Powered by Deep Web Technologies
Note: This page contains sample records for the topic "includes landfill gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Landfill gas recovery  

Science Journals Connector (OSTI)

Landfill gas recovery ... However, by referring to landfills as dumps, the article creates a misimpression. ... The answers revolve around the relative emissions from composting facilities and landfills and the degree to which either finished compost or landfill gas is used beneficially. ...

Morton A. Barlaz

2009-04-29T23:59:59.000Z

2

Landfill Gas Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of landfill gas energy resources and technologies supplemented by specific information to apply landfill gas energy within the Federal sector.

3

Landfill Gas | Open Energy Information  

Open Energy Info (EERE)

Landfill Gas Incentives Retrieved from "http:en.openei.orgwindex.php?titleLandfillGas&oldid267173" Category: Articles with outstanding TODO tasks...

4

Landfill Gas | OpenEI  

Open Energy Info (EERE)

Landfill Gas Landfill Gas Dataset Summary Description The UK Department of Energy and Climate Change (DECC) publishes annual renewable energy generation and capacity by region (9 regions in England, plus Wales, Scotland and Northern Ireland). Data available 2003 to 2009. Data is included in the DECC Energy Trends: September 2010 Report (available: http://www.decc.gov.uk/assets/decc/Statistics/publications/trends/558-tr...) Source UK Department of Energy and Climate Change (DECC) Date Released September 30th, 2010 (4 years ago) Date Updated Unknown Keywords Energy Generation Hydro Landfill Gas Other Biofuels Renewable Energy Consumption Sewage Gas wind Data application/zip icon 2 Excel files, 1 for generation, 1 for capacity (zip, 24.9 KiB) Quality Metrics Level of Review Peer Reviewed

5

Enhancing landfill gas recovery  

Science Journals Connector (OSTI)

The landfilling of municipal solid waste (MSW) may cause potential environmental impacts like global warming (GW), soil contaminations, and groundwater pollution. The degradation of MSW in anaerobic circumstances generates methane emissions, and can hence contribute the GW. As the GW is nowadays considered as one of the most serious environmental threats, the mitigation of methane emissions should obviously be aimed at on every landfill site where methane generation occurs. In this study, the treatment and utilization options for the generated LFG at case landfills which are located next to each other are examined. The yearly GHG emission balances are estimated for three different gas management scenarios. The first scenario is the combined heat and power (CHP) production with a gas engine. The second scenario is the combination of heat generation for the asphalt production process in the summer and district heat production by a water boiler in the winter. The third scenario is the LFG upgrading to biomethane. The estimation results illustrate that the LFG collection efficiency affects strongly on the magnitudes of GHG emissions. According to the results, the CHP production gives the highest GHG emission savings and is hence recommended as a gas utilization option for case landfills. Furthermore, aspects related to the case landfills' extraction are discussed.

Antti Niskanen; Hanna Värri; Jouni Havukainen; Ville Uusitalo; Mika Horttanainen

2013-01-01T23:59:59.000Z

6

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network [OSTI]

USA ICEF2006-1578 LANDFILL GAS FUELED HCCI DEMONSTRATIONengine that runs on landfill gas. The project team led bynatural gas and simulated landfill gas as a fuel source.

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

7

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network [OSTI]

USA ICEF2006-1578 LANDFILL GAS FUELED HCCI DEMONSTRATIONengine that runs on landfill gas. The project team led bygas and simulated landfill gas as a fuel source. This

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

8

Landfill Gas Generation and Transport In Bioreactor Landfill  

Science Journals Connector (OSTI)

The activation gas and water flow each other in Bioreactor Landfill. Based on the porous media seepage and ... of water and waste components decomposition for describing landfill gas flow have been developed, and...

Qi-Lin Feng; Lei Liu; Qiang Xue; Ying Zhao

2010-01-01T23:59:59.000Z

9

Monitoring of Gin Drinkers' Bay landfill, Hong Kong: I. Landfill gas on top of the landfill  

Science Journals Connector (OSTI)

The present study centered on the composition of landfill gas and its effects on soil and ... at the Gin Drinkers' Bay (GDB) landfill in Hong Kong This first part of ... the study was a whole-year monitoring of landfill

M. H. Wong; C. T. Yu

10

LATERAL LANDFILL GAS MIGRATION: CHARACTERIZATION AND  

E-Print Network [OSTI]

LATERAL LANDFILL GAS MIGRATION: CHARACTERIZATION AND PRELIMINARY MODELING RESULTS O.BOUR*, E,UniversitéLaval, Sainte-Foy, Canada SUMMARY: Lateral landfill gas migration occurs in the surroundings of a MSW landfill complementary physical measures were used to build a conceptual model of lateral landfill gas migration

Boyer, Edmond

11

Landfill Gas Sequestration in Kansas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Road Road P.O. Box 880 Morgantown, WV 26505-0880 304-285-4132 Heino.beckert@netl.doe.gov David newell Principal Investigator Kansas Geological Survey 1930 Constant Avenue Lawrence, KS 66045 785-864-2183 dnewall@kgs.uk.edu LandfiLL Gas sequestration in Kansas Background Municipal solid waste landfills are the largest source of anthropogenic methane emissions in the United States, accounting for about 34 percent of these emissions in 2004. Most methane (CH 4 ) generated in landfills and open dumps by anaerobic decomposition of the organic material in solid-waste-disposal landfills is either vented to the atmosphere or converted to carbon dioxide (CO 2 ) by flaring. The gas consists of about 50 percent methane (CH 4 ), the primary component of natural gas, about 50 percent carbon dioxide (CO

12

RCWMD Badlands Landfill Gas Project Biomass Facility | Open Energy...  

Open Energy Info (EERE)

RCWMD Badlands Landfill Gas Project Biomass Facility Jump to: navigation, search Name RCWMD Badlands Landfill Gas Project Biomass Facility Facility RCWMD Badlands Landfill Gas...

13

Penrose Landfill Gas Conversion LLC | Open Energy Information  

Open Energy Info (EERE)

Penrose Landfill Gas Conversion LLC Place: Los Angeles, California Product: Owner of landfill gas plant. References: Penrose Landfill Gas Conversion LLC1 This article is a stub....

14

Winnebago County Landfill Gas Biomass Facility | Open Energy...  

Open Energy Info (EERE)

Winnebago County Landfill Gas Biomass Facility Facility Winnebago County Landfill Gas Sector Biomass Facility Type Landfill Gas Location Winnebago County, Wisconsin Coordinates...

15

Passive drainage and biofiltration of landfill gas: behaviour and performance in a temperate climate.  

E-Print Network [OSTI]

??Microbial oxidation of methane has attracted interest as an alternative process for treating landfill gas emissions. Approaches have included enhanced landfill cover layers and biocovers,… (more)

Dever, Stuart Anthony

2009-01-01T23:59:59.000Z

16

Occupational Safety at Landfill Sites - Hazards and Pollution Due to Landfill Gas  

Science Journals Connector (OSTI)

Landfill gas is formed on a large scale ... of methane gas which escapes every year from landfill sites in the Federal Republic of Germany ... about 2.5 million standard cubic metres. Landfill gas (LFG) with its ...

Volkmar Wilhelm

1993-01-01T23:59:59.000Z

17

Lessons from Loscoe: the uncontrolled migration of landfill gas  

Science Journals Connector (OSTI)

...the uncontrolled migration of landfill gas G. M. Williams 1 N. Aitkenhead...Environment, 1989. The Control of Landfill Gas. HMSO, London. Doelle, H...1988. Trace constituents in landfill gas. Gas Research Institute. Frost...

G. M. Williams; N. Aitkenhead

18

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network [OSTI]

Natural Gas Nitric Oxide/Nitrogen Dioxide Neal Road LandfillThe methane, nitrogen and carbon dioxide concentrations ofmethane, 30% nitrogen and 30% carbon dioxide. The recorded

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

19

Influence assessment of landfill gas pumping  

Science Journals Connector (OSTI)

Changes in CH4 gas concentrations arising in a landfill as a consequence of a number of gas extraction pumping rates, are characterized. The field-monitored results indicate a fairly free flow of gas through the ...

Edward A. McBean; Anthony J. Crutcher; Frank A. Rovers

1984-04-01T23:59:59.000Z

20

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network [OSTI]

Journal of Engineering for Gas Turbines and Power, 121:569-operations with natural gas: Fuel composition implications,”USA ICEF2006-1578 LANDFILL GAS FUELED HCCI DEMONSTRATION

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "includes landfill gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Federal Energy Management Program: Landfill Gas Resources and Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Landfill Gas Landfill Gas Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Landfill Gas Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Landfill Gas Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Landfill Gas Resources and Technologies on Google Bookmark Federal Energy Management Program: Landfill Gas Resources and Technologies on Delicious Rank Federal Energy Management Program: Landfill Gas Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Landfill Gas Resources and Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies

22

Community Renewable Energy Success Stories: Landfill Gas-to-Energy...  

Broader source: Energy.gov (indexed) [DOE]

Stories: Landfill Gas-to-Energy Projects Webinar (text version) Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects Webinar (text version) Below is the text...

23

Development of Biochar-Amended Landfill Cover for Landfill Gas Mitigation.  

E-Print Network [OSTI]

??Development of Biochar-Amended Landfill Cover for Landfill Gas Mitigation Poupak Yaghoubi Department of Civil Engineering University of Illinois at Chicago Chicago, Illinois (2011) Dissertation Chairperson:… (more)

Yaghoubi, Poupak

2012-01-01T23:59:59.000Z

24

Forecast and Control Methods of Landfill Emission Gas to Atmosphere  

Science Journals Connector (OSTI)

The main component of landfill gas is CH4, its release is a potential hazard to the environment. To understand the gas law and landfill gas production are the prerequisite for effective control of landfill gas. This paper selects three kinds of typical ... Keywords: Landfill gas, German model, IPCC model, Marticorena dynamic model

Wang Qi; Yang Meihua; Wang Jie

2011-02-01T23:59:59.000Z

25

Tapping Landfill Gas to Provide Significant Energy Savings and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Two Large Landfill Projects BroadRock Renewables, LLC built two high efficiency electricity generating facilities that utilize landfill gas in California and Rhode Island. The...

26

Landfill Gas: From Rubbish to Resource  

Science Journals Connector (OSTI)

The prospects of using landfill gas (LFG) as a high-grade fuel...Kyoto Protocols, and energy prices, are discussed. Adsorption cycles suggested in the late 1980s by Sircar and co-workers for treating LFG are revi...

Kent S. Knaebel; Herbert E. Reinhold

2003-03-01T23:59:59.000Z

27

Landfill Gas Formation, Recovery and Emission in The Netherlands  

Science Journals Connector (OSTI)

Landfills are one of the main sources of methane in The Netherlands. Methane emissions from landfills are estimated to be about 180–580 ... at a total of 760–1730 ktonnes. Landfill gas recovery and utilization is...

Hans Oonk

1994-01-01T23:59:59.000Z

28

Capturing, Purifying, and Liquefying Landfill Gas for Transportation Fuel  

E-Print Network [OSTI]

Capturing, Purifying, and Liquefying Landfill Gas for Transportation Fuel TRANSPORTATION ENERGY alternative fuel, and purified landfill gas could provide a renewable domestic source of it. Landfills from landfills and use it in natural gas applications such as fueling motor vehicles. Project

29

Characterization of Landfill Gas Composition at the Fresh Kills Municipal Solid-Waste Landfill  

Science Journals Connector (OSTI)

Characterization of Landfill Gas Composition at the Fresh Kills Municipal Solid-Waste Landfill ... The most common disposal method in the United States for municipal solid waste (MSW) is burial in landfills. ... Under the New Source Performance Standards and Emission Guidelines for MSW landfills, MSW operators are required to determine the nonmethane organic gas generation rate of their landfill through modeling and/or measurements. ...

Bart Eklund; Eric P. Anderson; Barry L. Walker; Don B. Burrows

1998-06-18T23:59:59.000Z

30

Diversity and activity of methanotrophs in landfill cover soils with and without landfill gas recovery systems  

Science Journals Connector (OSTI)

Abstract Aerobic CH4 oxidation plays an important role in mitigating CH4 release from landfills to the atmosphere. Therefore, in this study, oxidation activity and community of methanotrophs were investigated in a subtropical landfill. Among the three sites investigated, the highest CH4 concentration was detected in the landfill cover soil of the site (A) without a landfill gas (LFG) recovery system, although the refuse in the site had been deposited for a longer time (?14–15 years) compared to the other two sites (?6–11 years) where a LFG recovery system was applied. In April and September, the higher CH4 flux was detected in site A with 72.4 and 51.7 g m?2 d?1, respectively, compared to the other sites. The abundance of methanotrophs assessed by quantification of pmoA varied with location and season. A linear relationship was observed between the abundance of methanotrophs and CH4 concentrations in the landfill cover soils (R = 0.827, P < 0.001). The key factors influencing the methanotrophic diversity in the landfill cover soils were pH, the water content and the CH4 concentration in the soil, of which pH was the most important factor. Type I methanotrophs, including Methylococcus, Methylosarcina, Methylomicrobium and Methylobacter, and type II methanotrophs (Methylocystis) were all detected in the landfill cover soils, with Methylocystis and Methylosarcina being the dominant genera. Methylocystis was abundant in the slightly acidic landfill cover soil, especially in September, and represented more than 89% of the total terminal-restriction fragment abundance. These findings indicated that the LFG recovery system, as well as physical and chemical parameters, affected the diversity and activity of methanotrophs in landfill cover soils.

Yao Su; Xuan Zhang; Fang-Fang Xia; Qi-Qi Zhang; Jiao-Yan Kong; Jing Wang; Ruo He

2014-01-01T23:59:59.000Z

31

Landfill Gas Resources and Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Landfill Gas Resources and Technologies Landfill Gas Resources and Technologies Landfill Gas Resources and Technologies October 7, 2013 - 9:27am Addthis Photo of a bulldozer on top of a large trash mound in a landfill with a cloudy sky in the backdrop. Methane and other gases produced from landfill decomposition can be leveraged for energy. This page provides a brief overview of landfill gas energy resources and technologies supplemented by specific information to apply landfill gas energy within the Federal sector. Overview Landfill gases are a viable energy resource created during waste decomposition. Landfills are present in most communities. These resources can be tapped to generate heat and electricity. As organic waste decomposes, bio-gas is produced made up of roughly half methane, half carbon dioxide, and small amounts of non-methane organic

32

Using landfill gas for energy: Projects that pay  

SciTech Connect (OSTI)

Pending Environmental Protection Agency regulations will require 500 to 700 landfills to control gas emissions resulting from decomposing garbage. Conversion of landfill gas to energy not only meets regulations, but also creates energy and revenue for local governments.

NONE

1995-02-01T23:59:59.000Z

33

Modeling and simulation of landfill gas production from pretreated MSW landfill simulator  

Science Journals Connector (OSTI)

The cumulative landfill gas (LFG) production and its rate ... simulated for pretreated municipal solid waste (MSW) landfill using four models namely first order exponential ... . Considering the behavior of the p...

Rasool Bux Mahar; Abdul Razaque Sahito…

2014-04-01T23:59:59.000Z

34

DETERMINATION OF GUIDANCE VALUES FOR CLOSED LANDFILL GAS EMISSIONS  

E-Print Network [OSTI]

DETERMINATION OF GUIDANCE VALUES FOR CLOSED LANDFILL GAS EMISSIONS O. BOUR*, S. BERGER**, C Gambetta, 74 000 Annecy SUMMARY: In order to promote active landfill gas collection and treatment or natural attenuation, it is necessary to identify trigger values concerning landfill gas emissions

Boyer, Edmond

35

Soil gas investigations at the Sanitary Landfill  

SciTech Connect (OSTI)

A soil gas survey was performed at the 740-G Sanitary Landfill of Savannah River Plant during December, 1990. The survey monitored the presence and distribution of the C{sub 1}C{sub 4} hydrocarbons; the C{sub 5}-C{sub 10} normal paraffins; the aromatic hydrocarbons, BTXE; selected chlorinated hydrocarbons; and mercury. Significant levels of several of these contaminants were found associated with the burial site. In the northern area of the Landfill, methane concentrations ranged up to 63% of the soil gas and were consistently high on the western side of the access road. To the east of the access road in the northern and southern area high concentrations of methane were encountered but were not consistently high. Methane, the species found in highest concentration in the landfill, was generated in the landfill as the result of biological oxidation of cellulose and other organics to carbon dioxide followed by reduction of the carbon dioxide to methane. Distributions of other species are the result of burials in the landfill of solvents or other materials.

Wyatt, D.E.; Pirkle, R.J.; Masdea, D.J.

1992-07-01T23:59:59.000Z

36

Soil gas investigations at the Sanitary Landfill  

SciTech Connect (OSTI)

A soil gas survey was performed at the 740-G Sanitary Landfill of Savannah River Plant during December, 1990. The survey monitored the presence and distribution of the C[sub 1]C[sub 4] hydrocarbons; the C[sub 5]-C[sub 10] normal paraffins; the aromatic hydrocarbons, BTXE; selected chlorinated hydrocarbons; and mercury. Significant levels of several of these contaminants were found associated with the burial site. In the northern area of the Landfill, methane concentrations ranged up to 63% of the soil gas and were consistently high on the western side of the access road. To the east of the access road in the northern and southern area high concentrations of methane were encountered but were not consistently high. Methane, the species found in highest concentration in the landfill, was generated in the landfill as the result of biological oxidation of cellulose and other organics to carbon dioxide followed by reduction of the carbon dioxide to methane. Distributions of other species are the result of burials in the landfill of solvents or other materials.

Wyatt, D.E.; Pirkle, R.J.; Masdea, D.J.

1992-07-01T23:59:59.000Z

37

landfill  

Science Journals Connector (OSTI)

landfill, landfill(ed) site, refuse dump, garbage dump ... depository, trash disposal site (US); sanitary landfill [Landfills may often release a toxic soup of...] ? Abfalldeponie f [Zur Endlagerung ...

2014-08-01T23:59:59.000Z

38

Franklin County Sanitary Landfill - Landfill Gas (LFG) to Liquefied Natural Gas (LNG) - Project  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

FRANKLIN COUNTY SANITARY FRANKLIN COUNTY SANITARY LANDFILL - LANDFILL GAS (LFG) TO LIQUEFIED NATURAL GAS (LNG) - PROJECT January/February 2005 Prepared for: National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 Table of Contents Page BACKGROUND AND INTRODUCTION .......................................................................................1 SUMMARY OF EFFORT PERFORMED ......................................................................................2 Task 2B.1 - Literature Search and Contacts Made...................................................................2 Task 2B.2 - LFG Resource/Resource Collection System - Project Phase One.......................3 Conclusion.................................................................................................................................5

39

Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Renewable Natural Gas Renewable Natural Gas From Landfill Powers Refuse Vehicles to someone by E-mail Share Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Facebook Tweet about Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Twitter Bookmark Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Google Bookmark Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Delicious Rank Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Digg Find More places to share Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on AddThis.com... April 13, 2013

40

Methane Gas Utilization Project from Landfill at Ellery (NY)  

SciTech Connect (OSTI)

Landfill Gas to Electric Energy Generation and Transmission at Chautauqua County Landfill, Town of Ellery, New York. The goal of this project was to create a practical method with which the energy, of the landfill gas produced by the decomposing waste at the Chautauqua County Landfill, could be utilized. This goal was accomplished with the construction of a landfill gas to electric energy plant (originally 6.4MW and now 9.6MW) and the construction of an inter-connection power-line, from the power-plant to the nearest (5.5 miles) power-grid point.

Pantelis K. Panteli

2012-01-10T23:59:59.000Z

Note: This page contains sample records for the topic "includes landfill gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Is converting landfill gas to energy the best option?  

Science Journals Connector (OSTI)

Is converting landfill gas to energy the best option? ... But when it comes to new discards, critics say that the hype over landfill-gas-to-energy(LFGTE) projects may have perverse outcomes, such as discouraging the diversion of organic waste from landfills and actually increasing the amount of methane being released. ... In the notice, EDF suggests that EPA tighten current controls, which require the capture and flaring of landfill gas at sites with more than 2.5 million metric tons of waste, by bringing regulation to smaller landfills and defining LFGTE projects as the best demonstrated technology (BDT). ...

Janet Pelley

2008-12-10T23:59:59.000Z

42

Characteristics of vegetation and its relationship with landfill gas in closed landfill  

Science Journals Connector (OSTI)

An investigation was carried out to elucidate landfill gas (LFG) and the vegetation characteristics in closed landfill. The results indicate that the stabilization process of the landfill is an important factor influencing the components of landfill gases. The coverage, height and species of vegetation increase with the closed time of landfill. Fourteen species were observed in the investigated cells, dominated by Phragmites australis, an invasive perennial plant. The concentrations of methane and carbon dioxide from vegetated cover soil were lower than those from non-vegetated cover soil.

Chai Xiaoli; Zhao Xin; Lou Ziyang; Takayuki Shimaoka; Hirofumi Nakayama; Cao Xianyan; Zhao Youcai

2011-01-01T23:59:59.000Z

43

Landfill gas emission prediction using Voronoi diagrams and importance sampling  

Science Journals Connector (OSTI)

Municipal solid waste (MSW) landfills are among the nation's largest emitters of methane, a key greenhouse gas, and there is considerable interest in quantifying the surficial methane emissions from landfills. There are limitations in obtaining accurate ... Keywords: Air dispersion modeling, Delaunay tessellation, Kriging, Least squares, MSW landfill, Voronoi diagram

K. R. Mackie; C. D. Cooper

2009-10-01T23:59:59.000Z

44

E-Print Network 3.0 - annual landfill gas Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

gas emissions and potential aqueous... Transfer Stations (MTS); Life Cycle Assessment (LCA); Landfill Gas (LFG): Geographic Wormation Systems (GIS... . Landfills generate gas...

45

Slippage solution of gas pressure distribution in process of landfill gas seepage  

Science Journals Connector (OSTI)

A mathematical model of landfill gas migration was established under presumption of the ... a large impact on gas pressure distribution. Landfill gas pressure and pressure gradient considering slippage effect...

Qiang Xue; Xia-ting Feng; Bing Liang

2005-12-01T23:59:59.000Z

46

Migration of landfill gas and its control by grouting—a case history  

Science Journals Connector (OSTI)

...research-article Article Migration of landfill gas and its control by grouting-a...London. Parker, A. 1981. Landfill gas problems-case histories. Proceedings of Landfill Gas Symposium, UK AERE Harwell. Rees...

J. G. Raybould; D. J. Anderson

47

Analysis of Changes in Landfill Gas Output and the Economic Potential for Development of a Landfill Gas Control Prototype.  

E-Print Network [OSTI]

??The relationship between changes in local atmospheric conditions and the performance of the landfill gas collection system installed at the Rockingham County (NC) municipal solid… (more)

Harrill, David Justin

2014-01-01T23:59:59.000Z

48

Capture and Utilisation of Landfill Gas  

E-Print Network [OSTI]

about 955 landfills that recovered biogas. The largest number of such landfills were in the USA landfills in Denmark that in total captured 5,800Nm3 of biogas per hour, equivalent to 276.4MW of contained #12;Biomass US DATA ON GENERATION OF BIOGAS AT LANDFILLS Eileen Berenyi, a Research Associate of EEC

Columbia University

49

Lopez Landfill Gas Utilization Project Biomass Facility | Open Energy  

Open Energy Info (EERE)

Lopez Landfill Gas Utilization Project Biomass Facility Lopez Landfill Gas Utilization Project Biomass Facility Jump to: navigation, search Name Lopez Landfill Gas Utilization Project Biomass Facility Facility Lopez Landfill Gas Utilization Project Sector Biomass Facility Type Landfill Gas Location Los Angeles County, California Coordinates 34.3871821°, -118.1122679° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3871821,"lon":-118.1122679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

50

UNFCCC-Consolidated baseline and monitoring methodology for landfill gas  

Open Energy Info (EERE)

UNFCCC-Consolidated baseline and monitoring methodology for landfill gas UNFCCC-Consolidated baseline and monitoring methodology for landfill gas project activities Jump to: navigation, search Tool Summary LAUNCH TOOL Name: UNFCCC-Consolidated baseline and monitoring methodology for landfill gas project activities Agency/Company /Organization: United Nations Framework Convention on Climate Change (UNFCCC) Sector: Climate, Energy Focus Area: Renewable Energy, Non-renewable Energy, - Landfill Gas Topics: Baseline projection, GHG inventory Resource Type: Guide/manual Website: cdm.unfccc.int/public_inputs/meth/acm0001/index.html Cost: Free Language: English References: UNFCCC-Consolidated baseline and monitoring methodology for landfill gas project activities[1] This article is a stub. You can help OpenEI by expanding it. References

51

Balefill Landfill Gas Utilization Proj Biomass Facility | Open Energy  

Open Energy Info (EERE)

Balefill Landfill Gas Utilization Proj Biomass Facility Balefill Landfill Gas Utilization Proj Biomass Facility Jump to: navigation, search Name Balefill Landfill Gas Utilization Proj Biomass Facility Facility Balefill Landfill Gas Utilization Proj Sector Biomass Facility Type Landfill Gas Location Bergen County, New Jersey Coordinates 40.9262762°, -74.07701° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.9262762,"lon":-74.07701,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

52

Olinda Landfill Gas Recovery Plant Biomass Facility | Open Energy  

Open Energy Info (EERE)

Olinda Landfill Gas Recovery Plant Biomass Facility Olinda Landfill Gas Recovery Plant Biomass Facility Jump to: navigation, search Name Olinda Landfill Gas Recovery Plant Biomass Facility Facility Olinda Landfill Gas Recovery Plant Sector Biomass Facility Type Landfill Gas Location Orange County, California Coordinates 33.7174708°, -117.8311428° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.7174708,"lon":-117.8311428,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

53

Spadra Landfill Gas to Energy Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Spadra Landfill Gas to Energy Biomass Facility Spadra Landfill Gas to Energy Biomass Facility Jump to: navigation, search Name Spadra Landfill Gas to Energy Biomass Facility Facility Spadra Landfill Gas to Energy Sector Biomass Facility Type Landfill Gas Location Los Angeles County, California Coordinates 34.3871821°, -118.1122679° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3871821,"lon":-118.1122679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

54

Hartford Landfill Gas Utilization Proj Biomass Facility | Open Energy  

Open Energy Info (EERE)

Hartford Landfill Gas Utilization Proj Biomass Facility Hartford Landfill Gas Utilization Proj Biomass Facility Jump to: navigation, search Name Hartford Landfill Gas Utilization Proj Biomass Facility Facility Hartford Landfill Gas Utilization Proj Sector Biomass Facility Type Landfill Gas Location Hartford County, Connecticut Coordinates 41.7924343°, -72.8042797° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7924343,"lon":-72.8042797,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

55

Woodland Landfill Gas Recovery Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Landfill Gas Recovery Biomass Facility Landfill Gas Recovery Biomass Facility Jump to: navigation, search Name Woodland Landfill Gas Recovery Biomass Facility Facility Woodland Landfill Gas Recovery Sector Biomass Facility Type Landfill Gas Location Kane County, Illinois Coordinates 41.987884°, -88.4016041° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.987884,"lon":-88.4016041,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

56

Bioenergy recovery from landfill gas: A case study in China  

Science Journals Connector (OSTI)

Landfill gas (LFG) utilization which means a synergy...3/h and the methane concentration was above 90%. The process and optimization of the pilot-scale test were also reported in the paper. The product gas was of...

Wei Wang; Yuxiang Luo; Zhou Deng

2009-03-01T23:59:59.000Z

57

The influence of air inflow on CH4 composition ratio in landfill gas  

Science Journals Connector (OSTI)

When landfill gas is collected, air inflow into the landfill...4 productivity. The decline of CH4 content in landfill gas (LFG) negatively affects energy projects. We...2 was an effective indicator of air inflow ...

Seung-Kyu Chun

2014-02-01T23:59:59.000Z

58

The Emissions of Major Aromatic Voc as Landfill Gas from Urban Landfill Sites in Korea  

Science Journals Connector (OSTI)

In this study, concentrations of major aromatic VOCs were determined from landfill gas (LFG) at a total of five...?1 (WJ in wintertime). The LFG flux values of aromatic VOC, when compared to the contribution of n...

Ki-Hyun Kim; Sung Ok Baek; Ye-Jin Choi…

2006-07-01T23:59:59.000Z

59

Landfill gas with hydrogen addition – A fuel for SI engines  

Science Journals Connector (OSTI)

The recent quest to replace fossil fuels with renewable and sustainable energy sources has increased interest on utilization of landfill and bio gases. It is further augmented due to environment concerns and global warming caused by burning of conventional fossil fuels, energy security concerns and high cost of crude oil, and renewable nature of these gases. The main portion of landfill gas or biogas is comprised of methane and carbon dioxide with some other gases in small proportions. Methane if released directly to the atmosphere causes about 21 times global warming effects than carbon dioxide. Thus landfill gas is generally flared, where the energy recovery is not in place in practice. Using landfill gas to generate energy not only encourages more efficient collection reducing emissions into the atmosphere but also generates revenues for operators and local governments. However, use of landfill gases for energy production is not always perceived as an attractive option because of some disadvantages. Thus it becomes necessary to address these disadvantages involved by studying landfill gases in a technological perspective and motivate utilization of landfill gas for future energy needs. This paper discussed landfill gas as a fuel for a spark ignition engine to produce power in an effective way. It has been shown that though the performance and combustion characteristics of the landfill gas fueled engine deteriorated in comparison with methane operation, increasing compression ratio and advancing spark timing improved the performance of the landfill gas operation in par with methane operation. The effects due to composition changes in the landfill gas were found more pronounced at lean and rich mixture operation than at stoichiometry. In addition, the effects of additions of hydrogen up to 30% in the landfill gas were studied. Addition of even small quantities of hydrogen such as 3–5% delivered better performance improvement particularly at the lean and rich limit operations and extended the operational limits. Additions of hydrogen also improved the combustion characteristics and reduced cyclic variations of landfill gas operations especially at the lean and rich mixtures.

S.O. Bade Shrestha; G. Narayanan

2008-01-01T23:59:59.000Z

60

LANDFILL-GAS-TO-ENERGY PROJECTS: AN ANALYSIS OF NET PRIVATE AND SOCIAL BENEFITS  

E-Print Network [OSTI]

Materials Table A1: Model Results for West Lake Landfill WEST LAKE IC Engine Gas Turbine Steam Turbine Landfill WEST COUNTY IC Engine Gas Turbine Steam Turbine Average Landfill Gas Generation (mmcf/yr) 1,075 1,735 $1,250 Table A3: Model Results for Modern Landfill MODERN IC Engine Gas Turbine Steam Turbine Average

Jaramillo, Paulina

Note: This page contains sample records for the topic "includes landfill gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Estimation of Landfill Gas Generation Rate and Gas Permeability Field of Refuse Using Inverse Modeling  

Science Journals Connector (OSTI)

Landfill methane must be captured to reduce emissions of greenhouse gases; moreover it can be used as an alternative energy source. However, despite the widespread use of landfill gas (LFG) collection systems for...

Yoojin Jung; Paul Imhoff; Stefan Finsterle

2011-10-01T23:59:59.000Z

62

Removal of Hydrogen Sulfide from Landfill Gas Using a Solar Regenerable Adsorbent.  

E-Print Network [OSTI]

??Landfill gas is a complex mix of gases, containing methane, carbon dioxide, nitrogen and hydrogen sulfide, created by the action of microorganisms within the landfill.… (more)

Kalapala, Sreevani

2014-01-01T23:59:59.000Z

63

Effects of landfill gas on subtropical woody plants  

Science Journals Connector (OSTI)

An account is given of the influence of landfill gas on tree growth in the field at...Acacia confusa, Albizzia lebbek, Aporusa chinensis, Bombax malabaricum, Castanopsis fissa, Liquidambar formosana, Litsea gluti...

G. Y. S. Chan; M. H. Wong; B. A. Whitton

64

July 17, 2012, Webinar: Landfill Gas-to-Energy Projects  

Office of Energy Efficiency and Renewable Energy (EERE)

This webinar, held July 17, 2012, provided information on the challenges and benefits of developing successful community landfill gas-to-energy projects in Will County, Illinois, and Escambia...

65

Feasibility study: utilization of landfill gas for a vehicle fuel system, Rossman's landfill, Clackamas County, Oregon  

SciTech Connect (OSTI)

In 1978, a landfill operator in Oregon became interested in the technical and economic feasibility of recovering the methane generated in the landfill for the refueling of vehicles. DOE awarded a grant for a site-specific feasibility study of this concept. This study investigated the expected methane yield and the development of a conceptual gas-gathering system; gas processing, compressing, and storage systems; and methane-fueled vehicle systems. Cost estimates were made for each area of study. The results of the study are presented. Reasoning that gasoline prices will continue to rise and that approximately 18,000 vehicles in the US have been converted to operate on methane, a project is proposed to use this landfill as a demonstration site to produce and process methane and to fuel a fleet (50 to 400) vehicles with the gas produced in order to obtain performance and economic data on the systems used from gas collection through vehicle operation. (LCL)

None

1981-01-01T23:59:59.000Z

66

Numerical Simulation of the Radius of Influence for Landfill Gas Wells  

Science Journals Connector (OSTI)

...of the Radius of Influence for Landfill Gas Wells Harold Vigneault a * * Corresponding...used to quantify the efficiency of landfill gas recovery wells for unlined landfills...Results will help with the design of landfill gas recovery systems. In North America...

Harold Vigneault; René Lefebvre; Miroslav Nastev

67

Evaluating fugacity models for trace components in landfill gas  

Science Journals Connector (OSTI)

A fugacity approach was evaluated to reconcile loadings of vinyl chloride (chloroethene), benzene, 1,3-butadiene and trichloroethylene in waste with concentrations observed in landfill gas monitoring studies. An evaluative environment derived from fictitious but realistic properties such as volume, composition, and temperature, constructed with data from the Brogborough landfill (UK) test cells was used to test a fugacity approach to generating the source term for use in landfill gas risk assessment models (e.g. GasSim). SOILVE, a dynamic Level II model adapted here for landfills, showed greatest utility for benzene and 1,3-butadiene, modelled under anaerobic conditions over a 10 year simulation. Modelled concentrations of these components (95?300 ?g m?3; 43 ?g m?3) fell within measured ranges observed in gas from landfills (24?300–180?000 ?g m?3; 20–70 ?g m?3). This study highlights the need (i) for representative and time-referenced biotransformation data; (ii) to evaluate the partitioning characteristics of organic matter within waste systems and (iii) for a better understanding of the role that gas extraction rate (flux) plays in producing trace component concentrations in landfill gas.

Sophie Shafi; Andrew Sweetman; Rupert L. Hough; Richard Smith; Alan Rosevear; Simon J.T. Pollard

2006-01-01T23:59:59.000Z

68

Meteorological parameters as an important factor on the energy recovery of landfill gas in landfills  

Science Journals Connector (OSTI)

The effect of meteorological factors on the composition and the energy recovery of the landfill gas (LFG) were evaluated in this study. Landfill gas data consisting of methane carbon dioxide and oxygen content as well as LFG temperature were collected from April 2009 to March 2010 along with meteorological data. The data set were first used to visualize the similarity by using self-organizing maps and to calculate correlation factors. Then the data was used with ANN to further analyze the impacts of meteorological factors. In both analysis it is seen that the most important meteorological parameter effective on LFG energy content is soil temperatures. Furthermore ANN was found to be successful in explaining variations of methane content and temperature of LFG with correlation coefficients of 0.706 and 0.984 respectively. ANN was proved itself to be a useful tool for estimating energy recovery of the landfill gas.

?brahim Uyanik; Bestamin Özkaya; Selami Demir; Mehmet Çakmakci

2012-01-01T23:59:59.000Z

69

Toxic oxide deposits from the combustion of landfill gas and biogas  

Science Journals Connector (OSTI)

Oxide deposits found in combustion systems of landfill gas fired power stations contain relatively high concentrations ... They are selectively transported as part of the landfill gas into the gas-burning devices...

Dietmar Glindemann; Peter Morgenstern…

1996-06-01T23:59:59.000Z

70

Removal and determination of trimethylsilanol from the landfill gas  

Science Journals Connector (OSTI)

The removal and determination of trimethylsilanol (TMSOH) in landfill gas has been studied before and after the special E3000-ITC System. The system works according to principle of temperature swing. The performance of TMSOH and humidity removal was 20% and more than 90%, respectively. The six of active carbons and impinger method were tested on the full-scale landfill in Poland for TMSOH and siloxanes determination. The extraction method and absorption in acetone were used. The concentration of TMSOH and siloxanes were found in range from 23.6 to 29.2 mg/m3 and from 18.0 to 38.9 mg/m3, respectively. The content of TMSOH in biogas originating from landfill was 41% out of all siloxanes. Moreover, the used system is alternative to other existing technique of landfill gas purification.

Grzegorz Piechota; Manfred Hagmann; Roman Buczkowski

2012-01-01T23:59:59.000Z

71

The landfill gas activity of the IEA bioenergy agreement  

Science Journals Connector (OSTI)

Landfill gas (LFG) is a renewable source of useful energy. Its world wide annual energy potential is in the range of a few hundred TWh. Today it is only marginally exploited. LFG is also an important contributor to the atmospheres CH4-content, it can be estimated to contribute about 25% of the methane coming from anthropogenic sources. In comparison to many other sources of methane emissions such as peat bogs, rice paddies, termites and sheep, landfills can be considered to be point sources, i.e. they are stationary and of limited extension. For this reason landfill gas (LFG) utilisation is one of the most cost effective ways to combat the greenhouse effect. The aim of the IEA activity on LFG is to promote information exchange and co-operation between national programmes in order to promote the proliferation of landfill gas utilisation. During the period 1992–1994 the LFG activity has had six participating countries: Canada, Denmark, Norway, The Netherlands, Sweden, UK and USA. In the past three-year period, the activity has been mainly directed towards establishing networks and obtaining an over-view of data related to LFG in the member countries. Numerous contacts have been established and perhaps of most importance for the future of the activity are the links towards organisations involved in the development of landfill technology, such as ISWA and SWANA. The gathering and evaluation of data within the LFG area from the member countries has resulted in a number of documents that are to be published within the near future. These documents cover information on LFG utilisation, landfill research, landfill gas potentials, landfill emission assessment and also non-technical barriers to LFG utilisation.

A Lagerkvist

1995-01-01T23:59:59.000Z

72

An Empirical Analysis of Gas Well Design and Pumping Tests for Retrofitting Landfill Gas Collection.  

E-Print Network [OSTI]

??Retrofitting a landfill with a gas collection system is an expensive and time consuming endeavor. Such an undertaking usually consists of longer-term extraction testing programs… (more)

Stevens, Derek

2013-01-01T23:59:59.000Z

73

Albany Landfill Gas Utilization Project Biomass Facility | Open Energy  

Open Energy Info (EERE)

Utilization Project Biomass Facility Utilization Project Biomass Facility Jump to: navigation, search Name Albany Landfill Gas Utilization Project Biomass Facility Facility Albany Landfill Gas Utilization Project Sector Biomass Facility Type Landfill Gas Location Albany County, New York Coordinates 42.5756797°, -73.9359821° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.5756797,"lon":-73.9359821,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

74

List of Landfill Gas Incentives | Open Energy Information  

Open Energy Info (EERE)

Incentives Incentives Jump to: navigation, search The following contains the list of 377 Landfill Gas Incentives. CSV (rows 1 - 377) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat Solar Water Heat Wind energy Yes Advanced Energy Fund (Ohio) Public Benefits Fund Ohio Commercial Industrial Institutional Residential Utility Biomass CHP/Cogeneration Fuel Cells Fuel Cells using Renewable Fuels Geothermal Electric

75

Landfill-Gas-to-Energy Projects:? Analysis of Net Private and Social Benefits  

Science Journals Connector (OSTI)

Under these standards, large landfills (that is, those with the potential to emit more than 50 Mg/year of nonmethane volatile organic compounds) have to collect and combust the landfill gas. ... Since the 1996 enact ment of the New Source Performance Standard and Emission Guidelines for Municipal Solid Waste Landfills, the Landfill Methane Outreach Program has become a tool to help landfills meet the new regulations. ... The costs of a collection system depend on different site factors, such as landfill depth, number of wells required, etc. Table 1 provides average collection system costs for landfills of three different sizes. ...

Paulina Jaramillo; H. Scott Matthews

2005-08-27T23:59:59.000Z

76

Landfill Gas Cleanup for Carbonate Fuel Cell Power Generation: Final Report  

SciTech Connect (OSTI)

Landfill gas represents a significant fuel resource both in the United States and worldwide. The emissions of landfill gas from existing landfills has become an environmental liability contributing to global warming and causing odor problems. Landfill gas has been used to fuel reciprocating engines and gas turbines, and may also be used to fuel carbonate fuel cells. Carbonate fuel cells have high conversion efficiencies and use the carbon dioxide present in landfill gas as an oxidant. There are, however, a number of trace contaminants in landfill gas that contain chlorine and sulfur which are deleterious to fuel cell operation. Long-term economical operation of fuel cells fueled with landfill gas will, therefore, require cleanup of the gas to remove these contaminants. The overall objective of the work reported here was to evaluate the extent to which conventional contaminant removal processes could be combined.

Steinfeld, G.; Sanderson, R.

1998-02-01T23:59:59.000Z

77

Powering Microturbines With Landfill Gas, October 2002 | Department...  

Broader source: Energy.gov (indexed) [DOE]

7.4 Landfill Methane Utilization CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants CHP and Bioenergy for Landfills and Wastewater Treatment Plants:...

78

Landfill  

Science Journals Connector (OSTI)

Landfill, also known as a dump (US) or a tip (UK), is a site for the disposal of waste materials by burial and is the oldest form of waste treatment . Historically, landfills have been one of the most common...

2008-01-01T23:59:59.000Z

79

Upgrading of Landfill Gas by Membranes — Experiences with Operating a Pilot Plant  

Science Journals Connector (OSTI)

In the last years the interest in using landfill gas as an energy source has risen ... has been constructed on the premises of a landfill dump in Neuss. In a two-stage-process, landfill gas is upgraded in order t...

R. Rautenbach; K. Welsch

1990-01-01T23:59:59.000Z

80

Modeling the final phase of landfill gas generation from long-term observations  

Science Journals Connector (OSTI)

For waste management, methane emissions from landfills and their effect on climate change are of serious concern. Current models for biogas generation that focus on the economic use of the landfill gas are usuall...

Johannes Tintner; Manfred Kühleitner; Erwin Binner; Norbert Brunner…

2012-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "includes landfill gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Landfill  

Science Journals Connector (OSTI)

The solid wastes and refuse disposed of by burial in pits constructed for the purpose, natural depressions, or abandoned quarries or other artificial excavations. Localities used in this way are called landfill s...

2008-01-01T23:59:59.000Z

82

Impact of using high-density polyethylene geomembrane layer as landfill intermediate cover on landfill gas extraction  

Science Journals Connector (OSTI)

Clay is widely used as a traditional cover material for landfills. As clay becomes increasingly costly and scarce, and it also reduces the storage capacity of landfills, alternative materials with low hydraulic conductivity are employed. In developing countries such as China, landfill gas (LFG) is usually extracted for utilization during filling stage, therefore, the intermediate covering system is an important part in a landfill. In this study, a field test of LFG extraction was implemented under the condition of using high-density polyethylene (HDPE) geomembrane layer as the only intermediate cover on the landfill. Results showed that after welding the HDPE geomembranes together to form a whole airtight layer upon a larger area of landfill, the gas flow in the general pipe increased 25% comparing with the design that the HDPE geomembranes were not welded together, which means that the gas extraction ability improved. However as the heat isolation capacity of the HDPE geomembrane layer is low, the gas generation ability of a shallow landfill is likely to be weakened in cold weather. Although using HDPE geomembrane layer as intermediate cover is acceptable in practice, the management and maintenance of it needs to be investigated in order to guarantee its effective operation for a long term.

Zezhi Chen; Huijuan Gong; Mengqun Zhang; Weili Wu; Yu Liu; Jin Feng

2011-01-01T23:59:59.000Z

83

Passive drainage and biofiltration of landfill gas: Results of Australian field trial  

Science Journals Connector (OSTI)

A field scale trial was undertaken at a landfill site in Sydney, Australia (2004–2008), to investigate passive drainage and biofiltration of landfill gas as a means of managing landfill gas emissions from low to moderate gas generation landfill sites. The objective of the trial was to evaluate the effectiveness of a passive landfill gas drainage and biofiltration system at treating landfill gas under field conditions, and to identify and evaluate the factors that affect the behaviour and performance of the system. The trial results showed that passively aerated biofilters operating in a temperate climate can effectively oxidise methane in landfill gas, and demonstrated that maximum methane oxidation efficiencies greater than 90% and average oxidation efficiencies greater than 50% were achieved over the 4 years of operation. The trial results also showed that landfill gas loading was the primary factor that determined the behaviour and performance of the passively aerated biofilters. The landfill gas loading rate was found to control the diffusion of atmospheric oxygen into the biofilter media, limiting the microbial methane oxidation process. The temperature and moisture conditions within the biofilter were found to be affected by local climatic conditions and were also found to affect the behaviour and performance of the biofilter, but to a lesser degree than the landfill gas loading.

Stuart A. Dever; Gareth E. Swarbrick; Richard M. Stuetz

2011-01-01T23:59:59.000Z

84

Numerical Early Warning Model Research of Landfill Gas Permeation and Diffusion Considering Flow-Temperature Coupling  

Science Journals Connector (OSTI)

Based on seepage mechanics in porous medium gas and heat transfer theory, numerical early warning model is established, which is on quantitative description of migration and release of landfill gas and penetration and diffusion of energy, and dynamic ... Keywords: component, landfill gas, flow-temperature coupling, gas pressure and temperature distribution, numerical early warning model

Xue Qiang; Feng Xia-ting; Ma Shi-jin; Zhou Xiao-jun

2009-10-01T23:59:59.000Z

85

Effect of Hydrogen Sulfide in Landfill Gas on Anode Poisoning of Solid Oxide Fuel Cells.  

E-Print Network [OSTI]

??The world is facing an energy crisis and there is an immediate need to find a sustainable source of energy. Landfill gas has the potential… (more)

Khan, Feroze

2012-01-01T23:59:59.000Z

86

Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects Webinar (text version)  

Office of Energy Efficiency and Renewable Energy (EERE)

Below is the text version of the Webinar titled "Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects," originally presented on July 17, 2012.

87

Influence of Landfill Gas on the Microdistribution of Grass Establishment Through Natural Colonization  

Science Journals Connector (OSTI)

Many revegetated landfills have poor cover including bare areas where plants do not grow. This study, on the Bisasar Road Landfill site in South Africa, assessed grass species preferences to microhabitat condi...

Douglas H. Trotter; John A. Cooke

2005-03-01T23:59:59.000Z

88

Application of landfill gas as a liquefied natural gas fuel for refuse trucks in Texas  

E-Print Network [OSTI]

truck operations. The purpose of this thesis is to develop a methodology that can be used to evaluate the use of LFG generated at landfills as a Liquefied Natural Gas (LNG) fuel source for refuse trucks in Texas. The methodology simulates the gas...

Gokhale, Bhushan

2007-04-25T23:59:59.000Z

89

The reduction of greenhouse gas emissions using various thermal systems in a landfill site  

Science Journals Connector (OSTI)

In this paper, the Greenhouse Gas (GHG) emissions from an uncontrolled landfill site filled with Municipal Solid Waste (MSW) are compared with those from controlled sites in which collected Landfill Gases (LFG) are utilised by various technologies. These technologies include flaring, conventional electricity generation technologies such as Internal Combustion Engine (ICE) and Gas Turbine (GT) and an emerging technology, Solid Oxide Fuel Cell (SOFC). The results show that SOFC is the best option for reducing the GHG emissions among the studied technologies. In the case when SOFC is used, GHG emissions from the controlled site are reduced by 63% compared to the uncontrolled site. This case has a specific lifetime GHG emission of 2.38 tonnes CO2 .eq/MWh when only electricity is produced and 1.12 tonnes CO2.eq/MWh for a cogeneration application.

C. Ozgur Colpan; Ibrahim Dincer; Feridun Hamdullahpur

2009-01-01T23:59:59.000Z

90

Vapor phase transport at a hillside landfill  

Science Journals Connector (OSTI)

...ambient density gradients. Post-landfill gas input reverses the direction of...landfill may explain observations of landfill gas found at depth. Post-landfill...of gas generation. Transport of landfill gas is shown to be dominated by diffusion...

P. H. Stauffer; N. D. Rosenberg

91

The modelling of biochemical-thermal coupling effect on gas generation and transport in MSW landfill  

Science Journals Connector (OSTI)

The landfill gas generation was investigated based on the theories of the thermodynamics, microbial dynamics and chemical dynamics. The coupling model was developed for describing the gas transport and heat release. And the relationship between the gas generation rate and the temperature was proposed. The parameters in the gas generation model were obtained by bioreactor test in order to evaluate the volume of gas production of the Erfeishan landfill in China. The simulation results shown that the operating life of the landfill will be overestimated if the model does not consider the thermal effect during degradation of the solid substrate.

Liu Lei; Liang Bing; Xue Qiang; Zhao Ying; Yang Chun

2011-01-01T23:59:59.000Z

92

Landfill gas cleanup for carbonate fuel cell power generation. Final report  

SciTech Connect (OSTI)

Landfill gas represents a significant fuel resource both in the US and worldwide. The emissions of landfill gas from existing landfills has become an environmental liability contributing to global warming and causing odor problems. Landfill gas has been used to fuel reciprocating engines and gas turbines, and may also be used to fuel carbonate fuel cells. Carbonate fuel cells have high conversion efficiencies and use the carbon dioxide present in landfill gas as an oxidant. There are, however, a number of trace contaminants in landfill gas that contain chlorine and sulfur which are deleterious to fuel cell operation. Long-term economical operation of fuel cells fueled with landfill gas will, therefore, require cleanup of the gas to remove these contaminants. The overall objective of the work reported here was to evaluate the extent to which conventional contaminant removal processes could be combined to economically reduce contaminant levels to the specifications for carbonate fuel cells. A pilot plant cleaned approximately 970,000 scf of gas over 1,000 hours of operation. The testing showed that the process could achieve the following polished gas concentrations: less than 80 ppbv hydrogen sulfide; less than 1 ppmv (the detection limit) organic sulfur; less than 300 ppbv hydrogen chloride; less than 20--80 ppbv of any individual chlorinated hydrocarbon; and 1.5 ppm sulfur dioxide.

Steinfield, G.; Sanderson, R.

1998-02-01T23:59:59.000Z

93

Study on optimization model of energy collection efficiency and its power generation benefit evaluation of landfill gas  

Science Journals Connector (OSTI)

An optimization model for joint biogas energy collection efficiency that targets the prediction model for landfill gas output dynamics and the optimization model for gas well output has been established. The model was used to comprehensively analyze and evaluate the collection efficiency of a landfill gas well together with the long-term monitoring the gas output of the gas well within Chenjiachong Landfill. The collection efficiency increased by more than 50% than the original collection of landfill biogas and the power generation efficiency increased more than two times after the reservoir area of the landfill was optimized and regulated.

Xue Qiang

2013-01-01T23:59:59.000Z

94

July 17, 2012, Webinar: Landfill Gas-to-Energy Projects | Department of  

Broader source: Energy.gov (indexed) [DOE]

July 17, 2012, Webinar: Landfill Gas-to-Energy Projects July 17, 2012, Webinar: Landfill Gas-to-Energy Projects July 17, 2012, Webinar: Landfill Gas-to-Energy Projects This webinar, held July 17, 2012, provided information on the challenges and benefits of developing successful community landfill gas-to-energy projects in Will County, Illinois, and Escambia County, Florida. Download the presentations below, watch the webinar (WMV 112 MB) or view the text version. Find more CommRE webinars. Prairie View RDF Gas to Energy Facility: A Public/Private Partnership Will County partnered with Waste Management, using a portion of the county's DOE Energy Efficiency and Conservation Block Grant (EECBG) funding, to develop the Prairie View Recycling and Disposal Facility. A gas purchase agreement was executed in 2010 and the facility became operational

95

Tracer method to measure landfill gas emissions from leachate collection systems  

Science Journals Connector (OSTI)

This paper describes a method developed for quantification of gas emissions from the leachate collection system at landfills and present emission data measured at two Danish landfills with no landfill gas collection systems in place: Fakse landfill and AV Miljø. Landfill top covers are often designed to prevent infiltration of water and thus are made from low permeable materials. At such sites a large part of the gas will often emit through other pathways such as the leachate collection system. These point releases of gaseous constituents from these locations cannot be measured using traditional flux chambers, which are often used to measure gas emissions from landfills. Comparing tracer measurements of methane (CH4) emissions from leachate systems at Fakse landfill and AV Miljø to measurements of total CH4 emissions, it was found that approximately 47% (351 kg CH4 d?1) and 27% (211 kg CH4 d?1), respectively, of the CH4 emitting from the sites occurred from the leachate collection systems. Emission rates observed from individual leachate collection wells at the two landfills ranged from 0.1 to 76 kg CH4 d?1. A strong influence on emission rates caused by rise and fall in atmospheric pressure was observed when continuously measuring emission from a leachate well over a week. Emission of CH4 was one to two orders of magnitude higher during periods of decreasing pressure compared to periods of increasing pressure.

Anders M. Fredenslund; Charlotte Scheutz; Peter Kjeldsen

2010-01-01T23:59:59.000Z

96

Effects of a temporary HDPE cover on landfill gas emissions: Multiyear evaluation with the static chamber approach at an Italian landfill  

Science Journals Connector (OSTI)

According to the European Landfill Directive 1999/31/EC and the related Italian Legislation (“D. Lgs. No. 36/2003”), monitoring and control procedures of landfill gas emissions, migration and external dispersions are clearly requested. These procedures could be particularly interesting in the operational circumstance of implementing a temporary cover, as for instance permitted by the Italian legislation over worked-out landfill sections, awaiting the evaluation of expected waste settlements. A possible quantitative approach for field measurement and consequential evaluation of landfill CO2, CH4 emission rates in pairs consists of the static, non-stationary accumulation chamber technique. At the Italian level, a significant and recent situation of periodical landfill gas emission monitoring is represented by the sanitary landfill for non-hazardous waste of the “Fano” town district, where monitoring campaigns with the static chamber have been annually conducted during the last 5 years (2005–2009). For the entire multiyear monitoring period, the resulting CO2, CH4 emission rates varied on the whole up to about 13,100 g CO2 m?2 d?1 and 3800 g CH4 m?2 d?1, respectively. The elaboration of these landfill gas emission data collected at the “Fano” case-study site during the monitoring campaigns, presented and discussed in the paper, gives rise to a certain scientific evidence of the possible negative effects derivable from the implementation of a temporary HDPE cover over a worked-out landfill section, notably: the lateral migration and concentration of landfill gas emissions through adjacent, active landfill sections when hydraulically connected; and consequently, the increase of landfill gas flux velocities throughout the reduced overall soil cover surface, giving rise to a flowing through of CH4 emissions without a significant oxidation. Thus, these circumstances are expected to cause a certain increase of the overall GHG emissions from the given landfill site.

Bruno Capaccioni; Cristina Caramiello; Fabio Tatàno; Alessandro Viscione

2011-01-01T23:59:59.000Z

97

Hollow fiber membrane process for the pretreatment of methane hydrate from landfill gas  

Science Journals Connector (OSTI)

Abstract Landfill gas is major source of green house effect because it is mainly composed of CH4 and CO2. Especially, the separation of CH4 from landfill gas was studied actively due to its high heating value which can be used for energy resource. In this study, polymeric hollow fiber membrane was produced by dry–wet phase inversion method to separate CH4 from the landfill gas. The morphology of the membranes was examined by scanning electron microscopy (SEM) to understand and correlate the morphology with the performance of the membrane. Firstly, single gas permeation and mixed gas separation were performed in lab-scale. After then, a pilot scale membrane process was designed using a simulation program. The manufactured process settled in Gyeong-ju landfill site and operated at various conditions. As a result, CH4 was concentrated to 88 vol.% and also CO2 removal efficiency increases up to 86.7%.

KeeHong Kim; WonKil Choi; HangDae Jo; JongHak Kim; Hyung Keun Lee

2014-01-01T23:59:59.000Z

98

Tapping Landfill Gas to Provide Significant Energy Savings and...  

Broader source: Energy.gov (indexed) [DOE]

- Case Study, 2013 BroadRock Renewables LLC, in collaboration with DCO Energy, operates combined cycle electric generating plants at the Central Landfill in Johnston, Rhode...

99

Landfill Gas Resources and Technologies | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Using methane in these applications helps keep it out of the atmosphere, reducing air pollution. Federal Application Before conducting an assessment or deploying landfill...

100

Emerging technologies for the management and utilization of landfill gas. Final report, August 1994-August 1997  

SciTech Connect (OSTI)

The report gives information on emerging technologies that are considered to be commercially available (Tier 1), currently undergoing research and development (Tier 2), or considered as potentially applicable (Tier 3), for the management of landfill gas (LFG) emissions or for the utilization of methane (CH4) and carbon dioxide (CO2) from LFG. The emerging technologies that are considered to be Tier 1 are: (1) phosphoric acid fuel cells, (2) processes for converting CH4 from LFG to compressed LFG for vehicle fuel or other fuel uses, and (3) use of LFG as a fuel source for leachate evaporation systems. The Tier 2 technologies covered in the report are: (1) operation of landfills as anaerobic bioreactors, (2) operation of landfills are aerobic bioreactors, (3) production of ethanol from LFG, (4) production of commercial CO2 from LFG, and (5) use of LFG to provide fuel for heat and CO2 enhancement in greenhouses. Tier 3 technologies, considered as potentially applicable for LFG. include Stirling and Organic Rankine Cycle engines.

Roe, S.; Reisman, J.; Strait, R.; Doorn, M.

1998-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "includes landfill gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects  

Broader source: Energy.gov (indexed) [DOE]

Community Renewable Energy Success Stories: Landfill Gas-to-Energy Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects Webinar (text version) Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects Webinar (text version) Below is the text version of the Webinar titled "Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects," originally presented on July 17, 2012. Recorded Voice: The broadcast is now starting. All attendees are in listen-only mode. Sarah Busche: Hello, everyone. Good afternoon and welcome to today's webinar. This is sponsored by the U.S. Department of Energy. My name is Sarah Busche, and I'm here with Devin Egan, and we're broadcasting live from the National Renewable Energy Laboratory in Golden, Colorado. We're going to give folks

102

Modified landfill gas generation rate model of first-order kinetics and two-stage reaction  

Science Journals Connector (OSTI)

This investigation was carried out to establish a new domestic landfill gas (LFG) generation rate model that takes...L 0), the reaction rate constant in the first stage (K 1), and ...

Jiajun Chen; Hao Wang…

2009-09-01T23:59:59.000Z

103

Renewable LNG: Update on the World's Largest Landfill Gas to LNG Plant  

Broader source: Energy.gov [DOE]

Success story about LNG from landfill gas. Presented by Mike McGowan, Linde NA, Inc., at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado.

104

Emission assessment at the Burj Hammoud inactive municipal landfill: Viability of landfill gas recovery under the clean development mechanism  

Science Journals Connector (OSTI)

This paper examines landfill gas (LFG) emissions at a large inactive waste disposal site to evaluate the viability of investment in LFG recovery through the clean development mechanism (CDM) initiative. For this purpose, field measurements of LFG emissions were conducted and the data were processed by geospatial interpolation to estimate an equivalent site emission rate which was used to calibrate and apply two LFG prediction models to forecast LFG emissions at the site. The mean CH4 flux values calculated through tessellation, inverse distance weighing and kriging were 0.188 ± 0.014, 0.224 ± 0.012 and 0.237 ± 0.008 l CH4/m2 hr, respectively, compared to an arithmetic mean of 0.24 l/m2 hr. The flux values are within the reported range for closed landfills (0.06–0.89 l/m2 hr), and lower than the reported range for active landfills (0.42–2.46 l/m2 hr). Simulation results matched field measurements for low methane generation potential (L0) values in the range of 19.8–102.6 m3/ton of waste. LFG generation dropped rapidly to half its peak level only 4 yrs after landfill closure limiting the sustainability of LFG recovery systems in similar contexts and raising into doubt promoted CDM initiatives for similar waste.

Mutasem El-Fadel; Layale Abi-Esber; Samer Salhab

2012-01-01T23:59:59.000Z

105

Emission assessment at the Burj Hammoud inactive municipal landfill: Viability of landfill gas recovery under the clean development mechanism  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer LFG emissions are measured at an abandoned landfill with highly organic waste. Black-Right-Pointing-Pointer Mean headspace and vent emissions are 0.240 and 0.074 l CH{sub 4}/m{sup 2} hr, respectively. Black-Right-Pointing-Pointer At sites with high food waste content, LFG generation drops rapidly after site closure. Black-Right-Pointing-Pointer The viability of LFG recovery for CDMs in developing countries is doubtful. - Abstract: This paper examines landfill gas (LFG) emissions at a large inactive waste disposal site to evaluate the viability of investment in LFG recovery through the clean development mechanism (CDM) initiative. For this purpose, field measurements of LFG emissions were conducted and the data were processed by geospatial interpolation to estimate an equivalent site emission rate which was used to calibrate and apply two LFG prediction models to forecast LFG emissions at the site. The mean CH{sub 4} flux values calculated through tessellation, inverse distance weighing and kriging were 0.188 {+-} 0.014, 0.224 {+-} 0.012 and 0.237 {+-} 0.008 l CH{sub 4}/m{sup 2} hr, respectively, compared to an arithmetic mean of 0.24 l/m{sup 2} hr. The flux values are within the reported range for closed landfills (0.06-0.89 l/m{sup 2} hr), and lower than the reported range for active landfills (0.42-2.46 l/m{sup 2} hr). Simulation results matched field measurements for low methane generation potential (L{sub 0}) values in the range of 19.8-102.6 m{sup 3}/ton of waste. LFG generation dropped rapidly to half its peak level only 4 yrs after landfill closure limiting the sustainability of LFG recovery systems in similar contexts and raising into doubt promoted CDM initiatives for similar waste.

El-Fadel, Mutasem, E-mail: mfadel@aub.edu.lb [Department of Civil and Environmental Engineering, American University of Beirut (Lebanon); Abi-Esber, Layale; Salhab, Samer [Department of Civil and Environmental Engineering, American University of Beirut (Lebanon)

2012-11-15T23:59:59.000Z

106

Int. J. Environment and Pollution, V0/. IS, No.4, 2001 Economic evaluation of a landfill system with gas  

E-Print Network [OSTI]

Int. J. Environment and Pollution, V0/. IS, No.4, 2001 Economic evaluation of a landfill system. Landfill technology, as it is the most widely employed and is regarded as the most suitable and simple and externalities are examined. A cost-benefit analysis of a landfill system with gas recovery (LFSGR) has been

Columbia University

107

A Multimedia Study of Hazardous Waste Landfill Gas Migration  

Science Journals Connector (OSTI)

Hazardous waste landfills pose uniquely challenging environmental problems which arise as a result of the chemical complexity of waste sites, their involvement of many environmental media, and their very size ...

Robert D. Stephens; Nancy B. Ball; Danny M. Mar

1986-01-01T23:59:59.000Z

108

DOE/EA-1624: Environmental Assessment for Auburn Landfill Gas Electric Generators and Anaerobic Digester Energy Facilities (December 2008)  

Broader source: Energy.gov (indexed) [DOE]

Auburn Landfill Gas Electric Generators and Auburn Landfill Gas Electric Generators and Anaerobic Digester Energy Facilities Auburn, New York Final Environmental Assessment DOE/EA-1624 Prepared for: U.S. Department of Energy National Energy Technology Laboratory January 2009 INTENTIONALLY LEFT BLANK AUBURN LANDFILL GAS ELECTRIC GENERATORS AND ANAEROBIC DIGESTER ELECTRIC FACILITIES FINAL EA DOE/EA-1624 i Table of Contents 1.0 INTRODUCTION .......................................................................................................................................... 1 1.1 BACKGROUND............................................................................................................................................... 2 1.2 PURPOSE AND NEED ...................................................................................................................................... 4

109

Landfill gas cleanup for carbonate fuel cell power generation. Final report  

SciTech Connect (OSTI)

To utilize landfill gas for power generation using carbonate fuel cells, the LFG must be cleaned up to remove sulfur and chlorine compounds. This not only benefits the operation of the fuel cell, but also benefits the environment by preventing the emission of these contaminants to the atmosphere. Commercial technologies for gas processing are generally economical in relatively large sizes (3 MMSCFD or larger), and may not achieve the low levels of contaminants required. To address the issue of LFG clean-up for fuel cell application, a process was developed utilizing commercially available technology. A pilot-scale test facility utilizing this process was built at a landfill site in Anoka, Minnesota using the EPRI fuel cell test facility used for coal gas testing. The pilot plant was tested for 1000 hours, processing 970,000 SCF (27,500 Nm{sup 3}) of landfill gas. Testing indicated that the process could achieve the following concentrations of contaminants in the clean gas: Less than 80 ppbv hydrogen sulfide; less than 1 ppm (the detection limit) organic sulfur; less than 300 ppbv hydrogen chloride; less than 20--80 ppbv if any individual chlorinated hydrocarbon; and 1.5 ppm (average) Sulfur Dioxide. The paper describes the LFG composition for bulk and trace compounds; evaluation of various methods to clean landfill gas; design of a LFG cleanup system; field test of pilot-scale gas cleanup process; fuel cell testing on simulated landfill gas; single cell testing on landfill gas contaminants and post test analysis; and design and economic analyses of a full scale gas cleanup system.

Steinfeld, G.; Sanderson, R.

1998-02-01T23:59:59.000Z

110

Recovery Act: Brea California Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas  

SciTech Connect (OSTI)

The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Olinda Landfill near Brea, California. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting Project reflected a cost effective balance of the following specific sub-objectives: • Meeting the environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas • Utilizing proven and reliable technology and equipment • Maximizing electrical efficiency • Maximizing electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Olinda Landfill • Maximizing equipment uptime • Minimizing water consumption • Minimizing post-combustion emissions • The Project produced and will produce a myriad of beneficial impacts. o The Project created 360 FTE construction and manufacturing jobs and 15 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. o By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). o The Project will annually produce 280,320 MWh’s of clean energy o By destroying the methane in the landfill gas, the Project will generate CO2 equivalent reductions of 164,938 tons annually. The completed facility produces 27.4 MWnet and operates 24 hours a day, seven days a week.

Galowitz, Stephen

2012-12-31T23:59:59.000Z

111

Delivery and viability of landfill gas CDM projects in Africa—A South African experience  

Science Journals Connector (OSTI)

The eThekwini Municipality (Durban, South Africa) landfill gas Clean Development Mechanism (CDM) project was the first to be registered and verified in Africa. The idea for the project was developed in 2002, yet it was not until the end of 2006 that the smaller Component One (1 MW) was registered, while the larger Component Two (9 MW) followed only in March 2009. Valuable lessons were learnt from Component One, and these were applied to Component Two. The paper describes the Durban CDM process, the lessons learnt, and assesses the viability of landfill gas to electricity CDM projects in Africa. It concludes that small to medium sized landfill gas to electricity CDM projects are not viable in Africa unless there is a renewable energy feed-in-tariff, or unless the gas is simply flared rather than being utilised for power generation.

R. Couth; C. Trois; J. Parkin; L.J. Strachan; A. Gilder; M. Wright

2011-01-01T23:59:59.000Z

112

Development of correction factors for landfill gas emission model suiting Indian condition to predict methane emission from landfills  

Science Journals Connector (OSTI)

Abstract Methane emission from landfill gas emission (LandGEM) model was validated through the results of laboratory scale biochemical methane potential assay. Results showed that LandGEM model over estimates methane (CH4) emissions; and the true CH4 potential of waste depends on the level of segregation. Based on these findings, correction factors were developed to estimate CH4 emission using LandGEM model especially where the level of segregation is negligible or does not exist. The correction factors obtained from the study were 0.94, 0.13 and 0.74 for food waste, mixed un-segregated municipal solid waste (MSW) and vegetable wastes, respectively.

Avick Sil; Sunil Kumar; Jonathan W.C. Wong

2014-01-01T23:59:59.000Z

113

Carbon dioxide removal and capture for landfill gas up-grading  

Science Journals Connector (OSTI)

Within the frame of an EC financially supported project - LIFE05 ENV/IT/000874 GHERL (Greenhouse Effect Reduction from Landfill)–a pilot plant was set up in order to demonstrate the feasibility of applying chemical absorption to remove carbon dioxide from landfill gas. After proper upgrading - basically removal of carbon dioxide, hydrogen sulphide, ammonia and other trace gas compound–the gas might be fed into the distribution grid for natural gas or used as vehicle fuel, replacing a fossil fuel thus saving natural resources and carbon dioxide emissions. Several experiences in Europe have been carried out concerning the landfill gas - and biogas from anaerobic digestion - quality up-grading through CO2 removal, but in all of them carbon dioxide was vented to the atmosphere after separation, without any direct benefit in terms of greenhouse gases reduction. With respect to those previous experiences, in this work the attention was focused on CO2 removal from landfill gas with an effective capture process, capable of removing carbon dioxide from atmosphere, through a globally carbon negative process. In particular, processes capable of producing final solid products were investigated, with the aim of obtaining as output solid compounds which can be either used in the chemical industry or disposed off. The adopted absorption process is based on using aqueous solutions of potassium hydroxide, with the final aim of producing potassium carbonate. Potassium carbonate is a product which has several applications in the chemical industry if obtained with adequate quality. It can be sold as a pulverised solid, or in aqueous solution. Several tests were carried out at the pilot plant, which was located at a landfill site, in order to feed it with a fraction of the on-site collected landfill gas. The results of the experimental campaign are reported, explained and commented in the paper. Also a discussion on economic issues is presented.

Lidia Lombardia; Andrea Corti; Ennio Carnevale; Renato Baciocchi; Daniela Zingaretti

2011-01-01T23:59:59.000Z

114

Suitability of Tedlar® gas sampling bags for siloxane quantification in landfill gas  

Science Journals Connector (OSTI)

Landfill or digester gas can contain man-made volatile methylsiloxanes (VMS), usually in the range of a few milligrams per normal cubic metre (Nm3). Until now, no standard method for siloxane quantification exists and there is controversy with respect to which sampling procedure is most suitable. This paper presents an analytical and a sampling procedure for the quantification of common VMS in biogas via GC–MS and polyvinyl fluoride (Tedlar®) bags. Two commercially available Tedlar bag models are studied. One is equipped with a polypropylene valve with integrated septum, the other with a dual port fitting made from stainless steel. Siloxane recovery in landfill gas samples is investigated as a function of storage time, temperature, surface-to-volume ratio and background gas. Recovery was found to depend on the type of fitting employed. The siloxanes sampled in the bag with the polypropylene valve show high and stable recovery, even after more than 30 days. Sufficiently low detection limits below 10 ?g Nm?3 and good reproducibility can be achieved. The method is therefore well applicable to biogas, greatly facilitating sampling in comparison with other common techniques involving siloxane enrichment using sorption media.

M. Ajhar; B. Wens; K.H. Stollenwerk; G. Spalding; S. Yüce; T. Melin

2010-01-01T23:59:59.000Z

115

Des Plaines Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Des Plaines Landfill Biomass Facility Jump to: navigation, search Name Des Plaines Landfill Biomass Facility Facility Des Plaines Landfill Sector Biomass Facility Type Landfill Gas...

116

Lessons from Loscoe: the uncontrolled migration of landfill gas  

Science Journals Connector (OSTI)

...was considered of fundamental importance in determining...making the situation safe, even though in...with coal mining operations. In 1983 smells...central heating boiler had been ignited...different landfill operation and completion scenarios...how to improve the operation and engineering...

G. M. Williams; N. Aitkenhead

117

Effects of Landfill Gas on Growth and Nitrogen Fixation of Two Leguminous Trees (Acacia Confusa, Leucaena Leucocephala)  

Science Journals Connector (OSTI)

A study was made on the effects of landfill gas on ARA (acetylene reducing activity) of ... The effects of the three main components of landfill gas, O2, CO2 and CH4, were first measured separately over a 1-hr pe...

Y. S. G. Chan; M. H. Wong; B. A. Whitton

1998-10-01T23:59:59.000Z

118

Performance of an Internal Combustion Engine Operating on Landfill Gas and the Effect of Syngas Addition  

Science Journals Connector (OSTI)

Performance of an Internal Combustion Engine Operating on Landfill Gas and the Effect of Syngas Addition ... The performance of a four-stroke Honda GC160E spark ignition (SI) internal combustion (IC) engine operating on landfill gas (LFG) was investigated, as well as the impact of H2 and CO (syngas) addition on emissions and engine efficiency. ... In addition, variation across both the syngas content (up to 15%) and the ratio of H2 to CO in the syngas (H2/CO = 0.5, 1, and 2) were tested. ...

McKenzie P. Kohn; Jechan Lee; Matthew L. Basinger; Marco J. Castaldi

2011-02-07T23:59:59.000Z

119

Tapping Landfill Gas to Provide Significant Energy Savings and Greenhouse Gas Reductions- Case Study, 2013  

Broader source: Energy.gov [DOE]

Case study overviewing two large landfill projects in California and Rhode Island funded by the Recovery Act

120

Property:Building/SPPurchasedEngyNrmlYrMwhYrDigesterLandfillGas | Open  

Open Energy Info (EERE)

SPPurchasedEngyNrmlYrMwhYrDigesterLandfillGas SPPurchasedEngyNrmlYrMwhYrDigesterLandfillGas Jump to: navigation, search This is a property of type String. Digester / landfill gas Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrDigesterLandfillGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 +

Note: This page contains sample records for the topic "includes landfill gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Property:Building/SPPurchasedEngyPerAreaKwhM2DigesterLandfillGas | Open  

Open Energy Info (EERE)

DigesterLandfillGas DigesterLandfillGas Jump to: navigation, search This is a property of type String. Digester / landfill gas Pages using the property "Building/SPPurchasedEngyPerAreaKwhM2DigesterLandfillGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

122

Property:Building/SPPurchasedEngyForPeriodMwhYrDigesterLandfillGas | Open  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrDigesterLandfillGas SPPurchasedEngyForPeriodMwhYrDigesterLandfillGas Jump to: navigation, search This is a property of type String. Digester / landfill gas Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrDigesterLandfillGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 +

123

IEA-Renewable Energy Technologies, Bioenergy Agreement Task 37: Energy from Biogas and Landfill Gas  

E-Print Network [OSTI]

EFP-06 IEA- Renewable Energy Technologies, Bioenergy Agreement Task 37: Energy from Biogas-Bioenergy, Task 37- Energy from Biogas and Landfill Gas", via samarbejde, informationsudveksling, fælles analyser. biogas fra anaerob udrådning (AD) som en integreret gylle og affalds behandlings teknologi. Arbejdet

124

Landfill gas upgrading with pilot-scale water scrubber: Performance assessment with absorption water recycling  

Science Journals Connector (OSTI)

A pilot-scale counter current absorption process for upgrading municipal solid waste (MSW) landfill gas to produce vehicle fuel was studied using absorption, desorption and drying units and water as an absorbent. Continuous water recycling was used without adding new water to the system. The process parameters were defined by a previous study made with this pilot system. The effect of pressure (20–25 bar), temperature (10–25 °C) and water flow speed (5.5–11 l/min) on the upgrading performance, trace compounds (siloxanes, halogenated compounds) and water quality were investigated. Raw landfill gas flow was kept constant at 7.41 Nm3/h. Methane (CH4) and carbon dioxide (CO2) contents in the product gas were 86–90% and 4.5–8.0% with all studied pressures and temperatures. The remaining fraction in product gas was nitrogen (N2) (from 1% to 7%). Organic silicon compounds (siloxanes) were reduced by 16.6% and halogenated compounds similarly by 90.1% by water absorption. From studied process parameters, only water flow speed affected the removal of siloxanes and halogen compounds. The absorbent water pH was between 4.4–4.9, sulphide concentration between 0.1–1.0 mg/l and carbonate concentration between 500–1000 mg/l. The product gas drying system reduced the siloxane concentration by 99.1% and halogenated compounds by 99.9% compared to the raw landfill gas. In conclusion, the pilot-scale gas upgrading process studied appears to be able to produce gas with high energy content (approx 86–90% methane) using a closed water circulation system. When using a standard gas drying system, all trace compounds can be removed by over 99% compared to raw landfill gas.

J. Läntelä; S. Rasi; J. Lehtinen; J. Rintala

2012-01-01T23:59:59.000Z

125

Catalytically upgraded landfill gas as a cost-effective alternative for fuel cells  

Science Journals Connector (OSTI)

The potential use of landfill gas as feeding fuel for the so-called molten carbonate fuel cells (MCFC) imposes the need for new upgrading technologies in order to meet the much tougher feed gas specifications of this type of fuel cells in comparison to gas engines. Nevertheless, MCFC has slightly lower purity demands than low temperature fuel cells. This paper outlines the idea of a new catalytic purification process for landfill gas conditioning, which may be supposed to be more competitive than state-of-the-art technologies and summarises some lab-scale results. This catalytic process transforms harmful landfill gas minor compounds into products that can be easily removed from the gas stream by a subsequent adsorption step. The optimal process temperature was found to be in the range 250–400 °C. After a catalyst screening, two materials were identified, which have the ability to remove all harmful minor compounds from landfill gas. The first material was a commercial alumina that showed a high activity towards the removal of organic silicon compounds. The alumina protects both a subsequent catalyst for the removal of other organic minor compounds and the fuel cell. Due to gradual deactivation caused by silica deposition, the activated alumina needs to be periodically replaced. The second material was a commercial V2O5/TiO2-based catalyst that exhibited a high activity for the total oxidation of a broad spectrum of other harmful organic minor compounds into a simpler compound class “acid gases (HCl, HF and SO2)”, which can be easily removed by absorption with, e.g. alkalised alumina. The encouraging results obtained allow the scale-up of this LFG conditioning process to test it under real LFG conditions.

W. Urban; H. Lohmann; J.I. Salazar Gómez

2009-01-01T23:59:59.000Z

126

The Microbial Community of Landfill Soils and the Influence of Landfill Gas on Soil Recovery and Revegetation  

Science Journals Connector (OSTI)

An extensive database for soil microbiological and physicochemical conditions has been established from samples taken from restored landfill sites in South East England. The sites...

Sharon D. Wigfull; Paul Birch

1990-01-01T23:59:59.000Z

127

Instrumentation for the Measurement of Landfill Gas Emissions  

Science Journals Connector (OSTI)

Where problems of gas emission are suspected, the reliable detection and measurement of the gas is essential if solutions to the problem are to be designed, constructed and monitored for their effectiveness. T...

D. Crowhurst

1988-01-01T23:59:59.000Z

128

Evaluation of landfill gas production and emissions in a MSW large-scale Experimental Cell in Brazil  

Science Journals Connector (OSTI)

Landfill gas (LFG) emissions from municipal solid waste (MSW) landfills are an important environmental concern in Brazil due to the existence of several uncontrolled disposal sites. A program of laboratory and field tests was conducted to investigate gas generation in and emission from an Experimental Cell with a 36,659-ton capacity in Recife/PE – Brazil. This investigation involved waste characterisation, gas production and emission monitoring, and geotechnical and biological evaluations and was performed using three types of final cover layers. The results obtained in this study showed that waste decomposes 4–5 times faster in a tropical wet climate than predicted by traditional first-order models using default parameters. This fact must be included when considering the techniques and economics of projects developed in tropical climate countries. The design of the final cover layer and its geotechnical and biological behaviour proved to have an important role in minimising gas emissions to the atmosphere. Capillary and methanotrophic final cover layers presented lower CH4 flux rates than the conventional layer.

Felipe Jucá Maciel; José Fernando Thomé Jucá

2011-01-01T23:59:59.000Z

129

Mechanics of biocell landfill settlements.  

E-Print Network [OSTI]

??Prediction of landfill gas generation and settlements are of concerns in design and maintenance of biocell landfills. Accurate settlement prediction is essential for design of… (more)

Hettiarachchi, Chamil Hiroshan

2005-01-01T23:59:59.000Z

130

Integrated Combined Heat and Power/Advanced Reciprocating Internal Combustion Engine System for Landfill Gas to Power Applications  

Broader source: Energy.gov [DOE]

Landfill gas (LFG), composed largely of methane and carbon dioxide, is used in over 450 operational projects in 43 states. These projects convert a large source of greenhouse gases into a fuel that...

131

Well-to-Wheels analysis of landfill gas-based pathways and their addition to the GREET model.  

SciTech Connect (OSTI)

Today, approximately 300 million standard cubic ft/day (mmscfd) of natural gas and 1600 MW of electricity are produced from the decomposition of organic waste at 519 U.S. landfills (EPA 2010a). Since landfill gas (LFG) is a renewable resource, this energy is considered renewable. When used as a vehicle fuel, compressed natural gas (CNG) produced from LFG consumes up to 185,000 Btu of fossil fuel and generates from 1.5 to 18.4 kg of carbon dioxide-equivalent (CO{sub 2}e) emissions per million Btu of fuel on a 'well-to-wheel' (WTW) basis. This compares with approximately 1.1 million Btu and 78.2 kg of CO{sub 2}e per million Btu for CNG from fossil natural gas and 1.2 million Btu and 97.5 kg of CO{sub 2}e per million Btu for petroleum gasoline. Because of the additional energy required for liquefaction, LFG-based liquefied natural gas (LNG) requires more fossil fuel (222,000-227,000 Btu/million Btu WTW) and generates more GHG emissions (approximately 22 kg CO{sub 2}e /MM Btu WTW) if grid electricity is used for the liquefaction process. However, if some of the LFG is used to generate electricity for gas cleanup and liquefaction (or compression, in the case of CNG), vehicle fuel produced from LFG can have no fossil fuel input and only minimal GHG emissions (1.5-7.7 kg CO{sub 2}e /MM Btu) on a WTW basis. Thus, LFG-based natural gas can be one of the lowest GHG-emitting fuels for light- or heavy-duty vehicles. This report discusses the size and scope of biomethane resources from landfills and the pathways by which those resources can be turned into and utilized as vehicle fuel. It includes characterizations of the LFG stream and the processes used to convert low-Btu LFG into high-Btu renewable natural gas (RNG); documents the conversion efficiencies and losses of those processes, the choice of processes modeled in GREET, and other assumptions used to construct GREET pathways; and presents GREET results by pathway stage. GREET estimates of well-to-pump (WTP), pump-to-wheel (PTW), and WTW energy, fossil fuel, and GHG emissions for each LFG-based pathway are then summarized and compared with similar estimates for fossil natural gas and petroleum pathways.

Mintz, M.; Han, J.; Wang, M.; Saricks, C.; Energy Systems

2010-06-30T23:59:59.000Z

132

Municipal solid waste degradation and landfill gas resources characteristics in self-recirculating sequencing batch bioreactor landfill  

Science Journals Connector (OSTI)

Based on the degradation characteristics of municipal solid waste (MSW) in China, the traditional anaerobic sequencing batch bioreactor landfill (ASBRL) was optimized, and an improved anaerobic sequencing batch b...

Xiao-zhi Zhou ???; Shu-xun Sang ???; Li-wen Cao ???

2012-12-01T23:59:59.000Z

133

Global methane emissions from landfills: New methodology and annual estimates 19801996  

E-Print Network [OSTI]

Change: Instruments and techniques; KEYWORDS: landfill, landfill gas, methane emissions, methanotrophy

134

Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test  

SciTech Connect (OSTI)

Highlights: • Equilibrium test was attempted to evaluate adsorption characteristics of siloxane. • L2 had higher removal efficiency in carbon compared to noncarbon adsorbents. • Total adsorption capacity of siloxane was 300 mg/g by coal activated carbon. • Adsorption characteristics rely on size of siloxane molecule and adsorbent pore. • Conversion of siloxane was caused by adsorption of noncarbon adsorbents. - Abstract: Due to the increase in energy cost by constantly high oil prices and the obligation to reduce greenhouse effect gases, landfill gas is frequently used as an alternative energy source for producing heat and electricity. Most of landfill gas utility facilities, however, are experiencing problems controlling siloxanes from landfill gas as their catalytic oxidizers are becoming fouled by silicon dioxide dust. To evaluate adsorption characteristics of siloxanes, an adsorption equilibrium test was conducted and parameters in the Freundlich and Langmuir isotherms were analyzed. Coconut activated carbon (CA1), coal activated carbon (CA2), impregnated activated carbon (CA3), silicagel (NCA1), and activated alumina (NCA2) were used for the adsorption of the mixed siloxane which contained hexamethyldisiloxane (L2), octamethylcyclotetrasiloxane (D4), and decamethylcyclopentasiloxane (D5). L2 had higher removal efficiency in noncarbon adsorbents compared to carbon adsorbents. The application of Langmuir and Freundlich adsorption isotherm demonstrated that coconut based CA1 and CA3 provided higher adsorption capacity on L2. And CA2 and NCA1 provided higher adsorption capacity on D4 and D5. Based on the experimental results, L2, D4, and D5 were converted by adsorption and desorption in noncarbon adsorbents. Adsorption affinity of siloxane is considered to be affect by the pore size distribution of the adsorbents and by the molecular size of each siloxane.

Nam, Sangchul; Namkoong, Wan [Department of Environmental Engineering, Konkuk University, Hwayang-Dong, Gwangjin-Gu, Seoul 143-701 (Korea, Republic of); Kang, Jeong-Hee; Park, Jin-Kyu [Department of Environmental Engineering, Anyang University, Anyang 5-Dong, Manan-Gu, Anyang-Si, Gyeonggi-Do 430-714 (Korea, Republic of); Lee, Namhoon, E-mail: nhlee@anyang.ac.kr [Department of Environmental Engineering, Anyang University, Anyang 5-Dong, Manan-Gu, Anyang-Si, Gyeonggi-Do 430-714 (Korea, Republic of)

2013-10-15T23:59:59.000Z

135

Passive landfill gas emission – Influence of atmospheric pressure and implications for the operation of methane-oxidising biofilters  

Science Journals Connector (OSTI)

A passively vented landfill site in Northern Germany was monitored for gas emission dynamics through high resolution measurements of landfill gas pressure, flow rate and composition as well as atmospheric pressure and temperature. Landfill gas emission could be directly related to atmospheric pressure changes on all scales as induced by the autooscillation of air, diurnal variations and the passage of pressure highs and lows. Gas flux reversed every 20 h on average, with 50% of emission phases lasting only 10 h or less. During gas emission phases, methane loads fed to a connected methane oxidising biofiltration unit varied between near zero and 247 g CH4 h?1 m?3 filter material. Emission dynamics not only influenced the amount of methane fed to the biofilter but also the establishment of gas composition profiles within the biofilter, thus being of high relevance for biofilter operation. The duration of the gas emission phase emerged as most significant variable for the distribution of landfill gas components within the biofilter.

Julia Gebert; Alexander Groengroeft

2006-01-01T23:59:59.000Z

136

Renewable LNG: Update on the World's Largest Landfill Gas to LNG Plant  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LNG LNG Update on the world's largest landfill gas to LNG plant Mike McGowan Head of Government Affairs Linde NA, Inc. June 12, 2012 $18.3 billion global sales A leading gases and engineering company Linde North America Profile $2.3 billion in gases sales revenue in North America in 2011 5,000 employees throughout the U.S., Canada and the Caribbean Supplier of compressed and cryogenic gases and technology Atmospheric gases - oxygen, nitrogen, argon Helium LNG and LPG Hydrogen Rare gases Plant engineering and supply LNG Petrochemicals Natural gas processing Atmospheric gases 3 Linde's alternative fuels portfolio Green hydrogen production - Magog, Quebec Renewable liquefied natural gas production - Altamont, CA Biogas fueling, LNG import terminal - Sweden

137

Pilot scale evaluation of the BABIU process – Upgrading of landfill gas or biogas with the use of MSWI bottom ash  

Science Journals Connector (OSTI)

Abstract Biogas or landfill gas can be converted to a high-grade gas rich in methane with the use of municipal solid waste incineration bottom ash as a reactant for fixation of CO2 and H2S. In order to verify results previously obtained at a laboratory scale with 65–90 kg of bottom ash (BA), several test runs were performed at a pilot scale, using 500–1000 kg of bottom ash and up to 9.2 N m3/h real landfill gas from a landfill in the Tuscany region (Italy). The input flow rate was altered. The best process performance was observed at a input flow rate of 3.7 N m3/(h tBA). At this flow rate, the removal efficiencies for H2S were approximately 99.5–99%.

P. Mostbauer; L. Lombardi; T. Olivieri; S. Lenz

2014-01-01T23:59:59.000Z

138

domestic refuse landfill  

Science Journals Connector (OSTI)

domestic refuse landfill, domestic waste landfill, house waste landfill, house refuse landfill ? Hausmüllaufschüttung f

2014-08-01T23:59:59.000Z

139

Landfill gas cleanup for carbonate fuel cell power generation. CRADA final report  

SciTech Connect (OSTI)

The overall objective of the work reported here was to evaluate the extent to which conventional contaminant removal processes could be combined to economically reduce contaminant levels to the specifications for carbonate fuel cells. The technical effort was conducted by EPRI, consultant David Thimsen, Kaltec of Minnesota, Energy Research Corporation (ERC) and Interpoll Laboratories. The Electric Power Research Institute (EPRI) made available two test skids originally used to test an ERC 30 kW carbonate fuel cell at the Destec Coal Gasification Plan in Plaquemine, LA. EPRI`s carbonate fuel cell pilot plant was installed at the Anoka County Regional Landfill in Ramsey, Minnesota. Additional gas cleaning equipment was installed to evaluate a potentially inexpensive, multi-stage gas cleaning process to remove sulfur and chlorine in the gas to levels acceptable for long-term, economical carbonate fuel cell operation. The pilot plant cleaned approximately 970,000 scf (27,500 Nm{sup 3}) of gas over 1,000 hours of operation. The testing showed that the process could achieve the following polished gas concentrations. Less than 80 ppbv hydrogen sulfide; less than 1 ppmv (the detection limit) organic sulfur; less than 300 ppbv hydrogen chloride; less than 20--80 ppbv of any individual chlorined hydrocarbon; and 1.5 ppm sulfur dioxide. These were the detection limits of the analytical procedures employed. It is probable that the actual concentrations are below these analytical limits.

Steinfeld, G.; Sanderson, R.

1998-02-01T23:59:59.000Z

140

INTEGRATED CRYOGENIC SYSTEM FOR CO 2 SEPARATION AND LNG PRODUCTION FROM LANDFILL GAS  

Science Journals Connector (OSTI)

An integrated cryogenic system to separate carbon dioxide ( CO 2 ) and produce LNG from landfill gas is investigated and designed. The main objective of this design is to eliminate the requirement of a standard CO 2 removal process in the liquefaction system such distillation or (temperature or pressure) swing adsorption and to directly separate carbon dioxide as frost at the liquefying channel of methane. Two identical sets of heat exchangers are installed in parallel and switched alternatively with a time period so that one is in separation?liquefaction mode while the other is in CO 2 clean?up mode. A thermal regeneration scheme is presented for the purpose of saving energy and avoiding the stoppage of LNG production followed by the flow switching. The switching period is determined from results of a combined heat and mass transfer analysis on the CO 2 freeze?out process.

H. M. Chang; M. J. Chung; S. B. Park

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "includes landfill gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

(sanitary) landfill  

Science Journals Connector (OSTI)

(sanitary) landfill, landfill(ed) site, refuse dump, garbage dump...Landfills may often release a toxic soup of...] ? Abfalldeponie f [Zur Endlagerung von Abfallstoffen oder von Industrieprodukten al...

2014-08-01T23:59:59.000Z

142

Calcite precipitation in landfills: an essential product of waste stabilization  

Science Journals Connector (OSTI)

...and carbon dioxide observed for landfill gas do not reflect the amount of bicarbonate...reactions within the waste) and landfill gas. Both of these are potentially...Brief summaries of leachate and landfill gas compositions and their evolution...

D. A. C. Manning

143

Chlorofluorocarbons as tracers of landfill leachate in surface and groundwater  

Science Journals Connector (OSTI)

...considerably lower concentrations in landfill gas. CFCs and CCl4 in leachate may...all groundwater, leachate and landfill gas samples were taken on 6 April 2004...at the central site facility. Landfill gas was sampled by attaching a thick...

A. E. Foley; T. C. Atkinson; Y. Zhao

144

Gas storage materials, including hydrogen storage materials  

DOE Patents [OSTI]

A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

2014-11-25T23:59:59.000Z

145

Displacing Natural Gas Consumption and Lowering Emissions  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

fuels and thereby reduce their natural gas consumption. Opportunity gas fuels include biogas from animal and agri- cultural wastes, wastewater plants, and landfills, as well as...

146

Landfill Gas Conversion to LNG and LCO{sub 2}. Phase II Final Report for January 25, 1999 - April 30, 2000  

SciTech Connect (OSTI)

This report summarizes work on the development of a process to produce LNG (liquefied methane) for heavy vehicle use from landfill gas (LFG) using Acrion's CO{sub 2} wash process for contaminant removal and CO{sub 2} recovery.

Brown, W. R.; Cook, W. J.; Siwajek, L. A.

2000-10-20T23:59:59.000Z

147

Illinois Turning Landfill Trash into Future Cash | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Turning Landfill Trash into Future Cash Turning Landfill Trash into Future Cash Illinois Turning Landfill Trash into Future Cash September 28, 2010 - 5:35pm Addthis Illinois Turning Landfill Trash into Future Cash Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs Will County, Illinois officials yesterday formally broke ground on a new $7 million project (that includes $1 million of Energy Efficiency Conservation Block Grant funds) to turn methane gas from the Prairie View Landfill into electricity in a partnership with Waste Management. Will County will receive revenue from the sale of the gas created from decomposing garbage which will be harnessed and converted to generate 4.8 megawatts of green electrical power and used to power up to 8,000 homes. The future revenue generated from the sale of the gas and the sale of the

148

Electric power generation using a phosphoric acid cell on a municipal solid waste landfill gas stream. Technology verification report, November 1997--July 1998  

SciTech Connect (OSTI)

The report gives results of tests to verify the performance of a landfill gas pretreatment unit (GPU) and a phosphoric acid fuel cell system. The complete system removes contaminants from landfill gas and produces electricity for on-site use or connection to an electric grid. Performance data were collected at two sites determined to be representative of the U.S. landfill market. The Penrose facility, in Los Angeles, CA, was the first test site. The landfill gas at this site represented waste gas recovery from four nearby landfills, consisting primarily of industrial waste material. It produced approximately 3000 scf of gas/minute, and had a higher heating value of 446 Btu/scf at about 44% methane concentration. The second test site, in Groton, CT, was a relatively small landfill, but with greater heat content gas (methane levels were about 57% and the average heating value was 585 Btu/scf). The verification test addressed contaminant removal efficiency, flare destruction efficiency, and the operational capability of the cleanup system, and the power production capability of the fuel cell system.

Masemore, S.; Piccot, S.

1998-08-01T23:59:59.000Z

149

DOE Considers Natural Gas Utility Service Options: Proposal Includes  

Broader source: Energy.gov (indexed) [DOE]

Considers Natural Gas Utility Service Options: Proposal Considers Natural Gas Utility Service Options: Proposal Includes 30-mile Natural Gas Pipeline from Pasco to Hanford DOE Considers Natural Gas Utility Service Options: Proposal Includes 30-mile Natural Gas Pipeline from Pasco to Hanford January 23, 2012 - 12:00pm Addthis Media Contacts Cameron Hardy, DOE , (509) 376-5365, Cameron.Hardy@rl.doe.gov RICHLAND, WASH. - The U.S. Department of Energy (DOE) is considering natural gas transportation and distribution requirements to support the Waste Treatment Plant (WTP) and evaporator operations at the Hanford Site in southeastern Washington State. DOE awarded a task order worth up to $5 million to the local, licensed supplier of natural gas in the Hanford area, Cascade Natural Gas Corporation (Cascade). Cascade will support DOE and its Environmental

150

Phase equilibrium conditions for simulated landfill gas hydrate formation in aqueous solutions of tetrabutylammonium nitrate  

Science Journals Connector (OSTI)

Abstract Hydrate phase equilibrium conditions for the simulated landfill gas (LFG) of methane and carbon dioxide (50 mol% methane, 50 mol% carbon dioxide) were investigated with the pressure range of (1.90 to 13.83) MPa and temperature range of (280.0 to 288.3) K at (0.050, 0.170, 0.340, and 0.394) mass fraction (w) of tetrabutylammonium nitrate (TBANO3). The phase boundary between liquid–vapor–hydrate (L–V–H) phases and liquid–vapor (L–V) phases was determined by employing an isochoric pressure-search method. The phase equilibrium data measured showed that TBANO3 appeared a remarkable promotion effect at w TBANO 3  = 0.394, corresponding to TBANO3 · 26H2O, but inhibition effect at w TBANO 3  = (0.050, or 0.170) on the semiclathrate hydrate formation. In addition, the application of TBANO3 at 0.340 mass fraction, corresponding to TBANO3 · 32H2O, displayed promotion effect at lower pressures (below 6.38 MPa) and inhibition effect at higher pressures (above 6.38 MPa).

Ling-Li Shi; De-Qing Liang; Dong-Liang Li

2014-01-01T23:59:59.000Z

151

slag landfill  

Science Journals Connector (OSTI)

slag landfill [Context: the impacts of Cu 2+ emissions from the slag landfill to the groundwater were assessed to be...] ? Schlackendeponie f ...

2014-08-01T23:59:59.000Z

152

EIA - Greenhouse Gas Emissions - Methane Emissions  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

credit for renewable energy, including waste-to-energy and landfill gas combustion. Wastewater treatment, including both domestic wastewater (about two-thirds) and industrial...

153

Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas  

Science Journals Connector (OSTI)

Vertically aligned carbon nanotube (CNT) layers were synthesized on Fe-coated low-cost alumina substrates using radio-frequency plasma enhanced chemical vapour deposition (RF-PECVD) technology. A miniaturized CNT-based gas sensor array was developed for monitoring landfill gas (LFG) at a temperature of 150??C. The sensor array was composed of 4 sensing elements with unmodified CNT, and CNT loaded with 5?nm nominally thick sputtered nanoclusters of platinum (Pt), ruthenium (Ru) and silver (Ag). Chemical analysis of multicomponent gas mixtures constituted of CO2, CH4, H2, NH3, CO and NO2 has been performed by the array sensor responses and pattern recognition based on principal component analysis (PCA). The PCA results demonstrate that the metal-decorated and vertically aligned CNT sensor array is able to discriminate the NO2 presence in the multicomponent mixture LFG. The NO2 gas detection in the mixture LFG was proved to be very sensitive, e.g.: the CNT:Ru sensor shows a relative change in the resistance of 1.50% and 0.55% for NO2 concentrations of 3.3?ppm and 330?ppb dispersed in the LFG, respectively, with a wide NO2 gas concentration range measured from 0.33 to 3.3?ppm, at the sensor temperature of 150??C. The morphology and structure of the CNT networks have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. A forest-like nanostructure of vertically aligned CNT bundles in the multi-walled form appeared with a height of about 10 ?m and a single-tube diameter varying in the range of 5?35?nm. The intensity ratio of the Raman spectroscopy D-peak and G-peak indicates the presence of disorder and defects in the CNT networks. The size of the metal (Pt, Ru, Ag) nanoclusters decorating the CNT top surface varies in the range of 5?50?nm. Functional characterization based on electrical charge transfer sensing mechanisms in the metal-modified CNT-chemoresistor array demonstrates high sensitivity by providing minimal sub-ppm level detection, e.g., download up to 100?ppb NO2, at the sensor temperature of 150??C. The gas sensitivity of the CNT sensor array depends on operating temperature, showing a lower optimal temperature of maximum sensitivity for the metal-decorated CNT sensors compared to unmodified CNT sensors. Results indicate that the recovery mechanisms in the CNT chemiresistors can be altered by a rapid heating pulse from room temperature to about 110??C. A comparison of the NO2 gas sensitivity for the chemiresistors based on disorderly networked CNTs and vertically aligned CNTs is also reported. Cross-sensitivity towards relative humidity of the CNT sensors array is investigated. Finally, the sensing properties of the metal-decorated and vertically aligned CNT sensor arrays are promising to monitor gas events in the LFG for practical applications with low power consumption and moderate sensor temperature.

M Penza; R Rossi; M Alvisi; E Serra

2010-01-01T23:59:59.000Z

154

Byxbee Park Sanitary Landfill Biomass Facility | Open Energy...  

Open Energy Info (EERE)

Facility Facility Byxbee Park Sanitary Landfill Sector Biomass Facility Type Landfill Gas Location Santa Clara County, California Coordinates 37.2938907, -121.7195459...

155

Aerobic landfill bioreactor  

DOE Patents [OSTI]

The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

Hudgins, Mark P (Aiken, SC); Bessette, Bernard J (Aiken, SC); March, John (Winterville, GA); McComb, Scott T. (Andersonville, SC)

2000-01-01T23:59:59.000Z

156

Aerobic landfill bioreactor  

DOE Patents [OSTI]

The present invention includes a system of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

Hudgins, Mark P (Aiken, SC); Bessette, Bernard J (Aiken, SC); March, John C (Winterville, GA); McComb, Scott T. (Andersonville, SC)

2002-01-01T23:59:59.000Z

157

Renewable Energy 32 (2007) 12431257 Methane generation in landfills  

E-Print Network [OSTI]

. Some of the modern regulated landfills attempt to capture and utilize landfill biogas, a renewable collecting landfill biogas worldwide. The landfills that capture biogas in the US collect about 2.6 million. All rights reserved. Keywords: Landfill gas; Renewable energy; Municipal solid waste; Biogas; Methane

Columbia University

158

E-Print Network 3.0 - annual international landfill Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

-end of lifetime average collection efficiencies for international greenhouse gas (GHG) inventories for landfills... t h e U . S i THE IMPORTANCE OF LANDFILL GAS CAPTURE AND...

159

A renewable energy plan for the Oak Grove Sanitary Landfill In Winder, Georgia.  

E-Print Network [OSTI]

??Oak Grove Sanitary Landfill in Winder, Georgia is already refining its landfill gas (LFG) and sending it through the natural gas pipeline. This is more… (more)

Hambrick, Tracy L.

2011-01-01T23:59:59.000Z

160

Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Landfills Convert Landfills Convert Biogas Into Renewable Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Google Bookmark Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Delicious Rank Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Digg Find More places to share Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on AddThis.com... May 25, 2013 Landfills Convert Biogas Into Renewable Natural Gas

Note: This page contains sample records for the topic "includes landfill gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Corrective Action Investigation Plan for Corrective Action Unit 5: Landfills, Nevada Test Site, Nevada (Rev. No.: 0) includes Record of Technical Change No. 1 (dated 9/17/2002)  

SciTech Connect (OSTI)

This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 5 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 5 consists of eight Corrective Action Sites (CASs): 05-15-01, Sanitary Landfill; 05-16-01, Landfill; 06-08-01, Landfill; 06-15-02, Sanitary Landfill; 06-15-03, Sanitary Landfill; 12-15-01, Sanitary Landfill; 20-15-01, Landfill; 23-15-03, Disposal Site. Located between Areas 5, 6, 12, 20, and 23 of the Nevada Test Site (NTS), CAU 5 consists of unlined landfills used in support of disposal operations between 1952 and 1992. Large volumes of solid waste were produced from the projects which used the CAU 5 landfills. Waste disposed in these landfills may be present without appropriate controls (i.e., use restrictions, adequate cover) and hazardous and/or radioactive constituents may be present at concentrations and locations that could potentially pose a threat to human health and/or the environment. During the 1992 to 1995 time frame, the NTS was used for various research and development projects including nuclear weapons testing. Instead of managing solid waste at one or two disposal sites, the practice on the NTS was to dispose of solid waste in the vicinity of the project. A review of historical documentation, process knowledge, personal interviews, and inferred activities associated with this CAU identified the following as potential contaminants of concern: volatile organic compounds, semivolatile organic compounds, polychlorinated biphenyls, pesticides, petroleum hydrocarbons (diesel- and gasoline-range organics), Resource Conservation and Recovery Act Metals, plus nickel and zinc. A two-phase approach has been selected to collect information and generate data to satisfy needed resolution criteria and resolve the decision statements. Phase I will concentrate on geophysical surveys to confirm the presence or absence of disposed waste within a CAS and verify the boundaries of disposal areas; penetrate disposal feature covers via excavation and/or drilling; perform geodetic surveys; and be used to collect both soil and environmental samples for laboratory analyses. Phase II will deal only with those CASs where a contaminant of concern has been identified. This phase will involve the collection of additional soil and/or environmental samples for laboratory analyses. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

IT Corporation, Las Vegas, NV

2002-05-28T23:59:59.000Z

162

(sanitary) landfill reclamation  

Science Journals Connector (OSTI)

(sanitary) landfill reclamation, reclamation of (sanitary) landfills [For industrial and commercial development] ? Deponielandgewinnung f, Kippenlandgewinnung

2014-08-01T23:59:59.000Z

163

Ni catalysts derived from Mg–Al layered double hydroxides for hydrogen production from landfill gas conversion  

Science Journals Connector (OSTI)

A layered double hydroxide (LDH) precursor with a hydrotalcite-like structure containing Ni/Mg/Al cations was prepared. A series of Ni catalysts containing mixed-oxides and spinel phases were then obtained through thermal treatment of the LDH precursor. X-ray diffraction (XRD), transmission electron microscopy (TEM), and temperature-programmed reduction (TPR) revealed that the LDH derived Ni catalysts have well-dispersed nickel phases upon reduction. The thermal treatment temperatures have noticeable effects on the specific surface area, pore volume, phase transformation, particle size, and reducibility of the catalysts. Thermal treatment temperatures up to 700 °C promote the generation of mesopores which facilitate an increase in specific area and pore volume. Beyond 700 °C sintering occurs, mesopores collapse, and specific area and pore volume decrease. High thermal treatment temperatures favor the phase transformation to spinel solid solutions and the particle size growth. Metal-support interaction is enhanced but reducibility is hindered due to the formation of spinel solid solution phases. The LDH derived Ni catalysts were tested for landfill gas conversion at 750 °C and have shown excellent activity and stability in terms of methane conversion. At gas hourly space velocity (GHSV) of 240,000 h?1 and pressure of 1 atm, 81% methane conversion was achieved during a 48 h test period without apparent catalyst deactivation.

Qingsong Wang; Wei Ren; Xueliang Yuan; Ruimin Mu; Zhanlong Song; Xiaolin Wang

2012-01-01T23:59:59.000Z

164

LANDFILL GAS CONVERSION TO LNG AND LCO{sub 2}. PHASE 1, FINAL REPORT FOR THE PERIOD MARCH 1998-FEBRUARY 1999  

SciTech Connect (OSTI)

Process designs and economics were developed to produce LNG and liquid carbon dioxide (CO{sub 2}) from landfill gas (LFG) using the Acrion CO{sub 2} wash process. The patented Acrion CO{sub 2} wash process uses liquid CO{sub 2} to absorb contaminants from the LFG. The process steps are compression, drying, CO{sub 2} wash contaminant removal and CO{sub 2} recovery, residual CO{sub 2} removal and methane liquefaction. Three flowsheets were developed using different residual CO{sub 2} removal schemes. These included physical solvent absorption (methanol), membranes and molecular sieves. The capital and operating costs of the flowsheets were very similar. The LNG production cost was around ten cents per gallon. In parallel with process flowsheet development, the business aspects of an eventual commercial project have been explored. The process was found to have significant potential commercial application. The business plan effort investigated the economics of LNG transportation, fueling, vehicle conversion, and markets. The commercial value of liquid CO{sub 2} was also investigated. This Phase 1 work, March 1998 through February 1999, was funded under Brookhaven National laboratory contract 725089 under the research program entitled ``Liquefied Natural Gas as a Heavy Vehicle Fuel.'' The Phase 2 effort will develop flowsheets for the following: (1) CO{sub 2} and pipeline gas production, with the pipeline methane being liquefied at a peak shaving site, (2) sewage digester gas as an alternate feedstock to LFG and (3) the use of mixed refrigerants for process cooling. Phase 2 will also study the modification of Acrion's process demonstration unit for the production of LNG and a market site for LNG production.

COOK,W.J.; NEYMAN,M.; SIWAJEK,L.A.; BROWN,W.R.; VAN HAUWAERT,P.M.; CURREN,E.D.

1998-02-25T23:59:59.000Z

165

COMBUSTIVE APPROACH FOR MEASURING TOTAL VOLATILE PHOSPHORUS CONTENT IN LANDFILL GAS  

Science Journals Connector (OSTI)

A technique was developed to measure the total gaseous phosphorus content in biogas. The amount of air needed for a neutral to oxidising flame was mixed with the biogas. The gas mixture was burnt in a closed quar...

JORIS ROELS; FRANK VANHAECKE; WILLY VERSTRAETE

2005-02-01T23:59:59.000Z

166

Landfill Bioreactors  

Science Journals Connector (OSTI)

Modern waste disposal has evolved from open dumping to the current practice of sanitary landfilling. Although this approach has proved to be a good alternative for preventing a variety of negative human healt...

Dr. J. Patrick A. Hettiaratchi PhD; PEng

2012-01-01T23:59:59.000Z

167

R&D Research/Demonstration Greenhouse Using Methane Gas from a Landfill for Co-Generation  

Science Journals Connector (OSTI)

A research/demonstration greenhouse for the production of greenhouse tomatoes using the single truss tomato production ... from landfills or other sources for heating and lighting to maximize crop production whil...

William J. Roberts

1997-01-01T23:59:59.000Z

168

(sanitary) landfill operator  

Science Journals Connector (OSTI)

(sanitary) landfill operator, Müllkippenbetreiber m, Mülldeponiebetreiber, Kippenbetreiber, Deponiebetreiber

2014-08-01T23:59:59.000Z

169

LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL  

SciTech Connect (OSTI)

''Conventional'' waste landfills emit methane, a potent greenhouse gas, in quantities such that landfill methane is a major factor in global climate change. Controlled landfilling is a novel approach to manage landfills for rapid completion of total gas generation, maximizing gas capture and minimizing emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated and brought to much earlier completion by improving conditions for biological processes (principally moisture levels) in the landfill. Gas recovery efficiency approaches 100% through use of surface membrane cover over porous gas recovery layers operated at slight vacuum. A field demonstration project's results at the Yolo County Central Landfill near Davis, California are, to date, highly encouraging. Two major controlled landfilling benefits would be the reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role in reduction of US greenhouse gas emissions.

Don Augenstein

1999-01-11T23:59:59.000Z

170

Evaluation of air injection and extraction tests in a landfill site in Korea: implications for landfill management  

Science Journals Connector (OSTI)

Air extraction and injection were evaluated for extracting hazardous landfill gas and enhancing degradation of organic materials in a landfill in Korea. From the pilot and full ... pressure radius of influence wa...

J. Lee; C. Lee; K. Lee

2002-11-01T23:59:59.000Z

171

Percentage of Total Natural Gas Industrial Deliveries included...  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Price Percentage of Total Industrial Deliveries included in Prices Vehicle Fuel Price Electric Power Price Period: Monthly Annual Download Series History Download...

172

Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model  

E-Print Network [OSTI]

decision support tool for landfill gas-to energy projects,”industrial emissions e. Landfills f. Solid waste treatmentreductions Forests, dairy, landfills 75% overall savings HFC

Greenblatt, Jeffery B.

2014-01-01T23:59:59.000Z

173

Ground Gas Handbook  

Science Journals Connector (OSTI)

...pathways of least resistance to gas transport, and applications are discussed, such as migrating landfill gas emissions, also from leaking landfill gas collection systems, as well as natural gas and oil-field gas leakage from abandoned production...

Allen W Hatheway

174

Percentage of Total Natural Gas Commercial Deliveries included in Prices  

Gasoline and Diesel Fuel Update (EIA)

City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History U.S. 63.3 59.3 57.9 57.0 57.4 61.3 1983-2013 Alabama 71.7 71.0 68.5 68.2 68.4 66.7 1989-2013 Alaska 94.1 91.6 91.1 91.0 92.3 92.6 1989-2013 Arizona 84.0 83.0 81.6 80.3 82.8 82.7 1989-2013 Arkansas 37.8 28.3 28.1 28.6 26.7 28.0 1989-2013

175

Percentage of Total Natural Gas Industrial Deliveries included in Prices  

Gasoline and Diesel Fuel Update (EIA)

City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History U.S. 16.5 16.3 16.0 16.2 16.6 16.9 2001-2013 Alabama 22.1 21.7 21.6 22.8 22.0 22.7 2001-2013 Alaska 100.0 100.0 100.0 100.0 100.0 100.0 2001-2013 Arizona 13.4 15.7 15.3 13.8 13.7 13.9 2001-2013 Arkansas 1.7 1.4 1.2 1.4 1.3 1.5 2001-2013

176

An assessment of remediation measures and effects on groundwater quality at the Oneida County Sanitary Landfill  

SciTech Connect (OSTI)

The Oneida County Sanitary Landfill has operated from 1979 to the present. The four existing landfill cells were constructed based on standards that existed at their time of development from 1979 to 1995. The landfill was initially permitted as a natural attenuation landfill with a silt soil base liner and top cover. Groundwater sampling at the site showed that many constituents exceeded Wisconsin Administrative Code Chapter NR 140 (NR 140) standards throughout the 1980s. Measures that were implemented to remediate landfill impacts on groundwater quality included installation of a leachate/gas extraction system in 1990 and construction of a composite final cover over completed cells in 1994. In 1994, an Environmental Contamination Assessment (ECA) was conducted in accordance with NR 140 to evaluate landfill performance, groundwater quality trends, and future monitoring/remediation measures. Since implementation of the gas/leachate extraction system, there has been a reduction in detected volatile organic compounds in leachate, gas, gas condensate, and groundwater quality samples. Continued monitoring is necessary to evaluate remediation measures.

McGuire, P.; Otterson, S. [Rust Environment & Infrastructure, Sheboygan, WI (United States); Welhouse, G. [Environmental Compliance Consultants, Oshkosh, WI (United States)] [and others

1995-12-31T23:59:59.000Z

177

Industrial Solid Waste Landfill Facilities (Ohio) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Industrial Solid Waste Landfill Facilities (Ohio) Industrial Solid Waste Landfill Facilities (Ohio) Industrial Solid Waste Landfill Facilities (Ohio) < Back Eligibility Agricultural Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Utility Program Info State Ohio Program Type Environmental Regulations Provider Ohio Environmental Protection Agency This chapter of the law establishes that the Ohio Environmental Protection Agency provides rules and guidelines for landfills, including those that treat waste to generate electricity. The law provides information for permitting, installing, maintaining, monitoring, and closing landfills. There are no special provisions or exemptions for landfills used to generate electricity. However, the law does apply to landfills that do

178

LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL  

SciTech Connect (OSTI)

The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional landfills. This is the highest methane recovery rate per unit waste, and thus progress toward stabilization, documented anywhere for such a large waste mass. This high recovery rate is attributed to moisture, and elevated temperature attained inexpensively during startup. Economic analyses performed under Phase I of this NETL contract indicate ''greenhouse cost effectiveness'' to be excellent. Other benefits include substantial waste volume loss (over 30%) which translates to extended landfill life. Other environmental benefits include rapidly improved quality and stabilization (lowered pollutant levels) in liquid leachate which drains from the waste.

Don Augenstein

2001-02-01T23:59:59.000Z

179

Risk assessment of landfill disposal sites - State of the art  

SciTech Connect (OSTI)

A risk assessment process can assist in drawing a cost-effective compromise between economic and environmental costs, thereby assuring that the philosophy of 'sustainable development' is adhered to. Nowadays risk analysis is in wide use to effectively manage environmental issues. Risk assessment is also applied to other subjects including health and safety, food, finance, ecology and epidemiology. The literature review of environmental risk assessments in general and risk assessment approaches particularly regarding landfill disposal sites undertaken by the authors, reveals that an integrated risk assessment methodology for landfill gas, leachate or degraded waste does not exist. A range of knowledge gaps is discovered in the literature reviewed to date. From the perspective of landfill leachate, this paper identifies the extent to which various risk analysis aspects are absent in the existing approaches.

Butt, Talib E. [Sustainability Centre in Glasgow (SCG), George Moore Building, 70 Cowcaddens Road, Glasgow Caledonian University, Glasgow G4 0BA, Scotland (United Kingdom)], E-mail: t_e_butt@hotmail.com; Lockley, Elaine [Be Environmental Ltd. Suite 213, Lomeshaye Business Village, Turner Road, Nelson, Lancashire, BB9 7DR, England (United Kingdom); Oduyemi, Kehinde O.K. [Built and Natural Environment, Baxter Building, University of Abertay Dundee, Bell Street, Dundee DD1 1HG, Scotland (United Kingdom)], E-mail: k.oduyemi@abertay.ac.uk

2008-07-01T23:59:59.000Z

180

The world's largest landfill  

Science Journals Connector (OSTI)

The world's largest landfill ... GeoChip-Based Analysis of Microbial Functional Gene Diversity in a Landfill Leachate-Contaminated Aquifer ... GeoChip-Based Analysis of Microbial Functional Gene Diversity in a Landfill Leachate-Contaminated Aquifer ...

Joseph M. Suflita; Charles P. Gerba; Robert K. Ham; Anna C. Palmisano; William L. Rathje; Joseph A. Robinson

1992-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "includes landfill gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Livingston Parish Landfill Methane Recovery Project (Feasibility Study)  

SciTech Connect (OSTI)

The Woodside Landfill is owned by Livingston Parish, Louisiana and is operated under contract by Waste Management of Louisiana LLC. This public owner/private operator partnership is commonplace in the solid waste industry today. The landfill has been in operation since approximately 1988 and has a permitted capacity of approximately 41 million cubic yards. Based on an assumed in-place waste density of 0.94 ton per cubic yard, the landfill could have an expected design capacity of 39.3 million tons. The landfill does have an active landfill gas collection and control system (LFGCCS) in place because it meets the minimum thresholds for the New Source Performance Standards (NSPS). The initial LFGCS was installed prior to 2006 and subsequent phases were installed in 2007 and 2010. The Parish received a grant from the United States Department of Energy in 2009 to evaluate the potential for landfill gas recovery and utilization at the Woodside Landfill. This includes a technical and economic feasibility study of a project to install a landfill gas to energy (LFGTE) plant and to compare alternative technologies. The LFGTE plant can take the form of on-site electrical generation, a direct use/medium Btu option, or a high-Btu upgrade technology. The technical evaluation in Section 2 of this report concludes that landfill gas from the Woodside landfill is suitable for recovery and utilization. The financial evaluations in sections 3, 4, and 5 of this report provide financial estimates of the returns for various utilization technologies. The report concludes that the most economically viable project is the Electricity Generation option, subject to the Parish’s ability and willingness to allocate adequate cash for initial capital and/or to obtain debt financing. However, even this option does not present a solid return: by our estimates, there is a 19 year simple payback on the electricity generation option. All of the energy recovery options discussed in this report economically stressed. The primary reason for this is the recent fundamental shift in the US energy landscape. Abundant supplies of natural gas have put downward pressure on any project that displaces natural gas or natural gas substitutes. Moreover, this shift appears long-term as domestic supplies for natural gas may have been increased for several hundred years. While electricity prices are less affected by natural gas prices than other thermal projects, they are still significantly affected since much of the power in the Entergy cost structure is driven by natural gas-fired generation. Consequently, rates reimbursed by the power company based on their avoided cost structure also face downward pressure over the near and intermediate term. In addition, there has been decreasing emphasis on environmental concerns regarding the production of thermal energy, and as a result both the voluntary and mandatory markets that drive green attribute prices have softened significantly over the past couple of years. Please note that energy markets are constantly changing due to fundamental supply and demand forces, as well as from external forces such as regulations and environmental concerns. At any point in the future, the outlook for energy prices may change and could deem either the electricity generation or pipeline injection project more feasible. This report is intended to serve as the primary background document for subsequent decisions made at Parish staff and governing board levels.

White, Steven

2012-11-15T23:59:59.000Z

182

Landfill Methane Project Development Handbook | Open Energy Information  

Open Energy Info (EERE)

Landfill Methane Project Development Handbook Landfill Methane Project Development Handbook Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Landfill Methane Project Development Handbook Agency/Company /Organization: United States Environmental Protection Agency Sector: Climate, Energy Focus Area: Biomass, - Landfill Gas Phase: Determine Baseline, Evaluate Options, Get Feedback Resource Type: Guide/manual User Interface: Website Website: www.epa.gov/lmop/publications-tools/handbook.html Cost: Free References: Project Development Handbook[1] The handbook describes the process of implementing a waste-to-energy landfill gas project. Overview "Approximately 250 million tons of solid waste was generated in the United States in 2008 with 54 percent deposited in municipal solid waste (MSW)

183

UNFCCC-Consolidated baseline and monitoring methodology for landfill...  

Open Energy Info (EERE)

TOOL Name: UNFCCC-Consolidated baseline and monitoring methodology for landfill gas project activities AgencyCompany Organization: United Nations Framework Convention on...

184

Energy Department Expands Gas Gouging Reporting System to Include 1-800  

Broader source: Energy.gov (indexed) [DOE]

Expands Gas Gouging Reporting System to Include Expands Gas Gouging Reporting System to Include 1-800 Number: 1-800-244-3301 Energy Department Expands Gas Gouging Reporting System to Include 1-800 Number: 1-800-244-3301 September 6, 2005 - 9:50am Addthis Washington, DC - Energy Secretary Samuel W. Bodman announced today that the Department of Energy has expanded its gas gouging reporting system to include a toll-free telephone hotline. The hotline is available to American consumers starting today. "While we've largely seen the best of American generosity and unity throughout the recovery effort, we recognize that there are some bad actors that may try to take advantage of the situation. Consumers are our first line of defense in guarding against gas price gouging. I can assure you, our Administration - from the President down - takes this issue very

185

Colton Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Colton Landfill Biomass Facility Colton Landfill Biomass Facility Jump to: navigation, search Name Colton Landfill Biomass Facility Facility Colton Landfill Sector Biomass Facility Type Landfill Gas Location San Bernardino County, California Coordinates 34.9592083°, -116.419389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9592083,"lon":-116.419389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

186

Girvin Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Girvin Landfill Biomass Facility Girvin Landfill Biomass Facility Jump to: navigation, search Name Girvin Landfill Biomass Facility Facility Girvin Landfill Sector Biomass Facility Type Landfill Gas Location Duval County, Florida Coordinates 30.3500511°, -81.6035062° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.3500511,"lon":-81.6035062,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

187

Acme Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Landfill Biomass Facility Landfill Biomass Facility Jump to: navigation, search Name Acme Landfill Biomass Facility Facility Acme Landfill Sector Biomass Facility Type Landfill Gas Location Contra Costa County, California Coordinates 37.8534093°, -121.9017954° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.8534093,"lon":-121.9017954,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

188

BKK Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

BKK Landfill Biomass Facility BKK Landfill Biomass Facility Jump to: navigation, search Name BKK Landfill Biomass Facility Facility BKK Landfill Sector Biomass Facility Type Landfill Gas Location Los Angeles County, California Coordinates 34.3871821°, -118.1122679° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3871821,"lon":-118.1122679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

189

Dane County Landfill | Open Energy Information  

Open Energy Info (EERE)

Dane County Landfill Dane County Landfill Jump to: navigation, search Name Dane County Landfill Facility Dane County Landfill #2 Rodefeld Sector Biomass Facility Type Landfill Gas Location Dane County, Wisconsin Coordinates 43.0186073°, -89.5497632° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0186073,"lon":-89.5497632,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

190

Westchester Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Landfill Biomass Facility Landfill Biomass Facility Jump to: navigation, search Name Westchester Landfill Biomass Facility Facility Westchester Landfill Sector Biomass Facility Type Landfill Gas Location Cook County, Illinois Coordinates 41.7376587°, -87.697554° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7376587,"lon":-87.697554,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

191

Kiefer Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Kiefer Landfill Biomass Facility Kiefer Landfill Biomass Facility Jump to: navigation, search Name Kiefer Landfill Biomass Facility Facility Kiefer Landfill Sector Biomass Facility Type Landfill Gas Location Sacramento County, California Coordinates 38.47467°, -121.3541631° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.47467,"lon":-121.3541631,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

192

Milliken Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Milliken Landfill Biomass Facility Milliken Landfill Biomass Facility Jump to: navigation, search Name Milliken Landfill Biomass Facility Facility Milliken Landfill Sector Biomass Facility Type Landfill Gas Location San Bernardino County, California Coordinates 34.9592083°, -116.419389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9592083,"lon":-116.419389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

193

1 INTRODUCTION The use of geosynthetics in modern landfills involves  

E-Print Network [OSTI]

1 INTRODUCTION The use of geosynthetics in modern landfills involves important roles because systems for landfills typically include both geosynthetics and earthen material components, (e-established components of the landfill industry. The state of the art on the use of geosynthetics in waste containment

Zornberg, Jorge G.

194

Geosynthetics in Landfills Prepared by M. Bouazza and J. Zornberg  

E-Print Network [OSTI]

Geosynthetics in Landfills Prepared by M. Bouazza and J. Zornberg Geosynthetics are extensively used in the design of both base and cover liner systems of landfill facilities. This includes that can be used as an infiltration/hydraulic barrier; · geopipes, which can be used in landfill

Zornberg, Jorge G.

195

Data Summary of Municipal Solid Waste Management Alternatives. Volume VIII: Appendix F - Landfills  

SciTech Connect (OSTI)

While the preceding appendices have focused on the thermochemical approaches to managing municipal solid waste (MSW), this appendix and those that follow on composting and anaerobic digestion address more of the bioconversion process technologies. Landfilling is the historical baseline MSW management option central to every community's solid waste management plan. It generally encompasses shredfills, balefills, landfill gas recovery, and landfill mining. While landfilling is virtually universal in use, it continues to undergo intense scrutiny by the public and regulators alike. Most recently, the US Environmental Protection Agency (EPA) issued its final rule on criteria for designing, operating, monitoring, and closing municipal solid waste landfills. While the Federal government has established nationwide standards and will assist the States in planning and developing their own practices, the States and local governments will carry out the actual planning and direct implementation. The States will also be authorized to devise programs to deal with their specific conditions and needs. While the main body of this appendix and corresponding research was originally prepared in July of 1991, references to the new RCRA Subtitle D, Part 258 EPA regulations have been included in this resubmission (908). By virtue of timing, this appendix is, necessarily, a transition'' document, combining basic landfill design and operation information as well as reference to new regulatory requirements. Given the speed with which landfill practices are and will be changing, the reader is encouraged to refer to Part 258 for additional details. As States set additional requirements and schedules and owners and operators of MSW landfills seek to comply, additional guidance and technical information, including case studies, will likely become available in the literature.

None

1992-10-01T23:59:59.000Z

196

Data summary of municipal solid waste management alternatives. Volume 8, Appendix F, Landfills  

SciTech Connect (OSTI)

While the preceding appendices have focused on the thermochemical approaches to managing municipal solid waste (MSW), this appendix and those that follow on composting and anaerobic digestion address more of the bioconversion process technologies. Landfilling is the historical baseline MSW management option central to every community`s solid waste management plan. It generally encompasses shredfills, balefills, landfill gas recovery, and landfill mining. While landfilling is virtually universal in use, it continues to undergo intense scrutiny by the public and regulators alike. Most recently, the US Environmental Protection Agency (EPA) issued its final rule on criteria for designing, operating, monitoring, and closing municipal solid waste landfills. While the Federal government has established nationwide standards and will assist the States in planning and developing their own practices, the States and local governments will carry out the actual planning and direct implementation. The States will also be authorized to devise programs to deal with their specific conditions and needs. While the main body of this appendix and corresponding research was originally prepared in July of 1991, references to the new RCRA Subtitle D, Part 258 EPA regulations have been included in this resubmission (908). By virtue of timing, this appendix is, necessarily, a ``transition`` document, combining basic landfill design and operation information as well as reference to new regulatory requirements. Given the speed with which landfill practices are and will be changing, the reader is encouraged to refer to Part 258 for additional details. As States set additional requirements and schedules and owners and operators of MSW landfills seek to comply, additional guidance and technical information, including case studies, will likely become available in the literature.

none,

1992-10-01T23:59:59.000Z

197

An alternative methodology for the analysis of electrical resistivity data from a soil gas study  

Science Journals Connector (OSTI)

......causes a problem, especially in landfill gas models. The uncertainties originate...the gas in the soil pores. In landfill gas models, several authors (e...Lamborn J. , 2007. Developing a landfill gas model, inTenth International Waste......

Sara Johansson; Håkan Rosqvist; Mats Svensson; Torleif Dahlin; Virginie Leroux

2011-08-01T23:59:59.000Z

198

Carbonates and oxalates in sediments and landfill: monitors of death and decay in natural and artificial systems  

Science Journals Connector (OSTI)

...intermediate stage in the production of landfill gas and as a sink for ammonia as ammonium...waste are monitored by analysis of landfill gas and leachate. Gas compositional...years. Fig. 3. Evolution in landfill gas composition with time, showing...

DAVID A. C. MANNING

199

Landfill Leachate Control  

Science Journals Connector (OSTI)

Leachate refers to the liquid, contaminated water, that results from the interaction between any water in a landfill, e.g., as the result of rainwater infiltration, and the waste emplaced in the landfill. Lea...

Dr. Haluk Akgün; Jaak J. K. Daemen

2012-01-01T23:59:59.000Z

200

Landfill Methane Oxidation Across Climate Types in the U.S.  

Science Journals Connector (OSTI)

Methane oxidation in landfill covers was determined by stable isotope analyses over 37 seasonal sampling events at 20 landfills with intermediate covers over four years. Values were calculated two ways: by assuming no isotopic fractionation during gas ...

Jeffrey Chanton; Tarek Abichou; Claire Langford; Gary Hater; Roger Green; Doug Goldsmith; Nathan Swan

2010-12-06T23:59:59.000Z

Note: This page contains sample records for the topic "includes landfill gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Landfill site selection and landfill liner design for Ankara, Turkey  

Science Journals Connector (OSTI)

Considering the high population growth rate of Ankara, it is inevitable that landfill(s) will be required in the area ... scope of this study is to select alternative landfill sites for Ankara based on the growin...

Gözde P?nar Yal; Haluk Akgün

2013-11-01T23:59:59.000Z

202

Technical Note Methane gas migration through geomembranes  

E-Print Network [OSTI]

and Fick's law. This chart can be used by landfill designers to evaluate the methane gas transmission rate for a selected geomembrane type and thickness and expected methane gas pressure in the landfill. KEYWORDS landfill usually consists, from bottom to top, of: graded landfill surface; a gas-venting layer; a low

203

Landfill Bioreactor Financial Analysis—Monterey Peninsula Landfill, Marina, California  

Science Journals Connector (OSTI)

The Monterey Peninsula Landfill, owned and operated by the Monterey Regional ... that is permitted under the State of California landfill regulations. In order to evaluate the potential...

S. Purdy; R. Shedden

2009-01-01T23:59:59.000Z

204

University of Washington Montlake Landfill Oversight Committee  

E-Print Network [OSTI]

University of Washington Montlake Landfill Oversight Committee Montlake Landfill Project Guide Department with the review and approval of the Montlake Landfill Oversight Committee. #12;Montlake Landfill ...................................................................................................................................3 Figure 1 ­ Approximate Boundaries of the Montlake Landfill

Wilcock, William

205

Leachate Free Hazardous Waste Landfill  

Science Journals Connector (OSTI)

Experiences of the past few decades have shown that controlling leachate cannot be done by sealing only the landfill bed, but rather by sealing landfill top cover.

Dipl.Ing. Karl Rohrhofer; Dr.Techn. Fariar Kohzad

1990-01-01T23:59:59.000Z

206

Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine  

DOE Patents [OSTI]

A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David

2014-05-13T23:59:59.000Z

207

E-Print Network 3.0 - assessing landfill performance Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and WTE waste management options... Transfer Stations (MTS); Life Cycle Assessment (LCA); Landfill Gas (LFG): Geographic Wormation Systems (GIS... . Care has been taken to...

208

E-Print Network 3.0 - areas treating landfill Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conference COMPARISON OF AIR EMISSIONS FROM WASTE MANAGEMENT FACILITIES Summary: .K. dioxins emissions have been reported in the fugitive gas emissions from landfills as well as...

209

Sorption model of trichloroethylene (TCE) and benezene in municipal landfill materials.  

E-Print Network [OSTI]

??This research is intended to establish a mathematical model describing the mass transfer of trace gas in landfill. Experimental data used for calibration were reported… (more)

Chuang, Yuh-Lin

2012-01-01T23:59:59.000Z

210

Bioreactor Landfill Research and Demonstration Project Northern Oaks Landfill, Harrison, MI  

SciTech Connect (OSTI)

A bioreactor landfill cell with 1.2-acre footprint was constructed, filled, operated, and monitored at Northern Oaks Recycling and Disposal Facility (NORDF) at Harrison, MI. With a filled volume of 74,239 cubic yards, the cell contained approximately 35,317 tons of municipal solid waste (MSW) and 20,777 tons of cover soil. It was laid on the slope of an existing cell but separated by a geosynthetic membrane liner. After the cell reached a design height of 60 feet, it was covered with a geosynthetic membrane cap. A three-dimensional monitoring system to collect data at 48 different locations was designed and installed during the construction phase of the bioreactor cell. Each location had a cluster of monitoring devices consisting of a probe to monitor moisture and temperature, a leachate collection basin, and a gas sampling port. An increase in moisture content of the MSW in the bioreactor cell was achieved by pumping leachate collected on-site from various other cells, as well as recirculation of leachate from the bioreactor landfill cell itself. Three types of leachate injection systems were evaluated in this bioreactor cell for their efficacy to distribute pumped leachate uniformly: a leachate injection pipe buried in a 6-ft wide horizontal stone mound, a 15-ft wide geocomposite drainage layer, and a 60-ft wide geocomposite drainage layer. All leachate injection systems were installed on top of the compacted waste surface. The distribution of water and resulting MSW moisture content throughout the bioreactor cell was found to be similar for the three designs. Water coming into and leaving the cell (leachate pumped in, precipitation, snow, evaporation, and collected leachate) was monitored in order to carry out a water balance. Using a leachate injection rate of 26 – 30 gal/yard3, the average moisture content increased from 25% to 35% (wet based) over the period of this study. One of the key aspects of this bioreactor landfill study was to evaluate bioreactor start up and performance in locations with colder climate. For lifts filled during the summer months, methane generation started within three months after completion of the lift. For lifts filled in winter months, very little methane production occurred even eight months after filling. The temperature data indicated that subzero or slightly above zero (oC) temperatures persisted for unusually long periods (more than six months) in the lifts filled during winter months. This was likely due to the high thermal insulation capability of the MSW and the low level of biological activity during start up. This observation indicates that bioreactor landfills located in cold climate and filled during winter months may require mechanisms to increase temperature and initiate biodegradation. Thus, besides moisture, temperature may be the next important factor controlling the biological decomposition in anaerobic bioreactor landfills. Spatial and temporal characterization of leachate samples indicated the presence of low levels of commonly used volatile organic compounds (including acetone, methyl ethyl ketone, methyl isobutyl ketone, and toluene) and metals (including arsenic, chromium, and zinc). Changes and leachate and gaseous sample characteristics correlated with enhanced biological activity and increase in temperature. Continued monitoring of this bioreactor landfill cell is expected to yield critical data needed for start up, design, and operation of this emerging process.

Zhao, Xiando; Voice, Thomas; and Hashsham, Syed A.

2006-08-29T23:59:59.000Z

211

I 95 Landfill Phase II Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Landfill Phase II Biomass Facility Landfill Phase II Biomass Facility Jump to: navigation, search Name I 95 Landfill Phase II Biomass Facility Facility I 95 Landfill Phase II Sector Biomass Facility Type Landfill Gas Location Fairfax County, Virginia Coordinates 38.9085472°, -77.2405153° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.9085472,"lon":-77.2405153,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

212

Prima Desheha Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Prima Desheha Landfill Biomass Facility Prima Desheha Landfill Biomass Facility Jump to: navigation, search Name Prima Desheha Landfill Biomass Facility Facility Prima Desheha Landfill Sector Biomass Facility Type Landfill Gas Location Orange County, California Coordinates 33.7174708°, -117.8311428° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.7174708,"lon":-117.8311428,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

213

Four Hills Nashua Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Four Hills Nashua Landfill Biomass Facility Four Hills Nashua Landfill Biomass Facility Jump to: navigation, search Name Four Hills Nashua Landfill Biomass Facility Facility Four Hills Nashua Landfill Sector Biomass Facility Type Landfill Gas Location Hillsborough County, New Hampshire Coordinates 42.8334794°, -71.6673352° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.8334794,"lon":-71.6673352,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

214

Ocean County Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

County Landfill Biomass Facility County Landfill Biomass Facility Jump to: navigation, search Name Ocean County Landfill Biomass Facility Facility Ocean County Landfill Sector Biomass Facility Type Landfill Gas Location Ocean County, New Jersey Coordinates 39.9652553°, -74.3118212° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.9652553,"lon":-74.3118212,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

215

Cuyahoga Regional Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Landfill Biomass Facility Landfill Biomass Facility Jump to: navigation, search Name Cuyahoga Regional Landfill Biomass Facility Facility Cuyahoga Regional Landfill Sector Biomass Facility Type Landfill Gas Location Cuyahoga County, Ohio Coordinates 41.7048247°, -81.7787021° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7048247,"lon":-81.7787021,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

216

Miramar Landfill Metro Biosolids Center Biomass Facility | Open Energy  

Open Energy Info (EERE)

Miramar Landfill Metro Biosolids Center Biomass Facility Miramar Landfill Metro Biosolids Center Biomass Facility Jump to: navigation, search Name Miramar Landfill Metro Biosolids Center Biomass Facility Facility Miramar Landfill Metro Biosolids Center Sector Biomass Facility Type Landfill Gas Location San Diego County, California Coordinates 33.0933809°, -116.6081653° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.0933809,"lon":-116.6081653,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

217

Mid Valley Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Landfill Biomass Facility Landfill Biomass Facility Jump to: navigation, search Name Mid Valley Landfill Biomass Facility Facility Mid Valley Landfill Sector Biomass Facility Type Landfill Gas Location San Bernardino County, California Coordinates 34.9592083°, -116.419389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9592083,"lon":-116.419389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

218

Blackburn Landfill Co-Generation Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Blackburn Landfill Co-Generation Biomass Facility Blackburn Landfill Co-Generation Biomass Facility Jump to: navigation, search Name Blackburn Landfill Co-Generation Biomass Facility Facility Blackburn Landfill Co-Generation Sector Biomass Facility Type Landfill Gas Location Catawba County, North Carolina Coordinates 35.6840748°, -81.2518833° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.6840748,"lon":-81.2518833,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

219

Pearl Hollow Landfil Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Pearl Hollow Landfil Biomass Facility Pearl Hollow Landfil Biomass Facility Jump to: navigation, search Name Pearl Hollow Landfil Biomass Facility Facility Pearl Hollow Landfil Sector Biomass Facility Type Landfill Gas Location Hardin County, Kentucky Coordinates 37.6565708°, -86.0121573° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.6565708,"lon":-86.0121573,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

220

Beneficial Use of Shredded Tires as Drainage Material in Cover Systems for Abandoned Landfills  

E-Print Network [OSTI]

Beneficial Use of Shredded Tires as Drainage Material in Cover Systems for Abandoned Landfills in cover systems for abandoned landfills. The research study included extensive laboratory testing and field demonstration at an abandoned landfill in Carlinville, Ill. Laboratory testing was conducted using

Note: This page contains sample records for the topic "includes landfill gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Reducing Open Cell Landfill Methane Emissions with a Bioactive Alternative Daily  

SciTech Connect (OSTI)

Methane and carbon dioxide are formed in landfills as wastes degrade. Molecule-for-molecule, methane is about 20 times more potent than carbon dioxide at trapping heat in the earth's atmosphere, and thus, it is the methane emissions from landfills that are scrutinized. For example, if emissions composed of 60% methane and 40% carbon dioxide were changed to a mix that was 40% methane and 60% carbon dioxide, a 30% reduction in the landfill's global warming potential would result. A 10% methane, 90% carbon dioxide ratio will result in a 75% reduction in global warming potential compared to the baseline. Gas collection from a closed landfill can reduce emissions, and it is sometimes combined with a biocover, an engineered system where methane oxidizing bacteria living in a medium such as compost, convert landfill methane to carbon dioxide and water. Although methane oxidizing bacteria merely convert one greenhouse gas (methane) to another (carbon dioxide), this conversion can offer significant reductions in the overall greenhouse gas contribution, or global warming potential, associated with the landfill. What has not been addressed to date is the fact that methane can also escape from a landfill when the active cell is being filled with waste. Federal regulations require that newly deposited solid waste to be covered daily with a 6 in layer of soil or an alternative daily cover (ADC), such as a canvas tarp. The aim of this study was to assess the feasibility of immobilizing methane oxidizing bacteria into a tarp-like matrix that could be used for alternative daily cover at open landfill cells to prevent methane emissions. A unique method of isolating methanotrophs from landfill cover soil was used to create a liquid culture of mixed methanotrophs. A variety of prospective immobilization techniques were used to affix the bacteria in a tarp-like matrix. Both gel encapsulation of methanotrophs and gels with liquid cores containing methanotrophs were readily made but prone to rapid desiccation. Bacterial adsorption onto foam padding, natural sponge, and geotextile was successful. The most important factor for success appeared to be water holding capacity. Prototype biotarps made with geotextiles plus adsorbed methane oxidizing bacteria were tested for their responses to temperature, intermittent starvation, and washing (to simulate rainfall). The prototypes were mesophilic, and methane oxidation activity remained strong after one cycle of starvation but then declined with repeated cycles. Many of the cells detached with vigorous washing, but at least 30% appeared resistant to sloughing. While laboratory landfill simulations showed that four-layer composite biotarps made with two different types of geotextile could remove up to 50% of influent methane introduced at a flux rate of 22 g m{sup -2} d{sup -1}, field experiments did not yield high activity levels. Tests revealed that there were high hour-to-hour flux variations in the field, which, together with frequent rainfall events, confounded the field testing. Overall, the findings suggest that a methanotroph embedded biotarp appears to be a feasible strategy to mitigate methane emission from landfill cells, although the performance of field-tested biotarps was not robust here. Tarps will likely be best suited for spring and summer use, although the methane oxidizer population may be able to shift and adapt to lower temperatures. The starvation cycling of the tarp may require the capacity for intermittent reinoculation of the cells, although it is also possible that a subpopulation will adapt to the cycling and become dominant. Rainfall is not expected to be a major factor, because a baseline biofilm will be present to repopulate the tarp. If strong performance can be achieved and documented, the biotarp concept could be extended to include interception of other compounds beyond methane, such as volatile aromatic hydrocarbons and chlorinated solvents.

Helene Hilger; James Oliver; Jean Bogner; David Jones

2009-03-31T23:59:59.000Z

222

Unusual calcite stromatolites and pisoids from a landfill leachate collection system  

Science Journals Connector (OSTI)

...with leachate. The remaining void space is filled with landfill gas, which is composed mainly of methane and carbon dioxide...with leachate. The remaining void space is filled with landfill gas, which is composed mainly of methane and carbon dioxide...

223

5341 sanitary landfill [n] (1)  

Science Journals Connector (OSTI)

envir....(Process of controlled dumping [US]/tipping [UK] of industrial or domestic waste material on a landfill site by dumping/tipping in layers, each... sanitary landfill [US] 2 ...

2010-01-01T23:59:59.000Z

224

Landfill stabilization focus area: Technology summary  

SciTech Connect (OSTI)

Landfills within the DOE Complex as of 1990 are estimated to contain 3 million cubic meters of buried waste. The DOE facilities where the waste is predominantly located are at Hanford, the Savannah River Site (SRS), the Idaho National Engineering Laboratory (INEL), the Los Alamos National Laboratory (LANL), the Oak Ridge Reservation (ORR), the Nevada Test Site (NTS), and the Rocky Flats Plant (RFP). Landfills include buried waste, whether on pads or in trenches, sumps, ponds, pits, cribs, heaps and piles, auger holes, caissons, and sanitary landfills. Approximately half of all DOE buried waste was disposed of before 1970. Disposal regulations at that time permitted the commingling of various types of waste (i.e., transuranic, low-level radioactive, hazardous). As a result, much of the buried waste throughout the DOE Complex is presently believed to be contaminated with both hazardous and radioactive materials. DOE buried waste typically includes transuranic-contaminated radioactive waste (TRU), low-level radioactive waste (LLW), hazardous waste per 40 CFR 26 1, greater-than-class-C waste per CFR 61 55 (GTCC), mixed TRU waste, and mixed LLW. The mission of the Landfill Stabilization Focus Area is to develop, demonstrate, and deliver safer,more cost-effective and efficient technologies which satisfy DOE site needs for the remediation and management of landfills. The LSFA is structured into five technology areas to meet the landfill remediation and management needs across the DOE complex. These technology areas are: assessment, retrieval, treatment, containment, and stabilization. Technical tasks in each of these areas are reviewed.

NONE

1995-06-01T23:59:59.000Z

225

Hydrologic evaluation of landfill performance (HELP) modeling in bioreactor landfill design and permitting  

Science Journals Connector (OSTI)

The practice of operating municipal solid waste landfills as bioreactor landfills has become more common over the past ... balance and flow is more critical in such landfills than in dry landfills, researchers ha...

Qiyong Xu; Hwidong Kim; Pradeep Jain…

2012-03-01T23:59:59.000Z

226

Integrated capture of fossil fuel gas pollutants including CO.sub.2 with energy recovery  

DOE Patents [OSTI]

A method of reducing pollutants exhausted into the atmosphere from the combustion of fossil fuels. The disclosed process removes nitrogen from air for combustion, separates the solid combustion products from the gases and vapors and can capture the entire vapor/gas stream for sequestration leaving near-zero emissions. The invention produces up to three captured material streams. The first stream is contaminant-laden water containing SO.sub.x, residual NO.sub.x particulates and particulate-bound Hg and other trace contaminants. The second stream can be a low-volume flue gas stream containing N.sub.2 and O.sub.2 if CO2 purification is needed. The final product stream is a mixture comprising predominantly CO.sub.2 with smaller amounts of H.sub.2O, Ar, N.sub.2, O.sub.2, SO.sub.X, NO.sub.X, Hg, and other trace gases.

Ochs, Thomas L. (Albany, OR); Summers, Cathy A. (Albany, OR); Gerdemann, Steve (Albany, OR); Oryshchyn, Danylo B. (Philomath, OR); Turner, Paul (Independence, OR); Patrick, Brian R. (Chicago, IL)

2011-10-18T23:59:59.000Z

227

Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors  

E-Print Network [OSTI]

110 Table 26. Landfill gas GHG reductionlandfills to utilize the landfill gas generally includes acollection system. Landfill gas from throughout landfills

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

228

Recharging U.S. Energy Policy: Advocating for a National Renewable Portfolio Standard  

E-Print Network [OSTI]

solar, wind, biomass. landfill gas, ocean (including tidal,electric, photovoltaics, landfill gas, wind, biomass,

Lunt, Robin J.

2007-01-01T23:59:59.000Z

229

Appendix B Landfill Inspection Forms and Survey Data  

Office of Legacy Management (LM)

B B Landfill Inspection Forms and Survey Data This page intentionally left blank This page intentionally left blank Original Landfill January 2012 Monthly Inspection-Attachment 1 The monthly inspection of the OLF was completed on January 30. The Rocky Flats Site only received .15 inches of precipitation during the month of January. The cover was dry at the time of the inspection. The slump in the East Perimeter Channel (EPC) remained unchanged. Berm locations that were re-graded during the OLF Maintenance 2011 Project remained in good condition. Vegetation on the landfill cover including the seep areas remains dormant. OLF Cover Lower OLF Cover Facing East Upper OLF Cover Facing East

230

Update on Hilo Landfill Leachate TUpdate on Hilo Landfill Leachate TUpdate on Hilo Landfill Leachate TUpdate on Hilo Landfill Leachate TUpdate on Hilo Landfill Leachate Treatment Studyreatment Studyreatment Studyreatment Studyreatment Study continued on p  

E-Print Network [OSTI]

Update on Hilo Landfill Leachate TUpdate on Hilo Landfill Leachate TUpdate on Hilo Landfill Leachate TUpdate on Hilo Landfill Leachate TUpdate on Hilo Landfill Leachate Treatment Studyreatment, the County of Hawaii is considering an expansion of the South Hilo Sanitary Landfill (SHSL

231

GEOSYNTHETIC REINFORCEMENT IN LANDFILL DESIGN: US PERSPECTIVES  

E-Print Network [OSTI]

GEOSYNTHETIC REINFORCEMENT IN LANDFILL DESIGN: US PERSPECTIVES Jorge G. Zornberg1 , M. ASCE Abstract: Geosynthetic reinforcement in landfill applications in the US has involved conventional reinforced soil structures and veneer stabilization with reinforcements placed along the landfill slope

Zornberg, Jorge G.

232

7.4 Landfill Methane Utilization  

Broader source: Energy.gov [DOE]

A chapter on Landfill Methane Utilization from the Clean Energy Strategies for Local Governments publication.

233

IMPACT ASSESSMENT OF THE OLD QUESNEL LANDFILL  

E-Print Network [OSTI]

#12;IMPACT ASSESSMENT OF THE OLD QUESNEL LANDFILL FINAL REPORT DOE FRAP 1995-05 Prepared for List of Figures Site Location/Legal Boundary Old Quesnel Landfill .....................................2 Schematic of Source Pathway Receptor Model at Old Quesnel Landfill .......4 Landfill Extent

234

Parametric study of an efficient renewable power-to-substitute-natural-gas process including high-temperature steam electrolysis  

Science Journals Connector (OSTI)

Abstract Power-to-Substitute Natural Gas processes are investigated to offer solutions for renewable energy storing or transportation. In the present study, an original Power-to-SNG process combining high-temperature steam electrolysis and CO2 methanation is implemented and simulated. A reference process is firstly defined, including a specific modelling approach of the electrolysis and a methanation modelling including a kinetic law. The process also integrates a unit to clean the gas from residual CO2, H2 and H2O for gas network injection. Having set all the units, simulations are performed with ProsimPlus 3™ software for a reference case where the electrolyser and the methanation reactors are designed. The reference case allows to produce 67.5 Nm3/h of SNG with an electrical energy consumption of 14.4 kW h/Nm3. The produced SNG satisfies specifications required for network injection. From this reference process, two sensitivity analyses on electrolysis and methanation working points and on external parameters and constraints are considered. As a main result, we observe that the reference case maximises both process efficiency and SNG production when compared with other studied cases.

Myriam De Saint Jean; Pierre Baurens; Chakib Bouallou

2014-01-01T23:59:59.000Z

235

An impact analysis of landfill for waste disposal on climate change: Case study of ‘Sudokwon Landfill Site 2nd Landfill’ in Korea  

Science Journals Connector (OSTI)

The impact of waste landfill on climate change was analyzed by comparing...4 emission from landfill with the potential energy conversion. For this...4 were used against Sudokwon Landfill Site 2nd Landfill, which ...

Seung Kyu Chun; Young Shin Bae

2012-11-01T23:59:59.000Z

236

Quantifying the Air Pollution Exposure Consequences of Distributed Electricity Generation  

E-Print Network [OSTI]

fuels, including oil, landfill gas, and diesel. For most ofopportunity fuels" such as landfill gas) and fuel cells withconsumed (natural gas, landfill gas, digester gas, diesel

Heath, Garvin A.; Granvold, Patrick W.; Hoats, Abigail S.; Nazaroff, William W

2005-01-01T23:59:59.000Z

237

Microsoft Word - Final TTR Landfill Extension EA--December 2006...  

National Nuclear Security Administration (NNSA)

continue until the landfill is closed. Once the landfill reaches capacity, sources of air pollution associated with the landfill would no longer be present. Waste transport...

238

Landfill Cover Revegetation at the Rocky Flats Environmental...  

Energy Savers [EERE]

Landfill Cover Revegetation at the Rocky Flats Environmental Technology Site Landfill Cover Revegetation at the Rocky Flats Environmental Technology Site Landfill Cover...

239

HMDC Kingsland Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

HMDC Kingsland Landfill Biomass Facility Jump to: navigation, search Name HMDC Kingsland Landfill Biomass Facility Facility HMDC Kingsland Landfill Sector Biomass Facility Type...

240

Risk assessment of gaseous emissions from municipal solid waste landfill: case study Rafah landfill, Palestine  

Science Journals Connector (OSTI)

This article describes the risk assessment of gaseous emissions from the municipal solid waste at Rafah landfill, Palestine. In this study, Gas-Sim model was used to quantify the gaseous emissions from the landfill and the Land-Gem model was used to verify the results. Risk assessment of both carcinogens and non-carcinogens were performed. Two scenarios were conducted namely with plant uptake and without plant uptake. The scenario with plant uptake revealed that the risk to residents is acceptable for non-carcinogens (risk value 0.45 > 1.0), while the risk to residents is not acceptable for carcinogens (risk value 2.69 × 10?6 risk to residents is acceptable for non-carcinogens (risk value 0.42 > 1.0), while the risk to residents is acceptable for carcinogens (risk value 2.855 × 10?7 > 10?6).

Ahmad A. Foul; Mazen Abualtayef; Basel Qrenawi

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "includes landfill gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

I 95 Municipal Landfill Phase I Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Municipal Landfill Phase I Biomass Facility Municipal Landfill Phase I Biomass Facility Jump to: navigation, search Name I 95 Municipal Landfill Phase I Biomass Facility Facility I 95 Municipal Landfill Phase I Sector Biomass Facility Type Landfill Gas Location Fairfax County, Virginia Coordinates 38.9085472°, -77.2405153° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.9085472,"lon":-77.2405153,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

242

Environmental Impacts of Landfill Bioreactorcells in Comparison to Former Landfill Techniques  

Science Journals Connector (OSTI)

Former and present landfill techniques at the Filbornaplant in Helsingborg, South ... the waste residue. The results showthat optimised landfill bioreactor-cells have a higherturn-over rate...

Michael Binder; Torleif Bramryd

2001-07-01T23:59:59.000Z

243

Recirculation of municipal landfill leachate  

E-Print Network [OSTI]

RECIRCULATION OF MUNICIPAL LANDFILL LEACHATE A Thesis by BRIAN JUDE PINKO4ISKI Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1987 Major Subject...: Civil Engineering RECIRCULATION OF MUNICIPAL LANDFILL LEACHATE A Thesis by BRIAN JUDE PINKOWSKI Approved as to style and content by: Charles P. Giammona (Chair of Committee) Roy . Harm, (Member) Kirk W. Brown (Member) Donald A. Maxwel...

Pinkowski, Brian Jude

2012-06-07T23:59:59.000Z

244

Alternative Fuels Data Center: DeKalb County Turns Trash to Gas  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

reductions Related Links Natural Gas Fuel Basics Natural Gas Vehicles Natural Gas Vehicle Emissions Landfills Convert Biogas into RNG (video) DeKalb County Clean Cities Georgia...

245

Environmental factors influencing methanogenesis from refuse in landfill samples  

Science Journals Connector (OSTI)

Environmental factors influencing methanogenesis from refuse in landfill samples ... Biodegradability of Municipal Solid Waste Components in Laboratory-Scale Landfills ...

K. Rao Gurijala; Joseph M. Suflita

1993-06-01T23:59:59.000Z

246

Municipal Solid WasteMunicipal Solid Waste Landfills In CitiesLandfills In Cities  

E-Print Network [OSTI]

Municipal Solid WasteMunicipal Solid Waste Landfills In CitiesLandfills In Cities ArunArun PurandarePurandare Eco Designs India Pvt. Ltd.Eco Designs India Pvt. Ltd. #12;What is a Landfill? A sanitary landfill refers to an engineered facility for the disposal of MSW designed and operated

Columbia University

247

Municipal Solid Waste Landfills The following Oklahoma landfills currently accept dead livestock. As each facility has different guidelines and  

E-Print Network [OSTI]

Municipal Solid Waste Landfills The following Oklahoma landfills currently accept dead livestock Adair Cherokee Nation Landfill 918-696-5342 Canadian OEMA Landfill 405-262-0161 Call ahead Carter Southern Okla. Regional Disposal Landfill 580-226-1276 Comanche City of Lawton Landfill 580

Balasundaram, Balabhaskar "Baski"

248

T2LBM Version 1.0: Landfill bioreactor model for TOUGH2  

E-Print Network [OSTI]

7 2. LANDFILL BIODEGRADATIONof methanogenic activities in a landfill bioreactor treatingmethane production from landfill bioreactor, J. Env. Eng. ,

Oldenburg, Curtis M.

2001-01-01T23:59:59.000Z

249

Cleanup Agreed on for Niagara Landfill  

Science Journals Connector (OSTI)

Cleanup Agreed on for Niagara Landfill ... The U.S., New York state, and Occidental Chemical finally have reached agreement on how to clean up toxic liquid wastes at the Hyde Park landfill in Niagara, N.Y. ... The cleanup program is a multifaceted scheme designed to remove and destroy the most concentrated of the hazardous liquids buried in the landfill. ...

LOIS EMBER

1985-12-16T23:59:59.000Z

250

New instruments for measuring landfill gases  

Science Journals Connector (OSTI)

New instruments for measuring landfill gases ... The legislation mandates that landfill operators monitor more than 1200 active sites for specific pollution products. ... According to Varian, the instrumentation systems can be adapted easily to meet landfill testing requirements that might be enacted in states other than California. ...

RUDY BAUM

1988-02-01T23:59:59.000Z

251

Nitrous Oxide Emissions from a Municipal Landfill  

Science Journals Connector (OSTI)

Nitrous Oxide Emissions from a Municipal Landfill ... Due to the small area of landfills as compared to other land-use classes, the total N2O emissions from landfills are estimated to be of minor importance for the total emissions from Finland. ...

Janne Rinne; Mari Pihlatie; Annalea Lohila; Tea Thum; Mika Aurela; Juha-Pekka Tuovinen; Tuomas Laurila; Timo Vesala

2005-09-21T23:59:59.000Z

252

Results of Hazardous and Mixed Waste Excavation from the Chemical Waste Landfill  

SciTech Connect (OSTI)

This paper describes the results of the excavation of a 1.9-acre hazardous and mixed waste landfill operated for 23 years at Sandia National Laboratories, Albuquerque, New Mexico. Excavation of the landfill was completed in 2 1/2 years without a single serious accident or injury. Approximately 50,000 cubic yards of soil contaminated with volatile and semi-volatile organics, metals, polychlorinated biphenyl compounds, and radioactive constituents was removed. In addition, over 400 cubic yards of buried debris was removed, including bulk debris, unknown chemicals, compressed gas cylinders, thermal and chemical batteries, explosive and ordnance debris, pyrophoric materials and biohazardous waste. Removal of these wastes included negotiation of multiple regulations and guidances encompassed in the Resource Conservation and Recovery Act (RCRA), the Toxic Substances Control Act (TSCA), and risk assessment methodology. RCRA concepts that were addressed include the area of contamination, permit modification, emergency treatment provision, and listed waste designation. These regulatory decisions enabled the project to overcome logistical and programmatic needs such as increased operational area, the ability to implement process improvements while maintaining a record of decisions and approvals.

Young, S. G.; Schofield, D. P.; Kwiecinski, D.; Edgmon, C. L.; Methvin, R.

2002-02-27T23:59:59.000Z

253

Performance evaluation of synthetically lined landfills  

SciTech Connect (OSTI)

Landfill design and performance standards for new facilities frequently require the use of geomembrane composite and double liners. Performance data from synthetically lined landfill sites have not been widely available. This report presents data obtained by monitoring three recently constructed synthetically lined landfill sites. Quantities of leachate removed by the primary and secondary collection systems from these landfills were tabulated. The data show that properly designed and constructed synthetic landfill liners provide effective containment of leachate. The environmental protection provided by synthetic liners is equivalent or superior to that of typical clay-lined facilities.

Maule, J. [Champion International Corp., Norway, MI (United States); Lowe, R.K. [STS Consultants Ltd., Green Bay, WI (United States); McCulloch, J.L. [Cross Pointe Paper Co., Park Falls, WI (United States)

1993-12-01T23:59:59.000Z

254

Fluxes of methane between landfills and the atmosphere: Natural and engineered controls  

SciTech Connect (OSTI)

Field measurement of landfill methane emissions indicates natural variability spanning more than 2 seven orders of magnitude, from approximately 0.0004 to more than 4000 g m{sub -2} day{sup -1}. This wide range reflects net emissions resulting from production (methanogenesis), consumption (methanotrophic oxidation), and gaseous transport processes. The determination of an {open_quotes}average{close_quotes} emission rate for a given field site requires sampling designs and statistical techniques which consider spatial and temporal variability. Moreover, particularly at sites with pumped gas recovery systems, it is possible for methanotrophic microorganisms in aerated cover soils to oxidize all of the methane from landfill sources below and, additionally, to oxidize methane diffusing into cover soils from atmospheric sources above. In such cases, a reversed soil gas concentration gradient is observed in shallow cover soils, indicating bidirectional diffusional transport to the depth of optimum methane oxidation. Rates of landfill methane oxidation from field and laboratory incubation studies range up to 166 g m{sup -2} day{sup -1} among the highest for any natural setting, providing an effective natural control on net emissions. Estimates of worldwide landfill methane emissions to the atmosphere have ranged from 9 to 70 Tg yr{sup -1}, differing mainly in assumed methane yields from estimated quantities of landfilled refuse. At highly controlled landfill sites in developed countries, landfill methane is often collected via vertical wells or horizontal collectors. Recovery of landfill methane through engineered systems can provide both environmental and energy benefits by mitigating subsurface migration, reducing surface emissions, and providing an alternative energy resource for industrial boiler use, on-site electrical generation, or upgrading to a substitute natural gas.

Bogner, J. [Argonne National Lab., IL (United States); Meadows, M. [ETSU, Harwell, Oxfordshire (United Kingdom); Czepiel, P. [Harvard Univ., Cambridge, MA (United States)

1997-08-01T23:59:59.000Z

255

Short Mountain Landfill gas recovery project  

SciTech Connect (OSTI)

The Bonneville Power Administration (BPA), a Federal power marketing agency, has statutory responsibilities to supply electrical power to its utility, industrial, and other customers in the Pacific Northwest. BPA's latest load/resource balance forecast, projects the capability of existing resources to satisfy projected Federal system loads. The forecast indicates a potential resource deficit. The underlying need for action is to satisfy BPA customers' demand for electrical power.

Not Available

1992-05-01T23:59:59.000Z

256

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network [OSTI]

Coupled to an induction generator, this HCCI genset allowspowered by the induction generator acting as a motor. OnceGenerator Size Weight Specification 6 (In-line) 6.6 L 21 Quart Air-Liquid (DEAC) 1.5 ATM 1800 RPM 35 kW Induction

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

257

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network [OSTI]

chemical- kinetic model of propane HCCI combustion,” SAEof a four-cylinder 1.9 l propane- fueled homogeneous chargethe fuel line can use propane from a tank and NG from the

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

258

Sustainable use of California biomass resources can help meet state and national bioenergy targets  

E-Print Network [OSTI]

2006. * Does not include landfill gas from municipal wastemegawatts from solid-fuel, landfill gas and digester gasother fuels. Both landfill gas and digester ecological and

Jenkins, Bryan M; Williams, Robert B; Gildart, Martha C; Kaffka, Stephen R.; Hartsough, Bruce; Dempster, Peter G

2009-01-01T23:59:59.000Z

259

Landfill reduction experience in The Netherlands  

Science Journals Connector (OSTI)

Abstract Modern waste legislation aims at resource efficiency and landfill reduction. This paper analyses more than 20 years of landfill reduction in the Netherlands. The combination of landfill regulations, landfill tax and landfill bans resulted in the desired landfill reduction, but also had negative effects. A fierce competition developed over the remaining waste to be landfilled. In 2013 the Dutch landfill industry generated €40 million of annual revenue, had €58 million annual costs and therefore incurred an annual loss of €18 million. It is not an attractive option to prematurely end business. There is a risk that Dutch landfill operators will not be able to fulfil the financial obligations for closure and aftercare. Contrary to the polluter pays principle the burden may end up with society. EU regulations prohibiting export of waste for disposal are in place. Strong differentials in landfill tax rate between nations have nevertheless resulted in transboundary shipment of waste and in non-compliance with the self-sufficiency and proximity principles. During the transformation from a disposal society to a recycling society, it is important to carefully plan required capacity and to guide the reorganisation of the landfill sector. At some point, it is no longer profitable to provide landfill services. It may be necessary for public organisations or the state to take responsibility for the continued operation of a ‘safety net’ in waste management. Regulations have created a financial incentive to pass on the burden of monitoring and controlling the impact of waste to future generations. To prevent this, it is necessary to revise regulations on aftercare and create incentives to actively stabilise landfills.

Heijo Scharff

2014-01-01T23:59:59.000Z

260

EA-1707: Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington  

Broader source: Energy.gov [DOE]

This EA evaluates the potential environmental impacts of closing the Nonradioactive Dangerous Waste Landfill and the Solid Waste Landfill. The Washington State Department of Ecology is a cooperating agency in preparing this EA.

Note: This page contains sample records for the topic "includes landfill gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Indicating landfill stabilization state by using leachate property from Laogang Refuse Landfill  

Science Journals Connector (OSTI)

Variation and evolution process of leachate can be applied as a reference for landfill stabilization phase. In this work, leachates ... with different ages were collected from Laogang Refuse Landfill, and charact...

Ziyang Lou; Xiaoli Chai; Youcai Zhao…

2014-06-01T23:59:59.000Z

262

Review of state of the art methods for measuring water in landfills  

SciTech Connect (OSTI)

In recent years several types of sensors and measurement techniques have been developed for measuring the moisture content, water saturation, or the volumetric water content of landfilled wastes. In this work, we review several of the most promising techniques. The basic principles behind each technique are discussed and field applications of the techniques are presented, including cost estimates. For several sensors, previously unpublished data are given. Neutron probes, electrical resistivity (impedance) sensors, time domain reflectometry (TDR) sensors, and the partitioning gas tracer technique (PGTT) were field tested with results compared to gravimetric measurements or estimates of the volumetric water content or moisture content. Neutron probes were not able to accurately measure the volumetric water content, but could track changes in moisture conditions. Electrical resistivity and TDR sensors tended to provide biased estimates, with instrument-determined moisture contents larger than independent estimates. While the PGTT resulted in relatively accurate measurements, electrical resistivity and TDR sensors provide more rapid results and are better suited for tracking infiltration fronts. Fiber optic sensors and electrical resistivity tomography hold promise for measuring water distributions in situ, particularly during infiltration events, but have not been tested with independent measurements to quantify their accuracy. Additional work is recommended to advance the development of some of these instruments and to acquire an improved understanding of liquid movement in landfills by application of the most promising techniques in the field.

Imhoff, Paul T. [Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716 (United States)], E-mail: imhoff@udel.edu; Reinhart, Debra R. [Department of Civil and Environmental Engineering, University of Central Florida, Orlando, FL 32816-2450 (United States); Englund, Marja [Fortum Service Ltd., P.O. Box 10, FIN-00048, Fortum (Finland); Guerin, Roger [Universite Pierre et Marie Curie-Paris 6, UMR 7619 Sisyphe, case courrier 105, 4 place Jussieu, 75252 Paris cedex 05 (France); Gawande, Nitin [Department of Civil and Environmental Engineering, University of Central Florida, Orlando, FL 32816-2450 (United States); Han, Byunghyun [Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716 (United States); Jonnalagadda, Sreeram; Townsend, Timothy G. [Civil and Environmental Engineering Sciences Department, Gainesville, FL 32609 (United States); Yazdani, Ramin [Planning, Resources, and Public Works Department, Division of Integrated Waste Management, 292 West Beamer Street, Woodland, CA 95695 (United States)

2007-07-01T23:59:59.000Z

263

Corrective action investigation plan for CAU Number 453: Area 9 Landfill, Tonopah Test Range  

SciTech Connect (OSTI)

This Corrective Action Investigation Plan (CAIP) contains the environmental sample collection objectives and criteria for conducting site investigation activities at the Area 9 Landfill, Corrective Action Unit (CAU) 453/Corrective Action (CAS) 09-55-001-0952, which is located at the Tonopah Test Range (TTR). The TTR, included in the Nellis Air Force Range, is approximately 255 kilometers (140 miles) northwest of Las Vegas, Nevada. The Area 9 Landfill is located northwest of Area 9 on the TTR. The landfill cells associated with CAU 453 were excavated to receive waste generated from the daily operations conducted at Area 9 and from range cleanup which occurred after test activities.

NONE

1997-05-14T23:59:59.000Z

264

Electrochemical treatment of landfill leachate  

Science Journals Connector (OSTI)

Electrochemical methods can offer an elegant contribution towards environmental control as electrons provide a means of removing pollutants by redox reactions. In the process of electrochemical oxidation the main aim has been to convert oxidisable species into carbon dioxide. Leachate originating in landfills is complex wastewater that could exert high environmental impact. This study aims to treat the landfill leachate in order to meet the inland disposal standards. The removal of pollutants was studied with different anode materials in electrochemical process. The treatment of leachate by electrochemical oxidation was carried out in a batch electrolytic parallel plate reactor. The electrochemical process was carried out separately with stainless steel as cathode and anode materials aluminium and titanium/platinum electrodes. The effects of the operating factors such as current density, reaction time, chloride ion concentration, additional electrolyte such as sulphuric acid that influence the removal of pollutant from leachate electrochemically were studied.

C. Ramprasad; A. Navaneetha Gopalakrishnan

2012-01-01T23:59:59.000Z

265

Long-term behavior of municipal solid waste landfills  

Science Journals Connector (OSTI)

A method is presented to predict the long-term behavior of element concentrations (non-metals and metals) in the leachate of a municipal solid waste (MSW) landfill. It is based on water flux and concentration measurements in leachates over one year, analysis of drilled cores from MSW landfills and leaching experiments with these samples. A mathematical model is developed to predict the further evolution of annual flux-weighted mean element concentrations in leachates after the “intensive reactor phase”, i.e. after the gas production has dropped to a very low level. The results show that the organic components are the most important substances to control until the leachate is compatible with the environment. This state of low emissions, the so-called “final storage quality”, will take many centuries to be achieved in a moderate climate.

H. Belevi; P. Baccini

1989-01-01T23:59:59.000Z

266

Gravity data as a tool for landfill study  

Science Journals Connector (OSTI)

This paper shows the potential of gravity data to map a buried landfill bottom topography. To this end, a ... gravity inversion method is presented for estimating the landfill’s bottom depths at discrete points a...

João B. C. Silva; Wlamir A. Teixeira; Valéria C. F. Barbosa

2009-04-01T23:59:59.000Z

267

Acute and Genetic Toxicity of Municipal Landfill Leachate  

E-Print Network [OSTI]

Municipal solid waste (MSW) landfills have been found to contain many of the same hazardous constituents as found in hazardous waste landfills. Because of the large number of MSW landfills, these sites pose a serious environmental threat...

Brown, K.W.; Schrab, G.E.; Donnelly, K.C.

268

Hydrogeological studies on the mechanical behavior of landfill gases and leachate of the Nanjido Landfill in Seoul, Korea  

Science Journals Connector (OSTI)

?The Nanjido Landfill is the largest uncontrolled landfill in Korea and it causes various kinds of environmental problems. Landfill gases and leachate are recognized as the most serious environmental problems ass...

K. K. Lee; Y. Y. Kim; H. W. Chang; S. Y. Chung

1997-06-01T23:59:59.000Z

269

DOE - Office of Legacy Management -- West Lake Landfill - MO...  

Office of Legacy Management (LM)

Lake Landfill - MO 05 FUSRAP Considered Sites Site: West Lake Landfill (MO.05) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition:...

270

Monitoring the Performance of an Alternative Landfill Cover at...  

Office of Environmental Management (EM)

Monitoring the Performance of an Alternative Landfill Cover at the Monticello, Utah, Uranium Mill Tailings Disposal Site Monitoring the Performance of an Alternative Landfill Cover...

271

CHP and Bioenergy Systems for Landfills and Wastewater Treatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems for Landfills and Wastewater Treatment Plants CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants There are important issues to consider when selecting...

272

CHP and Bioenergy for Landfills and Wastewater Treatment Plants...  

Broader source: Energy.gov (indexed) [DOE]

for Landfills and Wastewater Treatment Plants: Market Opportunities CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities This document explores...

273

Models for Hydrologic Design of Evapotranspiration Landfill Covers  

Science Journals Connector (OSTI)

Models for Hydrologic Design of Evapotranspiration Landfill Covers ... The focus of the HELP model is on the man-made features of landfills. ...

Victor L. Hauser; Dianna M. Gimon; James V. Bonta; Terry A. Howell; Robert W. Malone; Jimmy R. Williams

2005-08-05T23:59:59.000Z

274

Briefing: DOE EM Landfill Workshop & Path Forward | Department...  

Broader source: Energy.gov (indexed) [DOE]

Landfill Workshop & Path Forward Briefing: DOE EM Landfill Workshop & Path Forward By: Office of Groundwater and Soil Remediation Where: SSAB Teleconference 2 Subject: DOE EM...

275

Briefing: Summary and Recommendations of EM Landfill Workshop...  

Office of Environmental Management (EM)

Briefing: Summary and Recommendations of EM Landfill Workshop Briefing: Summary and Recommendations of EM Landfill Workshop The briefing is an independent technical review report...

276

DOE - Office of Legacy Management -- Woburn Landfill - MA 07  

Office of Legacy Management (LM)

Woburn Landfill - MA 07 FUSRAP Considered Sites Site: Woburn Landfill (MA.07) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name:...

277

Leaching of cadmium from pigmented plastics in a landfill site  

Science Journals Connector (OSTI)

Leaching of cadmium from pigmented plastics in a landfill site ... Plastics ending up in soil or landfill environment will eventually be degraded. ...

David C. Wilson; Peter J. Young; Brinley C. Hudson; Grant. Baldwin

1982-09-01T23:59:59.000Z

278

Landfill CH sub 4 : Rates, fates, and role in global carbon cycle  

SciTech Connect (OSTI)

Published estimates for worldwide landfill methane emissions range from 9 to 70 Tg yr{sup {minus}1}. Field and laboratory studies suggest that maximum methane yields from lanfilled refuse are about 0.06 to 0.09 m{sup 3} (dry Kg){sup {minus}1} refuse, depending on moisture content and other variables, such as organic loading, buffering capacity, and nutrients in landfill microevnironments. Methane yields may vary by more than an order of magnitude within a given site. Fates for landfill methane include (1) direct or delayed emission to the atmosphere through landfill cover materials or surface soils; (2) oxidation by methanotrophs in cover soils, with resulting emission of carbon dioxide; or (3) recovery of methane followed by combustion to produce carbon dioxide. The percent methane assigned to each pathway will vary among field sites and, for individual sites, through time. Nevertheless, a general framework for a landfill methane balance can be developed by consideration of landfill age, engineering and management practices, cover soil characteristics, and water balance. Direct measurements of landfill methane emissions are sparse, with rates between 10{sup {minus}6} and 10{sup {minus}8} g cm{sup {minus}2} s{sup {minus}1}; very high rates of 400 kg m{sup {minus}2} yr{sup {minus}1} have been measured at a semiarid unvegetated site. The proportion of landfill carbon that is ultimately converted to methane and carbon dioxide is problematical; the literature suggests that, at best, 25% to 40% of refuse carbon can be converted to biogas carbon. Cellulose contributes the major portion of the methane potential. Routine excavation of nondecomposed cellulosic materials after one or two decades of landfill burial suggests that uniformly high conversion rates are rarely attained at field sites.

Bogner, J.; Spokas, K.

1991-01-01T23:59:59.000Z

279

Landfill CH{sub 4}: Rates, fates, and role in global carbon cycle  

SciTech Connect (OSTI)

Published estimates for worldwide landfill methane emissions range from 9 to 70 Tg yr{sup {minus}1}. Field and laboratory studies suggest that maximum methane yields from lanfilled refuse are about 0.06 to 0.09 m{sup 3} (dry Kg){sup {minus}1} refuse, depending on moisture content and other variables, such as organic loading, buffering capacity, and nutrients in landfill microevnironments. Methane yields may vary by more than an order of magnitude within a given site. Fates for landfill methane include (1) direct or delayed emission to the atmosphere through landfill cover materials or surface soils; (2) oxidation by methanotrophs in cover soils, with resulting emission of carbon dioxide; or (3) recovery of methane followed by combustion to produce carbon dioxide. The percent methane assigned to each pathway will vary among field sites and, for individual sites, through time. Nevertheless, a general framework for a landfill methane balance can be developed by consideration of landfill age, engineering and management practices, cover soil characteristics, and water balance. Direct measurements of landfill methane emissions are sparse, with rates between 10{sup {minus}6} and 10{sup {minus}8} g cm{sup {minus}2} s{sup {minus}1}; very high rates of 400 kg m{sup {minus}2} yr{sup {minus}1} have been measured at a semiarid unvegetated site. The proportion of landfill carbon that is ultimately converted to methane and carbon dioxide is problematical; the literature suggests that, at best, 25% to 40% of refuse carbon can be converted to biogas carbon. Cellulose contributes the major portion of the methane potential. Routine excavation of nondecomposed cellulosic materials after one or two decades of landfill burial suggests that uniformly high conversion rates are rarely attained at field sites.

Bogner, J.; Spokas, K.

1991-12-31T23:59:59.000Z

280

State bans dumping of chemicals in landfill  

Science Journals Connector (OSTI)

State bans dumping of chemicals in landfill ... California governor Edmund G. Brown Jr. has begun a program aimed at eliminating most hazardous-waste chemicals from landfills in that state—a goal that will be difficult and costly to achieve. ...

1981-10-26T23:59:59.000Z

Note: This page contains sample records for the topic "includes landfill gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

The dependence of the methylation of mercury on the landfill stabilization process and implications for the landfill management  

Science Journals Connector (OSTI)

Abstract Mercury species and other chemical characteristics of the leachate from anaerobic and semi-aerobic landfills were analyzed to investigate the factors that control mercury methylation during the landfill stabilization process. At the early landfill stage, the total mercury (THg) and the monomethyl mercury (MMHg) released rapidly and significantly, the \\{THg\\} concentration of the semi-aerobic landfill leachate was obviously higher than that of the anaerobic landfill leachate, while compared with the semi-aerobic landfill, the \\{MMHg\\} concentration in the anaerobic landfill was higher. As the landfill time increased, both of \\{THg\\} and \\{MMHg\\} concentration decreased quickly, the \\{THg\\} concentration in the anaerobic landfill was much higher than that in semi-aerobic landfill, while the \\{MMHg\\} concentration in the anaerobic landfill was lower than that in the semi-aerobic landfill. Generally, the concentrations of dimethyl mercury (DMHg) in the anaerobic landfill leachate were slightly higher than in the semi-aerobic landfill leachate during the stabilization process. A significant positive correlation was found between the \\{DMHg\\} concentrations and the pH value in anaerobic landfill leachate, but this correlation was opposite in the semi-aerobic landfill. The oxidative–reductive potential (ORP) condition was found to be the controlling factor of the methylation process during the early stage. However, the chemical characteristics, especially the TOC concentration, appeared to be the dominant factor affecting the methylation process as the landfill time increased.

Xiaoli Chai; Yongxia Hao; Zhonggen Li; Wei Zhu; Wentao Zhao

2015-01-01T23:59:59.000Z

282

Public health assessment for Kentwood Landfill, Kentwood, Kent County, Michigan, Region 5. Cerclis No. MID000260281. Final report  

SciTech Connect (OSTI)

The Kentwood Landfill site encompasses approximately 72 acres and was operated as a licensed landfill prior to 1976. It accepted domestic and industrial waste including unidentified hazardous wastes from heavy manufacturing and refining. Shallow ground water and leachate from the landfill are contaminated with heavy metals and organic compounds. On numerous occasions, leachate has been observed seeping out of the landfill and entering Plaster Creek. While significant exposure does not appear to have occurred or to be presently occurring, the Kentwood Landfill poses a public health hazard because of possible future exposures to contaminants. Nearby residents' ground water supplies could become contaminated should the contaminant plume shift or new wells be drilled into the plume. A lesser hazard is that trespassers could come into direct contact with contaminated surface materials on the site.

Not Available

1994-01-18T23:59:59.000Z

283

Landfill Instability and Its Implications Operation, Construction, and Design  

E-Print Network [OSTI]

Landfill Instability and Its Implications for Operation, Construction, and Design By: W. Douglas landfill waste slide, a 300,000 cubic yard landfill failure involving a geosynthetic clay liner, and a 100,000 cubic yard landfill failure involving leachate recirculation. Other failures of lesser magnitude also

284

Metal speciation in landfill leachates with a focus on the influence of organic matter  

E-Print Network [OSTI]

fractions of leachates, a cascade filtration protocol was applied directly in the field, under a nitrogen gas atmosphere to avoid metal oxidation. The results of analyses performed on the leachates suggest mobility and natural attenuation in a context of landfill risk assessment are discussed. hal-00605888

Paris-Sud XI, Université de

285

Public health assessment for Seattle Municipal Landfill/Kent Highlands, Kent, King County, Washington, Region 10. Cerclis No. WAD980639462. Final report  

SciTech Connect (OSTI)

The Seattle Municipal Landfill, better known as the Kent Highlands Landfill, is located in the City of Kent, approximately 14 miles south of the City of Seattle, Washington, at 23076 Military Road South. Surface water settling ponds, a leachate collection system, and gas collection system have been constructed. Only one completed pathway exists, which is the use of Midway Creek by recreationists. However, worst case scenarios were evaluated and there did not appear to be a human health threat. Two potential pathways were analyzed, for landfill gas and ground water. Again the worst case scenarios did not reveal any imminent human health threat.

Not Available

1994-11-23T23:59:59.000Z

286

Reverse osmosis module successfully treats landfill leachate  

SciTech Connect (OSTI)

By law, modern landfills are to be constructed with double liners to prevent contaminants from leaching into surface and ground water. Despite this design feature, however, both hazardous and non-hazardous compounds do leach from the waste disposed in landfills. The resulting contaminated water, or leachate, must be collected and treated. Rochem Environmental, Inc. (Houston, Texas) has developed a new membrane process, known as the Disc Tube{trademark} system, to remove a variety of contaminants from landfill leachate. 1 ref., 1 fig., 2 tabs.

NONE

1995-03-01T23:59:59.000Z

287

Waste management health risk assessment: A case study of a solid waste landfill in South Italy  

SciTech Connect (OSTI)

An integrated risk assessment study has been performed in an area within 5 km from a landfill that accepts non hazardous waste. The risk assessment was based on measured emissions and maximum chronic population exposure, for both children and adults, to contaminated air, some foods and soil. The toxic effects assessed were limited to the main known carcinogenic compounds emitted from landfills coming both from landfill gas torch combustion (e.g., dioxins, furans and polycyclic aromatic hydrocarbons, PAHs) and from diffusive emissions (vinyl chloride monomer, VCM). Risk assessment has been performed both for carcinogenic and non-carcinogenic effects. Results indicate that cancer and non-cancer effects risk (hazard index, HI) are largely below the values accepted from the main international agencies (e.g., WHO, US EPA) and national legislation ( and ).

Davoli, E., E-mail: enrico.davoli@marionegri.i [Istituto di Ricerche Farmacologiche 'Mario Negri', Environmental Health Sciences Department, Via Giuseppe La Masa 19, 20156 Milano (Italy); Fattore, E.; Paiano, V.; Colombo, A.; Palmiotto, M. [Istituto di Ricerche Farmacologiche 'Mario Negri', Environmental Health Sciences Department, Via Giuseppe La Masa 19, 20156 Milano (Italy); Rossi, A.N.; Il Grande, M. [Progress S.r.l., Via Nicola A. Porpora 147, 20131 Milano (Italy); Fanelli, R. [Istituto di Ricerche Farmacologiche 'Mario Negri', Environmental Health Sciences Department, Via Giuseppe La Masa 19, 20156 Milano (Italy)

2010-08-15T23:59:59.000Z

288

Geohydrology and groundwater geochemistry at a sub-arctic landfill, Fairbanks, Alaska  

SciTech Connect (OSTI)

The Fairbanks-North Star Borough, Alaska, landfill is located on silt, sand, and gravel deposits of the Tanana River flood plain, about 3 miles south of the city of Fairbanks water supply wells. The landfill has been in operation for about 25 years in this sub-arctic region of discontinuous permafrost. The cold climate limits biological activity within the landfill with corresponding low gas and leachate production. Chloride concentrations, specific conductance, water temperature, and earth conductivity measurements indicate a small plume of leachate flowing to the northwest from the landfill. The leachate remains near the water table as it flows northwestward toward a drainage ditch. Results of computer modeling of this local hydrologic system indicate that some of the leachate may be discharging to the ditch. Chemical data show that higher-than-background concentrations of several ions are present in the plume. However, the concentrations appear to be reduced to background levels within a short distance along the path of groundwater flow from the landfill, and thus the leachate is not expected to affect the water supply wells. 11 refs., 21 figs., 2 tabs.

Downey, J.S.; Sinton, P.O.

1990-01-01T23:59:59.000Z

289

Landfill Leachate Treatment by Reverse Osmosis  

Science Journals Connector (OSTI)

Leachate from landfill sites represents a highly polluted waste water. It containes biodegradable compounds but also inorganic salts and trace recalcitrant pollutants. The reverse osmosis process with or without ...

B. Weber; F. Holz

1991-01-01T23:59:59.000Z

290

Landfill Closure and Reuse of Land  

Science Journals Connector (OSTI)

This section examines the sustainable reuse of existing landfill sites . Sustainability is examined in the context of the existing regulatory authority of the United States Environmental Protection Agency (US...

Dr. Joseph J. Lifrieri Ph.D; PE; CPG…

2012-01-01T23:59:59.000Z

291

Investigation of materials performances in high moisture environments including corrosive contaminants typical of those arising by using alternative fuels in gas turbines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

materials performances in high moisture materials performances in high moisture environments including corrosive contaminants typical of those arising by using alternative fuels in gas turbines Gerald Meier, Frederick Pettit and Keeyoung Department of Materials Science and Engineering, Jung University of Pittsburgh Pittsburgh, PA 15260 Peer review Workshop III UTSR Project 04 01 SR116 October 18-20, 2005 Project Approach Task I Selection and Preparation of Specimens Task II Selection of Test Conditions Specimens : GTD111+CoNiCrAlY and Pt Aluminides, N5+Pt Aluminides Deposit : No Deposit, CaO, CaSO 4 , Na 2 SO 4 1150℃ Dry 1150℃ Wet 950℃ Wet 750℃ SO 3 950℃ Dry Selection of Test Temperature, T 1 , Gas Environment and Deposit Composition, D

292

Rocky Mountain NP, Colorado Nitrogen emissions from a variety of human made sources, including ammonia  

E-Print Network [OSTI]

and gas production, wastewater treatment plants, landfills, fertilized crops, and livestock production comes into RMNP from both urban and rural areas in Colorado as well as from other states. Agricultural

MacDonald, Lee

293

If current capacity were to be expanded so that all of the non-recycled municipal solid waste that is currently sent to U.S. landfills each year could instead be converted to energy, we could generate enough electricity  

E-Print Network [OSTI]

so that we could convert our non-recycled waste to alternative energy instead of landfilling it, we-recycled waste into energy instead of landfilling it, we could reduce greenhouse gas (GHG) emissions by nearly our roads. The Power of Waste GARBAGE ENERGY REDUCES 123M TONS CO2 = 23M LESS CARS PLASTICS 5.7B

294

Experimental study of industrial gas turbine flames including quantification of pressure influence on flow field, fuel/air premixing and flame shape  

Science Journals Connector (OSTI)

Abstract A commercial swirl burner for industrial gas turbine combustors was equipped with an optically accessible combustion chamber and installed in a high-pressure test-rig. Several premixed natural gas/air flames at pressures between 3 and 6 bar and thermal powers of up to 1 MW were studied by using a variety of measurement techniques. These include particle image velocimetry (PIV) for the investigation of the flow field, one-dimensional laser Raman scattering for the determination of the joint probability density functions of major species concentrations, mixture fraction and temperature, planar laser induced fluorescence (PLIF) of OH for the visualization of the flame front, chemiluminescence measurements of OH* for determining the lift-off height and size of the flame and acoustic recordings. The results give insights into important flame properties like the flow field structure, the premixing quality and the turbulence–flame interaction as well as their dependency on operating parameters like pressure, inflow velocity and equivalence ratio. The 1D Raman measurements yielded information about the gradients and variation of the mixture fraction and the quality of the fuel/air mixing, as well as the reaction progress. The OH PLIF images showed that the flame was located between the inflow of fresh gas and the recirculated combustion products. The flame front structures varied significantly with Reynolds number from wrinkled flame fronts to fragmented and strongly corrugated flame fronts. All results are combined in one database that can be used for the validation of numerical simulations.

Ulrich Stopper; Wolfgang Meier; Rajesh Sadanandan; Michael Stöhr; Manfred Aigner; Ghenadie Bulat

2013-01-01T23:59:59.000Z

295

FRASER BASIN LANDFILL INVENTORY DOE FRAP 1997-19  

E-Print Network [OSTI]

-term sustainability of the Fraser River Basin. Inventories of point and non-point sources of pollution from both's WASTE database, Federal Indian Band Landfill investigations, and BC Environment's Municipal Landfill

296

Wasting Time : a leisure infrastructure for mega-landfill  

E-Print Network [OSTI]

Landfills are consolidating into fewer, taller, and more massive singular objects in the exurban landscape.This thesis looks at one instance in Virginia, the first regional landfill in the state to accept trash from New ...

Nguyen, Elizabeth M. (Elizabeth Margaret)

2007-01-01T23:59:59.000Z

297

Briefing: DOE EM ITR Landfill Assessment Project Lessons Learned...  

Energy Savers [EERE]

Briefing: DOE EM ITR Landfill Assessment Project Lessons Learned Briefing: DOE EM ITR Landfill Assessment Project Lessons Learned By: Craig H. Benson, PhD, PE Where: EM SSAB...

298

Anaerobic Methane Oxidation in a Landfill-Leachate Plume  

E-Print Network [OSTI]

Anaerobic Methane Oxidation in a Landfill-Leachate Plume E T H A N L . G R O S S M A N , * , L U I Landfill, OK, provides an excellent natural laboratory for the study of anaerobicprocessesimpactinglandfill enrichment indicated that 80-90% of the original landfill methane was oxidized over the 210-m transect. First

Grossman, Ethan L.

299

ORIGINAL PAPER The conservation value of restored landfill sites  

E-Print Network [OSTI]

ORIGINAL PAPER The conservation value of restored landfill sites in the East Midlands, UK landfill sites. However, this potential largely remains unexplored. In this study, birds were counted using point sampling on nine restored landfill sites in the East Midlands region of the UK during 2007

Northampton, University of

300

LESSONS LEARNED FROM A LANDFILL SLOPE FAILURE INVOLVING  

E-Print Network [OSTI]

LESSONS LEARNED FROM A LANDFILL SLOPE FAILURE INVOLVING GEOSYTNTHETICS Virginia L. Wilson.L. Soderman and G.P. Raymond November 12, 1998 #12;LESSONS LEARNED FROM A LANDFILL SLOPE FAILURE INVOLVING slopes at waste containment facilities. The Geneva Landfill is located near Geneva, Ohio which

Note: This page contains sample records for the topic "includes landfill gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Aluminum Waste Reaction Indicators in a Municipal Solid Waste Landfill  

E-Print Network [OSTI]

Aluminum Waste Reaction Indicators in a Municipal Solid Waste Landfill Timothy D. Stark, F.ASCE1 landfills may contain aluminum from residential and commercial solid waste, industrial waste, and aluminum, may react with liquid in a landfill and cause uncontrolled temperature increases, significant changes

302

Aluminum Reactions and Problems in Municipal Solid Waste Landfills  

E-Print Network [OSTI]

Aluminum Reactions and Problems in Municipal Solid Waste Landfills G. Vincent Calder, Ph.D.1 ; and Timothy D. Stark, Ph.D., P.E., F.ASCE2 Abstract: Aluminum enters municipal solid waste MSW landfills from problematic for landfill operations by generating undesirable heat, liquid leachate, and gases

303

Review Paper/ Biogeochemical Evolution of a Landfill Leachate  

E-Print Network [OSTI]

Review Paper/ Biogeochemical Evolution of a Landfill Leachate Plume, Norman, Oklahoma by I Abstract Leachate from municipal landfills can create groundwater contaminant plumes that may last in the configuration of redox zones downgradient from the Norman Landfill were studied for more than a decade

304

Analysis and Design of Evapotranspirative Cover for Hazardous Waste Landfill  

E-Print Network [OSTI]

Analysis and Design of Evapotranspirative Cover for Hazardous Waste Landfill Jorge G. Zornberg, M, Inc. OII Superfund landfill in southern California. This cover system constitutes the first ET cover:6 427 CE Database subject headings: Evapotranspiration; Coating; Landfills; Hazardous waste; Design

Zornberg, Jorge G.

305

Agencies plan continued DOE landfill remediation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Agencies plan continued DOE landfill remediation Agencies plan continued DOE landfill remediation The U.S. Department of Energy (DOE), Idaho Department of Environmental Quality and U.S. Environmental Protection Agency have released a planning document that specifies how DOE will continue to remediate a landfill containing hazardous and transuranic waste at DOE's Idaho Site located in eastern Idaho. The Phase 1 Remedial Design/Remedial Action Work Plan for Operable Unit 7-13/14 document was issued after the September 2008 Record of Decision (ROD) and implements the retrieval of targeted waste at the Subsurface Disposal Area (SDA) within the Radioactive Waste Management Complex (RWMC). The SDA began receiving waste in 1952 and contains radioactive and chemical waste in approximately 35 acres of disposal pits, trenches and soil vaults.

306

Suitability of Hydrologic Evaluation of Landfill Performance (HELP) model of the US Environmental Protection Agency for the simulation of the water balance of landfill cover systems  

Science Journals Connector (OSTI)

?Cover systems are widely used to safeguard landfills and contaminated sites. The evaluation of the ... water balance is crucial for the design of landfill covers. The Hydrologic Evaluation of Landfill Performanc...

K. Berger; S. Melchior; G. Miehlich

1996-12-01T23:59:59.000Z

307

Life cycle assessment (LCA) of solid waste management strategies in Tehran: landfill and composting plus landfill  

Science Journals Connector (OSTI)

As circumstances of operating and maintenance activities for landfilling and composting in Tehran metropolis differ from those of cities in developed countries, it was concluded to have an environmental impact co...

M. A. Abduli; Abolghasem Naghib; Mansoor Yonesi…

2011-07-01T23:59:59.000Z

308

Full Scale Bioreactor Landfill for Carbon Sequestration and Greenhouse Emission Control  

SciTech Connect (OSTI)

The Yolo County Department of Planning and Public Works constructed a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective was to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entailed the construction of a 12-acre module that contained a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells were highly instrumented to monitor bioreactor performance. Liquid addition commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell and biofilter has been completed. The current project status and preliminary monitoring results are summarized in this report.

Ramin Yazdani; Jeff Kieffer; Kathy Sananikone; Don Augenstein

2005-03-30T23:59:59.000Z

309

Migration barrier covers for radioactive and mixed waste landfills  

SciTech Connect (OSTI)

Migration barrier cover technology will likely serve as the remediation alternative of choice for most of DOE's radioactive and mixed waste landfills simply because human and ecological risks can be effectively managed without the use of more expensive alternatives. However, very little testing and evaluation has been done, either before or after installation, to monitor how effective they are in isolating waste or to develop data that can be used to evaluate model predictions of long term performance. Los Alamos National Laboratory has investigated the performance of a variety of landfill capping alternatives since 1981 using large field lysimeters to monitor the fate of precipitation falling on the cap surface. The objective of these studies is to provide the risk manager with a variety of field tested capping designs, of various complexities and costs, so that design alternatives can be matched to the need for hydrologic control at the site. Four different landfill cap designs, representing different complexities and costs, were constructed at Hill Air Force Base (AFB) in October and November, 1989. The designs were constructed in large lysimeters and instrumented to provide estimates of all components of water balance including precipitation, runoff (and soil erosion), infiltration, leachate production, evapotranspiration, and capillary/hydraulic barrier flow. The designs consisted of a typical soil cover to serve as a baseline, a modified EPA RCRA cover, and two versions of a Los Alamos design that contained erosion control measures, an improved vegetation cover to enhance evapotranspiration, and a capillary barrier to divert downward flow of soil water. A comprehensive summary of the Hill AFB demonstration will be available in October 1993, when the project is scheduled to terminate.

Hakonson, T.E.; Manies, K.L.; Warren, R.W.; Bostick, K.V.; Trujillo, G. (Los Alamos National Lab., NM (United States)); Kent, J.S. (Air Force Academy, CO (United States). Dept. of Biology); Lane, L.J. (Department of Agriculture, Tucson, AZ (United States))

1993-01-01T23:59:59.000Z

310

Migration barrier covers for radioactive and mixed waste landfills  

SciTech Connect (OSTI)

Migration barrier cover technology will likely serve as the remediation alternative of choice for most of DOE`s radioactive and mixed waste landfills simply because human and ecological risks can be effectively managed without the use of more expensive alternatives. However, very little testing and evaluation has been done, either before or after installation, to monitor how effective they are in isolating waste or to develop data that can be used to evaluate model predictions of long term performance. Los Alamos National Laboratory has investigated the performance of a variety of landfill capping alternatives since 1981 using large field lysimeters to monitor the fate of precipitation falling on the cap surface. The objective of these studies is to provide the risk manager with a variety of field tested capping designs, of various complexities and costs, so that design alternatives can be matched to the need for hydrologic control at the site. Four different landfill cap designs, representing different complexities and costs, were constructed at Hill Air Force Base (AFB) in October and November, 1989. The designs were constructed in large lysimeters and instrumented to provide estimates of all components of water balance including precipitation, runoff (and soil erosion), infiltration, leachate production, evapotranspiration, and capillary/hydraulic barrier flow. The designs consisted of a typical soil cover to serve as a baseline, a modified EPA RCRA cover, and two versions of a Los Alamos design that contained erosion control measures, an improved vegetation cover to enhance evapotranspiration, and a capillary barrier to divert downward flow of soil water. A comprehensive summary of the Hill AFB demonstration will be available in October 1993, when the project is scheduled to terminate.

Hakonson, T.E.; Manies, K.L.; Warren, R.W.; Bostick, K.V.; Trujillo, G. [Los Alamos National Lab., NM (United States); Kent, J.S. [Air Force Academy, CO (United States). Dept. of Biology; Lane, L.J. [Department of Agriculture, Tucson, AZ (United States)

1993-03-01T23:59:59.000Z

311

Analysis of the Neurotoxic Plasticizer n-Butylbenzenesulfonamide by Gas Chromatography Combined with Accurate Mass Selected Ion Monitoring  

Science Journals Connector (OSTI)

......Australian domestic solid-waste landfill leachate (from...plastic container used for long-term storage of inoculating solutions...following: domestic solid-waste leachate (n = 11, including...thick domestic solid- waste landfill. The levels......

Pat Duffield; David Bourne; Karin Tan; Ralph M. Garruto; Mark W. Duncan

1994-01-01T23:59:59.000Z

312

Turning waste into energy beats landfilling  

E-Print Network [OSTI]

, not incineration. Miller and others also refer to incineration as a source of dioxins, and they're right. But let's put things in perspective. In Sweden, which has 30 incineration plants, the total amount of dioxins that the landfills throughout Ontario and Michigan release fewer dioxins than that, he needs to hire better advisers

Columbia University

313

Behavior of Engineered Nanoparticles in Landfill Leachate  

Science Journals Connector (OSTI)

This research sought to understand the behavior of engineered nanoparticles in landfill leachate by examining the interactions between nanoparticles and leachate components. The primary foci of this paper are the effects of ZnO, TiO2, and Ag nanoparticles ...

Stephanie C. Bolyard; Debra R. Reinhart; Swadeshmukul Santra

2013-06-25T23:59:59.000Z

314

Interstellar Simulations Using A Unified Microscopic-Macroscopic Monte Carlo Model with a full Gas-Grain Network including Bulk Diffusion in Ice Mantles  

E-Print Network [OSTI]

We have designed an improved algorithm that enables us to simulate the chemistry of cold dense interstellar clouds with a full gas-grain reaction network. The chemistry is treated by a unified microscopic-macroscopic Monte Carlo approach that includes photon penetration and bulk diffusion. To determine the significance of these two processes, we simulate the chemistry with three different models. In Model 1, we use an exponential treatment to follow how photons penetrate and photodissociate ice species throughout the grain mantle. Moreover, the products of photodissociation are allowed to diffuse via bulk diffusion and react within the ice mantle. Model 2 is similar to Model 1 but with a slower bulk diffusion rate. A reference Model 0, which only allows photodissociation reactions to occur on the top two layers, is also simulated. Photodesorption is assumed to occur from the top two layers in all three models. We found that the abundances of major stable species in grain mantles do not differ much among these...

Chang, Qiang

2014-01-01T23:59:59.000Z

315

BACK-ANALYSES OF LANDFILL SLOPE FAILURES Nejan Huvaj-Sarihan Timothy D. Stark  

E-Print Network [OSTI]

BACK-ANALYSES OF LANDFILL SLOPE FAILURES Nejan Huvaj-Sarihan Timothy D. Stark University strength of MSW. The back-analysis of failed waste slopes in the Gnojna Grora landfill in Poland, Istanbul Landfill in Turkey, Hiriya Landfill in Israel, and Payatas Landfill in Philippines are presented

316

Geohydrology and ground-water geochemistry at a sub-Arctic Landfill, Fairbanks, Alaska. Water resources investigation  

SciTech Connect (OSTI)

The Fairbanks-North Star Borough landfill is located on silt, sand, and gravel deposits of the Tanana River flood plain, about 3 miles south of the city of Fairbanks water-supply wells. The landfill has been in operation for about 25 years in this sub-arctic region of discontinuous permafrost. The cold climate limits biological activity within the landfill with corresponding low gas and leachate production. Chloride concentrations, specific conductance, water temperatures, and earth conductivity measurements indicate a small plume of leachate flowing to the northwest from the landfill. The leachate remains near the water table as it flows northwestward toward a drainage ditch. Results of computer modeling of this local hydrologic system indicate that some of the leachate may be discharging to the ditch. Chemical data show that higher-than-background concentrations of several ions are present in the plume. However, the concentrations appear to be reduced to background levels within a short distance along the path of ground-water flow from the landfill, and thus the leachate is not expected to affect the water-supply wells.

Downey, J.S.; Sinton, P.O.

1990-01-01T23:59:59.000Z

317

DOE - Office of Legacy Management -- Shpack Landfill - MA 06  

Office of Legacy Management (LM)

Shpack Landfill - MA 06 Shpack Landfill - MA 06 FUSRAP Considered Sites Shpack Landfill, NY Alternate Name(s): Attleboro, MA Metals and Controls Site Norton Landfill area MA.06-2 MA.06-3 Location: 68 Union Road, Norton, Massachusetts MA.06-2 Historical Operations: No AEC activities were conducted on site. Contamination was suspected from disposal of materials containing uranium and zirconium ash. MA.06-2 MA.06-3 Eligibility Determination: Eligible MA.06-1 Radiological Survey(s): Assessment Surveys MA.06-4 MA.06-5 MA.06-6 Site Status: Cleanup in progress by U.S. Army Corps of Engineers. MA.06-7 MA.06-8 USACE Website Long-term Care Requirements: To be determined upon completion. Also see Documents Related to Shpack Landfill, NY MA.06-1 - DOE Memorandum; Meyers to Hart; Subject: Shpack Landfill,

318

Request for Qualifications for Sacramento Landfill  

Broader source: Energy.gov [DOE]

This Request for Qualifications (RFQ) solicits experienced companies to design, permit, finance, build, and operate a solar photovoltaic farm (SPV Farm) on the City of Sacramento’s 28th Street Landfill. Respondents to this RFQ must demonstrate experience and capacity to design, permit, finance, build, and operate a SPV Farm that generates electricity that can be sold for electrical use through a power-purchase agreement. Submittals must be prepared and delivered in accordance with the requirements set forth in this document.

319

Hydrogeological Environmental Assessment of Sanitary Landfill Project at Jammu City, India  

E-Print Network [OSTI]

DRASTIC Method The prepared landfill project is supposed toAssessment of Sanitary Landfill Project at Jammu City, Indiaimpact of a proposed landfill facility for the city of Jammu

Nagar, Bharat Bhushan; Mirza, Umar Karim

2002-01-01T23:59:59.000Z

320

Multiphase Modeling of Flow, Transport, and Biodegradation in a Mesoscale Landfill Bioreactor  

E-Print Network [OSTI]

1179. Popov, V. ; Power, H. Landfill emission of gases intoC.M. T2LBM Version 1.0: Landfill bioreactor model forand recovery from landfills, Ann Arbor Science Publishers,

Oldenburg, Curtis M.; Borglin, Sharon E.; Hazen, Terry C.

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "includes landfill gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Enhanced Landfill Mining Symposium EEC/WTERT Participation at ELFM Conference  

E-Print Network [OSTI]

Enhanced Landfill Mining Symposium EEC/WTERT Participation at ELFM Conference of Enhanced Landfill Mining. Held at the Greenville (Center of Cleantech of old landfills, each containing valuable resources that are untapped

322

Subsurface characterization of groundwater contaminated by landfill leachate using microbial community profile  

E-Print Network [OSTI]

Subsurface characterization of groundwater contaminated by landfill leachate using microbial from groundwater monitoring wells located within and around an aquifer contaminated with landfill. In this landfill leachate application, the weighted SOM assembles the microbial community data from monitoring

Vermont, University of

323

GeoChip-based Analysis of Groundwater Microbial Diversity in Norman Landfill  

E-Print Network [OSTI]

Diversity in Norman Landfill Zhenmei Lu 1,2 , Zhili He 2,4 ,projects/norlan / ABSTRACT The Norman Landfill is a closedmunicipal solid waste landfill located on an alluvium

Lu, Zhenmei

2010-01-01T23:59:59.000Z

324

Results of the radiological survey at the Town of Tonawanda Landfill, Tonawanda, New York (TNY001)  

SciTech Connect (OSTI)

At the request of the US Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted a radiological survey at the Town of Tonawanda Landfill, Tonawanda, New York. The survey was performed in September 1991. The purpose of the survey was to determine if radioactive materials from work performed under government contract at the Linde Air Products Division of Union Carbide Corporation, Tonawanda, New York, had been deposited in the landfill. The survey included a surface gamma scan and the collection of soil samples for radionuclide analyses. Results of the survey suggest that material originating at the Linde plant may have been deposited in the landfill. Soil samples S54 and B12 contained technologically enhanced levels of [sup 238]U not unlike the product formerly produced by the Linde plant. In contrast, samples B4A, B5A and B7B, containing elevated concentrations of [sup 226]Ra and [sup 230]Th with much lower concentrations of [sup 238]U, were similar to the residue or byproduct of the refinery operation conducted at the Linde plant. In 24 instances, soil samples from the Town of Tonawanda Landfill exceeded DOE guideline values for [sup 238]U, [sup 226]Ra, and/or [sup 230]Th in surface or subsurface soil. Nine of these samples contained radionuclide concentrations more than 30 times the guideline value.

Rodriguez, R.E.; Murray, M.E.; Uziel, M.S.

1992-10-01T23:59:59.000Z

325

Results of the radiological survey at the Town of Tonawanda Landfill, Tonawanda, New York (TNY001)  

SciTech Connect (OSTI)

At the request of the US Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted a radiological survey at the Town of Tonawanda Landfill, Tonawanda, New York. The survey was performed in September 1991. The purpose of the survey was to determine if radioactive materials from work performed under government contract at the Linde Air Products Division of Union Carbide Corporation, Tonawanda, New York, had been deposited in the landfill. The survey included a surface gamma scan and the collection of soil samples for radionuclide analyses. Results of the survey suggest that material originating at the Linde plant may have been deposited in the landfill. Soil samples S54 and B12 contained technologically enhanced levels of {sup 238}U not unlike the product formerly produced by the Linde plant. In contrast, samples B4A, B5A and B7B, containing elevated concentrations of {sup 226}Ra and {sup 230}Th with much lower concentrations of {sup 238}U, were similar to the residue or byproduct of the refinery operation conducted at the Linde plant. In 24 instances, soil samples from the Town of Tonawanda Landfill exceeded DOE guideline values for {sup 238}U, {sup 226}Ra, and/or {sup 230}Th in surface or subsurface soil. Nine of these samples contained radionuclide concentrations more than 30 times the guideline value.

Rodriguez, R.E.; Murray, M.E.; Uziel, M.S.

1992-10-01T23:59:59.000Z

326

The UK landfill tax and the landfill tax credit scheme: operational weaknesses  

Science Journals Connector (OSTI)

The UK Landfill Tax and the related Landfill Tax Credit Scheme have now been in operation since October 1996. There have been a number of reviews to assess its operation and effectiveness that have led to some minor amendments. However, there continue to be concerns about operational weaknesses of the tax and the credit scheme. In particular, there is the risk that the tax may be evaded and there are fears that a lack of transparency and independence may undermine the fundamental principles of the Landfill Tax Credit Scheme. Following a recent report, the Secretary of State for the Department of the Environment, Transport and the Regions has set up an inquiry. This paper looks at some of the specific concerns that have been raised and the implications for waste management.

John R. Morris; Adam D. Read

2001-01-01T23:59:59.000Z

327

E-Print Network 3.0 - ardeer landfill scotland Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

...28 Are there risks associated with landfilling of air pollution control residues... . 79% went to landfill sites, 21% to ash processors to make into...

328

"Maximum recycling of Material and Energy, Minimum of Landfilling"  

E-Print Network [OSTI]

in "Recycling". "Waste-to-Energy" is now defined as Recycling, when energy efficiency is > 0,65 Prevention Reuse Recycling and Waste-to Energy? #12;6 European Policies on Landfill Ban The EU Landfill Directive The amount Ban decided upon in 2000, in force in 2005. A very strong effect, with a strong increase of Waste-to-Energy

Columbia University

329

Seismic Response Analysis of Municipal Solid Waste Landfill  

Science Journals Connector (OSTI)

According to the engineering practice of municipal solid waste landfill, the dynamic response of landfill based on the finite element method is implemented. The equivalent linearization method is used to consider the non-linear dynamic response characteristics. ... Keywords: Dynamic response, Ground motion input, Finite element method

Zhang Guodong; Li Yong; Jin Xing; Li Rongbin; Chen Fei

2009-10-01T23:59:59.000Z

330

Landfill Disposal of CCA-Treated Wood with Construction and  

E-Print Network [OSTI]

Landfill Disposal of CCA-Treated Wood with Construction and Demolition (C&D) Debris: Arsenic phased out of many residential uses in the United States, the disposal of CCA-treated wood remains. Catastrophic events have also led to the concentrated disposal of CCA-treated wood, often in unlined landfills

Florida, University of

331

DOE - Office of Legacy Management -- Pfohl Brothers Landfill - NY 66  

Office of Legacy Management (LM)

Pfohl Brothers Landfill - NY 66 Pfohl Brothers Landfill - NY 66 FUSRAP Considered Sites Site: Pfohl Brothers Landfill (NY.66 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Five-Year Review Report Pfohl Brothers Landfill Superfund Site Erie County Town of Cheektowaga, New York EPA REGION 2 Congressional District(s): 30 Erie Cheektowaga NPL LISTING HISTORY Documents Related to Pfohl Brothers Landfill Historical documents may contain links which are no longer valid or to outside sources. LM can not attest to the accuracy of information provided by these links. Please see the Leaving LM Website page for more details.

332

Sandia National Laboratories: No More Green Waste in the Landfill  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

No More Green Waste in the Landfill No More Green Waste in the Landfill June 09, 2011 Dump Truck Image On the heels of Sandia National Laboratories' successful food waste composting program, Pollution Prevention (P2) has teamed with the Facilities' Grounds and Roads team and the Solid Waste Transfer Facility to implement green waste composting. Previously, branches and logs were being diverted and mulched by Kirtland Air Force Base at their Construction & Demolition Landfill that is on base and utilized under contract by Sandia. The mulch is available to the Air Force and Sandia for landscaping uses. However, grass clippings, leaves, and other green waste were being disposed in the landfill. In an initiative to save time and trips by small trucks with trailers to the landfill carrying organic debris, two 30 cubic yard rolloffs were

333

Municipal landfill leachate treatment by SBBGR technology  

Science Journals Connector (OSTI)

The paper reports the results of a laboratory-scale investigation aimed at evaluating the performance of a periodic biofilter with granular biomass (SBBGR) for treating leachate coming from a mature municipal landfill. The results show that the SBBGR was able to remove roughly 80% of COD in leachate. The remaining 20% of COD were, therefore, presumably owing to the presence in the leachate of recalcitrant compounds. Ammonia removal efficiency was low because of the presence of high salinity and inhibitory compounds in the investigated leachate. The process was characterised by very low sludge production (lower than 0.02 kg TSS/kg CODremoved).

Claudio Di Iaconi; Guido Del Moro; Michele Pagano; Roberto Ramadori

2009-01-01T23:59:59.000Z

334

Interim site characterization report and ground-water monitoring program for the Hanford site solid waste landfill  

SciTech Connect (OSTI)

Federal and state regulations governing the operation of landfills require utilization of ground-water monitoring systems to determine whether or not landfill operations impact ground water at the point of compliance (ground water beneath the perimeter of the facility). A detection-level ground-water monitoring system was designed, installed, and initiated at the Hanford Site Solid Waste Landfill (SWL). Chlorinated hydrocarbons were detected at the beginning of the ground-water monitoring program and continue to be detected more than 1 year later. The most probable source of the chlorinated hydrocarbons is washwater discharged to the SWL between 1985 and 1987. This is an interim report and includes data from the characterization work that was performed during well installation in 1987, such as field observations, sediment studies, and geophysical logging results, and data from analyses of ground-water samples collected in 1987 and 1988, such as field parameter measurements and chemical analyses. 38 refs., 27 figs., 8 tabs.

Fruland, R.M.; Hagan, R.A.; Cline, C.S.; Bates, D.J.; Evans, J.C.; Aaberg, R.L.

1989-07-01T23:59:59.000Z

335

Short Mountain Landfill Gas Recovery Project : Stage 1 Environmental Assessment.  

SciTech Connect (OSTI)

The Bonneville Power Administration (BPA), a Federal power marketing agency, has statutory responsibilities to supply electrical power to its utility, industrial, and other customers in the Pacific Northwest. BPA`s latest load/resource balance forecast, projects the capability of existing resources to satisfy projected Federal system loads. The forecast indicates a potential resource deficit. The underlying need for action is to satisfy BPA customers` demand for electrical power.

United States. Bonneville Power Administration.

1992-05-01T23:59:59.000Z

336

In-situ Removal of Hydrogen Sulphide from Landfill Gas.  

E-Print Network [OSTI]

?? This project was compiled in co-operation with the Royal Institute of Technology, Stockholm and Veolia Environmental Services (Australia) at the Woodlawn Bioreactor in NSW,… (more)

Lazarevic, David Andrew

2007-01-01T23:59:59.000Z

337

Fordonsgas från deponier; Vehicle fuel from landfill gas.  

E-Print Network [OSTI]

?? The demand for biogas as vehicle fuel has risen sharply and there is a great need for increased production. A possible addition of vehicle… (more)

Willén, Jessica

2010-01-01T23:59:59.000Z

338

Simulation of Landfill Gas Performance in a Spark Ignited Engine.  

E-Print Network [OSTI]

?? Computer simulations were performed using KIVA-4 code to determine performance of a spark ignited engine fueled by methane diluted with carbon dioxide to approximate… (more)

Swain, Daniel P.

2010-01-01T23:59:59.000Z

339

CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities  

Broader source: Energy.gov [DOE]

Overview of market opportunities for CHP and bioenergy for landfills and wastewater treatment plants

340

The Municipal Solid Waste Landfill as a Source of Montreal Protocol-restricted Halocarbons in the  

E-Print Network [OSTI]

The Municipal Solid Waste Landfill as a Source of Montreal Protocol-restricted Halocarbons of Geophysics #12;2 #12;The Municipal Solid Waste Landfill as a Source of Montreal Protocol municipal solid waste (MSW) landfills. With several hundred MSW landfills in both the US and UK, estimating

Note: This page contains sample records for the topic "includes landfill gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Micrometeorological Measurements of Methane and Carbon Dioxide Fluxes at a Municipal Landfill  

Science Journals Connector (OSTI)

Micrometeorological Measurements of Methane and Carbon Dioxide Fluxes at a Municipal Landfill ... Of the global anthropogenic CH4 emissions, more than 10% originates from landfills (1). ... Landfills are the largest source of anthropogenic CH4 emissions to the atm. in the US; however, few measurements of whole landfill CH4 emissions have been reported. ...

Annalea Lohila; Tuomas Laurila; Juha-Pekka Tuovinen; Mika Aurela; Juha Hatakka; Tea Thum; Mari Pihlatie; Janne Rinne; Timo Vesala

2007-03-15T23:59:59.000Z

342

PREFERENTIAL FLOW THROUGH EARTHEN LANDFILL COVERS: FIELD EVALUATION OF ROOT ZONE WATER QUALITY MODEL (RZWQM) AND  

E-Print Network [OSTI]

Abstract PREFERENTIAL FLOW THROUGH EARTHEN LANDFILL COVERS: FIELD EVALUATION OF ROOT ZONE WATER into the waste, earthen landfill covers are constructed once a landfill reaches its capacity. Formation earthen landfill covers during service. Most commonly used water balance models that are used

343

Development of a Wireless Sensor Network for Monitoring a Bioreactor Landfill Asis Nasipuri,1  

E-Print Network [OSTI]

1 Development of a Wireless Sensor Network for Monitoring a Bioreactor Landfill Asis Nasipuri,1 treatment and disposal costs of leachate, and increasing landfill capacity. Such aerobic decomposition engineered containment structures i.e. landfilling. The goal of a conventional landfill (typically referred

Nasipuri, Asis

344

Bulletin of Entomological Research (1999) 89, 493498 493 Fly populations associated with landfill  

E-Print Network [OSTI]

Bulletin of Entomological Research (1999) 89, 493­498 493 Fly populations associated with landfill at the following sites in Hampshire, UK during August to November 1998: a landfill and composting site (Paulsgrove), a site adjacent to this landfill (Port Solent), a site with no landfill nearby (Gosport

345

Sardinia 2007, Eleventh International Waste Management and Landfill Symposium Potential for Reducing Global Methane Emissions  

E-Print Network [OSTI]

Sardinia 2007, Eleventh International Waste Management and Landfill Symposium 1 Potential for Reducing Global Methane Emissions From Landfills, 2000-2030 E. MATTHEWS1 , N. J. THEMELIS2 1 NASA Goddard ~1200 Tg/yr (1 Tg = 1012 g), >70% of which is landfilled. Landfilling of waste contributes ~30-35 Tg

Columbia University

346

Microsoft Word - Roosevelt-HW-Hill_Landfill-G0335-I0019-CX.doc  

Broader source: Energy.gov (indexed) [DOE]

1, 2009 1, 2009 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum James Hall Customer Service Engineer - TPC-TPP-4 Proposed Action: H.W. Hill / Roosevelt Landfill Gas Generation Expansion Project (#I0019 and #G0335) Budget Information: Work Order # 244620, Task # 03 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.7: "Acquisition, installation, operation, and removal of communication systems..." B4.6: "Additions or modifications to electric power transmission facilities that would not affect the environment beyond the previously developed facility area..." Location: Klickitat County, Washington Proposed by: Klickitat County Public Utility District No.1 (KPUD) and Bonneville Power

347

Biomass gasification project gets funding to solve black liquor safety and landfill problems  

SciTech Connect (OSTI)

This paper reports on biomass gasifications. The main by-product in pulp making is black liquor from virgin fiber; the main by-product in paper recycling is fiber residue. Although the black liquor is recycled for chemical and energy recovery, safety problems plague the boilers currently used to do this. The fiber residue is usually transported to a landfill. The system being developed by MTCI will convert black liquor and fiber residue into a combustible gas, which can then be used for a wide variety of thermal or power generation applications.

Black, N.P.

1991-02-01T23:59:59.000Z

348

Numerical Simulations of Bubble Dynamics and Heat Transfer in Pool Boiling--Including the Effects of Conjugate Conduction, Level of Gravity, and Noncondensable Gas Dissolved in the Liquid  

E-Print Network [OSTI]

Microgravity Fluid Physics and Heat Transfer, 62-71. 47.that included the heat transfer between the fluid and solidflux, only one fluid—water—showed significant heat transfer

Aktinol, Eduardo

2014-01-01T23:59:59.000Z

349

Outer Continental Shelf oil and gas activities in the Gulf of Alaska (including Lower Cook Inlt) and their onshore impacts: a summary report, September 1980  

SciTech Connect (OSTI)

The search for oil and gas on the Outer Continental Shelf (OCS) in the Gulf of Alaska subregion of the Alaska leasing region began in 1967, when geophysical surveys of the area were initiated. Two lease sales have been held in the subregion. Lease Sale 39, for the Northern Gulf of Alaska, was held on April 13, 1976, and resulted in the leasing of 76 tracts. Lease Sale CI, for Lower Cook Inlet, was held on October 27, 1977, and resulted in the leasing of 87 tracts. Exploratory drilling on the tracts leased in Sale 39 began in September 1976, and exploratory drilling on tracts leased in Sale CI began in July 1978. Commercial amounts of hydrocarbons have not been found in any of the wells drilled in either sale area. Seventy-four of the leases issued in the Northern Gulf of Alaska have been relinquished. As of June 1980, exploratory drilling in both areas had ceased, and none was planned for the near future. The next lease sale in the Gulf of Alaska, Sale 55, is scheduled for October 1980. Lease Sale 60 (Lower Cook Inlet and Shelikof Strait) is scheduled for September 1981, and Lease Sale 61 (OCS off Kodiak Island) is scheduled for April 1983. Sale 60 will be coordinated with a State lease sale in adjacent State-owned waters. The most recent estimates (June 1980) by the US Geological Survey of risked, economically recoverable resources for the 2 tracts currently under lease in the Northern Gulf of Alaska are negligible. For the 87 tracts currently under lease in Lower Cook Inlet, the USGS has produced risked, economically recoverable resource estimates of 35 million barrels of oil and 26 billion cubic feet of gas. These resource estimates for the leased tracts in both areas are short of commercially producible amounts. Onshore impacts from OCS exploration have been minimal. Two communities - Yakutat and Seward - served as support bases for the Northern Gulf of Alaska.

Jackson, J.B.; Dorrier, R.T.

1980-01-01T23:59:59.000Z

350

Development of risk-assessment methodology for municipal-sludge landfilling. Final report  

SciTech Connect (OSTI)

This is one of a series of reports that present methodologies for assessing the potential risks to humans or other organisms from the disposal or reuse of municipal sludge. The sludge management practices addressed by this series include land application practices, distribution and marketing programs, landfilling, incineration and ocean disposal. These reports provide methods for evaluating potential health and environmental risks from toxic chemicals that may be present in sludge. The document addresses risks from chemicals associated with landfilling of municipal sludge. These proposed risk assessment procedures are designed as tools to assist in the development of regulations for sludge management practices. The criteria may address management practices (such as site design or process control specifications), limits on sludge disposal rates or limits on toxic chemical concentrations in the sludge.

Not Available

1989-08-01T23:59:59.000Z

351

Quantification of multiple methane emission sources at landfills using a double tracer technique  

SciTech Connect (OSTI)

Research highlights: > Precise and reliable measurements of emissions from landfills are needed. > A tracer technique involving simultaneous release of two tracers was proven successful. > Measurements to be performed at times with low changing trends in barometric pressure. - Abstract: A double tracer technique was used successfully to quantify whole-site methane (CH{sub 4}) emissions from Fakse Landfill. Emissions from different sections of the landfill were quantified by using two different tracers. A scaled-down version of the tracer technique measuring close-by to localized sources having limited areal extent was also used to quantify emissions from on-site sources at the landfill facility, including a composting area and a sewage sludge storage pit. Three field campaigns were performed. At all three field campaigns an overall leak search showed that the CH{sub 4} emissions from the old landfill section were localized to the leachate collection wells and slope areas. The average CH{sub 4} emissions from the old landfill section were quantified to be 32.6 {+-} 7.4 kg CH{sub 4} h{sup -1}, whereas the source at the new section was quantified to be 10.3 {+-} 5.3 kg CH{sub 4} h{sup -1}. The CH{sub 4} emission from the compost area was 0.5 {+-} 0.25 kg CH{sub 4} h{sup -1}, whereas the carbon dioxide (CO{sub 2}) and nitrous oxide (N{sub 2}O) flux was quantified to be in the order of 332 {+-} 166 kg CO{sub 2} h{sup -1} and 0.06 {+-} 0.03 kg N{sub 2}O h{sup -1}, respectively. The sludge pit located west of the compost material was quantified to have an emission of 2.4 {+-} 0.63 kg h{sup -1} CH{sub 4}, and 0.03 {+-} 0.01 kg h{sup -1} N{sub 2}O.

Scheutz, C., E-mail: chs@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, Miljovej, Building 113, 2800 Kongens Lyngby (Denmark); Samuelsson, J., E-mail: jerker.samuelsson@fluxsense.se [Chalmers University of Technology/FluxSense AB, SE-412 96 Goeteborg (Sweden); Fredenslund, A.M., E-mail: amf@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, Miljovej, Building 113, 2800 Kongens Lyngby (Denmark); Kjeldsen, P., E-mail: pk@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, Miljovej, Building 113, 2800 Kongens Lyngby (Denmark)

2011-05-15T23:59:59.000Z

352

Industrial landfill affects on fish communities at Indiana Dunes National Lakeshore (INDU)  

SciTech Connect (OSTI)

INDU, an urban park near the third largest metropolitan area in the US, provides access to over two million visitors per year. The Grand Calumet River/Indiana Harbor Ship Canal is the only Area of Concern (AOC) with all 14 designated uses impaired. The Grand Calumet Lagoons are the former mouth of the Grand Calumet River and form part of the western boundary of INDU, adjacent to Gary, IN. An industrial landfill (slag and other industrial waste) forms the westernmost boundary of the lagoon and a dunal pond. A least-impacted lagoon and a pond lying across a dune ridge were compared to sites adjacent to the landfill. Fish communities censused from twelve sites during the summer of 1994 were analyzed for several community metrics including species richness and composition, trophic structure, and community and individual health. A modified headwater Index of Biotic Integrity (IBI) was utilized to evaluate lacustrine community health. Results include the first record of the Iowa darter (Etheostoma exile) found in northwest Indiana. Examination of the fish community found the least impacted lagoon to contain Erimyzon sucetta, Esox americanus, and Lepomis gulosus. The landfill lagoon lacked these species, with the exception of fewer L. gulosus, while Pimephales notatus was found at all sites in the impacted lake but not at all in the least impacted lagoon. Statistically significant differences in species diversity and IBI can be attributed to landfill proximity. Whole fish analyses of a benthic omnivore (Cyprinus carpio) revealed PAH levels near 1 mg/kg of total PAH in several fish analyzed.

Stewart, P.M. [National Biological Service, Porter, IN (United States); Simon, T.P. [Environmental Protection Agency, Chicago, IL (United States)

1995-12-31T23:59:59.000Z

353

US EPA Landfill Methane Outreach Program | Open Energy Information  

Open Energy Info (EERE)

Landfill Methane Outreach Program Landfill Methane Outreach Program Jump to: navigation, search Name US EPA Landfill Methane Outreach Program Agency/Company /Organization United States Environmental Protection Agency Sector Energy, Land Focus Area Biomass Topics Policies/deployment programs, Resource assessment, Background analysis Resource Type Software/modeling tools, Workshop Website http://www.epa.gov/lmop/intern Country China, Ecuador, Mexico, Philippines, Thailand, Ukraine, Belize, Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua, Panama Eastern Asia, South America, Central America, South-Eastern Asia, South-Eastern Asia, Eastern Europe, Central America, Central America, Central America, Central America, Central America, Central America, Central America References LMOP[1]

354

Full-Scale Practice of Ecologically Based Landfill of Municipal Solid Waste: to Accecelerate The Biological Conversion Inside Landfill and Cover Layers  

Science Journals Connector (OSTI)

The application of bioreactor landfill with leachate recirculation was usually confronted with ... leachate. A modified operation called “ecologically based landfill” was induced by recycling the pre-treated fres...

Pin-Jing He

2010-01-01T23:59:59.000Z

355

Sandia National Laboratories: No More Green Waste in the Landfill  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

No More Green Waste in the Landfill June 09, 2011 Dump Truck Image On the heels of Sandia National Laboratories' successful food waste composting program, Pollution Prevention (P2)...

356

http://ndep.nv.gov/bwm/landfill.htm  

National Nuclear Security Administration (NNSA)

Story County Ely Landfill City of Ely Operating - Class I & III Permitted City of Ely White Pine County White Pine Energy Station (WPES) Class III disposal site White Pine County...

357

Modeling of leachate generation in municipal solid waste landfills  

E-Print Network [OSTI]

parameters specified by the user. Ultimately, this model will strive to replace the time the user requires to generate and fill a given landfill geometry with time spent running and evaluating trials to yield the best design....

Beck, James Bryan

2012-06-07T23:59:59.000Z

358

Remedial investigation work plan for Bear Creek Valley Operable Unit 1 (S-3 Ponds, Boneyard/Burnyard, Oil Landfarm, Sanitary Landfill 1, and the Burial Grounds, including Oil Retention Ponds 1 and 2) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1, Main text  

SciTech Connect (OSTI)

The intent and scope of the work plan are to assemble all data necessary to facilitate selection of remediation alternatives for the sites in Bear Creek Valley Operable Unit 1 (BCV OU 1) such that the risk to human health and the environment is reduced to acceptable levels based on agreements with regulators. The ultimate goal is to develop a final Record Of Decision (ROD) for all of the OUs in BCV, including the integrator OU. However, the initial aim of the source OUs is to develop a ROD for interim measures. For source OUs such as BCV OU 1, data acquisition will not be carried out in a single event, but will be carried out in three stages that accommodate the schedule for developing a ROD for interim measures and the final site-wide ROD. The three stages are as follows: Stage 1, Assemble sufficient data to support decisions such as the need for removal actions, whether to continue with the remedial investigation (RI) process, or whether no further action is required. If the decision is made to continue the RI/FS process, then: Stage 2, Assemble sufficient data to allow for a ROD for interim measures that reduce risks to the human health and the environment. Stage 3, Provide input from the source OU that allows a final ROD to be issued for all OUs in the BCV hydrologic regime. One goal of the RI work plan will be to ensure that sampling operations required for the initial stage are not repeated at later stages. The overall goals of this RI are to define the nature and extent of contamination so that the impact of leachate, surface water runoff, and sediment from the OU I sites on the integrator OU can be evaluated, the risk to human health and the environment can be defined, and the general physical characteristics of the subsurface can be determined such that remedial alternatives can be screened.

Not Available

1993-09-01T23:59:59.000Z

359

The crucial role of Waste-to-Energy technologies in enhanced landfill mining: a technology review  

Science Journals Connector (OSTI)

The novel concepts Enhanced Waste Management (EWM) and Enhanced Landfill Mining (ELFM) intend to place landfilling of waste in a sustainable context. The state of the technology is an important factor in determining the most suitable moment to valorize – either as materials (Waste-to-Product, WtP) or as energy (Waste-to-Energy, WtE) – certain landfill waste streams. The present paper reviews thermochemical technologies (incineration, gasification, pyrolysis, plasma technologies, combinations) for energetic valorization of calorific waste streams, with focus on municipal solid waste (MSW), possibly processed into refuse derived fuel (RDF). The potential and suitability of these thermochemical technologies for ELFM applications are discussed. From this review it is clear that process and waste have to be closely matched, and that some thermochemical processes succeed in recovering both materials and energy from waste. Plasma gasification/vitrification is a viable candidate for combined energy and material valorization, its technical feasibility for MSW/RDF applications (including excavated waste) has been proven on installations ranging from pilot to full scale. The continued advances that are being made in process control and process efficiency are expected to improve the commercial viability of these advanced thermochemical conversion technologies in the near future.

A. Bosmans; I. Vanderreydt; D. Geysen; L. Helsen

2013-01-01T23:59:59.000Z

360

EA-1707: Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste  

Broader source: Energy.gov (indexed) [DOE]

07: Closure of Nonradioactive Dangerous Waste Landfill and 07: Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington EA-1707: Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington Summary This EA evaluates the potential environmental impacts of closing the Nonradioactive Dangerous Waste Landfill and the Solid Waste Landfill. The Washington State Department of Ecology is a cooperating agency in preparing this EA. Public Comment Opportunities None available at this time. Documents Available for Download August 26, 2011 EA-1707: Revised Draft Environmental Assessment Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington May 13, 2010 EA-1707: Draft Environmental Assessment

Note: This page contains sample records for the topic "includes landfill gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Landfill cover performance monitoring using time domain reflectometry  

SciTech Connect (OSTI)

Time domain reflectometry (TDR) systems were installed to monitor soil moisture in two newly constructed landfill covers at the Idaho National Engineering and Environmental Laboratory. Each TDR system includes four vertical arrays with each array consisting of four TDR probes located at depths of 15, 30, 45, and 60 cm. The deepest probes at 60 cm were installed beneath a compacted soil layer to analyze infiltration through the compacted layer. Based on the TDR data, infiltration through the two covers between March and October, 1997 ranged from less than measurable to 1.5 cm. However, due to a prohibition on penetrating the buried waste and resulting limits on probe placement depths, deeper percolation was not evaluated. Some of the advantages found in the application of TDR for infiltration monitoring at this site are the relative low cost and rugged nature of the equipment. Also, of particular importance, the ability to collect frequent moisture measurements allows the capture and evaluation of soil moisture changes resulting from episodic precipitation events. Disadvantages include the inability to install the probes into the waste, difficulties in interpretation of infiltration during freeze/thaw periods, and some excessive noise in the data.

Neher, E.R.; Cotten, G.B. [Parsons Infrastructure & Technology Group, Inc., Idaho Falls, ID (United States); McElroy, D. [Lockheed-Martin Idaho Technologies Company, Idaho Falls, ID (United States)

1998-03-01T23:59:59.000Z

362

How does landfill leachate affect the chemical processes in a lake system downgradient from a landfill site?  

Science Journals Connector (OSTI)

A field study on the geochemical properties of a chemically-stressed limnic environment was performed in Lake Silbersee, which receives leachate water of high inorganic loading from an upgradient landfill site. T...

Thomas Striebel; Wolfgang Schäfer; Stefan Peiffer

1991-01-01T23:59:59.000Z

363

Essays on energy and environmental policy  

E-Print Network [OSTI]

is from biomass, landfill gas, oil, diesel, and solar units.burning of biomass, landfill gases, petroleum, and diesel,which include biomass, landfill gas, other fossil fuels, and

Novan, Kevin Michael

2012-01-01T23:59:59.000Z

364

Metal speciation in landfill leachates with a focus on the influence of organic matter  

SciTech Connect (OSTI)

Highlights: > This study characterises the heavy-metal content in leachates collected from eight landfills in France. > Most of the metals are concentrated in the <30 kDa fraction, while Pb, Cu and Cd are associated with larger particles. > Metal complexation with OM is not sufficient to explain apparent supersaturation of metals with sulphide minerals. - Abstract: This study characterises the heavy-metal content in leachates collected from eight landfills in France. In order to identify heavy metal occurrence in the different size fractions of leachates, a cascade filtration protocol was applied directly in the field, under a nitrogen gas atmosphere to avoid metal oxidation. The results of analyses performed on the leachates suggest that most of the metals are concentrated in the <30 kDa fraction, while lead, copper and cadmium show an association with larger particles. Initial speciation calculations, without considering metal association with organic matter, suggest that leachate concentrations in lead, copper, nickel and zinc are super-saturated with respect to sulphur phases. Speciation calculations that account for metal complexation with organic matter, considered as fulvic acids based on C1(s) NEXAFS spectroscopy, show that this mechanism is not sufficient to explain such deviation from equilibrium conditions. It is therefore hypothesized that the deviation results also from the influence of biological activity on the kinetics of mineral phase precipitation and dissolution, thus providing a dynamic system. The results of chemical analyses of sampled fluids are compared with speciation calculations and some implications for the assessment of metal mobility and natural attenuation in a context of landfill risk assessment are discussed.

Claret, Francis, E-mail: f.claret@brgm.fr [BRGM, 3 avenue C. Guillemin, BP 6009, 45060 Orleans (France); Tournassat, Christophe; Crouzet, Catherine; Gaucher, Eric C. [BRGM, 3 avenue C. Guillemin, BP 6009, 45060 Orleans (France); Schaefer, Thorsten [Karlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Disposal (INE), P.O. Box 3640, 76021 Karlsruhe (Germany); Freie Universitaet Berlin, Institute of Geological Sciences, Department of Earth Sciences, Hydrogeology Group, D-12249 Berlin (Germany); Braibant, Gilles; Guyonnet, Dominique [BRGM, 3 avenue C. Guillemin, BP 6009, 45060 Orleans (France)

2011-09-15T23:59:59.000Z

365

Intelligent Bioreactor Management Information System (IBM-IS) for Mitigation of Greenhouse Gas Emissions  

SciTech Connect (OSTI)

Methane is an important contributor to global warming with a total climate forcing estimated to be close to 20% that of carbon dioxide (CO2) over the past two decades. The largest anthropogenic source of methane in the US is 'conventional' landfills, which account for over 30% of anthropogenic emissions. While controlling greenhouse gas emissions must necessarily focus on large CO2 sources, attention to reducing CH4 emissions from landfills can result in significant reductions in greenhouse gas emissions at low cost. For example, the use of 'controlled' or bioreactor landfilling has been estimated to reduce annual US greenhouse emissions by about 15-30 million tons of CO2 carbon (equivalent) at costs between $3-13/ton carbon. In this project we developed or advanced new management approaches, landfill designs, and landfill operating procedures for bioreactor landfills. These advances are needed to address lingering concerns about bioreactor landfills (e.g., efficient collection of increased CH4 generation) in the waste management industry, concerns that hamper bioreactor implementation and the consequent reductions in CH4 emissions. Collectively, the advances described in this report should result in better control of bioreactor landfills and reductions in CH4 emissions. Several advances are important components of an Intelligent Bioreactor Management Information System (IBM-IS).

Paul Imhoff; Ramin Yazdani; Don Augenstein; Harold Bentley; Pei Chiu

2010-04-30T23:59:59.000Z

366

Methane production during the anaerobic decomposition of composted and raw organic refuse in simulated landfill cells  

E-Print Network [OSTI]

production from landfills if organic waste is composted prior to. The quantities and rates of methane production were measured from simulated landfill cells containing composted and raw simulated refuse. The refuse was composted in an open pile...

West, Margrit Evelyn

1995-01-01T23:59:59.000Z

367

E-Print Network 3.0 - air force landfill Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Driving Forces towards Materials... lack of Waste-to-Energy capacity. 12;9 Austria As Germany, but Ban in force already in 2002. Landfill... Landfill Ban in force already in...

368

11. GEOELECTRICAL CHARACTERIZATION OF COVERED LANDFILL SITES: A PROCESS-ORIENTED MODEL AND  

E-Print Network [OSTI]

in disused quarries or special purpose-built structures but not all past landfill operations were adequately

Meju, Max

369

EXPEDITING THE PATH TO CLOSURE THE CHEMICAL WASTE LANDFILL, SANDIA NATIONAL LABORATORIES, NEW MEXICO  

SciTech Connect (OSTI)

The Chemical Waste Landfill (CWL) at Sandia National Laboratories, New Mexico (SNL/NM) is undergoing closure subject to the requirements of Subtitle C of RCRA. This paper identifies regulatory mechanisms that have and continue to expedite and simplify the closure of the CWL. These include (1) the Environmental Restoration (ER) Programmatic effort to achieve progress quickly with respect to the standard regulatory processes, which resulted in the performance of voluntary corrective measures at the CWL years in advance of the standard process schedule, (2) the management and disposal of CWL remediation wastes and materials according to the risks posed, and (3) the combination of multiple regulatory requirements into a single submittal.

Young, S.G.; Schofield, D.P.; Davis, M.J.; Methvin, R.; Mitchell, M.

2003-02-27T23:59:59.000Z

370

Metal Speciation in Landfill Leachates with a Focus on the Influence of Organic Matter  

SciTech Connect (OSTI)

This study characterizes the heavy-metal content in leachates collected from eight landfills in France. In order to identify heavy metal occurrence in the different size fractions of leachates, a cascade filtration protocol was applied directly in the field, under a nitrogen gas atmosphere to avoid metal oxidation. The results of analyses performed on the leachates suggest that most of the metals are concentrated in the <30 kDa fraction, while lead, copper and cadmium show an association with larger particles. Initial speciation calculations, without considering metal association with organic matter, suggest that leachate concentrations in lead, copper, nickel and zinc are super-saturated with respect to sulphur phases. Speciation calculations that account for metal complexation with organic matter, considered as fulvic acids based on C1(s) NEXAFS spectroscopy, show that this mechanism is not sufficient to explain such deviation from equilibrium conditions. It is therefore hypothesized that the deviation results also from the influence of biological activity on the kinetics of mineral phase precipitation and dissolution, thus providing a dynamic system. The results of chemical analyses of sampled fluids are compared with speciation calculations and some implications for the assessment of metal mobility and natural attenuation in a context of landfill risk assessment are discussed.

F Claret; C Tournassat; C Crouzet; E Gaucher; T Schäfer; G Braibant; D Guyonnet

2011-12-31T23:59:59.000Z

371

REACTION AND COMBUSTION INDICATORS IN MSW LANDFILLS Jeffrey W. Martin1  

E-Print Network [OSTI]

REACTION AND COMBUSTION INDICATORS IN MSW LANDFILLS Jeffrey W. Martin1 ,P.G., R.S., Timothy D, Ohio. ABSTRACT Municipal Solid Waste (MSW) landfills may contain aluminum from residential, particularly aluminum production wastes, may react exothermically with liquid within a landfill and cause

372

Nitrogen removal via nitrite in a sequencing batch reactor treating sanitary landfill leachate  

E-Print Network [OSTI]

Nitrogen removal via nitrite in a sequencing batch reactor treating sanitary landfill leachate, for the automation of a bench-scale SBR treating leachate generated in old landfills. Attention was given 20­30% due to the low biodegradability of organic matter in the leach- ate from old landfills

373

Geosynthetics International, 2010, 17, No.3 Design of a landfill final cover system  

E-Print Network [OSTI]

Geosynthetics International, 2010, 17, No.3 Design of a landfill final cover system T. D. Stark containment, Strength, Stability, Shearbox test, Failure, Final cover system, Landfill REFERENCE: Stark, T. D. & Newman, E. J. (20 I0). Design of a landfill final cover systcm. Geosynthetics [ntemational17, No.3, 124

374

Sepiolite as an Alternative Liner Material in Municipal Solid Waste Landfills  

E-Print Network [OSTI]

Sepiolite as an Alternative Liner Material in Municipal Solid Waste Landfills Yucel Guney1 ; Savas in municipal solid waste landfills. However, natural clays may not always provide good contaminant sorption necessitates addition of kaolinite before being used as a landfill material. The valence of the salt solutions

Aydilek, Ahmet

375

Application of Bayesian inference methods to inverse modeling for contaminant source identification at Gloucester Landfill, Canada  

E-Print Network [OSTI]

identification at Gloucester Landfill, Canada Anna M. Michalak and Peter K. Kitanidis Department of Civil plume at the Gloucester landfill site in Ontario, Canada. This work constitutes the first application]. In this paper, we infer the 1,4-dioxane release history from the Gloucester landfill in Ontario, Canada, based

Michalak, Anna M.

376

Clogging Potential of Tire Shred-Drainage Layer in Landfill Cover Systems Krishna R. Reddy  

E-Print Network [OSTI]

1 Clogging Potential of Tire Shred-Drainage Layer in Landfill Cover Systems Krishna R. Reddy of shredded scrap tire drainage layers in landfill covers. Laboratory clogging tests were conducted using soil to 50 cm. The soil layer consisted of silty clay that is commonly used as cover soil in landfill cover

377

Comparison of four composite landfill liner systems considering leakage rate and mass flux  

E-Print Network [OSTI]

Comparison of four composite landfill liner systems considering leakage rate and mass flux T, Seoul, Republic of Korea ABSTRACT: Performance of four different municipal solid waste landfill liner to evaluate the performance of municipal solid waste (MSW) landfill liner systems. A liner system that allows

378

Stability Analysis for a Landfill Experiencing Elevated Temperatures Timothy D. Stark1  

E-Print Network [OSTI]

Stability Analysis for a Landfill Experiencing Elevated Temperatures Timothy D. Stark1 , F. ASCE, P and stability analyses for a municipal solid waste (MSW) landfill experiencing elevated temperatures due wastes can be disposed of in MSW landfills because this waste is not categorized as hazardous under 40

379

Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark  

Broader source: Energy.gov (indexed) [DOE]

Landfill Reaches 15 Million Tons Disposed - Waste Disposal Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark Shows Success Cleaning Up River Corridor Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark Shows Success Cleaning Up River Corridor July 9, 2013 - 12:00pm Addthis Media Contacts Cameron Hardy, DOE, (509) 376-5365 Cameron.Hardy@rl.doe.gov Mark McKenna, WCH, (509) 372-9032 media@wch-rcc.com RICHLAND, Wash. - The U.S. Department of Energy (DOE) and its contractors have disposed of 15 million tons of contaminated material at the Environmental Restoration Disposal Facility (ERDF) since the facility began operations in 1996. Removing contaminated material and providing for its safe disposal prevents contaminants from reaching the groundwater and the Columbia River. ERDF receives contaminated soil, demolition debris, and solid waste from

380

Radioactive material in the West Lake Landfill: Summary report  

SciTech Connect (OSTI)

The West Lake Landfill is located near the city of St. Louis in Bridgeton, St. Louis County, Missouri. The site has been used since 1962 for disposing of municipal refuse, industrial solid and liquid wastes, and construction demolition debris. This report summarizes the circumstances of the radioactive material in the West Lake Landfill. The radioactive material resulted from the processing of uranium ores and the subsequent by the AEC of processing residues. Primary emphasis is on the radiological environmental aspects as they relate to potential disposition of the material. It is concluded that remedial action is called for. 8 refs., 2 figs., 1 tab.

none,

1988-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "includes landfill gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Sanitary Landfill groundwater monitoring report. First quarter 1993  

SciTech Connect (OSTI)

This report contains analytical data for samples taken during first quarter 1993 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site. The data are submitted in reference to the Sanitary Landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established by the US Environmental Protection Agency, the South Carolina final Primary Drinking Water Standards for lead or the SRS flagging criteria.

Not Available

1993-05-01T23:59:59.000Z

382

Parameters for landfill-liner leak-rate model  

E-Print Network [OSTI]

PARAMETERS FOR LANDFILL-LINER LEAK-RATE MODEL A Thesis by STEVEN CARLTON BAHRT Submitted to the Graduate College of Texas ASM University i n partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 1985 Major... Subject: Civil Engineering PARAMETERS FOR LANDFILL-LINER LEAK-RATE MODEL A Thesis by STEVEN CARLTON BAHRT Approved as to style and content by: Rob nt Lytto (Co-Cha' man of C mmittee) ayne Dunl p (Member) Kink W. Brown (Co-Chairman of Committee...

Bahrt, Steven Carlton

2012-06-07T23:59:59.000Z

383

Model to aid the design of composite landfill liners  

E-Print Network [OSTI]

MODEL TO AID THE DESI(iN OF COMPOSITE LANDFILL LINERS A Thesis by KIFAYATHULLA MOHAMMED Submitted to the School of Graduate Studies Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1993... Major Subject: Safety Engineering MODEL TO AID THE DESIGN OF COMPOSITE LANDFILL LINERS A Thesis by Kifayathulla Mohammed Approved as to style and content by: Kevin J. Mclnnes (Co-chairman of Committee) Richard P. Kon n (Member John P. Wagner...

Mohammed, Kifayathulla

2012-06-07T23:59:59.000Z

384

DOE EM Landfill Workshop and Path Forward - July 2009  

Broader source: Energy.gov (indexed) [DOE]

Teleconference: Teleconference: 2. DOE EM Landfill Workshop & Path Forward Office of Groundwater and Soil Remediation US Department of Energy July 2009 Slides prepared by CRESP DOE EM Landfill Workshop 2 Objective: - Discuss findings & recommendations from ITR visits to DOE facilities - Identify technology gaps and needs to advance EM disposal practice of the future. - Obtain input from experts within and outside of DOE. Panels: Waste subsidence: prediction and impacts Waste forecasting: predicting volumes and WACs Final covers: long-term performance and monitoring Liners: role and need Workshop Approach and Structure * Objective: - Discuss each issue - Evaluate the merits of each issue - Create a prioritized list of technologies needs for Office of

385

Energy, Greenhouse Gas, and Cost Reductions for Municipal Recycling Systems  

Science Journals Connector (OSTI)

Energy, Greenhouse Gas, and Cost Reductions for Municipal Recycling Systems ... An evaluation of the energy, greenhouse gas, and costs savings associated with logistics and infrastructure improvements to a curbside recycling program is presented. ... MSW recycling has been found to be costly for most municipalities compared to landfill disposal. ...

Mikhail Chester; Elliot Martin; Nakul Sathaye

2008-02-08T23:59:59.000Z

386

Biological Removal of Siloxanes from Landfill and Digester Gases  

E-Print Network [OSTI]

volatilize from waste at landfills and wastewater treatment plants (1). As a result, biogas produced, as well as an increase in maintenance costs (6, 7). The presence of VMSs in biogas is thus a challenge recommended by most equipment manufacturers for un- hindered use (6). Of all VMSs in biogas

387

Story Road Landfill Solar Site Evaluation: San Jose  

Broader source: Energy.gov [DOE]

This report describes the findings of a solar site evaluation conducted at the Story Road Landfill (Site) in the City of San Jose, California (City). This evaluation was conducted as part of a larger study to assess solar potential at multiple public facilities within the City.

388

Attenuation of Fluorocarbons Released from Foam Insulation in Landfills  

Science Journals Connector (OSTI)

Lyngby, Denmark, and Department of Civil and Environmental Engineering, Miyazaki University, 1-1 Gakuen Kibanadai Nishi, Miyazaki 889-2192, Japan ... The investigation was performed using organic household waste or refuse excavated from a landfill. ... A:? Organic waste collected from Danish households. ...

Charlotte Scheutz; Yutaka Dote; Anders M. Fredenslund; Hans Mosbæk; Peter Kjeldsen

2007-10-20T23:59:59.000Z

389

Closure Report (CR) for Corrective Action Unit (CAU) 41: Area 27 Landfills with Errata Sheet, Revision 0  

SciTech Connect (OSTI)

The closure report for CAU 41 is just a one page summary listing the coordinates of the landfill which were given at the time (1996) in Nevada State Plan Coordinates - North American Datum of 1983. The drawing of the use restricted site also listed the coordinates in Nevada State Plan Coordinates - North American Datum of 1983. In the ensuing years the reporting of coordinates has been standardized so that all coordinates are reported in the same manner, which is: NAD 27 UTM Zone 11 N, meters. This Errata Sheet updates the coordinate reporting to the currently accepted method and includes an aerial photo showing the landfill with the coordinates listed showing the use restricted area.

Navarro Nevada Environmental Services

2010-08-10T23:59:59.000Z

390

Determination of operating limits for radionuclides for a proposed landfill at Paducah Gaseous Diffusion Plant  

SciTech Connect (OSTI)

The operating limits for radionuclides in sanitary and industrial wastes were determined for a proposed landfill at the Paducah Gaseous Diffusion Plant (PGDP), Kentucky. These limits, which may be very small but nonzero, are not mandated by law or regulation but are needed for rational operation. The approach was based on analyses of the potential contamination of groundwater at the plant boundary and the potential exposure to radioactivity of an intruder at the landfill after closure. The groundwater analysis includes (1) a source model describing the disposal of waste and the release of radionuclides from waste to the groundwater, (2) site-specific groundwater flow and contaminant transport calculations, and (3) calculations of operating limits from the dose limit and conversion factors. The intruder analysis includes pathways through ingestion of contaminated vegetables and soil, external exposure to contaminated soil, and inhalation of suspended activity from contaminated soil particles. In both analyses, a limit on annual effective dose equivalent of 4 mrem (0.04 mSv) was adopted. The intended application of the results is to refine the radiological monitoring standards employed by the PGDP Health Physics personnel to determine what constitutes radioactive wastes, with concurrence of the Commonwealth of Kentucky.

Wang, J.C.; Lee, D.W.; Ketelle, R.H.; Lee, R.R.; Kocher, D.C.

1994-05-24T23:59:59.000Z

391

Operating limit study for the proposed solid waste landfill at Paducah Gaseous Diffusion Plant  

SciTech Connect (OSTI)

A proposed solid waste landfill at Paducah Gaseous Diffusion Plant (PGDP) would accept wastes generated during normal operations that are identified as non-radioactive. These wastes may include small amounts of radioactive material from incidental contamination during plant operations. A site-specific analysis of the new solid waste landfill is presented to determine a proposed operating limit that will allow for waste disposal operations to occur such that protection of public health and the environment from the presence of incidentally contaminated waste materials can be assured. Performance objectives for disposal were defined from existing regulatory guidance to establish reasonable dose limits for protection of public health and the environment. Waste concentration limits were determined consistent with these performance objectives for the protection of off-site individuals and inadvertent intruders who might be directly exposed to disposed wastes. Exposures of off-site individuals were estimated using a conservative, site-specific model of the groundwater transport of contamination from the wastes. Direct intrusion was analyzed using an agricultural homesteader scenario. The most limiting concentrations from direct intrusion or groundwater transport were used to establish the concentration limits for radionuclides likely to be present in PGDP wastes.

Lee, D.W.; Wang, J.C.; Kocher, D.C.

1995-06-01T23:59:59.000Z

392

Hydrologic studies of multilayered landfill covers for closure of waste landfills at Los Alamos, New Mexico  

SciTech Connect (OSTI)

The Los Alamos National Laboratory examined water balance relationships for four different landfill cover designs containing engineered barriers. These field experiments were performed at Los Alamos, New Mexico, USA, in 1.0- by 10.0-m plots with downhill slopes of 5, 10, 15 and 25%. Field measurements of seepage, precipitation, interflow, runoff, and soil water content were collected in each of the 16 plots representing four slopes each with four cover designs: Conventional, EPA, Loam Capillary Barrier and Clay Loam Capillary Barrier. A seepage collection system was installed beneath each cover design to evaluate the influence of slope length on seepage using a series of four metal pans filled with medium gravel that were placed end-to-end in the bottom of each field plot. An automated waterflow datalogging system was used to collect hourly seepage, interflow and runoff data and consisted of 100 100-liter tanks, each of which was equipped with an ultrasonic liquid-level sensor and a motor-operated ball valve used to drain the tank. Soil water content was routinely monitored every six hours at each of 212 locations throughout the 16 plots with time domain reflectrometry (TDR) techniques using an automated and multiplexed measurement system.

Nyhan, J.W.; Langhorst, G.J.; Martin, C.E.; Martinez, J.L.; Schofield, T.G.

1993-06-01T23:59:59.000Z

393

Town of Hague landfill reclamation study: Research ways to increase waste heating value and reduce waste volume. Final report  

SciTech Connect (OSTI)

Monitored composing was studied as a method for reducing the quantity of waste requiring disposed from a landfill reclamation project. After each of two re-screening steps, composted {open_quotes}soil{close_quotes} from a single long windrow of varying depths and moisture content was subjected to analytical testing to determine its suitability to remain as backfill in a reclaimed landfill site. The remaining uncomposted waste was combusted at a waste-to-energy facility to determine if Btu values were improved. Results indicate that a full-scale composting operation could result in a net decrease of approximately 11 percent in disposal costs. The Btu value of the reclaimed waste was calculated to be 4,500 to 5,000 Btu/lb. The feasibility of composting reclaimed waste at other landfill reclamation projects will depend upon site-specific technical and economic factors, including size and nature of the organic fraction of the waste mass, local processing costs, and the cost of waste disposal alternatives.

Salerni, E. [SSB Environmental Inc., Albany, NY (United States)

1997-01-01T23:59:59.000Z

394

Power generation method including membrane separation  

DOE Patents [OSTI]

A method for generating electric power, such as at, or close to, natural gas fields. The method includes conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas by means of a membrane separation step. This step creates a leaner, sweeter, drier gas, which is then used as combustion fuel to run a turbine, which is in turn used for power generation.

Lokhandwala, Kaaeid A. (Union City, CA)

2000-01-01T23:59:59.000Z

395

Application of landfill gas as a liquefied natural gas fuel for refuse trucks in Texas.  

E-Print Network [OSTI]

??The energy consumption throughout the world has increased substantially over the past few years and the trend is projected to continue indefinitely. The primary sources… (more)

Gokhale, Bhushan

2007-01-01T23:59:59.000Z

396

Distributed Generation Study/Modern Landfill | Open Energy Information  

Open Energy Info (EERE)

Landfill Landfill < Distributed Generation Study Jump to: navigation, search Study Location Model City, New York Site Description Other Utility Study Type Long-term Monitoring Technology Internal Combustion Engine Prime Mover Caterpillar G3516 Heat Recovery Systems Built-in Fuel Biogas System Installer Innovative Energy Systems System Enclosure Dedicated Shelter System Application Combined Heat and Power Number of Prime Movers 7 Stand-alone Capability Seamless Power Rating 5600 kW5.6 MW 5,600,000 W 5,600,000,000 mW 0.0056 GW 5.6e-6 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 28000000 Cooling Capacity (Refrig/Tons) Origin of Controller 3rd Party Off-the-Shelf Component Integration Customer Assembled Start Date 2004/12/31 Monitoring Termination Date 1969/12/31

397

Emissions inventories for MSW landfills under Title V  

SciTech Connect (OSTI)

In the past, many states were either not concerned with, or unaware that, municipal solid waste landfills (MSWLFs) were potential sources of regulated air pollutants. This philosophy is rapidly changing, in part due to US EPA policy documents concerning (and defining) fugitive and non-fugitive emissions from MSWLFs, the attention given to the newly released New Source Performance Standards and a recent lawsuit that gained national notoriety involving landfill air emissions and air permitting applicability issues. Most states now recognize that MSWLFs are sources of regulated air pollutants and are subject to permitting requirements (and pollutant emission fees) as other industries; i.e., state-level minor- and major-source operating permit programs, and the 1990 Clean Air Act Amendments Title V Operating Permits Program (Title V).

Vogt, W.G. [SCS Engineers, Reston, VA (United States); Peyser, T.R. [SCS Engineers, Birmingham, AL (United States); Hamilton, S.M. [SCS Engineers, Tampa, FL (United States)

1996-05-01T23:59:59.000Z

398

The use of kaolinite/zeolite mixtures for landfill liners  

Science Journals Connector (OSTI)

The use of kaolinite/zeolite mixtures as alternative landfill materials has been studied. The ratios of kaolinite/zeolite used were K/Z = 0.1, K/Z = 0.2 and K/Z = 0.3. To determine the geotechnical and physicochemical properties of the mixtures, their optimum moisture content, which provides the best compression out in the field, was determined by a compaction test. Also, tests for unconfined compression strength, hydraulic conductivity and consolidation were carried out. As a result, the optimum mixture was found to be K/Z = 0.2. To test the effect of contaminants, this optimum mixture was contaminated with Na, Ca, Pb, and Cu, and tests of the specific gravity, liquid and plastic limits, unconfined compression strength, consolidation, pH, and electrical conductivity were performed. It is concluded that the K/Z = 0.20 mixture has high absorption capacity and can be used in the landfill liner materials.

Yucel Guney; Savas Koparel

2005-01-01T23:59:59.000Z

399

Zero landfill, zero waste: the greening of industry in Singapore  

Science Journals Connector (OSTI)

This paper reviews how a land-scarce city-state is trying to achieve its goals of zero landfill and zero waste through the greening of industry. The main challenges Singapore confronts in its solid waste management are an increasing volume of industrial waste generated, a shortage of land for landfills, and escalating costs of incineration plants. To green its industries, there has been a coordinated effort to develop a recycling industry and to initiate public-private partnerships that will advance environmental technologies. Case studies on the steel, construction, waste incineration, and the food retail industry illustrate the environmental progress that has been made. These cases show also the crucial role played by the government in accelerating the greening of industry by facilitating the formation of strategic collaborations among organisations, and by reconciling the twin objectives of sustainability and profitability.

Josephine Chinying Lang

2005-01-01T23:59:59.000Z

400

Evaluation of three geophysical methods to locate undocumented landfills  

E-Print Network [OSTI]

is to investigate the ability of these two techniques and ground penetrating radar to define undocumented landfill boundaries. Terrain conductivity senses the contrast in the electrical conductivity between filled and undisturbed areas. A proton precession... operating continuously for 20 years determined that electrical conductivity techniques work well in thick deposits of area fill and poorly or not at all on thin trench fill areas. Furthermore, length of burial time does not correlate with strength...

Brand, Stephen Gardner

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "includes landfill gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Scaling methane oxidation: From laboratory incubation experiments to landfill cover field conditions  

SciTech Connect (OSTI)

Evaluating field-scale methane oxidation in landfill cover soils using numerical models is gaining interest in the solid waste industry as research has made it clear that methane oxidation in the field is a complex function of climatic conditions, soil type, cover design, and incoming flux of landfill gas from the waste mass. Numerical models can account for these parameters as they change with time and space under field conditions. In this study, we developed temperature, and water content correction factors for methane oxidation parameters. We also introduced a possible correction to account for the different soil structure under field conditions. These parameters were defined in laboratory incubation experiments performed on homogenized soil specimens and were used to predict the actual methane oxidation rates to be expected under field conditions. Water content and temperature corrections factors were obtained for the methane oxidation rate parameter to be used when modeling methane oxidation in the field. To predict in situ measured rates of methane with the model it was necessary to set the half saturation constant of methane and oxygen, K{sub m}, to 5%, approximately five times larger than laboratory measured values. We hypothesize that this discrepancy reflects differences in soil structure between homogenized soil conditions in the lab and actual aggregated soil structure in the field. When all of these correction factors were re-introduced into the oxidation module of our model, it was able to reproduce surface emissions (as measured by static flux chambers) and percent oxidation (as measured by stable isotope techniques) within the range measured in the field.

Abichou, Tarek, E-mail: abichou@eng.fsu.edu [Florida State University, Tallahassee, FL 32311 (United States); Mahieu, Koenraad; Chanton, Jeff [Florida State University, Tallahassee, FL 32311 (United States); Romdhane, Mehrez; Mansouri, Imane [Unite de Recherche M.A.C.S., Ecole Nationale d'Ingenieurs de Gabes, Route de Medenine, 6029 Gabes (Tunisia)

2011-05-15T23:59:59.000Z

402

488-4D ASH LANDFILL CLOSURE CAP HELP MODELING  

SciTech Connect (OSTI)

At the request of Area Completion Projects (ACP) in support of the 488-4D Landfill closure, the Savannah River National Laboratory (SRNL) has performed Hydrologic Evaluation of Landfill Performance (HELP) modeling of the planned 488-4D Ash Landfill closure cap to ensure that the South Carolina Department of Health and Environmental Control (SCDHEC) limit of no more than 12 inches of head on top of the barrier layer (saturated hydraulic conductivity of no more than 1.0E-05 cm/s) in association with a 25-year, 24-hour storm event is not projected to be exceeded. Based upon Weber 1998 a 25-year, 24-hour storm event at the Savannah River Site (SRS) is 6.1 inches. The results of the HELP modeling indicate that the greatest peak daily head on top of the barrier layer (i.e. geosynthetic clay liner (GCL) or high density polyethylene (HDPE) geomembrane) for any of the runs made was 0.079 inches associated with a peak daily precipitation of 6.16 inches. This is well below the SCDHEC limit of 12 inches.

Phifer, M.

2014-11-17T23:59:59.000Z

403

Extension of the semi-empirical correlation for the effects of pipe diameter and internal surface roughness on the decompression wave speed to include High Heating Value Processed Gas mixtures  

Science Journals Connector (OSTI)

Abstract The decompression wave speed, which is used throughout the pipeline industry in connection with the Battelle two-curve method for the control of propagating ductile fracture, is typically calculated using GASDECOM (GAS DECOMpression). GASDECOM, developed in the 1970's, idealizes the decompression process as isentropic and one-dimensional, taking no account of pipe wall frictional effects or pipe diameter. Previous shock tube tests showed that decompression wave speeds in smaller diameter and rough pipes are consistently slower than those predicted by GASDECOM for the same conditions of mixture composition and initial pressure and temperature. Previous analysis based on perturbation theory and the fundamental momentum equation revealed a correction term to be subtracted from the ‘idealized’ value of the decompression speed calculated by GASDECOM. One parameter in this correction term involves a dynamic spatial pressure gradient of the outflow at the rupture location. While this is difficult to obtain without a shock tube or actual rupture test, data from 14 shock tube tests, as well as from 14 full scale burst tests involving a variety of gas mixture compositions, were analyzed to correlate the variation of this pressure gradient with two characteristics of the gas mixture, namely; the molecular weight and the higher heating value (HHV). For lean to moderately-rich gas mixes, the developed semi-empirical correlation was found to fit very well the experimentally determined decompression wave speed curve. For extremely rich gas mixes, such as High Heating Value Processed Gas (HHVPG) mixtures of HHV up to 58 MJ/m3, it was found that it overestimates the correction term. Therefore, additional shock tube tests were conducted on (HHVPG) mixes, and the previously developed semi-empirical correlation was extended (revised) to account for such extremity in the richness of the gas mixtures. The newly developed semi-empirical correlation covers a wider range of natural gas mixtures from as lean as pure methane up to HHVPG mixtures of HHV = 58 MJ/m3.

K.K. Botros; L. Carlson; M. Reed

2013-01-01T23:59:59.000Z

404

SERVICE LIFE OF A LANDFILL LINER SYSTEM SUBJECTED TO ELEVATED TEMPERATURES  

E-Print Network [OSTI]

SERVICE LIFE OF A LANDFILL LINER SYSTEM SUBJECTED TO ELEVATED TEMPERATURES Timothy D. Stark, Ph and possible publication in the ASCE Journal of Hazardous, Toxic, and Radioactive Waste Management April 14-Engineered-Components-ServiceLife-Submission_2.pdf #12;2 SERVICE LIFE OF LANDFILL LINER SYSTEMS SUBJECTED TO ELEVATED1 TEMPERATURES2 Timothy D

405

Monitoring of Landfill Leachate Dispersion Using Reflectance Spectroscopy and Ground-Penetrating Radar  

Science Journals Connector (OSTI)

Monitoring of Landfill Leachate Dispersion Using Reflectance Spectroscopy and Ground-Penetrating Radar ... The generation and dispersion of leachate from landfills are slow, unsteady, nonuniform, and sometimes discontinuous depending on the degree of compaction of the fill, seasonal changes in the water supply to the system, and changes in the capping and contaminant walls (2). ...

T. Splajt; G. Ferrier; L. E. Frostick

2003-08-12T23:59:59.000Z

406

Landfill Disamenities And Better Utilization of Waste Resources Presented to the Wisconsin Governor's Task Force on Waste Materials Recovery  

E-Print Network [OSTI]

1 Landfill Disamenities And Better Utilization of Waste Resources Presented to the Wisconsin on Waste Materials Recovery and Disposal who have invited me to address you today on landfill disamenities in New York State in the 1960's. We had many problems with polluting solid waste dumps, landfill fires

Columbia University

407

DESIGN OF A FAILED LANDFILL SLOPE By: Timothy D. Stark, W. Douglas Evans-, and Paul E. Sherry'  

E-Print Network [OSTI]

DESIGN OF A FAILED LANDFILL SLOPE 1 ~) ~ ~ By: Timothy D. Stark, W. Douglas Evans-, and Paul E solid waste landfill in which lateral displacements of up to 900 ft (275 m) and vertical settlements municipal solid waste landfill occupies 135 acres (546 km 2 ) approximately 9 miles (15.3 km) n

408

TECHNICAL REPORTS The greenhouse gas (GHG) impact of composting a range  

E-Print Network [OSTI]

TECHNICAL REPORTS 1396 The greenhouse gas (GHG) impact of composting a range of potential by composting and GHG emissions during composting. The primary carbon credits associated with composting storage lagoons and landfills with no gas collection mechanisms. The composting process is a source of GHG

Brown, Sally

409

Short mechanical biological treatment of municipal solid waste allows landfill impact reduction saving waste energy content  

Science Journals Connector (OSTI)

Abstract The aim of this work was to evaluate the effects of full scale MBT process (28 d) in removing inhibition condition for successive biogas (ABP) production in landfill and in reducing total waste impact. For this purpose the organic fraction of MSW was treated in a full-scale MBT plant and successively incubated vs. untreated waste, in simulated landfills for one year. Results showed that untreated landfilled-waste gave a total ABP reduction that was null. On the contrary MBT process reduced ABP of 44%, but successive incubation for one year in landfill gave a total ABP reduction of 86%. This ABP reduction corresponded to a MBT process of 22 weeks length, according to the predictive regression developed for ABP reduction vs. MBT-time. Therefore short MBT allowed reducing landfill impact, preserving energy content (ABP) to be produced successively by bioreactor technology since pre-treatment avoided process inhibition because of partial waste biostabilization.

Barbara Scaglia; Silvia Salati; Alessandra Di Gregorio; Alberto Carrera; Fulvia Tambone; Fabrizio Adani

2013-01-01T23:59:59.000Z

410

A Low Carbon Development Guide for Local Government Actions in China  

E-Print Network [OSTI]

commercial); percentage of landfill gas (methane) that islevel. ? Percentage of landfill gas (methane) that iscarbon emissions: landfill gas capture. Landfill gas is

Zheng, Nina

2012-01-01T23:59:59.000Z

411

Last spring, an Ohio waste slope collapsed, displacing 1.5 million cu yd of waste. Remedial measures can prevent similar failures at ~~grandfathered" landfills.  

E-Print Network [OSTI]

measures can prevent similar failures at ~~grandfathered" landfills. r I n the early morning hours of March of "grandfathered" landfill slopes. (Grandfathered landfills do not have an engineered liner system.) Because following case history are ap- plicable to the design, operation and expan- sion of many landfills. BEFORE

412

Fuel gas conditioning process  

DOE Patents [OSTI]

A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

Lokhandwala, Kaaeid A. (Union City, CA)

2000-01-01T23:59:59.000Z

413

Feasibility Study of Economics and Performance of Solar Photovoltaics at the Refuse Hideaway Landfill in Middleton, Wisconsin  

SciTech Connect (OSTI)

This report presents the results of an assessment of the technical and economic feasibility of deploying a photovoltaics (PV) system on a brownfield site at the Refuse Hideaway Landfill in Middleton, Wisconsin. The site currently has a PV system in place and was assessed for further PV installations. The cost, performance, and site impacts of different PV options were estimated. The economics of the potential systems were analyzed using an electric rate of $0.1333/kWh and incentives offered by the State of Wisconsin and by the serving utility, Madison Gas and Electric. According to the site production calculations, the most cost-effective system in terms of return on investment is the thin-film fixed-tilt technology. The report recommends financing options that could assist in the implementation of such a system.

Salasovich, J.; Mosey, G.

2011-08-01T23:59:59.000Z

414

Impact of Siloxane Impurities on the Performance of an Engine Operating on Renewable Natural Gas  

Science Journals Connector (OSTI)

Impact of Siloxane Impurities on the Performance of an Engine Operating on Renewable Natural Gas ... Biogas from sludge biodegradation in wastewater treatment plants (WWTP) and landfill gas (LFG) generated from the decomposition of solid waste in landfills are both promising renewable fuels, as they contain a large fraction of methane, 40–70% by volume, the rest being CO2, together with smaller amounts of other gases like O2, N2, and Ar. ... In these studies two Honda EU2000i gasoline electric generators were utilized. ...

Nitin Nair; Xianwei Zhang; Jorge Gutierrez; Jack Chen; Fokion Egolfopoulos; Theodore Tsotsis

2012-11-13T23:59:59.000Z

415

Pump apparatus including deconsolidator  

DOE Patents [OSTI]

A pump apparatus includes a particulate pump that defines a passage that extends from an inlet to an outlet. A duct is in flow communication with the outlet. The duct includes a deconsolidator configured to fragment particle agglomerates received from the passage.

Sonwane, Chandrashekhar; Saunders, Timothy; Fitzsimmons, Mark Andrew

2014-10-07T23:59:59.000Z

416

Recovery Act milestone: Excavation begins at Manhattan Project landfill  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Recovery Act milestone Recovery Act milestone Recovery Act milestone: Excavation begins at Manhattan Project landfill The six-acre site contains a series of trenches used from 1944 to 1948 to dispose of hazardous and non-hazardous trash from Manhattan Project labs and buildings. July 1, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

417

Sanitary landfill local-scale flow and transport modeling in support of alternative concentrations limit demonstrations, Savannah River Site  

SciTech Connect (OSTI)

The Savannah River Site (SRS) is a Department of Energy (DOE) facility located near Aiken, South Carolina which is currently operated and managed by Westinghouse Savannah River Company (WSRC). The Sanitary Landfill (Sanitary Landfill) at the SRS is located approximately 2,000 feet Northwest of Upper Three Runs Creek (UTRC) on an approximately 70 acre site located south of Road C between the SRS B-Area and UTRC. The Sanitary Landfill has been receiving wastes since 1974 and operates as an unlined trench and fill operation. The original landfill site was 32 acres. This area reached its capacity around 1987 and a Northern Expansion of 16 acres and a Southern Expansion of 22 acres were added in 1987. The Northern Expansion has not been used for waste disposal to date and the Southern Expansion is expected to reach capacity in 1992 or 1993. The waste received at the Sanitary Landfill is predominantly paper, plastics, rubber, wood, metal, cardboard, rags saturated with degreasing solvents, pesticide bags, empty cans, and asbestos in bags. The landfill is not supposed to receive any radioactive wastes. However, tritium has been detected in the groundwater at the site. Gross alpha and gross beta are also evaluated at the landfill. The objectives of this modeling study are twofold: (1) to create a local scale Sanitary Landfill flow model to study hydraulic effects resulting from capping the Sanitary Landfill; and (2) to create a Sanitary Landfill local scale transport model to support ACL Demonstrations for a RCRA Part B Permit Renewal.

Kelly, V.A.; Beach, J.A.; Statham, W.H.; Pickens, J.F. [INTERA, Inc., Austin, TX (United States)

1993-02-19T23:59:59.000Z

418

Case Study - Liquefied Natural Gas  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Environmental Environmental Science Enviro Express Kenworth LNG tractor. Connecticut Clean Cities Future Fuels Project Case Study - Liquefied Natural Gas As a part of the U.S. Department of Energy's broad effort to develop cleaner transportation technologies that reduce U.S. dependence on imported oil, this study examines advanced 2011 natural gas fueled trucks using liquefied natural gas (LNG) replacing older diesel fueled trucks. The trucks are used 6 days per week in regional city-to-landfill long hauls of incinerator waste with two fills per day. This is a workable fit for the limited range LNG trucks. Reduction of fuel costs and harmful emissions relative to the replaced trucks are significant. Introduction The American Recovery and Reinvestment Act legislation

419

EA-0767: Construction and Experiment of an Industrial Solid Waste Landfill  

Broader source: Energy.gov (indexed) [DOE]

767: Construction and Experiment of an Industrial Solid Waste 767: Construction and Experiment of an Industrial Solid Waste Landfill at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio EA-0767: Construction and Experiment of an Industrial Solid Waste Landfill at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio SUMMARY This EA evaluates the environmental impacts of a proposal to construct and operate a solid waste landfill within the boundary at the U.S. Department of Energy's Portsmouth Gaseous Diffusion plant in Piketon, Ohio. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD October 25, 1995 EA-0767: Finding of No Significant Impact Construction and Experiment of an Industrial Solid Waste Landfill at Portsmouth Gaseous Diffusion Plant October 25, 1995 EA-0767: Final Environmental Assessment

420

Removal of organic and inorganic compounds from landfill leachate using reverse osmosis  

Science Journals Connector (OSTI)

The main objective of this work was to evaluate an effectiveness of removing organic and inorganic pollutants from landfill leachate in a long-term reverse osmosis (RO) study. Investigations were carried out...4 ...

I. A. Talalaj

2014-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "includes landfill gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

One?dimensional Seismic Analysis of a Solid?Waste Landfill  

Science Journals Connector (OSTI)

Analysis of the seismic performance of solid waste landfill follows generally the same procedures for the design of embankment dams even if the methods and safety requirements should be different. The characterization of waste properties for seismic design is difficult due the heterogeneity of the material requiring the procurement of large samples. The dynamic characteristics of solid waste materials play an important role on the seismic response of landfill and it also is important to assess the dynamic shear strengths of liner materials due the effect of inertial forces in the refuse mass. In the paper the numerical results of a dynamic analysis are reported and analysed to determine the reliability of the common practice of using 1D analysis to evaluate the seismic response of a municipal solid?waste landfill. Numerical results indicate that the seismic response of a landfill can vary significantly due to reasonable variations of waste properties fill heights site conditions and design rock motions.

Francesco Castelli; Valentina Lentini; Michele Maugeri

2008-01-01T23:59:59.000Z

422

Development of a landfill model to prioritize design and operating objectives  

Science Journals Connector (OSTI)

The application of scientifically based decision making tools to help address solid waste management issues dates back to the early 1960s. Researchers continue to use operations research tools to help optimize landfill

K. V. H. Ohman; J. P. A Hettiaratchi…

2007-12-01T23:59:59.000Z

423

Overburden effects on waste compaction and leachate generation in municipal landfills  

E-Print Network [OSTI]

This thesis presents a model to predict the effects of overburden pressure on the formation of leachate within municipal solid waste landfills. In addition, it estimates the compaction and subsequent settlement that the waste will undergo due...

Mehevec, Adam Wade

2012-06-07T23:59:59.000Z

424

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

role of hydrogen in landfill gas utilization. Sacramento,landfills (yielding “landfill gas”) and livestock-manure-Diverted Methane in landfill gas Methane in biogas from

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

425

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

role of hydrogen in landfill gas utilization. Sacramento,landfills (yielding “landfill gas”) and livestock-manure-Diverted Methane in landfill gas Methane in biogas from

2007-01-01T23:59:59.000Z

426

Ground-water monitoring compliance plan for the Hanford Site Solid Waste Landfill  

SciTech Connect (OSTI)

Washington state regulations required that solid waste landfill facilities have ground-water monitoring programs in place by May 27, 1987. This document describes the well locations, installation, characterization studies and sampling and analysis plan to be followed in implementing the ground-water monitoring program at the Hanford Site Solid Waste Landfill (SWL). It is based on Washington Administrative Code WAC 173-304-490. 11 refs., 19 figs., 4 tabs.

Fruland, R.M.

1986-10-01T23:59:59.000Z

427

Field versus laboratory characterization of clay deposits for use as in situ municipal landfill liners  

E-Print Network [OSTI]

FIELD VERSUS LABORATORY CHARACTERIZATION OF CLAY DEPOSITS FOR USE AS IN SITU MUNICIPAL LANDFILL LINERS A Thesis by SHARON ELIZABETH WECHSLER Submitted to the Office of Graduate Studies Texas Aa? University in partial fulfillment... of the requirement for the degree of . KASTER OF SCIENCE Nay 1990 Major Subject: Geology FIELD VERSUS LABORATORY CHARACTERIZATION OF CLAY DEPOSITS FOR USE AS IN SITU MUNICIPAL LANDFILL LINERS A Thesis by SHARON ELIZABETH WECHSLER Approved as to style...

Wechsler, Sharon Elizabeth

2012-06-07T23:59:59.000Z

428

A new technique to monitor ground-water quality at municipal solid waste landfills  

E-Print Network [OSTI]

A NEW TECHNIQUE TO MONITOR GROUND-WATER EQUALITY AT MUNICIPAL SOLID WASTE LANDFILLS A Thesis by STEVEN CHARLES HART Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE May 1989 Major Subject: Geology A NEW TECHNIIIUE TO MONITOR GROUND-WATER IIUALITY AT MUNICIPAL SOLID WASTE LANDFILLS A Thesis by STEVEN CHARLES HART Approved as to style and content by: Christo her C. Mathewson (Chair...

Hart, Steven Charles

2012-06-07T23:59:59.000Z

429

Feasibility Study of Economics and Performance of Solar Photovoltaics at Johnson County Landfill  

SciTech Connect (OSTI)

The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Johnson County Landfill in Shawnee, Kansas, for a feasibility study of renewable energy production. Citizens of Shawnee, city planners, and site managers are interested in redevelopment uses for landfills in Kansas that are particularly well suited for grid-tied solar photovoltaic (PV) installation. This report assesses the Johnson County Landfill for possible grid-tied PV installations and estimates the cost, performance, and site impacts of three different PV options: crystalline silicon (fixed tilt), crystalline silicon (single-axis tracking), and thin film (fixed tilt). Each option represents a standalone system that can be sized to use an entire available site area. In addition, the report outlines financing options that could assist in the implementation of a system. The feasibility of PV systems installed on landfills is highly impacted by the available area for an array, solar resource, operating status, landfill cap status, distance to transmission lines, and distance to major roads. The report findings are applicable to other landfills in the surrounding area.

Salasovich, J.; Mosey, G.

2012-01-01T23:59:59.000Z

430

Growth and biomass of Populus irrigated with landfill leachate  

Science Journals Connector (OSTI)

Resource managers are challenged with waste disposal and leachate produced from its degradation. Poplar (Populus spp.) trees offer an opportunity for ecological leachate disposal as an irrigation source for managed tree systems. Our objective was to irrigate Populus trees with municipal solid waste landfill leachate or fertilized well water (control) (N, P, K) during the 2005 and 2006 growing seasons and test for differences in tree height, diameter, volume, and biomass of leaves, stems, branches, and roots. The trees were grown at the Oneida County Landfill located 6 km west of Rhinelander, Wisconsin, USA (45.6°N, 89.4°W). Eight clones belonging to four genomic groups were tested: NC13460, NC14018 [(Populus trichocarpa Torr. & Gray × Populus deltoides Bartr. ex Marsh) × P. deltoides ‘BC1’]; NC14104, NC14106, DM115 (P. deltoides × Populus maximowiczii A. Henry ‘DM’); DN5 (P. deltoides × Populus nigra L. ‘DN’); NM2, NM6 (P. nigra × P. maximowiczii ‘NM’). The survival rate for each of the irrigation treatments was 78%. The total aboveground biomass ranged from 0.51 to 2.50 Mg ha?1, with a mean of 1.57 Mg ha?1. The treatment × clone interaction was not significant for tree diameter, total volume, dry mass of the stump or basal roots, or root mass fraction (P > 0.05). However, the treatment × clone interaction was significant for height, total tree dry mass, aboveground dry mass, belowground dry mass, and dry mass of the leaves, stems + branches (woody), and lateral roots (P < 0.05). There was broad clonal variation within the BC1 and DM genomic groups, with genotypes performing differently for treatments. In contrast, the performance of the NM and DN genomic groups was relatively stable across treatments, with clonal response to irrigation being similar regardless of treatment. Nevertheless, selection at the clone level also was important. For example, NC14104 consistently performed better when irrigated with leachate compared with water, while NC14018 responded better to water than leachate. Overall, these data will serve as a basis for researchers and resource managers making decisions about future leachate remediation projects.

Jill A. Zalesny; Ronald S. Zalesny Jr.; David R. Coyle; Richard B. Hall

2007-01-01T23:59:59.000Z

431

Gas sensor incorporating a porous framework  

DOE Patents [OSTI]

The disclosure provides sensor for gas sensing including CO.sub.2 gas sensors comprising a porous framework sensing area for binding an analyte gas.

Yaghi, Omar M; Czaja, Alexander U; Wang, Bo; Galatsis, Kosmas; Wang, Kang L; Furukawa, Hiroyasu

2014-05-27T23:59:59.000Z

432

Transmission line including support means with barriers  

DOE Patents [OSTI]

A gas insulated transmission line includes an elongated outer sheath, a plurality of inner conductors disposed within and extending along the outer sheath, and an insulating gas which electrically insulates the inner conductors from the outer sheath. A support insulator insulatably supports the inner conductors within the outer sheath, with the support insulator comprising a main body portion including a plurality of legs extending to the outer sheath, and barrier portions which extend between the legs. The barrier portions have openings therein adjacent the main body portion through which the inner conductors extend.

Cookson, Alan H. (Pittsburgh, PA)

1982-01-01T23:59:59.000Z

433

CCA-Treated wood disposed in landfills and life-cycle trade-offs with waste-to-energy and MSW landfill disposal  

E-Print Network [OSTI]

CCA-Treated wood disposed in landfills and life-cycle trade-offs with waste-to-energy and MSW in waste-to-energy (WTE) facilities. In other countries, the predominant disposal option for wood, others have not, and the product continues to enter the waste stream from construction, demolition

Florida, University of

434

Gas Separations using Ceramic Membranes  

SciTech Connect (OSTI)

This project has been oriented toward the development of a commercially viable ceramic membrane for high temperature gas separations. A technically and commercially viable high temperature gas separation membrane and process has been developed under this project. The lab and field tests have demonstrated the operational stability, both performance and material, of the gas separation thin film, deposited upon the ceramic membrane developed. This performance reliability is built upon the ceramic membrane developed under this project as a substrate for elevated temperature operation. A comprehensive product development approach has been taken to produce an economically viable ceramic substrate, gas selective thin film and the module required to house the innovative membranes for the elevated temperature operation. Field tests have been performed to demonstrate the technical and commercial viability for (i) energy and water recovery from boiler flue gases, and (ii) hydrogen recovery from refinery waste streams using the membrane/module product developed under this project. Active commercializations effort teaming with key industrial OEMs and end users is currently underway for these applications. In addition, the gas separation membrane developed under this project has demonstrated its economical viability for the CO2 removal from subquality natural gas and landfill gas, although performance stability at the elevated temperature remains to be confirmed in the field.

Paul KT Liu

2005-01-13T23:59:59.000Z

435

Appendix B Landfill Inspection Forms and Survey Data  

Office of Legacy Management (LM)

This page intentionally left blank This page intentionally left blank Rocky Flats Site Original Landfill - Settlement Plates Monitoring Quarterly Survey March 26, 2010 Comparison to Previous Survey December 15, 2009 03-26-10 OBSERVATIONS DELTA DELTA DELTA 12-15-09 OBSERVATIONS POINT NUMBER NORTHING EASTING ELEVATION DESCRIPTION NORTHING EASTING ELEVATION POINT NUMBER NORTHING EASTING ELEVATION DESCRIPTION 15053 747913.6883 2082233.082 6005.91 N-RIM-PIPE-AA 0.00 -0.02 -0.02 76527 747913.6913 2082233.064 6005.88 PIPE-N-RIM-AA 15052 747644.9257 2081851.191 5975.35 N-RIM-PIPE-BB -0.02 -0.01 -0.03 76528 747644.9087 2081851.179 5975.32 PIPE-N-RIM-BB 15059 747883.3477 2081666.073 6019.61 N-RIM-PIPE-CC 0.01 0.00 -0.01 76515 747883.3557 2081666.077 6019.59 PIPE-N-RIM-CC 15058 747803.4731 2081642.34 6006.10 N-RIM-PIPE-DD

436

Field Performance of Three Compacted Clay Landfill Covers  

SciTech Connect (OSTI)

A study was conducted at sites in subtropical Georgia, seasonal and humid Iowa, and arid southeastern California to evaluate the field hydrology of compacted clay covers for final closure of landfills.Water balance of the covers was monitored with large (10 by 20 m), instrumented drainage lysimeters for 2 to 4 yr. Initial drainage at the Iowa and California sites was ,32 mm yr21 (i.e., unit gradient flow for a hydraulic conductivity of 1027 cm s21, the regulatory standard for the clay barriers in this study); initial drainage rate at the Georgia site was about 80 mm yr21. The drainage rate at all sites increased by factors ranging from 100 to 750 during the monitoring periods and in each case the drainage rate exceeded 32 mm yr21 by the end of the monitoring period. The drainage rates developed a rapid response to precipitation events, suggesting that increases in drainage rate were the result of preferential flow. Although no direct observations of preferential flow paths were made, field measurements of water content and temperature at all three sites suggested that desiccation or freeze–thaw cycling probably resulted in formation of preferential flow paths through the barrier layers. Data from all three sites showed the effectiveness of all three covers as hydraulic barriers diminished during the 2 to 4 yr monitoring period, which was short compared with the required design life (often 30 yr) of most waste containment facilities.

Albright, William H.; Benson, Craig H.; Gee, Glendon W.; Abichou, Tarek; Tyler, Scott W.; Rock, Steven

2006-11-01T23:59:59.000Z

437

Environmental geophysics at Kings Creek Disposal Site and 30th Street Landfill, Aberdeen Proving Ground, Maryland  

SciTech Connect (OSTI)

Geophysical studies on the Bush River Peninsula in the Edgewood Area of Aberdeen Proving Ground, Maryland, delineate landfill areas and provide diagnostic signatures of the hydrogeologic framework and possible contaminant pathways. These studies indicate that, during the Pleistocene Epoch, alternating stands of high and low seal levels resulted in a complex pattern of shallow channel-fill deposits in the Kings Creek area. Ground-penetrating radar studies reveal a paleochannel greater than 50 ft deep, with a thalweg trending offshore in a southwest direction into Kings Creek. Onshore, the ground-penetrating radar data indicate a 35-ft-deep branch to the main channel, trending to the north-northwest directly beneath the 30th Street Landfill. Other branches are suspected to meet the offshore paleochannel in the wetlands south and east of the 30th Street Landfill. This paleochannel depositional system is environmentally significant because it may control the shallow groundwater flow regime beneath the site. Electromagnetic surveys have delineated the pre-fill lowland area currently occupied by the 30th Street Landfill. Magnetic and conductive anomalies outline surficial and buried debris throughout the study area. On the basis of geophysical data, large-scale dumping has not occurred north of the Kings Creek Disposal Site or east of the 30th Street Landfill.

Davies, B.E.; Miller, S.F.; McGinnis, L.D.; Daudt, C.R.; Thompson, M.D.; Stefanov, J.E.; Benson, M.A.; Padar, C.A.

1995-01-01T23:59:59.000Z

438

Oil and Gas Exploration  

E-Print Network [OSTI]

Metals Industrial Minerals Oil and Gas Geothermal Exploration Development Mining Processing Nevada, oil and gas, and geothermal activities and accomplishments in Nevada: production statistics, exploration and development including drilling for petroleum and geothermal resources, discoveries of ore

Tingley, Joseph V.

439

An integrated analytical framework for quantifying the LCOE of waste-to-energy facilities for a range of greenhouse gas emissions policy and technical factors  

SciTech Connect (OSTI)

This study presents a novel integrated method for considering the economics of waste-to-energy (WTE) facilities with priced greenhouse gas (GHG) emissions based upon technical and economic characteristics of the WTE facility, MSW stream, landfill alternative, and GHG emissions policy. The study demonstrates use of the formulation for six different policy scenarios and explores sensitivity of the results to ranges of certain technical parameters as found in existing literature. The study shows that details of the GHG emissions regulations have large impact on the levelized cost of energy (LCOE) of WTE and that GHG regulations can either increase or decrease the LCOE of WTE depending on policy choices regarding biogenic fractions from combusted waste and emissions from landfills. Important policy considerations are the fraction of the carbon emissions that are priced (i.e. all emissions versus only non-biogenic emissions), whether emissions credits are allowed due to reducing fugitive landfill gas emissions, whether biogenic carbon sequestration in landfills is credited against landfill emissions, and the effectiveness of the landfill gas recovery system where waste would otherwise have been buried. The default landfill gas recovery system effectiveness assumed by much of the industry yields GHG offsets that are very close to the direct non-biogenic GHG emissions from a WTE facility, meaning that small changes in the recovery effectiveness cause relatively larger changes in the emissions factor of the WTE facility. Finally, the economics of WTE are dependent on the MSW stream composition, with paper and wood being advantageous, metal and glass being disadvantageous, and plastics, food, and yard waste being either advantageous or disadvantageous depending upon the avoided tipping fee and the GHG emissions price.

Townsend, Aaron K., E-mail: aarontownsend@utexas.edu [Department of Mechanical Engineering, University of Texas at Austin, 1 University Station C2200, Austin, TX 78712 (United States); Webber, Michael E. [Department of Mechanical Engineering, University of Texas at Austin, 1 University Station C2200, Austin, TX 78712 (United States)

2012-07-15T23:59:59.000Z

440

Natural gas annual 1994  

SciTech Connect (OSTI)

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1994 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1990 to 1994 for each Census Division and each State. Annual historical data are shown at the national level.

NONE

1995-11-17T23:59:59.000Z

Note: This page contains sample records for the topic "includes landfill gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Natural gas annual 1995  

SciTech Connect (OSTI)

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1995 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1991 to 1995 for each Census Division and each State. Annual historical data are shown at the national level.

NONE

1996-11-01T23:59:59.000Z

442

Methane Production Quantification and Energy Estimation for Bangalore Municipal Solid Waste  

Science Journals Connector (OSTI)

Landfills are considered as cornerstone of solid waste management. Landfill gas (LFG) and leachate are principal outputs ... from landfills. Methane, occupying significant volume of landfill gas, has considerable...

A. Kumar; R. Dand; P. Lakshmikanthan…

2014-01-01T23:59:59.000Z

443

Landfill Gas-to-Hydrogen - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

20 20 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Shannon Baxter-Clemmons (Primary Contact), Russ Keller 1 South Carolina Hydrogen Fuel Cell Alliance P.O. Box 12302 Columbia, SC 29211 Phone: (803) 727-2897 Emails: baxterclemmons@schydrogen.org; russ.keller@ati.org DOE Managers HQ: Pete Devlin Phone: (202) 586-4905 Email: Peter.Devlin@ee.doe.gov GO: Gregory Kleen Phone: (720) 356-1672 Email: Gregory.Kleen@go.doe.gov Contract Number: DE-FG36-08GO18113 Subcontractor: 1 Advanced Technology International, Charleston, SC Project Start Date: March 1, 2011 Project End Date: January 31, 2013 Fiscal Year (FY) 2012 Objectives Validate that a financially viable business case * exists for a full-scale deployment of commercially

444

Porous Materials Prepared from Clays for the Upgrade of Landfill Gas  

Science Journals Connector (OSTI)

A Portuguese clay from soil deposits in Porto Santo (Madeira archipelago), previously characterized,(47) was used in the preparation of the porous PCH and PILC. ... For comparison purposes, MCM-41, a solid with well-defined mesopores, and a PILC material were used. ... (48) PILC was obtained from the natural clay. ...

Moisés L. Pinto; João Pires; João Rocha

2008-08-23T23:59:59.000Z

445

R E S E A R C H A R T I C L E Grassland Restoration on Landfill Sites in the East  

E-Print Network [OSTI]

R E S E A R C H A R T I C L E Grassland Restoration on Landfill Sites in the East Midlands, United landfill sites are comparable to reference sites of exist- ing wildlife value. Floral characteristics nine pairs of restored landfill sites and reference sites in the East Mid- lands of the United Kingdom

Northampton, University of

446

Feasibility Study of Solar Photovoltaics on Landfills in Puerto Rico (Second Study)  

SciTech Connect (OSTI)

This report presents the results of an assessment of the technical and economic feasibility of deploying a solar photovoltaics (PV) system on landfill sites in Puerto Rico. The purpose of this report is to assess the landfills with the highest potential for possible solar PV installation and estimate cost, performance, and site impacts of three different PV options: crystalline silicon (fixed tilt), crystalline silicon (single-axis tracking), and thin film (fixed tilt). The report outlines financing options that could assist in the implementation of a system. According to the site production calculations, the most cost-effective system in terms of return on investment is the thin-film fixed-tilt technology. The report recommends financing options that could assist in the implementation of such a system. The landfills and sites considered in this report were all determined feasible areas in which to implement solar PV systems.

Salasovich, J.; Mosey, G.

2011-08-01T23:59:59.000Z

447

Public Health Benefits of End-Use Electrical Energy Efficiency in California: An Exploratory Study  

E-Print Network [OSTI]

Cogen Cogen Natural Gas Landfill Gas Tulare Tulare Woodwasteas agricultural and wood waste, landfill gas, and mlmicipalscf digester gas, or Btu/ scf landfill gas. HVs are given in

McKone, Thomas E.

2011-01-01T23:59:59.000Z

448

Landfill; leachates, landfill gases  

Science Journals Connector (OSTI)

is a method of refuse disposal on land without creating nuisance to public health or safety by using the principles of engineering to confine refuse to the smallest practicable area, to reduce it to the sma...

Ming H. Wong

1999-01-01T23:59:59.000Z

449

EM SSAB ITR Landfill Assessment Project Lessons Learned Presentation - July 2009  

Broader source: Energy.gov (indexed) [DOE]

Teleconference: Teleconference: 1. DOE EM ITR Landfill Assessment Project: Lessons Learned Craig H. Benson, PhD, PE CRESP July 2009 1 Independent Technical Review Team * Craig H. Benson, PhD, PE - University of Wisconsin-Madison: waste containment systems, civil engineering, geotechnical engineering. * William H. Albright, PhD - Desert Research Institute, Reno, Nevada: waste containment systems, hydrology, regulatory interactions. * David P. Ray, PE - US Army Corps of Engineers, Omaha, NB: waste containment systems, civil engineering, geotechnical engineering. * John Smegal - Legin Group, Washington, DC: economics, management. 2 * Mixed-waste landfill authorized by EPA and Washington State DoE for disposal of

450

Capping as an alternative for remediating radioactive and mixed waste landfills  

SciTech Connect (OSTI)

This report describes some of the regulatory and technical issues concerning the use of capping as a containment strategy for radioactive and hazardous waste. Capping alternatives for closure of landfills is not just an engineering problem, but rather involves complex physical, biological, and chemical processes requiring a multidisciplinary approach to develop designs that will work over the long haul and are cost-effective. Much of the information has been distilled from regulatory and guidance documents and a compilation of research activities on waste disposal, contaminant transport processes, and technology development for landfills that has been conducted over the last 21 years.

Hakonson, T.E. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Fishery and Wildlife Biology

1994-03-01T23:59:59.000Z

451

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 1,032 979 1,003 855 565 457 471 518 560 657 654 1,014 1990 1,195 903 893 857 577 244 413 365 508 587 763 774 1991 1,089 979 864 605 667 414 538 540 555 628 496 895 1992 1,076 1,128 1,103 1,047 676 498 448 479 411 609 654 951 1993 1,140 1,359 1,325 907 429 330 273 364 243 503 1,008 1,324 1994 1,919 1,974 1,626 1,092 653 542 343 599 384 569 1,010 1,338 1995 1,077 1,679 1,883 1,353 901 562 413 582 294 580 1,216 1,523 1996 1,963 1,919 1,606 1,251 757 446 421 443 581 648 972 1,290 1997 1,694 1,744 1,739 1,144 892 537 430 399 460 637 1,211 1,416 1998 1,817 1,642 1,518 1,141 694 506 496 195 483 628 1,019 1,338

452

Natural Gas Delivered to Consumers in Pennsylvania (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 96,012 79,547 77,363 52,992 33,092 26,098 25,208 27,662 29,499 38,457 46,614 63,083 2002 80,458 74,651 70,773 53,368 38,209 33,401 32,700 34,743 30,425 40,462 58,542 83,877 2003 101,975 96,176 79,246 53,759 36,015 29,095 30,298 32,640 26,799 39,895 47,467 78,054 2004 100,298 95,715 73,189 54,937 42,873 33,367 36,047 33,735 32,060 34,578 50,908 74,224 2005 90,958 84,388 85,058 50,137 38,196 34,547 36,133 37,648 32,674 35,439 50,234 80,301 2006 76,519 77,324 76,877 49,039 37,224 36,803 44,307 41,471 31,545 40,867 49,703 63,941 2007 78,283 95,894 81,570 63,089 41,955 37,217 42,996 50,308 38,092 42,936 57,228 82,068

453

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 6,069 7,033 6,197 2,868 1,601 1,279 1,180 1,097 1,241 1,528 2,542 5,873 1990 7,587 5,618 4,176 3,424 2,281 1,519 1,312 1,355 1,235 1,613 2,520 4,567 1991 8,702 6,014 4,265 2,489 1,702 1,330 1,290 1,279 1,299 1,590 3,974 5,653 1992 6,180 5,310 3,653 2,956 1,785 1,540 1,407 1,292 1,240 1,449 2,608 5,771 1993 7,076 6,147 5,910 3,743 2,057 1,439 1,324 1,432 1,345 1,544 3,424 5,327 1994 6,644 6,611 4,717 2,954 1,875 1,384 1,364 1,256 1,384 1,475 2,207 4,632 1995 6,358 6,001 5,160 2,968 2,354 1,794 1,558 1,524 1,903 1,836 3,020 5,164 1996 7,808 7,923 5,595 4,413 2,222 1,770 1,798 1,678 1,759 1,900 3,273 6,014

454

Natural Gas Delivered to Consumers in Ohio (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 136,340 110,078 102,451 66,525 41,541 34,864 34,025 32,667 33,129 48,517 59,935 87,118 2002 106,011 98,576 94,429 70,082 51,854 40,885 40,538 38,774 34,999 51,972 76,275 108,800 2003 140,436 123,688 99,629 65,861 43,326 32,959 33,810 37,562 32,918 52,253 65,617 103,846 2004 137,568 117,976 93,845 67,347 46,827 33,561 34,567 34,689 34,129 47,268 64,279 99,290 2005 122,404 107,459 105,183 63,669 47,239 37,221 35,833 37,060 33,808 42,569 65,578 113,292 2006 95,548 97,666 85,732 52,957 42,766 33,443 36,271 36,307 35,048 54,845 69,951 88,329 2007 105,108 128,279 87,809 70,627 41,797 34,877 33,361 40,637 34,554 41,730 69,858 102,787

455

Natural Gas Delivered to Consumers in Nebraska (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 17,481 15,747 13,983 11,129 7,094 5,429 8,556 6,368 5,506 5,854 10,730 11,012 2002 16,123 14,049 12,938 10,424 6,676 4,984 8,748 7,414 6,786 6,218 9,753 13,269 2003 15,675 15,319 13,354 8,644 6,232 4,472 7,653 7,469 5,904 6,758 8,775 13,011 2004 16,104 16,445 12,058 7,983 6,255 5,830 6,952 6,641 4,338 5,935 8,995 13,129 2005 17,242 14,641 11,440 8,360 6,579 5,853 7,874 8,028 6,345 6,081 8,200 13,733 2006 15,551 13,741 13,940 10,766 7,411 7,500 9,685 9,019 6,665 7,092 10,375 13,432 2007 17,851 19,390 16,040 10,333 9,436 7,602 10,286 11,264 8,529 7,818 10,704 15,974 2008 20,241 20,433 17,488 13,024 9,556 9,390 10,050 10,893 8,126 10,847 13,250 17,360

456

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 23,636 24,435 21,187 13,360 8,237 3,927 3,565 3,735 4,397 8,946 15,949 30,143 1990 25,317 19,642 20,361 13,373 7,446 4,838 3,975 4,165 4,240 7,272 13,757 19,190 1991 26,286 24,481 20,157 11,779 6,341 3,971 3,703 3,933 4,196 8,065 15,488 21,940 1992 26,321 24,820 20,215 15,893 7,455 5,016 4,291 4,260 4,418 9,092 15,094 23,770 1993 25,230 26,706 25,531 15,019 6,359 5,221 3,939 3,860 4,492 9,636 14,979 23,071 1994 33,573 29,301 22,713 14,498 7,933 5,111 4,027 4,287 4,492 7,331 12,594 20,936 1995 28,306 29,814 21,860 14,128 8,132 4,979 4,697 4,406 4,623 7,916 18,650 27,649 1996 33,993 29,732 26,650 16,833 8,960 7,661 4,569 4,401 4,048 8,548 18,274 26,298

457

Natural Gas Delivered to Consumers in Georgia (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 49,414 34,292 35,867 25,368 20,633 20,544 24,229 26,863 21,857 25,679 23,983 34,450 2002 44,041 37,992 33,260 23,775 22,612 24,924 30,113 29,701 24,899 23,785 32,829 47,106 2003 56,470 43,704 31,355 30,232 21,920 20,512 23,789 26,828 21,628 22,981 26,920 45,508 2004 52,486 48,806 31,529 28,718 26,610 24,562 26,132 26,093 22,927 22,025 29,012 49,125 2005 47,756 39,503 39,085 25,191 23,198 26,957 31,619 33,089 28,453 26,199 32,483 52,399 2006 39,904 45,015 35,118 26,670 26,891 30,790 36,980 38,808 25,412 31,321 35,677 40,816 2007 49,163 47,589 32,236 31,955 27,318 31,415 32,039 49,457 31,028 27,420 33,851 41,413

458

Natural Gas Delivered to Consumers in New Hampshire (Including Vehicle  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 3,171 3,309 2,951 2,280 1,441 1,134 1,003 888 1,182 1,589 1,904 2,520 2002 2,917 3,188 2,833 2,179 1,815 1,423 1,657 1,055 1,381 1,038 1,847 3,507 2003 6,844 6,457 5,490 3,772 3,085 2,034 3,900 5,640 4,166 4,643 3,574 4,515 2004 5,204 7,595 6,870 6,131 2,712 4,473 4,167 4,306 4,766 3,194 5,704 6,026 2005 6,958 7,545 6,875 5,691 6,049 5,824 5,780 6,010 4,491 4,069 5,173 5,988 2006 7,782 6,823 7,852 4,511 2,505 2,608 3,895 5,107 5,407 5,917 3,850 6,263 2007 6,645 5,329 5,157 5,429 3,826 4,223 5,642 5,420 5,969 4,295 4,527 5,641 2008 7,786 7,653 7,558 5,076 4,511 4,124 5,536 4,876 5,352 5,548 6,443 6,692

459

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 1,357 1,414 1,111 852 521 368 285 233 268 396 724 1,022 1990 1,305 1,199 1,085 822 628 410 247 234 241 378 759 1,132 1991 1,639 1,249 996 830 680 362 272 248 269 449 873 1,233 1992 1,404 1,078 821 668 438 309 264 269 287 439 760 1,271 1993 1,631 1,376 1,262 882 639 400 362 389 378 667 874 1,407 1994 1,351 1,412 1,065 869 544 369 291 270 308 550 915 1,287 1995 1,671 1,247 1,217 987 873 594 373 258 NA NA NA NA 1996 1,176 1,203 1,030 925 712 342 197 197 250 640 1,301 1,748 1997 1,570 1,309 1,403 1,189 958 491 623 287 316 554 966 1,088 1998 1,628 1,322 1,279 936 597 442 371 253 343 493 927 1,822

460

Natural Gas Delivered to Consumers in Maryland (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 28,398 21,618 21,408 13,900 9,252 8,342 9,046 11,007 9,109 12,662 13,558 17,125 2002 24,221 22,802 20,670 12,534 8,846 8,846 10,514 12,842 10,157 12,911 20,408 28,827 2003 31,739 28,530 21,240 15,685 9,809 8,723 8,128 7,986 7,131 11,863 16,167 27,049 2004 33,576 27,062 20,558 14,623 9,867 8,560 7,704 8,271 7,535 11,725 16,222 26,279 2005 29,469 25,497 24,272 13,414 10,273 10,104 9,641 11,634 8,302 12,060 16,807 28,263 2006 24,101 24,846 19,870 11,807 9,034 9,251 11,438 11,236 8,042 11,895 16,300 21,239 2007 24,841 32,498 20,950 15,805 8,835 9,239 9,540 12,974 9,655 10,242 17,911 25,311 2008 28,394 26,094 20,551 12,340 9,832 9,808 10,778 7,669 8,974 12,394 20,316 25,502

Note: This page contains sample records for the topic "includes landfill gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Natural Gas Delivered to Consumers in Wyoming (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 7,475 6,484 5,643 5,505 4,182 3,864 3,515 3,541 3,688 4,790 5,518 6,170 2002 6,844 5,846 6,319 5,737 5,034 4,070 4,980 4,124 4,599 6,126 7,421 8,523 2003 7,672 7,313 7,026 5,737 4,976 4,408 4,112 4,164 4,356 5,062 5,554 7,236 2004 7,555 7,180 6,077 5,400 4,775 4,216 4,064 4,187 4,024 5,032 6,153 6,963 2005 7,585 6,443 6,231 5,612 5,092 4,247 4,081 3,903 4,080 4,829 5,360 7,262 2006 7,304 6,824 6,957 5,389 4,762 4,109 4,108 4,063 3,935 5,157 5,893 6,958 2007 7,982 7,322 6,900 5,469 4,958 4,253 3,873 3,944 4,150 5,003 6,095 7,723 2008 8,446 7,443 6,660 5,737 5,057 4,098 3,749 3,805 3,520 4,922 5,595 7,419

462

Natural Gas Delivered to Consumers in Colorado (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 57,089 50,447 49,042 41,157 30,506 23,904 22,403 22,033 19,905 22,672 30,231 42,797 2002 47,541 44,713 45,909 30,319 24,230 22,105 26,301 21,119 21,764 34,563 38,884 46,826 2003 44,971 47,164 38,292 25,380 24,811 18,484 23,772 23,529 20,981 22,248 39,408 48,023 2004 47,548 44,859 30,853 28,458 23,766 20,408 22,895 21,210 20,651 26,731 39,719 50,977 2005 50,356 41,495 39,617 33,501 25,108 20,725 26,350 23,387 22,698 29,399 38,140 54,566 2006 45,074 45,360 42,614 26,074 20,799 20,115 23,277 22,817 18,928 30,373 38,546 49,332 2007 62,803 46,554 33,579 30,243 25,136 25,014 28,465 26,787 27,444 32,786 39,145 57,263

463

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 1,567 1,575 1,160 692 409 355 301 249 321 435 785 1,176 1990 1,313 1,283 1,000 610 479 389 293 280 292 459 822 1,315 1991 1,848 1,291 956 822 623 405 316 304 329 424 942 1,321 1992 1,543 1,167 834 643 447 343 345 330 369 465 889 1,557 1993 1,806 1,673 1,294 828 566 387 383 360 381 507 947 1,543 1994 1,510 1,457 1,121 771 480 377 374 306 357 571 1,098 1,667 1995 1,754 1,319 1,154 951 708 487 361 346 392 591 997 1,300 1996 1,734 1,783 1,359 996 710 477 346 354 421 597 1,107 1,621 1997 1,810 1,778 1,341 1,037 684 397 372 354 409 584 979 1,687 1998 1,969 1,564 1,417 1,072 686 535 405 380 386 577 1,045 1,640

464

Natural Gas Delivered to Consumers in Maine (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 6,537 6,903 6,950 5,791 7,780 6,957 8,161 9,020 8,835 8,864 9,644 9,127 2002 9,857 10,737 9,131 9,186 10,030 9,602 7,965 10,909 8,186 10,974 12,161 11,924 2003 8,047 5,034 5,581 5,924 4,577 4,916 6,000 5,629 5,606 6,652 5,970 6,036 2004 7,095 8,049 7,635 7,137 6,496 6,314 6,648 7,333 6,100 7,027 7,786 7,858 2005 5,882 5,823 5,955 5,764 4,162 5,163 5,883 6,097 4,936 4,955 4,236 2,234 2006 3,888 4,850 5,239 4,090 5,138 4,996 6,505 5,264 5,580 6,835 5,939 5,217 2007 6,180 5,355 4,869 4,768 4,222 4,680 6,405 6,403 4,340 3,731 4,999 6,480 2008 6,142 5,066 5,389 5,928 5,679 4,545 6,177 5,002 5,965 5,812 6,785 6,712

465

Natural Gas Delivered to Consumers in Vermont (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 1,164 1,003 1,084 834 544 381 304 307 361 438 658 827 2002 1,127 1,149 960 808 575 428 330 336 348 485 803 1,003 2003 1,153 1,191 1,062 906 539 367 293 312 325 502 708 1,029 2004 1,154 1,381 1,072 829 517 421 331 342 365 479 769 1,011 2005 1,211 1,280 1,199 776 558 404 310 298 295 418 666 943 2006 1,112 1,063 1,190 745 501 415 318 318 347 481 658 893 2007 1,104 1,375 1,250 915 536 382 340 331 342 423 696 1,158 2008 1,202 1,217 1,137 865 512 384 331 333 361 480 702 1,084 2009 1,407 1,307 1,076 794 507 409 348 321 337 508 684 922 2010 1,270 1,126 897 685 488 376 344 335 348 581 801 1,177

466

Percentage of Total Natural Gas Commercial Deliveries included in Prices  

Gasoline and Diesel Fuel Update (EIA)

80.4 79.7 77.8 77.5 67.3 65.2 1987-2012 80.4 79.7 77.8 77.5 67.3 65.2 1987-2012 Alabama 79.8 80.2 78.8 79.3 78.9 76.2 1990-2012 Alaska 76.0 74.9 85.3 87.7 88.6 94.9 1990-2012 Arizona 93.4 93.1 88.0 88.7 87.8 86.6 1990-2012 Arkansas 70.4 64.5 59.4 55.6 51.5 40.2 1990-2012 California 60.7 56.7 54.9 54.1 54.3 50.0 1990-2012 Colorado 95.7 95.2 94.8 94.6 93.8 92.2 1990-2012 Connecticut 71.5 70.7 69.0 65.4 65.4 65.1 1990-2012 Delaware 74.8 70.6 53.5 49.8 53.4 43.7 1990-2012 District of Columbia 100.0 100.0 100.0 100.0 16.9 17.9 1990-2012 Florida 100.0 100.0 100.0 100.0 38.5 37.0 1990-2012 Georgia 100.0 100.0 100.0 100.0 100.0 100.0 1990-2012 Hawaii 100 100 100 100 100 100 1990-2012 Idaho 84.8 86.0 83.7 82.0 80.8 77.0 1990-2012 Illinois

467

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2,133 2,021 2,066 1,635 999 803 692 763 712 775 1,090 2,052 1990 1,986 1,857 1,789 1,384 951 699 514 572 721 574 836 1,589 1991 2,204 2,308 2,131 1,381 1,063 784 705 794 689 658 1,071 1,764 1992 2,300 2,256 2,132 1,774 1,056 764 718 673 653 753 1,103 1,921 1993 2,352 2,438 2,166 1,550 1,150 731 664 703 684 841 1,040 1,909 1994 2,303 1,865 1,483 1,588 979 815 753 692 740 785 1,082 1,658 1995 2,280 2,583 2,089 1,607 1,158 884 820 744 766 794 1,116 2,194 1996 2,147 1,942 1,551 1,925 1,233 824 878 750 774 804 1,195 2,325 1997 2,334 2,315 2,183 1,738 1,372 951 782 853 852 899 1,354 2,379

468

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2,156 2,125 1,533 1,100 1,004 890 790 805 811 954 1,257 1,690 1990 1,959 1,963 1,740 1,185 1,006 970 879 782 701 1,157 1,026 1,705 1991 2,447 1,839 1,739 1,593 1,333 1,121 947 1,005 761 1,104 1,095 1,976 1992 2,327 1,873 1,725 1,335 1,012 945 1,015 824 872 982 1,022 2,170 1993 2,271 2,110 2,016 1,314 1,341 1,052 919 939 909 1,047 1,421 2,211 1994 2,334 2,277 1,995 1,456 1,300 1,136 995 909 978 1,146 1,541 2,625 1995 2,551 2,139 1,868 1,784 1,558 1,268 1,082 978 1,009 1,151 1,444 1,871 1996 2,466 2,309 2,268 1,811 1,454 1,286 1,145 1,062 1,116 1,269 1,817 2,417 1997 2,717 2,634 2,447 1,900 1,695 1,412 1,099 1,148 1,195 1,273 1,800 2,638

469

Natural Gas Delivered to Consumers in Wisconsin (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 52,126 51,020 52,466 24,969 17,238 15,421 16,478 16,540 16,716 25,355 26,981 41,400 2002 49,850 43,815 48,646 31,946 24,278 16,100 16,531 15,795 16,659 28,429 39,330 49,912 2003 62,523 55,695 44,756 32,270 20,752 15,502 15,630 18,099 16,485 24,636 36,907 47,677 2004 65,038 48,498 41,599 27,544 21,106 15,420 15,949 14,951 16,063 23,268 33,602 56,693 2005 59,667 45,463 47,647 29,885 23,265 22,788 21,959 22,549 19,566 23,868 35,232 54,600 2006 44,700 49,036 42,628 24,331 20,527 17,607 20,221 19,919 18,038 31,566 36,227 44,483 2007 53,637 61,738 41,274 32,627 19,348 17,305 18,156 21,627 17,044 22,827 36,770 53,091

470

Natural Gas Delivered to Consumers in Kansas (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 35,585 27,368 26,284 16,906 10,552 11,171 18,862 17,962 13,422 11,375 14,263 20,610 2002 28,513 25,068 25,566 17,348 13,424 13,947 18,253 20,062 15,937 13,007 21,946 26,371 2003 31,180 29,594 25,952 16,337 13,386 11,371 15,614 15,421 13,725 13,096 15,980 25,771 2004 30,087 29,036 21,955 15,496 13,148 12,282 11,912 13,013 13,177 13,809 15,207 23,992 2005 29,876 25,291 20,604 15,459 12,953 11,687 13,164 13,264 12,147 11,254 14,924 25,902 2006 25,596 23,451 22,320 16,673 12,748 14,289 18,023 17,171 12,559 13,555 17,451 24,135 2007 29,886 31,709 22,007 16,753 13,449 14,165 16,842 20,565 16,098 15,324 19,705 29,579

471

Natural Gas Delivered to Consumers in Oklahoma (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 45,337 36,026 35,468 29,023 26,153 28,194 41,056 38,697 30,910 29,194 26,719 33,193 2002 42,957 42,546 40,981 36,989 28,784 31,741 39,440 43,092 34,007 26,058 27,197 34,574 2003 44,633 43,363 39,395 32,941 30,147 32,417 46,076 47,914 30,139 28,937 26,588 39,627 2004 44,286 47,720 40,198 35,528 36,608 33,843 39,855 38,791 36,056 30,069 25,036 35,444 2005 42,941 41,516 38,987 36,599 35,972 45,327 48,696 49,698 42,454 32,097 30,402 42,813 2006 42,641 45,534 43,562 45,754 43,689 44,512 51,955 56,344 37,425 35,388 34,881 46,374 2007 55,048 57,329 44,646 43,762 41,758 42,250 47,969 58,650 43,759 42,172 36,392 49,540

472

Natural Gas Delivered to Consumers in Kentucky (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 31,659 23,182 21,670 14,953 9,527 8,890 9,668 9,881 10,024 12,591 16,271 23,216 2002 26,131 24,533 23,241 14,879 12,317 11,623 13,804 10,869 11,129 14,628 21,069 27,646 2003 34,776 29,032 20,580 14,017 10,797 9,334 9,467 10,296 10,390 13,196 16,933 27,218 2004 32,640 27,566 21,630 15,771 12,331 11,249 10,810 11,428 10,883 13,355 17,689 27,203 2005 29,373 24,036 24,578 15,557 13,614 13,693 12,658 14,134 12,122 14,104 19,304 29,050 2006 23,093 23,721 20,380 14,447 13,054 12,108 12,861 13,777 11,131 14,865 17,982 22,930 2007 26,916 29,946 20,044 17,410 12,573 11,418 10,304 16,709 11,848 13,874 18,696 24,799

473

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2,176 1,936 2,098 1,489 1,094 891 908 808 866 970 1,324 1,964 1990 2,455 1,649 1,576 1,262 1,040 846 836 830 872 965 1,315 1,749 1991 2,199 2,076 1,746 1,143 908 818 810 859 875 952 1,492 1,917 1992 2,276 2,158 1,745 1,436 1,068 944 820 882 875 1,006 1,345 2,089 1993 2,268 2,155 2,200 1,507 1,007 877 832 840 846 947 1,463 2,070 1994 2,845 2,472 1,910 1,174 1,027 1,342 913 949 947 1,089 1,361 1,843 1995 2,600 2,626 2,111 1,382 1,045 1,013 950 956 1,044 1,054 1,674 2,414 1996 3,136 2,782 2,190 1,884 1,154 997 940 957 1,041 1,157 1,644 2,447 1997 2,378 2,381 1,793 1,202 1,268 1,096 989 1,004 1,884 1,167 1,757 2,639

474

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 4,784 4,016 4,367 3,046 2,022 1,568 1,475 1,454 1,534 1,843 2,639 4,396 1990 5,379 3,690 3,400 2,747 1,820 1,445 1,394 1,480 1,596 1,795 2,715 3,817 1991 4,947 4,647 3,990 2,629 1,928 1,677 1,613 1,679 1,789 2,052 3,200 4,162 1992 5,169 5,066 3,983 3,296 2,205 1,733 1,591 1,607 1,679 2,138 3,010 4,941 1993 5,866 5,566 5,426 3,602 1,988 1,532 1,437 1,539 1,674 2,067 3,379 3,292 1994 7,247 6,269 4,727 2,761 1,844 1,605 1,487 1,647 1,831 2,115 2,817 4,592 1995 5,839 6,031 4,241 3,065 1,766 1,579 1,487 1,475 1,597 1,740 3,263 5,279 1996 6,913 6,421 4,851 3,760 1,970 1,586 1,415 1,575 1,658 1,917 3,240 5,160

475

Natural Gas Delivered to Consumers in Delaware (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 5,014 4,742 5,389 3,439 2,924 3,276 3,324 4,609 4,923 5,078 3,908 3,419 2002 5,258 4,880 4,847 3,830 2,810 2,738 6,396 3,816 4,170 3,843 3,936 5,597 2003 6,397 5,499 5,102 3,399 2,081 2,433 3,570 3,550 2,728 2,949 3,547 4,833 2004 6,827 5,602 4,600 3,387 3,731 2,595 2,620 2,437 2,880 2,484 4,033 6,759 2005 6,870 5,543 5,427 2,696 2,517 2,866 3,287 3,735 2,652 2,870 3,515 4,876 2006 5,025 4,699 4,451 2,549 2,659 3,204 3,812 3,447 2,516 2,972 3,454 4,379 2007 4,855 5,154 4,783 3,486 2,804 3,196 3,833 4,160 3,127 3,346 3,838 5,551 2008 5,197 5,132 4,474 3,574 2,885 3,871 4,077 3,567 3,009 2,937 4,178 5,239

476

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 26,553 25,448 24,717 16,375 10,150 5,954 4,570 4,467 5,047 8,855 15,776 28,269 1990 26,939 22,780 20,870 15,431 9,230 5,638 4,610 4,865 5,117 8,592 14,122 21,237 1991 29,054 24,902 21,321 14,617 9,583 5,601 4,916 4,508 5,510 9,450 12,966 23,131 1992 26,677 24,979 22,443 17,769 10,406 5,883 4,981 4,964 5,431 9,760 16,298 24,211 1993 28,122 27,427 25,623 18,238 9,009 5,968 5,035 4,140 5,767 10,193 16,875 23,833 1994 33,440 31,356 24,263 16,330 10,123 6,207 5,343 5,363 5,719 8,796 14,511 21,617 1995 27,945 29,223 23,980 18,384 11,004 6,372 5,664 5,778 6,417 9,647 19,742 29,922 1996 32,468 30,447 27,914 19,664 12,272 6,343 5,673 5,383 6,146 9,472 19,486 26,123

477

Natural Gas Delivered to Consumers in Arizona (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 19,804 23,088 21,742 19,153 21,113 17,703 18,312 16,919 14,352 14,127 12,164 19,204 2002 19,840 19,954 18,340 14,544 14,463 17,262 23,546 22,088 20,988 19,112 17,712 21,662 2003 20,639 18,895 21,753 16,848 14,559 16,858 28,981 30,940 25,278 24,409 16,317 18,043 2004 25,379 30,143 26,925 23,982 26,878 29,819 35,860 33,244 27,591 23,349 23,090 26,140 2005 24,400 22,209 17,591 20,779 22,660 23,609 35,036 34,587 26,451 24,130 22,651 28,011 2006 26,212 24,177 22,606 21,814 22,339 30,548 34,718 36,448 30,678 32,378 24,493 29,027 2007 34,237 26,857 17,051 20,379 28,959 35,463 43,104 40,305 33,790 29,544 27,001 33,835

478

Natural Gas Delivered to Consumers in Iowa (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 33,183 29,626 26,788 17,172 12,430 10,449 10,249 10,177 10,494 14,476 16,865 23,400 2002 28,527 25,072 25,693 18,706 13,413 10,076 9,731 9,815 10,403 14,561 22,219 27,225 2003 31,445 32,450 25,482 16,870 12,421 10,288 9,892 10,030 10,550 13,644 20,542 26,599 2004 32,639 30,955 23,081 15,569 11,543 10,481 9,546 10,080 10,193 14,132 20,759 27,591 2005 34,272 27,838 24,671 18,370 13,180 12,206 11,888 11,542 11,838 13,551 19,595 30,763 2006 26,997 26,909 23,941 17,158 14,088 12,588 13,244 11,886 12,277 18,360 22,732 25,747 2007 35,848 38,728 28,204 22,726 17,742 14,922 15,363 15,754 14,595 18,051 24,001 35,021

479

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,976 3,700 4,247 2,586 1,701 1,154 968 941 978 1,220 1,801 3,647 1990 4,168 3,115 3,057 2,477 1,557 1,131 1,049 961 1,016 1,095 1,686 2,738 1991 5,709 5,334 4,545 3,320 2,108 1,602 1,545 1,465 1,486 2,289 3,582 5,132 1992 6,323 6,382 5,073 3,807 2,391 1,784 1,553 1,586 1,615 2,491 3,895 5,565 1993 6,273 6,568 6,232 3,772 2,110 1,861 1,507 1,567 1,700 2,231 3,898 5,915 1994 8,122 6,354 5,634 2,844 2,547 1,709 1,732 1,588 2,016 2,531 3,582 5,475 1995 6,743 7,826 4,472 3,736 2,388 1,994 1,612 1,722 2,065 1,907 4,871 7,538 1996 7,648 6,515 5,476 3,766 2,672 1,816 1,608 1,866 1,922 2,427 4,693 5,433

480

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,493 3,435 3,545 3,083 2,670 2,570 2,525 2,369 2,484 2,444 2,868 3,620 1990 4,101 3,305 3,246 3,026 2,860 2,673 2,584 2,497 2,483 2,521 3,285 3,725 1991 3,875 3,770 3,782 3,363 2,978 2,674 2,845 2,708 2,998 2,798 3,519 3,954 1992 4,408 4,364 3,856 3,741 3,382 3,085 2,976 2,881 2,849 2,954 3,317 3,914 1993 3,951 4,078 4,088 3,871 3,362 3,085 2,919 2,830 2,887 2,983 3,336 3,760 1994 4,619 3,941 3,853 3,374 3,078 2,937 2,855 2,909 2,896 2,814 3,089 3,570 1995 4,274 4,361 3,900 3,433 3,055 2,930 2,970 2,751 2,818 2,840 3,171 3,883 1996 4,731 4,272 4,167 3,918 3,336 3,029 2,836 2,716 2,840 2,957 3,179 3,830

Note: This page contains sample records for the topic "includes landfill gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,919 4,336 3,961 2,180 1,261 1,357 1,019 1,007 1,096 1,245 1,948 3,942 1990 4,957 3,368 2,807 2,223 1,398 1,065 1,030 1,043 1,081 1,260 1,948 2,949 1991 5,034 4,043 2,848 1,778 1,211 1,027 998 1,023 1,045 1,184 2,497 3,297 1992 4,159 3,861 2,708 2,114 1,358 1,108 1,062 1,022 1,029 1,219 2,078 3,596 1993 4,757 4,174 3,999 2,923 1,540 1,078 1,013 1,047 1,126 1,389 2,480 3,473 1994 5,101 4,707 3,388 2,306 1,360 1,107 990 887 1,253 1,275 1,897 3,136 1995 4,387 4,171 3,478 2,027 1,337 1,156 1,015 1,021 1,060 1,183 2,265 4,311 1996 5,411 5,249 3,895 2,964 1,519 1,052 1,056 1,060 1,106 1,356 2,462 3,876

482

Natural Gas Delivered to Consumers in Arkansas (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 26,139 20,654 21,940 16,528 13,819 12,558 14,779 16,061 15,014 18,239 19,675 22,233 2002 24,431 24,940 22,284 19,166 15,635 16,964 18,741 17,700 16,789 16,932 17,770 21,567 2003 27,116 27,256 22,904 18,625 17,603 17,849 18,208 18,467 15,282 16,402 16,960 20,603 2004 24,746 25,909 21,663 16,382 15,991 14,085 14,456 14,551 11,956 14,094 13,138 18,337 2005 22,386 19,719 19,170 15,597 14,643 15,315 16,703 17,392 13,113 13,511 15,272 20,113 2006 19,984 19,909 19,394 17,499 17,865 19,198 19,107 19,963 16,976 17,107 15,346 19,021 2007 20,936 22,984 17,280 15,779 16,099 17,982 17,998 22,294 15,747 13,225 15,235 18,728

483

Natural Gas Delivered to Consumers in Utah (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 20,043 17,426 13,012 11,173 7,791 7,056 6,214 6,023 6,572 9,189 11,646 18,505 2002 19,727 17,659 15,165 8,453 7,113 5,260 5,915 6,481 7,591 11,589 13,814 16,447 2003 16,474 16,494 12,825 10,664 6,942 5,612 6,174 6,166 6,229 7,898 13,299 16,533 2004 21,414 17,627 10,247 9,033 6,775 5,344 6,398 5,617 6,456 8,714 13,097 17,058 2005 18,357 16,430 13,763 12,951 9,253 7,461 7,380 6,187 6,053 6,449 9,027 16,786 2006 19,708 17,533 16,428 13,496 8,309 8,516 8,734 8,180 8,599 9,422 13,464 19,710 2007 27,918 22,251 16,927 13,476 12,260 11,106 9,771 9,790 10,976 12,425 15,630 20,497 2008 27,371 26,146 20,495 17,995 13,506 10,286 10,157 10,919 10,422 11,249 14,386 19,141

484

Natural Gas Delivered to Consumers in North Carolina (Including Vehicle  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 29,800 21,808 20,434 14,585 11,544 11,979 13,229 15,763 11,364 14,905 15,898 19,179 2002 27,750 25,444 22,993 16,550 13,274 14,816 16,400 17,088 13,640 15,047 19,024 27,257 2003 32,135 30,180 20,979 15,717 12,038 9,338 12,359 13,177 11,210 12,814 16,520 25,999 2004 31,785 30,416 22,379 16,242 16,033 12,711 12,866 13,027 11,970 11,729 15,635 24,946 2005 30,538 27,324 26,203 17,851 13,162 12,669 15,688 16,197 12,616 12,082 15,331 25,731 2006 25,596 23,904 23,271 15,873 13,091 13,120 17,476 19,153 11,452 14,070 18,457 22,889 2007 26,988 29,743 21,686 17,606 13,644 14,343 14,640 22,849 15,744 14,159 17,540 23,411

485

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,283 3,376 2,280 1,227 653 472 357 346 390 522 1,313 2,304 1990 2,864 2,779 2,272 1,203 860 581 373 364 374 629 1,382 2,540 1991 4,055 3,108 2,282 1,771 1,316 668 405 375 407 551 1,634 2,704 1992 3,330 2,952 1,866 1,155 642 457 410 372 405 545 1,329 3,120 1993 3,922 3,682 2,988 1,839 1,248 707 597 594 606 946 2,023 3,436 1994 3,929 3,846 2,665 2,037 962 814 820 787 882 1,883 3,542 4,335 1995 4,244 3,324 2,948 2,429 1,675 1,122 861 899 1,088 1,905 2,605 3,724 1996 4,549 4,604 3,129 2,479 1,356 892 904 874 1,279 2,073 3,185 4,220 1997 5,030 4,454 3,350 2,664 1,263 942 923 939 1,120 2,012 3,174 5,257

486

Natural Gas Delivered to Consumers in Michigan (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 133,140 112,047 111,301 76,191 48,707 41,686 43,845 44,577 40,142 59,283 71,352 92,053 2002 119,902 108,891 104,208 87,138 63,810 52,457 51,899 47,094 40,938 53,419 82,015 114,268 2003 140,545 133,702 114,085 80,651 53,258 37,279 35,261 42,115 32,744 49,901 69,659 99,067 2004 137,906 127,671 102,442 76,978 54,610 41,310 38,001 37,565 37,285 48,239 71,870 107,025 2005 133,079 112,812 108,608 72,884 50,886 47,768 50,667 44,890 35,502 42,661 64,574 111,058 2006 104,803 99,454 96,633 65,814 43,901 35,824 43,332 39,459 31,740 50,167 70,643 85,634 2007 100,406 124,441 98,314 69,491 43,699 33,353 30,415 38,655 30,211 36,831 59,171 97,411

487

Natural Gas Delivered to Consumers in Louisiana (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 90,750 82,773 86,038 87,577 81,223 77,877 93,937 105,743 93,365 92,353 85,277 92,797 2002 102,807 96,945 102,315 94,281 91,511 97,058 107,870 109,348 97,986 94,054 96,857 102,289 2003 106,504 91,821 89,554 89,376 88,426 78,863 91,469 95,243 85,824 84,198 83,677 94,139 2004 101,114 98,005 96,851 86,763 89,143 89,075 96,344 98,583 93,156 94,397 89,577 99,046 2005 102,652 87,403 100,620 97,398 104,027 102,860 104,234 99,244 82,252 75,899 72,958 91,598 2006 80,495 79,755 88,341 86,459 88,047 89,170 97,472 103,508 88,124 89,721 89,141 94,300 2007 100,669 93,075 95,251 91,900 94,668 99,373 92,367 104,606 87,792 91,661 83,575 89,348

488

Natural Gas Delivered to Consumers in Florida (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 34,086 30,338 35,463 39,708 42,466 46,947 53,430 53,352 55,306 52,955 42,205 47,598 2002 50,177 41,302 50,453 55,845 56,767 62,343 67,197 70,144 65,136 64,259 47,600 45,144 2003 53,384 43,538 54,761 51,487 62,575 58,312 64,041 61,764 62,150 59,558 56,488 50,525 2004 50,877 49,866 51,687 53,442 62,663 69,628 72,443 70,540 70,259 66,961 50,122 53,169 2005 59,417 49,956 60,238 55,269 64,436 69,719 90,376 84,114 67,877 63,782 55,683 46,489 2006 54,827 56,557 68,707 73,645 85,346 87,268 88,949 86,772 83,397 76,817 58,594 56,867 2007 57,409 56,412 60,397 70,366 76,461 81,312 93,683 97,040 88,865 89,976 66,512 67,153

489

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 28,465 29,564 21,880 18,656 19,249 21,469 15,319 17,351 19,452 19,856 21,665 26,192 1990 30,798 34,767 27,425 23,423 18,540 17,392 21,030 17,705 23,233 17,384 22,637 30,759 1991 31,793 23,911 26,128 28,375 21,468 20,003 22,080 16,547 23,307 26,510 20,109 27,379 1992 38,234 23,834 24,413 18,379 27,118 22,150 21,150 21,633 19,247 19,112 20,999 28,738 1993 27,151 31,334 21,654 18,276 18,032 15,638 18,341 14,348 16,845 19,708 20,404 28,553 1994 29,342 27,032 23,156 18,463 22,621 18,091 25,752 14,123 14,604 17,844 25,032 25,929 1995 31,883 25,693 23,399 23,976 24,831 19,028 21,954 18,362 19,391 21,272 22,818 26,152

490

Natural Gas Delivered to Consumers in Colorado (Including Vehicle...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 272,530 289,945 288,147 2000's 321,784 412,773 404,873 377,794 378,894 405,509 383,452 435,360...

491

Natural Gas Deliveries to Commercial Consumers (Including Vehicle...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 8,109 11,224 12,435 1970's 14,500 16,073 17,005 15,420 16,247 15,928 16,694 16,813 16,940 16,830...

492

Natural Gas Deliveries to Commercial Consumers (Including Vehicle...  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,909 3,749 3,937 2,897 2,106 1,625 1,528 1,579 1,551 1,685 2,324 3,891 1990 4,318 3,869 3,369 3,009 1,743 1,483 1,358...

493

Natural Gas Delivered to Consumers in Connecticut (Including...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 142,216 130,664 149,294 2000's 156,692 143,330 175,072 150,692 159,259 164,740 169,504 175,820...

494

Natural Gas Delivered to Consumers in Connecticut (Including...  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 18,442 15,861 16,485 10,646 7,197 7,730 7,420 9,010 11,276 11,370 12,345 15,400 2002 19,009 18,410 17,585 13,782 12,805...

495

Natural Gas Deliveries to Commercial Consumers (Including Vehicle...  

Gasoline and Diesel Fuel Update (EIA)

Dec 1989 21,163 22,930 20,215 15,779 11,310 10,731 12,786 11,350 9,367 10,345 12,823 23,871 1990 21,376 16,323 17,118 14,054 12,299 14,204 14,184 11,592 9,448 9,571 12,192 19,981...

496

Natural Gas Deliveries to Commercial Consumers (Including Vehicle...  

Gasoline and Diesel Fuel Update (EIA)

285,213 323,054 347,818 1950's 387,838 464,309 515,669 530,650 584,957 629,219 716,871 775,916 871,774 975,107 1960's 1,020,222 1,076,849 1,206,668 1,267,783 1,374,717...

497

Natural Gas Delivered to Consumers in Ohio (Including Vehicle...  

U.S. Energy Information Administration (EIA) Indexed Site

Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 877,039 792,617 823,448 2000's 871,444 787,719 813,735 832,563 812,084 811,759 729,264 791,733 780,187 723,471 2010's...

498

Natural Gas Delivered to Consumers in Rhode Island (Including...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 116,871 130,415 117,758 2000's 88,124 95,326 87,472 78,074 72,301 80,070 76,401 87,150 88,391...

499

Natural Gas Deliveries to Commercial Consumers (Including Vehicle...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

40,988 43,950 42,953 43,080 37,466 42,422 40,532 39,821 47,326 1980's 28,576 32,055 30,871 30,758 25,299 24,134 23,816 25,544 25,879 26,920 1990's 24,051 38,117 42,464 43,635...

500

Natural Gas Delivered to Consumers in North Dakota (Including...  

Gasoline and Diesel Fuel Update (EIA)

1,988 3,550 3,908 4,743 2003 5,308 4,986 4,115 2,464 2,072 1,511 1,109 963 1,664 2,336 3,871 6,879 2004 5,976 4,565 4,243 2,998 2,087 1,270 1,207 1,858 2,219 2,970 3,638 4,990 2005...