas, Oil and Gas Division Jump to: navigation, search Name: Texas Railroad Commission, Oil and Gas Division Address: 1701 N. Congress Place: Texas Zip: 78711-2967 Website:...

  9. Virginia Division of Oil and Gas | Open Energy Information

    Open Energy Info (EERE)

    Oil and Gas Jump to: navigation, search Name: Virginia Division of Oil and Gas Address: 1100 Bank Street Place: Virginia Zip: 23219 Website: www.dmme.virginia.govdivision...

  10. Kentucky DNR Oil and Gas Division | Open Energy Information

    Open Energy Info (EERE)

    DNR Oil and Gas Division Jump to: navigation, search Name: Kentucky DNR Oil and Gas Division Address: 1025 Capital Center Drive Place: Kentucky Zip: 40601 Website:...

  11. California Department of Conservation, Division of Oil, Gas,...

    Open Energy Info (EERE)

    Conservation, Division of Oil, Gas, and Geothermal Resources Jump to: navigation, search Name: California Department of Conservation, Division of Oil, Gas, and Geothermal Resources...

  12. Providential Energy Corp formerly Providential Oil Gas Inc |...

    Open Energy Info (EERE)

    (formerly Providential Oil & Gas Inc) Place: California Sector: Hydro Product: Focused on natural gas and crude oil; expanding into hydropower, fuel cells, and ethanol. References:...

  13. Arkansas Oil and Gas Commission | Open Energy Information

    Open Energy Info (EERE)

    Oil and Gas Commission Jump to: navigation, search Name: Arkansas Oil and Gas Commission Address: 301 Natural Resources Dr. Ste 102 Place: Arkansas Zip: 72205 Website:...

  14. Hydrofracturing for Gas Oil and Geopolitical Advantage. (Conference...

    Office of Scientific and Technical Information (OSTI)

    Hydrofracturing for Gas Oil and Geopolitical Advantage. Citation Details In-Document Search Title: Hydrofracturing for Gas Oil and Geopolitical Advantage. Authors: Brady, Patrick...

  15. Illinois DNR oil and gas division | Open Energy Information

    Open Energy Info (EERE)

    is the regulatory authority in Illinois for permitting, drilling, operating, and plugging oil and gas production wells. The Division implements the Illinois Oil and Gas Act and...

  16. West Virginia Office of Oil and Gas | Open Energy Information

    Open Energy Info (EERE)

    monitoring and regulating all actions related to the exploration, drilling, storage and production of oil and natural gas. References "West Virginia Office of Oil and Gas"...

  17. Alaska Oil and Gas Conservation Commission | Open Energy Information

    Open Energy Info (EERE)

    The AOGCC website has Alaska state oil and gas data related to monthly drilling and production reports, oil and gas databases, well history, and well information, along with...

  18. Projects Selected to Boost Unconventional Oil and Gas Resources...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Selected to Boost Unconventional Oil and Gas Resources Projects Selected to Boost Unconventional Oil and Gas Resources September 27, 2010 - 1:00pm Addthis Washington, DC - Ten ...

  19. Unconventional Oil and Gas Projects Help Reduce Environmental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unconventional Oil and Gas Projects Help Reduce Environmental Impact of Development Unconventional Oil and Gas Projects Help Reduce Environmental Impact of Development April 17, ...

  20. SECURING OIL AND NATURAL GAS INFRASTRUCTURES IN THE NEW ECONOMY...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SECURING OIL AND NATURAL GAS INFRASTRUCTURES IN THE NEW ECONOMY SECURING OIL AND NATURAL GAS INFRASTRUCTURES IN THE NEW ECONOMY Based on the finding of a growing potential ...

  1. International Oil and Gas Board International Oil and Gas Board...

    Open Energy Info (EERE)

    Petroleum Company Syrian Petroleum Company Damascus Syria Syria http www spc sy com en production activities1 en php Yemen Ministry of Oil and Minerals Yemen Ministry of Oil and...

  2. Oil- and gas-supply modeling

    SciTech Connect (OSTI)

    Gass, S.I.

    1982-05-01

    The symposium on Oil and Gas Supply Modeling, held at the Department of Commerce, Washington, DC (June 18-20, 1980), was funded by the Energy Information Administration of the Department of Energy and co-sponsored by the National Bureau of Standards' Operations Research Division. The symposium was organized to be a forum in which the theoretical and applied state-of-the-art of oil and gas supply models could be presented and discussed. Speakers addressed the following areas: the realities of oil and gas supply, prediction of oil and gas production, problems in oil and gas modeling, resource appraisal procedures, forecasting field size and production, investment and production strategies, estimating cost and production schedules for undiscovered fields, production regulations, resource data, sensitivity analysis of forecasts, econometric analysis of resource depletion, oil and gas finding rates, and various models of oil and gas supply. This volume documents the proceedings (papers and discussion) of the symposium. Separate abstracts have been prepared for individual papers for inclusion in the Energy Data Base.

  3. Oil and Gas R&D Programs

    SciTech Connect (OSTI)

    1997-03-01

    This publication describes the major components of the research and development programs of the Department of Energy`s Office of Natural Gas and Petroleum Technology. These programs are commonly referred to collectively as the `Oil and Gas Program.` This document provides customers with a single source of information describing the details of the individual technology program components. This document reflects the results of a planning cycle that began in early 1996 with the development of a scenario analysis for the programs, followed by the development of the coordinated strategic plan. The technology program plans, which are the most recent products of the planning cycle, expand on the program descriptions presented in the coordinated strategic plan, and represent an initial effort to coordinate the Oil and Gas Program exploration and production programs and budgets. Each technology program plan includes a `roadmap` that summarizes the progress of the program to the present and indicates its future direction. The roadmaps describe the program drivers, vision, mission, strategies, and measures of success. Both the individual technology program plans and the strategic plan are dynamic and are intended to be updated regularly.

  4. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2014-11-25

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  5. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  6. 2013 Unconventional Oil and Gas Project Selections

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy’s National Energy Technology Laboratory has an unconventional oil and gas program devoted to research in this important area of energy development. The laboratory...

  7. FE Oil and Natural Gas News

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    oil-natural-gas-news Office of Fossil Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585202-586-6660 en TechLine: Newly Released Study Highlights...

  8. Oil & Gas Technology Center | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Global Research Oil & Gas Technology Center Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click...

  9. Oil and Gas Research| GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil & Gas We're balancing the increasing demand for finite resources with technology that ensures access to energy for generations to come. Home > Innovation > Oil & Gas How Healthcare + Industry Breeds Better Inspection Technology Healthcare and industrial inspection technologies seem worlds apart; but overlapping areas of expertise like those are among the... Read More » From Blood to Mud: Microclarifier Technology At first glance, blood and mud have absolutely nothing in

  10. Oil and Natural Gas Subsector Cybersecurity Capability Maturity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil and Natural Gas Subsector Cybersecurity Capability Maturity Model (ONG-C2M2) Oil and Natural Gas Subsector Cybersecurity Capability Maturity Model (ONG-C2M2) Oil and Natural ...

  11. Natural Gas Delivered to Consumers in North Carolina (Including...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Including Vehicle Fuel) (Million Cubic Feet) Natural Gas Delivered to Consumers in North Carolina (Including Vehicle Fuel) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  12. Pennsylvania Bureau of Oil and Gas Management | Open Energy Informatio...

    Open Energy Info (EERE)

    and the environment. The bureau develops policy and programs for the regulation of oil and gas development and production pursuant to the Oil and Gas Act, the Coal and Gas...

  13. Unconventional Oil and Gas Projects Help Reduce Environmental Impact of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development | Department of Energy Unconventional Oil and Gas Projects Help Reduce Environmental Impact of Development Unconventional Oil and Gas Projects Help Reduce Environmental Impact of Development April 17, 2014 - 11:30am Addthis Unconventional Oil and Gas Projects Help Reduce Environmental Impact of Development Since the first commercial oil well was drilled in the United States in 1859, most of the nation's oil and natural gas has come from reservoirs from which the resources are

  14. FE Oil and Natural Gas News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    future energy supplies. May 18, 2009 DOE-Supported Publication Boosts Search for Oil, Natural Gas by Petroleum Operators A comprehensive publication detailing the oil-rich...

  15. Water-related Issues Affecting Conventional Oil and Gas Recovery...

    Office of Scientific and Technical Information (OSTI)

    Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah Michael Vanden Berg; Paul Anderson; Janae Wallace;...

  16. Indiana DNR Division of Oil and Gas | Open Energy Information

    Open Energy Info (EERE)

    to professional public service through the effective administration of Indiana's oil and gas exploration and production laws. References "Indiana DNR division of Oil...

  17. Oil shale retorting with steam and produced gas

    SciTech Connect (OSTI)

    Merrill, L.S. Jr.; Wheaton, L.D.

    1991-08-20

    This patent describes a process for retorting oil shale in a vertical retort. It comprises introducing particles of oil shale into the retort, the particles of oil shale having a minimum size such that the particles are retained on a screen having openings 1/4 inch in size; contacting the particles of oil shale with hot gas to heat the particles of oil shale to a state of pyrolysis, thereby producing retort off-gas; removing the off-gas from the retort; cooling the off-gas; removing oil from the cooled off-gas; separating recycle gas from the off-gas, the recycle gas comprising steam and produced gas, the steam being present in amount, by volume, of at least 50% of the recycle gas so as to increase the yield of sand oil; and heating the recycle gas to form the hot gas.

  18. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    West Virginia (Million Cubic Feet) Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in West Virginia (Million Cubic Feet) Year Jan Feb Mar Apr...

  19. Energy Department Expands Gas Gouging Reporting System to Include...

    Office of Environmental Management (EM)

    Washington, DC - Energy Secretary Samuel W. Bodman announced today that the Department of Energy has expanded its gas gouging reporting system to include a toll-free telephone ...

  20. DOE Considers Natural Gas Utility Service Options: Proposal Includes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    30-mile Natural Gas Pipeline from Pasco to Hanford | Department of Energy Considers Natural Gas Utility Service Options: Proposal Includes 30-mile Natural Gas Pipeline from Pasco to Hanford DOE Considers Natural Gas Utility Service Options: Proposal Includes 30-mile Natural Gas Pipeline from Pasco to Hanford January 23, 2012 - 12:00pm Addthis Media Contacts Cameron Hardy, DOE , (509) 376-5365, Cameron.Hardy@rl.doe.gov RICHLAND, WASH. - The U.S. Department of Energy (DOE) is considering

  1. Oil and Gas Lease Equipment and Operating Costs 1994 Through 2009

    Gasoline and Diesel Fuel Update (EIA)

    Natural Gas > Publications > Oil and Gas Lease Equipment and Operating Costs 1994 Through 2009 Oil and Gas Lease Equipment and Operating Costs 1994 Through 2009 Released: September 28, 2010 Next Release: Discontinued Excel Spreadsheet Model - 1994-2009 XLS (1,178 KB) Overview Oil and gas well equipment and operating costs, including coal bed methane costs, stopped their upward trend from the 1990s and fell sharply in 2009. The extremely high oil and gas prices during the first half of 2008

  2. Serviceability of coiled tubing for sour oil and gas wells

    SciTech Connect (OSTI)

    Cayard, M.S.; Kane, R.D.

    1996-08-01

    Coiled tubing is an extremely useful tool in many well logging and workover applications in oil and gas production operations. Several important concerns regarding its use include the need for improved guidelines for the assessment of mechanical integrity, fatigue damage, and the effects of hydrogen sulfide in sour oil and gas production environments. This paper provides information regarding the use of coiled tubing in sour environments with particular emphasis on sulfide stress cracking, hydrogen induced cracking and stress-oriented hydrogen induced cracking and how they work synergistically with cyclic cold working of the steel tubing.

  3. Oil and Gas Field Code Master List 1990

    SciTech Connect (OSTI)

    Not Available

    1991-01-04

    This is the ninth annual edition of the Energy Information Administration's (EIA) Oil and Gas Field Code Master List. It reflects data collected through October 1990 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. There are 54,963 field records in this year's Oil and Gas Field Code Master List (FCML). This amounts to 467 more than in last year's report. As it is maintained by EIA, the Master List includes: Field records for each state and county in which a field resides; field records for each offshore area block in the Gulf of Mexico in which a field resides;field records for each alias field name; fields crossing state boundaries that may be assigned different names by the respective state naming authorities.

  4. Natural Gas Delivered to Consumers in Texas (Including Vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Texas (Including Vehicle Fuel) (Million Cubic Feet) Natural Gas Delivered to Consumers in Texas (Including Vehicle Fuel) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug...

  5. Natural Gas Delivered to Consumers in New Mexico (Including Vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mexico (Including Vehicle Fuel) (Million Cubic Feet) Natural Gas Delivered to Consumers in New Mexico (Including Vehicle Fuel) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  6. Oil & Gas Research | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Oil & Gas Research Section 999 Report to Congress Section 999 Report to Congress DOE issues the 2013 annual plan for the ultra-deepwater and unconventional fuels program. Read more DOE Signs MOU with Alaska DOE Signs MOU with Alaska New accord to help develop Alaska's potentially vast and important unconventional energy resources. Read more Methane Hydrate R&D Methane Hydrate R&D DOE is conducting groundbreaking research to unlock the energy potential of gas hydrates.

  7. Alaska Division of Oil and Gas | Open Energy Information

    Open Energy Info (EERE)

    Oil and Gas Jump to: navigation, search Name: Alaska Division of Oil and Gas Address: 550 W. 7th Ave., Suite 1100 Place: Alaska Zip: 99501 Website: dog.dnr.alaska.gov References:...

  8. Category:Federal Oil and Gas Statutes | Open Energy Information

    Open Energy Info (EERE)

    Federal Oil and Gas Statutes Jump to: navigation, search Add a new Federal Oil and Gas Statute You need to have JavaScript enabled to view the interactive timeline. Further results...

  9. WSDNR Oil and Gas Forms | Open Energy Information

    Open Energy Info (EERE)

    Oil and Gas Forms Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: WSDNR Oil and Gas FormsLegal Abstract The Washington State...

  10. Category:State Oil and Gas Boards | Open Energy Information

    Open Energy Info (EERE)

    State Oil and Gas Boards Jump to: navigation, search Add a new State Oil and Gas Board Loading map... "format":"googlemaps3","type":"ROADMAP","types":"ROADMAP","SATELLITE","HYBRI...

  11. 16 TAC 3 - Oil and Gas Division | Open Energy Information

    Open Energy Info (EERE)

    - Oil and Gas Division Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: 16 TAC 3 - Oil and Gas DivisionLegal Abstract This...

  12. Louisiana DNR Oil and Gas Division | Open Energy Information

    Open Energy Info (EERE)

    Louisiana DNR Oil and Gas Division Jump to: navigation, search Name: Louisiana DNR Oil and Gas Division Address: P.O. Box 94396 Place: Louisiana Zip: 70804-9396 Website:...

  13. Category:Oil and Gas Companies | Open Energy Information

    Open Energy Info (EERE)

    Oil and Gas Companies Jump to: navigation, search Add a new Oil and Gas Company Loading map... "format":"googlemaps3","type":"ROADMAP","types":"ROADMAP","SATELLITE","HYBRID","TER...

  14. Category:International Oil and Gas Boards | Open Energy Information

    Open Energy Info (EERE)

    International Oil and Gas Boards Jump to: navigation, search Add a new International Oil and Gas Board Loading map... "format":"googlemaps3","type":"ROADMAP","types":"ROADMAP","S...

  15. North Dakota Industrial Commission, Oil and Gas Divisioin | Open...

    Open Energy Info (EERE)

    in Bismarck, North Dakota. About The Oil and Gas Division regulates the drilling and production of oil and gas in North Dakota. Our mission is to encourage and promote the...

  16. Oil and Gas Technical Assistance Capabilities Forum | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil and Gas Technical Assistance Capabilities Forum Oil and Gas Technical Assistance Capabilities Forum Aug. 18, 2015 Magnolia Hotel 818 17th St. Denver, CO 80202 The U.S. ...

  17. FE Oil and Natural Gas News | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    September 17, 2015 15th US-China Oil and Gas Industry Forum Opens in Chongqing, China Assistant Secretary for Fossil Energy Chris Smith opened the 15th US-China Oil and Gas ...

  18. Crude Oil and Natural Gas Drilling Activity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1,872 1,824 1,629 1,296 1,066 1973-2015 Offshore 58 53 59 53 52 43 1973-2015 By Type Crude Oil 1,596 1,573 1,539 1,362 1,050 857 1973-2015 Natural Gas 328 351 342 320 296 250...

  19. Oil & Natural Gas Projects Exploration and Production Technologies...

    Open Energy Info (EERE)

    & Natural Gas Projects Exploration and Production Technologies Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oil & Natural Gas Projects Exploration...

  20. Colorado Oil and Gas Commission | Open Energy Information

    Open Energy Info (EERE)

    gas natural resources. Responsible development results in: The efficient exploration and production of oil and gas resources in a manner consistent with the protection of public...

  1. Colorado Oil and Gas Conservation Commission | Open Energy Information

    Open Energy Info (EERE)

    gas natural resources. Responsible development results in: The efficient exploration and production of oil and gas resources in a manner consistent with the protection of public...

  2. Technically Recoverable Shale Oil and Shale Gas Resources

    Gasoline and Diesel Fuel Update (EIA)

    EIA/ARI World Shale Gas and Shale Oil Resource Assessment May, 17, 2013 2-1 SHALE GAS AND SHALE OIL RESOURCE ASSESSMENT METHODOLOGY INTRODUCTION This report sets forth Advanced Resources' methodology for assessing the in-place and recoverable shale gas and shale oil resources for the EIA/ARI "World Shale Gas and Shale Oil Resource Assessment." The methodology relies on geological information and reservoir properties assembled from the technical literature and data from publically

  3. California Division of Oil, Gas, and Geothermal Resources | Open...

    Open Energy Info (EERE)

    reservoirs. Division requirements encourage wise development of California's oil, gas, and geothermal resources while protecting the environment.2 References "CDOGGR...

  4. Summary: U.S. Crude Oil, Natural Gas, and Natural Gas Liquids...

    Gasoline and Diesel Fuel Update (EIA)

    Summary: U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves 2009 November 2010 U.S. Energy Information Administration Office of Oil, Gas, and Coal Supply...

  5. Future oil and gas: Can Iran deliver?

    SciTech Connect (OSTI)

    Takin, M.

    1996-11-01

    Iran`s oil and gas production and exports constitute the country`s main source of foreign exchange earnings. The future level of these earnings will depend on oil prices, global demand for Iranian exports, the country`s productive capability and domestic consumption. The size of Iranian oil reserves suggests that, in principle, present productive capacity could be maintained and expanded. However, the greatest share of production in coming years still will come from fields that already have produced for several decades. In spite of significant remaining reserves, these fields are not nearly as prolific as they were in their early years. The operations required for further development are now more complicated and, in particular, more costly. These fields` size also implies that improving production, and instituting secondary and tertiary recovery methods (such as gas injection), will require mega-scale operations. This article discusses future oil and gas export revenues from the Islamic Republic of Iran, emphasizing the country`s future production and commenting on the effects of proposed US sanctions.

  6. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mexico (Million Cubic Feet) Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in New Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  7. Power Plays: Geothermal Energy in Oil and Gas Fields | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Plays: Geothermal Energy in Oil and Gas Fields Power Plays: Geothermal Energy in Oil and Gas Fields Power Plays: Geothermal Energy in Oil and Gas Fields April 25, 2016 9:00AM EDT to April 26, 2016 5:00PM EDT The SMU Geothermal Lab invites you to submit an abstract for our upcoming workshop and conference, Power Plays: Geothermal Energy in Oil and Gas Fields, April 25-26, 2016 on the SMU Campus in Dallas, Texas. The event includes: Half-day Workshop, April 25, 2016 Evening Networking

  8. Oil and Gas field code master list 1995

    SciTech Connect (OSTI)

    1995-12-01

    This is the fourteenth annual edition of the Energy Information Administration`s (EIA) Oil and Gas Field Code Master List. It reflects data collected through October 1995 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the US. The Field Code Index, a listing of all field names and the States in which they occur, ordered by field code, has been removed from this year`s publications to reduce printing and postage costs. Complete copies (including the Field Code Index) will be available on the EIA CD-ROM and the EIA World-Wide Web Site. Future editions of the complete Master List will be available on CD-ROM and other electronic media. There are 57,400 field records in this year`s Oil and Gas Field Code Master List. As it is maintained by EIA, the Master List includes the following: field records for each State and county in which a field resides; field records for each offshore area block in the Gulf of Mexico in which a field resides; field records for each alias field name (see definition of alias below); and fields crossing State boundaries that may be assigned different names by the respective State naming authorities. Taking into consideration the double-counting of fields under such circumstances, EIA identifies 46,312 distinct fields in the US as of October 1995. This count includes fields that no longer produce oil or gas, and 383 fields used in whole or in part for oil or gas Storage. 11 figs., 6 tabs.

  9. Top 100 Oil and Gas Fields of 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    Top 100 Oil and Gas Fields of 2009 Introduction This supplement to the Energy Information Administration's summary of U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves, 2009 ranks the United States' largest oil and gas fields by their estimated 2009 proved reserves. The Top 100's Share of U.S. Proved Reserves in 2009 The Top 100 oil fields and Top 100 gas fields each accounted for about 60 percent of the respective total proved reserves of the United States. The Top 100 oil

  10. Oil/gas separator for installation at burning wells

    DOE Patents [OSTI]

    Alonso, C.T.; Bender, D.A.; Bowman, B.R.; Burnham, A.K.; Chesnut, D.A.; Comfort, W.J. III; Guymon, L.G.; Henning, C.D.; Pedersen, K.B.; Sefcik, J.A.; Smith, J.A.; Strauch, M.S.

    1993-03-09

    An oil/gas separator is disclosed that can be utilized to return the burning wells in Kuwait to production. Advantageously, a crane is used to install the separator at a safe distance from the well. The gas from the well is burned off at the site, and the oil is immediately pumped into Kuwait's oil gathering system. Diverters inside the separator prevent the oil jet coming out of the well from reaching the top vents where the gas is burned. The oil falls back down, and is pumped from an annular oil catcher at the bottom of the separator, or from the concrete cellar surrounding the well.

  11. Oil/gas separator for installation at burning wells

    DOE Patents [OSTI]

    Alonso, Carol T.; Bender, Donald A.; Bowman, Barry R.; Burnham, Alan K.; Chesnut, Dwayne A.; Comfort, III, William J.; Guymon, Lloyd G.; Henning, Carl D.; Pedersen, Knud B.; Sefcik, Joseph A.; Smith, Joseph A.; Strauch, Mark S.

    1993-01-01

    An oil/gas separator is disclosed that can be utilized to return the burning wells in Kuwait to production. Advantageously, a crane is used to install the separator at a safe distance from the well. The gas from the well is burned off at the site, and the oil is immediately pumped into Kuwait's oil gathering system. Diverters inside the separator prevent the oil jet coming out of the well from reaching the top vents where the gas is burned. The oil falls back down, and is pumped from an annular oil catcher at the bottom of the separator, or from the concrete cellar surrounding the well.

  12. A high liquid yield process for retorting various organic materials including oil shale

    DOE Patents [OSTI]

    Coburn, T.T.

    1988-07-26

    This invention is a continuous retorting process for various high molecular weight organic materials, including oil shale, that yields an enhanced output of liquid product. The organic material, mineral matter, and an acidic catalyst, that appreciably adsorbs alkenes on surface sites at prescribed temperatures, are mixed and introduced into a pyrolyzer. A circulating stream of olefin enriched pyrolysis gas is continuously swept through the organic material and catalyst, whereupon, as the result of pyrolysis, the enhanced liquid product output is provided. Mixed spent organic material, mineral matter, and cool catalyst are continuously withdrawn from the pyrolyzer. Combustion of the spent organic material and mineral matter serves to reheat the catalyst. Olefin depleted pyrolysis gas, from the pyrolyzer, is enriched in olefins and recycled into the pyrolyzer. The reheated acidic catalyst is separated from the mineral matter and again mixed with fresh organic material, to maintain the continuously cyclic process. 2 figs.

  13. High liquid yield process for retorting various organic materials including oil shale

    DOE Patents [OSTI]

    Coburn, Thomas T. (Livermore, CA)

    1990-01-01

    This invention is a continuous retorting process for various high molecular weight organic materials, including oil shale, that yields an enhanced output of liquid product. The organic material, mineral matter, and an acidic catalyst, that appreciably adsorbs alkenes on surface sites at prescribed temperatures, are mixed and introduced into a pyrolyzer. A circulating stream of olefin enriched pyrolysis gas is continuously swept through the organic material and catalyst, whereupon, as the result of pyrolysis, the enhanced liquid product output is provided. Mixed spent organic material, mineral matter, and cool catalyst are continuously withdrawn from the pyrolyzer. Combustion of the spent organic material and mineral matter serves to reheat the catalyst. Olefin depleted pyrolysis gas, from the pyrolyzer, is enriched in olefins and recycled into the pyrolyzer. The reheated acidic catalyst is separated from the mineral matter and again mixed with fresh organic material, to maintain the continuously cyclic process.

  14. Gas seal for an in situ oil shale retort and method of forming thermal barrier

    DOE Patents [OSTI]

    Burton, III, Robert S.

    1982-01-01

    A gas seal is provided in an access drift excavated in a subterranean formation containing oil shale. The access drift is adjacent an in situ oil shale retort and is in gas communication with the fragmented permeable mass of formation particles containing oil shale formed in the in situ oil shale retort. The mass of formation particles extends into the access drift, forming a rubble pile of formation particles having a face approximately at the angle of repose of fragmented formation. The gas seal includes a temperature barrier which includes a layer of heat insulating material disposed on the face of the rubble pile of formation particles and additionally includes a gas barrier. The gas barrier is a gas-tight bulkhead installed across the access drift at a location in the access drift spaced apart from the temperature barrier.

  15. Water-related Issues Affecting Conventional Oil and Gas Recovery...

    Office of Scientific and Technical Information (OSTI)

    Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah Citation Details In-Document Search Title: Water-relat...

  16. Water-related Issues Affecting Conventional Oil and Gas Recovery...

    Office of Scientific and Technical Information (OSTI)

    Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah Citation Details In-Document Search Title: Water-re...

  17. Federal Offshore--Louisiana Natural Gas Withdrawals from Oil...

    U.S. Energy Information Administration (EIA) Indexed Site

    Oil Wells (Million Cubic Feet) Federal Offshore--Louisiana Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  18. Federal Offshore--Alabama Natural Gas Withdrawals from Oil Wells...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Oil Wells (Million Cubic Feet) Federal Offshore--Alabama Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  19. US--Federal Offshore Natural Gas Withdrawals from Oil Wells ...

    Gasoline and Diesel Fuel Update (EIA)

    Oil Wells (Million Cubic Feet) US--Federal Offshore Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  20. Alaska--State Offshore Natural Gas Withdrawals from Oil Wells...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Oil Wells (Million Cubic Feet) Alaska--State Offshore Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  1. Texas--State Offshore Natural Gas Withdrawals from Oil Wells...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Oil Wells (Million Cubic Feet) Texas--State Offshore Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  2. Other States Natural Gas Gross Withdrawals from Oil Wells (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Oil Wells (Million Cubic Feet) Other States Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 3,459 3,117...

  3. Louisiana--State Offshore Natural Gas Withdrawals from Oil Wells...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Oil Wells (Million Cubic Feet) Louisiana--State Offshore Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  4. Federal Offshore--Texas Natural Gas Withdrawals from Oil Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Oil Wells (Million Cubic Feet) Federal Offshore--Texas Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  5. Oil and gas production equals jobs and revenue

    SciTech Connect (OSTI)

    Aimes, L.A.

    1994-12-31

    The effects of oil and gas production on jobs and revenue are discussed. Some suggestions are presented that should provide the climate to increase jobs, add revenue and increase efficiency in state agencies within the producing states. Some of the ideas and suggestions are summarized. Some of these ideas include: how to extend the economic limits of marginal properties; how the states can encourage additional drilling without incurring loss of revenue; and the use of investment tax credits.

  6. Oil and gas resources in the West Siberian Basin, Russia

    SciTech Connect (OSTI)

    1997-12-01

    The primary objective of this study is to assess the oil and gas potential of the West Siberian Basin of Russia. The study does not analyze the costs or technology necessary to achieve the estimates of the ultimate recoverable oil and gas. This study uses reservoir data to estimate recoverable oil and gas quantities which were aggregated to the field level. Field totals were summed to a basin total for discovered fields. An estimate of undiscovered oil and gas, from work of the US Geological Survey (USGS), was added to give a total basin resource volume. Recent production decline points out Russia`s need to continue development of its discovered recoverable oil and gas. Continued exploration is required to discover additional oil and gas that remains undiscovered in the basin.

  7. Oil and gas field code master list, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-16

    This document contains data collected through October 1993 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. Other Federal and State government agencies, as well as industry, use the EIA Oil and Gas Field Code Master List as the standard for field identification. A machine-readable version of the Oil and Gas Field Code Master List is available from the National Technical Information Service.

  8. ,"Federal Offshore California Natural Gas Withdrawals from Oil...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore California Natural Gas Withdrawals from Oil Wells (MMcf)",1,"Annual",2014 ,"Release...

  9. Federal Oil and Gas Royalty Simplification and Fairness Act of...

    Open Energy Info (EERE)

    Simplification and Fairness Act of 1996 Jump to: navigation, search Statute Name Federal Oil and Gas Royalty Simplification and Fairness Act Year 1996 Url Royaltysimplact.jpg...

  10. Category:Federal Oil and Gas Regulations | Open Energy Information

    Open Energy Info (EERE)

    Regulations Jump to: navigation, search Add a new Federal Oil and Gas Regulation This category currently contains no pages or media. Retrieved from "http:en.openei.orgw...

  11. State Oil and Gas Boards | Open Energy Information

    Open Energy Info (EERE)

    and protect the correlative rights of ownership associated with the production of oil, natural gas and brine, while protecting the environment during the production process,...

  12. About the Oil and Gas Field Code Master List

    Gasoline and Diesel Fuel Update (EIA)

    About the Oil and Gas Field Code Master List 1 April 30, 2012 About the Oil and Gas Field Code Master List The U.S. Energy Information Administration's (EIA) Oil and Gas Field Code Master List (FCML), initiated in 1977, reflects data collected through December of the year specified in its title. It provides standardized field name spellings and codes for all identified oil and gas fields in the United States for use in conjunction with EIA's proved reserves estimation and allied analytical

  13. Construction progresses at GE's Oil & Gas Technology Center ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home > Impact > Construction progressing at GE's newest research center, the Oil & Gas Technology Center in Oklahoma City Click to email this to a friend (Opens in new window)...

  14. FE Oil and Natural Gas News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    its effectiveness, the U.S. Department of Energy today announced plans to leverage oil and gas expertise to test the reliability and efficiency of geothermal power generation...

  15. FE Oil and Natural Gas News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE will continue to work together to ensure safe, sustainable offshore production of oil and natural gas. August 7, 2013 Energy Department Authorizes Third Proposed Facility to...

  16. Oil & Natural Gas Technology Temporal Characterization of Hydrates...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil & Natural Gas Technology Temporal Characterization of Hydrates System Dynamics beneath Seafloor Mounds: Integrating Time-Lapse Electrical Resistivity Methods and In Situ...

  17. Hydrofracturing for Gas Oil and Geopolitical Advantage. Brady...

    Office of Scientific and Technical Information (OSTI)

    Hydrofracturing for Gas Oil and Geopolitical Advantage. Brady, Patrick V. Abstract Not Provided Sandia National Laboratories USDOE National Nuclear Security Administration (NNSA)...

  18. ,"New Mexico Natural Gas Gross Withdrawals from Oil Wells (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Gross Withdrawals from Oil Wells (MMcf)",1,"Annual",2014 ,"Release...

  19. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    ... natural gas that could be produced with current technology, regardless of oil and natural ... a northeast- southwest trending trough related to the Atlantic Ocean continental breakup. ...

  20. Kansas Oil and Gas Conservation Commission | Open Energy Information

    Open Energy Info (EERE)

    service and safety of public utilities, common carriers, motor carriers, and regulate oil and gas production by protecting correlative rights and environmental resources....

  1. Relationship Between Crude Oil and Natural Gas Prices, The

    Reports and Publications (EIA)

    2006-01-01

    This paper examines the time series econometric relationship between the Henry Hub natural gas price and the West Texas Intermediate (WTI) crude oil price.

  2. Smart Sensing Networks for Renewables, Oil & Gas | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reliability and robustness of the data points being collected. sensor-500x333 As oil and gas production moves to unconventional environments, it will require more rugged sensors...

  3. Oil and Natural Gas Subsector Cybersecurity Capability Maturity Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (ONG-C2M2) | Department of Energy Oil and Natural Gas Subsector Cybersecurity Capability Maturity Model (ONG-C2M2) Oil and Natural Gas Subsector Cybersecurity Capability Maturity Model (ONG-C2M2) Oil and Natural Gas Subsector Cybersecurity Capability Maturity Model (ONG-C2M2) The Oil and Natural Gas Subsector Cybersecurity Capability Maturity Model (ONG-C2M2) was established as a result of the Administration's efforts to improve electricity subsector cybersecurity capabilities, and to

  4. Footage Drilled for Crude Oil and Natural Gas Wells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Footage Drilled for Crude Oil and Natural Gas Wells (Thousand Feet) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources...

  5. Average Depth of Crude Oil and Natural Gas Wells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Depth of Crude Oil and Natural Gas Wells (Feet per Well) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes...

  6. Evaluation of Production of Oil & Gas From Oil Shale in the Piceance Basin

    Office of Environmental Management (EM)

    | Department of Energy Evaluation of Production of Oil & Gas From Oil Shale in the Piceance Basin Evaluation of Production of Oil & Gas From Oil Shale in the Piceance Basin The purpose of this paper is to provide the public and policy makers accurate estimates of energy efficiencies, water requirements, water availability, and CO2 emissions associated with the development of the 60 percent portion of the Piceance Basin where economic potential is the greatest, and where environmental

  7. A guide for the gas and oil industry

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    This guide has been prepared to assist those in the natural gas and oil industry who may not be familiar with how the Federal government, particularly the U.S. Department of Energy (DOE or Department), does business with private sector companies. Basic information is provided on what DOE is trying to do, why it wants to work with the natural gas and oil industry, how it can work with companies, who to contact, and where to inquire for further information. This last item is noteworthy because it is important for users of this guide to be able to access information about subjects that may interest them. Selected other Federal agencies and their activities related to those of DOE`s Office of Fossil Energy (FE or Fossil Energy) also are included in this document as Appendix A. This guide provides an address and/or phone number for every topic covered to prevent any information impasse. If a question is not adequately answered by the guide, please do not hesitate to contact the appropriate person or office. It is hoped that the information provided in this guide will lead to a better understanding of the mission, roles, and procedures of DOE and result in more and better cooperative working relationships between the natural gas and oil industry and DOE. Such relationships will provide a significant benefit to our Nation`s economic, technological, and energy security.

  8. Produce More Oil Gas via eBusiness Data Sharing

    SciTech Connect (OSTI)

    Paul Jehn; Mike Stettner

    2004-09-30

    GWPC, DOGGR, and other state agencies propose to build eBusiness applications based on a .NET front-end user interface for the DOE's Energy 100 Award-winning Risk Based Data Management System (RBDMS) data source and XML Web services. This project will slash the costs of regulatory compliance by automating routine regulatory reporting and permit notice review and by making it easier to exchange data with the oil and gas industry--especially small, independent operators. Such operators, who often do not have sophisticated in-house databases, will be able to use a subset of the same RBDMS tools available to the agencies on the desktop to file permit notices and production reports online. Once the data passes automated quality control checks, the application will upload the data into the agency's RBDMS data source. The operators also will have access to state agency datasets to focus exploration efforts and to perform production forecasting, economic evaluations, and risk assessments. With the ability to identify economically feasible oil and gas prospects, including unconventional plays, over the Internet, operators will minimize travel and other costs. Because GWPC will coordinate these data sharing efforts with the Bureau of Land Management (BLM), this project will improve access to public lands and make strides towards reducing the duplicative reporting to which industry is now subject for leases that cross jurisdictions. The resulting regulatory streamlining and improved access to agency data will make more domestic oil and gas available to the American public while continuing to safeguard environmental assets.

  9. Characterization of oil and gas reservoirs and recovery technology deployment on Texas State Lands

    SciTech Connect (OSTI)

    Tyler, R.; Major, R.P.; Holtz, M.H.

    1997-08-01

    Texas State Lands oil and gas resources are estimated at 1.6 BSTB of remaining mobile oil, 2.1 BSTB, or residual oil, and nearly 10 Tcf of remaining gas. An integrated, detailed geologic and engineering characterization of Texas State Lands has created quantitative descriptions of the oil and gas reservoirs, resulting in delineation of untapped, bypassed compartments and zones of remaining oil and gas. On Texas State Lands, the knowledge gained from such interpretative, quantitative reservoir descriptions has been the basis for designing optimized recovery strategies, including well deepening, recompletions, workovers, targeted infill drilling, injection profile modification, and waterflood optimization. The State of Texas Advanced Resource Recovery program is currently evaluating oil and gas fields along the Gulf Coast (South Copano Bay and Umbrella Point fields) and in the Permian Basin (Keystone East, Ozona, Geraldine Ford and Ford West fields). The program is grounded in advanced reservoir characterization techniques that define the residence of unrecovered oil and gas remaining in select State Land reservoirs. Integral to the program is collaboration with operators in order to deploy advanced reservoir exploitation and management plans. These plans are made on the basis of a thorough understanding of internal reservoir architecture and its controls on remaining oil and gas distribution. Continued accurate, detailed Texas State Lands reservoir description and characterization will ensure deployment of the most current and economically viable recovery technologies and strategies available.

  10. Investing in Oil and Natural Gas A Few Key Issues

    Gasoline and Diesel Fuel Update (EIA)

    Strategic Advisors in Global Energy Strategic Advisors in Global Energy Strategic Advisors in Global Energy Investing in Oil and Natural Gas: A Few Key Issues Prepared for EIA Conference Susan Farrell, Senior Director PFC Energy April 8, 2009 Investing in Oil and Gas| PFC Energy| Page 2 The Top 20 IOCs and Top 20 NOCs Account for Over Half of E&P Spend Source: PFC Energy, Global E&P Surveys Investing in Oil and Gas| PFC Energy| Page 3 Oil Prices Rose, But So Did Costs + 52% $0 $20 $40

  11. Largest US oil and gas fields, August 1993

    SciTech Connect (OSTI)

    Not Available

    1993-08-06

    The Largest US Oil and Gas Fields is a technical report and part of an Energy Information Administration (EIA) series presenting distributions of US crude oil and natural gas resources, developed using field-level data collected by EIA`s annual survey of oil and gas proved reserves. The series` objective is to provide useful information beyond that routinely presented in the EIA annual report on crude oil and natural gas reserves. These special reports also will provide oil and gas resource analysts with a fuller understanding of the nature of US crude oil and natural gas occurrence, both at the macro level and with respect to the specific subjects addressed. The series` approach is to integrate EIA`s crude oil and natural gas survey data with related data obtained from other authoritative sources, and then to present illustrations and analyses of interest to a broad spectrum of energy information users ranging from the general public to oil and gas industry personnel.

  12. Aspects of Hess' Acquisition of American Oil & Gas

    Reports and Publications (EIA)

    2010-01-01

    On July 27, 2010, Hess Corporation announced that it had agreed to acquire American Oil & Gas, Inc. in a stock-only transaction worth as much as $488 million (based on Hess' closing price of $53.30/share, anticipated number of newly issued shares, and $30 million credit facility extended to American Oil & Gas prior to closing).

  13. International Oil and Gas Exploration and Development

    Reports and Publications (EIA)

    1993-01-01

    Presents country level data on oil reserves, oil production, active drilling rigs, seismic crews, wells drilled, oil reserve additions, and oil reserve to production ratios (R/P ratios) for about 85 countries, where available, from 1970 through 1991. World and regional summaries are given in both tabular and graphical form.

  14. INTEGRATION OF HIGH TEMPERATURE GAS REACTORS WITH IN SITU OIL SHALE RETORTING

    SciTech Connect (OSTI)

    Eric P. Robertson; Michael G. McKellar; Lee O. Nelson

    2011-05-01

    This paper evaluates the integration of a high-temperature gas-cooled reactor (HTGR) to an in situ oil shale retort operation producing 7950 m3/D (50,000 bbl/day). The large amount of heat required to pyrolyze the oil shale and produce oil would typically be provided by combustion of fossil fuels, but can also be delivered by an HTGR. Two cases were considered: a base case which includes no nuclear integration, and an HTGR-integrated case.

  15. Oil & Gas Research | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil & Gas Research Unconventional Resources NETL's onsite research in unconventional resources is focused on developing the data and modeling tools needed to predict and quantify potential risks associated with oil and gas resources in shale reservoirs that require hydraulic fracturing or other engineering measures to produce. Fugitive Emissions | Produced Water Management | Subsurface Fluid & Gas Migration | Induced Seismicity Offshore Resources Building the scientific understanding and

  16. Models, Simulators, and Data-driven Resources for Oil and Natural Gas Research

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    NETL provides a number of analytical tools to assist in conducting oil and natural gas research. Software, developed under various DOE/NETL projects, includes numerical simulators, analytical models, databases, and documentation.[copied from http://www.netl.doe.gov/technologies/oil-gas/Software/Software_main.html] Links lead users to methane hydrates models, preedictive models, simulators, databases, and other software tools or resources.

  17. EIA model documentation: Documentation of the Oil and Gas Supply Module (OGSM)

    SciTech Connect (OSTI)

    1997-01-01

    The purpose of this report is to define the objectives of the Oil and Gas Supply Model (OGSM), to describe the model`s basic approach, and to provide detail on how the model works. This report is intended as a reference document for model analysts, users, and the public. Projected production estimates of US crude oil and natural gas are based on supply functions generated endogenously within National Energy Modeling System (NEMS) by the OGSM. OGSM encompasses domestic crude oil and natural gas supply by both conventional and nonconventional recovery techniques. Nonconventional recovery includes enhanced oil recovery (EOR), and unconventional gas recovery (UGR) from tight gas formations, Devonian shale and coalbeds. Crude oil and natural gas projects are further disaggregated by geographic region. OGSM projects US domestic oil and gas supply for six Lower 48 onshore regions, three offshore regions, and Alaska. The general methodology relies on forecasted drilling expenditures and average drilling costs to determine exploratory and developmental drilling levels for each region and fuel type. These projected drilling levels translate into reserve additions, as well as a modification of the production capacity for each region. OGSM also represents foreign trade in natural gas, imports and exports by entry region.

  18. Preliminary Reference Case Results for Oil and Natural Gas

    U.S. Energy Information Administration (EIA) Indexed Site

    Preliminary Reference Case Results for Oil and Natural Gas AEO2014 Oil and Gas Supply Working Group Meeting Office of Petroleum, Gas, and Biofuels Analysis September 26, 2013 | Washington, DC WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE AEO2014P uses ref2014.d092413a AEO2013 uses ref2013.d102312a Changes for AEO2014 2 * Revised shale & tight play resources (EURs, type curves) * Updated classification of shale gas, tight gas, &

  19. Formation resistivity measurements from within a cased well used to quantitatively determine the amount of oil and gas present

    DOE Patents [OSTI]

    Vail, III, William B.

    1997-01-01

    Methods to quantitatively determine the separate amounts of oil and gas in a geological formation adjacent to a cased well using measurements of formation resistivity are disclosed. The steps include obtaining resistivity measurements from within a cased well of a given formation, obtaining the porosity, obtaining the resistivity of formation water present, computing the combined amounts of oil and gas present using Archie's Equations, determining the relative amounts of oil and gas present from measurements within a cased well, and then quantitatively determining the separate amounts of oil and gas present in the formation.

  20. Formation resistivity measurements from within a cased well used to quantitatively determine the amount of oil and gas present

    DOE Patents [OSTI]

    Vail, W.B. III

    1997-05-27

    Methods to quantitatively determine the separate amounts of oil and gas in a geological formation adjacent to a cased well using measurements of formation resistivity are disclosed. The steps include obtaining resistivity measurements from within a cased well of a given formation, obtaining the porosity, obtaining the resistivity of formation water present, computing the combined amounts of oil and gas present using Archie`s Equations, determining the relative amounts of oil and gas present from measurements within a cased well, and then quantitatively determining the separate amounts of oil and gas present in the formation. 7 figs.

  1. The Oil and Gas Journal databook, 1986 edition

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    This annual contains the following: Foreword by Gene Kinney; OGJ 400; Crude Oil Assays; Worldwide Petrochemical Survey; Midyear Forecast and Review; Worldwide Gas Processing Report; Ethylene Report; Sulfur Survey; International Refining; Catalyst Compilation; Pipeline Economics Report; Worldwide Production and Refining Report; Annual Refining Survey; Morgan Pipeline Cost Index, Oil and Gas; Nelson Cost Index; Hughes Rig Count; Smith Rig Count; OGJ Production Report and the API Refinery Reports. Also featured is the Oil and Gas Journal Index, which lists every article published in the Journal in 1985, referenced by article title or subject.

  2. Oil and Natural Gas Subsector Cybersecurity Capability Maturity Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (February 2014) | Department of Energy Oil and Natural Gas Subsector Cybersecurity Capability Maturity Model (February 2014) Oil and Natural Gas Subsector Cybersecurity Capability Maturity Model (February 2014) The Oil and Natural Gas Subsector Cybersecurity Capability Maturity Model (ONG-C2M2) is a derivative of the Electricity Subsector Cybersecurity Capability Maturity Model (ES-C2M2) Version 1.1. The ES-C2M2 was developed in support of a White House initiative led by the Department of

  3. 12th Annual Turkmenistan International Oil and Gas Exhibition | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy th Annual Turkmenistan International Oil and Gas Exhibition 12th Annual Turkmenistan International Oil and Gas Exhibition November 15, 2007 - 5:05pm Addthis Remarks as Prepared for Secretary Bodman Good morning ladies and gentlemen. I'm very pleased to be here with you today. Congratulations to our hosts on what appears to be the great success of this 12th annual Turkmenistan International Oil and Gas Exhibition. I understand that this year, for the first time ever, TIOGE is

  4. Oil and gas developments in North Africa in 1986

    SciTech Connect (OSTI)

    Michel, R.C.

    1987-10-01

    Licensed oil acreage in the 6 North Africa countries (Algeria, Egypt, Libya, Morocco, Sudan and Tunisia) totaled 1,500,000 km/sup 2/ at the end of 1986, down 290,000 km/sup 2/ from 1985. About 50% of the relinquishments were in Libya. Most oil and gas discoveries were made in Egypt (16 oil and 2 gas). Several oil finds were reported in onshore Libya, and 1 was reported in Algeria in the southeastern Sahara. According to available statistics, development drilling decreased from 1985 levels, except in Tunisia. A 6.3% decline in oil production took place in 1986, falling below the 3 million bbl level (2,912,000 b/d). Only sparse data are released on the gas output in North Africa. 6 figures, 27 tables.

  5. Testing for market integration crude oil, coal, and natural gas

    SciTech Connect (OSTI)

    Bachmeier, L.J.; Griffin, J.M.

    2006-07-01

    Prompted by the contemporaneous spike in coal, oil, and natural gas prices, this paper evaluates the degree of market integration both within and between crude oil, coal, and natural gas markets. Our approach yields parameters that can be readily tested against a priori conjectures. Using daily price data for five very different crude oils, we conclude that the world oil market is a single, highly integrated economic market. On the other hand, coal prices at five trading locations across the United States are cointegrated, but the degree of market integration is much weaker, particularly between Western and Eastern coals. Finally, we show that crude oil, coal, and natural gas markets are only very weakly integrated. Our results indicate that there is not a primary energy market. Despite current price peaks, it is not useful to think of a primary energy market, except in a very long run context.

  6. "U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil, Natural Gas, and Natural Gas Liquids Reserves Summary Data Tables, 2014" "Contents" "Table 1: U.S. proved reserves, and reserves changes, 2013-14" "Table 2: U.S. tight ...

  7. DATA MINING AT THE NEBRASKA OIL & GAS COMMISSION

    SciTech Connect (OSTI)

    James R. Weber

    2001-05-01

    The purpose of this study of the hearing records is to identify factors that are likely to impact the performance of a waterflood in the Nebraska panhandle. The records consisted of 140 cases. Most of the hearings were held prior to 1980. Many of the records were incomplete, and data believed to be key to estimating waterflood performance such as Dykstra-Parson permeability distribution or relative permeability were absent. New techniques were applied to analyze the sparse, incomplete dataset. When information is available, but not clearly understood, new computational intelligence tools can decipher correlations in the dataset. Fuzzy ranking and neural networks were the tools used to estimate secondary recovery from the Cliff Farms Unit. The hearing records include 30 descriptive entries that could influence the success or failure of a waterflood. Success or failure is defined by the ratio of secondary to primary oil recovery (S/P). Primary recovery is defined as cumulative oil produced at the time of the hearing and secondary recovery is defined as the oil produced since the hearing date. Fuzzy ranking was used to prioritize the relevance of 6 parameters on the outcome of the proposed waterflood. The 6 parameters were universally available in 44 of the case hearings. These 44 cases serve as the database used to correlate the following 6 inputs with the respective S/P. (1) Cumulative Water oil ratio, bbl/bbl; (2) Cumulative Gas oil ratio, mcf/bbl; (3) Unit area, acres; (4) Average Porosity, %; (5) Average Permeability, md; (6) Initial bottom hole pressure, psi. A 6-3-1 architecture describes the neural network used to develop a correlation between the 6 input parameters and their respective S/P. The network trained to a 85% correlation coefficient. The predicted Cliff Farms Unit S/P is 0.315 or secondary recovery is expected to be 102,700 bbl.

  8. Fact Sheet: Gas Prices and Oil Consumption Would Increase Without...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact Sheet: Gas Prices and Oil Consumption Would Increase Without Biofuels Secretary of Energy Samuel W. Bodman and Secretary of Agriculture Edward T. Schafer sent a letter on June ...

  9. oil-gas-announcements | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil and Gas Announcements The December, 2015 Issue of the Methane Hydrate Newsletter Fire in the Ice is Now Available Stripper Well Consortium Looks Back on Fifteen Years of...

  10. New York Oil and Gas DOEC | Open Energy Information

    Open Energy Info (EERE)

    DOEC Jump to: navigation, search Name: New York Oil and Gas DOEC Address: 625 Broadway Place: New York Zip: 12233-0001 Website: www.dec.ny.govenergy205.html Coordinates:...

  11. Utah Oil and Gas Board | Open Energy Information

    Open Energy Info (EERE)

    Board Jump to: navigation, search Name: Utah Oil and Gas Board Address: 1594 West North Temple Place: Utah Zip: 84116 Website: oilgas.ogm.utah.gov Coordinates: 40.7721389,...

  12. Oil and Gas Well Drilling | Open Energy Information

    Open Energy Info (EERE)

    Drilling Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Oil and Gas Well Drilling Author Jeff Tester Published NA, 2011 DOI Not Provided Check for...

  13. Successful Oil and Gas Technology Transfer Program Extended to 2015

    Broader source: Energy.gov [DOE]

    The Stripper Well Consortium - a program that has successfully provided and transferred technological advances to small, independent oil and gas operators over the past nine years - has been extended to 2015 by the U.S. Department of Energy.

  14. Environmental Compliance for Oil and Gas Exploration and Production

    SciTech Connect (OSTI)

    Hansen, Christine

    1999-10-26

    The Appalachian/Illinois Basin Directors is a group devoted to increasing communication among the state oil and gas regulatory agencies within the Appalachian and Illinois Basin producing region. The group is comprised of representatives from the oil and gas regulatory agencies from states in the basin (Attachment A). The directors met to discuss regulatory issues common to the area, organize workshops and seminars to meet the training needs of agencies dealing with the uniqueness of their producing region and perform other business pertinent to this area of oil and gas producing states. The emphasis of the coordinated work was a wide range of topics related to environmental compliance for natural gas and oil exploration and production.

  15. FE Oil and Natural Gas News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    American Economy Built to Last January 4, 2012 DOE-Sponsored Online Mapping Portal Helps Oil and Gas Producers Comply with New Mexico Compliance Rules An online mapping portal to...

  16. FE Oil and Natural Gas News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the risks while enhancing the environmental performance of drilling for natural gas and oil in ultra-deepwater settings have been selected by the U.S. Department of Energy (DOE)...

  17. Tips: Natural Gas and Oil Heating Systems | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    more about energy-efficient furnaces and boilers. Addthis Related Articles Tips: Natural Gas and Oil Heating Systems Energy Saver Guide: Tips on Saving Money and Energy at Home...

  18. Tribal Leader Forum: Oil and Gas Technical Assistance Capabilities

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Office of Indian Energy is hosting a Tribal Leader Forum on oil and gas technical assistance capabilities on Aug. 18, 2015, at the Magnolia Hotel in Denver, Colorado.

  19. Nebraska Oil and Gas Conservation Commission | Open Energy Information

    Open Energy Info (EERE)

    was founded in 1959. Its mission is to foster, encourage and promote the development, production and utilization of natural resources of oil and gas in the state. The mission...

  20. Oil, gas tanker industry responding to demand, contract changes

    SciTech Connect (OSTI)

    True, W.R.

    1998-03-02

    Steady if slower growth in demand for crude oil and natural gas, low levels of scrapping, and a moderate newbuilding pace bode well for the world`s petroleum and natural-gas shipping industries. At year-end 1997, several studies of worldwide demand patterns and shipping fleets expressed short and medium-term optimism for seaborne oil and gas trade and fleet growth. The paper discusses steady demand and shifting patterns, the aging fleet, the slowing products traffic, the world`s fleet, gas carriers, LPG demand, and LPG vessels.

  1. Secretary Bodman Addresses Turkmenistan Industrial Oil and Gas Exhibition |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Turkmenistan Industrial Oil and Gas Exhibition Secretary Bodman Addresses Turkmenistan Industrial Oil and Gas Exhibition November 16, 2007 - 4:31pm Addthis Holds Bilateral Discussion with President of Turkmenistan on Opening of Markets, Increased Investment, and Multiple Trade Routes ASHGABAT, TURKMENISTAN - U.S. Secretary of Energy Samuel W. Bodman today held bilateral energy discussions with the President of Turkmenistan and other senior Turkmenistan officials and

  2. Oil and gas field code master list 1997

    SciTech Connect (OSTI)

    1998-02-01

    The Oil and Gas Field Code Master List 1997 is the sixteenth annual listing of all identified oil and gas fields in the US. It is updated with field information collected through October 1997. The purpose of this publication is to provide unique, standardized codes for identification of domestic fields. Use of these field codes fosters consistency of field identification by government and industry. As a result of their widespread adoption they have in effect become a national standard. The use of field names and codes listed in this publication is required on survey forms and other reports regarding field-specific data collected by EIA. There are 58,366 field records in this year`s FCML, 437 more than last year. The FCML includes: field records for each State and county in which a field resides; field records for each offshore area block in the Gulf of Mexico in which a field resides; field records for each alias field name (definition of alias is listed); fields crossing State boundaries that may be assigned different names by the respective State naming authorities. This report also contains an Invalid Field Record List of 4 records that have been removed from the FCML since last year`s report. These records were found to be either technically incorrect or to represent field names which were never recognized by State naming authorities.

  3. Comparison of electrical capacitance tomography and gamma densitometer measurement in viscous oil-gas flows

    SciTech Connect (OSTI)

    Archibong Eso, A.; Zhao, Yabin; Yeung, Hoi

    2014-04-11

    Multiphase flow is a common occurrence in industries such as nuclear, process, oil and gas, food and chemical. A prior knowledge of its features and characteristics is essential in the design, control and management of such processes due to its complex nature. Electrical Capacitance Tomography (ECT) and Gamma Densitometer (Gamma) are two promising approaches for multiphase visualization and characterization in process industries. In two phase oil and gas flow, ECT and Gamma are used in multiphase flow monitoring techniques due to their inherent simplicity, robustness, and an ability to withstand wide range of operational temperatures and pressures. High viscous oil (viscosity > 100 cP) is of interest because of its huge reserves, technological advances in its production and unlike conventional oil (oil viscosity < 100 cP) and gas flows where ECT and Gamma have been previously used, high viscous oil and gas flows comes with certain associated concerns which include; increased entrainment of gas bubbles dispersed in oil, shorter and more frequent slugs as well as oil film coatings on the walls of flowing conduits. This study aims to determine the suitability of both devices in the visualization and characterization of high-viscous oil and gas flow. Static tests are performed with both devices and liquid holdup measurements are obtained. Dynamic experiments were also conducted in a 1 and 3 inch facility at Cranfield University with a range of nominal viscosities (1000, 3000 and 7500 cP). Plug, slug and wavy annular flow patterns were identified by means of Probability Mass Function and time series analysis of the data acquired from Gamma and ECT devices with high speed camera used to validate the results. Measured Liquid holdups for both devices were also compared.

  4. Oil and gas field code master list 1994

    SciTech Connect (OSTI)

    Not Available

    1995-01-01

    This is the thirteenth annual edition of the Energy Information Administration`s (EIA) Oil and Gas Field Code Master List. It reflects data collected through October 1994 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. The master field name spellings and codes are to be used by respondents when filing the following Department of Energy (DOE) forms: Form EIA-23, {open_quotes}Annual Survey of Domestic Oil and Gas Reserves,{close_quotes} filed by oil and gas well operators (field codes are required from larger operators only); Forms FERC 8 and EIA-191, {open_quotes}Underground Gas Storage Report,{close_quotes} filed by natural gas producers and distributors who operate underground natural gas storage facilities. Other Federal and State government agencies, as well as industry, use the EIA Oil and Gas Field Code Master List as the standard for field identification. A machine-readable version of the Oil and Gas Field Code Master List is available from the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161, (703) 487-4650. In order for the Master List to be useful, it must be accurate and remain current. To accomplish this, EIA constantly reviews and revises this list. The EIA welcomes all comments, corrections, and additions to the Master List. All such information should be given to the EIA Field Code Coordinator at (214) 953-1858. EIA gratefully acknowledges the assistance provides by numerous State organizations and trade associations in verifying the existence of fields and their official nomenclature.

  5. Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery

    SciTech Connect (OSTI)

    Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni; Wagirin Ruiz Paidin; Thaer N. N. Mahmoud; Daryl S. Sequeira; Amit P. Sharma

    2006-09-30

    This is the final report describing the evolution of the project ''Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' from its conceptual stage in 2002 to the field implementation of the developed technology in 2006. This comprehensive report includes all the experimental research, models developments, analyses of results, salient conclusions and the technology transfer efforts. As planned in the original proposal, the project has been conducted in three separate and concurrent tasks: Task 1 involved a physical model study of the new GAGD process, Task 2 was aimed at further developing the vanishing interfacial tension (VIT) technique for gas-oil miscibility determination, and Task 3 was directed at determining multiphase gas-oil drainage and displacement characteristics in reservoir rocks at realistic pressures and temperatures. The project started with the task of recruiting well-qualified graduate research assistants. After collecting and reviewing the literature on different aspects of the project such gas injection EOR, gravity drainage, miscibility characterization, and gas-oil displacement characteristics in porous media, research plans were developed for the experimental work to be conducted under each of the three tasks. Based on the literature review and dimensional analysis, preliminary criteria were developed for the design of the partially-scaled physical model. Additionally, the need for a separate transparent model for visual observation and verification of the displacement and drainage behavior under gas-assisted gravity drainage was identified. Various materials and methods (ceramic porous material, Stucco, Portland cement, sintered glass beads) were attempted in order to fabricate a satisfactory visual model. In addition to proving the effectiveness of the GAGD process (through measured oil recoveries in the range of 65 to 87% IOIP), the visual models demonstrated three possible multiphase mechanisms at work, namely, Darcy-type displacement until gas breakthrough, gravity drainage after breakthrough and film-drainage in gas-invaded zones throughout the duration of the process. The partially-scaled physical model was used in a series of experiments to study the effects of wettability, gas-oil miscibility, secondary versus tertiary mode gas injection, and the presence of fractures on GAGD oil recovery. In addition to yielding recoveries of up to 80% IOIP, even in the immiscible gas injection mode, the partially-scaled physical model confirmed the positive influence of fractures and oil-wet characteristics in enhancing oil recoveries over those measured in the homogeneous (unfractured) water-wet models. An interesting observation was that a single logarithmic relationship between the oil recovery and the gravity number was obeyed by the physical model, the high-pressure corefloods and the field data.

  6. First AEO2015 Oil and Gas Working Group Meeting Summary

    Gasoline and Diesel Fuel Update (EIA)

    5 August 8, 2014 MEMORANDUM FOR: JOHN CONTI ASSISTANT ADMINISTRATOR FOR ENERGY ANALYSIS FROM: ANGELINA LAROSE TEAM LEAD NATURAL GAS MARKETS TEAM JOHN STAUB TEAM LEAD EXPLORATION AND PRODUCTION ANALYSIS TEAM EXPLORATION AND PRODUCTION and NATURAL GAS MARKETS TEAMS SUBJECT: First AEO2015 Oil and Gas Working Group Meeting Summary (presented on August 7, 2014) Attendees: Tien Nguyen (DOE) Joseph Benneche (EIA) Dana Van Wagener (EIA)* Troy Cook (EIA)* Angelina LaRose (EIA) Laura Singer (EIA) Michael

  7. AEO2014 Oil and Gas Working Group Meeting Summary

    Gasoline and Diesel Fuel Update (EIA)

    9 August 12, 2013 MEMORANDUM FOR: JOHN CONTI ASSISTANT ADMINISTRATOR FOR ENERGY ANALYSIS FROM: ANGELINA LAROSE TEAM LEAD NATURAL GAS MARKETS TEAM JOHN STAUB TEAM LEAD EXPLORATION AND PRODUCTION ANALYSIS TEAM EXPLORATION AND PRODUCTION and NATURAL GAS MARKETS TEAMS SUBJECT: First AEO2014 Oil and Gas Working Group Meeting Summary (presented on July 25, 2013) Attendees: Anas Alhajji (NGP)* Samuel Andrus (IHS)* Emil Attanasi (USGS)* Andre Barbe (Rice University) David J. Barden (self) Joseph

  8. Second AEO2014 Oil and Gas Working Group Meeting Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    7 November 12, 2013 MEMORANDUM FOR: JOHN CONTI ASSISTANT ADMINISTRATOR FOR ENERGY ANALYSIS FROM: ANGELINA LAROSE TEAM LEAD NATURAL GAS MARKETS TEAM JOHN STAUB TEAM LEAD EXPLORATION AND PRODUCTION ANALYSIS TEAM EXPLORATION AND PRODUCTION and NATURAL GAS MARKETS TEAMS SUBJECT: Second AEO2014 Oil and Gas Working Group Meeting Summary (presented September 26, 2013) Attendees: Robert Anderson (DOE) Peter Balash (NETL)* David Bardin (self) Joe Benneche (EIA) Philip Budzik (EIA) Kara Callahan

  9. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas...

  10. Documentation of the oil and gas supply module (OGSM)

    SciTech Connect (OSTI)

    1996-01-01

    The purpose of this report is to define the objectives of the Oil and Gas Supply Model (OGSK, to describe the model`s basic approach, and to provide detail on how the model works. This report is intended as a reference document for model analysts, users, and the public. It is prepared in accordance with the Energy Information Administration`s (EIA) legal obligation to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, Section 57(b)(2). OGSM is a comprehensive framework with which to analyze oil and gas supply potential and related issues. Its primary function is to produce forecast of crude oil, natural gas production, and natural gas imports and exports in response to price data received endogenously (within NEMS) from the Natural Gas Transmission and Distribution Model (NGTDM) and the Petroleum Market Model (PMM). To accomplish this task, OGSM does not provide production forecasts per se, but rather parameteres for short-term domestic oil and gas production functions and natural gas import functions that reside in PMM and NGTDM.

  11. Oil & Gas Research | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to produce. Fugitive Emissions | Produced Water Management | Subsurface Fluid & Gas Migration | Induced Seismicity Offshore Resources Building the scientific understanding and...

  12. Percentage of Total Natural Gas Commercial Deliveries included in Prices

    Gasoline and Diesel Fuel Update (EIA)

    City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History U.S.

  13. Percentage of Total Natural Gas Industrial Deliveries included in Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline and Distribution Use Price City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Vehicle Fuel Price Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010

  14. Percentage of Total Natural Gas Industrial Deliveries included in Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History U.S.

  15. Percentage of Total Natural Gas Residential Deliveries included in Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History U.S.

  16. Strategic Center for Natural Gas and Oil R&D Program

    Energy Savers [EERE]

    Albert Yost SMTA Strategic Center for Natural Gas & Oil The National Energy Technology Laboratory & The Strategic Center for Natural Gas and Oil R&D Program August 18, 2015 Tribal leader forum: U.S. Department of Energy oil and gas technical assistance capabilities Denver, Colorado 2 National Energy Technology Laboratory Outline * Review of Case History Technology Successes * Review of Current Oil and Natural Gas Program * Getting More of the Abundant Shale Gas Resource *

  17. Pitfalls of preparing deeds conveying oil and gas interests

    SciTech Connect (OSTI)

    Hawkins, E.G.

    1986-01-01

    A sudden increase in legal activity involving the preparation or review of deeds to oil and gas interests is the result of expanded exploration and development activities in Alabama. Because of the complexities of an oil or gas transaction and the presence of title defects, there are legal problems which are unique to these cases. The author highlights some of the more common problems and defects, and recommends ways for lawyers to avoid them. The discussion touches on the mineral deed versus the royalty deed, conflicts over the mineral acre versus the fractional grant, the rule against perpetuities, roadways, and other problems.

  18. Top 100 U.S. Oil and Gas Fields

    Gasoline and Diesel Fuel Update (EIA)

    Supplement from: U.S. Crude Oil and Natural Gas Proved Reserves Top 100 U.S. Oil and Gas Fields With Data for 2013 | Release Date: April 2, 2015 | Next Release Date: January 2016 Previous Issues (pdf): Year: 2009 2008 2007 (Appendix B) 2006 (Appendix B) 2005 (Appendix B) 2004 (Appendix B) 2003 (Appendix B) 2002 (Appendix B) 2001 (Appendix B) 2000 (Appendix B) 1999 (Appendix B) 1998 (Appendix B) 1997 (Appendix B) 1996 (Appendix B) Go Introduction This supplement to the U.S. Energy Information

  19. Driving Sensing Technology in Oil & Gas | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Newest APS Fellow Driving Groundbreaking Sensing Technology in Oil & Gas Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Newest APS Fellow Driving Groundbreaking Sensing Technology in Oil & Gas Loucas Tsakalakos 2014.04.30 I'm writing to tell you all about a prestigious honor and a significant award that was

  20. Top 100 U.S. Oil and Gas Fields

    U.S. Energy Information Administration (EIA) Indexed Site

    Top 100 U.S. Oil and Gas Fields March 2015 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Top 100 U.S. Oil and Gas Fields i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States

  1. Tips: Natural Gas and Oil Heating Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Gas and Oil Heating Systems Tips: Natural Gas and Oil Heating Systems Install a new energy-efficient furnace to save money over the long term. Install a new energy-efficient furnace to save money over the long term. If you plan to buy a new heating system, ask your local utility or state energy office about the latest technologies on the market. For example, many newer models have designs for burners and heat exchangers that are more efficient during operation and cut heat loss when the

  2. Wetland mitigation banking for the oil and gas industry: Assessment, conclusions, and recommendations

    SciTech Connect (OSTI)

    Wilkey, P.L.; Sundell, R.C.; Bailey, K.A.; Hayes, D.C.

    1994-01-01

    Wetland mitigation banks are already in existence in the United States, and the number is increasing. To date, most of these banks have been created and operated for mitigation of impacts arising from highway or commercial development and have not been associated with the oil and gas industry. Argonne National Laboratory evaluated the positive and negative aspects of wetland mitigation banking for the oil and gas industry by examining banks already created for other uses by federal, state, and private entities. Specific issues addressed in this study include (1) the economic, ecological, and technical effectiveness of existing banks; (2) the changing nature of local, state, and federal jurisdiction; and (3) the unique regulatory and jurisdictional problems affecting bank developments associated with the oil and gas industry.

  3. Canadian incentives for oil and gas exploration. [Applicability to USA

    SciTech Connect (OSTI)

    Not Available

    1980-04-01

    During the 1970s a number of different exploration and production incentive programs were put in place in Canada, in particular in the Province of Alberta, Canada's principal oil- and gas-producing province. The DOE/RA is evaluating Canadian incentives for oil and gas exploration, and this study is intended to provide information that will help guide DOE/RA in determining the applicability of Canadian incentive programs in US energy policy. The study describes and documents the fiscal structure in which the Canadian oil industry operates. The incentive features of pricing policy, taxation policy, and provincial royalty systems are discussed. A principal focus of the study is on one of the most important of Canada's specific incentive programs, the Alberta Exploratory Drilling Incentive Credit Program (EDICP). The study describes and evaluates the effect of the EDICP on increased oil and gas exploration activity. Similarly, the study also reviews and evaluates other specific incentive programs such as the Alberta Geophysical Incentive Program, Frontier Exploration Allowances, and various tar sand and heavy oil development incentives. Finally the study evaluates the applicability of Canadian incentives to US energy policy.

  4. Atlantic update, July 1986--June 1990: Outer Continental Shelf oil and gas activities

    SciTech Connect (OSTI)

    Karpas, R.M.; Gould, G.J.

    1990-10-01

    This report describes outer continental shelf oil and gas activities in the Atlantic Region. This edition of the Atlantic Update includes an overview of the Mid-Atlantic Planning Area and a summary of the Manteo Prospect off-shore North Carolina. 6 figs., 8 tabs.

  5. Pipeline issues shape southern FSU oil, gas development

    SciTech Connect (OSTI)

    1995-05-22

    To future production from southern republics of the former Soviet Union (FSU), construction and revitalization of pipelines are as important as the supply of capital. Export capacity will limit production and slow development activity in the region until new pipelines are in place. Plenty of pipeline proposals have come forward. The problem is politics, which for every proposal so far complicates routing or financing or both. Russia has made clear its intention to use pipeline route decisions to retain influence in the region. As a source of external pressure, it is not alone. Iran and Turkey also have made strong bids for the southern FSU`s oil and gas transport business. Diplomacy thus will say as much as commerce does about how transportation issues are settled and how quickly the southern republics move toward their potentials to produce oil and gas. The paper discusses possible routes and the problems with them, the most likely proposal, and future oil flows.

  6. IOGCC/DOE oil and gas environmental workshop

    SciTech Connect (OSTI)

    Not Available

    1991-05-16

    The Interstate Oil and Gas Compact Commission (IOGCC) in cooperation with US Department of Energy (DOE) has developed a workshop format to allow state regulatory officials and industry representatives the opportunity to participate in frank and open discussions on issues of environmental regulatory compliance. The purpose in providing this forum is to assist both groups in identifying the key barriers to the economic recoverability of domestic oil and gas resources while adequately protecting human health and the environment. The following topics were discussed, groundwater protection; temporarily abandoned and idle wells; effluent discharges; storm water runoff; monitoring and compliance; wetlands; naturally occurring radioactive materials; RCRA reauthorization and oil pollution prevention regulation. At the conclusion, all of the participants were asked to complete a questionnaire which critiqued the day activities. A discussion of each of the issues is made a part of this report as is a summary of the critique questionnaire which were received.

  7. Upstream Financial Review of the Global Oil and Natural Gas Industry

    Reports and Publications (EIA)

    2014-01-01

    This analysis focuses on financial and operating trends of the oil and natural gas production business segment, often referred to as upstream operations, of 42 global oil and natural gas producing companies

  8. Texas GLO Oil and Gas Sealed Bid Forms | Open Energy Information

    Open Energy Info (EERE)

    Oil and Gas Sealed Bid Forms Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Texas GLO Oil and Gas Sealed Bid FormsLegal Abstract The...

  9. Alaska Oil and Gas Finding of Best Interest | Open Energy Information

    Open Energy Info (EERE)

    Oil and Gas Finding of Best Interest Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Alaska Oil and Gas Finding of Best Interest Author Alaska...

  10. Federal Onshore Oil and Gas Leasing Reform Act of 1987 (FOOGLRA...

    Open Energy Info (EERE)

    Onshore Oil and Gas Leasing Reform Act of 1987 (FOOGLRA) Jump to: navigation, search Statute Name Federal Onshore Oil and Gas Leasing Reform Act of 1987 (FOOGLRA) Year 1987 Url...

  11. File:BOEMRE OCS.oil.gas.2007-12.map.pdf | Open Energy Information

    Open Energy Info (EERE)

    OCS.oil.gas.2007-12.map.pdf Jump to: navigation, search File File history File usage Outer Continental Shelf (OCS) Oil & Gas Leasing Program 2007 - 2012 Size of this preview: 700...

  12. RCW 79.14 Mineral, Coal, Oil and Gas Leases | Open Energy Information

    Open Energy Info (EERE)

    79.14 Mineral, Coal, Oil and Gas Leases Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: RCW 79.14 Mineral, Coal, Oil and Gas...

  13. Title 30 USC 226 Lease of Oil and Gas Lands | Open Energy Information

    Open Energy Info (EERE)

    226 Lease of Oil and Gas Lands Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Title 30 USC 226 Lease of Oil and Gas LandsLegal...

  14. TNRC, Title 2, Chapter 52.186 Oil and Gas | Open Energy Information

    Open Energy Info (EERE)

    2, Chapter 52.186 Oil and Gas Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: TNRC, Title 2, Chapter 52.186 Oil and GasLegal...

  15. Well-to-Wheels Greenhouse Gas Emissions of Canadian Oil Sands...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Well-to-Wheels Greenhouse Gas Emissions of Canadian Oil Sands Products: Implications for U.S. Petroleum Fuels Title Well-to-Wheels Greenhouse Gas Emissions of Canadian Oil Sands...

  16. OpenEI:Projects/Improvements Oil and Gas | Open Energy Information

    Open Energy Info (EERE)

    2 Oil | General Classification 3 Oil | Uses 3.1 Fuels 3.2 Derivatives 3.3 Agriculture 4 Natural Gas | Energy Basics 5 Natural Gas | General Classification 5.1 Biogas 6 Natural...

  17. File:Uscells1msmall.oil.gas.pdf | Open Energy Information

    Open Energy Info (EERE)

    ells1msmall.oil.gas.pdf Jump to: navigation, search File File history File usage US Oil & Natural Gas Production Map Size of this preview: 776 600 pixels. Full resolution...

  18. Breaking Ground for GE Oil & Gas Tech Center|GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Oklahoma City 125M global hub to accelerate innovation, expanding GE's R&D investment in oil and gas technology New agreement using GE's New Global Research Oil & Gas...

  19. Intricate Puzzle of Oil and Gas Reserves Growth

    Reports and Publications (EIA)

    1997-01-01

    This article begins with a background discussion of the methods used to estimate proved oil and gas reserves and ultimate recovery, which is followed by a discussion of the factors that affect the ultimate recovery estimates of a field or reservoir.

  20. Fossil Energy Oil and Natural Gas Capabilities for Tribes Webinar

    Broader source: Energy.gov [DOE]

    Attend this webinar to hear from U.S. Department of Energy Fossil Energy Program staff about the Program’s oil and gas portfolio, technologies, and research capabilities that may be of interest to Tribes and tribal energy resource development organizations.

  1. Oil and Gas Resources of the West Siberian Basin, Russia

    Reports and Publications (EIA)

    1997-01-01

    Provides an assessment of the oil and gas potential of the West Siberian Basin of Russia. The report was prepared in cooperation with the U. S. Geological Survey (USGS) and is part of the Energy Information Administration's (EIA) Foreign Energy Supply Assessment Program (FESAP).

  2. Common Products Made from Oil and Natural Gas | Department of Energy

    Energy Savers [EERE]

    Common Products Made from Oil and Natural Gas Common Products Made from Oil and Natural Gas Educational poster developed by the Office of Fossil Energy that graphically displays items that are made from oil and gas. Appropriate for teachers and students in K-8th grade. PDF icon Classroom Poster - Common Products Made from Oil and Natural Gas More Documents & Publications Antje Wittenberg, Directorate General for Enterprise and Industry, The EU Raw Materials Initiative and the Report of the

  3. Impact of Interruptible Natural Gas Service on Northeast Heating Oil Demand

    Reports and Publications (EIA)

    2001-01-01

    Assesses the extent of interruptible natural gas contracts and their effect on heating oil demand in the Northeast.

  4. Accelerated Depletion: Assessing Its Impacts on Domestic Oil and Natural Gas Prices and Production

    Reports and Publications (EIA)

    2000-01-01

    Analysis of the potential impacts of accelerated depletion on domestic oil and natural gas prices and production.

  5. Oil and Gas Development in the United States in the Early 1990's

    Reports and Publications (EIA)

    1995-01-01

    An analysis of the growing prominence of smaller energy companies in U.S. oil and natural gas production.

  6. Office of Oil, Gas, and Coal Supply Statistics

    Gasoline and Diesel Fuel Update (EIA)

    Office of Oil, Gas, and Coal Supply Statistics www.eia.gov Natural Gas Monthly February 2016 U.S. Department of Energy Washington, DC 20585 February 2016 U.S. Energy Information Administration | Natural Gas Monthly ii This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States

  7. Office of Oil, Gas, and Coal Supply Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Office of Oil, Gas, and Coal Supply Statistics www.eia.gov Natural Gas Annual 2014 U.S. Department of Energy Washington, DC 20585 2014 U.S. Energy Information Administration | Natural Gas Monthly ii This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The

  8. United States Producing and Nonproducing Crude Oil and Natural Gas Reserves From 1985 Through 2004

    Reports and Publications (EIA)

    2006-01-01

    This report discusses the regional and temporal trends in producing and nonproducing crude oil and natural gas reserves using the Energy Information Administration's (EIA) categorization of reserves. The report first focuses on EIA's collection and reporting of crude oil and natural gas reserves data, followed by a discussion of the natural gas reserve trends, and then the crude oil reserve trends.

  9. The domestic natural gas and oil initiative. Energy leadership in the world economy

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    Two key overarching goals of this Initiative are enhancing the efficiency and competitiveness of U.S. industry and reducing the trends toward higher imports. These goals take into account new Federal policies that reflect economic needs, including economic growth, deficit reduction, job creation and security, and global competitiveness, as well as the need to preserve the environment, improve energy efficiency, and provide for national security. The success of this Initiative clearly requires coordinated strategies that range far beyond policies primarily directed at natural gas and oil supplies. Therefore, this Initiative proposes three major strategic activities: Strategic Activity 1 -- increase domestic natural gas and oil production and environmental protection by advancing and disseminating new exploration, production, and refining technologies; Strategic Activity 2 -- stimulate markets for natural gas and natural-gas-derived products, including their use as substitutes for imported oil where feasible; and Strategic Activity 3 -- ensure cost-effective environmental protection by streamlining and improving government communication, decision making, and regulation. Finally, the Initiative will reexamine the costs and benefits of increase oil imports through a broad new Department of Energy study. This study will form the basis for additional actions found to be warranted under the study.

  10. Research Portfolio Report Unconventional Oil & Gas Resources...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    apparatus, product, or process disclosed; or represents ... report, including Karl Lang of Leonardo Technologies, Inc. ... materials (NORMS); vortex-gener- ating and ...

  11. Formation resistivity measurements from within a cased well used to quantitatively determine the amount of oil and gas present

    DOE Patents [OSTI]

    Vail, III, William Banning

    2000-01-01

    Methods to quantitatively determine the separate amounts of oil and gas in a geological formation adjacent to a cased well using measurements of formation resistivity. The steps include obtaining resistivity measurements from within a cased well of a given formation, obtaining the porosity, obtaining the resistivity of formation water present, computing the combined amounts of oil and gas present using Archie's Equations, determining the relative amounts of oil and gas present from measurements within a cased well, and then quantitatively determining the separate amounts of oil and gas present in the formation. Resistivity measurements are obtained from within the cased well by conducting A.C. current from within the cased well to a remote electrode at a frequency that is within the frequency range of 0.1 Hz to 20 Hz.

  12. Oil and gas developments in North Africa in 1985

    SciTech Connect (OSTI)

    Michel, R.C.

    1986-10-01

    Petroleum rights in the 6 North African countries (Algeria, Egypt, Libya, Morocco, Sudan, and Tunisia) covered in this paper were 1,839,817 km/sup 2/ at the end of 1985, a decrease of 3% from the 1,896,446 km/sup 2/ held at the end of 1984. This decrease mainly is due to significant relinquishments made in Algeria, Egypt, and Tunisia. Morocco, however, had an increase of 18,087 km/sup 2/. Oil discoveries were reported in Algeria (possibly 5), Libya (at least 2), and Egypt (16). Only 1 gas find was made (in Morocco). According to sparse information, development drilling may have decreased markedly during 1985. Oil and condensate production increased by 3.1% to approximately 3,054,000 b/d compared to about 2,963,400 b/d in 1984. No statistics are currently available on gas production in North Africa. 8 figures, 27 tables.

  13. Accounting for Depletion of Oil and Gas Resources in Malaysia

    SciTech Connect (OSTI)

    Othman, Jamal Jafari, Yaghoob

    2012-12-15

    Since oil and gas are non-renewable resources, it is important to identify the extent to which they have been depleted. Such information will contribute to the formulation and evaluation of appropriate sustainable development policies. This paper provides an assessment of the changes in the availability of oil and gas resources in Malaysia by first compiling the physical balance sheet for the period 2000-2007, and then assessing the monetary balance sheets for the said resource by using the Net Present Value method. Our findings show serious reduction in the value of oil reserves from 2001 to 2005, due to changes in crude oil prices, and thereafter the depletion rates decreased. In the context of sustainable development planning, albeit in the weak sustainability sense, it will be important to ascertain if sufficient reinvestments of the estimated resource rents in related or alternative capitals are being attempted by Malaysia. For the study period, the cumulative resource rents were to the tune of RM61 billion. Through a depletion or resource rents policy, the estimated quantum may guide the identification of a reinvestment threshold (after considering needed capital investment for future development of the industry) in light of ensuring the future productive capacity of the economy at the time when the resource is exhausted.

  14. The oil and gas journal databook, 1991 edition

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This book provides the statistical year in review plus selected articles that cover significant events of the past year. In addition, the Data Book features the popular surveys and special reports that quantify industry activity throughout the year. This book contains information on Midyear forecast and review; Worldwide gas processing report; Ethylene report; Sulfur survey; International refining survey; Nelson cost index; Smith rig count; API refinery report; API imports of crude and products; The catalyst compilation; Annual refining survey; Worldwide construction report; Pipeline economics report; Worldwide production and refining report; Morgan pipeline cost index for oil and gas; Hughes rig count; OBJ production report.

  15. U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    U.S. Crude Oil and Natural Gas Proved Reserves With Data for 2014 | Release Date: November 23, 2015 | Next Release Date: November 2016 | full report Previous Issues: Year: 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 Go In 2014, U.S. crude oil and lease condensate proved reserves increased to 39.9 billion barrels-an increase of 3.4 billion barrels (9.3%) from 2013. U.S. proved reserves of crude oil and lease condensate have risen for six consecutive

  16. A Guidance Document for Kentucky's Oil and Gas Operators

    SciTech Connect (OSTI)

    Bender, Rick

    2002-03-18

    The accompanying report, manual and assimilated data represent the initial preparation for submission of an Application for Primacy under the Class II Underground Injection Control (UIC) program on behalf of the Commonwealth of Kentucky. The purpose of this study was to identify deficiencies in Kentucky law and regulation that would prevent the Kentucky Division of Oil and Gas from receiving approval of primacy of the UIC program, currently under control of the United States Environmental Protection Agency (EPA) in Atlanta, Georgia.

  17. Research Portfolio Report Unconventional Oil & Gas Resources:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Subsurface Geology and Engineering Cover image: "Fragments below exposure of fissile Marcellus black shale at Marcellus, N.Y." by Lvklock is licensed under CC by SA-3.0. Research Portfolio Report Unconventional Oil & Gas Resources: Subsurface Geology and Engineering DOE/NETL-2015/1691 Prepared by: Velda Frisco, Mari Nichols-Haining, and Christine Rueter KeyLogic Systems, Inc. National Energy Technology Laboratory (NETL) Contact: James Ammer james.ammer@netl.doe.gov Contract

  18. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Algeria Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  19. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Argentina Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  20. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Australia Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  1. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Canada Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  2. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Chad Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  3. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    China Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  4. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Eastern Europe Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or

  5. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Egypt Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  6. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    India and Pakistan Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or

  7. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Jordan Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  8. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Kazakhstan Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  9. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Libya Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  10. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Mexico Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  11. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Mongolia Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  12. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Morocco Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  13. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Northern South America Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or

  14. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Western Europe Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or

  15. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Oman Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  16. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    South America Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee

  17. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Poland Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  18. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Russia Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  19. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    South Africa Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee

  20. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Spain Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  1. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Thailand Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  2. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Tunisia Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  3. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Turkey Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  4. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Arab Emirates Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee

  5. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Kingdom Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  6. NORM Management in the Oil and Gas Industry

    SciTech Connect (OSTI)

    Cowie, Michael; Mously, Khalid; Fageeha, Osama; Nassar, Rafat

    2008-08-07

    It has been established that Naturally Occurring Radioactive Materials (NORM) accumulates at various locations along the oil/gas production process. Components such as wellheads, separation vessels, pumps, and other processing equipment can become NORM contaminated, and NORM can accumulate in sludge and other waste media. Improper handling and disposal of NORM contaminated equipment and waste can create a potential radiation hazard to workers and the environment. Saudi Aramco Environmental Protection Department initiated a program to identify the extent, form and level of NORM contamination associated with the company operations. Once identified the challenge of managing operations which had a NORM hazard was addressed in a manner that gave due consideration to workers and environmental protection as well as operations' efficiency and productivity. The benefits of shared knowledge, practice and experience across the oil and gas industry are seen as key to the establishment of common guidance on NORM management. This paper outlines Saudi Aramco's experience in the development of a NORM management strategy and its goals of establishing common guidance throughout the oil and gas industry.

  7. Sixty-sixth annual report of the state oil and gas supervisor

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    This report contains tabulated oil and gas statistics compiled during 1980 in California. On-shore and off-shore oil production, gas production, reserves, drilling activity, enhanced recovery activity, unconventional heavy oil recovery, geothermal operations and financial data are reported. (DMC)

  8. Natural gas: Governments and oil companies in the Third World

    SciTech Connect (OSTI)

    Davidson, A.; Hurst, C.; Mabro, R.

    1988-01-01

    It is asserted that oil companies claim to be generally receptive to gas development proposals; however, the lack of potential markets for gas, problems of foreign exchange convertibility, and lack of a legal framework often hinders their engagement. Governments, on the other hand, need to secure domestic energy supply and, if possible, gain some export earnings or royalties. An extensive discussion on the principles of pricing and fiscal regimes, potential points of disagreement is provided. A course of action is outlined from the managerial point of view to circumvent the most common pitfalls in planning and financing a gas project. Eight very detailed case studies are presented for Argentina, Egypt, Malaysia, Nigeria, Pakistan, Tanzania, Tunisia and Thailand.

  9. Transient aspects of unloading oil and gas wells with coiled tubing

    SciTech Connect (OSTI)

    Gu, H.

    1995-12-31

    Unloading oil and gas wells with coiled tubing (CT) conveyed nitrogen circulation is a transient process in which the original heavier fluid in a wellbore is displaced by nitrogen and lighter reservoir fluid. The transient aspects need to be considered when determining nitrogen volume and operation time for unloading a well. A computer wellbore simulator has been developed and used to study the transient effects. The simulator includes transient multiphase mass transport and takes into account the different fluids in the wellbore and from the reservoir. The simulator also includes the gas rise in the wellbore liquid below the CT and can be used for gas well unloading. The transient results of oil and gas well unloading are presented. The effects of CT size and depth, workover fluid, and nitrogen rate and volume on unloading are discussed. Unlike continuous gas lift, the total gas volume needed and the operation time in an unloading process can only be determined and optimized based on a transient analysis.

  10. Gas miscible displacement enhanced oil recovery: Technology status report

    SciTech Connect (OSTI)

    Not Available

    1986-10-01

    Gas miscible displacement enhanced oil recovery research is conducted by the US Department of Energy's Morgantown Energy Technology Center to advance the application of miscible carbon dioxide flooding. This research is an integral part of a multidisciplinary effort to improve the technology for producing additional oil from US resources. This report summarizes the problems of the technology and the 1986 results of the ongoing research that was conducted to solve those problems. Poor reservoir volumetric sweep efficiency is the major problem associated with gas flooding and all miscible displacements. This problem results from the channeling and viscous fingering that occur due to the large differences between viscosity or density of the displacing and displaced fluids (i.e., carbon dioxide and oil, respectively). Simple modeling and core flooding studies indicate that, because of differences in fluid viscosities, breakthrough can occur after only 30% of the total pore volume (PV) of the rock has been injected with gas, while field tests have shown breakthrough occurring much earlier. The differences in fluid densities lead to gravity segregation. The lower density carbon dioxide tends to override the residual fluids in the reservoir. This process would be considerably more efficient if a larger area of the reservoir could be contacted by the gas. Current research has focused on the mobility control, computer simulation, and reservoir heterogeneity studies. Three mobility control methods have been investigated: (1) the use of polymers for direct thickening of high-density carbon dioxide, (2) mobile ''foam-like dispersions'' of carbon dioxide and an aqueous surfactant, and (3) in situ deposition of chemical precipitates. 22 refs., 14 figs., 6 tabs.

  11. Alaska Oil and Gas Exploration, Development, and Permitting Project

    SciTech Connect (OSTI)

    Richard McMahon; Robert Crandall

    2006-03-31

    This is the final technical report for Project 15446, covering the grant period of October 2002 through March 2006. This project connects three parts of the oil exploration, development, and permitting process to form the foundation for an advanced information technology infrastructure to better support resource development and resource conservation. Alaska has nearly one-quarter of the nation's supply of crude oil, at least five billion barrels of proven reserves. The American Association of Petroleum Geologists report that the 1995 National Assessment identified the North Slope as having 7.4 billion barrels of technically recoverable oil and over 63 trillion cubic feet of natural gas. From these reserves, Alaska produces roughly one-fifth of the nation's daily crude oil production, or approximately one million barrels per day from over 1,800 active wells. The broad goal of this grant is to increase domestic production from Alaska's known producing fields through the implementation of preferred upstream management practices. (PUMP). Internet publication of extensive and detailed geotechnical data is the first task, improving the permitting process is the second task, and building an advanced geographical information system to offer continuing support and public access of the first two goals is the third task. Excellent progress has been made on all three tasks; the technical objectives as defined by the approved grant sub-tasks have been met. The end date for the grant was March 31, 2006.

  12. Cal. PRC Section 6910 - Oil and Gas and Mineral Leases | Open...

    Open Energy Info (EERE)

    PRC Section 6910 - Oil and Gas and Mineral Leases Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Cal. PRC Section 6910 - Oil and...

  13. 20 AAC 25 Alaska Oil and Gas Conservation Commission | Open Energy...

    Open Energy Info (EERE)

    AAC 25 Alaska Oil and Gas Conservation Commission Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: 20 AAC 25 Alaska Oil and...

  14. 16 TAC, part 1, chapter 3 Oil and Gas Division | Open Energy...

    Open Energy Info (EERE)

    TAC, part 1, chapter 3 Oil and Gas Division Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: 16 TAC, part 1, chapter 3 Oil...

  15. U.S. Natural Gas Gross Withdrawals from Oil Wells (Million Cubic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil Wells (Million Cubic Feet) U.S. Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 475,614 500,196 1993...

  16. US--State Offshore Natural Gas Withdrawals from Oil Wells (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Oil Wells (Million Cubic Feet) US--State Offshore Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  17. Indiana Natural Gas Withdrawals from Oil Wells (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Oil Wells (Million Cubic Feet) Indiana Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 92 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  18. Federal Offshore California Natural Gas Withdrawals from Oil Wells (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Oil Wells (Million Cubic Feet) Federal Offshore California Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 5,417 5,166 5,431 1980's 5,900 12,763 17,751 20,182 27,443 33,331 31,799 31,380 31,236 38,545 1990's 34,332 35,391 41,284 41,532 42,497 46,916 61,276 69,084 71,019 75,034 2000's 68,752 67,034 64,735 56,363 53,805 53,404 38,313 43,379 43,300 40,023 2010's 39,444 35,020 12,703

  19. Indiana Natural Gas Withdrawals from Oil Wells (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Oil Wells (Million Cubic Feet) Indiana Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 92 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  20. Energy Department Expands Gas Gouging Reporting System to Include 1-800

    Energy Savers [EERE]

    Number: 1-800-244-3301 | Department of Energy Expands Gas Gouging Reporting System to Include 1-800 Number: 1-800-244-3301 Energy Department Expands Gas Gouging Reporting System to Include 1-800 Number: 1-800-244-3301 September 6, 2005 - 9:50am Addthis Washington, DC - Energy Secretary Samuel W. Bodman announced today that the Department of Energy has expanded its gas gouging reporting system to include a toll-free telephone hotline. The hotline is available to American consumers starting

  1. Laser Oil and Gas Well Drilling Demonstration Videos

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    ANL's Laser Applications Laboratory and collaborators are examining the feasibility of adapting high-power laser technology to drilling for gas and oil. The initial phase is designed to establish a scientific basis for developing a commercial laser drilling system and determine the level of gas industry interest in pursuing future research. Using lasers to bore a hole offers an entirely new approach to mechanical drilling. The novel drilling system would transfer light energy from lasers on the surface, down a borehole by a fiber optic bundle, to a series of lenses that would direct the laser light to the rock face. Researchers believe that state-of-the-art lasers have the potential to penetrate rock many times faster than conventional boring technologies - a huge benefit in reducing the high costs of operating a drill rig. Because the laser head does not contact the rock, there is no need to stop drilling to replace a mechanical bit. Moreover, researchers believe that lasers have the ability to melt the rock in a way that creates a ceramic sheath in the wellbore, eliminating the expense of buying and setting steel well casing. A laser system could also contain a variety of downhole sensors, including visual imaging systems that could communicate with the surface through the fiber optic cabling. Earlier studies have been promising, but there is still much to learn. One of the primary objectives of the new study will be to obtain much more precise measurements of the energy requirements needed to transmit light from surface lasers down a borehole with enough power to bore through rocks as much as 20,000 feet or more below the surface. Another objective will be to determine if sending the laser light in sharp pulses, rather than as a continuous stream, could further increase the rate of rock penetration. A third aspect will be to determine if lasers can be used in the presence of drilling fluids. In most wells, thick fluids called "drilling muds" are injected into the borehole to wash out rock cuttings and keep water and other fluids from the underground formations from seeping into the well. The technical challenge will be to determine whether too much laser energy is expended to clear away the fluid where the drilling is occurring. (Copied with editing from http://www.ne.anl.gov/facilities/lal/laser_drilling.html). The demonstration videos, provided here in QuickTime format, are accompanied by patent documents and PDF reports that, together, provide an overall picture of this fascinating project.

  2. SMOOTH OIL & GAS FIELD OUTLINES MADE FROM BUFFERED WELLS

    U.S. Energy Information Administration (EIA) Indexed Site

    The VBA code provided at the bottom of this document is an updated version (from ArcGIS 9.0 to ArcGIS 9.2) of the polygon smoothing algorithm described below. A bug that occurred when multiple wells had the same location was also fixed. SMOOTH OIL & GAS FIELD OUTLINE POLYGONS MADE FROM BUFFERED WELLS Why smooth buffered field outlines? See the issues in the figure below: [pic] The smoothing application provided as VBA code below does the following: Adds area to the concave portions; doesn't

  3. Wireless technology collects real-time information from oil and gas wells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wireless technology collects real-time information from oil and gas wells Wireless technology collects real-time information from oil and gas wells The patented system delivers continuous electromagnetic data on the reservoir conditions, enabling economical and effective monitoring and analysis. April 3, 2012 One of several active projects, LANL and Chevron co-developed INFICOMM(tm), a wireless technology used to collect real-time temperature and pressure information from sensors in oil and gas

  4. 201X EIA-23S Annual Report of Domestic Oil and Gas Reserves, Summary Level

    Gasoline and Diesel Fuel Update (EIA)

    1X EIA-23S Annual Report of Domestic Oil and Gas Reserves, Summary Level 1 U.S. DEPARTMENT OF ENERGY Energy Information Administration Office of Oil and Gas Washington, DC 20585 OMB Number: 1905-0057 Expiration Date: xx/xx/xxxx Version No.: xxxx.xx Burden: 8 hours ANNUAL REPORT OF DOMESTIC OIL AND GAS RESERVES FORM EIA-23S Summary Level Report Instructions SURVEY YEAR 201X Table of Contents Page General Instructions

  5. The Strategic Center for Natural Gas and Oil R&D Program

    Energy Savers [EERE]

    Jared Ciferno Director, Strategic Center for Natural Gas & Oil The National Energy Technology Laboratory & The Strategic Center for Natural Gas and Oil R&D Program August 18, 2015 Tribal leader forum: U.S. Department of Energy oil and gas technical assistance capabilities Denver, Colorado 2 National Energy Technology Laboratory National Energy Technology Laboratory * Partner in DOE's national laboratory system * Five locations with 1,200 staff * 'Full-service' DOE National Laboratory

  6. Fact Sheet: Gas Prices and Oil Consumption Would Increase Without Biofuels

    Office of Environmental Management (EM)

    | Department of Energy Gas Prices and Oil Consumption Would Increase Without Biofuels Fact Sheet: Gas Prices and Oil Consumption Would Increase Without Biofuels Secretary of Energy Samuel W. Bodman and Secretary of Agriculture Edward T. Schafer sent a letter on June 11, 2008 to Senator Jeff Bingaman addressing a number of questions related to biofuels, food, and gasoline and diesel prices. This is a fact sheet on how biofuels are reducing America's dependence on oil. PDF icon Fact Sheet: Gas

  7. Effect of Exhaust Gas Recirculation (EGR) on Diesel Engine Oil - Impact on

    Office of Environmental Management (EM)

    Wear | Department of Energy Effect of Exhaust Gas Recirculation (EGR) on Diesel Engine Oil - Impact on Wear Effect of Exhaust Gas Recirculation (EGR) on Diesel Engine Oil - Impact on Wear Results of completed study on the effect of four exhaust gas recirculation levels on diesel engine oil during standard test with an API Cummins M-11 engine. PDF icon deer08_ajayi.pdf More Documents & Publications Effects of Fuel Dilution with Biodiesel on Lubricant Acidity, Oxidation and Corrosion

  8. Impact of Tropical Cyclones on Gulf of Mexico Crude Oil and Natural Gas Production, The

    Reports and Publications (EIA)

    2006-01-01

    This is a special analysis report on hurricanes and their effects on oil and natural gas production in the Gulf of Mexico region.

  9. Major Fuels","Electricity","Natural Gas","Fuel Oil","District...

    U.S. Energy Information Administration (EIA) Indexed Site

    (million square feet)","Total of Major Fuels","Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings ...",4657,67338,81552,66424,10...

  10. Major Fuels","Electricity",,"Natural Gas","Fuel Oil","District

    U.S. Energy Information Administration (EIA) Indexed Site

    of Buildings (thousand)","Floorspace (million square feet)","Sum of Major Fuels","Electricity",,"Natural Gas","Fuel Oil","District Heat" ,,,,"Primary","Site" "All Buildings...

  11. EIA Report 9/8/08 - Hurricane Impacts on U.S. Oil & Natural Gas...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... million cubic feet per day, have resumed operations at either reduced or normal levels. ... Gulf of Mexico Oil & Natural Gas Facts Energy Information Administration Gulf of Mexico ...

  12. Oil and Gas Supply Module of the National Energy Modeling System...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... June 1996. TLP Technology: SeaStar Minimal Platform For Small Deepwater Reserves, Atlantia Corporation, Oil and Gas Journal. Kuuskraa, Vello A., Boyer, Charles M. III: "Economic ...

  13. Obama Administration Announces New Partnership on Unconventional Natural Gas and Oil Research

    Broader source: Energy.gov [DOE]

    Three federal agencies announced a formal partnership to coordinate and align all research associated with development of our nation’s abundant unconventional natural gas and oil resources.

  14. 15th US-China Oil and Gas Industry Forum Opens in Chongqing, China |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 15th US-China Oil and Gas Industry Forum Opens in Chongqing, China 15th US-China Oil and Gas Industry Forum Opens in Chongqing, China September 17, 2015 - 9:17am Addthis 15th US-China Oil and Gas Industry Forum Opens in Chongqing, China This morning, Assistant Secretary for Fossil Energy Chris Smith, along with Zhang Yuqing, Deputy Administrator of China's National Energy Administration (NEA), opened the 15th US-China Oil and Gas Industry Forum (OGIF) in Chongqing,

  15. Final report on evaluation of cyclocraft support of oil and gas operations in wetland areas

    SciTech Connect (OSTI)

    Eggington, W.J.; Stevens, P.M.; John, C.J.; Harder, B.J.; Lindstedt, D.M.

    1994-10-01

    The cyclocraft is a proven hybrid aircraft, capable of VTOL, lifting heavy and bulky loads, highly controllable, having high safety characteristics and low operating costs. Mission Research Corporation (MRC), under Department of Energy sponsorship, is evaluating the potential use of cyclocraft in the transport of drill rigs, mud, pipes and other materials and equipment, in a cost effective and environmentally safe manner, to support oil and gas drilling, production, and transportation operations in wetland areas. Based upon the results of an earlier parametric study, a cyclocraft design, having a payload capacity of 45 tons and designated H.1 Cyclocraft, was selected for further study, including the preparation of a preliminary design and a development plan, and the determination of operating costs. This report contains all of the results derived from the program to evaluate the use of cyclocraft in the support of oil and gas drilling and production operations in wetland areas.

  16. Factors that will influence oil and gas supply and demand in the 21st century

    SciTech Connect (OSTI)

    Holditch, S.A.; Chianelli, R.R.

    2008-04-15

    A recent report published by the National Petroleum Council (NPC) in the United States predicted a 50-60% growth in total global demand for energy by 2030. Because oil, gas, and coal will continue to be the primary energy sources during this time, the energy industry will have to continue increasing the supply of these fuels to meet this increasing demand. Achieving this goal will require the exploitation of both conventional and unconventional reservoirs of oil and gas in (including coalbed methane) an environmentally acceptable manner. Such efforts will, in turn, require advancements in materials science, particularly in the development of materials that can withstand high-pressure, high-temperature, and high-stress conditions.

  17. Anatomy of success in oil and gas exploration in Pakistan, 1915--94

    SciTech Connect (OSTI)

    Quadri, V.N.; Quadri, S.M.G.J.

    1996-05-13

    Pakistan, flanked by Iran, Afghanistan, China, and India, is the size of Texas and Louisiana combined. The Indus and Baluchistan basins cover 80% of Pakistan`s total area. The country also has 230,000 sq km of marine Exclusive Economic Zone. The law regarding E and P activity was promulgated in 1986, replacing the previous Petroleum (Production) Rules of 1949. As a result of the new Petroleum Policy implemented in March 1994 and streamlining of the bid review and award process, acreage leased including reconnaissance during 1994 was 355,541 sq km onshore and 120,640 sq km offshore, with the number of operating groups also a record high of 46. Although complex and disturbed as a result of collision tectonics, Pakistan`s geology is as fascinating as the surface geomorphology, from the complex compressional thrusted to the relatively simple extensional rifted, salt related to transform fault associated, the reefs, too, all impressive traps for petroleum, at times almost textbook examples. However, domestic oil production at yearend 1994 was about 53,251 b/d of oil and 1.7 bcfd of gas. Oil and gas have been found in the Potwar/Upper Indus basin and Lower Indus basin, and mainly gas with one gas/condensate discovery in the Sulaiman/Middle Indus basin. This article attempts to present brief case history outlines of typical, significant oil and gas discoveries of Pakistan 1915--94 with respect to the two main productive basins, their source and reservoir sequences, in order to determine the anatomy of success in exploration in Pakistan.

  18. Outer Continental Shelf Oil and Gas Information Program. Update 2, August 1981, Outer Continental Shelf Oil and Gas Activities in the South Atlantic (US) and their Onshore Impacts: a summary report, July 1980

    SciTech Connect (OSTI)

    McCord, C.A.

    1981-01-01

    In July 1980, the Office of Outer Continental Shelf (OCS) Information issued an initial report called Outer Continental Shelf Oil and Gas Activities in the South Atlantic (US) and their Onshore Impacts: A Summary Report, July 1980. The purpose of this report was to provide State and local governments with current information about offshore oil and gas resources and onshore activity in the area extending from Cape Hatteras, North Carolina, to Cape Canaveral, Florida. This information was designed to assist in socioeconomic planning for the onshore impacts of oil and gas development in the affected areas. This report, Update 2, discusses Outer Continental Shelf oil and gas activities and their onshore impacts for the period of February 1981 to August 1981. Because of the minimal offshore oil- and gas-related activity in the South Atlantic Region, the onshore impacts are also minimal. Very little, if any, development has occurred as a result of exploration or development. Even though the South Atlantic OCS does contain large areas with hydrocarbon potential, little optimism has been generated by exploration associated with Lease Sale 43. Lease Sale 56 included tracts with geologic conditions more favorable to the generation, migration, and accumulation of hydrocarbons, especially the deepwatr tracts, but industry showed moderate interest in the first deepwater lease sale. The level of nearshore and onshore activity may increase with exploration associated with Lease Sale 56. More permanent onshore development will be contingent on the outcome of exploration efforts.

  19. Assumptions and Expectations for Annual Energy Outlook 2014: Oil and Gas Working Group

    Gasoline and Diesel Fuel Update (EIA)

    4: Oil and Gas Working Group AEO2014 Oil and Gas Supply Working Group Meeting Office of Petroleum, Gas, and Biofuels Analysis July 25, 2013 | Washington, DC http://www.eia.gov/forecasts/aeo/workinggroup/ WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE Introduction/Background Office of Petroleum, Gas, and Biofuels Analysis Working Group Presentation for Discussion Purposes Washington, DC, July 25, 2013 DO NOT QUOTE OR CITE as results are

  20. Mississippi's ratable-take rule preempted: Transcontinental Gas Pipeline Corp. v. State Oil and Gas Board

    SciTech Connect (OSTI)

    Box, A.L.

    1986-01-01

    While the Court's objections to Mississippi's ratable-take rules as applied to interstate pipelines are clear, conservation lawyers have concerns about the impact of the Transco decision upon state interests in oil and gas conservation and because the decision does not clarify the limits of preemption of state conservation legislation. A variety of state regulatory legislation challenges will likely result in different contexts. These could affect interest on royalties, payment procedures, and could even lead to conflicting regulations.

  1. Produce More Oil and Gas via eBusiness Data Sharing

    SciTech Connect (OSTI)

    Paul Jehn; Mike Stettner; Ben Grunewald

    2005-07-22

    GWPC, DOGGR, and other state agencies propose to build eBusiness applications based on a .NET front-end user interface for the DOE's Energy 100 Award-winning Risk Based Data Management System (RBDMS) data source and XML Web services. This project will slash the costs of regulatory compliance by automating routine regulatory reporting and permit notice review and by making it easier to exchange data with the oil and gas industry--especially small, independent operators. Such operators, who often do not have sophisticated in-house databases, will be able to use a subset of the same RBDMS tools available to the agencies on the desktop to file permit notices and production reports online. Once the data passes automated quality control checks, the application will upload the data into the agency's RBDMS data source. The operators also will have access to state agency datasets to focus exploration efforts and to perform production forecasting, economic evaluations, and risk assessments. With the ability to identify economically feasible oil and gas prospects, including unconventional plays, over the Internet, operators will minimize travel and other costs. Because GWPC will coordinate these data sharing efforts with the Bureau of Land Management (BLM), this project will improve access to public lands and make strides towards reducing the duplicative reporting to which industry is now subject for leases that cross jurisdictions. The resulting regulatory streamlining and improved access to agency data will make more domestic oil and gas available to the American public while continuing to safeguard environmental assets.

  2. PRODUCE MORE OIL AND GAS VIA eBUSINESS DATA SHARING

    SciTech Connect (OSTI)

    Paul Jehn; Mike Stettner

    2004-04-30

    GWPC, DOGGR, and other state agencies propose to build eBusiness applications based on a .NET front-end user interface for the DOE's Energy 100 Award-winning Risk Based Data Management System (RBDMS) data source and XML Web services. This project will slash the costs of regulatory compliance by automating routine regulatory reporting and permit notice review and by making it easier to exchange data with the oil and gas industry--especially small, independent operators. Such operators, who often do not have sophisticated in-house databases, will be able to use a subset of the same RBDMS tools available to the agencies on the desktop to file permit notices and production reports online. Once the data passes automated quality control checks, the application will upload the data into the agency's RBDMS data source. The operators also will have access to state agency datasets to focus exploration efforts and to perform production forecasting, economic evaluations, and risk assessments. With the ability to identify economically feasible oil and gas prospects, including unconventional plays, over the Internet, operators will minimize travel and other costs. Because GWPC will coordinate these data sharing efforts with the Bureau of Land Management (BLM), this project will improve access to public lands and make strides towards reducing the duplicative reporting to which industry is now subject for leases that cross jurisdictions. The resulting regulatory streamlining and improved access to agency data will make more domestic oil and gas available to the American public while continuing to safeguard environmental assets.

  3. Table 4.3 Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves, 1949-2010

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves, 1949-2010 Year Crude Oil 1 Natural Gas (Dry) Natural Gas Liquids 1 Total Thousand Barrels Million Cubic Feet 2 Thousand Barrels COE 3 Thousand Barrels Thousand Barrels COE 3 Thousand Barrels COE 3 American Petroleum Institute and American Gas Association Data<//td> 1949 24,649,489 179,401,693 32,013,150 3,729,012 3,069,146 59,731,785 1950 25,268,398 184,584,745 32,938,034 4,267,663 3,495,219 61,701,652 1951 27,468,031

  4. Water-related Issues Affecting Conventional Oil and Gas Recovery and

    Office of Scientific and Technical Information (OSTI)

    Potential Oil-Shale Development in the Uinta Basin, Utah (Technical Report) | SciTech Connect SciTech Connect Search Results Technical Report: Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah Citation Details In-Document Search Title: Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah Saline water disposal is one of the most pressing issues

  5. DOE, States Seek Closer Collaboration on Oil and Gas Supply and Delivery, Climate Change Mitigation

    Broader source: Energy.gov [DOE]

    An agreement aimed at improving cooperation and collaboration in the areas of oil and natural gas supply, delivery, and climate change mitigation, has been signed by the U.S. Department of Energy and the Interstate Oil and Gas Compact Commission (IOGCC).

  6. Drilling and operating oil, gas, and geothermal wells in an H/sub 2/S environment

    SciTech Connect (OSTI)

    Dosch, M.W.; Hodgson, S.F.

    1981-01-01

    The following subjects are covered: facts about hydrogen sulfides; drilling and operating oil, gas, and geothermal wells; detection devices and protective equipment; hazard levels and safety procedures; first aid; and H/sub 2/S in California oil, gas, and geothermal fields. (MHR)

  7. OIL AND NATURAL GAS SUBSECTOR CYBERSECURITY CAPABILITY MATURITY MODEL (ONG-C2M2)

    Energy Savers [EERE]

    OIL AND NATURAL GAS SUBSECTOR CYBERSECURITY CAPABILITY MATURITY MODEL (ONG-C2M2) Version 1.1 February 2014 Oil and Natural Gas Subsector Cybersecurity Capability Maturity Model Version 1.1 iii TABLE OF CONTENTS Acknowledgments ......................................................................................................................................... v 1. Introduction

  8. Serviceability of coiled tubing for sour oil and gas wells

    SciTech Connect (OSTI)

    1997-06-01

    Hydrogen sulfide (H{sub 2}S) can reduce useful coiled-tubing (CT) life by strength degradation through a combination of hydrogen blistering, hydrogen-induced cracking (HIC), stress-oriented hydrogen-induced cracking (SOHIC), sulfide-stress cracking (SSC), and possible weight-loss corrosion. These effects may work synergistically with the cyclic cold working of the steel that takes place during spooling and running. Prior studies on carbon steels have shown that cold work may significantly reduce the SSC threshold stresses. To develop a CT performance database, CLI Intl. Inc. conducted a multiclient program to increase understanding of the combined effects of strain cycling and resistance of CT to cracking in H{sub 2}S environments. The program was supported by 14 sponsors consisting of major oil and gas companies, service companies, CT manufacturers, and materials suppliers.

  9. Crude Oil and Lease Condensate Wet Natural Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. proved reserves, and reserves changes, 2013-2014 Crude Oil and Lease Condensate Wet Natural Gas billion barrels trillion cubic feet U.S. proved reserves at December 31, 2013 36.5 354.0 Total discoveries 5.4 50.5 Net revisions 0.4 1.0 Net Adjustments, Sales, Acquisitions 0.8 11.5 Production -3.2 -28.1 Net additions to U.S. proved reserves 3.4 34.8 U.S. proved reserves at December 31, 2014 39.9 388.8 Percent change in U.S. proved reserves 9.3% 9.8% Percent change calculated from unrounded

  10. Illinois Natural Gas Withdrawals from Oil Wells (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Oil Wells (Million Cubic Feet) Illinois Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 1 1 1 1 1 1 2 1 1 1 1 1 1992 1 1 1 1 1 1 1 1 1 1 1 1 1993 1 1 1 1 1 1 1 1 1 1 1 1 1994 1 1 1 1 1 1 1 1 1 1 1 1 1995 1 1 1 1 1 1 1 1 1 1 1 1 1996 1 1 1 1 1 1 1 1 1 1 1 1 1997 1 1 1 1 1 1 1 1 1 1 0 1 1998 1 1 1 1 1 1 0 0 0 0 0 0 1999 1 1 1 1 1 1 0 0 0 0 0 0 2000 1 1 1 0 1 1 0 0 0 0 0 0 2001 1 1 1 0 0 0 0 0 0 0 0 0 2002 1 1 1 0 0 0 0 0 0 0 0 0

  11. Hydrodynamic modeling for corrosion control in the oil and gas industry

    SciTech Connect (OSTI)

    Palacios, C.A.; Morales, J.L.

    1995-10-01

    This article describes a methodology used to select and establish corrosion control programs. These include corrosion rate predictions using well known correlations for flowing systems, materials selection, optimization of inhibitors and corrosion monitoring techniques. The methodology characterizes internal corrosion phenomenon integrating the hydrodynamic conditions of the flow (flow velocities, flow pattern, liquid holdups, and where the condensation is taking place within a pipeline) with those that predict corrosion rates. It can be applied in the whole oil/gas production system, including subsurface and surface equipment. The methodology uses single and two phase flow modeling techniques to: (1) optimize the entire production system to obtain the most efficient objective flow rate, taking into consideration the corrosive/erosive nature of the produced fluids and (2) characterize the corrosion nature of oil and gas transmission lines. As an example of its use, a characterization of corrosion nature of a gas transmission line is described. The hydrodynamic simulation was performed using commercially available simulators, and the corrosion rates were determined using published correlations. Results using this methodology allowed for corrosion control strategies, protection and monitoring criteria, and inhibition optimization.

  12. Assumptions and Expectations for Annual Energy Outlook 2015: Oil and Gas Working Group

    Gasoline and Diesel Fuel Update (EIA)

    Assumptions and Expectations for Annual Energy Outlook 2016: Oil and Gas Working Group AEO2016 Oil and Gas Supply Working Group Meeting Office of Petroleum, Gas, and Biofuels Analysis December 1, 2015| Washington, DC http://www.eia.gov/forecasts/aeo/workinggroup/ WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE We welcome feedback on our assumptions and documentation * The AEO Assumptions report http://www.eia.gov/forecasts/aeo/assumptions/

  13. Fact Sheet: Gas Prices and Oil Consumption Would Increase Without Biofuels

    Energy Savers [EERE]

    | Department of Energy Gas Prices and Oil Consumption Would Increase Without Biofuels Fact Sheet: Gas Prices and Oil Consumption Would Increase Without Biofuels June 11, 2008 - 1:30pm Addthis Secretary of Energy Samuel W. Bodman and Secretary of Agriculture Edward T. Schafer sent a letter on June 11, 2008 to Senator Jeff Bingaman addressing a number of questions related to biofuels, food, and gasoline and diesel prices. Read the letter. Without Biofuels, Gas Prices Would Increase $.20 to

  14. Gas-assisted gravity drainage (GAGD) process for improved oil recovery

    DOE Patents [OSTI]

    Rao, Dandina N. (Baton Rouge, LA)

    2012-07-10

    A rapid and inexpensive process for increasing the amount of hydrocarbons (e.g., oil) produced and the rate of production from subterranean hydrocarbon-bearing reservoirs by displacing oil downwards within the oil reservoir and into an oil recovery apparatus is disclosed. The process is referred to as "gas-assisted gravity drainage" and comprises the steps of placing one or more horizontal producer wells near the bottom of a payzone (i.e., rock in which oil and gas are found in exploitable quantities) of a subterranean hydrocarbon-bearing reservoir and injecting a fluid displacer (e.g., CO.sub.2) through one or more vertical wells or horizontal wells. Pre-existing vertical wells may be used to inject the fluid displacer into the reservoir. As the fluid displacer is injected into the top portion of the reservoir, it forms a gas zone, which displaces oil and water downward towards the horizontal producer well(s).

  15. Panel Discussion: New Directions in Human Reliability Analysis for Oil & Gas, Cybersecurity, Nuclear, and Aviation

    SciTech Connect (OSTI)

    Harold S. Blackman; Ronald Boring; Julie L. Marble; Ali Mosleh; Najmedin Meshkati

    2014-10-01

    This panel will discuss what new directions are necessary to maximize the usefulness of HRA techniques across different areas of application. HRA has long been a part of Probabilistic Risk Assessment in the nuclear industry as it offers a superior standard for risk-based decision-making. These techniques are continuing to be adopted by other industries including oil & gas, cybersecurity, nuclear, and aviation. Each participant will present his or her ideas concerning industry needs followed by a discussion about what research is needed and the necessity to achieve cross industry collaboration.

  16. H.R. 577: A Bill to amend the Internal Revenue Code of 1986 to provide a tax credit for the production of oil and gas from existing marginal oil and gas wells and from new oil and gas wells. Introduced in the House of Representatives, One Hundred Fourth Congress, First session

    SciTech Connect (OSTI)

    1995-12-31

    This document contains H.R. 577, A Bill to amend the Internal Revenue Code of 1986 to provide a tax credit for the production of oil and gas from existing marginal oil and gas wells and from new oil and gas wells. This Bill was introduced in the House of Representatives, 104th Congress, First Session, January 19, 1995.

  17. S.32: A Bill to amend the Internal Revenue Code of 1986 to provide a tax credit for the production of oil and gas from existing marginal oil and gas wells and from new oil and gas wells. Introduced in the Senate of the United States, One Hundred Fourth Congress, First session

    SciTech Connect (OSTI)

    1995-12-31

    This bill would establish tax credits for the production of oil and natural gas from existing marginal oil or gas wells, and from new oil and gas wells. It does so by adding a section to the Internal Revenue Code of 1986 which spells out the rules, the credit amounts, the scope of the terms used to define such facilities, and other rules.

  18. Oil and gas developments in North Africa in 1984

    SciTech Connect (OSTI)

    Michel, R.Ch.

    1985-10-01

    Petroleum rights in the 6 North African countries (Algeria, Egypt, Libya, Morocco, Sudan, and Tunisia) covered in this paper were 1,906,065 km/sup 2/ at the end of 1984, an increase of 4.6% from the 1,821,966 km/sup 2/ in force at the end of 1983. This increase is due to large awards in the Sudan despite significant relinquishments elsewhere. Seismic surveys conducted during 1984 decreased to about 510.5 crew-months onshore and 29.5 crew-months offshore. However, exploration in and off Egypt was higher compared to 1983. Exploratory drilling was lower, with only 125 wells drilled compared to 179 tests completed in 1983. The main decrease was in Egypt and Sudan, but drilling in Libya resulted in 20 more completions. A significant oil discovery was made in the offshore part of the Sirte basin, off southwest Cyrenaica. The success rate in North Africa ranged from 19% to 50% (Libya). Development drilling increased during 1984, as higher activity appears to have taken place in 3 countries. Oil production, with an estimated daily rate of 2,952,570 bbl, was up 2.8% from 1983 (2,871,460 BOPD). In Egypt, 7 fields located in the Gulf of Suez area went on stream during the year. Political unrest, which prevailed in southern Sudan during most of 1984, will likely delay the start-up of production in several fields. No statistics are available on gas production in North African countries.

  19. Oil and gas developments in North Africa in 1984

    SciTech Connect (OSTI)

    Michel, R.C.

    1985-10-01

    Petroleum rights in the 6 North African countries (Algeria, Egypt, Libya, Morocco, Sudan, and Tunisia) covered in this paper were 1,906,065 km/sup 2/ at the end of 1984. An increase of 4.6% from the 1,821,966 km/sup 2/ in force at the end of 1983. This increase is due to large awards in the Sudan despite significant relinquishments elsewhere. Seismic surveys conducted during 1984 decreased to about 510.5 crew-months onshore and 29.5 crew-months offshore. However, exploration in and off Egypt was higher compared to 1983. Exploratory drilling was lower, with only 125 wells drilled compared to 179 tests completed in 1983. The main decrease was in Egypt and Sudan, but drilling in Libya resulted in 20 more completions. A significant oil discovery was made in the offshore part of the Sirte basin, off southwest Cyrenaica. The success rate in North America ranged from 19% to 50% (Libya). Development drilling increased during 1984, as higher activity appears to have taken place in 3 countries. Oil production, with an estimated daily rate of 2,952,570 bbl, was 2.8% from 1983 (2,871,460 BOPD). In Egypt, 7 fields located in the Gulf of Suez area went on stream during the year. Political unrest, which prevailed in southern Sudan during most of 1984, will likely delay the start-up of production in several fields. No statistics are available on gas production in North African countries. 9 figures, 27 tables.

  20. Missouri Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    from Oil Wells (Million Cubic Feet) Missouri Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 NA NA 2010's NA NA NA 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Gross Withdrawals from Oil Wells Missouri Natural Gas Gross Withdrawals

  1. Oil & Gas Tech Center Breaks Ground in Oklahoma | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10 Reasons Why We're Excited about the New Oil & Gas Technology Center Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) 10 Reasons Why We're Excited about the New Oil & Gas Technology Center Michael Ming 2014.05.12 At the Oil & Gas Technology Center, we're building a world-class team that's working to solve

  2. Natural Gas Production and U.S. Oil Imports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Gas Production and U.S. Oil Imports Natural Gas Production and U.S. Oil Imports January 26, 2012 - 11:14am Addthis Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What are the key facts? Over the next 33 years, the Energy Information Administration expect domestic natural gas production to increase to 28 trillion cubic feet per year, contributing to a decline in U.S. reliance on imported crude oil. During the State of the Union speech Tuesday

  3. Access to DOE Database of Oil and Natural Gas Research Results Expanded |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Access to DOE Database of Oil and Natural Gas Research Results Expanded Access to DOE Database of Oil and Natural Gas Research Results Expanded January 12, 2011 - 12:00pm Addthis Washington, DC - The results of nearly four decades of research supported by the U.S. Department of Energy (DOE) are now available through the OnePetro online document repository. TheOnePetro website now contains NETL's Oil & Gas Knowledge Management Database. DOE's Knowledge Management

  4. Missouri Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    from Oil Wells (Million Cubic Feet) Missouri Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 NA NA 2010's NA NA NA 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Gross Withdrawals from Oil Wells Missouri Natural Gas Gross Withdrawals

  5. A Global R&D Network Driving GE's Oil & Gas Technology Pipeline | GE Global

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research A Global R&D Network Driving GE's Oil & Gas Technology Pipeline Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) A Global R&D Network Driving GE's Oil & Gas Technology Pipeline As we break ground on GE's newest Global Research Oil & Gas Technology Center, work is happening 24/7 at our

  6. Proceedings of the 1999 Oil and Gas Conference: Technology Options for Producer Survival

    SciTech Connect (OSTI)

    None available

    2000-04-12

    The 1999 Oil & Gas Conference was cosponsored by the U.S. Department of Energy (DOE), Office of Fossil Energy, Federal Energy Technology Center (FETC) and National Petroleum Technology Office (NPTO) on June 28 to 30 in Dallas, Texas. The Oil & Gas Conference theme, Technology Options for Producer Survival, reflects the need for development and implementation of new technologies to ensure an affordable, reliable energy future. The conference was attended by nearly 250 representatives from industry, academia, national laboratories, DOE, and other Government agencies. Three preconference workshops (Downhole Separation Technologies: Is it Applicable for Your Operations, Exploring and developing Naturally Fractured Low-Permeability Gas Reservoirs from the Rocky Mountains to the Austin Chalk, and Software Program Applications) were held. The conference agenda included an opening plenary session, three platform sessions (Sessions 2 and 3 were split into 2 concurrent topics), and a poster presentation reception. The platform session topics were Converting Your Resources Into Reserves (Sessions 1 and 2A), Clarifying Your Subsurface Vision (Session 2B), and High Performance, Cost Effective Drilling, Completion, Stimulation Technologies (Session 3B). In total, there were 5 opening speakers, 30 presenters, and 16 poster presentations.

  7. Reducing Onshore Natural Gas and Oil Exploration and Production Impacts Using a Broad-Based Stakeholder Approach

    SciTech Connect (OSTI)

    Amy Childers

    2011-03-30

    Never before has the reduction of oil and gas exploration and production impacts been as important as it is today for operators, regulators, non-governmental organizations and individual landowners. Collectively, these stakeholders are keenly interested in the potential benefits from implementing effective environmental impact reducing technologies and practices. This research project strived to gain input and insight from such a broad array of stakeholders in order to identify approaches with the potential to satisfy their diverse objectives. The research team examined three of the most vital issue categories facing onshore domestic production today: (1) surface damages including development in urbanized areas, (2) impacts to wildlife (specifically greater sage grouse), and (3) air pollution, including its potential contribution to global climate change. The result of the research project is a LINGO (Low Impact Natural Gas and Oil) handbook outlining approaches aimed at avoiding, minimizing, or mitigating environmental impacts. The handbook identifies technical solutions and approaches which can be implemented in a practical and feasible manner to simultaneously achieve a legitimate balance between environmental protection and fluid mineral development. It is anticipated that the results of this research will facilitate informed planning and decision making by management agencies as well as producers of oil and natural gas. In 2008, a supplemental task was added for the researchers to undertake a 'Basin Initiative Study' that examines undeveloped and/or underdeveloped oil and natural gas resources on a regional or geologic basin scope to stimulate more widespread awareness and development of domestic resources. Researchers assessed multi-state basins (or plays), exploring state initiatives, state-industry partnerships and developing strategies to increase U.S. oil and gas supplies while accomplishing regional economic and environmental goals.

  8. Taking Oil & Gas Pumping to a New Level | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Pumping Technology for Unconventional Oil and Gas Wells Jeremy Van Dam 2014.04.16 ... A photo of Jeremy Van Dam. About the Author Jeremy Van Dam Senior Mechanical Engineer ...

  9. Title 20 Alaska Administrative Code Section 25.112 Oil & Gas...

    Open Energy Info (EERE)

    12 Oil & Gas Well Plugging Requirements Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 20 Alaska Administrative Code...

  10. File:BOEMRE oil.gas.plant.platform.sta.brbra.map.4.2010.pdf ...

    Open Energy Info (EERE)

    oil.gas.plant.platform.sta.brbra.map.4.2010.pdf Jump to: navigation, search File File history File usage Federal Leases in Pacific Ocean, near Santa Barbara Channel Size of this...

  11. 16 TAC, part 1, chapter 3, rule 3.79 Definitions in Oil and Gas...

    Open Energy Info (EERE)

    9 Definitions in Oil and Gas Division Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: 16 TAC, part 1, chapter 3, rule 3.79...

  12. Oil & Gas Tech Center Breaks Ground in Oklahoma | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10 Reasons Why We're Excited about the New Oil & Gas Technology Center Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share...

  13. Title 20 Alaska Administrative Code Section 25.105 Oil & Gas...

    Open Energy Info (EERE)

    Alaska Administrative Code Section 25.105 Oil & Gas Well Abandonment Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title...

  14. Cal. PRC Section 6909 - Oil and Gas and Mineral Leases: Geothermal...

    Open Energy Info (EERE)

    09 - Oil and Gas and Mineral Leases: Geothermal Resources Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Cal. PRC Section 6909 -...

  15. Federal Oil and Gas Royalty Management Act of 1982 | Open Energy...

    Open Energy Info (EERE)

    Management Act of 1982 Jump to: navigation, search Statute Name Federal Oil and Gas Royalty Management Act of 1982 Year 1982 Url RoyaltyAct.jpg Description The Royalty Management...

  16. Title 25 CFR 225 Oil and Gas, Geothermal, and Solid Minerals...

    Open Energy Info (EERE)

    5 Oil and Gas, Geothermal, and Solid Minerals Agreements Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- Federal RegulationFederal Regulation:...

  17. Oil and Gas Recovery Data from the Riser Insertion Tub- ODS

    Broader source: Energy.gov [DOE]

    Oil and Gas Recovery Data from the Riser Insertion Tube from May 17 until the Riser Insertion Tube was disconnected on May 24 in preparation for cutting off the riser.

  18. Table 4.5 Crude Oil and Natural Gas Exploratory and Development Wells, 1949-2010

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Crude Oil and Natural Gas Exploratory and Development Wells, 1949-2010 Year Wells Drilled Successful Wells Footage Drilled 1 Average Footage Drilled Crude Oil 2 Natural Gas 3 Dry Holes 4 Total Crude Oil 2 Natural Gas 3 Dry Holes 4 Total Crude Oil 2 Natural Gas 3 Dry Holes 4 Total Number Percent Thousand Feet Feet per Well 1949 21,352 3,363 12,597 37,312 66.2 79,428 12,437 43,754 135,619 3,720 3,698 3,473 3,635 1950 23,812 3,439 14,799 42,050 64.8 92,695 13,685 50,977 157,358 3,893 3,979 3,445

  19. Table 4.6 Crude Oil and Natural Gas Exploratory Wells, 1949-2010

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Crude Oil and Natural Gas Exploratory Wells, 1949-2010 Year Wells Drilled Successful Wells Footage Drilled 1 Average Footage Drilled Crude Oil 2 Natural Gas 3 Dry Holes 4 Total Crude Oil 2 Natural Gas 3 Dry Holes 4 Total Crude Oil 2 Natural Gas 3 Dry Holes 4 Total Number Percent Thousand Feet Feet per Well 1949 1,406 424 7,228 9,058 20.2 5,950 2,409 26,439 34,798 4,232 5,682 3,658 3,842 1950 1,583 431 8,292 10,306 19.5 6,862 2,356 30,957 40,175 4,335 5,466 3,733 3,898 1951 1,763 454 9,539

  20. Table 4.7 Crude Oil and Natural Gas Development Wells, 1949-2010

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Crude Oil and Natural Gas Development Wells, 1949-2010 Year Wells Drilled Successful Wells Footage Drilled 1 Average Footage Drilled Crude Oil 2 Natural Gas 3 Dry Holes 4 Total Crude Oil 2 Natural Gas 3 Dry Holes 4 Total Crude Oil 2 Natural Gas 3 Dry Holes 4 Total Number Percent Thousand Feet Feet per Well 1949 19,946 2,939 5,369 28,254 81.0 73,478 10,028 17,315 100,821 3,684 3,412 3,225 3,568 1950 22,229 3,008 6,507 31,744 79.5 85,833 11,329 20,020 117,183 3,861 3,766 3,077 3,691 1951 21,416

  1. Oil and Gas Recovery Data from the Riser Insertion Tub- XLS

    Office of Energy Efficiency and Renewable Energy (EERE)

    Oil and Gas Recovery Data from the Riser Insertion Tube from May 17 until the Riser Insertion Tube was disconnected on May 24 in preparation for cutting off the riser.

  2. Electric Power Generation from Coproduced Fluids from Oil and Gas Wells

    Broader source: Energy.gov [DOE]

    The primary objective of this project is to demonstrate the technical and economic feasibility of generating electricity from non-conventional low temperature (150 to 300Âş F) geothermal resources in oil and gas settings.

  3. Register for DOE Tribal Leader Forum on Oil and Gas by Aug. 7

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Office of Indian Energy is hosting a forum for tribal leaders on Oil and Gas Technical Assistance Capabilities on Aug. 18 in Denver, Colorado.

  4. Profiles in Leadership: Paula Gant, Deputy Secretary for Oil and Gas

    Broader source: Energy.gov [DOE]

    This is Profiles in Leadership, a series of interviews with senior executives in the Office of Fossil Energy (FE). In this edition we talk to Paula Gant, Deputy Secretary for Oil and Gas

  5. Adapting Human Reliability Analysis from Nuclear Power to Oil and Gas Applications

    SciTech Connect (OSTI)

    Boring, Ronald Laurids

    2015-09-01

    ABSTRACT: Human reliability analysis (HRA), as currently used in risk assessments, largely derives its methods and guidance from application in the nuclear energy domain. While there are many similarities be-tween nuclear energy and other safety critical domains such as oil and gas, there remain clear differences. This paper provides an overview of HRA state of the practice in nuclear energy and then describes areas where refinements to the methods may be necessary to capture the operational context of oil and gas. Many key distinctions important to nuclear energy HRA such as Level 1 vs. Level 2 analysis may prove insignifi-cant for oil and gas applications. On the other hand, existing HRA methods may not be sensitive enough to factors like the extensive use of digital controls in oil and gas. This paper provides an overview of these con-siderations to assist in the adaptation of existing nuclear-centered HRA methods to the petroleum sector.

  6. Obama Administration Announces New Partnership on Unconventional Natural Gas and Oil Research

    Broader source: Energy.gov [DOE]

    Today, three federal agencies announced a formal partnership to coordinate and align all research associated with development of our nation’s abundant unconventional natural gas and oil resources.

  7. U.S. Average Depth of Crude Oil, Natural Gas, and Dry Developmental...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Crude Oil, Natural Gas, and Dry Developmental Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3...

  8. U.S. Footage Drilled for Crude Oil, Natural Gas, and Dry Exploratory...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    and Developmental Wells (Thousand Feet) U.S. Footage Drilled for Crude Oil, Natural Gas, and Dry Exploratory and Developmental Wells (Thousand Feet) Decade Year-0 Year-1 Year-2...

  9. U.S. Footage Drilled for Crude Oil, Natural Gas, and Dry Developmental...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Developmental Wells (Thousand Feet) U.S. Footage Drilled for Crude Oil, Natural Gas, and Dry Developmental Wells (Thousand Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  10. U.S. Average Depth of Crude Oil, Natural Gas, and Dry Exploratory...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Wells Drilled (Feet per Well) U.S. Average Depth of Crude Oil, Natural Gas, and Dry Exploratory Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  11. U.S. Average Depth of Crude Oil, Natural Gas, and Dry Exploratory...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    and Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Crude Oil, Natural Gas, and Dry Exploratory and Developmental Wells Drilled (Feet per Well) Decade Year-0...

  12. Environmental benefits of advanced oil and gas exploration and production technology

    SciTech Connect (OSTI)

    1999-10-01

    THROUGHOUT THE OIL AND GAS LIFE CYCLE, THE INDUSTRY HAS APPLIED AN ARRAY OF ADVANCED TECHNOLOGIES TO IMPROVE EFFICIENCY, PRODUCTIVITY, AND ENVIRONMENTAL PERFORMANCE. THIS REPORT FOCUSES SPECIFICALLY ON ADVANCES IN EXPLORATION AND PRODUCTION (E&P) OPERATIONS.

  13. Recovery of Fresh Water Resources from Desalination of Brine Produced During Oil and Gas Production Operations

    SciTech Connect (OSTI)

    David B. Burnett; Mustafa Siddiqui

    2006-12-29

    Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large volumes of brine water along with the petroleum resource. Currently, produced water is treated as a waste and is not available for any beneficial purposes for the communities where oil and gas is produced. Produced water contains different contaminants that must be removed before it can be used for any beneficial surface applications. Arid areas like west Texas produce large amount of oil, but, at the same time, have a shortage of potable water. A multidisciplinary team headed by researchers from Texas A&M University has spent more than six years is developing advanced membrane filtration processes for treating oil field produced brines The government-industry cooperative joint venture has been managed by the Global Petroleum Research Institute (GPRI). The goal of the project has been to demonstrate that treatment of oil field waste water for re-use will reduce water handling costs by 50% or greater. Our work has included (1) integrating advanced materials into existing prototype units and (2) operating short and long-term field testing with full size process trains. Testing at A&M has allowed us to upgrade our existing units with improved pre-treatment oil removal techniques and new oil tolerant RO membranes. We have also been able to perform extended testing in 'field laboratories' to gather much needed extended run time data on filter salt rejection efficiency and plugging characteristics of the process train. The Program Report describes work to evaluate the technical and economical feasibility of treating produced water with a combination of different separation processes to obtain water of agricultural water quality standards. Experiments were done for the pretreatment of produced water using a new liquid-liquid centrifuge, organoclay and microfiltration and ultrafiltration membranes for the removal of hydrocarbons from produced water. The results of these experiments show that hydrocarbons from produced water can be reduced from 200 ppm to below 29 ppm level. Experiments were also done to remove the dissolved solids (salts) from the pretreated produced water using desalination membranes. Produced water with up to 45,000 ppm total dissolved solids (TDS) can be treated to agricultural water quality water standards having less than 500 ppm TDS. The Report also discusses the results of field testing of various process trains to measure performance of the desalination process. Economic analysis based on field testing, including capital and operational costs, was done to predict the water treatment costs. Cost of treating produced water containing 15,000 ppm total dissolved solids and 200 ppm hydrocarbons to obtain agricultural water quality with less than 200 ppm TDS and 2 ppm hydrocarbons range between $0.5-1.5 /bbl. The contribution of fresh water resource from produced water will contribute enormously to the sustainable development of the communities where oil and gas is produced and fresh water is a scarce resource. This water can be used for many beneficial purposes such as agriculture, horticulture, rangeland and ecological restorations, and other environmental and industrial application.

  14. Review of Emerging Resources: U.S. Shale Gas and Shale Oil Plays

    Reports and Publications (EIA)

    2011-01-01

    To gain a better understanding of the potential U.S. domestic shale gas and shale oil resources, the Energy Information Administration (EIA) commissioned INTEK, Inc. to develop an assessment of onshore lower 48 states technically recoverable shale gas and shale oil resources. This paper briefly describes the scope, methodology, and key results of the report and discusses the key assumptions that underlie the results.

  15. Finding Hidden Oil and Gas Reserves | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Finding Hidden Oil and Gas Reserves Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » 10.01.12 Finding Hidden Oil and Gas Reserves Supercomputers +

  16. Factors Affecting the Relationship between Crude Oil and Natural Gas Prices (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01

    Over the 1995-2005 period, crude oil prices and U.S. natural gas prices tended to move together, which supported the conclusion that the markets for the two commodities were connected. Figure 26 illustrates the fairly stable ratio over that period between the price of low-sulfur light crude oil at Cushing, Oklahoma, and the price of natural gas at the Henry Hub on an energy-equivalent basis.

  17. Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine

    DOE Patents [OSTI]

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David

    2014-05-13

    A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

  18. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    ... depends on three factors: the costs of drilling and completing wells, the amount of oil ... with critical expertise and suitable drilling rigs and, preexisting gathering and ...

  19. Genealogy of Major U.S. Oil and Gas Producers

    Reports and Publications (EIA)

    2007-01-01

    Summarizes the mergers and acquisitions of the U.S. major oil companies that have occurred, in some cases, over approximately the last 20 years.

  20. Venezuela offshore oil and gas production development: Past, present and future

    SciTech Connect (OSTI)

    Perez La Salvia, H.; Schwartz, E.; Contreras, M.; Rodriguez, J.I.; Febres, G.; Gajardo, E.

    1995-12-01

    This paper presents a short history of offshore oil and gas production in Venezuela starting in Lake Maracaibo in 1923. The main emphasis has been the results of the recent R and D and the exploratory offshore programs in areas like Orinoco Delta located in the Atlantic Ocean, Northeast and Northwest Venezuela in the Caribbean sea. In the R and D offshore program the main objectives were: (1) To establish the local environmental, oceanographical, geotechnical and seismicity conditions for the Venezuelan Continental Platform. (2) To give a technical support to the PDVSA Operating Affiliates during the exploratory programs including: (a) to develop accurate drilling vessel positioning systems; (b) evaluation of sea bottom geotechnical conditions for safely operating the jack-ups and drilling vessels involved in the exploratory wells and (c) to identify those areas which because of their special nature require further investigation to establish preliminary type of platforms required for the areas to be developed or to evaluate other solutions proposed by Foreign Consultant Engineering Companies to the PDVSA Operating Affiliated Companies. The main objective of PDVSA for the coming future will be to develop the North of Paria Gas Field through the initially named Christopher Columbus Project now Sucre Gas, S.A., a consortium conformed by LaGoven, S.A. Shell, Exxon and Mitsubishi. objective of this paper is to give an idea of the history of the Venezuelan Oil and Gas Offshore development giving emphasis to the results of the INTEVEP S.A. Red offshore program and to show some results of the particular characteristics of oceanographical, environmental, geotechnical and seismic conditions in the main areas evaluated during the exploratory program: Orinoco Delta, Gulf of Paria and North of Paria.

  1. Review of technology for Arctic offshore oil and gas recovery

    SciTech Connect (OSTI)

    Sackinger, W. M.

    1980-08-01

    The technical background briefing report is the first step in the preparation of a plan for engineering research oriented toward Arctic offshore oil and gas recovery. A five-year leasing schedule for the ice-prone waters of the Arctic offshore is presented, which also shows the projected dates of the lease sale for each area. The estimated peak production rates for these areas are given. There is considerable uncertainty for all these production estimates, since no exploratory drilling has yet taken place. A flow chart is presented which relates the special Arctic factors, such as ice and permafrost, to the normal petroleum production sequence. Some highlights from the chart and from the technical review are: (1) in many Arctic offshore locations the movement of sea ice causes major lateral forces on offshore structures, which are much greater than wave forces; (2) spray ice buildup on structures, ships and aircraft will be considerable, and must be prevented or accommodated with special designs; (3) the time available for summer exploratory drilling, and for deployment of permanent production structures, is limited by the return of the pack ice. This time may be extended by ice-breaking vessels in some cases; (4) during production, icebreaking workboats will service the offshore platforms in most areas throughout the year; (5) transportation of petroleum by icebreaking tankers from offshore tanker loading points is a highly probable situation, except in the Alaskan Beaufort; and (6) Arctic pipelines must contend with permafrost, making instrumentation necessary to detect subtle changes of the pipe before rupture occurs.

  2. U.S. oil reserves highest since 1975, natural gas reserves set new record

    Gasoline and Diesel Fuel Update (EIA)

    U.S. oil reserves highest since 1975, natural gas reserves set new record U.S. proved oil reserves have topped 36 billion barrels for the first time in nearly four decades, while natural gas proved reserves climbed to a new record. In a new report, the U.S. Energy Information Administration says U.S. proved reserves of crude oil and lease condensate increased for the fifth year in a row in 2013 and exceed 36 billion barrels for the first time since 1975. North Dakota and Texas accounted for 90%

  3. Internal Revenue Service, Section 6166, and oil and gas: legislation by interpretation

    SciTech Connect (OSTI)

    Choate, G.M.; Massoglia, D.J.

    1983-06-01

    The importance of adequate estate planning regarding oil and gas properties has increased with the rise in world oil prices. The Internal Revenue Code, Sections 6166 and 6166A, which permit a deferment of estate tax payments by taxing future business earnings instead, inadvertently prohibits the estates of those who were actively engaged in the oil and gas industry as sole proprietors. Legislative reform is deemed to be necessary in order to allow Congress' original intentions to be realized. The background of the Code is discussed as well as the qualifications necessary in the IRS' estimation of electing those eligible for deferments. 25 references.

  4. Paula Gant Deputy Assistant Secretary for Oil and Natural Gas

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    years, domestic natural gas production has increased significantly, outpacing consumption growth, resulting in declining natural gas and LNG imports. Production growth is...

  5. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    SciTech Connect (OSTI)

    Unknown

    2000-11-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions during Fiscal Year 2000 (FY00). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs) who bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors connect with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the Regional Lead Organizations. The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal, state, and industry funding to achieve important goals for all of these sectors. This integrated funding base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies. This technical progress report summarizes PTTC's accomplishments during FY00, which lays the groundwork for further growth in the future. At a time of many industry changes and market movements, the organization has built a reputation and expectation to address industry needs of getting information distributed quickly which can impact the bottom line immediately.

  6. Natural Gas and Crude Oil Prices in AEO (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01

    If oil and natural gas were perfect substitutes in all markets where they are used, market forces would be expected to drive their delivered prices to near equality on an energy-equivalent basis. The price of West Texas Intermediate (WTI) crude oil generally is denominated in terms of barrels, where 1 barrel has an energy content of approximately 5.8 million Btu. The price of natural gas (at the Henry Hub), in contrast, generally is denominated in million Btu. Thus, if the market prices of the two fuels were equal on the basis of their energy contents, the ratio of the crude oil price (the spot price for WTI, or low-sulfur light, crude oil) to the natural gas price (the Henry Hub spot price) would be approximately 6.0. From 1990 through 2007, however, the ratio of natural gas prices to crude oil prices averaged 8.6; and in the Annual Energy Outlook 2009 projections from 2008 through 2030, it averages 7.7 in the low oil price case, 14.6 in the reference case, and 20.2 in the high oil price case.

  7. Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations

    SciTech Connect (OSTI)

    Rachel Henderson

    2007-09-30

    The project is titled 'Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations'. The Interstate Oil and Gas Compact Commission (IOGCC), headquartered in Oklahoma City, Oklahoma, is the principal investigator and the IOGCC has partnered with ALL Consulting, Inc., headquartered in Tulsa, Oklahoma, in this project. State agencies that also have partnered in the project are the Wyoming Oil and Gas Conservation Commission, the Montana Board of Oil and Gas Conservation, the Kansas Oil and Gas Conservation Division, the Oklahoma Oil and Gas Conservation Division and the Alaska Oil and Gas Conservation Commission. The objective is to characterize produced water quality and management practices for the handling, treating, and disposing of produced water from conventional oil and gas operations throughout the industry nationwide. Water produced from these operations varies greatly in quality and quantity and is often the single largest barrier to the economic viability of wells. The lack of data, coupled with renewed emphasis on domestic oil and gas development, has prompted many experts to speculate that the number of wells drilled over the next 20 years will approach 3 million, or near the number of current wells. This level of exploration and development undoubtedly will draw the attention of environmental communities, focusing their concerns on produced water management based on perceived potential impacts to fresh water resources. Therefore, it is imperative that produced water management practices be performed in a manner that best minimizes environmental impacts. This is being accomplished by compiling current best management practices for produced water from conventional oil and gas operations and to develop an analysis tool based on a geographic information system (GIS) to assist in the understanding of watershed-issued permits. That would allow management costs to be kept in line with the specific projects and regions, which increases the productive life of wells and increases the ultimate recoverable reserves in the ground. A case study was conducted in Wyoming to validate the applicability of the GIS analysis tool for watershed evaluations under real world conditions. Results of the partnered research will continue to be shared utilizing proven methods, such as on the IGOCC Web site, preparing hard copies of the results, distribution of documented case studies, and development of reference and handbook components to accompany the interactive internet-based GIS watershed analysis tool. Additionally, there have been several technology transfer seminars and presentations. The goal is to maximize the recovery of our nation's energy reserves and to promote water conservation.

  8. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    SciTech Connect (OSTI)

    Donald Duttlinger

    1999-12-01

    During FY99, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTfC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY99, which lay the groundwork for further growth in the future.

  9. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    SciTech Connect (OSTI)

    Unknown

    1999-10-31

    During FY99, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTTC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY99, which lay the groundwork for further growth in the future.

  10. Assumptions and Expectations for Annual Energy Outlook 2015: Oil and Gas Working Group

    Gasoline and Diesel Fuel Update (EIA)

    5: Oil and Gas Working Group AEO2015 Oil and Gas Supply Working Group Meeting Office of Petroleum, Gas, and Biofuels Analysis August 7, 2014 | Washington, DC http://www.eia.gov/forecasts/aeo/workinggroup/ WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE Changes in release cycles for EIA's AEO and IEO * To focus more resources on rapidly changing energy markets and how they might evolve over the next few years, the U.S. Energy Information

  11. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    SciTech Connect (OSTI)

    Unknown

    2002-11-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers make timely, informed technology decisions by providing access to information during Fiscal Year 2002 (FY02). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs) and three satellite offices that efficiently extend the program reach. They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the regional networks. The role of the national Headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy with state and industry funding to achieve important goals for all of these sectors. This integrated funding base is combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff to achieve notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies without direct contact with R&D efforts. The DOE participation is managed through the National Energy Technology Laboratory (NETL), which deploys a national natural gas program via the Strategic Center for Natural Gas (SCNG) and a national oil program through the National Petroleum Technology Office (NTPO). This technical progress report summarizes PTTC's accomplishments during FY02. Activities were maintained at recent record levels. Strategic planning from multiple sources within the framework of the organization gives PTTC the vision to have even more impact in the future. The Houston Headquarters (HQ) location has strived to serve PTTC well in better connecting with producers and the service sector. PTTC's reputation for unbiased bottom line information stimulates cooperative ventures with other organizations. Efforts to build the contact database, exhibit at more trade shows and a new E-mail Technology Alert service are expanding PTTC's audience. All considered, the PTTC network has proven to be an effective way to reach domestic producers locally, regionally and nationally.

  12. Federal Perspective on Opportunities for Hydrogen and Natural Gas for Transportation„Including a Natural Gas Perspective

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Perspective on Opportunities for Hydrogen and Natural Gas for Transportation Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles - Workshop American Gas Association, Washington, D.C. Fred Joseck Fuel Cell Technologies Office Office of Sustainable Transportation U.S. Department of Energy September 9, 2014 2 | Fuel Cell Technologies Office eere.energy.gov The Potential for Natural Gas in Transportation With ample NG resources available , four potential pathways to

  13. International oil and gas exploration and development: 1991

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    This report starts where the previous quarterly publication ended. This first publication of a new annual series contains most of the same data as the quarterly report, plus some new material, through 1991. It also presents historical data covering a longer period of time than the previous quarterly report. Country-level data on oil reserves, oil production, active drilling rigs, seismic crews, wells drilled, oil reserve additions, and oil reserve-to-production rations (R/P ratios) are listed for about 85 countries, where available, from 1970 through 1991. World and regional summaries are given in both tabular and graphical form. The most popular table in the previous quarterly report, a listing of new discoveries, continues in this annual report as Appendix A.

  14. Chris Smith Deputy Assistant Secretary for Oil and Natural Gas

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    American families are estimated to save approximately 1.7 trillion at the pump, and cut oil consumption by 12 billion barrels. The Administration is also investing in advanced...

  15. Oil and gas exploration system and method for detecting trace amounts of hydrocarbon gases in the atmosphere

    DOE Patents [OSTI]

    Wamsley, Paula R. (Littleton, CO); Weimer, Carl S. (Littleton, CO); Nelson, Loren D. (Evergreen, CO); O'Brien, Martin J. (Pine, CO)

    2003-01-01

    An oil and gas exploration system and method for land and airborne operations, the system and method used for locating subsurface hydrocarbon deposits based upon a remote detection of trace amounts of gases in the atmosphere. The detection of one or more target gases in the atmosphere is used to indicate a possible subsurface oil and gas deposit. By mapping a plurality of gas targets over a selected survey area, the survey area can be analyzed for measurable concentration anomalies. The anomalies are interpreted along with other exploration data to evaluate the value of an underground deposit. The system includes a differential absorption lidar (DIAL) system with a spectroscopic grade laser light and a light detector. The laser light is continuously tunable in a mid-infrared range, 2 to 5 micrometers, for choosing appropriate wavelengths to measure different gases and avoid absorption bands of interference gases. The laser light has sufficient optical energy to measure atmospheric concentrations of a gas over a path as long as a mile and greater. The detection of the gas is based on optical absorption measurements at specific wavelengths in the open atmosphere. Light that is detected using the light detector contains an absorption signature acquired as the light travels through the atmosphere from the laser source and back to the light detector. The absorption signature of each gas is processed and then analyzed to determine if a potential anomaly exists.

  16. The impact of corrosion on the oil and gas industry

    SciTech Connect (OSTI)

    Kermani, M.B.; Harrop, D.

    1996-08-01

    The impact of corrosion on the oil industry has been viewed in terms of its effect on both capital and operational expenditures (CAPEX and OPEX) and health, safety, and the environment (HSE). To fight against the high cost and the impact of corrosion within the oil industry, an overview of topical research and engineering activities is presented. This covers corrosion and metallurgy issues related to drilling, production, transportation, and refinery activities.

  17. The impact of corrosion on oil and gas industry

    SciTech Connect (OSTI)

    Kermani, M.B.; Harrop, D.

    1995-11-01

    The impact of corrosion on the oil industry has been viewed in terms of its effect on both capital and operational expenditures (CAPEX and OPEX) and health, safety and the environment (HSE). To fight against the high cost and the impact of corrosion within the oil industry, an overview of topical research and engineering activities is presented. This covers corrosion and metallurgy issues related to drilling, production, transportation and refinery activities.

  18. FE Oil and Natural Gas News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by the U.S. Department of Energy. March 30, 2010 Results from DOE Expedition Confirm Existence of Resource-Quality Gas Hydrate in Gulf of Mexico Gas hydrate, a potentially immense...

  19. Visualization of Solution Gas Drive in Viscous Oil, SUPRI TR-126

    SciTech Connect (OSTI)

    George, D.S.; Kovscek, A.R.

    2001-07-23

    Several experimental studies of solution gas drive are available in this report. Almost all of the studies have used light oil. Solution gas drive behavior, especially in heavy oil reservoirs, is poorly understood. Experiments were performed in which pore-scale solution gas drive phenomena were viewed in water/carbon dioxide and viscous oil/carbon dioxide systems. A new pressure vessel was designed and constructed to house silicon-wafer micromodels that previously operated at low (<3 atm) pressure. The new apparatus is used for the visual studies. Several interesting phenomena were viewed. The repeated nucleation of gas bubbles was observed at a gas-wet site occupied by dirt. Interestingly, the dissolution of a gas bubble into the liquid phase was previously recorded at the same nucleation site. Gas bubbles in both systems grew to span one ore more pore bodies before mobilization. Liquid viscosity affected the ease with which gas bubbles coalesced. More viscous solutions result in slower rates of coalescence. The transport of solid particles on gas-liquid interfaces was also observed.

  20. Oil and gas resources of the Fergana basin (Uzbekistan, Tadzhikistan, and Kyrgyzstan). Advance summary

    SciTech Connect (OSTI)

    Not Available

    1993-12-07

    The Energy Information Administration (EIA), in cooperation with the US Geological Survey (USGS), has assessed 13 major petroleum producing regions outside of the United States. This series of assessments has been performed under EIA`s Foreign Energy Supply Assessment Program (FESAP). The basic approach used in these assessments was to combine historical drilling, discovery, and production data with EIA reserve estimates and USGS undiscovered resource estimates. Field-level data for discovered oil were used for these previous assessments. In FESAP, supply projections through depletion were typically formulated for the country or major producing region. Until now, EIA has not prepared an assessment of oil and gas provinces in the former Soviet Union (FSU). Before breakup of the Soviet Union in 1991, the Fergana basin was selected for a trial assessment of its discovered and undiscovered oil and gas. The object was to see if enough data could be collected and estimated to perform reasonable field-level estimates of oil and gas in this basin. If so, then assessments of other basins in the FSU could be considered. The objective was met and assessments of other basins can be considered. Collected data for this assessment cover discoveries through 1987. Compared to most other oil and gas provinces in the FSU, the Fergana basin is relatively small in geographic size, and in number and size of most of its oil and gas fields. However, with recent emphasis given to the central graben as a result of the relatively large Mingbulak field, the basin`s oil and gas potential has significantly increased. At least 7 additional fields to the 53 fields analyzed are known and are assumed to have been discovered after 1987.

  1. Improvement in oil recovery using cosolvents with CO{sub 2} gas floods

    SciTech Connect (OSTI)

    Raible, C.

    1992-01-01

    This report presents the results of investigations to improve oil recovery using cosolvents in CO{sub 2} gas floods. Laboratory experiments were conducted to evaluate the application and selection of cosolvents as additives to gas displacement processes. A cosolvent used as a miscible additive changed the properties of the supercritical gas phase. Addition of a cosolvent resulted in increased viscosity and density of the gas mixture, and enhanced extraction of oil compounds into the CO{sub 2} rich phase. Gas phase properties were measured in an equilibrium cell with a capillary viscometer and a high pressure densitometer. A number of requirements must be considered in the application of a cosolvent. Cosolvent miscibility with CO{sub 2}, brine solubility, cosolvent volatility and relative quantity of the cosolvent partitioning into the oil phase were factors that must be considered for the successful application of cosolvents. Coreflood experiments were conducted with selected cosolvents to measure oil recovery efficiency. The results indicate lower molecular weight additives, such as propane, are the most effective cosolvents to increase oil recovery.

  2. Improvement in oil recovery using cosolvents with CO sub 2 gas floods

    SciTech Connect (OSTI)

    Raible, C.

    1992-01-01

    This report presents the results of investigations to improve oil recovery using cosolvents in CO{sub 2} gas floods. Laboratory experiments were conducted to evaluate the application and selection of cosolvents as additives to gas displacement processes. A cosolvent used as a miscible additive changed the properties of the supercritical gas phase. Addition of a cosolvent resulted in increased viscosity and density of the gas mixture, and enhanced extraction of oil compounds into the CO{sub 2} rich phase. Gas phase properties were measured in an equilibrium cell with a capillary viscometer and a high pressure densitometer. A number of requirements must be considered in the application of a cosolvent. Cosolvent miscibility with CO{sub 2}, brine solubility, cosolvent volatility and relative quantity of the cosolvent partitioning into the oil phase were factors that must be considered for the successful application of cosolvents. Coreflood experiments were conducted with selected cosolvents to measure oil recovery efficiency. The results indicate lower molecular weight additives, such as propane, are the most effective cosolvents to increase oil recovery.

  3. Preferential right of purchase issues in oil and gas property sales

    SciTech Connect (OSTI)

    Christiansen, M.D.

    1996-09-01

    The business of buying and selling producing oil and gas properties has been active over the past decade. On frequently encountered difficulty is that many producing properties are subject to operating agreements containing `preferential right of purchase` PRP provisions, also referred to as rights of first refusal or preemptive rights. Under a PRP clause, a party wanting to sell its interest must first provide notice to other parties to the operating agreement and an opportunity to acquire the sellers rights and interests in the property. Determining if a PRP clause applies to a particular transaction and the extent of such application is not always easy. In addition if the PRP clause does apply and the holder elects to purchase the property, the deal for which the buyer and seller have bargained may be frustrated. Topics covered in this article include the following: scope of `sales` covered by the PRP clause; exclusion from preferential right; events triggering the PRP provision.

  4. High-temperature batteries for geothermal and oil/gas borehole applications

    SciTech Connect (OSTI)

    GUIDOTTI,RONALD A.

    2000-05-25

    A literature survey and technical evaluation was carried out of past and present battery technologies with the goal of identifying appropriate candidates for use in geothermal borehole and, to a lesser extent, oil/gas boreholes. The various constraints that are posed by such an environment are discussed. The promise as well as the limitations of various candidate technologies are presented. Data for limited testing of a number of candidate systems are presented and the areas for additional future work are detailed. The use of low-temperature molten salts shows the most promise for such applications and includes those that are liquid at room temperature. The greatest challenges are to develop an appropriate electrochemical couple that is kinetically stable with the most promising electrolytes--both organic as well as inorganic--over the wide operating window that spans both borehole environments.

  5. Transcontinental Gas Pipeline Corp. v. Oil and Gas Board of Mississippi: the demise of state ratable-take requirements

    SciTech Connect (OSTI)

    Frankenburg, K.M.

    1988-01-01

    Natural gas was not widely used until the 1930s when the development of seamless pipe enabled gas to be delivered at high compression to markets far from the wellhead. Now the availability and relatively low cost of natural gas have resulted in its widespread use in both home heating and industry. Regulation of this important fuel is consequently a hotly debated issue. The scope and fundamental purpose of the Natural Gas and Policy Act of 1978 (NGPA) was recently the subject of the Supreme Court's opinion in Transcontinental Gas Pipeline Corp v. Oil and Gas Board of Mississippi (Transcontinental). In a five-to-four decision, the Court held that the NGPA pre-empted the enforcement of a state ratable-take requirement. This Note examines Justice Blackmun's majority opinion and the persuasive dissent presented by Justice Rehnquist in the court's decision. The effects of the decision, the Court's first interpretation of NPGA, will undoubtedly be quite significant.

  6. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    SciTech Connect (OSTI)

    Donald F. Duttlinger; E. Lance Cole

    2003-12-15

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers to make timely, informed technology decisions. Functioning as a cohesive national organization, PTTC has active grassroots programs through its 10 Regional Lead Organizations (RLOs) and 3 Satellite Offices that encompass all of the oil- and natural gas-producing regions in the U.S. Active volunteer leadership from the Board and regional Producer Advisory Groups keeps activities focused on producer's needs. Technical expertise and personal networks of national and regional staff enable PTTC to deliver focused, technology-related information in a manner that is cost and time effective for independents. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy with matching state and industry funding, forming a unique partnership. This final report summarizes PTTC's accomplishments. In this final fiscal year of the contract, activities exceeded prior annual activity levels by significant percentages. Strategic planning implemented during the year is focusing PTTC's attention on changes that will bear fruit in the future. Networking and connections are increasing PTTC's sphere of influence with both producers and the service sector. PTTC's reputation for unbiased bottom-line information stimulates cooperative ventures. In FY03 PTTC's regions held 169 workshops, drawing 8,616 attendees. There were nearly 25,000 reported contacts. This represents a 38% increase in attendance and 34% increase in contacts as compared to FY02 activity. Repeat attendance at regional workshops, a measure of customer satisfaction and value received, remained strong at 50%. 39% of participants in regional workshops respond ''Yes'' on feedback forms when asked if they are applying technologies based on knowledge gained through PTTC. This feedback confirms that producers are taking action with the information they receive. RLO Directors captured examples demonstrating how PTTC activities influenced industry activity. Additional follow-up in all regions explored industry's awareness of PTTC and the services it provides. PTTC publishes monthly case studies in the ''Petroleum Technology Digest in World Oil'' and monthly Tech Connections columns in the ''American Oil and Gas Reporter''. Email Tech Alerts are utilized to notify the O&G community of DOE solicitations and demonstration results, PTTC key technical information and meetings, as well as industry highlights. Workshop summaries are posted online at www.pttc.org. PTTC maintains an active exhibit schedule at national industry events. The national communications effort continues to expand the audience PTTC reaches. The network of national and regional websites has proven effective for conveying technology-related information and facilitating user's access to basic oil and gas data, which supplement regional and national newsletters. The regions frequently work with professional societies and producer associations in co-sponsored events and there is a conscious effort to incorporate findings from DOE-supported research, development and demonstration (RD&D) projects within events. The level of software training varies by region, with the Rocky Mountain Region taking the lead. Where appropriate, regions develop information products that provide a service to industry and, in some cases, generate moderate revenues. Data access is an on-going industry priority, so all regions work to facilitate access to public source databases. Various outreach programs also emanate from the resource centers, including targeted visits to producers.

  7. Analysis of Oil and Gas Production in the Arctic National Wildlife Refuge

    Reports and Publications (EIA)

    2004-01-01

    This study analyzed the impact on future oil imports and expenditures of opening the Arctic National Wildlife Refuge (ANWR) to petroleum development. High, low, and mean ANWR oil resource case projections were compared to the Annual Energy Outlook 2004 reference case. The study also examined whether potential synergies exist in opening ANWR to petroleum development and the construction of an Alaska gas pipeline from the North Slope to the lower 48 states.

  8. Integration of High Temperature Gas-cooled Reactor Technology with Oil Sands Processes

    SciTech Connect (OSTI)

    L.E. Demick

    2011-10-01

    This paper summarizes an evaluation of siting an HTGR plant in a remote area supplying steam, electricity and high temperature gas for recovery and upgrading of unconventional crude oil from oil sands. The area selected for this evaluation is the Alberta Canada oil sands. This is a very fertile and active area for bitumen recovery and upgrading with significant quantities piped to refineries in Canada and the U.S Additionally data on the energy consumption and other factors that are required to complete the evaluation of HTGR application is readily available in the public domain. There is also interest by the Alberta oil sands producers (OSP) in identifying alternative energy sources for their operations. It should be noted, however, that the results of this evaluation could be applied to any similar oil sands area.

  9. Oil and Natural Gas Program Commericialized Technologies and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Using innovative technologies normally associated with ... pre-treatment process to treat and recycle ... Gas Gathering and Flow Line Tool Vortex Flow LLC's new SX ...

  10. FE Oil and Natural Gas News | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    research projects aimed at addressing the technical challenges of producing natural gas from shales and tight sands, while simultaneously reducing environmental footprints and...

  11. EIA-914 Monthly Crude Oil, Lease Condensate, and Natural Gas...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Follow up with respondents via personal communication and research is carried out when a ... Gas Production Report Methodology 10 companies are correctly identified and matched. ...

  12. Alaska oil and gas: Energy wealth or vanishing opportunity

    SciTech Connect (OSTI)

    Thomas, C.P.; Doughty, T.C.; Faulder, D.D.; Harrison, W.E.; Irving, J.S.; Jamison, H.C.; White, G.J.

    1991-01-01

    The purpose of the study was to systematically identify and review (a) the known and undiscovered reserves and resources of arctic Alaska, (b) the economic factors controlling development, (c) the risks and environmental considerations involved in development, and (d) the impacts of a temporary shutdown of the Alaska North Slope Oil Delivery System (ANSODS). 119 refs., 45 figs., 41 tabs.

  13. TREATMENT OF PRODUCED OIL AND GAS WATERS WITH SURFACTANT-MODIFIED ZEOLITE

    SciTech Connect (OSTI)

    Lynn E. Katz; R.S. Bowman; E.J. Sullivan

    2003-11-01

    Co-produced water from the oil and gas industry accounts for a significant waste stream in the United States. It is by some estimates the largest single waste stream in the country, aside from nonhazardous industrial wastes. Characteristics of produced water include high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component, and chemicals added during the oil-production process. While most of the produced water is disposed via reinjection, some must be treated to remove organic constituents before the water is discharged. Current treatment options are successful in reducing the organic content; however, they cannot always meet the levels of current or proposed regulations for discharged water. Therefore, an efficient, cost-effective treatment technology is needed. Surfactant-modified zeolite (SMZ) has been used successfully to treat contaminated ground water for organic and inorganic constituents. In addition, the low cost of natural zeolites makes their use attractive in water-treatment applications. This report summarizes the work and results of this four-year project. We tested the effectiveness of surfactant-modified zeolite (SMZ) for removal of BTEX with batch and column experiments using waters with BTEX concentrations that are comparable to those of produced waters. The data from our experimental investigations showed that BTEX sorption to SMZ can be described by a linear isotherm model, and competitive effects between compounds were not significant. The SMZ can be readily regenerated using air stripping. We field-tested a prototype SMZ-based water treatment system at produced water treatment facilities and found that the SMZ successfully removes BTEX from produced waters as predicted by laboratory studies. When compared to other existing treatment technologies, the cost of the SMZ system is very competitive. Furthermore, the SMZ system is relatively compact, does not require the storage of potentially hazardous chemicals, and could be readily adapted to an automated system.

  14. Casting Apparatus Including A Gas Driven Molten Metal Injector And Method

    DOE Patents [OSTI]

    Meyer, Thomas N. (Murrysville, PA)

    2004-06-01

    The casting apparatus (50) includes a holding vessel (10) for containing a supply of molten metal (12) and a casting mold (52) located above the holding vessel (10) and having a casting cavity (54). A molten metal injector (14) extends into the holding vessel (10) and is at least partially immersed in the molten metal (12) in the holding vessel (10). The molten metal injector (14) is in fluid communication with the casting cavity (54). The molten metal injector (14) has an injector body (16) defining an inlet opening (24) for receiving molten metal into the injector body (16). A gas pressurization source (38) is in fluid communication with the injector body (16) for cyclically pressurizing the injector body (16) and inducing molten metal to flow from the injector body (16) to the casting cavity (54). An inlet valve (42) is located in the inlet opening (24) in the injector body (16) for filling molten metal into the injector body (16). The inlet valve (42) is configured to prevent outflow of molten metal from the injector body (16) during pressurization and permit inflow of molten metal into the injector body (16) after pressurization. The inlet valve (42) has an inlet valve actuator (44) located above the surface of the supply of molten metal (12) and is operatively connected to the inlet valve (42) for operating the inlet valve (42) between open and closed positions.

  15. Africa: Unrest and restrictive terms limit abundant potential. [Oil and gas exploration and development in Africa

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    This paper summarizes the drilling and exploration activity of the oil and gas industries of Egypt, Libya, Tunisia, Algeria, Morocco, Nigeria, Cameroon, Gabon, the Congo, Angola, and South Africa. Information is provided on current and predicted trends in well drilling activities (both onshore and offshore), numbers of new wells, footage information, production statistics and what fields accounted for this production, and planned new exploration activities. The paper also describes the current status of government policies and political problems affecting the oil and gas industry.

  16. Breaking Ground for GE Oil & Gas Tech Center|GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Announces New Technology Partnership with Devon Energy at Global Research Oil & Gas Technology Center in Oklahoma City Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) GE Announces New Technology Partnership with Devon Energy at Global Research Oil & Gas Technology Center in Oklahoma City $125M global hub to

  17. Well-to-Wheels Greenhouse Gas Emissions of Canadian Oil Sands Products:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Implications for U.S. Petroleum Fuels | Argonne National Laboratory Well-to-Wheels Greenhouse Gas Emissions of Canadian Oil Sands Products: Implications for U.S. Petroleum Fuels Title Well-to-Wheels Greenhouse Gas Emissions of Canadian Oil Sands Products: Implications for U.S. Petroleum Fuels Publication Type Journal Article Year of Publication 2015 Authors Cai, H, Brandt, AR, Yeh, S, Englander, JG, Han, J, Elgowainy, A, M.Q., W Journal Environmental Science & Technology Volume 49 Start

  18. Construction progresses at GE's Oil & Gas Technology Center | GE Global

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Home > Impact > Construction progressing at GE's newest research center, the Oil & Gas Technology Center in Oklahoma City Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Construction progressing at GE's newest research center, the Oil & Gas Technology Center in Oklahoma City Construction is

  19. Know-How Intersects at the New Oil & Gas Tech Center | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Know-How Intersects at the New Oil & Gas Tech Center Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Know-How Intersects at the New Oil & Gas Tech Center Jeremy Van Dam 2013.04.03 Hi, my name is Jeremy, and I'm a senior mechanical engineer at the GE Global Research Center in New York. My job is to figure out

  20. Oil, gas, and helium references index for the Navajo Indian Reservation, Arizona, New Mexico, and Utah. [223 references

    SciTech Connect (OSTI)

    Bliss, J.D.

    1982-02-01

    The references which are listed in this document represent the readily available literature about oil, gas, and helium resources on or adjacent to the Navajo Indian Reservation. They were selected during the developmental phase of the Navajo Resource Information System (NRIS). The system contains a set of computerized data bases addressing various resource categories. The system was developed by the US Geological Survey in coordination with the Minerals Department, Navajo Nation. Literature is the foundation of resource assessment and the absence of such a compilation for the Navajo Nation prompted the development of a reference data base entitled nref, which consists of over 1300 records. The following reference list of approximately 230 references was selected from those citations which contain oil, gas, or helium in a keyword list attached to each citation. References to general literature on oil, gas, or helium may also be present. The main attempt was to list most of the literature published in the 1960's and 1970's for areas in, or adjacent to, the Navajo Reservation. References published prior to this were included only if readily available or if they seemed to represent areas or topics not covered in later publications. 223 references.

  1. Subsurface Hybrid Power Options for Oil & Gas Production at Deep Ocean Sites

    SciTech Connect (OSTI)

    Farmer, J C; Haut, R; Jahn, G; Goldman, J; Colvin, J; Karpinski, A; Dobley, A; Halfinger, J; Nagley, S; Wolf, K; Shapiro, A; Doucette, P; Hansen, P; Oke, A; Compton, D; Cobb, M; Kopps, R; Chitwood, J; Spence, W; Remacle, P; Noel, C; Vicic, J; Dee, R

    2010-02-19

    An investment in deep-sea (deep-ocean) hybrid power systems may enable certain off-shore oil and gas exploration and production. Advanced deep-ocean drilling and production operations, locally powered, may provide commercial access to oil and gas reserves otherwise inaccessible. Further, subsea generation of electrical power has the potential of featuring a low carbon output resulting in improved environmental conditions. Such technology therefore, enhances the energy security of the United States in a green and environmentally friendly manner. The objective of this study is to evaluate alternatives and recommend equipment to develop into hybrid energy conversion and storage systems for deep ocean operations. Such power systems will be located on the ocean floor and will be used to power offshore oil and gas exploration and production operations. Such power systems will be located on the oceans floor, and will be used to supply oil and gas exploration activities, as well as drilling operations required to harvest petroleum reserves. The following conceptual hybrid systems have been identified as candidates for powering sub-surface oil and gas production operations: (1) PWR = Pressurized-Water Nuclear Reactor + Lead-Acid Battery; (2) FC1 = Line for Surface O{sub 2} + Well Head Gas + Reformer + PEMFC + Lead-Acid & Li-Ion Batteries; (3) FC2 = Stored O2 + Well Head Gas + Reformer + Fuel Cell + Lead-Acid & Li-Ion Batteries; (4) SV1 = Submersible Vehicle + Stored O{sub 2} + Fuel Cell + Lead-Acid & Li-Ion Batteries; (5) SV2 = Submersible Vehicle + Stored O{sub 2} + Engine or Turbine + Lead-Acid & Li-Ion Batteries; (6) SV3 = Submersible Vehicle + Charge at Docking Station + ZEBRA & Li-Ion Batteries; (7) PWR TEG = PWR + Thermoelectric Generator + Lead-Acid Battery; (8) WELL TEG = Thermoelectric Generator + Well Head Waste Heat + Lead-Acid Battery; (9) GRID = Ocean Floor Electrical Grid + Lead-Acid Battery; and (10) DOC = Deep Ocean Current + Lead-Acid Battery.

  2. Applicability issues and compliance strategies for the proposed oil and gas industry hazardous air pollutant standards

    SciTech Connect (OSTI)

    Tandon, N.; Winborn, K.A.; Grygar, W.W. II

    1999-07-01

    The US Environmental Protection Agency (US EPA) has targeted oil and natural gas transmission and storage facilities located across the United States for regulation under the National Emission Standards for Hazardous Air Pollutants (NESHAP) program (proposed in Title 40, Code of Federal Regulations, Part 63 [40 CFR 63], Subparts HH and HHH). The proposed NESHAP were published in the February 6, 1998 Federal Register and are expected to be promulgated in May 1999. These rules are intended to reduce Hazardous Air Pollutants (HAP) emitted from oil and gas facilities. It is expected that these rules will require more than 400 major sources and more than 500 non-major sources (also referred to as area sources) to meet maximum achievable control technology (MACT) standards defined in the NESHAP. The rules would regulate HAP emission from glycol dehydration units, storage vessels and various fugitive leak sources. This technical paper addresses the applicability issues and compliance strategies related to the proposed NESHAP. The applicability criteria for both rules differ from those promulgated for other source categories under 40 CFR 63. For example, individual unit throughput and/or HAP emission thresholds may exempt specific units from the MACT standards in the NESHAP. The proposed Subpart HH would apply not only to major sources, but also to triethylene glycol (TEC) dehydration units at area sources located in urban areas. For both proposed NESHAP all 199 HAP must be considered for the major source determinations, but only 15 specific HAP are targeted for control under the proposed standards. An overview of the HAP control requirements, exemption criteria, as well as initial and continued compliance determination strategies are presented. Several industry examples are included to assist industry develop compliance strategies.

  3. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    SciTech Connect (OSTI)

    Donald Duttlinger

    2001-11-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions during Fiscal Year 2001 (FY01). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs). They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the regional networks. The role of the national Headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy, state, and industry funding to achieve important goals for all of these sectors. This integrated funding base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies without direct contact to R&D efforts. This technical progress report summarizes PTTC's accomplishments during FY01, which lays the groundwork for further growth in the future. At a time of many industry changes and wide market movements, the organization itself is adapting to change. PTTC has built a reputation and expectation among producers and other industry participants to quickly distribute information addressing technical needs. The organization efficiently has an impact on business economics as the focus remains on proven applicable technologies, which target cost reduction and efficiency gains.

  4. Evaluation of Gas, Oil and Wood Pellet Fueled Residential Heating System Emissions Characteristics

    SciTech Connect (OSTI)

    McDonald, R.

    2009-12-01

    This study has measured the emissions from a wide range of heating equipment burning different fuels including several liquid fuel options, utility supplied natural gas and wood pellet resources. The major effort was placed on generating a database for the mass emission rate of fine particulates (PM 2.5) for the various fuel types studied. The fine particulates or PM 2.5 (less than 2.5 microns in size) were measured using a dilution tunnel technique following the method described in US EPA CTM-039. The PM 2.5 emission results are expressed in several units for the benefit of scientists, engineers and administrators. The measurements of gaseous emissions of O{sub 2}, CO{sub 2}, CO, NO{sub x} and SO{sub 2} were made using a combustion analyzer based on electrochemical cells These measurements are presented for each of the residential heating systems tested. This analyzer also provides a steady state efficiency based on stack gas and temperature measurements and these values are included in the report. The gaseous results are within the ranges expected from prior emission studies with the enhancement of expanding these measurements to fuels not available to earlier researchers. Based on measured excess air levels and ultimate analysis of the fuel's chemical composition the gaseous emission results are as expected and fall within the range provided for emission factors contained in the US-EPA AP 42, Emission Factors Volume I, Fifth Edition. Since there were no unexpected findings in these gaseous measurements, the bulk of the report is centered on the emissions of fine particulates, or PM 2.5. The fine particulate (PM 2.5) results for the liquid fuel fired heating systems indicate a very strong linear relationship between the fine particulate emissions and the sulfur content of the liquid fuels being studied. This is illustrated by the plot contained in the first figure on the next page which clearly illustrates the linear relationship between the measured mass of fine particulate per unit of energy, expressed as milligrams per Mega-Joule (mg/MJ) versus the different sulfur contents of four different heating fuels. These were tested in a conventional cast iron boiler equipped with a flame retention head burner. The fuels included a typical ASTM No. 2 fuel oil with sulfur below 0.5 percent (1520 average ppm S), an ASTM No. 2 fuel oil with very high sulfur content (5780 ppm S), low sulfur heating oil (322 ppm S) and an ultra low sulfur diesel fuel (11 ppm S). Three additional oil-fired heating system types were also tested with normal heating fuel, low sulfur and ultralow sulfur fuel. They included an oil-fired warm air furnace of conventional design, a high efficiency condensing warm air furnace, a condensing hydronic boiler and the conventional hydronic boiler as discussed above. The linearity in the results was observed with all of the different oil-fired equipment types (as shown in the second figure on the next page). A linear regression of the data resulted in an Rsquared value of 0.99 indicating that a very good linear relationship exits. This means that as sulfur decreases the PM 2.5 emissions are reduced in a linear manner within the sulfur content range tested. At the ultra low sulfur level (15 ppm S) the amount of PM 2.5 had been reduced dramatically to an average of 0.043 mg/MJ. Three different gas-fired heating systems were tested. These included a conventional in-shot induced draft warm air furnace, an atmospheric fired hydronic boiler and a high efficiency hydronic boiler. The particulate (PM 2.5) measured ranged from 0.011 to 0.036 mg/MJ. depending on the raw material source used in their manufacture. All three stoves tested were fueled with premium (low ash) wood pellets obtained in a single batch to provide for uniformity in the test fuel. Unlike the oil and gas fired systems, the wood pellet stoves had measurable amounts of particulates sized above the 2.5-micron size that defines fine particulates (less than 2.5 microns). The fine particulate emissions rates ranged from 22 to 30 mg/ MJ with an average value

  5. Probabilistic Risk Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems

    SciTech Connect (OSTI)

    Greg Thoma; John Veil; Fred Limp; Jackson Cothren; Bruce Gorham; Malcolm Williamson; Peter Smith; Bob Sullivan

    2009-05-31

    This report describes work performed during the initial period of the project 'Probabilistic Risk Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems.' The specific region that is within the scope of this study is the Fayetteville Shale Play. This is an unconventional, tight formation, natural gas play that currently has approximately 1.5 million acres under lease, primarily to Southwestern Energy Incorporated and Chesapeake Energy Incorporated. The currently active play encompasses a region from approximately Fort Smith, AR east to Little Rock, AR approximately 50 miles wide (from North to South). The initial estimates for this field put it almost on par with the Barnett Shale play in Texas. It is anticipated that thousands of wells will be drilled during the next several years; this will entail installation of massive support infrastructure of roads and pipelines, as well as drilling fluid disposal pits and infrastructure to handle millions of gallons of fracturing fluids. This project focuses on gas production in Arkansas as the test bed for application of proactive risk management decision support system for natural gas exploration and production. The activities covered in this report include meetings with representative stakeholders, development of initial content and design for an educational web site, and development and preliminary testing of an interactive mapping utility designed to provide users with information that will allow avoidance of sensitive areas during the development of the Fayetteville Shale Play. These tools have been presented to both regulatory and industrial stakeholder groups, and their feedback has been incorporated into the project.

  6. Effect of asphaltene deposition on the internal corrosion in the oil and gas industry

    SciTech Connect (OSTI)

    Palacios T, C.A.; Morales, J.L.; Viloria, A.

    1997-08-01

    Crude oil from Norte de Monagas field, in Venezuela, contains large amounts of asphaltenes. Some of them are very unstable with a tendency to precipitate. Because liquid is carried over from the separation process in the flow stations, asphaltenes are also present in the gas gathering and transmission lines, precipitating on the inner wall of pipelines. The gas gathering and transmission lines contain gas with high partial pressures of CO{sub 2}, some H{sub 2}S and are water saturated; therefore, inhibitors are used to control internal corrosion. There is uncertainty on how inhibitors perform in the presence of asphaltene deposition. The purpose of this paper is to describe the causes that enhance asphaltene deposition in gas pipelines and present some results from an ongoing research project carried out by the Venezuelan Oil Companies.

  7. NETL Gas Migration Study to Advance Understanding of Responsible Oil and

    Broader source: Energy.gov (indexed) [DOE]

    Natural Gas Development | Department of Energy Paula Gant Paula Gant Deputy Assistant Secretary, Office of Oil and Natural Gas President Obama's "All-of-the-Above" energy strategy focuses on safely and efficiently developing America's natural resources, and emphasizes that energy must be produced in a responsible and sustainable manner. Today, a study released by the Department of Energy's (DOE) National Energy Technology Laboratory (NETL) provides further clarity on responsible

  8. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    ... Source: Sachsenhofer et al., 2012 The Kovel-1 petroleum well is a key stratigraphic test ... have pursued shale gas leasing in Bulgaria but only one shale test well has been drilled. ...

  9. Water Treatment in Oil and Gas Production | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Treatment and Reuse in Unconventional Gas Production Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in...

  10. Estimating household fuel oil/kerosine, natural gas, and LPG prices by census region

    SciTech Connect (OSTI)

    Poyer, D.A.; Teotia, A.P.S.

    1994-08-01

    The purpose of this research is to estimate individual fuel prices within the residential sector. The data from four US Department of Energy, Energy Information Administration, residential energy consumption surveys were used to estimate the models. For a number of important fuel types - fuel oil, natural gas, and liquefied petroleum gas - the estimation presents a problem because these fuels are not used by all households. Estimates obtained by using only data in which observed fuel prices are present would be biased. A correction for this self-selection bias is needed for estimating prices of these fuels. A literature search identified no past studies on application of the selectivity model for estimating prices of residential fuel oil/kerosine, natural gas, and liquefied petroleum gas. This report describes selectivity models that utilize the Dubin/McFadden correction method for estimating prices of residential fuel oil/kerosine, natural gas, and liquefied petroleum gas in the Northeast, Midwest, South, and West census regions. Statistically significant explanatory variables are identified and discussed in each of the models. This new application of the selectivity model should be of interest to energy policy makers, researchers, and academicians.

  11. The domestic natural gas and oil initiatve. First annual progress report

    SciTech Connect (OSTI)

    1995-02-01

    This document is the first of a series of annual progress reports designed to inform the industry and the public of the accomplishments of the Domestic Natural Gas and Oil Initiative (the Initiative) and the benefits realized. Undertaking of the Initiative was first announced by Hazel O`Leary, Secretary of the Department of Energy (Department or DOE), in April 1993.

  12. Exemptions from OSHA`s PSM rule oil and gas field production

    SciTech Connect (OSTI)

    West, H.H. [Shawnee Engineers, Houston, TX (United States); Landes, S. [SH Landes, Houston, TX (United States)

    1995-12-31

    The OSHA Process Safety Management (PSM) regulation, OSHA 1910.119, contains a number of exemptions which are specifically directed to the low hazard situations typically found in the field production facilities of the oil and gas industry. Each relevant PSM exemption is discussed with particular regard to the requirements of hydrocarbon production facilities.

  13. Report of the workshop on Arctic oil and gas recovery. [Offshore

    SciTech Connect (OSTI)

    Sackinger, W. M.

    1980-09-01

    Mission of the workshop was to identify research priorities for the technology related to Arctic offshore oil and gas production. Two working groups were formed on ice-related subjects and soil-related subjects. Instrumentation needed to accomplish some of the research objectives was also discussed. Results of a research priority allocation survey are summarized. (DLC)

  14. Electrical Power Generation Using Geothermal Fluid Co-produced from Oil & Gas

    Broader source: Energy.gov [DOE]

    Project objectives: To validate and realize the potential for the production of low temperature resource geothermal production on oil & gas sites. Test and document the reliability of this new technology.; Gain a better understanding of operational costs associated with this equipment.

  15. Overview of U.S. Legislation and Regulations Affecting Offshore Natural Gas and Oil Activity

    Reports and Publications (EIA)

    2005-01-01

    This article presents a summary of the legislative and regulatory regime that affects natural gas and oil exploration and production in offshore regions of the United States. It discusses the role and importance of these areas as well as the competing interests surrounding ownership, production, exploration and conservation.

  16. FORM EIA-23L ANNUAL SURVEY OF DOMESTIC OIL AND GAS RESERVES

    Gasoline and Diesel Fuel Update (EIA)

    7/31/2016 Version No.: 2016.01 ANNUAL SURVEY OF DOMESTIC OIL AND GAS RESERVES FORM EIA-23L Field Level Survey Instructions SURVEY YEAR 2015 Table of Contents Page General Instructions ......................................................................................... 2 A. Purpose .................................................................................................................. 2 B. Who Must Submit Form EIA-23L

  17. DOE to Unveil New Online Database of Oil and Natural Gas Research Results

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy plans to introduce a new, user-friendly online repository of oil and natural gas research results at the Society of Petroleum Engineers' Annual Technical Conference and Exhibition, to be held in New Orleans, La., October 4-7, 2009.

  18. Oil and gas developments in Middle East in 1984

    SciTech Connect (OSTI)

    Hemer, D.O.; Lyle, J.H.

    1985-10-01

    Petroleum production in Middle East countries during 1984 totaled 4,088,853,000 bbl (an average rate of 11,144,407 BOPD), down less than 1.0% from the revised total of 4,112,116,000 bbl produced in 1983. Iraq, Kuwait, Qatar, and Oman had significant increases; Iran and Dubai had significant decreases. Jordan produced oil, although a minor amount, for the first time ever, and new production facilities were in the planning stage in Syria, North Yemen, and Oman, which will bring new fields on stream when completed.

  19. Oil and gas developments in Middle East in 1985

    SciTech Connect (OSTI)

    Hemer, D.O.; Gohrbandt, K.H.A.

    1986-10-01

    Petroleum production in Middle East countries during 1985 totaled 3,837,580,000 bbl (an average rate of 10,513,917 BOPD), down 2.2% from the revised 1984 total of 3,924,034,000 bbl. Iran, Iraq, Dubai, Oman, and Syria had significant increases; Kuwait, Kuwait-Saudi Arabia Divided Neutral Zone, Saudi Arabia, and Qatar had significant decreases. New fields went on production in Iraq, Abu Dhabi, Oman, and Syria. In North Yemen, the first ever oil production in that country was nearing the start-up stage at year end. 9 figures, 9 tables.

  20. Oil and gas developments in Middle East in 1984

    SciTech Connect (OSTI)

    Hemer, D.O.; Lyle, J.H.

    1985-10-01

    Petroleum production in Middle East countries during 1984 totaled 4,088,853,000 bbl (an average rate of 11,144,407 BOPD), down less than 1.0% from the revised total of 4,112,116,000 bbl produced in 1983. Iraq, Kuwait, Qatar, and Oman had significant increases; Iran and Dubai had significant decreases. Jordan produced oil, although a minor amount, for the first time ever, and new production facilities were in the planning stage in Syria, North Yemen, and Oman, which will bring new fields on stream when completed. 4 figures, 9 tables.

  1. Table 4.1 Technically Recoverable Crude Oil and Natural Gas Resource Estimates, 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    Technically Recoverable Crude Oil and Natural Gas Resource Estimates, 2009 Region Proved Reserves 1 Unproved Resources Total Technically Recoverable Resources 2 Crude Oil and Lease Condensate (billion barrels)<//td> 48 States 3 Onshore 14.2 112.6 126.7 48 States 3 Offshore 4.6 50.3 54.8 Alaska 3.6 35.0 38.6 Total U.S. 22.3 197.9 220.2 Dry Natural Gas 4 (trillion cubic feet)<//td> Conventionally Reservoired Fields 5 105.5 904.0 1,009.5 48 States 3 Onshore Gas 6 81.4 369.7 451.1 48

  2. Oil and gas legislation and laws old, new, and future

    SciTech Connect (OSTI)

    Garten, A.M.

    1987-08-01

    Vintaging and price-fixing of old and new gas gave way to partial deregulation in 1978. Federal regulatory agencies have, through selective policies, attempted to create a climate whereby market-force economics will govern the buying and selling of fuel. Open access of interstate pipelines is not complete at this time and may never occur. The ability of the producer to sell old gas into any market for a market-based price, is still confusing and requires the use of an often costly regulatory process. Current regulations have a profound impact on the economic viability of every Rocky Mountain geological prospect. There are specific avenues for public input that geologist must begin to use.

  3. Integrated capture of fossil fuel gas pollutants including CO.sub.2 with energy recovery

    DOE Patents [OSTI]

    Ochs, Thomas L. (Albany, OR); Summers, Cathy A. (Albany, OR); Gerdemann, Steve (Albany, OR); Oryshchyn, Danylo B. (Philomath, OR); Turner, Paul (Independence, OR); Patrick, Brian R. (Chicago, IL)

    2011-10-18

    A method of reducing pollutants exhausted into the atmosphere from the combustion of fossil fuels. The disclosed process removes nitrogen from air for combustion, separates the solid combustion products from the gases and vapors and can capture the entire vapor/gas stream for sequestration leaving near-zero emissions. The invention produces up to three captured material streams. The first stream is contaminant-laden water containing SO.sub.x, residual NO.sub.x particulates and particulate-bound Hg and other trace contaminants. The second stream can be a low-volume flue gas stream containing N.sub.2 and O.sub.2 if CO2 purification is needed. The final product stream is a mixture comprising predominantly CO.sub.2 with smaller amounts of H.sub.2O, Ar, N.sub.2, O.sub.2, SO.sub.X, NO.sub.X, Hg, and other trace gases.

  4. Eastern gas shales bibliography selected annotations: gas, oil, uranium, etc. Citations in bituminous shales worldwide

    SciTech Connect (OSTI)

    Hall, V.S.

    1980-06-01

    This bibliography contains 2702 citations, most of which are annotated. They are arranged by author in numerical order with a geographical index following the listing. The work is international in scope and covers the early geological literature, continuing through 1979 with a few 1980 citations in Addendum II. Addendum I contains a listing of the reports, well logs and symposiums of the Unconventional Gas Recovery Program (UGR) through August 1979. There is an author-subject index for these publications following the listing. The second part of Addendum I is a listing of the UGR maps which also has a subject-author index following the map listing. Addendum II includes several important new titles on the Devonian shale as well as a few older citations which were not found until after the bibliography had been numbered and essentially completed. A geographic index for these citations follows this listing.

  5. ,"New Mexico Natural Gas Gross Withdrawals from Oil Wells (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Oil Wells (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Gross Withdrawals from Oil Wells (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  6. ,"North Dakota Natural Gas Gross Withdrawals from Oil Wells (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Oil Wells (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Gross Withdrawals from Oil Wells (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  7. Oil and gas production in the Amu Dar`ya Basin of Western Uzbekistan and Eastern Turkmenistan

    SciTech Connect (OSTI)

    Sagers, M.J.

    1995-05-01

    The resource base, development history, current output, and future outlook for oil and gas production in Turkmenistan and Uzbekistan are examined by a Western specialist with particular emphasis on the most important gas-oil province in the region, the Amu Dar`ya basin. Oil and gas have been produced in both newly independent countries for over a century, but production from the Amu Dar`ya province proper dates from the post-World War II period. Since that time, however, fields in the basin have provided the basis for a substantial natural gas industry (Uzbekistan and Turkmenistan consistently have trailed only Russia among the former Soviet republics in gas output during the last three decades). Despite high levels of current production, ample oil and gas potential (Turkmenistan, for example, ranks among the top five or six countries in the world in terms of gas reserves) contributes to the region`s prominence as an attractive area for Western investors. The paper reviews the history and status of several international tenders for the development of both gas and oil in the two republics. Sections on recent gas production trends and future outlook reveal considerable differences in consumption patterns and export potential in the region. Uzbekistan consumes most of the gas it produces, whereas Turkmenistan, with larger reserves and a smaller population, exported well over 85% of its output over recent years and appears poised to become a major exporter. A concluding section examines the conditions that will affect these countries` presence on world oil and gas markets over the longer term: reserves, domestic consumption, transportation bottlenecks, the likelihood of foreign investment, and future oil and gas demand. 33 refs., 1 fig., 3 tabs.

  8. Office of Oil, Gas, and Coal Supply Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    3 U.S. Department of Energy Washington, DC 20585 2013 U.S. Energy Information Administration | Natural Gas Monthly ii This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the

  9. Short-Term Energy Outlook Supplement: Status of Libyan Loading Ports and Oil and Natural Gas Fields

    Gasoline and Diesel Fuel Update (EIA)

    Short-Term Energy Outlook Supplement: Status of Libyan Loading Ports and Oil and Natural Gas Fields Tuesday, September 10, 2013, 10:00AM EST Overview During July and August 2013, protests at major oil loading ports in the central-eastern region of Libya forced the complete or partial shut-in of oil fields linked to the ports. As a result of protests at ports and at some oil fields, crude oil production fell to 1.0 million barrels per day (bbl/d) in July and 600,000 bbl/d in August, although the

  10. Indiana Natural Gas Withdrawals from Oil Wells (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Withdrawals from Oil Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0

  11. Oil and gas development in Middle East in 1987

    SciTech Connect (OSTI)

    Hemer, D.O.; Gohrbandt, K.H.A.; Phillips, C.B.

    1988-10-01

    Petroleum production in Middle East countries during 1987 totaled an estimated 4,500,500,000 bbl (an average rate of 12,330,137 b/d), up slightly from the revised 1986 total of 4,478,972,000 bbl. Iran, Iraq, Syria, and Yemen Arab Republic had significant increases; Kuwait and Saudi Arabia had significant decreases. Production was established for the first time in People's Democratic Republic of Yemen. New fields went on production in Iraq, Oman, People's Democratic Republic of Yemen, and Syria, and significant oil discoveries were reported in Iraq, Oman, People's Democratic Republic of Yemen, Syria, and Yemen Arab Republic. The level of exploration increased in 1987 with new concessions awarded in some countries, drilling and seismic activities on the increase, new regions in mature areas explored for the first time, and significant reserve additions reported in new and old permits. The Iraq-Iran war still had a negative impact in some regions of the Middle East, particularly in and around the Gulf. 11 figs., 4 tabs.

  12. Health and environmental effects of oil and gas technologies: research needs

    SciTech Connect (OSTI)

    Brown, R. D.

    1981-07-01

    This report discusses health and environmental issues associated with oil and gas technologies as they are currently perceived - both those that exist and those that are expected to emerge over the next two decades. The various sections of this report contain discussions of specific problem areas and relevant new research activities which should be pursued. This is not an exhaustive investigation of all problem areas, but the report explores a wide range of issues to provide a comprehensive picture of existing uncertainties, trends, and other factors that should serve as the focus of future research. The problem areas of major concern include: effects of drilling fluids, offshore accidents, refineries and worker health, and biota and petroleum spills, indoor air pollution, information transfer, and unconventional resources. These are highlighted in the Executive Summary because they pose serious threats to human health and the environment, and because of the sparcity of accumulated knowledge related to their definition. Separate abstracts have been prepared for selected sections of this report for inclusion in the Energy Data Base. (DMC)

  13. Framework for managing wastes from oil and gas exploration and production (E&P) sites.

    SciTech Connect (OSTI)

    Veil, J. A.; Puder, M. G.; Environmental Science Division

    2007-09-15

    Oil and gas companies operate in many countries around the world. Their exploration and production (E&P) operations generate many kinds of waste that must be carefully and appropriately managed. Some of these wastes are inherently part of the E&P process; examples are drilling wastes and produced water. Other wastes are generic industrial wastes that are not unique to E&P activities, such as painting wastes and scrap metal. Still other wastes are associated with the presence of workers at the site; these include trash, food waste, and laundry wash water. In some host countries, mature environmental regulatory programs are in place that provide for various waste management options on the basis of the characteristics of the wastes and the environmental settings of the sites. In other countries, the waste management requirements and authorized options are stringent, even though the infrastructure to meet the requirements may not be available yet. In some cases, regulations and/or waste management infrastructure do not exist at all. Companies operating in these countries can be confronted with limited and expensive waste management options.

  14. U.S. Real Cost per Foot of Crude Oil, Natural Gas, and Dry Wells Drilled

    Gasoline and Diesel Fuel Update (EIA)

    (Dollars per Foot) Foot of Crude Oil, Natural Gas, and Dry Wells Drilled (Dollars per Foot) U.S. Real Cost per Foot of Crude Oil, Natural Gas, and Dry Wells Drilled (Dollars per Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 61.83 60.39 61.71 58.22 58.11 59.64 64.51 66.84 67.56 67.15 1970's 68.42 65.82 68.82 70.65 83.31 97.34 100.66 109.49 123.76 136.64 1980's 142.52 159.51 173.34 127.81 106.27 108.09 107.90 80.21 92.78 93.63 1990's 93.23 97.86

  15. U.S. Crude Oil and Natural Gas Proved Reserves, 2014

    Gasoline and Diesel Fuel Update (EIA)

    and Natural Gas Proved Reserves, 2014 November 2015 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | U.S. Crude Oil and Natural Gas Proved Reserves, 2014 i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or

  16. Microsoft Word - Gas Prices and Oil Consumption Would Increase Without Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For Immediate Release June 11, 2008 202-586-4940 Fact Sheet: Gas Prices and Oil Consumption Would Increase Without Biofuels Secretary of Energy Samuel W. Bodman and Secretary of Agriculture Edward T. Schafer sent a letter on June 11, 2008 to Senator Jeff Bingaman addressing a number of questions related to biofuels, food, and gasoline and diesel prices. The letter is available at http://www.energy.gov Without Biofuels, Gas Prices Would Increase $.20 to $.35 per Gallon. * The U.S. Department of

  17. Review of technology for Arctic offshore oil and gas recovery. Appendices

    SciTech Connect (OSTI)

    Sackinger, W. M.

    1980-06-06

    This volume contains appendices of the following: US Geological Survey Arctic operating orders, 1979; Det Noske Vertas', rules for the design, construction and inspection of offshore technology, 1977; Alaska Oil and Gas Association, industry research projects, March 1980; Arctic Petroleum Operator's Association, industry research projects, January 1980; selected additional Arctic offshore bibliography on sea ice, icebreakers, Arctic seafloor conditions, ice-structures, frost heave and structure icing.

  18. Oil & Natural Gas Technology Temporal Characterization of Hydrates System Dynamics beneath Seafloor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil & Natural Gas Technology Temporal Characterization of Hydrates System Dynamics beneath Seafloor Mounds: Integrating Time-Lapse Electrical Resistivity Methods and In Situ Observations of Multiple Oceanographic Parameters Final Technical Report Project Period: October 1, 2012 - January 31, 2015 Submitted by: Carol Blanton Lutken, Leonardo Macelloni, Marco D'Emidio, John Dunbar, Paul Higley August, 2015 DOE Award No.: DE- FE0010141 The University of Mississippi Mississippi Mineral Resources

  19. EIA-914 Monthly Crude Oil, Lease Condensate, and Natural Gas Production Report Revision Policy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Revision Policy December 2015 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | EIA-94 Monthly Crude Oil, Lease Condensate, and Natural Gas Production Report Methodology i This revision policy was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by

  20. Electric Power Generation from Coproduced Fluids from Oil and Gas Wells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Power Generation from Coproduced Fluids from Oil and Gas Wells Principal Investigator Will Gosnold University of North Dakota Low Temperature Demonstration Projects May 19, 2010 This presentation does not contain any proprietary confidential, or otherwise restricted information. Insert photo of your choice 2 | US DOE Geothermal Program eere.energy.gov - Timeline * Start date: 1/29/2010 * End date: 1/31/2013 * Percent complete: ~ 5% - Budget * Total project funding: $3,467, 057 * DOE

  1. FORM EIA-23L ANNUAL SURVEY OF DOMESTIC OIL AND GAS RESERVES

    Gasoline and Diesel Fuel Update (EIA)

    DEPARTMENT OF ENERGY ENERGY INFORMATION ADMINISTRATION Washington DC 20585 OMB No. 1905-0057 Expiration Date: 7/31/2016 Version No.: 2016.01 FORM EIA-23L ANNUAL SURVEY OF DOMESTIC OIL AND GAS RESERVES SURVEY YEAR 2015 COVER PAGE This report is mandatory under the Federal Energy Administration Act of 1974 (Public Law 93-275). For the provisions concerning the confidentiality of information and sanction statements, see Section VII and VIII of the instructions. Resubmission? PART I. IDENTIFICATION

  2. Overview of NETL Field Studies Related to Oil and Gas Production

    Energy Savers [EERE]

    ENERGY lab 18 Aug 2015 Richard Hammack, Monitoring Team Lead USDOE National Energy Technology Laboratory, Pittsburgh, PA Overview of NETL Field Studies Related to Oil and Gas Production DOE Tribal Leaders Forum Denver, Colorado Newfield Exploration, Bakken Petroleum System, North Dakota * Reduce Environmental Impacts * Demonstrate Safe/Reliable Operations * Improve Efficiency of Hydraulic Fracturing Program Objectives * Surface Monitoring - Ambient Air Quality - Air Emissions - Ground Motion -

  3. Hard truths: facing the hard truths about energy. A comprehensive view to 2030 of global oil and natural gas

    SciTech Connect (OSTI)

    2007-07-01

    In response to the questions posed by the US Secretary of Energy in October 2005, the National Petroleum Council conducted a comprehensive study considering the future of oil and natural gas to 2030 in the context of the global energy system. The Council proposed five core strategies to assist markets in meeting the energy challenges to 2030 and beyond. All five strategies are essential; there is no single, easy solution to the multiple challenges we face. However, we are confident that the prompt adoption of these strategies, along with a sustained commitment to implementation, will promote U.S. competitiveness by balancing economic, security, and environmental goals. The United States must: Moderate the growing demand for energy by increasing efficiency of transportation, residential, commercial, and industrial uses; Expand and diversify production from clean coal, nuclear, biomass, other renewables, and unconventional oil and gas; moderate the decline of conventional domestic oil and gas production; and increase access for development of new resources; Integrate energy policy into trade, economic, environmental, security, and foreign policies; strengthen global energy trade and investment; and broaden dialogue with both producing and consuming nations to improve global energy security; Enhance science and engineering capabilities and create long-term opportunities for research and development in all phases of the energy supply and demand system; and Develop the legal and regulatory framework to enable carbon capture and sequestration. In addition, as policymakers consider options to reduce carbon dioxide emissions, provide an effective global framework for carbon management, including establishment of a transparent, predictable, economy-wide cost for carbon dioxide emissions. The report, details findings and recommendations based on comprehensive analyses developed by the study teams. 5 apps.

  4. EA-0531: Proposed Natural Gas Protection Program for Naval Oil Shale Reserves Nos. 1 and 3, Garfield County, Colorado

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal for a Natural Gas Protection Program for Naval Oil Shale Reserves Nos. 1 and 3 which would be implemented over a five-year period that...

  5. DOE-Sponsored Online Mapping Portal Helps Oil and Gas Producers Comply with New Mexico Compliance Rules

    Broader source: Energy.gov [DOE]

    An online mapping portal to help oil and natural gas operators comply with a revised New Mexico waste pit rule has been developed by a team of New Mexico Tech researchers.

  6. A critique of the performance of EIA within the offshore oil and gas sector

    SciTech Connect (OSTI)

    Barker, Adam Jones, Carys

    2013-11-15

    The oil and gas sector is a key driver of the offshore economy. Yet, it is also associated with a number of unwanted environmental impacts which potentially threaten the long term economic and environmental viability of marine ecosystems. Environmental Impact Assessment (EIA) can potentially make a significant contribution to the identification and management of adverse impacts through the promotion of evidence based decision making. However, the extent to which EIA has been embraced by key stakeholders is poorly understood. On this basis, this paper provides an initial evaluation of EIA performance within the oil and gas sector. The methodology adopted for the paper consisted of the structured review of 35 Environmental Statements (ESs) along with interviews with regulators, operators, consultants and advisory bodies. The findings reveal a mixed picture of EIA performance with a significant number of ESs falling short of satisfactory quality and a tendency for the process to be driven by compliance rather than best practice. -- Highlights: • Concerns identified relating to impacts of offshore oil and gas industry. • Research assesses performance of EIA in addressing impacts. • Findings highlight weak quality standards and procedural deficiencies. • Institutional reforms identified in order to improve practice.

  7. Gas chromatographic determination of residual solvents in lubricating oils and waxes

    SciTech Connect (OSTI)

    De Andrade Bruening, I.M.R.

    1983-10-01

    A direct gas-liquid chromatographic analysis of residual solvents is described, using tert-butylbenzene as an internal standard. The lube oils and waxes were prevented from contaminating the chromatographic column by injecting the samples directly into a precolumn containing a silicone stationary phase. The samples of lube oils and waxes were injected directly into the chromatographic column containing another stationary phase, 1,2,3-tris(2-cyanoethoxy)propane. (The waxy samples were dissolved in a light neutral oil). With proper operating conditions, analysis time was 7 min. The procedure has been applied in the control of a lube oil dewaxing plant; the chromatographic column showed no sign of deterioration after 1 h when the precolumn was removed. Known amounts of toluene and methylethyl ketone were added to the solvent-free lubricating oils and wax, and these mixtures were analyzed to evaluate the accuracy of the procedure. Precision and accuracy of these data are comparable to those of methods previously described. 1 figure, 1 table.

  8. Conventional Energy (Oil, Gas, and Coal) Forum & Associated Vertical Business Development Best Practices in Indian Country

    Office of Environmental Management (EM)

    CONVENTIONAL ENERGY (OIL, GAS & COAL) FORUM & ASSOCIATED VERTICAL BUSINESS DEVELOPMENT BEST PRACTICES IN INDIAN COUNTRY March 1, 2012 MANDALAY BAY RESORT AND CASINO NORTH CONVENTION CENTER 3950 Las Vegas Blvd. South, Las Vegas, NV 89119 The dynamic world of conventional energy (focusing on oil, gas and coal energy) is a critical piece of the American energy portfolio. This strategic energy forum will focus on recent trends, existing successful partnerships, and perspectives on the future

  9. Process for oil shale retorting

    DOE Patents [OSTI]

    Jones, John B. (300 Enterprise Bldg., Grand Junction, CO 80501); Kunchal, S. Kumar (300 Enterprise Bldg., Grand Junction, CO 80501)

    1981-10-27

    Particulate oil shale is subjected to a pyrolysis with a hot, non-oxygenous gas in a pyrolysis vessel, with the products of the pyrolysis of the shale contained kerogen being withdrawn as an entrained mist of shale oil droplets in a gas for a separation of the liquid from the gas. Hot retorted shale withdrawn from the pyrolysis vessel is treated in a separate container with an oxygenous gas so as to provide combustion of residual carbon retained on the shale, producing a high temperature gas for the production of some steam and for heating the non-oxygenous gas used in the oil shale retorting process in the first vessel. The net energy recovery includes essentially complete recovery of the organic hydrocarbon material in the oil shale as a liquid shale oil, a high BTU gas, and high temperature steam.

  10. Casting Apparatus Including A Gas Driven Molten Metal Injector And Method

    DOE Patents [OSTI]

    Trudel, David R. (Westlake, OH); Meyer, Thomas N. (Murrysville, PA); Kinosz, Michael J. (Apollo, PA); Arnaud, Guy (Morin Heights, CA); Bigler, Nicolas (Riviere-Beaudette, CA)

    2003-06-17

    The filtering molten metal injector system includes a holder furnace, a casting mold supported above the holder furnace, and at least one molten metal injector supported from a bottom side of the casting mold. The holder furnace contains a supply of molten metal. The mold defines a mold cavity for receiving the molten metal from the holder furnace. The molten metal injector projects into the holder furnace. The molten metal injector includes a cylinder defining a piston cavity housing a reciprocating piston for pumping the molten metal upward from the holder furnace to the mold cavity. The cylinder and piston are at least partially submerged in the molten metal when the holder furnace contains the molten metal. The cylinder or the piston includes a molten metal intake for receiving the molten metal into the piston cavity when the holder furnace contains molten metal. A conduit connects the piston cavity to the mold cavity. A molten metal filter is located in the conduit for filtering the molten metal passing through the conduit during the reciprocating movement of the piston. The molten metal intake may be a valve connected to the cylinder, a gap formed between the piston and an open end of the cylinder, an aperture defined in the sidewall of the cylinder, or a ball check valve incorporated into the piston. A second molten metal filter preferably covers the molten metal intake to the injector.

  11. Characterization and Alteration of Wettability States of Alaskan Reserviors to Improve Oil Recovery Efficiency (including the within-scope expansion based on Cyclic Water Injection - a pulsed waterflood for Enhanced Oil Recovery)

    SciTech Connect (OSTI)

    Abhijit Dandekar; Shirish Patil; Santanu Khataniar

    2008-12-31

    Numerous early reports on experimental works relating to the role of wettability in various aspects of oil recovery have been published. Early examples of laboratory waterfloods show oil recovery increasing with increasing water-wetness. This result is consistent with the intuitive notion that strong wetting preference of the rock for water and associated strong capillary-imbibition forces gives the most efficient oil displacement. This report examines the effect of wettability on waterflooding and gasflooding processes respectively. Waterflood oil recoveries were examined for the dual cases of uniform and non-uniform wetting conditions. Based on the results of the literature review on effect of wettability and oil recovery, coreflooding experiments were designed to examine the effect of changing water chemistry (salinity) on residual oil saturation. Numerous corefloods were conducted on reservoir rock material from representative formations on the Alaska North Slope (ANS). The corefloods consisted of injecting water (reservoir water and ultra low-salinity ANS lake water) of different salinities in secondary as well as tertiary mode. Additionally, complete reservoir condition corefloods were also conducted using live oil. In all the tests, wettability indices, residual oil saturation, and oil recovery were measured. All results consistently lead to one conclusion; that is, a decrease in injection water salinity causes a reduction in residual oil saturation and a slight increase in water-wetness, both of which are comparable with literature observations. These observations have an intuitive appeal in that water easily imbibes into the core and displaces oil. Therefore, low-salinity waterfloods have the potential for improved oil recovery in the secondary recovery process, and ultra low-salinity ANS lake water is an attractive source of injection water or a source for diluting the high-salinity reservoir water. As part of the within-scope expansion of this project, cyclic water injection tests using high as well as low salinity were also conducted on several representative ANS core samples. These results indicate that less pore volume of water is required to recover the same amount of oil as compared with continuous water injection. Additionally, in cyclic water injection, oil is produced even during the idle time of water injection. It is understood that the injected brine front spreads/smears through the pores and displaces oil out uniformly rather than viscous fingering. The overall benefits of this project include increased oil production from existing Alaskan reservoirs. This conclusion is based on the performed experiments and results obtained on low-salinity water injection (including ANS lake water), vis-a-vis slightly altering the wetting conditions. Similarly, encouraging cyclic water-injection test results indicate that this method can help achieve residual oil saturation earlier than continuous water injection. If proved in field, this would be of great use, as more oil can be recovered through cyclic water injection for the same amount of water injected.

  12. Proposed natural gas protection program for Naval Oil Shale Reserves Nos. 1 and 3, Garfield County, Colorado

    SciTech Connect (OSTI)

    Not Available

    1991-08-01

    As a result of US Department of Energy (DOE) monitoring activities, it was determined in 1983 that the potential existed for natural gas resources underlying the Naval Oil Shales Reserves Nos. 1 and 3 (NOSrs-1 3) to be drained by privately-owned gas wells that were being drilled along the Reserves borders. In 1985, DOE initiated a limited number of projects to protect the Government's interest in the gas resources by drilling its own offset production'' wells just inside the boundaries, and by formally sharing in the production, revenues and costs of private wells that are drilled near the boundaries ( communitize'' the privately-drilled wells). The scope of these protection efforts must be expanded. DOE is therefore proposing a Natural Gas Protection Program for NOSRs-1 3 which would be implemented over a five-year period that would encompass a total of 200 wells (including the wells drilled and/or communitized since 1985). Of these, 111 would be offset wells drilled by DOE on Government land inside the NOSRs' boundaries and would be owned either entirely by the Government or communitized with adjacent private land owners or lessees. The remainder would be wells drilled by private operators in an area one half-mile wide extending around the NOSRs boundaries and communitized with the Government. 23 refs., 2 figs., 6 tabs.

  13. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    SciTech Connect (OSTI)

    Unknown

    2001-05-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and natural gas producers make timely, informed technology decisions. PTTC's Board made a strategic decision to relocate the Headquarters (HQ) office from Washington, DC to Houston, Texas. Driving force behind relocation was to better connect with independent producers, but cost savings could also be realized. Relocation was accomplished in late December 2000, with the HQ office being fully operational by January 2001. Early indications are that the HQ relocation is, in fact, enabling better networking with senior executives of independents in the Houston oil community. New Board leadership, elected in March 2001, will continue to effectively guide PTTC.

  14. ,"Crude Oil and Lease Condensate","Wet Natural Gas"

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. proved reserves, and reserves changes, 2013-2014" ,"Crude Oil and Lease Condensate","Wet Natural Gas" ,"billion barrels","trillion cubic feet" "U.S. proved reserves at December 31, 2013",36.52,353.994 " Total discoveries",5.404,50.487 " Net revisions",0.416,0.984 " Net Adjustments, Sales, Acquisitions",0.793,11.47 " Production",-3.2,-28.094 "Net additions to U.S. proved

  15. U.S. Crude Oil and Natural Gas Proved Reserves, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    3 December 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | U.S. Crude Oil and Natural Gas Proved Reserves, 2013 i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government.

  16. Frequently Asked Questions Form EIA-23L Annual Survey of Domestic Oil and Gas Reserves

    Gasoline and Diesel Fuel Update (EIA)

    Form EIA-23L Annual Survey of Domestic Oil and Gas Reserves Form EIA-23L for 2015 is due by May 2, 2016 CONTENTS EIA-23L ESSENTIALS  What is Form EIA-23L?  Is it mandatory?  Why was my company selected?  What if my company does not have a reserves study?  What if the reserves information is not available by the due date?  What if my company is a parent or subsidiary company? NEW FOR 2015  Are there any changes this year? FORM QUESTIONS  What are the most common mistakes

  17. Technology on In-Situ Gas Generation to Recover Residual Oil Reserves

    SciTech Connect (OSTI)

    Sayavur Bakhtiyarov

    2008-02-29

    This final technical report covers the period October 1, 1995 to February 29, 2008. This chapter begins with an overview of the history of Enhanced Oil Recovery techniques and specifically, CO2 flood. Subsequent chapters conform to the manner consistent with the Activities, Tasks, and Sub-tasks of the project as originally provided in Exhibit C1 in the Project Management Plan dated September 20, 1995. These chapters summarize the objectives, status and conclusions of the major project activities performed during the project period. The report concludes by describing technology transfer activities stemming from the project and providing a reference list of all publications of original research work generated by the project team or by others regarding this project. The overall objective of this project was a final research and development in the United States a technology that was developed at the Institute for Geology and Development of Fossil Fuels in Moscow, Russia. Before the technology can be convincingly adopted by United States oil and gas producers, the laboratory research was conducted at Mew Mexico Institute of Mining and Technology. The experimental studies were conducted to measure the volume and the pressure of the CO{sub 2} gas generated according to the new Russian technology. Two experimental devices were designed, built and used at New Mexico Tech facilities for these purposes. The designed setup allowed initiating and controlling the reaction between the 'gas-yielding' (GY) and 'gas-forming' (GF) agents proposed by Russian technology. The temperature was controlled, and the generated gas pressure and volume were recorded during the reaction process. Additionally, the effect of surfactant addition on the effectiveness of the process was studied. An alternative GY reactant was tested in order to increase the efficiency of the CO2 gas generation process. The slim tube and the core flood experimental studies were conducted to define the sweep efficiency of the in-situ generated CO{sub 2} gas. A set of core flood experiments were conducted to define effect of surfactant on recovery efficiency. The results demonstrated obvious advantages of the foamy system over the brine solution in order to achieve higher sweep efficiency and recovery coefficient. It is shown that a slug injection is not an efficient method for mixing GY and GF solutions and it can't generate considerable gas inside the slim-tube.

  18. Low-Btu coal-gasification-process design report for Combustion Engineering/Gulf States Utilities coal-gasification demonstration plant. [Natural gas or No. 2 fuel oil to natural gas or No. 2 fuel oil or low Btu gas

    SciTech Connect (OSTI)

    Andrus, H E; Rebula, E; Thibeault, P R; Koucky, R W

    1982-06-01

    This report describes a coal gasification demonstration plant that was designed to retrofit an existing steam boiler. The design uses Combustion Engineering's air blown, atmospheric pressure, entrained flow coal gasification process to produce low-Btu gas and steam for Gulf States Utilities Nelson No. 3 boiler which is rated at a nominal 150 MW of electrical power. Following the retrofit, the boiler, originally designed to fire natural gas or No. 2 oil, will be able to achieve full load power output on natural gas, No. 2 oil, or low-Btu gas. The gasifier and the boiler are integrated, in that the steam generated in the gasifier is combined with steam from the boiler to produce full load. The original contract called for a complete process and mechanical design of the gasification plant. However, the contract was curtailed after the process design was completed, but before the mechanical design was started. Based on the well defined process, but limited mechanical design, a preliminary cost estimate for the installation was completed.

  19. H. R. 1671: A bill to amend the Internal Revenue Code of 1986 with respect to the treatment of foreign oil and gas income, introduced in the House of Representatives, One Hundred Second Congress, First Session, April 9, 1991

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    The bill explains special rules for foreign tax credit with respect to foreign oil and gas income by amending the following sections: certain taxes not creditable; separate baskets for foreign oil and gas extraction income and foreign oil related income; and elimination of deferral for foreign oil and gas extraction income. The effective date would be December 31, 1991.

  20. Technical Demonstration and Economic Validation of Geothermal-Produced Electricity from Coproduced Water at Existing Oil/Gas Wells in Texas

    Broader source: Energy.gov [DOE]

    Technical Demonstration and Economic Validation of Geothermal-Produced Electricity from Coproduced Water at Existing Oil/Gas Wells in Texas.

  1. Impacts of Increased Access to Oil & Natural Gas Resources in the Lower 48 Federal Outer Continental Shelf (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    This analysis was updated for Annual Energy Outlook 2009 (AEO): Impact of Limitations on Access to Oil and Natural Gas Resources in the Federal Outer Continental Shelf (OCS). The OCS is estimated to contain substantial resources of crude oil and natural gas; however, some areas of the OCS are subject to drilling restrictions. With energy prices rising over the past several years, there has been increased interest in the development of more domestic oil and natural gas supply, including OCS resources. In the past, federal efforts to encourage exploration and development activities in the deep waters of the OCS have been limited primarily to regulations that would reduce royalty payments by lease holders. More recently, the states of Alaska and Virginia have asked the federal government to consider leasing in areas off their coastlines that are off limits as a result of actions by the President or Congress. In response, the Minerals Management Service (MMS) of the U.S. Department of the Interior has included in its proposed 5-year leasing plan for 2007-2012 sales of one lease in the Mid-Atlantic area off the coastline of Virginia and two leases in the North Aleutian Basin area of Alaska. Development in both areas still would require lifting of the current ban on drilling.

  2. Offsite commercial disposal of oil and gas exploration and production waste :availability, options, and cost.

    SciTech Connect (OSTI)

    Puder, M. G.; Veil, J. A.

    2006-09-05

    A survey conducted in 1995 by the American Petroleum Institute (API) found that the U.S. exploration and production (E&P) segment of the oil and gas industry generated more than 149 million bbl of drilling wastes, almost 18 billion bbl of produced water, and 21 million bbl of associated wastes. The results of that survey, published in 2000, suggested that 3% of drilling wastes, less than 0.5% of produced water, and 15% of associated wastes are sent to offsite commercial facilities for disposal. Argonne National Laboratory (Argonne) collected information on commercial E&P waste disposal companies in different states in 1997. While the information is nearly a decade old, the report has proved useful. In 2005, Argonne began collecting current information to update and expand the data. This report describes the new 2005-2006 database and focuses on the availability of offsite commercial disposal companies, the prevailing disposal methods, and estimated disposal costs. The data were collected in two phases. In the first phase, state oil and gas regulatory officials in 31 states were contacted to determine whether their agency maintained a list of permitted commercial disposal companies dedicated to oil. In the second stage, individual commercial disposal companies were interviewed to determine disposal methods and costs. The availability of offsite commercial disposal companies and facilities falls into three categories. The states with high oil and gas production typically have a dedicated network of offsite commercial disposal companies and facilities in place. In other states, such an infrastructure does not exist and very often, commercial disposal companies focus on produced water services. About half of the states do not have any industry-specific offsite commercial disposal infrastructure. In those states, operators take their wastes to local municipal landfills if permitted or haul the wastes to other states. This report provides state-by-state summaries of the types of offsite commercial disposal facilities that are found in each state. In later sections, data are presented by waste type and then by disposal method.

  3. U.S. Nominal Cost per Crude Oil, Natural Gas, and Dry Well Drilled

    Gasoline and Diesel Fuel Update (EIA)

    (Thousand Dollars per Well) Oil, Natural Gas, and Dry Well Drilled (Thousand Dollars per Well) U.S. Nominal Cost per Crude Oil, Natural Gas, and Dry Well Drilled (Thousand Dollars per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 54.9 54.5 58.6 55.0 55.8 60.6 68.4 72.9 81.5 88.6 1970's 94.9 94.7 106.4 117.2 138.7 177.8 191.6 227.2 280.0 331.4 1980's 367.7 453.7 514.4 371.7 326.5 349.4 364.6 279.6 354.7 362.2 1990's 383.6 421.5 382.6 426.8 483.2

  4. U.S. Nominal Cost per Foot of Crude Oil, Natural Gas, and Dry Wells Drilled

    Gasoline and Diesel Fuel Update (EIA)

    (Dollars per Foot) Oil, Natural Gas, and Dry Wells Drilled (Dollars per Foot) U.S. Nominal Cost per Foot of Crude Oil, Natural Gas, and Dry Wells Drilled (Dollars per Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 13.01 12.85 13.31 12.69 12.86 13.44 14.95 15.97 16.83 17.56 1970's 18.84 19.03 20.76 22.50 28.93 36.99 40.46 46.81 56.63 67.70 1980's 77.02 94.30 108.73 83.34 71.90 75.35 76.88 58.71 70.23 73.55 1990's 76.07 82.64 70.27 75.30 79.49 87.22

  5. U.S. Real Cost per Crude Oil, Natural Gas, and Dry Well Drilled (Thousand

    Gasoline and Diesel Fuel Update (EIA)

    Dollars per Well) Crude Oil, Natural Gas, and Dry Well Drilled (Thousand Dollars per Well) U.S. Real Cost per Crude Oil, Natural Gas, and Dry Well Drilled (Thousand Dollars per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 261.1 256.2 271.8 252.4 252.2 269.1 295.1 305.1 327.0 338.7 1970's 344.6 327.6 352.8 367.8 399.5 467.9 476.7 531.4 611.8 668.8 1980's 680.4 767.4 820.0 570.1 482.5 501.2 511.7 382.0 468.6 461.1 1990's 470.2 499.1 442.9 482.9

  6. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    SciTech Connect (OSTI)

    Unknown

    2002-05-31

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and natural gas producers make timely, informed technology decisions. Networking opportunities that occur with a Houston Headquarters (HQ) location are increasing name awareness. Focused efforts by Executive Director Don Duttlinger to interact with large independents, national service companies and some majors are continuing to supplement the support base of the medium to smaller industry participants around the country. PTTC is now involved in many of the technology-related activities that occur in high oil and natural gas activity areas. Access to technology remains the driving force for those who do not have in-house research and development capabilities and look to the PTTC to provide services and options for increased efficiency. Looking forward to the future, the Board, Regional Lead Organization (RLO) Directors and HQ staff developed a 10-year vision outlining what PTTC needs to accomplish in supporting a national energy plan. This vision has been communicated to Department of Energy (DOE) staff and PTTC looks forward to continuing this successful federal-state-industry partnership. As part of this effort, several more examples of industry using information gained through PTTC activities to impact their bottom line were identified. Securing the industry pull on technology acceptance was the cornerstone of this directional plan.

  7. Report of the workshop on Arctic oil and gas recovery held at Sandia National Laboratories, Albuquerque, New Mexico, June 30-July 2, 1980

    SciTech Connect (OSTI)

    Sackinger, W. M.

    1980-09-01

    This report is the result of a workshop on Arctic offshore oil and gas recovery, held at Sandia National Laboratories Albuquerque, New Mexico, on June 30-July 2, 1980. Research priorities for the technology related to Arctic offshore oil and gas production were defined. The workshop was preceded by a report entitled, A Review of Technology for Arctic Offshore Oil and Gas Recovery, authored by Dr. W. M. Sackinger. The mission of the workshop was to identify research priorities without considering whether the research should be conducted by government or by industry. Nevertheless, at the end of the meeting the general discussion did consider this, and the concensus was that environmental properties should certainly be of concern to the government, that implementation of petroleum operations was the province of industry, and that overlapping, coordinated areas of interest include both environment and interactions of the environment with structures, transport systems, and operations. An attempt to establish relative importance and a time frame was made after the workshop through the use of a survey form. The form and a summary of its results, and a discussion of its implications, are given.

  8. Empirical test of the effects of Internal Revenue Code Section 465 on risk-taking by investors in oil and gas drilling programs

    SciTech Connect (OSTI)

    Christian, C.W.

    1985-01-01

    Taxation affects the cash flows generated by financial investments, and, under some conditions, it also affects the degree of risk investors are willing to bear. This study investigates the effects of the Internal Revenue Code Section 465 on risk-taking by financial investors in oil and gas drilling programs. Section 465 added new rules limiting loss deductions from certain activities, explicitly including oil and gas drilling. Prior research reached varying conclusions analytically, but most research concurs that investor risk-taking is reduced when a tax structure reduces loss-offsetting, i.e., reduces the deductibility of investment losses against other income. Section 465 does that under certain circumstances, so it presents an opportunity to empirically reexamine the question. This study presents null hypotheses that state that the percentage of limited-partner investment in drilling programs with different drilling objectives and deal term structures (and different levels of risk) was unchanged between the time periods before and after the enactment of Section 465. The study concludes that the loss deduction limitations of I.R.C. Section 465 did play a role in the reduction of risk-taking by limited partners in oil and gas drilling programs.

  9. Dual Layer Monolith ATR of Pyrolysis Oil for Distributed Synthesis Gas Production

    SciTech Connect (OSTI)

    Lawal, Adeniyi

    2012-09-29

    We have successfully demonstrated a novel reactor technology, based on BASF dual layer monolith catalyst, for miniaturizing the autothermal reforming of pyrolysis oil to syngas, the second and most critical of the three steps for thermochemically converting biomass waste to liquid transportation fuel. The technology was applied to aged as well as fresh samples of pyrolysis oil derived from five different biomass feedstocks, namely switch-grass, sawdust, hardwood/softwood, golden rod and maple. Optimization of process conditions in conjunction with innovative reactor system design enabled the minimization of carbon deposit and control of the H2/CO ratio of the product gas. A comprehensive techno-economic analysis of the integrated process using in part, experimental data from the project, indicates (1) net energy recovery of 49% accounting for all losses and external energy input, (2) weight of diesel oil produced as a percent of the biomass to be ~14%, and (3) for a �demonstration� size biomass to Fischer-Tropsch liquid plant of ~ 2000 daily barrels of diesel, the price of the diesel produced is ~$3.30 per gallon, ex. tax. However, the extension of catalyst life is critical to the realization of the projected economics. Catalyst deactivation was observed and the modes of deactivation, both reversible and irreversible were identified. An effective catalyst regeneration strategy was successfully demonstrated for reversible catalyst deactivation while a catalyst preservation strategy was proposed for preventing irreversible catalyst deactivation. Future work should therefore be focused on extending the catalyst life, and a successful demonstration of an extended (> 500 on-stream hours) catalyst life would affirm the commercial viability of the process.

  10. U.S. Footage Drilled for Crude Oil, Natural Gas, and Dry Exploratory Wells

    Gasoline and Diesel Fuel Update (EIA)

    (Thousand Feet) Wells (Thousand Feet) U.S. Footage Drilled for Crude Oil, Natural Gas, and Dry Exploratory Wells (Thousand Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 34,798 1950's 40,175 49,344 55,615 60,664 59,601 69,206 74,337 69,181 61,484 63,253 1960's 55,831 54,442 53,616 53,485 55,497 49,204 55,709 47,839 50,958 57,466 1970's 43,530 41,895 44,956 45,618 51,315 54,677 53,617 57,949 65,197 63,096 1980's 74,288 101,808 88,856 69,690 80,853

  11. Harsh-Environment Solid-State Gamma Detector for Down-hole Gas and Oil Exploration

    SciTech Connect (OSTI)

    Peter Sandvik; Stanislav Soloviev; Emad Andarawis; Ho-Young Cha; Jim Rose; Kevin Durocher; Robert Lyons; Bob Pieciuk; Jim Williams; David O'Connor

    2007-08-10

    The goal of this program was to develop a revolutionary solid-state gamma-ray detector suitable for use in down-hole gas and oil exploration. This advanced detector would employ wide-bandgap semiconductor technology to extend the gamma sensor's temperature capability up to 200 C as well as extended reliability, which significantly exceeds current designs based on photomultiplier tubes. In Phase II, project tasks were focused on optimization of the final APD design, growing and characterizing the full scintillator crystals of the selected composition, arranging the APD device packaging, developing the needed optical coupling between scintillator and APD, and characterizing the combined elements as a full detector system preparing for commercialization. What follows is a summary report from the second 18-month phase of this program.

  12. Oil and gas developments in Atlantic Coastal Plain and Outer Continental Shelf in 1983

    SciTech Connect (OSTI)

    Giordano, A.C.; Carpenter, G.B.; Amato, R.V.

    1984-10-01

    Exploratory drilling in the Atlantic coastal plain region declined slightly in 1983. Four wells were spudded during the year: 2 in the offshore Baltimore Canyon area and 2 onshore in Lee County, North Carolina. One North Carolina well was drilled, and the other was being tested at year end. In April, 4050 tracts were offered in the mid-Atlantic lease offering (OCS Sale 76), the first area-wide offering of offshore oil and gas leases under the Department of the Interior's new streamlined leasing system. Bids of $86,822,680 were exposed on 40 tracts, and 37 tracts were subsequently leased. In July 3, 082 tracts were offered in the south Atlantic lease offering (OCS Sale 78). Bids of $14,562,040 were exposed on 11 tracts, and all high bids were accepted. Seismic data acquisition decreased 64% below the 1982 level to 13,166 line-mi (21,189 line-km). 3 figures, 2 tables.

  13. Mineral resources: Timely processing can increase rent revenue from certain oil/gas leases

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    Federal regulations require that onshore oil and gas leases that are subsequently determined to overlie a known geologic structure are to have their rental rates increased. The Bureau of Land Management does not have internal controls that ensure that such rental increases are processed consistently and in a timely manner. Although BLM'S state offices in Colorado and Wyoming generally increased rental rates for leases determined to overlie known geologic structures, these increases were not made in a timely manner during calendar years 1984 and 1985. These delays resulted in lost revenue of $552,614. There were also a few instances in the two states in which the rental rates had not been increased at all, causing an additional revenue loss of at least $15,123.

  14. California--State Offshore Natural Gas Withdrawals from Oil Wells (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Oil Wells (Million Cubic Feet) California--State Offshore Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 11,226 12,829 1980's 11,634 11,759 12,222 12,117 12,525 13,378 12,935 10,962 9,728 8,243 1990's 7,743 7,610 7,242 6,484 7,204 5,904 6,309 7,171 6,883 6,738 2000's 7,808 7,262 7,068 6,866 6,966 6,685 6,654 6,977 6,764 5,470 2010's 5,483 4,904 4,411 5,057 5,530 - = No Data Reported;

  15. Accounting for uncertainty and risk in assessments of impacts for offshore oil and gas leasing proposals

    SciTech Connect (OSTI)

    Wildermann, R.; Beittel, R. )

    1993-01-01

    The Minerals Management Service (MMS) of the US Department of the Interior prepares an environmental impact statement (EIS) for each proposal to lease a portion of the Outer Continental Shelf (OCS) for oil and gas exploration and development. The nature, magnitude, and timing of the activities that would ultimately result from leasing are subject to wide speculation, primarily because of uncertainties about the locations and amounts of petroleum hydrocarbons that exist on most potential leases. These uncertainties create challenges in preparing EIS's that meet National Environmental Policy Act requirements and provide information useful to decision-makers. This paper examines the constraints that uncertainty places on the detail and reliability of assessments of impacts from potential OCS development. It further describes how the MMS accounts for uncertainty in developing reasonable scenarios of future events that can be evaluated in the EIS. A process for incorporating the risk of accidental oil spills into assessments of expected impacts is also presented. Finally, the paper demonstrates through examination of case studies how a balance can be achieved between the need for an EIS to present impacts in sufficient detail to allow a meaningful comparison of alternatives and the tendency to push the analysis beyond credible limits.

  16. EIA Report 9/1/08 - Hurricane Impacts on U.S. Oil & Natural Gas Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Markets , 4:00 pm See current U.S. Oil and Natural Gas Market Impacts Prices NYMEX Futures Prices (for October delivery) (2pm) 9/1/2008 8/29/2008 change Week Ago 8/25/2008 Year Ago 8/31/2007 WTI Crude Oil ($/Bbl) 111.16 115.46 -4.30 115.11 73.98 Gasoline RBOB* (c/gal) 275.10 285.42 -10.32 280.69 196.45 Heating Oil (c/gal) 309.24 319.19 -9.95 317.90 205.74 Natural Gas ($/MMBtu) 7.98 8.36 -0.38 7.94 6.46 OPEC Basket ($Bbl) NA 111.23 NA 110.61 69.60 *RBOB = Reformulated Blendstock for Oxygenate

  17. EIA Report 9/11/08 - Hurricane Impacts on U.S. Oil & Natural Gas Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Markets 1, 4:00 pm See current U.S. Oil and Natural Gas Market Impacts Prices NYMEX Futures Prices (for October delivery) 9/11/2008 Pre-Gustav 8/29/2008 change Week Ago 9/4/2008 Year Ago 9/11/2007 WTI Crude Oil ($/Bbl) 100.87 115.46 -14.59 107.89 78.23 Gasoline RBOB* (c/gal) 274.88 285.42 -10.54 274.04 198.11 Heating Oil (c/gal) 291.55 319.19 -27.64 302.37 218.27 Natural Gas ($/MMBtu) 7.25 7.94 -0.69 7.32 5.93 *RBOB = Reformulated Blendstock for Oxygenate Blending (RBOB), the base gasoline

  18. Technology-Based Oil and Natural Gas Plays: Shale Shock! Could There Be Billions in the Bakken?

    Reports and Publications (EIA)

    2006-01-01

    This report presents information about the Bakken Formation of the Williston Basin: its location, production, geology, resources, proved reserves, and the technology being used for development. This is the first in a series intending to share information about technology-based oil and natural gas plays.

  19. Build a Floating Oil Rig | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Build a Floating Oil Rig Build a Floating Oil Rig The U.S. Department of the Interior's Minerals Management Service developed this teacher's guide about the many energy resources found in, over, and under the ocean. Includes sections on petroleum, natural gas, and methane hydrates. Hands-on activities include drilling for oil in the ocean, and building a floating oil rig. PDF icon Study Guide - Build a Floating Oil Rig More Documents & Publications QER - Comment of Energy Innovation 6 QER -

  20. Cracking of simulated oil refinery off-gas over a coal char, petroleum coke, and quartz

    SciTech Connect (OSTI)

    Yuan Zhang; Jin-hu Wu; Dong-ke Zhang

    2008-03-15

    The cracking of oil refinery off-gas, simulated with a gas mixture containing methane (51%), ethylene (21.4%), ethane (21.1%), and propane (6.5%), over a coal char, petroleum coke, and quartz, respectively, has been studied in a fixed bed reactor. The experiments were performed at temperatures between 850 and 1000{sup o}C and at atmospheric pressure. The results show that the conversions of all species considered increased with increasing temperature. Ethane and propane completely decomposed over all three bed materials in the temperature range investigated. However, the higher initial conversion rates of methane and ethylene cracking at all temperatures were observed only over the coal char and not on the petroleum coke and quartz, indicating a significant catalytic effect of the coal char on methane and ethylene cracking. Methane and ethylene conversions decreased with reaction time due to deactivation of the coal char by carbon deposition on the char surface and, in the later stage of a cracking experiment, became negative, suggesting that methane and ethylene had been formed during the cracking of ethane and propane. 16 refs., 13 figs., 2 tabs.

  1. Pyrolysis Oil Stabilization: Hot-Gas Filtration; Cooperative Research and Development Final Report, CRADA Number CRD-09-333

    SciTech Connect (OSTI)

    Baldwin, R.

    2012-07-01

    The hypothesis that was tested in this task was that separation of char, with its associated mineral matter from pyrolysis vapors before condensation, will lead to improved oil quality and stability with respect to storage and transportation. The metric used to evaluate stability in this case was a 10-fold reduction in the rate of increase of viscosity as determined by ASTM D445 (the accelerated aging test). The primary unit operation that was investigated for this purpose was hot-gas filtration. A custom-built heated candle filter system was fabricated by the Pall Corporation and furnished to NREL for this test campaign. This system consisted of a candle filter element in a containment vessel surrounded by heating elements on the external surface of the vessel. The filter element and housing were interfaced to NREL?s existing 0.5 MTD pyrolysis Process Development Unit (PDU). For these tests the pyrolysis reactor of the PDU was operated in the entrained-flow mode. The HGF test stand was installed on a slipstream from the PDU so that both hot-gas filtered oil and bio-oil that was not hot-gas filtered could be collected for purposes of comparison. Two filter elements from Pall were tested: (1) porous stainless steel (PSS) sintered metal powder; (2) sintered ceramic powder. An extremely sophisticated bio-oil condensation and collection system was designed and fabricated at NREL and interfaced to the filter unit.

  2. Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah

    SciTech Connect (OSTI)

    Michael Vanden Berg; Paul Anderson; Janae Wallace; Craig Morgan; Stephanie Carney

    2012-04-30

    Saline water disposal is one of the most pressing issues with regard to increasing petroleum and natural gas production in the Uinta Basin of northeastern Utah. Conventional oil fields in the basin provide 69 percent of Utah?s total crude oil production and 71 percent of Utah?s total natural gas, the latter of which has increased 208% in the past 10 years. Along with hydrocarbons, wells in the Uinta Basin produce significant quantities of saline water ? nearly 4 million barrels of saline water per month in Uintah County and nearly 2 million barrels per month in Duchesne County. As hydrocarbon production increases, so does saline water production, creating an increased need for economic and environmentally responsible disposal plans. Current water disposal wells are near capacity, and permitting for new wells is being delayed because of a lack of technical data regarding potential disposal aquifers and questions concerning contamination of freshwater sources. Many companies are reluctantly resorting to evaporation ponds as a short-term solution, but these ponds have limited capacity, are prone to leakage, and pose potential risks to birds and other wildlife. Many Uinta Basin operators claim that oil and natural gas production cannot reach its full potential until a suitable, long-term saline water disposal solution is determined. The enclosed project was divided into three parts: 1) re-mapping the base of the moderately saline aquifer in the Uinta Basin, 2) creating a detailed geologic characterization of the Birds Nest aquifer, a potential reservoir for large-scale saline water disposal, and 3) collecting and analyzing water samples from the eastern Uinta Basin to establish baseline water quality. Part 1: Regulators currently stipulate that produced saline water must be disposed of into aquifers that already contain moderately saline water (water that averages at least 10,000 mg/L total dissolved solids). The UGS has re-mapped the moderately saline water boundary in the subsurface of the Uinta Basin using a combination of water chemistry data collected from various sources and by analyzing geophysical well logs. By re-mapping the base of the moderately saline aquifer using more robust data and more sophisticated computer-based mapping techniques, regulators now have the information needed to more expeditiously grant water disposal permits while still protecting freshwater resources. Part 2: Eastern Uinta Basin gas producers have identified the Birds Nest aquifer, located in the Parachute Creek Member of the Green River Formation, as the most promising reservoir suitable for large-volume saline water disposal. This aquifer formed from the dissolution of saline minerals that left behind large open cavities and fractured rock. This new and complete understanding the aquifer?s areal extent, thickness, water chemistry, and relationship to Utah?s vast oil shale resource will help operators and regulators determine safe saline water disposal practices, directly impacting the success of increased hydrocarbon production in the region, while protecting potential future oil shale production. Part 3: In order to establish a baseline of water quality on lands identified by the U.S. Bureau of Land Management as having oil shale development potential in the southeastern Uinta Basin, the UGS collected biannual water samples over a three-year period from near-surface aquifers and surface sites. The near-surface and relatively shallow groundwater quality information will help in the development of environmentally sound water-management solutions for a possible future oil shale and oil sands industry and help assess the sensitivity of the alluvial and near-surface bedrock aquifers. This multifaceted study will provide a better understanding of the aquifers in Utah?s Uinta Basin, giving regulators the tools needed to protect precious freshwater resources while still allowing for increased hydrocarbon production.

  3. Muslim oil and gas periphery; the future of hydrocarbons in Africa, southeast Asia and the Caspian. Master`s thesis

    SciTech Connect (OSTI)

    Crockett, B.D.

    1997-12-01

    This thesis is a study of the contemporary political, economic, and technical developments and future prospects of the Muslim hydrocarbon exporters of Africa, Southeast Asia, and the Caspian. The established Muslim oil and gas periphery of Africa and Southeast Asia has four members in the Organization of Petroleum Exporting Countries (OPEC) and is systemically increasing its production of natural gas. I analyze US government and corporate policies regarding the countries and the major dilemmas of the Muslim hydrocarbon periphery. The first chapter provides a selective overview of global energy source statistics; the policies, disposition and composition of the major hydrocarbon production and consumption players and communities; a selective background of OPEC and its impact on the globe; and a general portrait of how the Muslim periphery piece fits into the overall Muslim oil and gas puzzle. Chapter two analyzes the established Muslim oil and gas periphery of Africa and Southeast Asia asking the following questions: What are the major political, economic, and technical trends and dilemmas affecting these producer nations. And what are the United States` policies and relationships with these producers. Chapter three asks the same questions as chapter two, but with regard to the newly independent states of the Caspian Sea. I probe the regional petroleum exploration and transportation dilemmas in some detail.

  4. Microsoft Word - NETL-TRS-6-2015 Detection of Hydrates on Gas Bubbles during a Subsea Oil Gas Leak.20150722.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Detection of Hydrates on Gas Bubbles during a Subsea Oil/Gas Leak 22 July 2015 Office of Fossil Energy NETL-TRS-6-2015 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or

  5. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inc. and the U.S. subsidiary of Nexen of 8.3 million, the highest bid during the sale. Top bidders included several independent oil and gas companies such as Kerr-McGee...

  6. Oil and natural gas supply and demand trends in North America...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TX By Adam Sieminski U.S. Energy Information Administration Historical and projected oil prices 2 crude oil price price per barrel (real 2010 dollars) Sources: U.S. Energy...

  7. Utah Heavy Oil Program

    SciTech Connect (OSTI)

    J. Bauman; S. Burian; M. Deo; E. Eddings; R. Gani; R. Goel; C.K. Huang; M. Hogue; R. Keiter; L. Li; J. Ruple; T. Ring; P. Rose; M. Skliar; P.J. Smith; J.P. Spinti; P. Tiwari; J. Wilkey; K. Uchitel

    2009-10-20

    The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987 technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.

  8. East African coast overlooked. [Oil and gas potential of the east African coast

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    This paper reviews the petroleum and gas potential of the Tanzania-Mozambique basinal areas. It discusses the locations of the various sedimentary basins in the onshore and near offshore areas, including the central African rift zone. The paper describes the structure, stratigraphy, and petroleum geology of these basins. Finally the paper reviews the exploration history and the outlook for the future of these basins.

  9. Federal Perspective on Opportunities for Hydrogen and Natural Gas for Transportation„Including a Hydrogen Perspective

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transitioning the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles Mark S. Smith Vehicle Technologies Office/ Clean Cities Team September 9, 2014 2 * Nearly 600,000 AFVs on the road in the US * Over 14,500 alternative fueling and charging stations * Long term goal of 2.5B gal/year by 2020 Alternative Fuel use during Clean Cities 20+ year history Nearly 6.5 Billion Gallons of Petroleum Reduction since 1993 3 Natural Gas dominates current alt-fuel

  10. Table 4.2 Crude Oil and Natural Gas Cumulative Production and Proved Reserves, 1977-2010

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil and Natural Gas Cumulative Production and Proved Reserves, 1977-2010 Year Crude Oil and Lease Condensate 1 Natural Gas (Dry) Cumulative Production Proved Reserves 2 Cumulative Production Proved Reserves 3 Million Barrels Billion Cubic Feet 1977 118,091 31,780 514,439 207,413 1978 121,269 31,355 533,561 208,033 1979 124,390 31,221 553,224 200,997 1980 127,537 31,335 572,627 199,021 1981 130,665 31,006 591,808 201,730 1982 133,822 29,459 609,628 201,512 1983 136,993 29,348 625,722

  11. Proposed 1986 outer continental shelf oil and gas lease sale offshore the Mid-Atlantic states, OCS Sale No. 111

    SciTech Connect (OSTI)

    Not Available

    1985-05-01

    Sale of oil and gas development leases is proposed for 3561 lease tracts containing 20.3 million acres of outer continental shelf lying off the coasts of Rhode Island, New York, New Jersey, Delaware, Maryland, Virginia, and North Carolina. The lease tracts are located beneath 132 to 10,560 feet of water within an area 24 to 140 miles offshore. Oil would become available in 1994, with production peaking in 1999. Gas production would begin in 1998, peak in 1999, and decline by approximately 50% by the year 2005. Development of the hydrocarbon field would involve approximately 22 exploratory wells, 9 delineation wells, 5 platforms, 27 subsea completions, and 54 production wells. If implemented, the lease offering would be held in October 1985.

  12. Developing effective strategies for complying with the oil and gas MACT

    SciTech Connect (OSTI)

    Bhatt, T.N.; Ebarb, W.

    1996-12-31

    The 1990 Clean Air Act Amendments (CAAA), enacted on November 15, 1990, represent landmark legislation which provides the US Environmental Protection Agency with unprecedented authority to promulgate regulations affecting air pollution. Title 3 of the 1990 CAAA focuses on the emissions of hazardous air pollutants (HAP) from the sources of concern. The HAP affected by Title 3 are identified in Section 112(b) of the Clean Air Act (CAA). The industry specific regulations promulgated for major industrial source categories under Section 112(d) and Section 112(g) of the CAA are referred to as the Maximum Achievable Control Technology (MACT). In order to maximize operational flexibility and optimize costs of compliance, facilities must develop a plan to identify methods to comply with the area source provisions of the regulations by becoming a minor source/synthetic minor source or to comply with the major source requirements of the regulations in the most cost effective manner. Area source requirements are generally less stringent as compared to the major source requirements. This paper outlines the fundamental aspects of Title 3 as they impact the upstream oil and gas industry. The paper provides guidelines to the potentially affected facilities in determining applicability of the MACT rules based on emission inventories, potential to emit (PTE), and latest guidance from the EPA. The paper finally provides strategies to comply with the requirements of the regulations and discusses the advantages and disadvantages associated with using specific strategies.

  13. The feasibility of effluent trading in the oil and gas industry

    SciTech Connect (OSTI)

    Veil, J.A.

    1997-09-01

    In January 1996, the U.S. Environmental Protection Agency (EPA) released a policy statement endorsing wastewater effluent trading in watersheds, hoping to promote additional interest in the subject. The policy describes five types of effluent trades - point source/point source, point source/nonpoint source, pretreatment, intraplant, and nonpoint source/nonpoint source. This paper evaluates the feasibility of effluent trading for facilities in the oil and gas industry. The evaluation leads to the conclusion that potential for effluent trading is very low in the exploration and production and distribution and marketing sectors; trading potential is moderate for the refining sector except for intraplant trades, for which the potential is high. Good potential also exists for other types of water-related trades that do not directly involve effluents (e.g., wetlands mitigation banking). The potential for effluent trading in the energy industries and in other sectors would be enhanced if Congress amended the Clean Water Act (CWA) to formally authorize such trading.

  14. DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS-FIRED COMBUSTION SYSTEMS

    SciTech Connect (OSTI)

    Glenn C. England; Stephanie Wien; Mingchih O. Chang

    2002-08-01

    This report provides results from the first year of this three-year project to develop dilution measurement technology for characterizing PM2.5 (particles with aerodynamic diameter smaller than 2.5 micrometers) and precursor emissions from stationary combustion sources used in oil, gas and power generation operations. Detailed emission rate and chemical speciation test results for a refinery gas-fired process heater and plans for cogeneration gas turbine tests and pilot-scale tests are presented. Tests were performed using a research dilution sampling apparatus and traditional EPA methods to compare PM2.5 mass and chemical speciation. Test plans are presented for a gas turbine facility that will be tested in the fourth quarter of 2002. A preliminary approach for pilot-scale tests is presented that will help define design constraints for a new dilution sampler design that is smaller, lighter, and less costly to use.

  15. Shale Gas 101 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Innovation » Oil & Gas » Shale Gas » Shale Gas 101 Shale Gas 101 Shale Gas 101 This webpage has been developed to answer the many questions that people have about shale gas and hydraulic fracturing (or fracking). The information provided below explains the basics, including what shale gas is, where it's found, why it's important, how it's produced, and challenges associated with production. Natural gas production from "shale" formations (fine-grained sedimentary

  16. Remote sensing of fugitive methane emissions from oil and gas production in North American tight geologic formations

    Energy Savers [EERE]

    Earth's Future Remote sensing of fugitive methane emissions from oil and gas production in North American tight geologic formations Oliver Schneising 1 , John P. Burrows 1,2,3 , Russell R. Dickerson 2 , Michael Buchwitz 1 , Maximilian Reuter 1 , and Heinrich Bovensmann 1 1 Institute of Environmental Physics (IUP), University of Bremen, Bremen, Germany, 2 Department of Atmospheric and Oceanic Science, University of Maryland, College Park, Maryland, USA, 3 NERC Centre for Ecology and Hydrology,

  17. DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS-FIRED COMBUSTION SYSTEMS

    SciTech Connect (OSTI)

    Glenn C. England

    2004-10-20

    In 1997, the United States Environmental Protection Agency (EPA) promulgated new National Ambient Air Quality Standards (NAAQS) for particulate matter, including for the first time particles with aerodynamic diameter smaller than 2.5 micrometers ({micro}m) referred to as PM2.5. PM2.5 in the atmosphere also contributes to reduced atmospheric visibility, which is the subject of existing rules for siting emission sources near Class 1 areas and new Regional Haze rules. There are few existing data regarding emissions and characteristics of fine aerosols from oil, gas and power generation industry combustion sources, and the information that is available is generally outdated and incomplete. Traditional stationary source air emission sampling methods tend to underestimate or overestimate the contribution of the source to ambient aerosols because they do not properly account for primary aerosol formation, which occurs after the gases leave the stack. Primary aerosol includes both filterable particles that are solid or liquid aerosols at stack temperature plus those that form as the stack gases cool through mixing and dilution processes in the plume downwind of the source. These deficiencies in the current methods can have significant impacts on regulatory decision-making. PM2.5 measurement issues were extensively reviewed by the American Petroleum Institute (API) (England et al., 1998), and it was concluded that dilution sampling techniques are more appropriate for obtaining a representative particulate matter sample from combustion systems for determining PM2.5 emission rate and chemical speciation. Dilution sampling is intended to collect aerosols including those that condense and/or react to form solid or liquid aerosols as the exhaust plume mixes and cools to near-ambient temperature immediately after the stack discharge. These techniques have been widely used in recent research studies. For example, Hildemann et al. (1994) and McDonald et al. (1998) used filtered ambient air to dilute the stack gas sample followed by 80-90 seconds residence time to allow aerosol formation and growth to stabilize prior to sample collection and analysis. More accurate and complete emissions data generated using the methods developed in this program will enable more accurate source-receptor and source apportionment analysis for PM2.5 National Ambient Air Quality Standards (NAAQS) implementation and streamline the environmental assessment of oil, gas and power production facilities. The overall goals of this program were to: (1) Develop improved dilution sampling technology and test methods for PM2.5 mass emissions and speciation measurements, and compare results obtained with dilution and traditional stationary source sampling methods. (2) Develop emission factors and speciation profiles for emissions of fine particulate matter, especially organic aerosols, for use in source-receptor and source apportionment analyses. (3) Identify and characterize PM2.5 precursor compound emissions that can be used in source-receptor and source apportionment analyses.

  18. Application of nonparametric regression and statistical testing to identify the impact of oil and natural gas development on local air quality

    SciTech Connect (OSTI)

    Pekney, Natalie J.; Cheng, Hanqi; Small, Mitchell J.

    2015-11-05

    Abstract: The objective of the current work was to develop a statistical method and associated tool to evaluate the impact of oil and natural gas exploration and production activities on local air quality.

  19. Compilation and Presentation of Existing Data on Oil and Gas Leasing Development in a Manner Useful to the NEPA Process

    SciTech Connect (OSTI)

    Amy Childers; Dave Cornue

    2008-11-30

    In recognition of our nation's increasing energy needs, the George W. Bush Administration's National Energy Policy Development Group report (May 2001) suggested that one way to increase domestic on-shore production of oil and gas is to increase access to undiscovered resources on federal lands. Also recognized is the need to protect and conserve natural resources, which often are located on and around federal lands. The National Environmental Policy Act (NEPA) was designed to create and maintain conditions under which man and nature can exist in productive harmony. NEPA requires that federal agencies prepare an environmental impact statement (EIS) prior to the approval of any development activities. The NEPA scope is broad, with the process applicable to many situations from the building of highways, barge facilities and water outtake facilities, bridges, and watersheds to other less significant projects. The process often involves cooperation among multiple federal agencies, industry, scientists and consultants, and the surrounding community. The objective of the project, titled Compilation and Presentation of Existing Data on Oil and Gas Leasing and Development in a Manner Useful to the NEPA Process, is to facilitate faster and more comprehensive access to current oil and gas data by land management agencies and operators. This will enable key stakeholders in the NEPA process to make decisions that support access to federal resources while at the same time achieving a legitimate balance between environmental protection and appropriate levels of development.

  20. Technical Demonstration and Economic Validation of Geothermal-Produced Electricity from Coproduced Water at Existing Oil/Gas Wells in Texas

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Demonstration and Economic Validation of Geothermal-Produced Electricity from Coproduced Water at Existing Oil/Gas Wells in Texas George Alcorn Jr. Universal GeoPower May 19, 2010 This presentation does not contain any proprietary confidential, or otherwise restricted information. 2 | US DOE Geothermal Program eere.energy.gov * DOE-FOA-0000109 * Technical Demonstration and Economic Validation of Geothermal-Produced Electricity from Coproduced Water at Existing Oil/Gas Wells in Texas *