Powered by Deep Web Technologies
Note: This page contains sample records for the topic "includes industrial combined-heat-and-power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Optimal Scheduling of Industrial Combined Heat and Power Plants  

E-Print Network (OSTI)

Optimal Scheduling of Industrial Combined Heat and Power Plants under Time-sensitive Electricity Prices Sumit Mitra , Lige Sun , Ignacio E. Grossmann December 24, 2012 Abstract Combined heat and power companies. However, under-utilization can be a chance for tighter interaction with the power grid, which

Grossmann, Ignacio E.

2

AMO Industrial Distributed Energy: Combined Heat and Power Projects  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Industry Classification System (NAICS) code, system size, technologyprime mover, fuel, thermal energy use, and year installed. View a list of project profiles by market...

3

Optimal Scheduling of Industrial Combined Heat and Power Plants under Time-sensitive Electricity Prices  

E-Print Network (OSTI)

Combined heat and power (CHP) plants are widely used in industrial applications. In the aftermath of the recession, many of the associated production processes are under-utilized, which challenges the competitiveness of chemical companies. However, under-utilization can be a chance for tighter interaction with the power grid, which is in transition to the so-called smart grid, if the CHP plant can dynamically react to time-sensitive electricity prices. In this paper, we describe a generalized mode model on a component basis that addresses the operational optimization of industrial CHP plants. The mode formulation tracks the state of each plant component in a detailed manner and can account for different operating modes, e.g. fuel-switching for boilers and supplementary firing for gas turbines, and transitional behavior. Transitional behavior such as warm and cold start-ups, shutdowns and pre-computed start-up trajectories is modeled with modes as well. The feasible region of operation for each component is described based on input-output relationships that are thermodynamically sound, such as the Willans line for steam turbines. Furthermore, we emphasize the use of mathematically efficient logic constraints that allow solving the large-scale models fast. We provide an industrial case study and study the impact of different scenarios for under-utilization. 1

Sumit Mitra; Ignacioe. Grossmann

2012-01-01T23:59:59.000Z

4

IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009, Appendix 6: Method of Calculating Results from DOE's Combined Heat and Power Activities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

87 DOE Industrial Technologies Program 87 DOE Industrial Technologies Program Appendix 6: Method of Calculating Results from DOE's Combined Heat and Power Activities u CHP Table........................................................................................................................................................................................... 189 Method of Calculating Results from DOE's Combined Heat and Power Activities Industrial Distributed Energy, a cross-cutting activity within the Industrial Technologies Program (ITP), builds on activities conducted by DOE's Office of Industrial Technologies

5

Combined Heat and Power System Implementation — A Management Decision Guide: Industrial Center of Excellence Application Guide  

Science Conference Proceedings (OSTI)

This guide discusses how a well-balanced Combined Heat and Power (CHP) project is the most efficient power generation resource available and suggests the open exploration of collaboration and sharing of benefits between utilities and their key customers who have coincident electric and thermal loads for solid CHP project development. The overriding objective of the guide is to present a balanced and effective approach for potential CHP project developers, owners, and participants to make well-informed ...

2013-11-18T23:59:59.000Z

6

Proposing a decision-making model using analytical hierarchy process and fuzzy expert system for prioritizing industries in installation of combined heat and power systems  

Science Conference Proceedings (OSTI)

Restructuring electric power and increasing energy cost encourage large energy consumers to utilize combined heat and power (CHP) systems. In addition to these two factors, the gradual exclusion of subsidies is the third factor intensifying the utilization ... Keywords: Analytic hierarchy process, Combined heat and power, Decision making, Fuzzy expert system, Industry

Mehdi Piltan; Erfan Mehmanchi; S. F. Ghaderi

2012-01-01T23:59:59.000Z

7

Combined heat and power technology fills an important energy ...  

U.S. Energy Information Administration (EIA)

Home; Browse by Tag; Most ... Combined heat and power technology fills an important ... CHP capacity additions followed the pattern of the electric power industry ...

8

Southwest Gas Corporation - Combined Heat and Power Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southwest Gas Corporation - Combined Heat and Power Program Southwest Gas Corporation - Combined Heat and Power Program Southwest Gas Corporation - Combined Heat and Power Program < Back Eligibility Commercial Industrial Savings Category Commercial Heating & Cooling Manufacturing Buying & Making Electricity Maximum Rebate 50% of the installed cost of the project Program Info State Arizona Program Type Utility Rebate Program Rebate Amount $400/kW - $500/kW up to 50% of the installed cost of the project Provider Southwest Gas Corporation Southwest Gas Corporation (SWG) offers incentives to qualifying commercial and industrial facilities who install efficient Combined Heat and Power systems (CHP). CHP systems produce localized, on-site power and heat which can be used in a variety of ways. Incentives vary based upon the efficiency

9

Combined Heat and Power | Open Energy Information  

Open Energy Info (EERE)

Combined Heat and Power Combined Heat and Power Jump to: navigation, search All power plants release a certain amount of heat during electricity generation. This heat can be used to serve thermal loads, such as building heating and hot water requirements. The simultaneous production of electrical (or mechanical) and useful thermal power from a single source is referred to as a combined heat and power (CHP) process, or cogeneration. Contents 1 Combined Heat and Power Basics 2 Fuel Types 2.1 Rural Resources 2.2 Urban Resources 3 CHP Technologies 3.1 Steam Turbine 3.2 Gas Turbine 3.3 Microturbine 3.4 Reciprocating Engine 4 Example CHP Systems[7] 4.1 University of Missouri (MU) 4.2 Princeton University 4.3 University of Iowa 4.4 Cornell University 5 Glossary 6 References Combined Heat and Power Basics

10

Encouraging Combined Heat and Power in California Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Encouraging Combined Heat and Power in California Buildings Encouraging Combined Heat and Power in California Buildings Title Encouraging Combined Heat and Power in California Buildings Publication Type Report LBNL Report Number LBNL-6267E Year of Publication 2013 Authors Stadler, Michael, Markus Groissböck, Gonçalo Cardoso, Andreas MĂŒller, and Judy Lai Abstract Governor Brown's research priorities include an additional 6.5 GW of combined heat and power (CHP) by 2030. As of 2009, roughly 0.25 GW of small natural gas and biogas fired CHP is documented by the Self-Generation Incentive Program (SGIP) database. The SGIP is set to expire, and the anticipated grid de-carbonization based on the development of 20 GW of renewable energy will influence the CHP adoption. Thus, an integrated optimization approach for this analysis was chosen that allows optimizing the adoption of distributed energy resources (DER) such as photovoltaics (PV), CHP, storage technologies, etc. in the California commercial sector from the building owners' perspective. To solve this DER adoption problem the Distributed Energy Resources Customer Adoption Model (DER-CAM), developed by the Lawrence Berkeley National Laboratory and used extensively to address the problem of optimally investing and scheduling DER under multiple settings, has been used. The application of CHP at large industrial sites is well known, and much of its potential is already being realized. Conversely, commercial sector CHP, especially those above 50 to 100 kW peak electricity load, is widely overlooked. In order to analyze the role of DER in CO2 reduction, 147 representative sites in different climate zones were selected from the California Commercial End Use Survey (CEUS). About 8000 individual optimization runs, with different assumptions for the electric tariffs, natural gas costs, marginal grid CO2 emissions, and nitrogen oxide treatment costs, SGIP, fuel cell lifetime, fuel cell efficiency, PV installation costs, and payback periods for investments have been performed. The most optimistic CHP potential contribution in this sector in 2020 will be 2.7 GW. However, this result requires a SGIP in 2020, 46% average electric efficiency for fuel cells, a payback period for investments of 10 years, and a CO2 focused approach of the building owners. In 2030 it will be only 2.5 GW due to the anticipated grid de-carbonization. The 2030 result requires a 60% electric efficiency and 20 year life time for fuel cells, a payback period of 10 years, and a CO2 minimization strategy of building owners. Finally, the possible CHP potential in 2030 shows a significant variance between 0.2 GW and 2.5 GW, demonstrating the complex interactions between technologies, policies, and customer objectives.

11

Combined Heat and Power Projects | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Combined Heat and Power Projects Combined Heat and Power Projects Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of CHP project profiles. Search the project profiles database. Project profiles can be searched by state, CHP TAP, market sector, North American Industry Classification System (NAICS) code, system size, technology/prime mover, fuel, thermal energy use, and year installed. View a list of project profiles by market sector. To view project profiles by state, click on a state on the map or choose a state from the drop-down list below. "An image of the United States representing a select number of CHP project profiles on a state-by-state basis View Energy and Environmental Analysis Inc.'s (EEA) database of all known

12

NREL: Climate Neutral Research Campuses - Combined Heat and Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Combined Heat and Power Combined Heat and Power Combined heat and power (CHP) systems on research campuses can reduce climate impact by 15% to 30% and yield a positive financial return, because they recover heat that is typically wasted in the generation of electric power and deliver that energy in a useful form. The following links go to sections that describe how CHP may fit into your climate action plans. Considerations Sample Project Related Links CHP systems can take advantage of large central heating plants and steam distribution systems that are available on many campuses. CHP systems may be new at a particular facility, but the process and equipment involve well-established industrial technologies. The U.S. Environmental Protection Agency CHP Partnership offers technical information and resources that

13

Federal Energy Management Program: Combined Heat and Power Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Combined Heat and Power Basics to someone by E-mail Share Federal Energy Management Program: Combined Heat and Power Basics on Facebook Tweet about Federal Energy Management...

14

Combined Heat and Power Plant Steam Turbine  

E-Print Network (OSTI)

waste heat) Gas Turbine University Substation High Pressure Natural Gas Campus Electric Load SouthernCombined Heat and Power Plant Steam Turbine Steam Turbine Chiller Campus Heat Load Steam (recovered Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller to campus cooling

Rose, Michael R.

15

Renewable Combined Heat and Power Dairy Operations  

E-Print Network (OSTI)

horsepower Guascor model SFGLD-560 biogas-fired lean burn internal combustion (IC) engine and generator set and modify the existing biogas toelectricity combined heat and power (CHP) system operated at Fiscalini bacteria to remove hydrogen sulfide presented in the biogas. Source: Fiscalini Farms Term: March 2011

16

Combined Heat and Power (CHP) Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Development » Smart Grid » Distributed Technology Development » Smart Grid » Distributed Energy » Combined Heat and Power (CHP) Systems Combined Heat and Power (CHP) Systems The CHP systems program aimed to facilitate acceptance of distributed energy in end-use sectors by forming partnerships with industry consortia in the commercial building, merchant stores, light industrial, supermarkets, restaurants, hospitality, health care and high-tech industries. In high-tech industries such as telecommunications, commercial data processing and internet services, the use of electronic data and signal processing have become a cornerstone in the U.S. economy. These industries represent high potential for CHP and distributed energy due to their ultra-high reliability and power quality requirements and related large

17

Combined Heat and Power in Biofuels Production and Use of Biofuels for Power Generation  

Science Conference Proceedings (OSTI)

The rise of the biofuels industry presents electric utilities with two types of opportunities: combined heat and power (CHP) applications in biofuel production facilities using topping and bottoming power generation cycles and the use of the biofuels as a fuel in electric power generation. This report reviews production processes for ethanol and biodiesel, including the prospects for CHP applications, and describes power generation opportunities for the use of biofuels in power production, especially in ...

2007-12-17T23:59:59.000Z

18

Combined Heat and Power Systems (CHP): Capabilities (Fact Sheet)  

SciTech Connect

D&MT Capabilities fact sheet that describes the NREL capabilities related to combined heat and power (CHP).

Not Available

2013-07-01T23:59:59.000Z

19

Table 8.3c Useful Thermal Output at Combined-Heat-and-Power ...  

U.S. Energy Information Administration (EIA)

Table 8.3c Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.3a; Trillion ...

20

Combined Heat and Power Pilot Loan Program (Connecticut) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Loan Program (Connecticut) Loan Program (Connecticut) Combined Heat and Power Pilot Loan Program (Connecticut) < Back Eligibility Commercial Industrial Institutional Savings Category Commercial Heating & Cooling Manufacturing Buying & Making Electricity Maximum Rebate $450 per kilowatt Program Info Funding Source Clean Energy Finance and Investment Authority Start Date 06/18/2012 State Connecticut Program Type State Loan Program Rebate Amount Varies based on the specific technology, efficiency, and economics of the installation Provider Clean Energy Finance and Investment Authority Note: The application deadline was September 28, 2012. This solicitation is now closed. Check the program web site for information regarding the next solicitation. The Clean Energy Finance and Investment Authority (CEFIA) is administering

Note: This page contains sample records for the topic "includes industrial combined-heat-and-power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Combined Heat and Power Pilot Grant Program (Connecticut ) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grant Program (Connecticut ) Grant Program (Connecticut ) Combined Heat and Power Pilot Grant Program (Connecticut ) < Back Eligibility Commercial Industrial Institutional Savings Category Commercial Heating & Cooling Manufacturing Buying & Making Electricity Maximum Rebate $450 per kilowatt Program Info Funding Source Clean Energy Finance and Investment Authority State Connecticut Program Type State Grant Program Rebate Amount Varies based on the specific technology, efficiency, and economics of the installation Provider Clean Energy Finance and Investment Authority Note: The initial application deadline was September 28, 2012. This solicitation is now closed. Check the program web site for information regarding the next solicitation. The Clean Energy Finance and Investment Authority (CEFIA) is administering

22

FACT SHEET: Energy Department Actions to Deploy Combined Heat and Power,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FACT SHEET: Energy Department Actions to Deploy Combined Heat and FACT SHEET: Energy Department Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency FACT SHEET: Energy Department Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency October 21, 2013 - 11:30am Addthis News Media Contact (202) 586-4940 Underscoring President Obama's Climate Action Plan to cut harmful emissions and double energy efficiency, the Energy Department is taking action to develop the next generation of combined heat and power (CHP) technology and help local communities and businesses make cost-effective investments that save money and energy. As part of this effort, the Department launched today seven new regional Combined Heat and Power Technical Assistance Partnerships across the country to help strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce

23

FACT SHEET: Energy Department Actions to Deploy Combined Heat and Power,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FACT SHEET: Energy Department Actions to Deploy Combined Heat and FACT SHEET: Energy Department Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency FACT SHEET: Energy Department Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency October 21, 2013 - 11:30am Addthis News Media Contact (202) 586-4940 Underscoring President Obama's Climate Action Plan to cut harmful emissions and double energy efficiency, the Energy Department is taking action to develop the next generation of combined heat and power (CHP) technology and help local communities and businesses make cost-effective investments that save money and energy. As part of this effort, the Department launched today seven new regional Combined Heat and Power Technical Assistance Partnerships across the country to help strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce

24

WORKING PARK-FUEL CELL COMBINED HEAT AND POWER SYSTEM  

DOE Green Energy (OSTI)

This report covers the aims and objectives of the project which was to design, install and operate a fuel cell combined heat and power (CHP) system in Woking Park, the first fuel cell CHP system in the United Kingdom. The report also covers the benefits that were expected to accrue from the work in an understanding of the full technology procurement process (including planning, design, installation, operation and maintenance), the economic and environmental performance in comparison with both conventional UK fuel supply and conventional CHP and the commercial viability of fuel cell CHP energy supply in the new deregulated energy markets.

Allan Jones

2003-09-01T23:59:59.000Z

25

Combined heat and power technology fills an important energy ...  

U.S. Energy Information Administration (EIA)

Combined heat and power (CHP), also called cogeneration, is an efficient approach to generating electric power and useful thermal energy for heating ...

26

Combined Heat and Power, Waste Heat, and District Energy  

Energy.gov (U.S. Department of Energy (DOE))

Presentation—given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting—covers combined heat and power (CHP) technologies and their applications.

27

Equilibrium Modeling of Combined Heat and Power deployment in Philadelphia.  

E-Print Network (OSTI)

??Combined heat and power (CHP) generates electricity and heat from the same fuel source and can provide these services at higher equivalent conversion efficiency relative… (more)

Govindarajan, Anand

2013-01-01T23:59:59.000Z

28

Utility Incentives for Combined Heat and Power | Open Energy Information  

Open Energy Info (EERE)

Utility Incentives for Combined Heat and Power Utility Incentives for Combined Heat and Power Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Utility Incentives for Combined Heat and Power Focus Area: Solar Topics: Policy Impacts Website: www.epa.gov/chp/documents/utility_incentives.pdf Equivalent URI: cleanenergysolutions.org/content/utility-incentives-combined-heat-and- Language: English Policies: Financial Incentives This report reviews a U.S. Environmental Protection Agency study that researched 41 U.S. utilities and found that nearly half provided some kind of support for combined heat and power (CHP). Here they profile 16 utility programs that support CHP in ways excluding direct financial incentives. References Retrieved from "http://en.openei.org/w/index.php?title=Utility_Incentives_for_Combined_Heat_and_Power&oldid=514610

29

Pacific Region Combined Heat and Power Projects | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pacific Region Combined Heat and Power Projects Pacific Region Combined Heat and Power Projects Pacific Region Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs. Pacific www.pacificCHPTAP.org Terry Clapham California Center for Sustainable Energy 858-244-4872 terry.clapham@energycenter.org California Alameda County Santa Rita Jail, Dublin Burlingame Wastewater Treatment Plant, Burlingame Chiquita Water Reclamation Plant, Santa Margarita DGS Central Plant, Sacramento East Bay Municipal Utility District, Oakland East Bay Municipal Utility District WWTP, Oakland EMWD Microturbine Energy System, Riverside County

30

Combined Heat and Power Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Combined Heat and Power Basics Combined Heat and Power Basics Combined Heat and Power Basics November 1, 2013 - 11:40am Addthis Combined heat and power (CHP), also known as cogeneration, is: A process flow diagram showing efficiency benefits of CHP CHP Process Flow Diagram The concurrent production of electricity or mechanical power and useful thermal energy (heating and/or cooling) from a single source of energy. A type of distributed generation, which, unlike central station generation, is located at or near the point of consumption. A suite of technologies that can use a variety of fuels to generate electricity or power at the point of use, allowing the heat that would normally be lost in the power generation process to be recovered to provide needed heating and/or cooling. CHP technology can be deployed quickly, cost-effectively, and with few

31

Southeast Region Combined Heat and Power Projects | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southeast Region Combined Heat and Power Projects Southeast Region Combined Heat and Power Projects Southeast Region Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs. Southeast www.southeastCHPTAP.org Isaac Panzarella North Carolina State University 919-515-0354 ipanzarella@ncsu.edu Alabama View Energy and Environmental Analysis Inc.'s (EEA) database of all known CHP installations in Alabama. Arkansas Fourche Creek Wastewater Treatment Facility, Little Rock View EEA's database of all known CHP installations in Arkansas. Florida Howard F. Curren Advanced Wastewater Treatment Plant, Tampa Shands Hospital, Gainesville View EEA's database of all known CHP installations in Florida.

32

Pacific Region Combined Heat and Power Projects | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pacific Region Combined Heat and Power Projects Pacific Region Combined Heat and Power Projects Pacific Region Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs. Pacific www.pacificCHPTAP.org Terry Clapham California Center for Sustainable Energy 858-244-4872 terry.clapham@energycenter.org California Alameda County Santa Rita Jail, Dublin Burlingame Wastewater Treatment Plant, Burlingame Chiquita Water Reclamation Plant, Santa Margarita DGS Central Plant, Sacramento East Bay Municipal Utility District, Oakland East Bay Municipal Utility District WWTP, Oakland EMWD Microturbine Energy System, Riverside County

33

Northwest Region Combined Heat and Power Projects | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northwest Region Combined Heat and Power Projects Northwest Region Combined Heat and Power Projects Northwest Region Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs. Northwest www.northwestCHPTAP.org David Sjoding Washington State University 360-956-2004 sjodingd@energy.wsu.edu Alaska Alaska Village Electric Cooperative, Anvik Alaska Village Electric Cooperative, Grayling Exit Glacier - Kenai Fjords National Park, Seward Golovin City, Golovin Inside Passage Electric Cooperative, Angoon Kokhanok City, Kokhanok St. Paul Island, St. Paul Island Village Council, Kongiganak City Village Council, Kwigillingok City Village Council, Stevens Village

34

Southwest Region Combined Heat and Power Projects | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southwest Region Combined Heat and Power Projects Southwest Region Combined Heat and Power Projects Southwest Region Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs. Southwest www.southwestCHPTAP.org Christine Brinker Southwest Energy Efficiency Project 720-939-8333 cbrinker@swenergy.org Arizona Ina Road Water Pollution Control Facility, Tucson University of Arizona, Tucson View Energy and Environmental Analysis Inc.'s (EEA) database of all known CHP installations in Arizona. Colorado Metro Wastewater Reclamation District, Denver MillerCoors, Golden New Belgium Brewery, Fort Collins Trailblazer Pipeline, Fort Collins View EEA's database of all known CHP installations in Colorado.

35

Distributed Solar-Thermal Combined Heat and Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Solar-Thermal Combined Heat and Power Speaker(s): Zack Norwood Date: February 22, 2007 - 12:00pm Location: 90-3122 This seminar will examine the potential for the mild...

36

Midwest Region Combined Heat and Power Projects | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Midwest Region Combined Heat and Power Projects Midwest Region Combined Heat and Power Projects Midwest Region Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs. Midwest www.midwestCHPTAP.org John Cuttica University of Illinois at Chicago 312-996-4382 cuttica@uic.edu Cliff Haefke University of Illinois at Chicago 312-355-3476 chaefk1@uic.edu Illinois Adkins Energy, Lena Advocate South Suburban Hospital, Hazel Crest Antioch Community High School, Antioch Elgin Community College, Elgin Evanston Township High School, Evanston Hunter Haven Farms, Inc., Pearl City Jesse Brown VA Medical Center, Chicago Lake Forest Hospital, Lake Forest

37

Thermal Energy Corporation Combined Heat and Power Project  

Science Conference Proceedings (OSTI)

To meet the planned heating and cooling load growth at the Texas Medical Center (TMC), Thermal Energy Corporation (TECO) implemented Phase 1 of a Master Plan to install an additional 32,000 tons of chilled water capacity, a 75,000 ton-hour (8.8 million gallon) Thermal Energy Storage (TES) tank, and a 48 MW Combined Heat and Power (CHP) system. The Department of Energy selected TMC for a $10 million grant award as part of the Financial Assistance Funding Opportunity Announcement, U.S. Department of Energy National Energy Technology, Recovery Act: Deployment of Combined Heat and Power (CHP) Systems, District Energy Systems, Waste Energy Recovery Systems, and Efficiency Industrial Equipment Funding Opportunity Number: DE-FOA-0000044 to support the installation of a new 48 MW CHP system at the TMC located just outside downtown Houston. As the largest medical center in the world, TMC is home to many of the nationâ??s best hospitals, physicians, researchers, educational institutions, and health care providers. TMC provides care to approximately six million patients each year, and medical instruction to over 71,000 students. A medical center the size of TMC has enormous electricity and thermal energy demands to help it carry out its mission. Reliable, high-quality steam and chilled water are of utmost importance to the operations of its many facilities. For example, advanced medical equipment, laboratories, laundry facilities, space heating and cooling all rely on the generation of heat and power. As result of this project TECO provides this mission critical heating and cooling to TMC utilizing a system that is both energy-efficient and reliable since it provides the capability to run on power independent of the already strained regional electric grid. This allows the medical center to focus on its primary mission â?? providing top quality medical care and instruction â?? without worrying about excessive energy costs or the loss of heating and cooling due to the risk of power outages. TECOâ??s operation is the largest Chilled Water District Energy System in the United States. The company used DOEâ??s funding to help install a new high efficiency CHP system consisting of a Combustion Turbine and a Heat Recovery Steam Generator. This CHP installation was just part of a larger project undertaken by TECO to ensure that it can continue to meet TMCâ??s growing needs. The complete efficiency overhaul that TECO undertook supported more than 1,000 direct and indirect jobs in manufacturing, engineering, and construction, with approximately 400 of those being jobs directly associated with construction of the combined heat and power plant. This showcase industrial scale CHP project, serving a critical component of the nationâ??s healthcare infrastructure, directly and immediately supported the energy efficiency and job creation goals established by ARRA and DOE. It also provided an unsurpassed model of a district energy CHP application that can be replicated within other energy intensive applications in the industrial, institutional and commercial sectors.

E. Bruce Turner; Tim Brown; Ed Mardiat

2011-12-31T23:59:59.000Z

38

1990,"AK","Combined Heat and Power, Commercial Power","All Sources",4,85.9,80.09  

U.S. Energy Information Administration (EIA) Indexed Site

STATE_CODE","PRODUCER_TYPE","FUEL_SOURCE","GENERATORS","NAMEPLATE_CAPACITY STATE_CODE","PRODUCER_TYPE","FUEL_SOURCE","GENERATORS","NAMEPLATE_CAPACITY (Megawatts)","SUMMER_CAPACITY (Megawatts)" 1990,"AK","Combined Heat and Power, Commercial Power","All Sources",4,85.9,80.09 1990,"AK","Combined Heat and Power, Commercial Power","Coal",3,65.5,61.1 1990,"AK","Combined Heat and Power, Commercial Power","Petroleum",1,20.4,18.99 1990,"AK","Combined Heat and Power, Industrial Power","All Sources",23,229.4,204.21 1990,"AK","Combined Heat and Power, Industrial Power","Natural Gas",28,159.32,136.67 1990,"AK","Combined Heat and Power, Industrial Power","Petroleum",8,68.28,65.86

39

Understanding Emissions from Combined Heat and Power Systems  

E-Print Network (OSTI)

Combined Heat and Power (CHP) is more energy efficient than separate generation of electricity and thermal energy. In CHP, heat that is normally wasted in conventional power generation is recovered as useful energy for satisfying an existing thermal demand thus avoiding the losses that would otherwise be incurred from separate generation of power. Modeling analyses has demonstrated significant air emissions, transmission and price benefits of clean CHP technologies. Despite these benefits, CHP remains an underutilized technology hindered by a number of disincentives, including treatment under current air quality permitting practice, which does not recognize the efficiency benefits of CHP. Output-based standards begin to address these permitting shortcomings. This paper will discuss how to view emissions from CHP systems from an output-basis and compares emission from different technologies. Treatment of distributed generation is compared with central generation, and emissions from an integrated system that produces more than one usable output are discussed. Regulatory and policy strategies that encourage clear and efficient CHP are also discussed.

Shipley, A. M.; Greene, N.; Carter, S.; Elliott, R. N.

2002-04-01T23:59:59.000Z

40

Using and Measuring the Combined Heat and Power Advantage  

E-Print Network (OSTI)

Combined Heat and Power (CHP), also known as cogeneration, refers to the integration of thermal energy with power generation. CHP is a powerful energy conservation measure that has been identified as an important greenhouse gas reduction measure with net economic benefits. It complements other energy conservation measures. CHP can be used any place that heat is needed so it is used with a variety of applications, fuels, and equipment. There are ancillary benefits of CHP to the host site and the public including air quality, reliability, reduced water consumption, and economic development. There is no universal practice for reporting the efficiency of CHP systems which can result in both overstatement and understatement of the benefits of CHP compared to other power generation systems. Fuel Charged to Power (FCP) is the fuel, net of credit for thermal output, required to produce a kilowatt-hour of electricity. This provides a metric that is used for comparison to the heat rate of other types of generation and insight into the development of CHP projects that maximize economic and environmental benefits. Biomass generation is generally less efficient than fossil fuel generation due to size and combustion characteristics, which means that there is more benefit from CHP because there is more waste heat available for recovery. An example is presented demonstrating that CHP significantly improves the economics and environmental benefits for biomass to power.

John, T.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "includes industrial combined-heat-and-power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

GUIDELINES FOR CERTIFICATION OF COMBINED HEAT AND POWER SYSTEMS  

E-Print Network (OSTI)

Description 1 CHP System Name 2 CEC Plant ID 3 EIA Plant ID 4 Qualifying Facility ID (if applicable) 5 Thermal, and emissions related to combined heat and power (CHP) system power plant operations. This information is used the power plant is first reported on Form CEC-2843. The respondent should use the Commission assigned code

42

Anaerobic Digestion and Combined Heat and Power Study  

DOE Green Energy (OSTI)

One of the underlying objectives of this study is to recover the untapped energy in wastewater biomass. Some national statistics worth considering include: (1) 5% of the electrical energy demand in the US is used to treat municipal wastewater; (2) This carbon rich wastewater is an untapped energy resource; (3) Only 10% of wastewater treatment plants (>5mgd) recover energy; (4) Wastewater treatment plants have the potential to produce > 575 MW of energy nationwide; and (5) Wastewater treatment plants have the potential to capture an additional 175 MW of energy from waste Fats, Oils and Grease. The WSSC conducted this study to determine the feasibility of utilizing anaerobic digestion and combined heat and power (AD/CHP) and/or biosolids gasification and drying facilities to produce and utilize renewable digester biogas. Digester gas is considered a renewable energy source and can be used in place of fossil fuels to reduce greenhouse gas emissions. The project focus includes: (1) Converting wastewater Biomass to Electricity; (2) Using innovative technologies to Maximize Energy Recovery; and (3) Enhancing the Environment by reducing nutrient load to waterways (Chesapeake Bay), Sanitary Sewer Overflows (by reducing FOG in sewers) and Greenhouse Gas Emissions. The study consisted of these four tasks: (1) Technology screening and alternative shortlisting, answering the question 'what are the most viable and cost effective technical approaches by which to recover and reuse energy from biosolids while reducing disposal volume?'; (2) Energy recovery and disposal reduction potential verification, answering the question 'how much energy can be recovered from biosolids?'; (3) Economic environmental and community benefit analysis, answering the question 'what are the potential economic, environmental and community benefits/impacts of each approach?'; and (4) Recommend the best plan and develop a concept design.

Frank J. Hartz

2011-12-30T23:59:59.000Z

43

Combined Heat and Power with Your Local Utility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Partnership Working Group Combined Heat and Power C.A. Skip Cofield October 16, 2012 Agenda * Southern Company * Combined Heat and Power (CHP) * Southern Company CHP * Utility Partnerships 2 Southern Company Overview Operating Companies: * Alabama Power * Georgia Power * Gulf Power * Mississippi Power Subsidiaries: * Southern LINC * Southern Nuclear * Southern Power * Southern Telecom 3 Retail Generating Units Wholesale Generating Units * 4.4 million customers * 43,500+ MW * 26,000+ employees * 120,000 square miles of retail service territory * 27,000 mi. of transmission lines * 3,700 substations * $17.7B in operating revenue * $2.2B in net income * $39.2B in market cap * $59.3B in assets * $13.5B annual op. expense 4 Southern Company Overview

44

Encouraging Combined Heat and Power in California Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

267E 267E Encouraging Combined Heat and Power in California Buildings Michael Stadler, Markus Groissböck, Gonçalo Cardoso, Andreas MĂŒller, and Judy Lai Environmental Energy Technologies Division http://microgrid.lbl.gov This project was funded by the California Energy Commission Public Interest Energy Research (PIER) Program under WFO Contract No. 500-10-052 and by the U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. We are appreciative of the Commission's timely support for this project. We particularly thank Golam Kibrya and Chris Scruton for their guidance and assistance through all phases of the project. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Encouraging Combined Heat and Power in California

45

Technical and Economic Assessment of Combined Heat and Power Technologies for Commercial Customer Applications  

Science Conference Proceedings (OSTI)

In general, the overall efficiency of energy utilization by conventional power systems averages around 33 percent. Combined heat and power (CHP) technologies installed at commercial and industrial sites, however, can increase the overall efficiency beyond 85 percent by recovering waste heat and putting it to beneficial use. Thus, CHP reduces the energy consumption and improves environmental quality. Currently, CHP accounts for approximately only 7 percent of total generation capacity and 40 percent of th...

2003-03-12T23:59:59.000Z

46

EA-1741: Seattle Steam Company Combined Heat and Power at Post...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

741: Seattle Steam Company Combined Heat and Power at Post Street in Downtown Seattle, Washington EA-1741: Seattle Steam Company Combined Heat and Power at Post Street in Downtown...

47

Tracking Progress Last updated 10/7/2013 Combined Heat and Power 1  

E-Print Network (OSTI)

of obtaining heat from a boiler and power from the electric grid. Additionally, since CHP system energyTracking Progress Last updated 10/7/2013 Combined Heat and Power 1 Combined Heat and Power Combined heat and power (CHP) systems, also referred to as cogeneration, generate on-site electricity

48

Definition: Combined heat and power | Open Energy Information  

Open Energy Info (EERE)

heat and power heat and power Jump to: navigation, search Dictionary.png Combined heat and power The production of electricity and heat from a single process. Almost synonymous with the term cogeneration, but slightly more broad. Under the Public Utility Regulatory Policies Act (PURPA), the definition of cogeneration is the production of electric energy and "another form of useful thermal energy through the sequential use of energy." Since some facilities produce both heat and power but not in a sequential fashion, the term CHP is used.[1][2][3] View on Wikipedia Wikipedia Definition View on Reegle Reegle Definition Cogeneration power plants produce electricity but do not waste the heat this process creates. The heat is used for district heating or other purposes, and thus the overall efficiency is improved. For example could

49

AMO Industrial Distributed Energy: Combined Heat and Power Basics  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

or power at the point of use, allowing the heat that would normally be lost in the power generation process to be recovered to provide needed heating andor cooling. CHP...

50

ITP Industrial Distributed Energy: Combined Heat and Power: Effective...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

United States already avoids more than 1.9 Quadrillion British thermal units (Quads) of fuel consumption and 248 million metric tons of carbon dioxide (CO 2 ) emissions annually...

51

ITP Industrial Distributed Energy: Combined Heat and Power -...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Commission (CEC) * International District Energy Association (IDEA) * National Energy Technology Laboratory (NETL) * New York State Energy Research and Development...

52

AMO Industrial Distributed Energy: Combine Heat and Power: A...  

NLE Websites -- All DOE Office Websites (Extended Search)

capacity. Finally, the economics of CHP are improving as a result of the changing outlook in the long-term supply and price of North American natural gas - a preferred fuel...

53

GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER WITH DISTRIBUTED GENERATION PRIME MOVERS - ASME 2012  

Science Conference Proceedings (OSTI)

Pending or recently enacted greenhouse gas regulations and mandates are leading to the need for current and feasible GHG reduction solutions including combined heat and power (CHP). Distributed generation using advanced reciprocating engines, gas turbines, microturbines and fuel cells has been shown to reduce greenhouse gases (GHG) compared to the U.S. electrical generation mix due to the use of natural gas and high electrical generation efficiencies of these prime movers. Many of these prime movers are also well suited for use in CHP systems which recover heat generated during combustion or energy conversion. CHP increases the total efficiency of the prime mover by recovering waste heat for generating electricity, replacing process steam, hot water for buildings or even cooling via absorption chilling. The increased efficiency of CHP systems further reduces GHG emissions compared to systems which do not recover waste thermal energy. Current GHG mandates within the U.S Federal sector and looming GHG legislation for states puts an emphasis on understanding the GHG reduction potential of such systems. This study compares the GHG savings from various state-of-the- art prime movers. GHG reductions from commercially available prime movers in the 1-5 MW class including, various industrial fuel cells, large and small gas turbines, micro turbines and reciprocating gas engines with and without CHP are compared to centralized electricity generation including the U.S. mix and the best available technology with natural gas combined cycle power plants. The findings show significant GHG saving potential with the use of CHP. Also provided is an exploration of the accounting methodology for GHG reductions with CHP and the sensitivity of such analyses to electrical generation efficiency, emissions factors and most importantly recoverable heat and thermal recovery efficiency from the CHP system.

Curran, Scott [ORNL; Theiss, Timothy J [ORNL; Bunce, Michael [ORNL

2012-01-01T23:59:59.000Z

54

HEATMAP©CHP - The International Standard for Modeling Combined Heat and Power Systems  

E-Print Network (OSTI)

HEATMAP©CHP is a software tool that can provide a comprehensive simulation of proposed and existing combined heat and power (CHP) plant and system applications, The software model provides a fully integrated analysis of central power production plants that are linked to district energy applications using hot water or steam for heating and/or chilled water-cooling and/or refrigeration connected to a network of buildings or other residential commercial, institutional, or industrial facilities. The program will provide designers, planners. engineers, investors, utilities, and operators with extensive technical, economical, and air emission information about a specific CHP application. The software can also be a valuable tool for community, military, regional, or national planners in defining all aspects of developing, evaluating, and justifying a new CHP project or upgrading an existing thermal system for CHP. Program output may be used to evaluate existing system performance or model the effects of various potential alternative system strategies including upgrades, expansions or conversion of thermal fluids (e.g., steam to hot water). A major feature of the program is its capability to comprehensively analyze a central CHP plant interface application involving thermal storage for both heating and cooling systems in conjunction with various technical distribution parameters covering both the supply and return elements of an extensive piping distribution system. Important features of the software include: the capability to utilize a myriad of fuel and equipment options; determination of air emission impacts that can result from CHP or central energy plant implementation; and the evaluation of extensive economic scenarios including the influence of environmental taxes on a variety of fuel alternatives.

Bloomquist, R. G.; O'Brien, R. G.

2000-04-01T23:59:59.000Z

55

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

solar power (CSP) troughs in the central valley of California (Pricesolar combined heat and power with desalination Figure 2.7: Comparison of desalination plants; price

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

56

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

Concentrating Solar Combined Heat and Power Systemfor Distributed Concentrating Solar Combined Heat and Powerin parabolic trough solar power technology. Journal of Solar

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

57

Integration of Combined Heat and Power Generators into Small Buildings - A Transient Analysis Approach.  

E-Print Network (OSTI)

??Small combined heat and power generators have the potential to reduce energy consumption and greenhouse gas emissions of residential buildings. Recently, much attention has been… (more)

DeBruyn, Adrian Bryan

2007-01-01T23:59:59.000Z

58

A Ranking of State Combined Heat and Power Policies  

E-Print Network (OSTI)

Combined Heat and Power (CHP) has been identified as a significant opportunity for greater energy efficiency and decreased environmental impacts of energy consumption. Despite this, the regulatory and policy landscape for CHP is often quite discouraging to the deployment of these systems, despite their many benefits to customers and society at large. That the landscape changes considerably from state to state only confuses the matter. Of all the various types of distributed generation, CHP systems encompass technologies particularly hard hit by policies and regulations that do not actively support their deployment. Given the large size of some CHP systems, interconnection standards that clearly delineate interconnection processes for multi-megawatt systems are necessary. In addition, since many CHP technologies emit incremental criteria pollutants as part of their operation, the manner in which emissions are regulated by a state can significantly impact the financial realities of running a CHP system. In the absence of strong federal guidance, interconnection standards, tax incentives, tariff designs, environmental regulations and other policy measures that dramatically impact the attractiveness of CHP projects can only be significantly addressed by state lawmakers and regulators. State activity is essential to creating a policy framework that encourages CHP. Within the past several years, a number of states have made significant strides in implementing more “CHP-friendly” policies. Some states have worked to develop these policies at an accelerated rate while others have done little. In many cases the difference between states that are proactively encouraging CHP and states that are ignoring it all together is stark. This paper will identify which states are leading the way, which states are following, and what the policies of all states look like at this current point in time. It will define what “CHP-friendly” policies are, what makes a good policy better, and discuss the manners in which a variety of states have chosen to approach CHP. CHP system developers will come away with a clearer picture of each state’s unique CHP barriers, potential CHP customers will understand how their current CHP climate compares to that of other locations, and state lawmakers and CHP advocates will be able to learn about best practices in policy creation that already exist in the field.

Chittum, A.; Kaufman, N.

2009-05-01T23:59:59.000Z

59

Guide to Combined Heat and Power Systems for Boiler Owners and Operators  

Science Conference Proceedings (OSTI)

Combined heat and power (CHP) or cogeneration is the sequential production of two forms of useful energy from a single fuel source. In most CHP applications, chemical energy in fuel is converted to both mechanical and thermal energy. The mechanical energy is generally used to generate electricity, while the thermal energy or heat is used to produce steam, hot water, or hot air. Depending on the application, CHP is referred to by various names including Building Cooling, Heating, and Power (BCHP); Cooling, Heating, and Power for Buildings (CHPB); Combined Cooling, Heating, and Power (CCHP); Integrated Energy Systems (IES), or Distributed Energy Resources (DER). The principal technical advantage of a CHP system is its ability to extract more useful energy from fuel compared to traditional energy systems such as conventional power plants that only generate electricity and industrial boiler systems that only produce steam or hot water for process applications. By using fuel energy for both power and heat production, CHP systems can be very energy efficient and have the potential to produce electricity below the price charged by the local power provider. Another important incentive for applying cogeneration technology is to reduce or eliminate dependency on the electrical grid. For some industrial processes, the consequences of losing power for even a short period of time are unacceptable. The primary objective of the guide is to present information needed to evaluate the viability of cogeneration for new or existing industrial, commercial, and institutional (ICI) boiler installations and to make informed CHP equipment selection decisions. Information presented is meant to help boiler owners and operators understand the potential benefits derived from implementing a CHP project and recognize opportunities for successful application of cogeneration technology. Topics covered in the guide follow: (1) an overview of cogeneration technology with discussions about benefits of applying cogeneration technology and barriers to implementing cogeneration technology; (2) applicable federal regulations and permitting issues; (3) descriptions of prime movers commonly used in CHP applications, including discussions about design characteristics, heat-recovery options and equipment, fuels and emissions, efficiency, maintenance, availability, and capital cost; (4) electrical generators and electrical interconnection equipment; (5) cooling and dehumidification equipment; (6) thermodynamic cycle options and configurations; (7) steps for evaluating the technical and economic feasibility of applying cogeneration technology; and (8) information sources.

Oland, CB

2004-08-19T23:59:59.000Z

60

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System Callaway Spring 2011 #12;Abstract A Better Steam Engine: Designing a Distributed Concentrating Solar of analysis of Distributed Concentrating Solar Combined Heat and Power (DCS-CHP) systems is a design

California at Berkeley, University of

Note: This page contains sample records for the topic "includes industrial combined-heat-and-power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Combined heat and power economic dispatch by mesh adaptive direct search algorithm  

Science Conference Proceedings (OSTI)

The optimal utilization of multiple combined heat and power (CHP) systems is a complex problem. Therefore, efficient methods are required to solve it. In this paper, a recent optimization technique, namely mesh adaptive direct search (MADS) is implemented ... Keywords: Combined heat and power, Economic dispatch, Mesh adaptive direct search algorithm, Optimization

Seyyed Soheil Sadat Hosseini; Ali Jafarnejad; Amir Hossein Behrooz; Amir Hossein Gandomi

2011-06-01T23:59:59.000Z

62

A modified unit decommitment algorithm in combined heat and power production planning  

Science Conference Proceedings (OSTI)

This paper addresses the unit commitment in multi-period combined heat and power (CHP) production planning, considering the possibility to trade power on the spot market. We present a modified unit decommitment algorithm (MUD) that starts with a good ... Keywords: combined heat and power production, deregulated power market, energy optimization, modelling, modified unit decommitment, unit commitment

Aiying Rong; Risto Lahdelma

2007-01-01T23:59:59.000Z

63

Top 10 Things You Didn't Know About Combined Heat and Power | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Top 10 Things You Didn't Know About Combined Heat and Power Top 10 Things You Didn't Know About Combined Heat and Power Top 10 Things You Didn't Know About Combined Heat and Power October 21, 2013 - 11:25am Addthis Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce harmful emissions. | Infographic by Sarah Gerrity, Energy Department. Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce harmful emissions. | Infographic by Sarah Gerrity, Energy Department. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs More Top Things: Top 9 Things You Didn't Know About America's Power Grid Top 9 Things You Didn't Know about Carbon Fiber

64

EA-1741: Seattle Steam Company Combined Heat and Power at Post Street in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

741: Seattle Steam Company Combined Heat and Power at Post 741: Seattle Steam Company Combined Heat and Power at Post Street in Downtown Seattle, Washington EA-1741: Seattle Steam Company Combined Heat and Power at Post Street in Downtown Seattle, Washington Summary This EA evaluates the environmental impacts of a proposal to provide an American Recovery Act and Reinvestment Act of 2009 financial assistance grant to Seattle Steam Company to facilitate the installation of a combined heat and power plant in downtown Seattle, Washington. NOTE: This project has been cancelled. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download June 16, 2010 EA-1741: Draft Environmental Assessment Seattle Steam Company Combined Heat and Power at Post Street in Downtown Seattle, Washington (June 2010)

65

Top 10 Things You Didn't Know About Combined Heat and Power | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Top 10 Things You Didn't Know About Combined Heat and Power Top 10 Things You Didn't Know About Combined Heat and Power Top 10 Things You Didn't Know About Combined Heat and Power October 21, 2013 - 11:25am Addthis Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce harmful emissions. | Infographic by Sarah Gerrity, Energy Department. Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce harmful emissions. | Infographic by Sarah Gerrity, Energy Department. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs More Top Things: Top 9 Things You Didn't Know About America's Power Grid Top 9 Things You Didn't Know about Carbon Fiber

66

Combined Heat and Power (CHP): Is It Right For Your Facility?  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Partnership with the US DOE Partnership with the US DOE Combined Heat and Power (CHP) Is It Right For Your Facility U.S. DOE Industrial Technologies Program Webcast Series May 14 th , 2009 John J. Cuttica Cliff Haefke 312/996-4382 312/355-3476 cuttica@uic.edu chaefk1@uic.edu In Partnership with the US DOE Mid Atlantic www.chpcenterma.org Midwest www.chpcentermw.org Pacific www.chpcenterpr.org Northwest Region www.chpcenternw.org Northeast www.northeastchp.org Intermountain www.IntermountainCHP.org Gulf Coast www.GulfCoastCHP.org Southeastern www.chpcenterse.org In Partnership with the US DOE CHP Decision Making Process Presented by Ted Bronson & Joe Orlando Webcast Series January 8, 2009 CHP Regional Application Centers Walkthrough STOP Average Costs Typical Performance Yes No Energy Rates Profiles

67

The CO2 Reduction Potential of Combined Heat and Power in California's Commercial Buildings  

Science Conference Proceedings (OSTI)

The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) is working with the California Energy Commission (CEC) to determine the potential role of commercial sector distributed generation (DG) with combined heat and power (CHP) capability deployment in greenhouse gas emissions (GHG) reductions. CHP applications at large industrial sites are well known, and a large share of their potential has already been harvested. In contrast, relatively little attention has been paid to the potential of medium-sized commercial buildings, i.e., ones with peak electric loads ranging from 100 kW to 5 MW. We examine how this sector might implement DG with CHP in cost minimizing microgrids that are able to adopt and operate various energy technologies, such as solar photovoltaics (PV), on-site thermal generation, heat exchangers, solar thermal collectors, absorption chillers, and storage systems. We apply a mixed-integer linear program (MILP) that minimizes a site's annual energy costs as its objective. Using 138 representative mid-sized commercial sites in California (CA), existing tariffs of three major electricity distribution ultilities plus a natural gas company, and performance data of available technology in 2020, we find the GHG reduction potential for this CA commercial sector segment, which represents about 35percent of total statewide commercial sector sales. Under the assumptions made, in a reference case, this segment is estimated to be capable of economically installing 1.4 GW of CHP, 35percent of the California Air Resources Board (CARB) statewide 4 GW goal for total incremental CHP deployment by 2020. However, because CARB's assumed utilization is far higherthan is found by the MILP, the adopted CHP only contributes 19percent of the CO2 target. Several sensitivity runs were completed. One applies a simple feed-in tariff similar to net metering, and another includes a generous self-generation incentive program (SGIP) subsidy for fuel cells. The feed-in tariff proves ineffective at stimulating CHP deployment, while the SGIP buy down is more powerful. The attractiveness of CHP varies widely by climate zone and service territory, but in general, hotter inland areas and San Diego are the more attractive regions because high cooling loads achieve higher equipment utilization. Additionally, large office buildings are surprisingly good hosts for CHP, so large office buildings in San Diego and hotter urban centers emerge as promising target hosts. Overall the effect on CO2 emissions is limited, never exceeding 27percent of the CARB target. Nonetheless, results suggest that the CO2 emissions abatement potential of CHP in mid-sized CA buildings is significant, and much more promising than is typically assumed.

Stadler, Michael; Marnay, Chris; Cardoso, Goncalo; Lipman, Tim; Megel, Olivier; Ganguly, Srirupa; Siddiqui, Afzal; Lai, Judy

2009-11-16T23:59:59.000Z

68

Mid-Atlantic Region Combined Heat and Power Projects | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mid-Atlantic Region Combined Heat and Power Projects Mid-Atlantic Region Combined Heat and Power Projects Mid-Atlantic Region Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs. Mid-Atlantic www.midatlanticCHPTAP.org Jim Freihaut Pennsylvania State University 814-863-0083 jdf11@psu.edu Delaware View Energy and Environmental Analysis Inc.'s (EEA) database of all known CHP installations in Delaware. District of Columbia View EEA's database of all known CHP installations in the District of Columbia. Maryland Baltimore Refuse Energy Co., Baltimore View EEA's database of all known CHP installations in Maryland. New Jersey View EEA's database of all known CHP installations in New Jersey.

69

Distributed Generation as Combined Heat and Power (DG-CHP) (New...  

Open Energy Info (EERE)

Edit with form History Share this page on Facebook icon Twitter icon Distributed Generation as Combined Heat and Power (DG-CHP) (New York) This is the approved revision of...

70

Section 5.8.8 Combined Heat and Power: Greening Federal Facilities...  

NLE Websites -- All DOE Office Websites (Extended Search)

8 Combined Heat and Power Technical Information Thermal-energy losses from power plants in the U.S. currently total approximately 23 quads (one quad is 10 15 Btu)-more than...

71

Table 8.3b Useful Thermal Output at Combined-Heat-and-Power ...  

U.S. Energy Information Administration (EIA)

Table 8.3b Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.3a; Trillion Btu)

72

Top 10 Things You Didn't Know About Combined Heat and Power ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Didn't Know About..." Be sure to check back for more entries soon. 10. Often called cogeneration or CHP, a combined heat and power system provides both electric power and heat from...

73

Effects of a carbon tax on microgrid combined heat and power adoption  

E-Print Network (OSTI)

Resources: The CERTS MicroGrid Concept. ” Berkeley Lab1. Energy Characteristics of Microgrid’s Individual MembersEffects of a Carbon Tax on Microgrid Combined Heat and Power

Siddiqui, Afzal S.; Marnay, Chris; Edwards, Jennifer L.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael

2004-01-01T23:59:59.000Z

74

Opportunities for Combined Heat and Power in Data Centers  

SciTech Connect

Data centers represent a rapidly growing and very energy intensive activity in commercial, educational, and government facilities. In the last five years the growth of this sector was the electric power equivalent to seven new coal-fired power plants. Data centers consume 1.5% of the total power in the U.S. Growth over the next five to ten years is expected to require a similar increase in power generation. This energy consumption is concentrated in buildings that are 10-40 times more energy intensive than a typical office building. The sheer size of the market, the concentrated energy consumption per facility, and the tendency of facilities to cluster in 'high-tech' centers all contribute to a potential power infrastructure crisis for the industry. Meeting the energy needs of data centers is a moving target. Computing power is advancing rapidly, which reduces the energy requirements for data centers. A lot of work is going into improving the computing power of servers and other processing equipment. However, this increase in computing power is increasing the power densities of this equipment. While fewer pieces of equipment may be needed to meet a given data processing load, the energy density of a facility designed to house this higher efficiency equipment will be as high as or higher than it is today. In other words, while the data center of the future may have the IT power of ten data centers of today, it is also going to have higher power requirements and higher power densities. This report analyzes the opportunities for CHP technologies to assist primary power in making the data center more cost-effective and energy efficient. Broader application of CHP will lower the demand for electricity from central stations and reduce the pressure on electric transmission and distribution infrastructure. This report is organized into the following sections: (1) Data Center Market Segmentation--the description of the overall size of the market, the size and types of facilities involved, and the geographic distribution. (2) Data Center Energy Use Trends--a discussion of energy use and expected energy growth and the typical energy consumption and uses in data centers. (3) CHP Applicability--Potential configurations, CHP case studies, applicable equipment, heat recovery opportunities (cooling), cost and performance benchmarks, and power reliability benefits (4) CHP Drivers and Hurdles--evaluation of user benefits, social benefits, market structural issues and attitudes toward CHP, and regulatory hurdles. (5) CHP Paths to Market--Discussion of technical needs, education, strategic partnerships needed to promote CHP in the IT community.

Darrow, Ken [ICF International; Hedman, Bruce [ICF International

2009-03-01T23:59:59.000Z

75

Business Case for a Micro-Combined Heat and Power Fuel Cell System in Commercial Applications  

SciTech Connect

Combined heat and power fuel cell systems (CHP-FCSs) provide consistent electrical power and hot water with greater efficiency and lower emissions than alternative sources. These systems can be used either as baseload, grid-connected, or as off-the-grid power sources. This report presents a business case for CHP-FCSs in the range of 5 to 50 kWe. Systems in this power range are considered micro-CHP-FCS. For this particular business case, commercial applications rather than residential or industrial are targeted. To understand the benefits of implementing a micro-CHP-FCS, the characteristics that determine their competitive advantage must first be identified. Locations with high electricity prices and low natural gas prices are ideal locations for micro-CHP-FCSs. Fortunately, these high spark spread locations are generally in the northeastern area of the United States and California where government incentives are already in place to offset the current high cost of the micro-CHP-FCSs. As a result of the inherently high efficiency of a fuel cell and their ability to use the waste heat that is generated as a CHP, they have higher efficiency. This results in lower fuel costs than comparable alternative small-scale power systems (e.g., microturbines and reciprocating engines). A variety of markets should consider micro-CHP-FCSs including those that require both heat and baseload electricity throughout the year. In addition, the reliable power of micro-CHP-FCSs could be beneficial to markets where electrical outages are especially frequent or costly. Greenhouse gas emission levels from micro-CHP-FCSs are 69 percent lower, and the human health costs are 99.9 percent lower, than those attributed to conventional coal-fired power plants. As a result, FCSs can allow a company to advertise as environmentally conscious and provide a bottom-line sales advantage. As a new technology in the early stages of adoption, micro-CHP-FCSs are currently more expensive than alternative technologies. As the technology gains a foothold in its target markets and demand increases, the costs will decline in response to improved manufacturing efficiencies, similar to trends seen with other technologies. Transparency Market Research forecasts suggest that the CHP-FCS market will grow at a compound annual growth rate of greater than 27 percent over the next 5 years. These production level increases, coupled with the expected low price of natural gas, indicate the economic payback period will move to less than 5 years over the course of the next 5 years. To better understand the benefits of micro-CHP-FCSs, The U.S. Department of Energy worked with ClearEdge Power to install fifteen 5-kWe fuel cells in the commercial markets of California and Oregon. Pacific Northwest National Laboratory is evaluating these systems in terms of economics, operations, and their environmental impact in real-world applications. As expected, the economic analysis has indicated that the high capital cost of the micro-CHP-FCSs results in a longer payback period than typically is acceptable for all but early-adopter market segments. However, a payback period of less than 3 years may be expected as increased production brings system cost down, and CHP incentives are maintained or improved.

Brooks, Kriston P.; Makhmalbaf, Atefe; Anderson, David M.; Amaya, Jodi P.; Pilli, Siva Prasad; Srivastava, Viraj; Upton, Jaki F.

2013-10-30T23:59:59.000Z

76

THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER FACILITIES THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER FACILITIES Section 1308 of the Energy Independence and Security Act of 2007 ("EISA 2007") directed the Secretary of Energy, in consultation with the States, to undertake a study of the laws affecting the siting of privately-owned distribution wires on or across public rights of way and to consider the impact of those laws on the development of combined heat and power ("CHP") facilities, as well as to determine whether a change in those laws would impact utility operations, costs or reliability, or impact utility customers. The study is also to consider whether changing the laws would

77

THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER FACILITIES THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER FACILITIES Section 1308 of the Energy Independence and Security Act of 2007 ("EISA 2007") directed the Secretary of Energy, in consultation with the States, to undertake a study of the laws affecting the siting of privately-owned distribution wires on or across public rights of way and to consider the impact of those laws on the development of combined heat and power ("CHP") facilities, as well as to determine whether a change in those laws would impact utility operations, costs or reliability, or impact utility customers. The study is also to consider whether changing the laws would

78

A Preliminary Study on Designing Combined Heat and Power (CHP) System for the University Environment  

E-Print Network (OSTI)

Combined heat and power (CHP) systems are an evolving technology that is at the front of the energy conservation movement. With the reduction in energy consumption and green house gas emissions, CHP systems are improving the efficiency of power generation. Our goal for this research is to develop a specification for a CHP System that will improve the University of Louisiana at Lafayette’s operating efficiency. This system will reduce the operating cost of the university and provide reliable, clean energy to the College of Engineering and surrounding buildings. If this system is implemented correctly, it has the ability to meet the economic and reliability needs of the university. CHP systems are the combination of various forms of equipment to meet the electrical and thermal needs from one single fuel source. Major steps involved in the development of a CHP system including data collection and analysis, system calculations and system specifications will be discussed. This research also examines the barriers that CHP systems encounter with environmental regulations and grid interconnection.

Kozman, T. A.; Reynolds, C. M.; Lee, J.

2008-01-01T23:59:59.000Z

79

State Opportunities for Action: Review of States' Combined Heat and Power Activities  

E-Print Network (OSTI)

Combined heat and power (CHP) has been the focus of federal attention since the mid-1990s. However, many of the market barriers to CHP are at the state level. As a sign of the maturing CHP market, a number of states are now undertaking activities to addre

Brown, E.; Elliott, N.

2004-01-01T23:59:59.000Z

80

Assessment of Residential Combined Heat and Power Systems: Application Benefits and Vendors  

Science Conference Proceedings (OSTI)

This report provides an analysis of the benefits of installing a residential combined heat and power (RCHP) plant in several U.S. geographies and under a number of dispatch scenarios. The report also provides an assessment of 14 companies developing or selling RCHP systems in North American, Europe, and Japan.

2005-03-29T23:59:59.000Z

Note: This page contains sample records for the topic "includes industrial combined-heat-and-power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Customer Sited Combined Heat and Power on Maui: A Case Study  

Science Conference Proceedings (OSTI)

This report documents the experience of Maui Electric Company (MECO) in developing and operating a 150 kW combined heat and power (CHP) project at a resort on Maui. Tests conducted during the project evaluated the heat rate and performance of the packaged CHP system, which had been originally designed for natural gas fueling but was fueled by commercial propane in this application.

2005-02-14T23:59:59.000Z

82

Preliminary Estimates of Combined Heat and Power Greenhouse GasAbatement Potential for California in 2020  

SciTech Connect

The objective of this scoping project is to help the California Energy Commission's (CEC) Public Interest Energy Research (PIER) Program determine where it should make investments in research to support combined heat and power (CHP) deployment. Specifically, this project will: {sm_bullet} Determine what impact CHP might have in reducing greenhouse gas (GHG) emissions, {sm_bullet} Determine which CHP strategies might encourage the most attractive early adoption, {sm_bullet} Identify the regulatory and technological barriers to the most attractive CHP strategies, and {sm_bullet} Make recommendations to the PIER program as to research that is needed to support the most attractive CHP strategies.

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare,Kristina

2007-07-31T23:59:59.000Z

83

An engineering-economic analysis of combined heat and power technologies in a (mu)grid application  

E-Print Network (OSTI)

Technologies in a ”Grid Application heat, usually in thethe ”Grid. In this ”Grid the heat loads are not that great,Combined Heat and Power Technologies in a ”Grid Application

Bailey, Owen; Ouaglal, Boubekeur; Bartholomew, Emily; Marnay, Chris; Bourassa, Norman

2002-01-01T23:59:59.000Z

84

A comparison of ground source heat pumps and micro-combined heat and power as residential greenhouse gas reduction strategies  

E-Print Network (OSTI)

Both ground source heat pumps operating on electricity and micro-combined heat and power systems operating on fossil fuels offer potential for the reduction of green house gas emissions in comparison to the conventional ...

Guyer, Brittany (Brittany Leigh)

2009-01-01T23:59:59.000Z

85

The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power  

E-Print Network (OSTI)

and/or cooling, and micro-CHP systems in the Californiaand/or cooling, and micro-CHP systems with and without heatmicro-generation systems, e.g. fuel cells with or without combined heat and power (CHP)

Marnay, Chris

2010-01-01T23:59:59.000Z

86

Combined Heat and Power: Effective Energy Solutions for a Sustainable Future  

SciTech Connect

Combined Heat and Power (CHP) solutions represent a proven and effective near-term energy option to help the United States enhance energy efficiency, ensure environmental quality, promote economic growth, and foster a robust energy infrastructure. Using CHP today, the United States already avoids more than 1.9 Quadrillion British thermal units (Quads) of fuel consumption and 248 million metric tons of carbon dioxide (CO{sub 2}) emissions annually compared to traditional separate production of electricity and thermal energy. This CO{sub 2} reduction is the equivalent of removing more than 45 million cars from the road. In addition, CHP is one of the few options in the portfolio of energy alternatives that combines environmental effectiveness with economic viability and improved competitiveness. This report describes in detail the four key areas where CHP has proven its effectiveness and holds promise for the future as an: (1) Environmental Solution: Significantly reducing CO{sub 2} emissions through greater energy efficiency; (2) Competitive Business Solution: Increasing efficiency, reducing business costs, and creating green-collar jobs; (3) Local Energy Solution: Deployable throughout the US; and (4) Infrastructure Modernization Solution: Relieving grid congestion and improving energy security. CHP should be one of the first technologies deployed for near-term carbon reductions. The cost-effectiveness and near-term viability of widespread CHP deployment place the technology at the forefront of practical alternative energy solutions such as wind, solar, clean coal, biofuels, and nuclear power. Clear synergies exist between CHP and most other technologies that dominate the energy and environmental policy dialogue in the country today. As the Nation transforms how it produces, transports, and uses the many forms of energy, it must seize the clear opportunity afforded by CHP in terms of climate change, economic competitiveness, energy security, and infrastructure modernization. The energy efficiency benefits of CHP offer significant, realistic solutions to near- and long-term energy issues facing the Nation. With growing demand for energy, tight supply options, and increasing environmental constraints, extracting the maximum output from primary fuel sources through efficiency is critical to sustained economic development and environmental stewardship. Investment in CHP would stimulate the creation of new 'green-collar' jobs, modernize aging energy infrastructure, and protect and enhance the competitiveness of US manufacturing industries. The complementary roles of energy efficiency, renewable energy, and responsible use of traditional energy supplies must be recognized. CHP's proven performance and potential for wider use are evidence of its near-term applicability and, with technological improvements and further elimination of market barriers, of its longer term promise to address the country's most important energy and environmental needs. A strategic approach is needed to encourage CHP where it can be applied today and address the regulatory and technical challenges preventing its long-term viability. Experience in the United States and other countries shows that a balanced set of policies, incentives, business models, and investments can stimulate sustained CHP growth and allow all stakeholders to reap its many well-documented benefits.

Shipley, Ms. Anna [Sentech, Inc.; Hampson, Anne [Energy and Environmental Analysis, Inc., an ICF Company; Hedman, Mr. Bruce [Energy and Environmental Analysis, Inc., an ICF Company; Garland, Patricia W [ORNL; Bautista, Paul [Sentech, Inc.

2008-12-01T23:59:59.000Z

87

Collaborative National Program for the Development and Performance Testing of Distributed Power Technologies with Emphasis on Combined Heat and Power Applications  

SciTech Connect

A current barrier to public acceptance of distributed generation (DG) and combined heat and power (CHP) technologies is the lack of credible and uniform information regarding system performance. Under a cooperative agreement, the Association of State Energy Research and Technology Transfer Institutions (ASERTTI) and the U.S. Department of Energy have developed four performance testing protocols to provide a uniform basis for comparison of systems. The protocols are for laboratory testing, field testing, long-term monitoring and case studies. They have been reviewed by a Stakeholder Advisory Committee made up of industry, public interest, end-user, and research community representatives. The types of systems covered include small turbines, reciprocating engines (including Stirling Cycle), and microturbines. The protocols are available for public use and the resulting data is publicly available in an online national database and two linked databases with further data from New York State. The protocols are interim pending comments and other feedback from users. Final protocols will be available in 2007. The interim protocols and the national database of operating systems can be accessed at www.dgdata.org. The project has entered Phase 2 in which protocols for fuel cell applications will be developed and the national and New York databases will continue to be maintained and populated.

Soinski, Arthur; Hanson, Mark

2006-06-28T23:59:59.000Z

88

State Opportunities for Action: Review of States' Combined Heat and Power Activities  

E-Print Network (OSTI)

Combined heat and power (CHP) has been the focus of federal attention since the mid-1990s. However, many of the market barriers to CHP are at the state level. As a sign of the maturing of the CHP market, a number of states are now undertaking activities to address barriers to CHP, and some states have begun to provide incentives to encourage the development of systems in their states. This report outlines current state-level activities regarding CHP in the areas of interconnection, emissions standards, and financial incentives offered for CHP. Moreover, because this report intends to educate the public about the difficulties of installing CHP, specifically not covered in this report are utility-owned CHP facilities and large investor-owned utilities (IOUs).

Brown, E.; Scott, K.; Elliott, R. N.

2003-05-01T23:59:59.000Z

89

Effects of a shortened depreciation schedule on the investment costs for combined heat and power  

Science Conference Proceedings (OSTI)

We investigate and compare several generic depreciation methods to assess the effectiveness of possible policy measures with respect to the depreciation schedules for investments in combined heat and power plants in the United States. We assess the different depreciation methods for CHP projects of various sizes (ranging from 1 MW to 100 MW). We evaluate the impact of different depreciation schedules on the tax shield, and the resulting tax savings to potential investors. We show that a shorter depreciation cycle could have a substantial impact on the cost of producing power, making cogeneration more attractive. The savings amount to approximately 6-7 percent of capital and fixed operation and maintenance costs, when changing from the current system to a 7 year depreciation scheme with switchover from declining balance to straight line depreciation. Suggestions for further research to improve the analysis are given.

Kranz, Nicole; Worrell, Ernst

2001-11-15T23:59:59.000Z

90

Effects of a carbon tax on microgrid combined heat and power adoption  

DOE Green Energy (OSTI)

This paper describes the economically optimal adoption and operation of distributed energy resources (DER) by a hypothetical California microgrid consisting of a group of commercial buildings over an historic test year, 1999. The optimization is conducted using a customer adoption model (DER-CAM) developed at Berkeley Lab and implemented in the General Algebraic Modeling System (GAMS). A microgrid is a semiautonomous grouping of electricity and heat loads interconnected to the existing utility grid (macrogrid) but able to island from it. The microgrid minimizes the cost of meeting its energy requirements (consisting of both electricity and heat loads) by optimizing the installation and operation of DER technologies while purchasing residual energy from the local combined natural gas and electricity utility. The available DER technologies are small-scale generators (< 500 kW), such as reciprocating engines, microturbines, and fuel cells, with or without combined heat and power (CHP) equipment, such as water and space heating and/or absorption cooling. By introducing a tax on carbon emissions, it is shown that if the microgrid is allowed to install CHP-enabled DER technologies, its carbon emissions are mitigated more than without CHP, demonstrating the potential benefits of small-scale CHP technology for climate change mitigation. Reciprocating engines with heat recovery and/or absorption cooling tend to be attractive technologies for the mild southern California climate, but the carbon mitigation tends to be modest compared to purchasing utility electricity because of the predominance of relatively clean central station generation in California.

Siddiqui, Afzal S.; Marnay, Chris; Edwards, Jennifer L.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael

2004-11-01T23:59:59.000Z

91

1?10 kW Stationary Combined Heat and Power Systems Status and Technical Potential: Independent Review  

DOE Green Energy (OSTI)

This independent review examines the status and technical potential of 1-10 kW stationary combined heat and power fuel cell systems and analyzes the achievability of the DOE cost, efficiency, and durability targets for 2012, 2015, and 2020.

Maru, H. C.; Singhal, S. C.; Stone, C.; Wheeler, D.

2010-11-01T23:59:59.000Z

92

Real-Time Combined Heat and Power Operational Strategy Using a Hierarchical Optimization Algorithm  

Science Conference Proceedings (OSTI)

Existing attempts to optimize the operation of Combined Heat and Power (CHP) systems for building applications have two major limitations: the electrical and thermal loads are obtained from historical weather profiles; and the CHP system models ignore transient responses by using constant equipment efficiencies. This paper considers the transient response of a building combined with a hierarchical CHP optimal control algorithm to obtain a real-time integrated system that uses the most recent weather and electric load information. This is accomplished by running concurrent simulations of two transient building models. The first transient building model uses current as well as forecast input information to obtain short term predictions of the thermal and electric building loads. The predictions are then used by an optimization algorithm, i.e., a hierarchical controller, that decides the amount of fuel and of electrical energy to be allocated at the current time step. In a simulation, the actual physical building is not available and, hence, to simulate a real-time environment, a second, building model with similar but not identical input loads are used to represent the actual building. A state-variable feedback loop is completed at the beginning of each time step by copying, i.e., measuring, the state variable from the actual building and restarting the predictive model using these ?measured? values as initial conditions. The simulation environment presented in this paper features nonlinear effects such as the dependence of the heat exchanger effectiveness on their operating conditions. The results indicate that the CHP engine operation dictated by the proposed hierarchical controller with uncertain weather conditions have the potential to yield significant savings when compared to conventional systems using current values of electricity and fuel prices.

Yun, Kyung Tae; Cho, Heejin; Luck, Rogelio; Mago, Pedro J.

2011-06-01T23:59:59.000Z

93

Distributed energy resources customer adoption modeling with combined heat and power applications  

SciTech Connect

In this report, an economic model of customer adoption of distributed energy resources (DER) is developed. It covers progress on the DER project for the California Energy Commission (CEC) at Berkeley Lab during the period July 2001 through Dec 2002 in the Consortium for Electric Reliability Technology Solutions (CERTS) Distributed Energy Resources Integration (DERI) project. CERTS has developed a specific paradigm of distributed energy deployment, the CERTS Microgrid (as described in Lasseter et al. 2002). The primary goal of CERTS distributed generation research is to solve the technical problems required to make the CERTS Microgrid a viable technology, and Berkeley Lab's contribution is to direct the technical research proceeding at CERTS partner sites towards the most productive engineering problems. The work reported herein is somewhat more widely applicable, so it will be described within the context of a generic microgrid (mGrid). Current work focuses on the implementation of combined heat and power (CHP) capability. A mGrid as generically defined for this work is a semiautonomous grouping of generating sources and end-use electrical loads and heat sinks that share heat and power. Equipment is clustered and operated for the benefit of its owners. Although it can function independently of the traditional power system, or macrogrid, the mGrid is usually interconnected and exchanges energy and possibly ancillary services with the macrogrid. In contrast to the traditional centralized paradigm, the design, implementation, operation, and expansion of the mGrid is meant to optimize the overall energy system requirements of participating customers rather than the objectives and requirements of the macrogrid.

Siddiqui, Afzal S.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael; Edwards, Jennifer L.; Marnay, Chris

2003-07-01T23:59:59.000Z

94

Use of Time-Aggregated Data in Economic Screening Analyses of Combined Heat and Power Systems  

Science Conference Proceedings (OSTI)

Combined heat and power (CHP) projects (also known as cogeneration projects) usually undergo a series of assessments and viability checks before any commitment is made. A screening analysis, with electrical and thermal loads characterized on an annual basis, may be performed initially to quickly determine the economic viability of the proposed project. Screening analyses using time-aggregated data do not reflect several critical cost influences, however. Seasonal and diurnal variations in electrical and thermal loads, as well as time-of-use utility pricing structures, can have a dramatic impact on the economics. A more accurate economic assessment requires additional detailed data on electrical and thermal demand (e.g., hourly load data), which may not be readily available for the specific facility under study. Recent developments in CHP evaluation tools, however, can generate the needed hourly data through the use of historical data libraries and building simulation. This article utilizes model-generated hourly load data for four potential CHP applications and compares the calculated cost savings of a CHP system when evaluated on a time-aggregated (i.e., annual) basis to the savings when evaluated on an hour-by-hour basis. It is observed that the simple, aggregated analysis forecasts much greater savings (i.e., greater economic viability) than the more detailed hourly analysis. The findings confirm that the simpler tool produces results with a much more optimistic outlook, which, if taken by itself, might lead to erroneous project decisions. The more rigorous approach, being more reflective of actual requirements and conditions, presents a more accurate economic comparison of the alternatives, which, in turn, leads to better decision risk management.

Hudson II, Carl Randy [ORNL

2004-09-01T23:59:59.000Z

95

The Confusing Allure of Combined Heat and Power: The Financial Attraction and Management Challenge of Reducing Energy Spend and Resulting Carbon Emissions Through Onsite Power Generation  

E-Print Network (OSTI)

Sixty-one percent of global executives surveyed by McKinsey & Co. (in 2008) expect the issues associated with climate change to boost profits—if managed well. What these executives recognize is that new regulations, higher energy costs, and increased scrutiny by private gate-keepers (such as Wal-Mart) offer an opportunity to identify and implement more efficient practices in commercial and industrial environments. One of the most impactful solutions for the industrial sector—from the perspective of reducing energy spending and energy-related carbon emissions—is combined heat and power ("CHP"), sometimes referred to as cogeneration. However, the results of CHP deployment to date have been mixed—largely because companies do not fully appreciate the challenges of maintaining and operating a CHP system, optimizing its performance, and taking full advantage of the many benefits it offers. Despite these challenges, the slogan for CHP should perhaps be: "CHP, now more than ever".

Davis, R.

2009-05-01T23:59:59.000Z

96

Final Report: Assessment of Combined Heat and Power Premium Power Applications in California  

Science Conference Proceedings (OSTI)

This report analyzes the current economic and environmental performance of combined heat and power (CHP) systems in power interruption intolerant commercial facilities. Through a series of three case studies, key trade-offs are analyzed with regard to the provision of black-out ridethrough capability with the CHP systems and the resutling ability to avoid the need for at least some diesel backup generator capacity located at the case study sites. Each of the selected sites currently have a CHP or combined heating, cooling, and power (CCHP) system in addition to diesel backup generators. In all cases the CHP/CCHP system have a small fraction of the electrical capacity of the diesel generators. Although none of the selected sites currently have the ability to run the CHP systems as emergency backup power, all could be retrofitted to provide this blackout ride-through capability, and new CHP systems can be installed with this capability. The following three sites/systems were used for this analysis: (1) Sierra Nevada Brewery - Using 1MW of installed Molten Carbonate Fuel Cells operating on a combination of digestor gas (from the beer brewing process) and natural gas, this facility can produce electricty and heat for the brewery and attached bottling plant. The major thermal load on-site is to keep the brewing tanks at appropriate temperatures. (2) NetApp Data Center - Using 1.125 MW of Hess Microgen natural gas fired reciprocating engine-generators, with exhaust gas and jacket water heat recovery attached to over 300 tons of of adsorption chillers, this combined cooling and power system provides electricity and cooling to a data center with a 1,200 kW peak electrical load. (3) Kaiser Permanente Hayward Hospital - With 180kW of Tecogen natural gas fired reciprocating engine-generators this CHP system generates steam for space heating, and hot water for a city hospital. For all sites, similar assumptions are made about the economic and technological constraints of the power generation system. Using the Distributed Energy Resource Customer Adoption Model (DER-CAM) developed at the Lawrence Berkeley National Laboratory, we model three representative scenarios and find the optimal operation scheduling, yearly energy cost, and energy technology investments for each scenario below: Scenario 1 - Diesel generators and CHP/CCHP equipment as installed in the current facility. Scenario 1 represents a baseline forced investment in currently installed energy equipment. Scenario 2 - Existing CHP equipment installed with blackout ride-through capability to replace approximately the same capacity of diesel generators. In Scenario 2 the cost of the replaced diesel units is saved, however additional capital cost for the controls and switchgear for blackout ride-through capability is necessary. Scenario 3 - Fully optimized site analysis, allowing DER-CAM to specify the number of diesel and CHP/CCHP units (with blackout ride-through capability) that should be installed ignoring any constraints on backup generation. Scenario 3 allows DER-CAM to optimize scheduling and number of generation units from the currently available technologies at a particular site. The results of this analysis, using real data to model the optimal schedulding of hypothetical and actual CHP systems for a brewery, data center, and hospital, lead to some interesting conclusions. First, facilities with high heating loads will typically prove to be the most appropriate for CHP installation from a purely economic standpoint. Second, absorption/adsorption cooling systems may only be economically feasible if the technology for these chillers can increase above current best system efficiency. At a coefficient of performance (COP) of 0.8, for instance, an adsorption chiller paired with a natural gas generator with waste heat recovery at a facility with large cooling loads, like a data center, will cost no less on a yearly basis than purchasing electricity and natural gas directly from a utility. Third, at marginal additional cost, if the reliability of CHP systems proves to be at

Norwood, Zack; Lipman, Tim; Marnay, Chris; Kammen, Dan

2008-09-30T23:59:59.000Z

97

Industrial Distributed Energy: Combined Heat & Power  

Energy.gov (U.S. Department of Energy (DOE))

Information about the Department of Energy’s Industrial Technologies Program and its Combined Heat and Power program.

98

Emissions Performance of an 85 kWe Packaged Combined Heat and Power System  

Science Conference Proceedings (OSTI)

Distributed energy resources (DER) offer industrial, commercial, institutional, and residential customers a means of providing electric power close to the load while at the same time increasing their electrical reliability, energy efficiency, and power quality. In most cases, the cost to fuel a continuously operating generator with natural gas or distillate is greater than the value of the electricity generated. It is only when co-generated heat is recovered from the generator and used to reduce fuel cos...

2008-01-15T23:59:59.000Z

99

The CO2 Reduction Potential of Combined Heat and Power in California's Commercial Buildings  

E-Print Network (OSTI)

in tariff similar to net metering, and another includes athe purchase price (pure net-metering) and without the Selfin tariff similar to net metering, and another includes a

Stadler, Michael

2010-01-01T23:59:59.000Z

100

Final Report: Assessment of Combined Heat and Power Premium Power Applications in California  

E-Print Network (OSTI)

compared to adsorption/absorption chiller systems. Expensiveonsite (without absorption chiller offset) Effectiveonsite (includes absorption chiller offset) Heating Load

Norwood, Zack

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "includes industrial combined-heat-and-power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Combined Heat and Power for Saving Energy and Carbon in Residential Buildings  

E-Print Network (OSTI)

fossil and biomass fuel, the continuous-combustion heaterBiomass can be used many ways, including direct combustion,

2000-01-01T23:59:59.000Z

102

1…10 kW Stationary Combined Heat and Power Systems Status and Technical Potential: Independent Review  

NLE Websites -- All DOE Office Websites (Extended Search)

1-10 kW Stationary Combined Heat 1-10 kW Stationary Combined Heat and Power Systems Status and Technical Potential National Renewable Energy Laboratory 1617 Cole Boulevard * Golden, Colorado 80401 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Contract No. DE-AC36-08GO28308 Independent Review Published for the U.S. Department of Energy Hydrogen and Fuel Cells Program NREL/BK-6A10-48265 November 2010 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or

103

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network (OSTI)

renewables, including hydroelectric. For this analysis, itin 2010 and 33% in 2020. Hydroelectric generation follows aGas Cogeneration Hydroelectric New Renewables Existing

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

104

ASSESSMENT OF COMBINED HEAT AND POWER SYSTEM "PREMIUM POWER" APPLICATIONS IN CALIFORNIA  

E-Print Network (OSTI)

Secondly, waste heat driven thermal cooling systems are onlyelectricity and thermal energy for cooling and heatingrecovery and cooling technologies, including the thermal-

Norwood, Zack

2010-01-01T23:59:59.000Z

105

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

systems (typically Stirling engines or CPV modules) forheat engines including Brayton, Ericsson, and Stirling, thefocal-mounted engine (e.g. dish-Stirling) by decoupling the

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

106

Effects of a shortened depreciation schedule on the investment costs for combined heat and power  

E-Print Network (OSTI)

included. Therefore, the cost per kWh should not necessarilyproduction, i.e. the cost per kWh only relates to theof the tax shield and cost per kWh of power produced for

Kranz, Nicole; Worrell, Ernst

2001-01-01T23:59:59.000Z

107

The CO2 Reduction Potential of Combined Heat and Power in California's Commercial Buildings  

E-Print Network (OSTI)

also consider solar thermal and PV, but they are mostlywas performed in which solar thermal and PV are included. Inthis competition between FCs and PV/solar thermal change if

Stadler, Michael

2010-01-01T23:59:59.000Z

108

Combined Heat and Power for Saving Energy and Carbon in Residential Buildings  

E-Print Network (OSTI)

high electricity costs, net metering and high thermal-to-favor microCHP include net metering policies that allow homecurrently not eligible for net metering in most New England

2000-01-01T23:59:59.000Z

109

Carbon and Energy Savings from Combined Heat and Power: A Closer Look  

E-Print Network (OSTI)

In this paper, we analyze and update our estimates of CHP's potential for U.S. manufacturers. Typical efficiencies of available CHP technologies are used to estimate their energy use and carbon emissions. In calculating the baseline against which CHP is compared, we take into account efficiency improvements in both the industrial sector and in the electricity-producing sector. We find that manufacturers save energy and reduce their carbon emissions substantially if they replace all retiring boilers stocks and new additions to the stock (from 1994 to 2010), with existing cost-effective CHP technologies. Carbon equivalent (=12/44 carbon dioxide) emissions would be reduced by up to 70 million metric tons of carbon (MtC) per year in 2010, (18%-30% manufacturer's projected emissions), and energy use reduced by up to 7 Exajoule (EJ). These estimates also take into account growth in manufacturing, as forecast by AEO-98, and expected improvements in CHP, boilers, and electric generating technologies. However, without policy innovation, actual CHP installed by U.S. manufacturers will likely fall far short of our estimates.

Roop, J. M.; Kaarsberg, T.

1999-05-01T23:59:59.000Z

110

REFORMING PROCESSES FOR MICRO COMBINED HEAT AND POWER SYSTEM BASED ON SOLID OXIDE FUEL CELL  

E-Print Network (OSTI)

and energy balance, different types of fuel reforming including steam reforming, autothermal reforming technologies. Steam reforming, partial oxidation and autothermal reforming are the three major fuel of an activated carbon bed. Prior to enter the SOFC stack, the fuel is pre-reformed (methane is partially

Liso, Vincenzo

111

An engineering-economic analysis of combined heat and power technologies in a (mu)grid application  

SciTech Connect

This report describes an investigation at Ernesto Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) of the potential for coupling combined heat and power (CHP) with on-site electricity generation to provide power and heating, and cooling services to customers. This research into distributed energy resources (DER) builds on the concept of the microgrid (mGrid), a semiautonomous grouping of power-generating sources that are placed and operated by and for the benefit of its members. For this investigation, a hypothetical small shopping mall (''Microgrid Oaks'') was developed and analyzed for the cost effectiveness of installing CHP to provide the mGrid's energy needs. A mGrid consists of groups of customers pooling energy loads and installing a combination of generation resources that meets the particular mGrid's goals. This study assumes the mGrid is seeking to minimize energy costs. mGrids could operate independently of the macrogrid (the wider power network), but they are usually assumed to be connected, through power electronics, to the macrogrid. The mGrid in this study is assumed to be interconnected to the macrogrid, and can purchase some energy and ancillary services from utility providers.

Bailey, Owen; Ouaglal, Boubekeur; Bartholomew, Emily; Marnay, Chris; Bourassa, Norman

2002-03-01T23:59:59.000Z

112

The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with CombinedHeat and Power  

Science Conference Proceedings (OSTI)

The addition of solar thermal and heat storage systems can improve the economic, as well as environmental attraction of micro-generation systems, e.g. fuel cells with or without combined heat and power (CHP) and contribute to enhanced CO2 reduction. However, the interactions between solar thermal collection and storage systems and CHP systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of solar thermal and heat storage on CO2 emissions and annual energy costs, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program. The objective is minimization of annual energy costs. This paper focuses on analysis of the optimal interaction of solar thermal systems, which can be used for domestic hot water, space heating and/or cooling, and micro-CHP systems in the California service territory of San Diego Gas and Electric (SDG&E). Contrary to typical expectations, our results indicate that despite the high solar radiation in southern California, fossil based CHP units are dominant, even with forecast 2020 technology and costs. A CO2 pricing scheme would be needed to incent installation of combined solar thermal absorption chiller systems, and no heat storage systems are adopted. This research also shows that photovoltaic (PV) arrays are favored by CO2 pricing more than solar thermal adoption.

Marnay, Chris; Stadler, Michael; Cardoso, Goncalo; Megel, Olivier; Lai, Judy; Siddiqui, Afzal

2009-08-15T23:59:59.000Z

113

Assessment of the Current Level of Automation in the Manufacture of Fuel Cell Systems for Combined Heat and Power Applications  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) is interested in supporting manufacturing research and development (R&D) for fuel cell systems in the 10-1,000 kilowatt (kW) power range relevant to stationary and distributed combined heat and power applications, with the intent to reduce manufacturing costs and increase production throughput. To assist in future decision-making, DOE requested that the National Renewable Energy Laboratory (NREL) provide a baseline understanding of the current levels of adoption of automation in manufacturing processes and flow, as well as of continuous processes. NREL identified and visited or interviewed key manufacturers, universities, and laboratories relevant to the study using a standard questionnaire. The questionnaire covered the current level of vertical integration, the importance of quality control developments for automation, the current level of automation and source of automation design, critical balance of plant issues, potential for continuous cell manufacturing, key manufacturing steps or processes that would benefit from DOE support for manufacturing R&D, the potential for cell or stack design changes to support automation, and the relationship between production volume and decisions on automation.

Ulsh, M.; Wheeler, D.; Protopappas, P.

2011-08-01T23:59:59.000Z

114

Fuel Cell Combined Heat and Power Industrial Demonstration - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Kriston P. Brooks (Primary Contact), Siva P. Pilli, Dale A. King Pacific Northwest National Laboratory P.O. Box 999 Richland, WA 99352 Phone: (509) 372-4343 Email: kriston.brooks@pnnl.gov DOE Manager HQ: Peter Devlin Phone: (202) 586-4905 Email: Peter.Devlin@ee.doe.gov Contract Number: DE-AC05-76RL01830 Subcontractor: ClearEdge Power, Portland, OR Project Start Date: May 2010 Project End Date: September 2012

115

Ontario Power Generation's 250 kWe Class Atmospheric Solid Oxide Fuel Cell (SOFC): Combined Heat and Power (CHP) Power Plant  

Science Conference Proceedings (OSTI)

This case study documents the demonstration experiences and lessons learned from a 250 kW solid oxide fuel cell system in a combined heat and power demonstration operating on natural gas. The project was a collaboration initiative between Siemens Westinghouse Power Corporation (SWPC) and Ontario Power Generation (OPG) to install and test a first-of-a-kind SOFC system at OPG site in Toronto, Canada. This test and evaluation case study is one of several distributed generation project case studies under res...

2005-01-26T23:59:59.000Z

116

Advanced Manufacturing Office: Western Industrial Energy Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

Send a link to Advanced Manufacturing Office: Western Industrial Energy Efficiency & Combined Heat and Power Regional Dialogue Meeting to someone by E-mail Share Advanced...

117

Improve Overall Plant Efficiency and Fuel Use, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program combined heat and power (CHP) tool can help identify energy savings in gas turbine-driven systems.

2008-12-01T23:59:59.000Z

118

Optimal design and control strategies for novel combined heat and power (CHP) fuel cell systems. Part I of II, datum design conditions and approach.  

SciTech Connect

Energy network optimization (ENO) models identify new strategies for designing, installing, and controlling stationary combined heat and power (CHP) fuel cell systems (FCSs) with the goals of (1) minimizing electricity and heating costs for building owners and (2) reducing emissions of the primary greenhouse gas (GHG) - carbon dioxide (CO{sub 2}). A goal of this work is to employ relatively inexpensive simulation studies to discover more financially and environmentally effective approaches for installing CHP FCSs. ENO models quantify the impact of different choices made by power generation operators, FCS manufacturers, building owners, and governments with respect to two primary goals - energy cost savings for building owners and CO{sub 2} emission reductions. These types of models are crucial for identifying cost and CO{sub 2} optima for particular installations. Optimal strategies change with varying economic and environmental conditions, FCS performance, the characteristics of building demand for electricity and heat, and many other factors. ENO models evaluate both 'business-as-usual' and novel FCS operating strategies. For the scenarios examined here, relative to a base case of no FCSs installed, model results indicate that novel strategies could reduce building energy costs by 25% and CO{sub 2} emissions by 80%. Part I of II articles discusses model assumptions and methodology. Part II of II articles illustrates model results for a university campus town and generalizes these results for diverse communities.

Colella, Whitney G.

2010-06-01T23:59:59.000Z

119

Energy and cost analysis of a solar-hydrogen combined heat and power system for remote power supply using a computer simulation  

SciTech Connect

A simulation program, based on Visual Pascal, for sizing and techno-economic analysis of the performance of solar-hydrogen combined heat and power systems for remote applications is described. The accuracy of the submodels is checked by comparing the real performances of the system's components obtained from experimental measurements with model outputs. The use of the heat generated by the PEM fuel cell, and any unused excess hydrogen, is investigated for hot water production or space heating while the solar-hydrogen system is supplying electricity. A 5 kWh daily demand profile and the solar radiation profile of Melbourne have been used in a case study to investigate the typical techno-economic characteristics of the system to supply a remote household. The simulation shows that by harnessing both thermal load and excess hydrogen it is possible to increase the average yearly energy efficiency of the fuel cell in the solar-hydrogen system from just below 40% up to about 80% in both heat and power generation (based on the high heating value of hydrogen). The fuel cell in the system is conventionally sized to meet the peak of the demand profile. However, an economic optimisation analysis illustrates that installing a larger fuel cell could lead to up to a 15% reduction in the unit cost of the electricity to an average of just below 90 c/kWh over the assessment period of 30 years. Further, for an economically optimal size of the fuel cell, nearly a half the yearly energy demand for hot water of the remote household could be supplied by heat recovery from the fuel cell and utilising unused hydrogen in the exit stream. Such a system could then complement a conventional solar water heating system by providing the boosting energy (usually in the order of 40% of the total) normally obtained from gas or electricity. (author)

Shabani, Bahman; Andrews, John; Watkins, Simon [School of Aerospace Mechanical and Manufacturing Engineering, RMIT University, Melbourne (Australia)

2010-01-15T23:59:59.000Z

120

Optimal design and control strategies for novel combined heat and power (CHP) fuel cell systems. Part II of II, case study results.  

SciTech Connect

Innovative energy system optimization models are deployed to evaluate novel fuel cell system (FCS) operating strategies, not typically pursued by commercial industry. Most FCS today are installed according to a 'business-as-usual' approach: (1) stand-alone (unconnected to district heating networks and low-voltage electricity distribution lines), (2) not load following (not producing output equivalent to the instantaneous electrical or thermal demand of surrounding buildings), (3) employing a fairly fixed heat-to-power ratio (producing heat and electricity in a relatively constant ratio to each other), and (4) producing only electricity and no recoverable heat. By contrast, models discussed here consider novel approaches as well. Novel approaches include (1) networking (connecting FCSs to electrical and/or thermal networks), (2) load following (having FCSs produce only the instantaneous electricity or heat demanded by surrounding buildings), (3) employing a variable heat-to-power ratio (such that FCS can vary the ratio of heat and electricity they produce), (4) co-generation (combining the production of electricity and recoverable heat), (5) permutations of these together, and (6) permutations of these combined with more 'business-as-usual' approaches. The detailed assumptions and methods behind these models are described in Part I of this article pair.

Colella, Whitney G.

2010-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "includes industrial combined-heat-and-power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Optimizal design and control strategies for novel Combined Heat and Power (CHP) fuel cell systems. Part II of II, case study results.  

SciTech Connect

Innovative energy system optimization models are deployed to evaluate novel fuel cell system (FCS) operating strategies, not typically pursued by commercial industry. Most FCS today are installed according to a 'business-as-usual' approach: (1) stand-alone (unconnected to district heating networks and low-voltage electricity distribution lines), (2) not load following (not producing output equivalent to the instantaneous electrical or thermal demand of surrounding buildings), (3) employing a fairly fixed heat-to-power ratio (producing heat and electricity in a relatively constant ratio to each other), and (4) producing only electricity and no recoverable heat. By contrast, models discussed here consider novel approaches as well. Novel approaches include (1) networking (connecting FCSs to electrical and/or thermal networks), (2) load following (having FCSs produce only the instantaneous electricity or heat demanded by surrounding buildings), (3) employing a variable heat-to-power ratio (such that FCS can vary the ratio of heat and electricity they produce), (4) co-generation (combining the production of electricity and recoverable heat), (5) permutations of these together, and (6) permutations of these combined with more 'business-as-usual' approaches.

Colella, Whitney G.

2010-04-01T23:59:59.000Z

122

Broadening Industry Governance to Include Nonproliferation  

Science Conference Proceedings (OSTI)

As industry is the first line of defense in detecting and thwarting illicit trade networks, the engagement of the private sector is critical to any government effort to strengthen existing mechanisms to protect goods and services throughout the supply chain. This study builds on previous PNNL work to continue to evaluate means for greater industry engagement to complement and strengthen existing governmental efforts to detect and stem the trade of illicit goods and to protect and secure goods that could be used in making a weapon of mass destruction. Specifically, the study evaluates the concept of Industry Self Regulation, defined as a systematic voluntary program undertaken by an industry or by individual companies to anticipate, implement, supplement, or substitute for regulatory requirements in a given field, generally through the adoption of best practices. Through a series of interviews with companies with a past history of non-compliance, trade associations and NGOs, the authors identify gaps in the existing regulatory infrastructure, drivers for a self regulation approach and the form such an approach might take, as well as obstacles to be overcome. The authors conclude that it is at the intersection of industry, government, and security that—through collaborative means—the effectiveness of the international nonproliferation system—can be most effectively strengthened to the mutual benefit of both government and the private sector. Industry has a critical stake in the success of this regime, and has the potential to act as an integrating force that brings together the existing mechanisms of the global nonproliferation regime: export controls, physical protection, and safeguards. The authors conclude that industry compliance is not enough; rather, nonproliferation must become a central tenant of a company’s corporate culture and be viewed as an integral component of corporate social responsibility (CSR).

Hund, Gretchen; Seward, Amy M.

2008-11-11T23:59:59.000Z

123

Combined Heat and Power ecopower micro CHP  

Science Conference Proceedings (OSTI)

... (Grandkids) ? Full in-floor radiant heating system in the house ? Geothermal system as backup. ? In 20 months of ecopower ...

2012-10-07T23:59:59.000Z

124

Industry Profile | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industry Profile Industry Profile Industry Profile November 1, 2013 - 11:40am Addthis The largest energy consuming industrial sectors account for the largest share of CHP capacity; namely: Chemicals (30%), Petroleum Refining (17%), and Paper Products (14%). Other industrial sectors include: Commercial/Institutional (12%), Food (8%), Primary Metals (5%), Other Manufacturing (8%), and Other Industrial (6%). Combined heat and power (CHP)-sometimes referred to as cogeneration-involves the sequential process of producing and utilizing electricity and thermal energy from a single fuel. CHP is widely recognized to save energy and costs, while reducing carbon dioxide (CO2) and other pollutants. CHP is a realistic, near-term option for large energy efficiency improvements and significant CO2 reductions.

125

Energy Department Turns Up the Heat and Power on Industrial Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department Turns Up the Heat and Power on Industrial Energy Department Turns Up the Heat and Power on Industrial Energy Efficiency Energy Department Turns Up the Heat and Power on Industrial Energy Efficiency March 13, 2013 - 12:19pm Addthis Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce harmful emissions. | Infographic courtesy of Sarah Gerrity, Energy Department. Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce harmful emissions. | Infographic courtesy of Sarah Gerrity, Energy Department. Katrina Pielli Senior Policy Advisor, Office of Energy Efficiency and Renewable Energy What is Combined Heat and Power? Often called cogeneration or CHP, a combined heat and power system

126

Secretary Chu Announces More than $155 Million for Industrial Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Chu Announces More than $155 Million for Industrial Secretary Chu Announces More than $155 Million for Industrial Energy Efficiency Projects Secretary Chu Announces More than $155 Million for Industrial Energy Efficiency Projects November 3, 2009 - 12:00am Addthis WASHINGTON, DC- Energy Secretary Steven Chu announced today that the Department of Energy is awarding more than $155 million in funding under the American Recovery and Reinvestment Act for 41 industrial energy efficiency projects across the country. These awards include funding for industrial combined heat and power systems, district energy systems for industrial facilities, and grants to support technical and financial assistance to local industry. The industrial sector uses more than 30 percent of U.S. energy and is responsible for nearly 30 percent of U.S.

127

Secretary Chu Announces More than $155 Million for Industrial Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

More than $155 Million for Industrial More than $155 Million for Industrial Energy Efficiency Projects Secretary Chu Announces More than $155 Million for Industrial Energy Efficiency Projects November 3, 2009 - 12:00am Addthis WASHINGTON, DC- Energy Secretary Steven Chu announced today that the Department of Energy is awarding more than $155 million in funding under the American Recovery and Reinvestment Act for 41 industrial energy efficiency projects across the country. These awards include funding for industrial combined heat and power systems, district energy systems for industrial facilities, and grants to support technical and financial assistance to local industry. The industrial sector uses more than 30 percent of U.S. energy and is responsible for nearly 30 percent of U.S. carbon emissions.

128

Percentage of Total Natural Gas Industrial Deliveries included in Prices  

Gasoline and Diesel Fuel Update (EIA)

City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History U.S. 16.5 16.3 16.0 16.2 16.6 16.9 2001-2013 Alabama 22.1 21.7 21.6 22.8 22.0 22.7 2001-2013 Alaska 100.0 100.0 100.0 100.0 100.0 100.0 2001-2013 Arizona 13.4 15.7 15.3 13.8 13.7 13.9 2001-2013 Arkansas 1.7 1.4 1.2 1.4 1.3 1.5 2001-2013

129

www.eia.gov  

U.S. Energy Information Administration (EIA)

... Commercial and industrial sectors include electricity output from combined heat and power (CHP) ... Federal Reserve System, ... Defense District” ...

130

United States - U.S. Energy Information Administration (EIA ...  

U.S. Energy Information Administration (EIA)

State Energy Data System ... District of Columbia Florida Georgia Hawaii Idaho ... includes industrial combined-heat-and-power (CHP) ...

131

www.eia.gov  

U.S. Energy Information Administration (EIA)

Heating Oil Residential Prices ... Commercial and industrial sectors include electricity output from combined heat and power (CHP) ... Federal Reserve ...

132

United States - U.S. Energy Information Administration (EIA ...  

U.S. Energy Information Administration (EIA)

District of Columbia Florida Georgia Hawaii Idaho ... electrical system energy losses. ... includes industrial combined-heat-and-power (CHP) ...

133

Industry  

E-Print Network (OSTI)

combined heat and power and coke ovens, and waste managementto ban the use of small-scale coke-producing facilities forcasting, Scrap preheating, Dry coke quenching Inert anodes,

Bernstein, Lenny

2008-01-01T23:59:59.000Z

134

Better Buildings, Better Plants: How You Can Benefit, plus New Executive Order on Industrial Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DRAFT ADVANCED MANUFACTURING OFFICE Better Buildings, Better Plants: How You Can Benefit, plus New Executive Order on Industrial Energy Efficiency Advanced Manufacturing Office October 9, 2012 Andre de Fontaine Katrina Pielli 2 Today * Better Buildings, Better Plants Overview - Better Buildings, Better Plants Program - Better Buildings, Better Plants Challenge * Looking Ahead to 2013 - In-Plant Trainings - Enhanced energy intensity baselining and tracking tool - New communication materials * Executive Order on Industrial Energy Efficiency and Combined Heat and Power - DOE Activities in Support of Executive Order * Regional Industrial Energy Efficiency & Combined Heat and Power Dialogue Meetings * Better Buildings, Better Plants * "CHP as a Clean Energy Resource" new report

135

Percentage of Total Natural Gas Industrial Deliveries included...  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline and Distribution Use Price City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial...

136

United States - U.S. Energy Information Administration (EIA ...  

U.S. Energy Information Administration (EIA)

State Energy Data System ... District of Columbia Florida Georgia Hawaii Idaho ... The industrial sector includes industrial combined-heat-and-power ( ...

137

Combined heat and power technology fills an important energy niche ...  

U.S. Energy Information Administration (EIA)

Fuel consumption at CHP plants. Useful thermal output ... data on all generators at plants greater than one megawatt on the Annual Power Plant Operations ...

138

Combined Heat and Power: A Technology Whose Time Has Come  

E-Print Network (OSTI)

grid, the few buildings equipped with Combined Heat andthe grid system. 29 Source: EPA Combined Heat and Powergrid system. 21 Alternatively, a CHP system collects the wasted heat

Ferraina, Steven

2014-01-01T23:59:59.000Z

139

Federal Energy Management Program: Combined Heat and Power Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

electricity; and the waste heat is used in some type of thermal process. Process flow for a typical CHP system leverages heat created during electricity generation to...

140

Combined Heat and Power (CHP) Project Profiles Database  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

112210 Hog and Pig Farming 211112 Natural Gas Liquid Extraction 221112 Fossil Fuel Electric Power Generation 221210 Natural Gas Distribution 221310 Water Supply and...

Note: This page contains sample records for the topic "includes industrial combined-heat-and-power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Berkeley Lab Study Evaluates Potential Combined Heat and Power...  

NLE Websites -- All DOE Office Websites (Extended Search)

Stadler evaluated an integrated approach that optimizes the adoption of distributed energy resources (DER). This study focused on commercial-sector CHP, especially those...

142

Combined heat and power for drinking water production  

Science Conference Proceedings (OSTI)

ABB Kraftwerke AG, of Mannheim, Germany, is presently involved in two huge projects aimed at supplying electric power and drinking water in the Arabian Gulf. To limit fuel consumption as much as possible, electricity and water are produced in CHP plants. These plants are powered either by gas turbines equipped with HRSGs, or by conventional boilers feeding controlled extraction-condensing steam turbines. The selection of one of the two systems depends mainly on the type of fuel available (oil or natural gas), on the power/water loads through the year and other local factors. The gas turbine-based CHP systems can be setup in a shorter time and feature a slightly higher overall efficiency. The steam turbine solution, once the plant is commissioned, needs less maintenance. In the final analysis, operating costs of the two solutions are equivalent.

Chellini, R.

1996-04-01T23:59:59.000Z

143

www.eia.gov  

U.S. Energy Information Administration (EIA)

4/ Includes industrial-owned generators not classified as combined heat and power, such as standby generators. 5/ Includes wood and other biomass, waste heat, ...

144

www.eia.gov  

U.S. Energy Information Administration (EIA)

3/ Includes industrial-owned generators not classified as combined heat and power, such as standby generators. 4/ Includes wood and other biomass, waste heat, ...

145

National Grid (Gas) - Commercial Energy Efficiency Rebate Programs...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating Windows, Doors, & Skylights Maximum Rebate Custom Incentives including Combined Heat and Power: 250,000 Large Industrial Gas Incentives: 250,000 Energy Efficiency...

146

Advanced Manufacturing Office: About the Office  

NLE Websites -- All DOE Office Websites (Extended Search)

efficiency opportunities and adopt energy management best practices, including combined heat and power technology. As a result, manufacturers across vast industrial supply chain...

147

Solar Energy Education. Industrial arts: teacher's guide. Field test edition. [Includes glossary  

SciTech Connect

An instructional aid is presented which integrates the subject of solar energy into the classroom study of industrial arts. This guide for teachers was produced in addition to the student activities book for industrial arts by the USDOE Solar Energy Education. A glossary of solar energy terms is included. (BCS)

1981-05-01T23:59:59.000Z

148

Solar Energy Education. Industrial arts: teacher's guide. Field test edition. [Includes glossary  

DOE Green Energy (OSTI)

An instructional aid is presented which integrates the subject of solar energy into the classroom study of industrial arts. This guide for teachers was produced in addition to the student activities book for industrial arts by the USDOE Solar Energy Education. A glossary of solar energy terms is included. (BCS)

Not Available

1981-05-01T23:59:59.000Z

149

Energy Department Turns Up the Heat and Power on Industrial Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficiency and Renewable Energy What is Combined Heat and Power? Often called cogeneration or CHP, a combined heat and power system provides both electric power and thermal...

150

Industry  

E-Print Network (OSTI)

the paper, glass or ceramics industry) making it difficulttechnology in the ceramic manufacturing industry. industries: iron and steel, non-ferrous metals, chemicals (including fertilisers), petroleum refining, minerals (cement, lime, glass and ceramics) and

Bernstein, Lenny

2008-01-01T23:59:59.000Z

151

Working Paper #76 The Job Generation Impacts of Expanding Industrial Cogeneration  

E-Print Network (OSTI)

Sustainable economic development requires the efficient production and use of energy; combined heat and power (CHP) systems contribute to both of these goals. While a recent executive order set a national goal of 40 GW of new industrial CHP by 2020, the deployment of CHP is challenged by financial, regulatory, and workforce barriers. Discrepancies between private and public interests can be minimized by policies promoting energy-based economic development. In this context, a great deal of rhetoric has addressed the ambiguous goal of growing “green jobs”. Our research provides a systematic evaluation of the job impacts of an investment tax credit (ITC) that would subsidize industrial CHP deployment. We introduce a hybrid analysis approach combining simulations using the National Energy Modeling System (NEMS) with Input-Output modeling. Our results suggest that each GW of installed CHP capacity may be reasonably expected create and maintain 2,000-3,000 full-time equivalent jobs throughout the lifetime of the system. These jobs would include direct jobs in manufacturing, construction, operation and maintenance, as well as other indirect and induced jobs (net of losses in other sectors), both from redirection of industrial energy expenditures and respending of commercial and household energy-bill savings. We discuss implications for industrial policy, affirming the benefits of innovative technology investments and effective policy design. *Corresponding author:

Paul Baer; Marilyn A. Brown; Gyungwon Kim; D. M. Smith Building

2013-01-01T23:59:59.000Z

152

Electric Power Monthly  

U.S. Energy Information Administration (EIA)

Net Generation by Energy Source: Commercial Combined Heat and Power Sector . Table 1.5. Net Generation by Energy Source: Industrial Combined Heat and Power Sector .

153

Table 8.6c Estimated Consumption of Combustible Fuels for Useful ...  

U.S. Energy Information Administration (EIA)

11 Commercial combined-heat-and-power (CHP) plants. 4 Jet fuel, kerosene, other petroleum liquids, and waste oil. 12 Industrial combined-heat-and-power (CHP) plants.

154

Decision-maker's guide to wood fuel for small industrial energy users. Final report. [Includes glossary  

DOE Green Energy (OSTI)

The technology and economics of various wood energy systems available to the small industrial and commercial energy user are considered. This book is designed to help a plant manager, engineer, or others in a decision-making role to become more familiar with wood fuel systems and make informed decisions about switching to wood as a fuel. The following subjects are discussed: wood combustion, pelletized wood, fuel storage, fuel handling and preparation, combustion equipment, retrofitting fossil-fueled boilers, cogeneration, pollution abatement, and economic considerations of wood fuel use. (MHR)

Levi, M. P.; O'Grady, M. J.

1980-02-01T23:59:59.000Z

155

Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden Central Office  

NLE Websites -- All DOE Office Websites (Extended Search)

Case Study: Fuel Case Study: Fuel Cells Provide Com- bined Heat and Power at Verizon's Garden City Central Office With more than 67 million customers nationwide, Verizon Communications is one of the largest telecommunica- tions providers in the U.S. Power inter- ruptions can severely impact network operations and could result in losses in excess of $1 million/minute. 1 In 2005, Verizon Communications installed a 1.4 MW phosphoric acid fuel cell (PAFC) system, consisting of seven 200 kW units, at its Central Office in Garden City, New York. This fuel cell power plant, the largest in the United States at the time, is reaping environmental benefits and demonstrating the viabil- ity of fuel cells in a commercial, critical telecommunications setting. Background Verizon's Central Office in Garden City,

156

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

have lower operational costs per kWh produced. There is alsoper kWh of energy, the energy payback time (EPBT), the cost

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

157

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

Energy Agency Solar Heating and Cooling Programme. [43] WHOembody a stand-alone solar heating system. It is assumedrecent growth in solar-thermal heating (Weiss et al. [42]),

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

158

The CO2 Reduction Potential of Combined Heat and Power in California's Commercial Buildings  

E-Print Network (OSTI)

solar heat; • refrigeration loads that can be met either by standard equipment or absorption equivalents; • hot-water and space-heating

Stadler, Michael

2010-01-01T23:59:59.000Z

159

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

by CHP heat output P e Electrical power output of system Qratio of thermal to electrical power output R d Desiredratio of thermal to electrical power output T a Ambient

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

160

Thermo economic comparison of conventional micro combined heat and power systems with  

E-Print Network (OSTI)

heat and power systems (CHP) on this scale is called micro CHP (mCHP). First, the energy consumption-family household. The SOFC-mCHP system provides electricity as well as hot water for use and space heating heating located in larger cities. Secondly, there are CHP systems used in a decentralized form

Liso, Vincenzo

Note: This page contains sample records for the topic "includes industrial combined-heat-and-power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

110 kW Stationary Combined Heat and Power Systems Status and  

E-Print Network (OSTI)

for SOFC-based mCHP system is presented. January 2013 Keywords: micro-CHP SOFC Anode gas recycle Ejector Energy System Simulation a b s t r a c Oxide Fuel Cell (SOFC) for small-scale residential applications is presented. A novel detailed pro

162

Optimal selection of on-site generation with combined heat and power applications  

E-Print Network (OSTI)

of electricity distribution systems and theu Purchased electricity from the distribution company by theelectricity that it needs beyond its self-generation from the distribution

Siddiqui, Afzal S.; Marnay, Chris; Bailey, Owen; Hamachi LaCommare, Kristina

2004-01-01T23:59:59.000Z

163

The CO2 Reduction Potential of Combined Heat and Power in California's Commercial Buildings  

E-Print Network (OSTI)

of three major electricity distribution ultilities plus aof three major electricity distribution ultilities plus a

Stadler, Michael

2010-01-01T23:59:59.000Z

164

The CO2 Reduction Potential of Combined Heat and Power in California's Commercial Buildings  

E-Print Network (OSTI)

incentive than the current California SGIP support levels for stationary fuel cells of $2500/kW for natural gas

Stadler, Michael

2010-01-01T23:59:59.000Z

165

ASSESSMENT OF COMBINED HEAT AND POWER SYSTEM "PREMIUM POWER" APPLICATIONS IN CALIFORNIA  

E-Print Network (OSTI)

incentives to install CHP, the least expensive method to power the facility would be to buy all electricity and natural gas

Norwood, Zack

2010-01-01T23:59:59.000Z

166

Final Report: Assessment of Combined Heat and Power Premium Power Applications in California  

E-Print Network (OSTI)

incentives to install CHP the least expensive method to power the facility would be to buy all electricity and natural gas

Norwood, Zack

2010-01-01T23:59:59.000Z

167

The CO2 Reduction Potential of Combined Heat and Power in California's Commercial Buildings  

E-Print Network (OSTI)

35% of CA commercial electricity demand. Simulating thesereflect the benefit of electricity demand displacement byApr. ) Electricity electricity demand electricity demand

Stadler, Michael

2010-01-01T23:59:59.000Z

168

Optimal selection of on-site generation with combined heat and power applications  

E-Print Network (OSTI)

International Journal of Distributed Energy Resources, Vol.of Customer Adoption of Distributed Energy Resources. LBNL-JL. Marnay, C. Distributed Energy Re- sources Customer

Siddiqui, Afzal S.; Marnay, Chris; Bailey, Owen; Hamachi LaCommare, Kristina

2004-01-01T23:59:59.000Z

169

The CO2 Reduction Potential of Combined Heat and Power in California's Commercial Buildings  

E-Print Network (OSTI)

J.L. Edwards, (2003), “Distributed Energy Resources CustomerGas-Fired Distributed Energy Resource Characterizations,”on the economics of distributed energy resources (DER) in

Stadler, Michael

2010-01-01T23:59:59.000Z

170

ASSESSMENT OF COMBINED HEAT AND POWER SYSTEM "PREMIUM POWER" APPLICATIONS IN CALIFORNIA  

E-Print Network (OSTI)

C. Edwards, J. : Distributed Energy Resources CustomerC. Siddiqui, A. : Distributed Energy Resources On-SiteStadler, M. : The Distributed Energy Resources Costumer

Norwood, Zack

2010-01-01T23:59:59.000Z

171

Effects of a carbon tax on microgrid combined heat and power adoption  

E-Print Network (OSTI)

on Integration of Distributed Energy Resources: The CERTSof Customer Adoption of Distributed Energy Resources. ”Marnay, C. (2003). “Distributed Energy Resources Customer

Siddiqui, Afzal S.; Marnay, Chris; Edwards, Jennifer L.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael

2004-01-01T23:59:59.000Z

172

GUIDE TO COMBINED HEAT AND POWER SYSTEMS FOR BOILER OWNERS AND OPERATORS  

E-Print Network (OSTI)

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. ORNL/TM-2004/144

C. B. Oland; Document Availability; C. B. Oland

2004-01-01T23:59:59.000Z

173

Optimal selection of on-site generation with combined heat and power applications  

E-Print Network (OSTI)

fired natural gas absorption chiller (kW) DCPrice Turnkeydirect-fired natural gas absorption chiller (US$) AnnDCPricedirect-fired natural gas absorption chiller (US$) DCLifetime

Siddiqui, Afzal S.; Marnay, Chris; Bailey, Owen; Hamachi LaCommare, Kristina

2004-01-01T23:59:59.000Z

174

ASSESSMENT OF COMBINED HEAT AND POWER SYSTEM "PREMIUM POWER" APPLICATIONS IN CALIFORNIA  

E-Print Network (OSTI)

to adsorption/absorption chiller systems. So, facilitiesabsorption / published in the International Journal of Distributed Energy Resources, vol 6(2),1 Apr-Jun 2010 adsorption chiller);

Norwood, Zack

2010-01-01T23:59:59.000Z

175

Distributed energy resources customer adoption modeling with combined heat and power applications  

E-Print Network (OSTI)

cooling loads using absorption chillers. Utility rates andvia heat exchangers. Absorption chillers are considered inof single- effect absorption chillers is only one seventh (

Siddiqui, Afzal S.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael; Edwards, Jennifer L.; Marnay, Chris

2003-01-01T23:59:59.000Z

176

Effects of a carbon tax on combined heat and power adoption by a microgrid  

E-Print Network (OSTI)

a heat exchanger or an absorption chiller) ? u The amount ofof heat exchangers, absorption chillers, and the relatedheat exchangers and/or absorption chillers, thermodynamic

Marnay, Chris; Edwards, Jennifer L.; Firestone, Ryan M.; Ghosh, Srijay; Siddidqui, Afzal S.; Stadler, Michael

2002-01-01T23:59:59.000Z

177

The CO2 Reduction Potential of Combined Heat and Power in California's Commercial Buildings  

E-Print Network (OSTI)

solar thermal collectors, absorption chillers, and storageCHP, often with absorption chillers that use waste heat forand • heat-driven absorption chillers. Figure 1 shows a

Stadler, Michael

2010-01-01T23:59:59.000Z

178

Effects of a carbon tax on microgrid combined heat and power adoption  

E-Print Network (OSTI)

fired natural gas absorption chiller (kW) Turnkey cost offired natural gas absorption chiller ($) Set of end-usesexchanger or an absorption chiller) The amount of heat (in

Siddiqui, Afzal S.; Marnay, Chris; Edwards, Jennifer L.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael

2004-01-01T23:59:59.000Z

179

Table 8.3a Useful Thermal Output at Combined-Heat-and-Power Plants ...  

U.S. Energy Information Administration (EIA)

1 Anthracite, bituminous coal, subbituminous coal, lignite, waste coal, and coal synfuel. 7 Batteries, chemicals, hydrogen, pitch, purchased steam, sulfur ...

180

Table 8.3b Useful Thermal Output at Combined-Heat-and-Power Plants ...  

U.S. Energy Information Administration (EIA)

1 Anthracite, bituminous coal, subbituminous coal, lignite, waste coal, and coal synfuel. 7 Batteries, chemicals, hydrogen, pitch, purchased steam, sulfur ...

Note: This page contains sample records for the topic "includes industrial combined-heat-and-power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

An Engineering-Economic Analysis of Combined Heat and Power Technologies in a Grid Application  

E-Print Network (OSTI)

of increased overall conversion efficiency. First, carbon emissions from power plants and generators would be reduced. Second, the environmental problem of disposing of power plant waste heat into the environment of heat using conventional separate heat and power. For typical electrical and thermal efficiencies, CHP

182

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

fossil-fuel based thermal power plants. Chapter 3 exploresthermal energy to be dissipated in concentrating solar power plants.thermal energy to electricity in a natural gas, coal or nuclear power plant

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

183

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

rules out the use of vapor compression, reverse osmosis, andrecirculation pumps, nor vapor compression, etc (see figureholds over vapor cycles is the low compression work, on the

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

184

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

and decreased cost of heat and electricity grid (Casten andgrid. Chapter 1 begins with analysis of the relative demand for electricity and heatheat can be cost-effectively stored with available technologies. (c) DCS-CHP thus can ameliorate grid-

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

185

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network (OSTI)

GHG preferable to grid power only when the waste heat can bethe grid electricity it displaces when the waste heat from

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

186

Table 8.3a Useful Thermal Output at Combined-Heat-and-Power Plants ...  

U.S. Energy Information Administration (EIA)

7 Batteries, chemicals, hydrogen, pitch, purchased steam, sulfur, miscellaneous technologies, and, beginning in 2001, non-renewable waste (municipal solid waste from ...

187

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

levelized electric and thermal energy cost ($0.25/kWhend-use of energy as thermal energy is used to serve thermal4 to 6 units of thermal energy and one unit of electrical

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

188

Distributed energy resources customer adoption modeling with combined heat and power applications  

E-Print Network (OSTI)

of Microgrid Distributed Energy Resource Potential Usingon Integration of Distributed Energy Resources: The CERTSof Customer Adoption of Distributed Energy Resources. ”

Siddiqui, Afzal S.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael; Edwards, Jennifer L.; Marnay, Chris

2003-01-01T23:59:59.000Z

189

Optimal selection of on-site generation with combined heat and power applications  

E-Print Network (OSTI)

the burning of natural gas for on-site power generation andnatural gas absorption chiller GenL i , m , t , h , u Generated power by distributed generation

Siddiqui, Afzal S.; Marnay, Chris; Bailey, Owen; Hamachi LaCommare, Kristina

2004-01-01T23:59:59.000Z

190

Distributed energy resources customer adoption modeling with combined heat and power applications  

E-Print Network (OSTI)

MWh) KA natural gas consumed by power generation (MWh LMWh) KA natural gas consumed by power generation (MWh) LMWh) KA natural gas consumed by power generation (MWh) L

Siddiqui, Afzal S.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael; Edwards, Jennifer L.; Marnay, Chris

2003-01-01T23:59:59.000Z

191

Final Report: Assessment of Combined Heat and Power Premium Power Applications in California  

E-Print Network (OSTI)

Technologies on Microgrid Viability: An Investigation forother benefits to the CHP or microgrid system host site. See

Norwood, Zack

2010-01-01T23:59:59.000Z

192

ASSESSMENT OF COMBINED HEAT AND POWER SYSTEM "PREMIUM POWER" APPLICATIONS IN CALIFORNIA  

E-Print Network (OSTI)

Storage and Reliability on Microgrid Viability: A Study ofother benefits to the CHP or microgrid system host site. Seecapability in a CERTS Microgrid configuration in reference [

Norwood, Zack

2010-01-01T23:59:59.000Z

193

Optimal selection of on-site generation with combined heat and power applications  

E-Print Network (OSTI)

of a Laboratory-Scale Microgrid Phase 2: Operationand Control Two-Inverter Microgrid. NREL Report No. SR-560-of a Laboratory- Scale Microgrid Phase 1: Single Inverter in

Siddiqui, Afzal S.; Marnay, Chris; Bailey, Owen; Hamachi LaCommare, Kristina

2004-01-01T23:59:59.000Z

194

The CO2 Reduction Potential of Combined Heat and Power in California's Commercial Buildings  

E-Print Network (OSTI)

Storage and Reliability on Microgrid Viability: A Study of1947-4326 Introduction A microgrid is defined as a clusterfor short periods (see Microgrid Symposiums 2005-2009, and

Stadler, Michael

2010-01-01T23:59:59.000Z

195

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network (OSTI)

MW Reciprocating Engine 3 MW Gas Turbine 1 MW ReciprocatingEngine 5 MW Gas Turbine 3MW Gas Turbine 40 MW Gas Turbine 1 MW Reciprocating Engine

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

196

Combined Heating and Power Using Microturbines in a Major Urban Hotel  

SciTech Connect

This paper describes the results of a cooperative effort to install and operate a Cooling, Heating and Power (CHP) System at a major hotel in San Francisco, CA. The packaged CHP System integrated four microturbines, a double-effect absorption chiller, two fuel gas boosters, and the control hardware and software to ensure that the system operated predictably, reliably, and safely. The chiller was directly energized by the recycled hot exhaust from the microturbines, and could be configured to provide either chilled or hot water. As installed, the system was capable of providing up to 227 kW of net electrical power and 142 Refrigeration Tons (RT) of chilled water at a 59oF (15oC) ambient temperature. For the year, the CHP efficiency was 54 percent. Significant lessons learned from this test and verification project are discussed as well as measured performance and economic considerations.

Sweetser, Richard [Exergy Partners Corp.; Wagner, Timothy [United Technologies Research Center (UTRC); Leslie, Neil [Gas Technology Institute; Stovall, Therese K [ORNL

2009-01-01T23:59:59.000Z

197

Final Report: Assessment of Combined Heat and Power Premium Power Applications in California  

E-Print Network (OSTI)

and operation of distributed generation, combined heat andcost combination of distributed generation technologies thatdesires to install distributed generation to minimize the

Norwood, Zack

2010-01-01T23:59:59.000Z

198

ASSESSMENT OF COMBINED HEAT AND POWER SYSTEM "PREMIUM POWER" APPLICATIONS IN CALIFORNIA  

E-Print Network (OSTI)

heat and power; distributed generation; premium powerand operation of distributed generation, combined heat andcost combination of distributed generation technologies that

Norwood, Zack

2010-01-01T23:59:59.000Z

199

Optimal selection of on-site generation with combined heat and power applications  

E-Print Network (OSTI)

ios in which distributed generation and heat recovery486-7976 Keywords: distributed generation; combined heat andCERTS) Microgrid. Distributed generation would alleviate the

Siddiqui, Afzal S.; Marnay, Chris; Bailey, Owen; Hamachi LaCommare, Kristina

2004-01-01T23:59:59.000Z

200

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

for distributed generation . . . . . . . . . . . . . . 50environmentally benign distributed generation in a varietyfor inexpensive Distributed Generation (DG) technologies in

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "includes industrial combined-heat-and-power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Effects of a carbon tax on microgrid combined heat and power adoption  

E-Print Network (OSTI)

Emiel (2000). “Distributed Generation in Competitiveenergy resources; DER; Distributed Generation; DG; Economicof CHP in distributed generation greatly increases the

Siddiqui, Afzal S.; Marnay, Chris; Edwards, Jennifer L.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael

2004-01-01T23:59:59.000Z

202

Distributed energy resources customer adoption modeling with combined heat and power applications  

E-Print Network (OSTI)

CHP (PX and Tariff case) Distributed Energy Resources42 Figure 10. Energy Consumption Breakdown - 1999 (TariffFigure 10. Energy Consumption Breakdown - 1999 (Tariff Case)

Siddiqui, Afzal S.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael; Edwards, Jennifer L.; Marnay, Chris

2003-01-01T23:59:59.000Z

203

Optimal selection of on-site generation with combined heat and power applications  

E-Print Network (OSTI)

s load profiles default energy tariffs (in this work fromDirect Access Tariff Strategic energy (US$/kWh) SCE TOU-8direct access” tariff. The energy and demand charges are

Siddiqui, Afzal S.; Marnay, Chris; Bailey, Owen; Hamachi LaCommare, Kristina

2004-01-01T23:59:59.000Z

204

Effects of a carbon tax on microgrid combined heat and power adoption  

E-Print Network (OSTI)

load profiles default energy tariffs (in this work from theEnergy Characteristics of Microgrid’s Individual Members Table 2. SDG&E TariffTariff Type Season Load Period Non-coincident Demand Charge ($/kW) Coincident Demand Charge ($/kW) Energy

Siddiqui, Afzal S.; Marnay, Chris; Edwards, Jennifer L.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael

2004-01-01T23:59:59.000Z

205

The CO2 Reduction Potential of Combined Heat and Power in California...  

NLE Websites -- All DOE Office Websites (Extended Search)

mid-sized commercial sites in California (CA), existing tariffs of three major electricity distribution utilities plus a natural gas company, and performance data of...

206

Effects of a carbon tax on combined heat and power adoption by a microgrid  

DOE Green Energy (OSTI)

This paper describes the economically optimal adoption and operation of distributed energy resources (DER) by a hypothetical California microgrid ((mu)Grid) consisting of a group of commercial buildings over an historic test year, 1999. The optimization is conducted using a customer adoption model (DER-CAM) developed at Berkeley Lab and implemented in the General Algebraic Modeling System (GAMS). A (mu)Grid is a semiautonomous grouping of electricity and heat loads interconnected to the existing utility grid (macrogrid) but able to island from it. The (mu)Grid minimizes the cost of meeting its energy requirements (consisting of both electricity and heat loads) by optimizing the installation and operation of DER technologies while purchasing residual energy from the local combined natural gas and electricity utility. The available DER technologies are small-scale generators (< 500 kW), such as reciprocating engines, microturbines, and fuel cells, with or without CHP equipment, such as water- and space-heating and/or absorption cooling. By introducing a tax on carbon emissions, it is shown that if the (mu)Grid is allowed to install CHP-enabled DER technologies, its carbon emissions are mitigated more than without CHP, demonstrating the potential benefits of small-scale CHP technology for climate change mitigation. Reciprocating engines with heat recovery and/or absorption cooling tend to be attractive technologies for the mild southern California climate, but the carbon mitigation tends to be modest compared to purchasing utility electricity because of the predominance of relatively clean generation in California.

Marnay, Chris; Edwards, Jennifer L.; Firestone, Ryan M.; Ghosh, Srijay; Siddidqui, Afzal S.; Stadler, Michael

2002-10-01T23:59:59.000Z

207

ASSESSMENT OF COMBINED HEAT AND POWER SYSTEM "PREMIUM POWER" APPLICATIONS IN CALIFORNIA  

E-Print Network (OSTI)

customer’s default electricity tariff, natural gas prices,NetApp electricity prices are based on utility tariffs intariffs during the weekends (as compared to the weekdays) results in the CCP system remaining always off, as purchase of electricity

Norwood, Zack

2010-01-01T23:59:59.000Z

208

Optimal selection of on-site generation with combined heat and power applications  

E-Print Network (OSTI)

Analysed at NBVC Electricity Tariff Natural Gas Tariff Nopurchase any electricity under the tariff. This is simplytheir electricity and heat requirements, the tariffs they

Siddiqui, Afzal S.; Marnay, Chris; Bailey, Owen; Hamachi LaCommare, Kristina

2004-01-01T23:59:59.000Z

209

The CO2 Reduction Potential of Combined Heat and Power in California's Commercial Buildings  

E-Print Network (OSTI)

utilities, the electricity tariff has a fairly small fixed4 detailed electricity and natural gas tariffs, and DGexisting tariffs of three major electricity distribution

Stadler, Michael

2010-01-01T23:59:59.000Z

210

Final Report: Assessment of Combined Heat and Power Premium Power Applications in California  

E-Print Network (OSTI)

August 2002. PG&E electricity tariffs. http://www.pge.com/May 2008. PG&E electricity tariffs. http://www.pge.com/customer’s default electricity tariff, natural gas prices,

Norwood, Zack

2010-01-01T23:59:59.000Z

211

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network (OSTI)

possibly in the form of microgrids, are not considered. 2007the aggregation of loads into microgrids that would providepossible organization in microgrids. It is often the case

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

212

Effects of a carbon tax on microgrid combined heat and power adoption  

Science Conference Proceedings (OSTI)

This paper describes the economically optimal adoption and operation of distributed energy resources (DER) by a hypothetical California microgrid consisting of a group of commercial buildings over an historic test year, 1999. The optimization is conducted using a customer adoption model (DER-CAM) developed at Berkeley Lab and implemented in the General Algebraic Modeling System (GAMS). A microgrid is a semiautonomous grouping of electricity and heat loads interconnected to the existing utility grid (macrogrid) but able to island from it. The microgrid minimizes the cost of meeting its energy requirements (consisting of both electricity and heat loads) by optimizing the installation and operation of DER technologies while purchasing residual energy from the local combined natural gas and electricity utility. The available DER technologies are small-scale generators (microgrid is allowed to install CHP-enabled DER technologies, its carbon emissions are mitigated more than without CHP, demonstrating the potential benefits of small-scale CHP technology for climate change mitigation. Reciprocating engines with heat recovery and/or absorption cooling tend to be attractive technologies for the mild southern California climate, but the carbon mitigation tends to be modest compared to purchasing utility electricity because of the predominance of relatively clean central station generation in California.

Siddiqui, Afzal S.; Marnay, Chris; Edwards, Jennifer L.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael

2004-11-01T23:59:59.000Z

213

Effects of a Carbon Tax on Microgrid Combined Heat and Power Adoption  

E-Print Network (OSTI)

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The

Ernest Orlando Lawrence; Afzal S. Siddiqui; Chris Marnay; Jennifer L. Edwards; Ryan Firestone; Srijay Ghosh; Michael Stadler; Afzal S. Siddiqui; Chris Marnay; Jennifer L. Edwards; Ryan Firestone

2004-01-01T23:59:59.000Z

214

Effects of a carbon tax on combined heat and power adoption by a microgrid  

E-Print Network (OSTI)

Application of MicroGrids. Power System Engineering Researchand consumed locally within microgrids (”Grids) that are

Marnay, Chris; Edwards, Jennifer L.; Firestone, Ryan M.; Ghosh, Srijay; Siddidqui, Afzal S.; Stadler, Michael

2002-01-01T23:59:59.000Z

215

Effects of a carbon tax on microgrid combined heat and power adoption  

E-Print Network (OSTI)

Application of MicroGrids” Power System Engineering ResearchLasseter 2002). These microgrids will operate according toauthority. By contrast microgrids will develop in accordance

Siddiqui, Afzal S.; Marnay, Chris; Edwards, Jennifer L.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael

2004-01-01T23:59:59.000Z

216

Optimal selection of on-site generation with combined heat and power applications  

E-Print Network (OSTI)

Staff Workshop to Explore Microgrids as a Distributed Energygenerate close to them in microgrids, such as the Consor-of CHP sys- tems in microgrids. The current state of the art

Siddiqui, Afzal S.; Marnay, Chris; Bailey, Owen; Hamachi LaCommare, Kristina

2004-01-01T23:59:59.000Z

217

The CO2 Reduction Potential of Combined Heat and Power in California's Commercial Buildings  

E-Print Network (OSTI)

of Commercial-Building Microgrids,” IEEE Transactions on2009, Special Issue on Microgrids and Energy Management, (CHP in cost minimizing microgrids that are able to adopt and

Stadler, Michael

2010-01-01T23:59:59.000Z

218

The CO2 Reduction Potential of Combined Heat and Power in California's Commercial Buildings  

E-Print Network (OSTI)

://eetd.lbl.gov/EA/EMP/emp-pubs.html The work described in this report was funded by the California Energy Commission, Public Interest Energy owned rights. Reference herein to any specific commercial product, process, or service by its trade name examine how this sector might implement DG with CHP in cost minimizing microgrids that are able to adopt

219

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

corresponding to (1) solar-thermal efficiency, (2) solar-aperture) Parameter Solar-thermal efficiency Solar-electric80% solar-thermal conversion efficiency. (b) Electricity is

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

220

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

34 Desalination processes (Kalogirou [35 Energy comparison of desalinationsystem for seawater desalination. Applied Thermal

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "includes industrial combined-heat-and-power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

solar energy . . . . . . . . . . . . . . . . . . . . . . . . . .Basic research needs for solar energy utilization. Technicalelectricity technology. Solar Energy 76(1-3), 19 – 31. Solar

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

222

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

solar-electric system (typical for thin-film panels currently) plus a 58% efficient solar-thermal system (flat-plate efficiency

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

223

Combined Heat and Power for Saving Energy and Carbon in Residential Buildings  

E-Print Network (OSTI)

device, like the steam turbine. Stirling engines producesophisticated. Like the steam turbine, Stirling engines can

2000-01-01T23:59:59.000Z

224

Effects of a shortened depreciation schedule on the investment costs for combined heat and power  

E-Print Network (OSTI)

Combustion Turbines Steam Turbine Generators Heat Recoveryi.e. combustion turbine, steam turbine (if applicable), heat

Kranz, Nicole; Worrell, Ernst

2001-01-01T23:59:59.000Z

225

Final Report: Assessment of Combined Heat and Power Premium Power Applications in California  

E-Print Network (OSTI)

engine-generators this CHP system generates steam for spaceengine-generators this CHP system generates steam for space

Norwood, Zack

2010-01-01T23:59:59.000Z

226

Effects of a shortened depreciation schedule on the investment costs for combined heat and power  

E-Print Network (OSTI)

Recovery Steam Generators Water Treatment System Electricalapplicable), heat recovery steam generators, water treatmentMW Combustion Turbines Steam Turbine Generators Heat

Kranz, Nicole; Worrell, Ernst

2001-01-01T23:59:59.000Z

227

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

shaded regions represent power generation costs . . 11 Heat-against conventional power generation technologies when thephotovoltaic and wind power generation have recently seen

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

228

The CO2 Reduction Potential of Combined Heat and Power in California's Commercial Buildings  

E-Print Network (OSTI)

of CHP varies widely by climate zone and service territory,sites 2 in different climate zones were picked. These samplevaries considerably by climate zone, and in general, the

Stadler, Michael

2010-01-01T23:59:59.000Z

229

Microgrids for Commercial Building Combined Heat and Power and Power and  

E-Print Network (OSTI)

biofuels), photovoltaics (PV), fuel cells, local heat and electricity storage, etc. Trends emerging at a consistent level of PQR throughout large regions. For example, PQR targets are consistent virtually all cost, point A, which in Fig. 3 occurs to the left of the current U.S. target of about 3-4 nines, point

230

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network (OSTI)

natural-gas- fired combined cycle generation, and the othernatural-gas-fired combined cycle plants. This assumptionplants were efficient combined cycle plants. The four

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

231

Final Report: Assessment of Combined Heat and Power Premium Power Applications in California  

E-Print Network (OSTI)

Natural Gas-Only Heating Load Annual Total Energy Demand (Natural Gas-Only Heating Load Annual Total Energy Demand (Natural Gas-Only Heating Load Annual Total Energy Demand (

Norwood, Zack

2010-01-01T23:59:59.000Z

232

Sustainable design and durability of domestic micro combined heat and power scroll expander systems.  

E-Print Network (OSTI)

??Research to understand the mechanisms of wear within the main components of three different micro-CHP scroll expander systems was conducted. This was performed in order… (more)

Tzanakis, Iakovos

2010-01-01T23:59:59.000Z

233

Combined Heat and Power for Saving Energy and Carbon in Residential Buildings  

E-Print Network (OSTI)

This section describes four micro CHP prime movers. Eachtime frame, the Stirling micro-CHP packages are targeted toComparison of residential micro CHP technologies to separate

2000-01-01T23:59:59.000Z

234

Field Test of a Microturbine-based Combined Heat and Power System  

Science Conference Proceedings (OSTI)

Electric utility engineers are familiar with utility-grade protection relays. Most, if not all, inverter-based Distributed Energy Resource (DER) systems, such as microturbines systems, fuel cells, and photovoltaic arrays, do not have discrete generator/feeder protection relays. Inverter-based DER systems are designed with their own digitally emulated protection functions, such as overcurrent, undervoltage, and under-frequency, into the inverter controls. Electric utilities are uneasy with these systems. ...

2006-06-16T23:59:59.000Z

235

Distributed energy resources customer adoption modeling with combined heat and power applications  

E-Print Network (OSTI)

RSMEANS SCAQMD SCE SDG&E SOFC TAG TOU California Independentthe solid oxide fuel cell (SOFC), are still in developmentfuel cell PV: photovoltaics SOFC: solid oxide fuel cell If

Siddiqui, Afzal S.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael; Edwards, Jennifer L.; Marnay, Chris

2003-01-01T23:59:59.000Z

236

Combined Heat and Power for Saving Energy and Carbon in Residential Buildings  

E-Print Network (OSTI)

Solid Oxide Fuel Cell (SOFC) are being engineered for°C as an electrolyte. The SOFC is the newest of the fiveA key advantage of the SOFC is that fuels other than pure

2000-01-01T23:59:59.000Z

237

Distributed energy resources customer adoption modeling with combined heat and power applications  

E-Print Network (OSTI)

case, such as total electricity bill, electricity generationHeat and Power Applications electricity bill for electricityK$ Investment Costs Annual Electricity Bill for Purchases

Siddiqui, Afzal S.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael; Edwards, Jennifer L.; Marnay, Chris

2003-01-01T23:59:59.000Z

238

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

use of the waste heat, a condenser is much preferable, inheat rejection in a condenser. Making a few approximationspressure heat rejection in a condenser across a temperature

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

239

Combined Heat and Power for Saving Energy and Carbon in Residential Buildings  

E-Print Network (OSTI)

gas engines and stirling engines are currently being testedapplications as the other technologies. 4) Stirling Engines.The Stirling Engine—so named because it is based on the

2000-01-01T23:59:59.000Z

240

Final Report: Assessment of Combined Heat and Power Premium Power Applications in California  

E-Print Network (OSTI)

the customer’s end-use load profiles (typically for spacemade in constructing the load profiles for a couple of thesome of the ‘typical’ load profiles input to our economic

Norwood, Zack

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "includes industrial combined-heat-and-power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

ASSESSMENT OF COMBINED HEAT AND POWER SYSTEM "PREMIUM POWER" APPLICATIONS IN CALIFORNIA  

E-Print Network (OSTI)

the customer’s end-use load profiles (typically for spacemade in constructing the load profiles for a couple of thesome of the ‘typical’ load profiles input to our economic

Norwood, Zack

2010-01-01T23:59:59.000Z

242

Optimal selection of on-site generation with combined heat and power applications  

E-Print Network (OSTI)

0.85. The test site load profiles described in this report3.1: Electric-Only Sample Load Profile A.S. Siddiqui et al.Space Heating Sample Load Profile Figure 3.3: Sample Cooling

Siddiqui, Afzal S.; Marnay, Chris; Bailey, Owen; Hamachi LaCommare, Kristina

2004-01-01T23:59:59.000Z

243

Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden City Central Office  

Fuel Cell Technologies Publication and Product Library (EERE)

This case study describes how Verizon's Central Office in Garden City, NY, installed a 1.4-MW phosphoric acid fuel cell system as an alternative solution to bolster electric reliability, optimize the

244

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

2002). Advances in parabolic trough solar power technology.use comparable to a parabolic trough with air cooling sincethe working fluid in parabolic trough collectors is in the

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

245

Combined Heat and Power: Coal-Fired Air Turbine (CAT)-Cycle Plant  

DOE Green Energy (OSTI)

By combining an integrated system with a gas turbine, coal-fired air turbine cycle technology can produce energy at an efficiency rate of over 40%, with capital and operating costs below those of competing conventional systems. Read this fact sheet to discover the additional benefits of this exciting new technology.

Recca, L.

1999-01-29T23:59:59.000Z

246

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

with other fossil and renewable energy production methods inrenewable energy technologies, and 3) by democratizing the means of electricity production;

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

247

The CO2 Reduction Potential of Combined Heat and Power in California's Commercial Buildings  

E-Print Network (OSTI)

Firestone 2004, EPRI-DOE Handbook 2003, Mechanical Cost Datahttp://der.lbl.gov). EPRI-DOE Handbook of Energy Storage for

Stadler, Michael

2010-01-01T23:59:59.000Z

248

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

Vacuum tube liquid-vapor (heat-pipe) collectors. Proceedingsheat rejection in a condenser across a temperature gradient. This cycle ignores pressure losses in the pipes,

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

249

Final Report: Assessment of Combined Heat and Power Premium Power Applications in California  

E-Print Network (OSTI)

standpoint. Second, absorption/adsorption cooling systemsUse Met by Absorption Chiller Fraction of Cooling End-UseUse Met by Absorption Chiller Fraction of Cooling End-Use

Norwood, Zack

2010-01-01T23:59:59.000Z

250

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network (OSTI)

the potential value of absorption cooling, but California’sit should be noted that absorption cooling does not displace

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

251

The CO2 Reduction Potential of Combined Heat and Power in California's Commercial Buildings  

E-Print Network (OSTI)

by heat activated absorption cooling, direct-fired naturalwith absorption chillers that use waste heat for cooling (

Stadler, Michael

2010-01-01T23:59:59.000Z

252

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

a transformative technology. Solar PV, wind, geothermal, andon the whole. Thus, solar CHP and PV systems can be comparedevaluate whether solar CHP and PV systems perform similarly

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

253

Effects of a carbon tax on microgrid combined heat and power adoption  

E-Print Network (OSTI)

be Published in the Journal of Energy Engineering in AprilPublished in the Journal of Energy Engineering April 2005,

Siddiqui, Afzal S.; Marnay, Chris; Edwards, Jennifer L.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael

2004-01-01T23:59:59.000Z

254

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network (OSTI)

the importance of grid carbon intensity. Natural-gas-fired CHP is GHG preferable to grid power only when supply projection, in-state and imports Natural gas plants providing power to California are a mix ....................................................................................................................... 12 Table 7. 2020 forecasts of California electricity and natural gas prices

255

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

Environmental impact study: CSP vs. CdTe thin filmsolar · CHP · Rankine · CSP · concentrating · distributed ·the concentrating solar power (CSP) troughs in the central

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

256

Effects of a carbon tax on combined heat and power adoption by a microgrid  

E-Print Network (OSTI)

Energy Resources: The CERTS MicroGrid Concept. Berkeley Laband Power Adoption by a Microgrid Chris Marnay, Jennifer L.and Power Adoption by a Microgrid Chris Marnay ? , Jennifer

Marnay, Chris; Edwards, Jennifer L.; Firestone, Ryan M.; Ghosh, Srijay; Siddidqui, Afzal S.; Stadler, Michael

2002-01-01T23:59:59.000Z

257

Effects of a shortened depreciation schedule on the investment costs for combined heat and power  

E-Print Network (OSTI)

the depreciation permitted by the Internal Revenue Serviceunder the Internal Revenue Code have evolved from the simpleAccording to the Internal Revenue Code it is only admissible

Kranz, Nicole; Worrell, Ernst

2001-01-01T23:59:59.000Z

258

COMBINED HEAT AND POWER FOR A COLLEGE CAMPUS THE HARRISONBURG, VIRGINIA WASTE-TO-ENERGY FACILITY  

E-Print Network (OSTI)

of installing the super-heaters, cooling towers, condensers and auxiliary equipment needed to make and cooling needs of the campus. This facility also has a small turbine that can be brought on line to produce Madison University central heating & cooling system. This facility uses a mass-burn style waste combustion

Columbia University

259

Final Report: Assessment of Combined Heat and Power Premium Power Applications in California  

E-Print Network (OSTI)

pdf/E-20.pdf, May 2008. PG&E natural gas tariffs. http://pdf/G-NT.pdf, May 2008. PG&E natural gas tariffs. http://than less expensive natural gas fired reciprocating engine

Norwood, Zack

2010-01-01T23:59:59.000Z

260

Table 8.3c Useful Thermal Output at Combined-Heat-and-Power ...  

U.S. Energy Information Administration (EIA)

R=Revised. P=Preliminary. – =No data reported. (s)=Less than 0.5 trillion Btu. 4 Blast furnace gas, propane gas, and other manufactured and waste gases derived ...

Note: This page contains sample records for the topic "includes industrial combined-heat-and-power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network (OSTI)

in-state and imports Natural gas plants providing power toand Imports 20% RPS 2010, 33% RPS 2020 California Electricity Generation (TWh/a) Natural Gas

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

262

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network (OSTI)

workshop_042307.pdf CEC [California Energy Commission],Energy Research California Energy Commission Principalfunding provided by the California Energy Commission, Public

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

263

1?10 kW Stationary Combined Heat and Power Systems Status and...  

NLE Websites -- All DOE Office Websites (Extended Search)

These systems are fueled using reformate from natural gas, liquefied petroleum gas (LPG), and even kerosene in some demonstrations being conducted in Japan. LT-PEM fuel cell...

264

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network (OSTI)

the standard efficiency natural gas power plant case, highand imports Natural gas plants providing power to Californianatural gas and petroleum products as well as the remote power plant

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

265

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

Figures A typical wet steam Rankine cycle on a temperature-A Better Steam Engine: Designing a Distributed Concentrating2011 Abstract A Better Steam Engine: Designing a Distributed

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

266

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

thermodynamics matches California demand . . . . . . .Average California residential daily demand compared withreport, University of California at Berkeley, CA (US). [22

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

267

Advanced Manufacturing Office: Industries and Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Combustion Compressed Air Distributed EnergyCombined Heat and Power (CHP) Fuel and Feedstock Flexibility Information & Communications Technology Data Centers...

268

Commercial and Industrial Thermal Loads: A Driving Force Behind Future DR Markets  

Science Conference Proceedings (OSTI)

Combined heat and power (CHP) systems are installed to minimize overall energy costs at commercial and industrial facilities where heat can be effectively recovered from the power generation process to meet the site heat loads. The suitability of a given site for CHP is most critically dependent on the nature of the heat load at the site. To date, more attention has been paid to the technologies associated with power generation and recovering the heat output of the power generator and less to quantifying...

2003-01-22T23:59:59.000Z

269

Industry  

E-Print Network (OSTI)

from refrigeration equipment used in industrial processesfrom refrigeration equipment used in industrial processesfrom refrigeration equipment used in industrial processes

Bernstein, Lenny

2008-01-01T23:59:59.000Z

270

AMO Industrial Distributed Energy: Clean Energy Application Centers  

NLE Websites -- All DOE Office Websites (Extended Search)

this topic. DOE's Regional Clean Energy Application Centers (CEACs), formerly called the Combined Heat and Power (CHP) Regional Application Centers (RACs), promote and assist in...

271

Industry  

E-Print Network (OSTI)

oxide emission reductions in industry in the EU. Europeanissues: Annual survey of industries. Central StatisticalDesiccated coconut industry of Sri- Lanka’s opportunities

Bernstein, Lenny

2008-01-01T23:59:59.000Z

272

Industry  

E-Print Network (OSTI)

in the iron and steel industry: a global model. Energy, 30,report of the world steel industry 2005. International Irontrends in the iron and steel industry. Energy Policy, 30,

Bernstein, Lenny

2008-01-01T23:59:59.000Z

273

Annual Energy Review - Energy Information Administration  

U.S. Energy Information Administration (EIA)

8.3c Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989 ...

274

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southwest Gas Corporation - Combined Heat and Power Program Arizona Commercial Industrial Commercial Heating & Cooling Manufacturing Buying & Making Electricity Southwest Gas...

275

Industry  

E-Print Network (OSTI)

and power in US industry. Energy Policy, 29, pp. 1243-1254.Paris. IEA, 2004: Energy Policies of IEA Countries: Finlandand steel industry. Energy Policy, 30, pp. 827-838. Kim, Y.

Bernstein, Lenny

2008-01-01T23:59:59.000Z

276

Table 7a. U.S. Electricity Industry Overview U.S. Energy ...  

U.S. Energy Information Administration (EIA)

... and electrical sales or transfers to adjacent or colocated facilities ... Generation supplied by electricity-only and combined-heat-and-power ...

277

Making Industry Part of the Climate Solution  

Science Conference Proceedings (OSTI)

Improving the energy efficiency of industry is essential for maintaining the viability of domestic manufacturing, especially in a world economy where production is shifting to low-cost, less regulated developing countries. Numerous studies have shown the potential for significant cost-effective energy-savings in U.S. industries, but the realization of this potential is hindered by regulatory, information, workforce, and financial obstacles. This report evaluates seven federal policy options aimed at improving the energy efficiency of industry, grounded in an understanding of industrial decision-making and the barriers to efficiency improvements. Detailed analysis employs the Georgia Institute of Technology's version of the National Energy Modeling System and spreadsheet calculations, generating a series of benefit/cost metrics spanning private and public costs and energy bill savings, as well as air pollution benefits and the social cost of carbon. Two of the policies would address regulatory hurdles (Output-Based Emissions Standards and a federal Energy Portfolio Standard with Combined Heat and Power); three would help to fill information gaps and workforce training needs (the Superior Energy Performance program, Implementation Support Services, and a Small Firm Energy Management program); and two would tackle financial barriers (Tax Lien Financing and Energy-Efficient Industrial Motor Rebates). The social benefit-cost ratios of these policies appear to be highly favorable based on a range of plausible assumptions. Each of the seven policy options has an appropriate federal role, broad applicability across industries, utilizes readily available technologies, and all are administratively feasible.

Lapsa, Melissa Voss [ORNL; Brown, Dr. Marilyn Ann [Georgia Institute of Technology; Jackson, Roderick K [ORNL; Cox, Matthew [Georgia Institute of Technology; Cortes, Rodrigo [Georgia Institute of Technology; Deitchman, Benjamin H [ORNL

2011-06-01T23:59:59.000Z

278

Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

in an Appliance Industry Abstract This report provides a starting point for appliance energy efficiency policy to be informed by an understanding of: the baseline rate and...

279

An engineering-economic analysis of combined heat and power technologies in a (mu)grid application  

E-Print Network (OSTI)

technology i Operating cost per kWh electric produced ($/1996). Maintenance costs are typically $0.01-0.015 per kWh

Bailey, Owen; Ouaglal, Boubekeur; Bartholomew, Emily; Marnay, Chris; Bourassa, Norman

2002-01-01T23:59:59.000Z

280

The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power  

E-Print Network (OSTI)

solar thermal systems, which can be used for domestic hot water, space heatingsolar thermal systems, which can be used for domestic hot water, space heating

Marnay, Chris

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "includes industrial combined-heat-and-power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Manufacturing Process Modeling of 100-400 kWe Combined Heat and Power Stationary Fuel Cells  

SciTech Connect

Both technical reviewers are external and Phyllis Daley is serving as proxy. A non-disclosure form is not needed for this report.

Warren, Joshua A [ORNL; Das, Sujit [ORNL; Zhang, Wei [ORNL

2012-07-01T23:59:59.000Z

282

An engineering-economic analysis of combined heat and power technologies in a (mu)grid application  

E-Print Network (OSTI)

natural gas loads are readily available because due to the historic stability of gas prices there has been no incentive

Bailey, Owen; Ouaglal, Boubekeur; Bartholomew, Emily; Marnay, Chris; Bourassa, Norman

2002-01-01T23:59:59.000Z

283

The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power  

E-Print Network (OSTI)

Gas-Fired Distributed Energy Resource Characterizations”,Energy Reliability, Distributed Energy Program of the U.S.costs, a microgrid’s distributed energy resources (DER)

Marnay, Chris

2010-01-01T23:59:59.000Z

284

The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power  

E-Print Network (OSTI)

of combined solar thermal absorption chiller systems, and noon solar thermal and absorption chiller adoption in 2020,used to supply an absorption chiller. In the CO 2 price run,

Marnay, Chris

2010-01-01T23:59:59.000Z

285

The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power  

E-Print Network (OSTI)

N. Zhou, (2007), “Distributed Generation with Heat Recoveryoutputs the optimal Distributed Generation (DG) and storageand sizing of distributed generation and electric storage

Marnay, Chris

2010-01-01T23:59:59.000Z

286

Op%mal Scheduling of Combined Heat and Power (CHP) Plants1 under Time-sensi%ve Electricity Prices  

E-Print Network (OSTI)

) Co-genera8on of electricity and heat Storage Microgrids2 1. "Systema%c u. A microgrid refers to a "local grid" that can work autonomously from the central

Grossmann, Ignacio E.

287

The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power  

E-Print Network (OSTI)

N. et al. , (2007), “Microgrids, An Overview of OngoingSolar Thermal Systems in Microgrids with Combined Heat andSolar Thermal Systems in Microgrids with Combined Heat and

Marnay, Chris

2010-01-01T23:59:59.000Z

288

The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power  

E-Print Network (OSTI)

Conference on Solar Air-Conditioning September 30 – OctoberConference on Solar Air-Conditioning September 30 – OctoberConference on Solar Air-Conditioning September 30 – October

Marnay, Chris

2010-01-01T23:59:59.000Z

289

Review of Potential Federal and State Green House Gas Policy Drivers for Combined Heat and Power Systems  

Science Conference Proceedings (OSTI)

The electric power generation sector contributes about one-third of all green house gas (GHG) emissions in the United States. To curb the reduction of green house gas emissions, all options in the electric power value chain must be considered and evaluated. The more efficient utilization of natural gas fuel via use of distributed combined cooling, heating, and power (CHP) systems in the end-use sector may be one option to mitigating GHG emissions. This research project was undertaken to assess the extent...

2007-12-19T23:59:59.000Z

290

Making Combined Heat and Power District Heating(CHP-DH) networks in the United Kingdom economically viable: a comparative approach  

E-Print Network (OSTI)

 incentive regime. In Sweden for example Local Authorities  brought together the owners of high energy consuming buildings such  as  apartment  blocks  and  company  owned  office  buildings  in  a  bid  to  collaboratively  invest  in  DH.  In  Sweden  during  the  early  1970’s  DH  networks were heavily dependent on fossil...   accelerated  depletion  of  fossil  fuel  reserves  and  greater pollution to surrounding environments.  Figure  1:  Aggregate  energy  efficiency  comparisons  of  CHP  and  thermal  generation  (1991?2006) Source...

Kelly, S; Pollitt, Michael G.

291

Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power to Replace Fossil Fuels, Final Technical Report  

SciTech Connect

The primary objectives of this work can be summed into two major categories. Firstly, the fundamentals of the combustion of glycerol (in both a refined and unrefined form) were to be investigated, with emphasis of the development of a system capable of reliably and repeatedly combusting glycerol as well as an analysis of the emissions produced during glycerol combustion. Focus was placed on quantifying common emissions in comparison to more traditional fuels and this work showed that the burner developed was able to completely combust glycerol within a relatively wide range of operating conditions. Additionally, focus was placed on examining specific emissions in more detail, namely interesting NOx emissions observed in initial trials, acrolein and other volatile organic emissions, and particulate and ash emissions. This work showed that the combustion of crude glycerol could result in significantly reduced NOx emissions as a function of the high fuel bound oxygen content within the glycerol fuel. It also showed that when burned properly, the combustion of crude glycerol did not result in excessive emissions of acrolein or any other VOC compared to the combustion from more traditional fuels. Lastly however, this work has shown that in any practical application in which glycerol is being burned, it will be necessary to explore ash mitigation techniques due to the very high particulate matter concentrations produced during glycerol combustion. These emissions are comparable to unfiltered coal combustion and are directly tied to the biodiesel production method. The second focus of this work was directed to developing a commercialization strategy for the use of glycerol as a fuel replacement. This strategy has identified a 30 month plan for the scaling up of the laboratory scale burner into a pre-pilot scale system. Additionally, financing options were explored and an assessment was made of the economics of replacing a traditional fuel (namely natural gas) with crude glycerol from biodiesel production. This analysis showed that the cost of replacing natural gas with crude glycerol requires a strong function of the market price per unit of energy for the traditional fuel. However, the economics can be improved through the inclusion of a federal tax credit for the use of a renewable fuel. The conclusion of this analysis also shows that the ideal customer for energy replacement via crude glycerol is biodiesel producers who are located in remote regions, where the cost of energy is higher and the cost of crude glycerol is lowest. Lastly, the commercialization strategy analyzed competing technologies, namely traditional natural gas and electric heaters, as well as competing glycerol burners, and concludes with a discussion of the requirements for a pilot demonstration.

William L. ROberts

2012-10-31T23:59:59.000Z

292

An engineering-economic analysis of combined heat and power technologies in a (mu)grid application  

E-Print Network (OSTI)

and solid oxide (SOFC) fuel cells. The characteristics ofCarbonate (MCFC) Solid Oxide (SOFC) Stabilized Phosphoricfuel cells (MCFC and SOFC) are capable of producing high-

Bailey, Owen; Ouaglal, Boubekeur; Bartholomew, Emily; Marnay, Chris; Bourassa, Norman

2002-01-01T23:59:59.000Z

293

Dynamic simulation of a solar-driven carbon dioxide transcritical power system for small scale combined heat and power production  

SciTech Connect

Carbon dioxide is an environmental benign natural working fluid and has been proposed as a working media for a solar-driven power system. In the current work, the dynamic performance of a small scale solar-driven carbon dioxide power system is analyzed by dynamic simulation tool TRNSYS 16 and Engineering Equation Solver (EES) using co-solving technique. Both daily performance and yearly performance of the proposed system have been simulated. Different system operating parameters, which will influence the system performance, have been discussed. Under the Swedish climatic condition, the maximum daily power production is about 12 kW h and the maximum monthly power production is about 215 kW h with the proposed system working conditions. Besides the power being produced, the system can also produce about 10 times much thermal energy, which can be used for space heating, domestic hot water supply or driving absorption chillers. The simulation results show that the proposed system is a promising and environmental benign alternative for conventional low-grade heat source utilization system. (author)

Chen, Y.; Lundqvist, Per [Div. of Applied Thermodynamics and Refrigeration, Department of Energy Technology, Royal Institute of Technology, SE-100 44 Stockholm (Sweden); Pridasawas, Wimolsiri [King Mongkut's University of Technology Thonburi, Dept. of Chemical Engineering, Bangkok (Thailand)

2010-07-15T23:59:59.000Z

294

National Account Energy Alliance Final Report for the Ritz Carlton, San Francisco Combined Heat and Power Project  

SciTech Connect

Under collaboration between DOE and the Gas Technology Institute (GTI), UTC Power partnered with Host Hotels and Resorts to install and operate a PureComfort 240M Cooling, Heating and Power (CHP) System at the Ritz-Carlton, San Francisco. This packaged CHP system integrated four microturbines, a double-effect absorption chiller, two fuel gas boosters, and the control hardware and software to ensure that the system operated predictably, reliably, and safely. The chiller, directly energized by the recycled hot exhaust from the microturbines, could be configured to provide either chilled or hot water. As installed, the system was capable of providing up to 227 kW of net electrical power and 142 RT of chilled water at a 59F ambient temperature.

Rosfjord, Thomas J [UTC Power

2007-11-01T23:59:59.000Z

295

The road still not taken : how combined heat and power can contribute to a sustainable energy future in Massachusetts  

E-Print Network (OSTI)

In order to address rising energy costs and global climate change, Massachusetts has adopted greenhouse gas reduction goals and implemented programs and policies to promote the clean and efficient use of energy. Despite ...

Montoya, Luis D. (Luis Daniel)

2008-01-01T23:59:59.000Z

296

An engineering-economic analysis of combined heat and power technologies in a (mu)grid application  

E-Print Network (OSTI)

the U.S. DOE, and from the “Fuel Cell Handbook,” 4 th and 5DOE (2000), National Energy Technology Laboratory (NETL), Fuel Cells: Handbook (

Bailey, Owen; Ouaglal, Boubekeur; Bartholomew, Emily; Marnay, Chris; Bourassa, Norman

2002-01-01T23:59:59.000Z

297

The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power  

E-Print Network (OSTI)

Italy REFERENCES EPRI-DOE Handbook of Energy Storage forFirestone 2004, EPRI-DOE Handbook 2003, Mechanical Cost Data

Marnay, Chris

2010-01-01T23:59:59.000Z

298

The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power  

E-Print Network (OSTI)

MW) solar thermal for absorption cooling (MW) adopoted heatdisplaced due to absorption building cooling (GWh/a) annualthat cooling is necessary all day long and the absorption

Marnay, Chris

2010-01-01T23:59:59.000Z

299

The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power  

E-Print Network (OSTI)

HVAC, Controls, 2008 Microgrid Symposiums. Held at Berkeley,and annual energy costs, a microgrid’s distributed energyadoption. INTRODUCTION A microgrid is defined as a cluster

Marnay, Chris

2010-01-01T23:59:59.000Z

300

An engineering-economic analysis of combined heat and power technologies in a (mu)grid application  

E-Print Network (OSTI)

generation. Justification for Using GAMS Electricity utility expansion planning and operations simulation has a long history, and

Bailey, Owen; Ouaglal, Boubekeur; Bartholomew, Emily; Marnay, Chris; Bourassa, Norman

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "includes industrial combined-heat-and-power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

ITP Industrial Distributed Energy: Distributed Energy Program...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

a combined heat and power (CHP) system. CHP systems can recover and utilize heat from fuel cells, engines, turbines or microturbines to provide useful services such as cooling to...

302

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

0 Primary Energy Consumption by Source and Sector, 2011 0 Primary Energy Consumption by Source and Sector, 2011 (Quadrillion Btu) U.S. Energy Information Administration / Annual Energy Review 2011 37 1 Does not include biofuels that have been blended with petroleum-biofuels are included in "Renewable Energy." 2 Excludes supplemental gaseous fuels. 3 Includes less than 0.1 quadrillion Btu of coal coke net imports. 4 Conventional hydroelectric power, geothermal, solar/photovoltaic, wind, and biomass. 5 Includes industrial combined-heat-and-power (CHP) and industrial electricity-only plants. 6 Includes commercial combined-heat-and-power (CHP) and commercial electricity-only plants. 7 Electricity-only and combined-heat-and-power (CHP) plants whose primary business is to sell electricity, or electricity and heat, to the public. Includes 0.1 quadrillion Btu of electricity net

303

Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

An Exploration of Innovation and An Exploration of Innovation and Energy Efficiency in an Appliance Industry Prepared by Margaret Taylor, K. Sydny Fujita, Larry Dale, and James McMahon For the European Council for an Energy Efficient Economy March 29, 2012 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY LBNL - 5689E An Exploration of Innovation and Energy Efficiency in an Appliance Industry Abstract This report provides a starting point for appliance energy efficiency policy to be informed by an understanding of: the baseline rate and direction of technological change of product industries; the factors that underlie the outcomes of innovation in these industries; and the ways the innovation system might respond to any given intervention. The report provides an overview of the dynamics of energy efficiency policy and innovation in the appliance

304

Industry  

E-Print Network (OSTI)

milling industry: An ENERGY STAR Guide for Energy and Plantcement mak- ing - An ENERGY STAR Guide for Energy and Plantre- fineries - An ENERGY STAR Guide for Energy and Plant

Bernstein, Lenny

2008-01-01T23:59:59.000Z

305

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Primary Energy Consumption by Source and Sector, 2011 (Quadrillion Btu) Primary Energy Consumption by Source and Sector, 2011 (Quadrillion Btu) Primary Energy Consumption by Source and Sector diagram image Footnotes: 1 Does not include biofuels that have been blended with petroleum-biofuels are included in "Renewable Energy." 2 Excludes supplemental gaseous fuels. 3 Includes less than 0.1 quadrillion Btu of coal coke net exports. 4 Conventional hydroelectric power, geothermal, solar/PV, wind, and biomass. 5 Includes industrial combined-heat-and-power (CHP) and industrial electricity-only plants. 6 Includes commercial combined-heat-and-power (CHP) and commercial electricity-only plants. 7 Electricity-only and combined-heat-and-power (CHP) plants whose primary business is to sell electricity, or electricity and heat, to the public.

306

Word Pro - Untitled1  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption by Sector Energy Consumption by Sector THIS PAGE INTENTIONALLY LEFT BLANK Figure 2.0 Primary Energy Consumption by Source and Sector, 2011 (Quadrillion Btu) U.S. Energy Information Administration / Annual Energy Review 2011 37 1 Does not include biofuels that have been blended with petroleum-biofuels are included in "Renewable Energy." 2 Excludes supplemental gaseous fuels. 3 Includes less than 0.1 quadrillion Btu of coal coke net imports. 4 Conventional hydroelectric power, geothermal, solar/photovoltaic, wind, and biomass. 5 Includes industrial combined-heat-and-power (CHP) and industrial electricity-only plants. 6 Includes commercial combined-heat-and-power (CHP) and commercial electricity-only plants. 7 Electricity-only and combined-heat-and-power (CHP) plants whose primary business is to

307

Industry  

Science Conference Proceedings (OSTI)

This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

2007-12-01T23:59:59.000Z

308

Industry  

E-Print Network (OSTI)

Note: Biomass energy included Source: Price et al. , 2006.Note: Biomass energy included Source: Price et al. (2006).

Bernstein, Lenny

2008-01-01T23:59:59.000Z

309

www.eia.gov  

U.S. Energy Information Administration (EIA)

generators, combined heat and power in commercial buildings, ... 6/ Includes (but is not limited to) miscellaneous uses such as transformers, ...

310

www.eia.gov  

U.S. Energy Information Administration (EIA)

... Federal Reserve System, ... for Administration Defense District” in EIA’s ... include electricity output from combined heat and power (CHP) ...

311

www.eia.gov  

U.S. Energy Information Administration (EIA)

3/ Includes miscellaneous uses, such as pumps, emergency generators, combined heat and power in commercial buildings, and manufacturing performed in ...

312

Industrial  

Gasoline and Diesel Fuel Update (EIA)

Industrial Industrial 8,870,422 44.3% Commercial 3,158,244 15.8% Electric Utilities 2,732,496 13.7% Residential 5,241,414 26.2% Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." T e x a s L o u i s i a n a C a l i f o r n i a A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Industrial Billion Cubic Meters T e x a s C a l i f o r n i a F l o r i d a A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Electric Utilities Billion Cubic Meters N e w Y o r k C a l i f o r n i a I l l i n o i s A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Commercial Billion Cubic Meters I l l i n o i s C a l i f o r n i a N e w Y o r k A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Residential Billion Cubic Meters 11. Natural Gas Delivered to Consumers in the United States, 1996 Figure Volumes in Million Cubic Feet Energy Information Administration

313

Industry  

E-Print Network (OSTI)

Development of energy intensity indicators for Canadianvarious indicators to present energy intensity, including “energy intensity, which is a constructed indicator, making

Bernstein, Lenny

2008-01-01T23:59:59.000Z

314

Industry  

E-Print Network (OSTI)

energy-conservation supply curve for the US iron and steel industryindustries include electricity savings. To prevent double counting with the energy supply

Bernstein, Lenny

2008-01-01T23:59:59.000Z

315

An option for the coal industry in dealing with the carbon dioxide global greenhouse effect including estimates for reduced CO/sub 2/ emissions technologies  

SciTech Connect

A new technical option for the coal industry in dealing with the carbon dioxide greenhouse effect has been devised. The option concerns a ''hydrogen economy'' based on coal. We have developed a very efficient process called HYDROCARB, which effectively splits coal into carbon and hydrogen. This process produces a clean, pure carbon fuel from coal for application in both mobile and stationary heat engines. We are suggesting that coal refineries be built based on this technology. A co-product of the process is a hydrogen-rich gas. If one is concerned about the greenhouse effect, then either all or part of the carbon can be withheld and either mainly or only the hydrogen is used as fuel. If one desires to attain the ultimate, and eliminate all CO/sub 2/ emissions from coal, then all of the carbon can be stored and only the hydrogen used. The option is still open for utilizing the clean carbon, which would be placed in monitored retrievable storage, not unlike the strategic petroleum reserve (SPR). Should the greenhouse effect be found to be a myth in the future, the carbon would be taken out of storage and utilized as a clean fuel, the impurities having been previously removed. This concept can be valuable to the coal industry in response to the arguments of the anti-coal critics. Total capital cost estimates have been made to replace all conventional coal burning power plants in the US with technologies that eliminate emissions of CO/sub 2/. These include removal, recovery and disposal of CO/sub 2/, nuclear, solar, photovoltaics, biomass, and HYDROCARB. 12 refs., 1 fig. 4 tabs.

Steinberg, M.

1988-12-01T23:59:59.000Z

316

Form EIA-920 - 2005  

U.S. Energy Information Administration (EIA) Indexed Site

Administration Administration Form EIA-920 (2004/2005) COMBINED HEAT AND POWER PLANT REPORT INSTRUCTIONS Form Approval OMB No. 1905-0129 Approval Expires: 11/30/2007 PURPOSE Form EIA-920 Combined Heat and Power Plant Report collects information from combined heat and power (CHP) plants in the United States. Data collected on this form include electric power generation, fuel consumption, fuel heat content, and fossil fuel stocks. These data are used to monitor the status and trends of the electric power industry, and appear in many EIA publications, including: Electric Power Monthly and Annual, Monthly and Annual Energy Reviews, Natural Gas Monthly and Annual, Quarterly Coal Report, and the Renewable Energy Annual. Further information can be found at

317

Form EIA-920 - 2005  

U.S. Energy Information Administration (EIA) Indexed Site

20 (2004/2005) 20 (2004/2005) |COMBINED HEAT AND POWER PLANT REPORT INSTRUCTIONS|Form Approval OMB No. 1905-0129 Approval Expires: 11/30/2007 | |PURPOSE|Form EIA-920 Combined Heat and Power Plant Report collects information from combined heat and power (CHP) plants in the United States. Data collected on this form include electric power generation, fuel consumption, fuel heat content, and fossil fuel stocks. These data are used to monitor the status and trends of the electric power industry, and appear in many EIA publications, including: Electric Power Monthly and Annual, Monthly and Annual Energy Reviews, Natural Gas Monthly and Annual, Quarterly Coal Report, and the Renewable Energy Annual. Further information can be found at

318

Biopower Technical Assessment: State of the Industry and the Technology  

DOE Green Energy (OSTI)

This report provides an assessment of the state of the biopower industry and the technology for producing electricity and heat from biomass. Biopower (biomass-to-electricity generation), a proven electricity generating option in the United States and with about 11 GW of installed capacity, is the single largest source of non-hydro renewable electricity. This 11 GW of capacity encompasses about 7.5 GW of forest product industry and agricultural industry residues, about 3.0 GW of municipal solid waste-based generating capacity and 0.5 GW of other capacity such as landfill gas based production. The electricity production from biomass is being used and is expected to continue to be used as base load power in the existing electrical distribution system. An overview of sector barriers to biopower technology development is examined in Chapter 2. The discussion begins with an analysis of technology barriers that must be overcome to achieve successful technology pathways leading to the commercialization of biomass conversion and feedstock technologies. Next, an examination of institutional barriers is presented which encompasses the underlying policies, regulations, market development, and education needed to ensure the success of biopower. Chapter 3 summarizes biomass feedstock resources, characteristics, availability, delivered prices, requirements for processing, and the impediments and barriers to procurement. A discussion of lessons learned includes information on the California biomass energy industry, lessons from commercial biopower plants, lessons from selected DOE demonstration projects, and a short summary of the issues considered most critical for commercial success is presented in Chapter 4. A series of case studies, Chapter 5, have been performed on the three conversion routes for Combined Heat and Power (CHP) applications of biomass--direct combustion, gasification, and cofiring. The studies are based on technology characterizations developed by NREL and EPRI. Variables investigated include plant size and feed cost, and both cost of electricity and cost of steam are estimated using a discounted cash flow analysis. The economic basis for cost estimates is given. Environmental considerations are discussed in Chapter 6. Two primary issues that could create a tremendous opportunity for biomass are global warming and the implementation of Phase II of Title IV of the Clean Air Act Amendment of 1990 (CAAA). The environmental benefits of biomass technologies are among its greatest assets. Global warming is gaining greater salience in the scientific community and among the general population. Biomass use can play an essential role in reducing greenhouse gases, thus reducing the impact on the atmosphere. Cofiring biomass and fossil fuels and the use of integrated biomass gasification combined cycle systems can be an effective strategy for electric utilities to reduce their emissions of greenhouse gases. The final chapter reviews pertinent Federal government policies. U.S. government policies are used to advance energy strategies such as energy security and environmental quality. Many of the benefits of renewable energy are not captured in the traditional marketplace economics. Government policies are a means of converting non-economic benefits to an economic basis, often referred to as ''internalizing'' of ''externalities.'' This may be accomplished by supporting the research, development, and demonstration of new technologies that are not funded by industry because of projected high costs or long development time lines.

Bain, R. L.; Amos, W. P.; Downing, M.; Perlack, R. L.

2003-01-01T23:59:59.000Z

319

Annotated compilation of the sources of information related to the usage of electricity in non-industrial applications. [Includes about 400 abstracts and glossary  

SciTech Connect

This report presents a thorough compilation of the sources of information related to the usage of electricity in non-industrial applications, as available in the open literature and from the U.S. electrical power industry. The report's scope encompasses all aspects of: electric load management; end use; and the various methods of acquisition, analysis and implementation of electricity usage data. There are over 400 abstracts; 156 from the Load Research Committee of Association of Edison Illuminating Companies (LRC/AEIC) reports and 264 from the open literature. The abstracts over references containing over 12,000 pages plus about 2,500 references and 6,200 graphs and tables pertinent to electricity usage in non-industrial applications. In addition to the LRC/AEIC abstracts, this document identifies over 100 sources of directly relevant information (in contrast to general interest sources and material of secondary relevance).

1978-07-01T23:59:59.000Z

320

Advanced Manufacturing Office: Closed Solicitations  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Production EE-2E 08112008 09192008 Manufacturing- Industrial Distributed Energy FuelFeedstock Flexibility and Combined Heat and Power U.S. Department of Energy- Industrial...

Note: This page contains sample records for the topic "includes industrial combined-heat-and-power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Expanding the Pool of Federal Policy Options to Promote Industrial Energy Efficiency  

SciTech Connect

Improving the energy efficiency of industry is essential for maintaining the viability of domestic manufacturing, especially in a world economy where production is shifting to low-cost, less regulated developing countries. Numerous studies have shown the potential for significant cost-effective energy-savings in U.S. industries, but the realization of this potential is hindered by regulatory, information, workforce, and financial obstacles. This report evaluates seven federal policy options aimed at improving the energy efficiency of industry, grounded in an understanding of industrial decision-making and the barriers to efficiency improvements. Detailed analysis employs the Georgia Institute of Technology's version of the National Energy Modeling System and spreadsheet calculations, generating a series of benefit/cost metrics spanning private and public costs and energy bill savings, as well as air pollution benefits and the social cost of carbon. Two of the policies would address regulatory hurdles (Output-Based Emissions Standards and a federal Energy Portfolio Standard with Combined Heat and Power); three would help to fill information gaps and workforce training needs (the Superior Energy Performance program, Implementation Support Services, and a Small Firm Energy Management program); and two would tackle financial barriers (Tax Lien Financing and Energy-Efficient Industrial Motor Rebates). The social benefit-cost ratios of these policies appear to be highly favorable based on a range of plausible assumptions. Each of the seven policy options has an appropriate federal role, broad applicability across industries, utilizes readily available technologies, and all are administratively feasible.

Brown, Dr. Marilyn Ann [Georgia Institute of Technology; Cox, Matthew [Georgia Institute of Technology; Jackson, Roderick K [ORNL; Lapsa, Melissa Voss [ORNL

2011-01-01T23:59:59.000Z

322

Electric Power Annual  

U.S. Energy Information Administration (EIA) Indexed Site

4. Useful Thermal Output by Energy Source: Industrial Combined Heat and Power, 2001 - 2011 (Billion Btus) Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Other...

323

www.eia.gov  

U.S. Energy Information Administration (EIA)

Independent Power Producers, Combined Heat and Power Plants Total Commercial and Industrial Sectors ... In the case of some wind, solar and wave energ ...

324

Today in Energy - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... Wind industry installs almost 5,300 MW of capacity in December. ... Combined heat and power technology fills an important energy ...

325

Today in Energy - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... Glass manufacturing is an energy-intensive industry mainly fueled by ... Combined heat and power technology fills an important ...

326

Advanced Manufacturing Office: Events  

NLE Websites -- All DOE Office Websites (Extended Search)

Contact October 29, 2013 Salt Lake City, Utah Western Industrial Energy Efficiency & Combined Heat and Power Regional Dialogue Meeting An in-person, one day dialogue meeting...

327

Annual Energy Review - Energy Information Administration  

U.S. Energy Information Administration (EIA)

8.6c Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, ...

328

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Wind Banc of America Combined Heat and Power Pilot Grant Program (Connecticut ) Connecticut Commercial Industrial...

329

EERE: Advanced Manufacturing Office - Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

1, 2013 More News Subscribe to News Updates Events Western Industrial Energy Efficiency & Combined Heat and Power Regional Dialogue Meeting October 29, 2013 More Events Featured...

330

Extension and expansion of efficiency programs could reduce U.S ...  

U.S. Energy Information Administration (EIA)

... solar, wind, geothermal, ... Industrial sector—extended investment tax credit for combined heat and power equipment that also ... Environment Markets & Finance

331

Today in Energy - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Waste fuels are a significant energy source for ... The cement industry is the most energy intensive of all ... Combined heat and power technology ...

332

Clean Energy Solutions Large Scale CHP and Fuel Cells Program  

Energy.gov (U.S. Department of Energy (DOE))

The New Jersey Economic Development Authority (EDA) is offering grants for the installation of combined heat and power (CHP) or fuel cell systems to commercial, industrial, and institutional...

333

Scotland's Forest Industries 1. Foreword 01  

E-Print Network (OSTI)

that used wood pellets for fuel, and a combined heat and power plant that used waste and wood fuels. After potential of wood products in Sweden, the technologies for harvesting are quite underdeveloped throughout, and touring UmeÄ's new CPH facility, which is powered primarily by forest residues. Topics of discussion

334

Industrial Sites Work Plan for Leachfield Corrective Action Units: Nevada Test Site and Tonopah Test Range, Nevada (including Record of Technical Change Nos. 1, 2, 3, and 4)  

SciTech Connect

This Leachfield Corrective Action Units (CAUs) Work Plan has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the U.S. Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the U.S. Department of Defense (FFACO, 1996). Under the FFACO, a work plan is an optional planning document that provides information for a CAU or group of CAUs where significant commonality exists. A work plan may be developed that can be referenced by leachfield Corrective Action Investigation Plans (CAIPs) to eliminate redundant CAU documentation. This Work Plan includes FFACO-required management, technical, quality assurance (QA), health and safety, public involvement, field sampling, and waste management documentation common to several CAUs with similar site histories and characteristics, namely the leachfield systems at the Nevada Test Site (NTS) and the Tonopah Test Range (TT R). For each CAU, a CAIP will be prepared to present detailed, site-specific information regarding contaminants of potential concern (COPCs), sampling locations, and investigation methods.

DOE /NV

1998-12-18T23:59:59.000Z

335

Determining the quality and quantity of heat produced by proton exchange membrane fuel cells with application to air-cooled stacks for combined heat and power  

E-Print Network (OSTI)

Determining the quality and quantity of heat produced by proton exchange membrane fuel cells Determining the quality and quantity of heat produced by proton exchange membrane fuel cells with application, the coolant is pumped to a heat recovery system. A water-to-air heat exchange system or water-to-water heat

Victoria, University of

336

Cornell's conversion of a coal fired heating plant to natural Gas -BACKGROUND: In December 2009, the Combined Heat and Power Plant  

E-Print Network (OSTI)

Cornell's conversion of a coal fired heating plant to natural Gas University began operating with natural gas, instead of the coal-fired generators of the coal that had been stockpiled, the Plant is running completely on natural gas

Keinan, Alon

337

Effects of a Carbon Tax on Combined Heat and Power Adoption by a Chris Marnay, Jennifer L. Edwards, Ryan M. Firestone, Srijay Ghosh, Afzal S. Siddidqui, and  

E-Print Network (OSTI)

- heating and/or absorption cooling. By introducing a tax on carbon emissions, it is shown that if the ” engines with heat recovery and/or absorption cooling tend to be attractive technologies for the mild of generation based closer to heating and/or cooling loads 4. customers' requirements for service quality

338

Table 8.5c Consumption of Combustible Fuels for Electricity ...  

U.S. Energy Information Administration (EIA)

biomass. Through 2000, also includes non-renewable waste ... Data also include a small number of electric utility combined-heat-and-power (CHP) ...

339

Vermont Village Green Program (Vermont) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

obtain proposals from eligible organizations for projects that implement renewable energy district heating projects (including combined heat and power). Preference will be given to...

340

www.eia.gov  

U.S. Energy Information Administration (EIA)

See “Petroleum for Administration Defense District” in EIA’s ... include electricity output from combined heat and power (CHP) ... Reserve System, ...

Note: This page contains sample records for the topic "includes industrial combined-heat-and-power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

United States - U.S. Energy Information Administration (EIA ...  

U.S. Energy Information Administration (EIA)

District of Columbia Florida Georgia Hawaii Idaho ... System Energy Losses h: Total g: Distillate ... includes commercial combined-heat-and-power (CHP ...

342

Fact Sheets | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(AMO) Distributed Energy (DE) portfolio includes R&D on advanced reciprocating engine systems (ARES), combined heat and power (CHP) technologies, as well as demonstrations...

343

Table 8.11d Electric Net Summer Capacity: Commercial and ...  

U.S. Energy Information Administration (EIA)

9 Commercial combined-heat-and-power (CHP) and commercial electricity-only plants. ... other biomass. For all years, also includes non-renewable waste ...

344

2005 EIA-821 SURVEY: LINE-BY-LINE REFERENCE GUIDE  

U.S. Energy Information Administration (EIA)

Electric power generation company (includes combined heat and power plants) that Farm Use: 36 . 37 . 38 ... Secure File Transfer option available at:

345

Scott Curranr - Research Staff - FEERC  

NLE Websites -- All DOE Office Websites (Extended Search)

is also involved in sustainability analysis for mobile and stationary sources including combined heat and power applications. Scott collaborates closely with the regional DOE...

346

Figure 77. Electricity generation capacity additions by fuel type ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 77. Electricity generation capacity additions by fuel type, including combined heat and power, 2012-2040 (gigawatts) Coal

347

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Combined Heat and Power- Geisinger Medical Center Installation of natural gas cogeneration facility that can provide heat and up to 5 MW for use on site. Includes...

348

Land Energy | Open Energy Information  

Open Energy Info (EERE)

Product A renewable-energy company focussed on harnessing biomass. Activities include wood-pellet production, biomass-combined heat and power and forestry and energy-crop...

349

www.eia.gov  

U.S. Energy Information Administration (EIA)

... Czech Republic, Denmark, Finland, France, Germany, Greece ... installed earlier will be retired from service or abandoned. 8/ Includes combined heat and power ...

350

Table 6.8 Natural Gas Prices by Sector, 1967-2011 (Dollars per ...  

U.S. Energy Information Administration (EIA)

1 Commercial sector, including commercial combined-heat-and-power (CHP) and commercial electricity-only plants. 7 The percentage of the sector's consumption in Table ...

351

Quarterly Coal Report April - June 2012 - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Production1 Imports Waste Coal Supplied ... 1 Includes refuse recovery. ... "Power Plant Report," Form EIA-920, "Combined Heat and Power Plant ...

352

U.S. Energy Information Administration | Annual Energy Outlook...  

Gasoline and Diesel Fuel Update (EIA)

coffee brewers, and water services. 3 Includes miscellaneous uses, such as pumps, emergency generators, combined heat and power in commercial buildings, and manufacturing...

353

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Consumption by End Use Consumption by End Use Definitions Key Terms Definition Commercial Consumption Gas used by nonmanufacturing establishments or agencies primarily engaged in the sale of goods or services. Included are such establishments as hotels, restaurants, wholesale and retail stores and other service enterprises; gas used by local, State, and Federal agencies engaged in nonmanufacturing activities. Distribution Use Natural gas used as fuel in the respondent's operations. Electric Power Consumption Gas used as fuel in the electric power sector. Electric Power Sector An energy-consuming sector that consists of electricity-only and combined heat and power (CHP) plants whose primary business is to sell electricity, or electricity and heat, to the public -i.e., North American Industry Classification System code 22 for plants. Combined heat and power plants that identify themselves as primarily in the commercial or industrial sectors are reported in those sectors.

354

Technical Reports | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technical Reports Technical Reports Technical Reports November 1, 2013 - 11:40am Addthis A wide range of resources addressing the many benefits of combined heat and power (CHP) is available, including the technical reports below. For example, Assessing the Benefits of On-Site Combined Heat and Power (CHP) During the August 14, 2003, Blackout highlights facilities that were able to remain operational during the 2003 blackout due to backup generators or distributed generation (DG) resources, including CHP. Assessing the Benefits of On-Site CHP During the August 14, 2003, Blackout, 29 pp, June 2004 Characterization of the U.S. Industrial/Commercial Boiler Population, 65 pp, May 2005 CHP: Connecting the Gap Between Markets and Utility Interconnection and Tariff Practices Part I, 34 pp, Mar. 2006 and Part II, 64 pp, Aug. 2006

355

The South Campus Precinct is comprised of those portions of Main Campus south of the Cascadilla Creek. It includes the service and administrative areas of the  

E-Print Network (OSTI)

and adjacent Central Combined Heat and Power Plant, additional service-related areas along Maple Avenue and accommodate growth, South Campus is anticipated to evolve significantly over the coming decades. The best PLANT SCHOELLKOPF MEMORIAL HALL PINETREEROAD DRYDEN ROAD ROUTE 366 ONEIDAPLACE FAIRMOUNTAVENUE ELM W OOD

Wang, Z. Jane

356

U.S. Clean Heat and Power Association | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Clean Heat and Power Association U.S. Clean Heat and Power Association U.S. Clean Heat and Power Association November 1, 2013 - 11:40am Addthis United States Clean Heat and Power Association logo The U.S. Clean Heat and Power Association (USCHPA), formerly the U.S. Combined Heat and Power Association, serves as the primary advocacy organization for the combined heat and power (CHP) industry. USCHPA activities at the national and state level helped get key CHP provisions into the Energy Policy Act of 2005 (EPACT05) and the Energy Independence and Security Act of 2007 (EISA), as well as the 10 percent investment tax credit included in the Emergency Economic Stabilization Act of 2008. In addition, the association has worked with the Regional Clean Energy Application Centers (CEACs) to support CHP

357

Market Analyses | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Market Analyses Market Analyses Market Analyses November 1, 2013 - 11:40am Addthis Need information on the market potential for combined heat and power (CHP) in the U.S.? These assessments and analyses cover a wide range of markets including commercial and institutional buildings and facilities, district energy, and industrial sites. The market potential for CHP at federal sites and in selected states/regions is also examined. Commercial CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants Part I, 17 pp and Part II, 28 pp, Nov. 2007 Cooling, Heating, and Power for Commercial Buildings: Benefits Analysis, 310 pp, April 2002 Engine Driven Combined Heat and Power: Arrow Linen Supply, 21 pp, Dec. 2008 Integrated Energy Systems for Buildings: A Market Assessment, 77 pp,

358

Industrial Development Projects (Montana)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation authorizes municipalities and counties to issue bonds or interest coupons to finance industrial projects, including energy generation facilities.

359

Poultry Industry: Industry Brief  

Science Conference Proceedings (OSTI)

This Electric Power Research Institute (EPRI) Industry Brief provides an overview of the U.S. poultry industry and ways in which electric-powered processes and technologies can be used in poultry and egg production and processing. The poultry industry, which consists of poultry production for meat as well as egg production and processing, is one of the fastest growing segments of the U.S. food manufacturing industry. It is also an energy-intensive industry. In fact, a 2010 report by the USDA illustrates ...

2011-03-30T23:59:59.000Z

360

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and non-energy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Demand Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Demand Module calculates energy consumption for the four Census Regions (see Figure 5) and disaggregates the energy consumption

Note: This page contains sample records for the topic "includes industrial combined-heat-and-power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 51 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and nonenergy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Module calculates

362

Industrial Energy Efficiency and Climate Change Mitigation  

E-Print Network (OSTI)

and Paper n Other Industries, Electricity Conservation s65% of electricity consumed by industry is used by motorof the main industries include electricity savings. q

Worrell, Ernst

2009-01-01T23:59:59.000Z

363

California Energy Commission California Energy Commission  

E-Print Network (OSTI)

Technology Systems Integrationgy gy y g · Industry storage, combined heat and power (CHP), smart gridContractor Status Form · Darfur Contracting Act Form · Small Business Preference Certification (if li bl ) (O N S ll

364

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

5 Table 8.6c Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, Selected Years, 1989-2011...

365

Legislative Initiatives | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Initiatives November 1, 2013 - 11:40am Addthis Legislative initiatives for industrial distributed energy (DE) and combined heat and power (CHP) are provided below. U.S. Clean...

366

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for CHP Application The proposed project will create a standardized 330 kWe combined heat and power (CHP) system that can be deployed to a large number of small industrial and...

367

Exhibitor: SAINT GOBAIN INDUSTRIAL CERAMICS NORTON ...  

Science Conference Proceedings (OSTI)

SAINT GOBAIN INDUSTRIAL CERAMICS NORTON PRIMARY METALS ... Norton refractory products for the copper industry include shaft furnace liners, bricks, ...

368

Dairy Industry: Industry Brief  

Science Conference Proceedings (OSTI)

This Electric Power Research Institute (EPRI) Industry Brief provides an overview of the U.S. dairy industry and ways in which electric-powered processes and technologies can be used in milk production and processing. Because of the different processes involved, the characteristics of energy consumption at milk production and processing facilities vary by facility. Most energy used in milk production is in the form of diesel fuel, followed by electricity and then by petroleum products such as gasoline an...

2011-03-30T23:59:59.000Z

369

National Grid (Gas) - Commercial Energy Efficiency Rebate Programs (Metro  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Metro New York) Metro New York) National Grid (Gas) - Commercial Energy Efficiency Rebate Programs (Metro New York) < Back Eligibility Commercial Industrial Institutional Multi-Family Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Construction Design & Remodeling Other Manufacturing Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate Custom Incentives including Combined Heat and Power: $250,000 Large Industrial Gas Incentives: $250,000 Energy Efficiency Engineering Study: $10,000 Steam Traps: $2,500 All Insulation: $10,000/account Boiler Controls: 2 units ENERGY STAR Programmable Thermostats: 5 units Pipe Insulation: 500 ft Program Info State New York Program Type

370

Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Industrial Residential Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Water Energy Sources Solar Home Weatherization Wind Program Info State Wisconsin Program Type Net Metering Provider Public Service Commission of Wisconsin The Public Service Commission of Wisconsin (PSC) issued an order on January 26, 1982 requiring all regulated utilities to file tariffs allowing net metering to customers that generate electricity with systems up to 20 kilowatts (kW)* in capacity. The order applies to investor-owned utilities and municipal utilities, but not to electric cooperatives. All distributed-generation (DG) systems, including renewables and combined heat and power (CHP), are eligible. There is no limit on total enrollment.

371

Uranium industry annual 1998  

SciTech Connect

The Uranium Industry Annual 1998 (UIA 1998) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. It contains data for the period 1989 through 2008 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data provides a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Data on uranium raw materials activities for 1989 through 1998, including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment, are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2008, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, and uranium inventories, are shown in Chapter 2. The methodology used in the 1998 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. The Form EIA-858 ``Uranium Industry Annual Survey`` is shown in Appendix D. For the readers convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix E along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 24 figs., 56 tabs.

NONE

1999-04-22T23:59:59.000Z

372

Uranium industry annual 1994  

SciTech Connect

The Uranium Industry Annual 1994 (UIA 1994) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing during that survey year. The UIA 1994 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the 10-year period 1985 through 1994 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data collected on the ``Uranium Industry Annual Survey`` (UIAS) provide a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1994, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. A feature article, ``Comparison of Uranium Mill Tailings Reclamation in the United States and Canada,`` is included in the UIA 1994. Data on uranium raw materials activities including exploration activities and expenditures, EIA-estimated resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities, including purchases of uranium and enrichment services, and uranium inventories, enrichment feed deliveries (actual and projected), and unfilled market requirements are shown in Chapter 2.

NONE

1995-07-05T23:59:59.000Z

373

Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Net Metering Net Metering Net Metering < Back Eligibility Commercial Industrial Residential Fed. Government Institutional Local Government Multi-Family Residential Nonprofit Schools State Government Savings Category Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Home Weatherization Wind Program Info State District of Columbia Program Type Net Metering Provider Washington State University Washington's net-metering law applies to systems up to 100 kilowatts (kW) in capacity that generate electricity using solar, wind, hydro, biogas from animal waste, or combined heat and power technologies (including fuel cells). All customer classes are eligible, and all utilities -- including municipal utilities and electric cooperatives -- must offer net metering.

374

Industry - ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry banner Industry banner Neutron scattering research has applications in practically every field, and neutron research at ORNL is leading to productive partnerships with the industrial and business communities. We welcome proposals for all types of research, including those involving proprietary work. Recent studies have led to discoveries with potential applications in fields such as medicine, energy, and various metals technologies. For more information, please see our recent research highlights. Research Collaborations Industry-Driven Research Benefits Plastics Manufacturing Corning uses VULCAN to test limits of ceramic material for car emission controls, filtration devices Neutrons Probe Inner Workings of Batteries Industry and Neutron Science: Working To Make a Match

375

Innovative Utility Pricing for Industry  

E-Print Network (OSTI)

The electric utility industry represents only one source of power available to industry. Although the monopolistic structure of the electric utility industry may convey a perception that an electric utility is unaffected by competition, this is an erroneous perception with regard to industry. Electric utilities face increased competition, both from other utilities and from industrial self-generation. The paper discusses competition for industrial customers and innovative pricing trends that have evolved nationally to meet the growing competition for industrial sales. Cogeneration activities and the emerging concepts of wheeling power are also discussed. Specifics of industry evaluation and reaction to utility pricing are presented. Also enumerated are examples of the response various utilities throughout the United States have made to the needs of their industrial customers through innovative rate design. Industry/utility cooperation can result in benefits to industry, to the electric utility and to all other ratepayers. This discussion includes examples of successful cooperation between industry and utilities.

Ross, J. A.

1986-06-01T23:59:59.000Z

376

Word Pro - S3  

U.S. Energy Information Administration (EIA) Indexed Site

Includes combined-heat-and-power plants and a small number of electricity-only plants. Web Page: http:www.eia.govtotalenergydatamonthlypetroleum. Sources: Tables 3.7a-3.7c....

377

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

fuels consumed to produce electricity. Data also include fuels consumed to produce useful thermal output at a small number of electric utility combined-heat-and-power (CHP) plants....

378

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to 100 kilowatts (kW) in capacity that generate electricity using solar, wind, hydro, biogas from animal waste, or combined heat and power technologies (including fuel cells). All...

379

Word Pro - Untitled1  

Annual Energy Outlook 2012 (EIA)

U.S. Energy Information Administration Annual Energy Review 2011 1 Includes combined-heat-and-power plants and a small number of electricity-only plants. 2 Electricity-only and...

380

Word Pro - Untitled1  

Gasoline and Diesel Fuel Update (EIA)

2011 Electric Power 3 Transportation 4 Commercial 1 Residential 1 Includes combined-heat-and-power plants and a small number of electricity-only plants. 2 Lease and plant fuel,...

Note: This page contains sample records for the topic "includes industrial combined-heat-and-power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Energy Information Administration Annual Energy Review 2011 1 Includes combined-heat-and-power (CHP) plants and a small number of electricity-only plants. 2 For 1978...

382

District of Columbia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to 100 kilowatts (kW) in capacity that generate electricity using solar, wind, hydro, biogas from animal waste, or combined heat and power technologies (including fuel cells). All...

383

Benchmark the Fuel Cost of Steam Generation  

DOE Green Energy (OSTI)

BestPractices Steam tip sheet regarding ways to assess steam system efficiency. To determine the effective cost of steam, use a combined heat and power simulation model that includes all the significant effects.

Papar, R. [U.S. Department of Energy (US)

2000-12-04T23:59:59.000Z

384

National Grid (Gas) - Commercial Energy Efficiency Programs | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Grid (Gas) - Commercial Energy Efficiency Programs National Grid (Gas) - Commercial Energy Efficiency Programs National Grid (Gas) - Commercial Energy Efficiency Programs < Back Eligibility Commercial Industrial Multi-Family Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Other Construction Manufacturing Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate Incentive for New Construction: 50% up to $250,000 Incentive for Existing Buildings: 50% up to $100,000 Custom Projects including Combined Heat and Power: 50% up to $100,000 Steam Trap Survey or Energy Efficiency Engineering Study: $10,000 Steam Trap Survey and Replacement: 100 units Insulation: $10,000/account Programmable Thermostats: $125

385

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Section 3.6 Technology Validation  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Validation Technology Validation Multi-Year Research, Development and Demonstration Plan Page 3.6 - 1 3.6 Technology Validation The Technology Validation sub-program tests, demonstrates, and validates hydrogen (production, delivery, storage) and fuel cell systems and their integrated components in real-world environments. Feedback provided to the DOE hydrogen and fuel cell research and development (RD&D) projects, industry partners, and end users helps determine the additional RD&D required to move the technologies forward or to determine whether the technologies are ready for commercialization. Evaluations conducted include the following: * Applications - transportation; primary power; combined heat and power (CHP); combined

386

Biogas and Fuel Cells Workshop Summary Report: Proceedings from the Biogas and Fuel Cells Workshop, Golden, Colorado, June 11-13, 2012  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) held a Biogas and Fuel Cells Workshop June 11-13, 2012, in Golden, Colorado, to discuss biogas and waste-to-energy technologies for fuel cell applications. The overall objective was to identify opportunities for coupling renewable biomethane with highly efficient fuel cells to produce electricity; heat; combined heat and power (CHP); or combined heat, hydrogen and power (CHHP) for stationary or motive applications. The workshop focused on biogas sourced from wastewater treatment plants (WWTPs), landfills, and industrial facilities that generate or process large amounts of organic waste, including large biofuel production facilities (biorefineries).

Not Available

2013-01-01T23:59:59.000Z

387

Uranium industry annual 1996  

SciTech Connect

The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

NONE

1997-04-01T23:59:59.000Z

388

Turning industry visions into reality  

Science Conference Proceedings (OSTI)

This brochure outlines the activities of the Office of Industrial Technologies (OIT) in the Department of Energy. OIT activities are aimed at industry adoption of energy-efficient, pollution-reducing technologies and include research and development on advanced technologies, financing, technical assistance, information dissemination, education, and bringing together industry groups, universities, National Laboratories, states, and environmentalists. OIT`s core initiative is to facilitate partnerships within seven materials and process industries: aluminum, chemicals, forest products, glass, metalcasting, petroleum refining, and steel industries.

NONE

1997-01-01T23:59:59.000Z

389

Industrial Applications  

Science Conference Proceedings (OSTI)

Table 2   Frequently used rubber linings in other industries...Application Lining Power industry Scrubber towers Blended chlorobutyl Limestone slurry tanks Blended chlorobutyl Slurry piping Blended chlorobutyl 60 Shore A hardness natural rubber Seawater cooling water

390

Industrial Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Industrial Industrial / Manufacturing Buildings Industrial/manufacturing buildings are not considered commercial, but are covered by the Manufacturing Energy Consumption Survey (MECS). See the MECS home page for further information. Commercial buildings found on a manufacturing industrial complex, such as an office building for a manufacturer, are not considered to be commercial if they have the same owner and operator as the industrial complex. However, they would be counted in the CBECS if they were owned and operated independently of the manufacturing industrial complex. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/industrial.html

391

Industries Affected  

Science Conference Proceedings (OSTI)

Table 2   Industries affected by microbiologically influenced corrosion...generation: nuclear, hydro, fossil fuel,

392

The National Energy Modeling System: An Overview 1998 - Industrial...  

Gasoline and Diesel Fuel Update (EIA)

representing the value of output for each industry. The module includes industrial cogeneration of electricity that is either used in the industrial sector or sold to electric...

393

Industrial Oil Products Division  

Science Conference Proceedings (OSTI)

A forum for professionals involved in research, development, engineering, marketing, and testing of industrial products and co-products from fats and oils, including fuels, lubricants, coatings, polymers, paints, inks, cosmetics, dielectric fluids, and ad

394

Uranium Industry Annual, 1992  

Science Conference Proceedings (OSTI)

The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ``Decommissioning of US Conventional Uranium Production Centers,`` is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2.

Not Available

1993-10-28T23:59:59.000Z

395

Industry @ ALS  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry @ ALS Industry @ ALS Industry @ ALS Concrete Industry Benefits from Ancient Romans and the ALS Print Thursday, 17 October 2013 14:24 New insights into the Romans' ingenious concrete harbor structures emerging from ALS beamline research could move the modern concrete industry toward its goal of a reduced carbon footprint. Summary Slide Read more... Moving Industry Forward: Finding the Environmental Opportunity in Biochar Print Thursday, 12 September 2013 08:41 Using ALS Beamlines 10.3.2 and 8.3.2, the Environmental Protection Agency (EPA) is currently investigating how biochar sorbs environmental toxins and which kinds of biochar are the most effective. The possibilities for widespread use have already launched entrepreneurial commercial ventures. Summary Slide

396

Uranium industry annual 1995  

SciTech Connect

The Uranium Industry Annual 1995 (UIA 1995) provides current statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1995 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the period 1986 through 2005 as collected on the Form EIA-858, ``Uranium Industry Annual Survey``. Data collected on the ``Uranium Industry Annual Survey`` provide a comprehensive statistical characterization of the industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1995, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. Data on uranium raw materials activities for 1986 through 1995 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2005, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. The methodology used in the 1995 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. For the reader`s convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix D along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 14 figs., 56 tabs.

NONE

1996-05-01T23:59:59.000Z

397

Energy News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4, 2009 4, 2009 Deputy Secretary Poneman: Recovery Act Putting Americans to Work and Accelerating Important Work at Savannah River Site Launches video highlighting the jobs created at SRS through Recovery November 3, 2009 Secretary Chu Announces More than $155 Million for Industrial Energy Efficiency Projects WASHINGTON, DC- Energy Secretary Steven Chu announced today that the Department of Energy is awarding more than $155 million in funding under the American Recovery and Reinvestment Act for 41 industrial energy efficiency projects across the country. These awards include funding for industrial combined heat and power systems, district energy systems for industrial facilities, and grants to support technical and financial assistance to local industry. The industrial sector uses more than 30

398

Solar energy industry survey  

SciTech Connect

This report describes the results of a survey of companies in the solar energy industry. The general objective of the survey was to provide information to help evaluate the effectiveness of technology transfer mechanisms for the development of the solar industry. The specific objectives of the survey included: (1) determination of the needs of the solar industry; (2) identification of special concerns of the solar industry; and (3) determination of the types of technology transfer mechanisms that would be most helpful to the solar industry in addressing these needs and concerns. The major focus was on technical problems and developments, but institutional and marketing considerations were also treated. The majority of the sample was devoted to the solar heating and cooling (SHAC) component of the industry. However, a small number of photovoltaic (PV), wind, and power generation system manufacturers were also surveyed. Part I discusses the methodology used in the selection, performance, and data reduction stages of the survey, comments on the nature of the responses, and describes the conclusions drawn from the survey. The latter include both general conclusions concerning the entire solar industry, and specific conclusions concerning component groups, such as manufacturers, architects, installers, or dealers. Part II consists of tabulated responses and non-attributed verbatim comments that summarize and illustrate the survey results.

1979-08-06T23:59:59.000Z

399

Industrial process surveillance system  

DOE Patents (OSTI)

A system and method for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy.

Gross, Kenneth C. (Bolingbrook, IL); Wegerich, Stephan W. (Glendale Heights, IL); Singer, Ralph M. (Naperville, IL); Mott, Jack E. (Idaho Falls, ID)

1998-01-01T23:59:59.000Z

400

Industrial Process Surveillance System  

DOE Patents (OSTI)

A system and method for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy.

Gross, Kenneth C. (Bolingbrook, IL); Wegerich, Stephan W (Glendale Heights, IL); Singer, Ralph M. (Naperville, IL); Mott, Jack E. (Idaho Falls, ID)

2001-01-30T23:59:59.000Z

Note: This page contains sample records for the topic "includes industrial combined-heat-and-power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Industrial process surveillance system  

DOE Patents (OSTI)

A system and method are disclosed for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy. 96 figs.

Gross, K.C.; Wegerich, S.W.; Singer, R.M.; Mott, J.E.

1998-06-09T23:59:59.000Z

402

The dynamics of supply chains in the automotive industry  

E-Print Network (OSTI)

This thesis looks at how supply chains in the automotive industry operate from the perspective of the manufacturers. The study includes the industry structure, the top players in the industry, factors that drive the industry, ...

Braese, Niklas

2005-01-01T23:59:59.000Z

403

High Technology and Industrial Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Semiconductor clean room Semiconductor clean room High Technology and Industrial Systems EETD's research on high technology buildings and industrial systems is aimed at reducing energy consumed by the industrial sector in manufacturing facilities, including high technology industries such as data centers, cleanrooms in the such industries as electronics and pharmaceutical manufacturing, and laboratories, improving the competitiveness of U.S. industry. Contacts William Tschudi WFTschudi@lbl.gov (510) 495-2417 Aimee McKane ATMcKane@lbl.gov (518) 782-7002 Links High-Performance Buildings for High-Tech Industries Industrial Energy Analysis Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends

404

NSLS Industrial User Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Jun Wang Physicist, Industrial Program Coordinator Phone: 344-2661 Email: junwang@bnl.gov Jun Wang is an Industrial Program Coordinator in the Photon Science Directorate at Brookhaven National Laboratory. She is working closely with industrial researchers as well as beamline staff to identify and explore new opportunities in industrial applications using synchrotron radiation. She has been leading the industrial research program including consultation, collaboration and outreach to the industrial user groups. Before joining BNL in 2008, Jun Wang was a Lead Scientist for a high-resolution high throughput powder diffraction program at the Advanced Photon Source (APS). As a Physicist at BNL, her research focuses on materials structure determination and evolution. Her expertise covers wide range x-ray techniques such as thin film x-ray diffraction and reflectivity, powder diffraction, small angle x-ray scattering, protein solution scattering and protein crystallography, as well as x-ray imaging. Currently she is the project leader of a multi-million dollar project on transmission x-ray microscopy recently funded by the U.S. DOE and the spokesperson for this new imaging beamline at the NSLS. She has also been collaborating with universities and industries for several projects on energy research at the NSLS.

405

Outlook for Industrial Energy Benchmarking  

E-Print Network (OSTI)

The U.S. Environmental Protection Agency is exploring options to sponsor an industrial energy efficiency benchmarking study to identify facility specific, cost-effective best practices and technologies. Such a study could help develop a common understanding of opportunities for energy efficiency improvements and provide additional information to improve the competitiveness of U.S. industry. The EPA's initial benchmarking efforts will focus on industrial power facilities. The key industries of interest include the most energy intensive industries, such as chemical, pulp and paper, and iron and steel manufacturing.

Hartley, Z.

2000-04-01T23:59:59.000Z

406

Electric Utility Industry Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Utility Industry Update Electric Utility Industry Update Steve Kiesner Director, National Customer Markets Edison Electric Institute FUPWG Spring 2012 April 12, 2012 Edison Electric Institute  Investor-Owned Electric Companies  Membership includes  200 US companies,  More than 65 international affiliates and  170 associates  US members  Serve more than 95% of the ultimate customers in the investor-owned segment of the industry and  Nearly 70% of all electric utility ultimate customers, and  Our mission focuses on advocating public policy; expanding market opportunities; and providing strategic business information Agenda Significant Industry Trends Utility Infrastructure Investments Generation and Fuel Landscape

407

Percent of Industrial Natural Gas Deliveries in Minnesota ...  

U.S. Energy Information Administration (EIA)

Percentage of Total Natural Gas Industrial Deliveries included in Prices ; Minnesota Natural Gas Prices ...

408

Synfuels industry opportunities  

SciTech Connect

Presentations made at the seminar are included in this volume. The present state in the development of synthetic fuels and the creation of the Synthetic Fuels Corporation are discussed by representatives of federal agencies and private industry. Separate abstracts of individual items were prepared for inclusion in the Energy Data Base and Energy Abstracts for Policy Analysis. (DMC)

Hill, R.F.; Boardman, E.B.; Heavner, M.L. (eds.)

1981-01-01T23:59:59.000Z

409

Associations and Industry - TMS  

Science Conference Proceedings (OSTI)

... Associations and Industry, Research Programs, ==== Basic Metallurgy ==== ... FORUMS > ASSOCIATIONS AND INDUSTRY, Replies, Views, Originator, Last ...

410

Industrial alliances  

Science Conference Proceedings (OSTI)

The United States is emerging from the Cold War era into an exciting, but challenging future. Improving the economic competitiveness of our Nation is essential both for improving the quality of life in the United States and maintaining a strong national security. The research and technical skills used to maintain a leading edge in defense and energy now should be used to help meet the challenge of maintaining, regaining, and establishing US leadership in industrial technologies. Companies recognize that success in the world marketplace depends on products that are at the leading edge of technology, with competitive cost, quality, and performance. Los Alamos National Laboratory and its Industrial Partnership Center (IPC) has the strategic goal to make a strong contribution to the nation`s economic competitiveness by leveraging the government`s investment at the Laboratory: personnel, infrastructure, and technological expertise.

Adams, K.V.

1993-09-13T23:59:59.000Z

411

Strategies for an evolving generation industry  

SciTech Connect

This article deals with the changing structure of the power generation industry to include nonutility generation resources. The topics discussed include the permanence of nonutility generation as a power source, the evolving industry, and the strategies for an evolving industry. The emphasis is on developing sound, sophisticated purchasing procedures to fully benefit from this new generation resource.

Kee, E.

1990-09-27T23:59:59.000Z

412

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

District of Columbia" District of Columbia" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",806,806,806,806,806,806,806,806,806,806,"-","-","-","-","-","-","-","-","-","-","-","-","-" " Petroleum",806,806,806,806,806,806,806,806,806,806,"-","-","-","-","-","-","-","-","-","-","-","-","-" "Independent Power Producers and Combined Heat and Power",3,3,3,3,3,3,"-","-","-","-",804,806,806,806,806,806,806,806,790,790,790,100,100

413

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

District of Columbia" District of Columbia" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",361043,179814,73991,188452,274252,188862,109809,70661,243975,230003,97423,"-","-","-","-","-","-","-","-","-","-",67.5,"-" " Petroleum",361043,179814,73991,188452,274252,188862,109809,70661,243975,230003,97423,"-","-","-","-","-","-","-","-","-","-",67.5,"-" "Independent Power Producers and Combined Heat and Power","-","-","-","-","-","-","-","-","-","-",46951,123239,261980,74144,36487,226042,81467,75251,72316,35499,199858,32.5,100

414

Coal industry annual 1993  

Science Conference Proceedings (OSTI)

Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

Not Available

1994-12-06T23:59:59.000Z

415

ET Industries, Inc.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ET Industries, Inc. ET Industries, Inc. (showerheads) Issued: May 24, 2013 BEFORE THE U.S. DEPARTMENT OF ENERGY Washington, D.C. 20585 ) ) ) ) ) Case Number: 2012-SE-2902 AMENDED NOTICE OF NONCOMPLIANCE DETERMINATION 1 Manufacturers (including importers) are prohibited from distributing covered products in the United States that do not comply with applicable federal water conservation standards. See 10 C.F.R. §§ 429.5, 429.102; 42 U.S.C. §§ 6291(10), 6302. On April 3, 2012, DOE tested one unit of the "ThunderHead" showerhead basic model ("basic model TH-1 " 2 ), which ET Industries, Inc. ("ET") imported into the United States. On April 24, 2012, DOE completed testing of three additional units of basic model TH-1, also imported into

416

Industry Interactive Procurement System (IIPS)  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry Interactive Industry Interactive Industry Interactive Industry Interactive Procurement System Procurement System (IIPS) (IIPS) Douglas Baptist, Project Manager Information Management Systems Division US Department of Energy IIPS Functions Issue synopses, solicitations and related documents via the Internet Receive and Respond to Solicitation Specific Questions Receive proposal, bid or application information electronically Provide access to proposal information to authorized personnel through a web browser Conduct negotiations or obtain clarifications Issue award documents IIPS Security Security Plan in place and approved by DOE's Chief Information Officer System security tested by DOE's Computer Incident Advisory Capability team Security measures include: - Encryption on the IIPS server

417

Flicker Performance of Modern Lighting Technologies including Impacts of Dimmers  

Science Conference Proceedings (OSTI)

The existing industry standards on flicker measurement and assessment are based on the response of general purpose incandescent lamps. However, worldwide these lamps are being replaced with more energy efficient lamps including Compact Fluorescent Lamps (CFLs) and Light emitting Diode (LED) lamps. In order to keep the flicker standards relevant, the industry standard bodies on the subject are in need of the evidence that compares the flicker performance of new lighting ...

2012-12-12T23:59:59.000Z

418

Lewis County PUD - Commercial and Industrial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

lighting, as well as industrial process upgrades, on a case-by-case basis. Eligible industrial processes upgrades include premium efficiency motors (as part of a larger...

419

US Energy Service Company Industry: History and Business Models...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Business Models US Energy Service Company Industry: History and Business Models Information about the history of US Energy Service Company including industry history,...

420

Research Projects in Industrial Technology.  

Science Conference Proceedings (OSTI)

The purpose of this booklet is to briefly describe ongoing and completed projects being carried out by Bonneville Power Administration's (BPA) Industrial Technology Section. In the Pacific Northwest, the industrial sector is the largest of the four consuming sectors. It accounted for thirty-nine percent of the total firm demand in the region in 1987. It is not easy to asses the conservation potential in the industrial sector. Recognizing this, the Northwest Power Planning Council established an objective to gain information on the size, cost, and availability of the conservation resource in the industrial sector, as well as other sectors, in its 1986 Power Plan. Specifically, the Council recommended that BPA operate a research and development program in conjunction with industry to determine the potential costs and savings from efficiency improvements in industrial processes which apply to a wide array of industrial firms.'' The section, composed of multidisciplinary engineers, provides technical support to the Industrial Programs Branch by designing and carrying out research relating to energy conservation in the industrial sector. The projects contained in this booklet are arranged by sector --industrial, utility, and agricultural -- and, within each sector, chronologically from ongoing to completed, with those projects completed most recently falling first. For each project the following information is given: its objective approach, key findings, cost, and contact person. Completed projects also include the date of completion, a report title, and report number.

United States. Bonneville Power Administration. Industrial Technology Section.

1990-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "includes industrial combined-heat-and-power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Representation of Energy Use in the Food Products Industry  

E-Print Network (OSTI)

Traditional representations of energy in the manufacturing sector have tended to represent energy end-uses rather than actual energy service demands. While this representation if quite adequate for understanding how energy is used today, for forecasting future technology choices it is creates a rigid representation of how future energy is used. This representation can restrict the range of technology choices considered, particularly for fuel switching and on-site conversion processes such as combined heat and power (CHP). This paper discusses the differences between energy end-uses and service demands, proposes an approach for approximating service demands and discusses the ramifications of this alternative representation to energy modeling. An example for food products manufacturing (NAICS 311) is provided as an example.

Elliott, N. R.

2007-01-01T23:59:59.000Z

422

Fact Sheets | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fact Sheets Fact Sheets Fact Sheets November 1, 2013 - 11:40am Addthis The Advanced Manufacturing Office's (AMO) Distributed Energy (DE) portfolio includes R&D on advanced reciprocating engine systems (ARES), combined heat and power (CHP) technologies, as well as demonstrations of these technologies and integrated energy systems (IES). AMO's DE portfolio also includes demonstration projects for district energy installations, waste energy recovery systems, and efficient industrial equipment. Fact sheets on selected AMO DE and CHP R&D and demonstration projects are available below. Additional resources include DOE CHP program fact sheets-when AMO was the Industrial Technologies Program-and a summary of DOE Regional Clean Energy Application Center (CEAC) locations, contacts, and websites.

423

EIA - 2010 International Energy Outlook - Industrial  

Gasoline and Diesel Fuel Update (EIA)

Industrial Industrial International Energy Outlook 2010 Industrial Sector Energy Consumption Worldwide industrial energy consumption increases by 42 percent, or an average of 1.3 percent per year, from 2007 to 2035 in the IEO2010 Reference case. Ninety-five percent of the growth occurs in non-OECD nations. Overview The world's industries make up a diverse sector that includes manufacturing, agriculture, mining, and construction. Industrial energy demand varies across regions and countries, depending on the level and mix of economic activity and technological development, among other factors. Energy is consumed in the industrial sector for a wide range of activities, such as processing and assembly, space conditioning, and lighting. Industrial energy use also includes natural gas and petroleum products used as feedstocks to produce non-energy products, such as plastics. In aggregate, the industrial sector uses more energy than any other end-use sector, consuming about one-half of the world's total delivered energy.

424

Transforming the Freight Industry  

E-Print Network (OSTI)

Transforming the Freight Industry From Regulation to Icommon-carrier freight industry was Competition to backwardjourneys. When the freight industry was deregulated, it was

Regan, Amelia

2002-01-01T23:59:59.000Z

425

Demographics and industry returns  

E-Print Network (OSTI)

Demographics and Industry Returns By Stefano DellaVigna andand returns across industries. Cohort size fluc- tuationspredict profitability by industry. Moreover, forecast demand

Pollet, Joshua A.; DellaVigna, Stefano

2007-01-01T23:59:59.000Z

426

Appendix F Cultural Resources, Including  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appendix F Appendix F Cultural Resources, Including Section 106 Consultation STATE OF CALIFORNIA - THE RESOURCES AGENCY EDMUND G. BROWN, JR., Governor OFFICE OF HISTORIC PRESERVATION DEPARTMENT OF PARKS AND RECREATION 1725 23 rd Street, Suite 100 SACRAMENTO, CA 95816-7100 (916) 445-7000 Fax: (916) 445-7053 calshpo@parks.ca.gov www.ohp.parks.ca.gov June 14, 2011 Reply in Reference To: DOE110407A Angela Colamaria Loan Programs Office Environmental Compliance Division Department of Energy 1000 Independence Ave SW, LP-10 Washington, DC 20585 Re: Topaz Solar Farm, San Luis Obispo County, California Dear Ms. Colamaria: Thank you for seeking my consultation regarding the above noted undertaking. Pursuant to 36 CFR Part 800 (as amended 8-05-04) regulations implementing Section

427

Industry Perspective  

NLE Websites -- All DOE Office Websites (Extended Search)

idatech.com idatech.com info@idatech.com 63065 NE 18 th Street Bend, OR 97701 541.383.3390 Industry Perspective Biogas and Fuel Cell Workshop National Renewable Energy Laboratory June 11 - 13, 2012 Mike Hicks Chairman of the Board of Directors, FCHEA Treasurer of the Board of Directors, FCS&E Engineering Manager, Technology Development & Integration, IdaTech Outline 1. Critical Factors * Fuel Purity * Fuel Cost 2. Natural Gas - The Wild Card & Competition 3. IdaTech's Experience Implementing Biofuel Critical Factor - Fuel Purity All fuel cell system OEMs have fuel purity specifications * Independent of * Raw materials or feed stocks * Manufacturing process * Depends on * Fuel processor technology * Fuel cell technology - low temp PEM versus SOFC

428

Six Thousand Burying the Carbon Problem  

E-Print Network (OSTI)

and the pub- lic sector. Combined Heat and Power (CHP) ­ In conventional energy industries, electricity, but are not yet able to supply nation- al or regional grids with industrial-sized flows of electricity. Nuclear affordable. If all large gas and coal fuelled electricity plants in the UK were fitted with commercially

Haszeldine, Stuart

429

Countries Gasoline Prices Including Taxes  

Gasoline and Diesel Fuel Update (EIA)

Countries (U.S. dollars per gallon, including taxes) Countries (U.S. dollars per gallon, including taxes) Date Belgium France Germany Italy Netherlands UK US 01/13/14 7.83 7.76 7.90 8.91 8.76 8.11 3.68 01/06/14 8.00 7.78 7.94 8.92 8.74 8.09 3.69 12/30/13 NA NA NA NA NA NA 3.68 12/23/13 NA NA NA NA NA NA 3.63 12/16/13 7.86 7.79 8.05 9.00 8.78 8.08 3.61 12/9/13 7.95 7.81 8.14 8.99 8.80 8.12 3.63 12/2/13 7.91 7.68 8.07 8.85 8.68 8.08 3.64 11/25/13 7.69 7.61 8.07 8.77 8.63 7.97 3.65 11/18/13 7.99 7.54 8.00 8.70 8.57 7.92 3.57 11/11/13 7.63 7.44 7.79 8.63 8.46 7.85 3.55 11/4/13 7.70 7.51 7.98 8.70 8.59 7.86 3.61 10/28/13 8.02 7.74 8.08 8.96 8.79 8.04 3.64 10/21/13 7.91 7.71 8.11 8.94 8.80 8.05 3.70 10/14/13 7.88 7.62 8.05 8.87 8.74 7.97 3.69

430

Percentage of Total Natural Gas Commercial Deliveries included in Prices  

Gasoline and Diesel Fuel Update (EIA)

City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History U.S. 63.3 59.3 57.9 57.0 57.4 61.3 1983-2013 Alabama 71.7 71.0 68.5 68.2 68.4 66.7 1989-2013 Alaska 94.1 91.6 91.1 91.0 92.3 92.6 1989-2013 Arizona 84.0 83.0 81.6 80.3 82.8 82.7 1989-2013 Arkansas 37.8 28.3 28.1 28.6 26.7 28.0 1989-2013

431

Office of Industrial Technologies: Industry partnerships  

SciTech Connect

US industries are making progress in turning the vision of the future into reality: More effective competition in global markets, increased industrial efficiency, more jobs, reduced waste generation and greenhouse gas emissions (to 1990 levels), improved environment. DOE`s Office of Industrial Technologies is catalyzing and supporting industry progress in many ways. This pamphlet gives an overview of OIT.

1995-04-01T23:59:59.000Z

432

Coal industry annual 1996  

Science Conference Proceedings (OSTI)

This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

NONE

1997-11-01T23:59:59.000Z

433

Coal Industry Annual 1995  

SciTech Connect

This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

1996-10-01T23:59:59.000Z

434

Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation » Energy Efficiency » Manufacturing Science & Innovation » Energy Efficiency » Manufacturing Manufacturing Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce harmful emissions. Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce harmful emissions. Manufacturing is the lifeblood of the American economy -- providing jobs for hard working American families and helping increase U.S. competitiveness in the global marketplace. The Energy Department is committed to growing America's manufacturing industry by helping companies become leaders in the production of clean energy technologies like electric vehicles, LED bulbs and solar panels. The

435

Publications | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Publications Publications Publications November 1, 2013 - 11:40am Addthis Thumbnail image of the cover for the Combined Heat and Power (CHP): A Decade of Progress, A Vision for the Future, October 2009 Numerous publications are available to help educate end users, product developers, project managers, and policymakers on the many potential benefits of distributed generation (DG) and combined heat and power (CHP) and the barriers to widespread deployment of these technologies. Among these resources are market analyses, databases, fact sheets, guidebooks, technical reports, technical white papers, technology reviews, webcasts, and vision and roadmap documents. Recent Publications Market Analyses Commercial District Energy/Institutional Federal Industrial Multifamily Housing

436

Integrated Advanced Reciprocating Internal Combustion Engine System for Increased Utilization of Gaseous Opportunity Fuels  

SciTech Connect

The project is addressing barriers to or opportunities for increasing distributed generation (DG)/combined heat and power (CHP) use in industrial applications using renewable/opportunity fuels. This project brings together novel gas quality sensor (GQS) technology with engine management for opportunity fuels such as landfill gas, digester gas and coal bed methane. By providing the capability for near real-time monitoring of the composition of these opportunity fuels, the GQS output can be used to improve the performance, increase efficiency, raise system reliability, and provide improved project economics and reduced emissions for engines used in distributed generation and combined heat and power.

Pratapas, John; Zelepouga, Serguei; Gnatenko, Vitaliy; Saveliev, Alexei; Jangale, Vilas; Li, Hailin; Getz, Timothy; Mather, Daniel

2013-08-31T23:59:59.000Z

437

Publications | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Publications Publications Publications November 1, 2013 - 11:40am Addthis Thumbnail image of the cover for the Combined Heat and Power (CHP): A Decade of Progress, A Vision for the Future, October 2009 Numerous publications are available to help educate end users, product developers, project managers, and policymakers on the many potential benefits of distributed generation (DG) and combined heat and power (CHP) and the barriers to widespread deployment of these technologies. Among these resources are market analyses, databases, fact sheets, guidebooks, technical reports, technical white papers, technology reviews, webcasts, and vision and roadmap documents. Recent Publications Market Analyses Commercial District Energy/Institutional Federal Industrial Multifamily Housing

438

Plastic Magen Industry | Open Energy Information  

Open Energy Info (EERE)

plastic products with a lifetime guarantee, including the Heliocol and Sunstar-brand solar water heating systems. References Plastic Magen Industry1 LinkedIn Connections...

439

Coordination). Participants include representatives from Balancing Authorities (BAs), Reliability  

E-Print Network (OSTI)

The MRO Subject Matter Expert Team is an industry stakeholder group which includes subject matter experts from MRO member organizations in various technical areas. Any materials, guidance, and views from stakeholder groups are meant to be helpful to industry participants; but should not be considered approved or endorsed by MRO staff or its board of directors unless specified. Page | 2 Disclaimer The Midwest Reliability Organization (MRO) Standards Committee (SC) is committed to providing training and non-binding guidance to industry stakeholders regarding existing and emerging Reliability Standards. Any materials, including presentations, were developed through the MRO SC by Subject Matter Experts (SMEs) from member organizations within the MRO region. In 2012, SMEs in the field of System Operator Communications were brought together to prepare a guide for complying with NERC Reliability Standard COM-002-2 (Communications and

Will Behnke; Alliant Energy; Jacalynn Bentz; Great River Energy; Marie Knox Miso; Jacalynn Bentz; Marie Knox; Terry Harbour

2013-01-01T23:59:59.000Z

440

Oklahoma Industrial Energy Management Program  

E-Print Network (OSTI)

In Oklahoma, industry consumes about 35% of the total energy consumed. While it is true that much work has been done in the larger companies, most small to medium sized companies have yet to undertake a substantial energy management program. Often they simply do not understand the savings possible or the techniques available. Recognizing this, a program was developed to acquaint Oklahoma industry with the potential savings allowable through energy management techniques. The program is entitled 'Oklahoma Industrial Energy; Management Program' and is located at Oklahoma State University. This paper describes past, on-going, and proposed activities of this Program and assesses their impact. Included are industrial energy management conferences, closed circuit television short courses on selected energy management topics, energy auditing, industrial energy audits (through the Oklahoma Energy Analysis and Diagnostic Center) , energy and water management research, and two courses currently being offered.

Turner, W. C.; Estes, C. B.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "includes industrial combined-heat-and-power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Major initiatives in materials research at Western include  

E-Print Network (OSTI)

in nuclear reactors; and a third in Engineering- J. Jiang, supported by UNENE, working on control in the theory of condensed matter, including its applications to polymers, optical, electronic, and magnetic NSERC Industrial Research Chairs who together make Western a leading university in nuclear power

Christensen, Dan

442

Research and Development | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research and Development Research and Development Research and Development November 1, 2013 - 11:40am Addthis The Industrial Distributed Energy R&D project portfolio tests, validates, and deploys innovative combined heat and power (CHP) and distributed energy for industry and other manufacturing applications. Our projects include advanced reciprocating engine systems (ARES), packaged CHP systems, high-value applications, fuel-flexible CHP, waste energy recovery systems, and demonstrations of these technologies. View our current projects. Addthis Related Articles Fact Sheets Tools/Technical Assistance U.S. Environmental Protection Agency News November 22, 2013 In Cleveland, Alcoa and ArcelorMittal Recognized for Leadership in Energy Efficiency As Part of Obama Administration's Better Plants Program, U.S.

443

Partnerships | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Partnerships Partnerships Partnerships November 1, 2013 - 11:40am Addthis The Advanced Manufacturing Office (AMO) supports public-private partnerships that build on the combined strengths of business and government to foster solutions to complex problems. DOE, in collaboration with industry, has developed visions and roadmaps with specific R&D pathways to accelerate the deployment, testing, and validation of novel distributed energy systems. A key element of the National Combined Heat and Power (CHP) Roadmap was a recommendation that partnerships be established among federal and state government, national energy laboratories, private industry, universities, non-profit organizations, and trade associations. Thus, DOE has developed partnerships with diverse organizations and institutions, including the:

444

Climate VISION: Private Sector Initiatives: Electric Power: GHG Information  

Office of Scientific and Technical Information (OSTI)

GHG Information GHG Information The electric power industry reports the vast majority of their emissions (greater than 99 percent) through the use of continuous emissions monitors and fuel-use estimated data that are transmitted to the U.S. Environmental Protection Agency (EPA) and the Energy Information Administration (EIA). EIA annually publishes data on GHG emissions and electric power generation. The "Electric Power Sector" in these publications is defined by EIA as the "energy-consuming sector that consists of electricity only and combined heat and power (CHP) plants whose primary business is to sell electricity, or electricity and heat, to the public - i.e., North American Industry Classification System 22 plants". It does not include CO2 emissions or

445

Industrial Energy Procurement Contracts  

E-Print Network (OSTI)

Rates are going down and services are improving! Or are they? As opportunities to directly contract for energy expand from the larger industrials to include mid-market companies, existing energy supply and service contracts will be renegotiated and new ones developed. Many of these mid-level industrial customers typically lack in-house expertise on energy procurement, yet their operations use significant amounts of energy. This paper looks at some of the issues involved in the main terms of a procurement contract, as well as issues in contract formation and termination. Finally the paper reviews some of the recent energy aggregation and outsourcing deals to highlight some that worked and some that didn't.

Thompson, P.; Cooney, K.

2000-04-01T23:59:59.000Z

446

REGULATING HAWAII'S PETROLEUM INDUSTRY  

E-Print Network (OSTI)

This study was prepared in response to House Resolution No. 174, H.D. 2, which was adopted during the Regular Session of 1995. The Resolution requested the Legislative Reference Bureau to conduct a study to obtain the views of selected state agencies and representatives of Hawaii's petroleum industry in order to assist the Legislature in formulating policies that protect the interests of Hawaii's gasoline consumers. The Resolution sought information and the views of survey participants on a broad range of proposals to regulate Hawaii's petroleum industry. This study reviews each of these proposals in terms of their value to consumers, and explores both regulatory policy options and alternatives to regulation available to state lawmakers. The Bureau extends its sincere appreciation to all those whose participation and cooperation made this study possible. A list of contact persons, including the names of survey participants and others who helped to contribute to this study, is contained in Appendix B.

Mark J. Rosen; Wendell K. Kimura

1995-01-01T23:59:59.000Z

447

Coal industry annual 1997  

Science Conference Proceedings (OSTI)

Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

NONE

1998-12-01T23:59:59.000Z

448

ENERGY STAR Challenge for Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Plant Industrial Plant Certification Professional Engineers' Guide for Validating Statements of Energy Performance Office of Air and Radiation Climate Protection Partnerships Division June 2013 ii Introduction The U.S. Environmental Protection Agency's ENERGY STAR program provides guidance, tools, and recognition to help companies improve the energy performance of their facilities and strengthen the effectiveness of their energy management program. Through ENERGY STAR, the U.S. Environmental Protection Agency (EPA) offers a number of forms of recognition, including certification for facility energy efficiency. ENERGY STAR certification for industrial plants recognizes individual manufacturing plants whose

449

Industrial Carbon Management Initiative (ICMI)  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Carbon Management Initiative Industrial Carbon Management Initiative (ICMI) Background The ICMI project is part of a larger program called Carbon Capture Simulation and Storage Initiative (C2S2I). The C2S2I has a goal of expanding the DOE's focus on Carbon Capture Utilization and Storage (CCUS) for advanced coal power systems and other applications, including the use of petroleum coke as a feedstock for the industrial sector. The American Recovery and Re-Investment Act (ARRA)-funded

450

International Experience with Key Program Elements of Industrial Energy Efficiency or Greenhouse Gas Emissions Reduction Target-Setting Programs  

E-Print Network (OSTI)

Chinese cement and iron/steel industry is underway. http://data required for the steel industry included total primaryrepresentatives of the steel industry, the government, and

Price, Lynn; Galitsky, Christina; Kramer, Klaas Jan

2008-01-01T23:59:59.000Z

451

Oklahoma Industrial Energy Management Program  

E-Print Network (OSTI)

The need for sound energy management is no longer worthy of debate. Action is necessary and much is being done by U.S. industry. Unfortunately, however, the majority of the work is being done by the few large energy intensive industries throughout the country. The average small to medium sized company has yet to undertake a dedicated program. The reasons are numerous, but often it is simply because of a lack of knowledge of techniques or the amount of savings possible. Recognizing this, the Oklahoma Department of Energy designed a program to acquaint Oklahoma industry with the potential savings available through energy management and some basic techniques. The program is entitled "Oklahoma Industrial Energy Management Program" and is housed at Oklahoma State University. The program is funded by the U. S. Department of Energy through the State Energy Conservation Plan. This paper describes the program offerings, impact to date and plans for the future. The program offerings basically include: 1. A series of tuition free Industrial Energy Management Conferences (over 20 given to date involving many Oklahoma industries). 2. A free energy newsletter entitled "Energy Channel" mailed to all participating Oklahoma industries. 3. A series of Energy Audit booklets including instructions and forms. 4. Technical aid on a limited basis. 5. A series of laboratory type experiments involving power factor, solar energy, boiler combustion improvement and other energy related projects. 6. Fact sheet publication as the need develops. Plans for the future include expansion of the program to small businesses in general through the Energy Extension Service and more technical aid to participating industries, The basic plan involving the services above shall remain intact. The program has been very successful to date. The results are directly transferable to other states and the program directors are willing to share information.

Turner, W. C.; Webb, R. E.; Phillips, J. M.; Viljoen, T. A.

1979-01-01T23:59:59.000Z

452

Industrial Energy Use Indices  

E-Print Network (OSTI)

Energy use indices and associated coefficients of variation are computed for major industry categories for electricity and natural gas use in small and medium-sized plants in the U.S. Standard deviations often exceed the average EUI for an energy type, with coefficients of variation averaging 290% for 8,200 plants from all areas of the continental U.S. Data from milder climates appears more scattered than that from colder climates. For example, the ratio of the average of coefficient of variations for all industry types in warm versus cold regions of the U.S. generally is greater than unity. Data scatter may have several explanations, including climate, plant area accounting, the influence of low cost energy and low cost buildings used in the south of the U.S. This analysis uses electricity and natural gas energy consumption and area data of manufacturing plants available in the U.S. Department of Energy’s national Industrial Assessment Center database.

Hanegan, A.; Heffington, W. M.

2007-01-01T23:59:59.000Z

453

Recent developments: Industry briefs  

SciTech Connect

The January 1992 Industry Briefs includes brief articles on: (1) the startup of Chinese and Indian nuclear units, (2) agreements between China and Pakistan for the construction of a nuclear unit, (3) international safeguards agreements, (4) restart of a nuclear unit in Armenia, (5) closure of a German nuclear waste site, (6) restructuring of the Hungarian state-owned utility MVMT, (7) requests for bids for Wolsong Units 3 and 4, (8) signing of the European Energy charter, (9) continued operation of the MAGNOX reactors, and (10) changing Canadian requirements on uranium.

NONE

1992-01-01T23:59:59.000Z

454

The changing battery industry  

SciTech Connect

This report provides an economic and technological assessment of the electrical battery industry, highlighting major trends. Among those systems considered are lithium-based, sodium-sulfur nickel-zinc, nickel-iron, nickel-hydrogen, zinc-chloride, conductive polymer, and redox cells. Lead-acid, nickel-cadmium, and manganese dioxide-based batteries and direct solar power and fuel cells are discussed in relation to these new techniques. New applications, including electric vehicles, solar power storage, utility load leveling, portable appliances, computer power and memory backup, and medical implants are discussed. Predictions and development scenarios for the next twenty years are provided for the U.S. market.

Not Available

1987-01-01T23:59:59.000Z

455

Recent developments: Industry briefs  

Science Conference Proceedings (OSTI)

This article is the `Industry Briefs` portion of Nuexco`s September 1992 `Recent Developments` section. Specific iems discussed include: (1) merger of Urangesellschaft and Interuran, (2) cessation of uranium mining in Bulgaria, (3) record operation of Limerick-2 and Tokai-2, (4) MRS in Wyoming, (5) low-level waste facilities at Perry, (6) closure of Trojan, (7) restart of Kozloduy-6, (8) agreements between Cogema and Minatom, (9) planning for a large nuclear power plant in Japan moves forward, (10) order of a new reactor at Civaux, (11) relicensing of Yankee Rowe, (12) operation of Bradwell-2, and (13) high-level waste management in Japan.

NONE

1992-09-01T23:59:59.000Z

456

Recent developments: Industry briefs  

Science Conference Proceedings (OSTI)

This article is the `Industry Briefs` portion of Nuexco`s August 2992 `Recent Developments` section. Specific items discussed include: (1) non-proliferation in Argentina and Brazil, (2) a joint-venture uranium leaching project in the USA, (3) life extension for Yankee Rowe, (4) contracts for nuclear plants in the Republic of Korea, (5) cleanup of Wismut, (6) record operation of Three Mile Island-1, Oconee-1, and Cook-1, (7) closure of Kozloduy units, (8) China`s ascension to the non-proliferation treaty, and (9) a centrifuge enrichment facility in Japan.

NONE

1991-08-01T23:59:59.000Z

457

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

71 - 19580 of 28,905 results. 71 - 19580 of 28,905 results. Article Southeast Region Combined Heat and Power Projects DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs. http://energy.gov/eere/articles/southeast-region-combined-heat-and-power-projects Article Technology Reviews Selecting a distributed energy (DE) technology for a specific application depends on many factors. Considerations include the amount of power needed, the duty cycle, space constraints, thermal... http://energy.gov/eere/articles/technology-reviews Download Advance Patent Waiver W(A)2009-046 This is a request by MODINE MANUFACTURING CO. for a DOE waiver of domestic and foreign patent rights under agreement DE-FC26-07NT42419

458

Industrial - Utility Cogeneration Systems  

E-Print Network (OSTI)

Cogeneration may be described as an efficient method for the production of electric power in conjunction with process steam or heat which optimizes the energy supplied as fuel to maximize the energy produced for consumption. In a conventional electric utility power plant, considerable energy is wasted in the form of heat rejection to the atmosphere thru cooling towers, ponds or lakes, or to rivers. In a cogeneration system heat rejection can be minimized by systems which apply the otherwise wasted energy to process systems requiring energy in the form of steam or heat. Texas has a base load of some 75 million pounds per hour of process steam usage, of which a considerable portion could be generated through cogeneration methods. The objective of this paper is to describe the various aspects of cogeneration in a manner which will illustrate the energy saving potential available utilizing proven technology. This paper illustrates the technical and economical benefits of cogeneration in addition to demonstrating the fuel savings per unit of energy required. Specific examples show the feasibility and desirability of cogeneration systems for utility and industrial cases. Consideration of utility-industrial systems as well as industrial-industrial systems will be described in technical arrangement as well as including a discussion of financial approaches and ownership arrangements available to the parties involved. There is a considerable impetus developing for the utilization of coal as the energy source for the production of steam and electricity. In many cases, because of economics and site problems, the central cogeneration facility will be the best alternative for many users.

Harkins, H. L.

1979-01-01T23:59:59.000Z

459

RENEWABLES RESEARCH Boiler Burner Energy System Technology  

E-Print Network (OSTI)

RENEWABLES RESEARCH Boiler Burner Energy System Technology (BBEST) for Firetube Boilers PIER, industrial combined heat and power (CHP) boiler burner energy system technology ("BBEST"). Their research (unrecuperated) with an ultra- low nitrous oxide (NOx) boiler burner for firetube boilers. The project goals

460

NREL's Advanced Thermal Conversion Laboratory at the Center for Buildings and Thermal Systems: On the Cutting-Edge of HVAC and CHP Technology (Revised)  

DOE Green Energy (OSTI)

This brochure describes how the unique testing capabilities of NREL's Advanced Thermal Conversion Laboratory at the Center For Buildings and Thermal Systems can help industry meet the challenge of developing the next generation of heating, ventilating, and air-conditioning (HVAC) and combined heat and power (CHP) equipment and concepts.

Not Available

2005-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "includes industrial combined-heat-and-power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

NSLS Industrial User Program  

NLE Websites -- All DOE Office Websites (Extended Search)

| Industrial Program Coordinator | Publications Courtesy of The New York Times, Noah Berger The overall goal of the plan to enhance the NSLS facility's Industrial Users'...

462

Uranium industry annual 1997  

SciTech Connect

This report provides statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing.

NONE

1998-04-01T23:59:59.000Z

463

Construction Industry Institute  

Science Conference Proceedings (OSTI)

... in one of our country's most vital industries. ... An industry-led program to disseminate practical ... fire-proofing materials, connections, and steel trusses; ...

2010-10-05T23:59:59.000Z

464

PURPOSE  

U.S. Energy Information Administration (EIA) Indexed Site

OPERATIONS OPERATIONS REPORT INSTRUCTIONS OMB No. 1905-0129 Approval Expires: 12/31/2015 Burden: 2.7 Hours 1 PURPOSE Form EIA-923 collects information from electric power plants and combined heat and power (CHP) plants in the United States (see Required Respondents immediately below). Data collected on this form include electric power generation, fuel consumption, fossil fuel stocks, delivered fossil fuel cost, combustion byproducts, operational cooling water data, and operational data for NO x , SO 2 , and particulate matter control equipment. These data are used to monitor the status and trends of the electric power industry and appear in many U.S. Energy Information Administration (EIA) publications including: Electric Power Monthly, Electric Power Annual, Monthly Energy Review, Annual Energy Review, Natural Gas Monthly,

465

U  

U.S. Energy Information Administration (EIA) Indexed Site

Administration Form EIA-906 (2007) POWER PLANT REPORT Form Approval OMB No. 1905-0129 Approval Expires: 11/30/2007 PURPOSE Form EIA-906 collects information from all electric power plants, excluding combined heat and power facilities, in the United States. Data collected on this form include electric power generation, fuel consumption, fuel heat content, and fossil fuel stocks. These data are used to monitor the status and trends of the electric power industry, and appear in many EIA publications, including: Electric Power Monthly and Annual, Monthly and Annual Energy Reviews, Natural Gas Monthly and Annual, Quarterly Coal Report, and the Renewable Energy Annual. Further information can be found at http://www.eia.doe.gov/fuelelectric.html.

466

Export.gov - By Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

By Industry By Industry Print | E-mail Page Export Information By Industry Export.gov offers a wide range of current industry and trade information to help exporters of U.S goods and services find the information they need to compete successfully in overseas markets. Four Essential Resources 1. Export Assistance. The U.S. & Foreign Commercial Service is the trade promotion arm of the U.S. Department of Commerce's International Trade Administration. Commercial Service trade professionals in more than100 U.S. cities and in nearly 80 countries help U.S. companies to start exporting or increase sales to new global markets. Commercial Service services include: Market Intelligence , Trade Counseling , Business Matchmaking, and more. 2. Trade Data & Analysis. Trade data can help companies identify the best

467

Industrial Applications of Renewable Resources  

Science Conference Proceedings (OSTI)

Archive of Industrial Applications of Renewable Resources Industrial Applications of Renewable Resources Cincinnati, Ohio, USA Industrial Applications of Renewable Resources ...

468

International industrial sector energy efficiency policies  

SciTech Connect

Over 40 percent of the energy consumed globally is used in the industrial sector. In China, this sector consumes an even larger proportion, reaching nearly 70 percent in 1997. A variety of energy efficiency policies and programs have been instituted in both industrialized and developing countries in an effort to improve the energy efficiency of the industrial sector. There are very few comprehensive evaluations of these industrial sector energy efficiency policies; however a number of recent workshops and conferences have included a focus on these policies. Three important meetings were the International Energy Agency's Industrial Energy Efficiency: Policies and Programs Conference in 1994, Industrial Energy Efficiency Policies: Understanding Success and Failure - A Workshop Organized by the International Network for Energy Demand Analysis in the Industrial Sector in 1998, and the American Council for an Energy-Efficient Economy's 1999 Summer Study on Energy Efficiency in Industry. Man y articles from these meetings are included as attachments to this memo. This paper provides a brief description of each of seven categories of individual industrial energy efficiency policies and programs, discuss which industrial sectors or types of equipment they apply to, and provide references for articles and reports that discuss each policy or program in more detail. We begin with mandatory-type policies and move to more voluntary-type policies. We then provide a brief description of four integrated industrial energy efficiency policies and provide references for articles and reports that describe these policies in greater detail.

Price, Lynn; Worrell, Ernst

2000-01-01T23:59:59.000Z

469

International industrial sector energy efficiency policies  

SciTech Connect

Over 40 percent of the energy consumed globally is used in the industrial sector. In China, this sector consumes an even larger proportion, reaching nearly 70 percent in 1997. A variety of energy efficiency policies and programs have been instituted in both industrialized and developing countries in an effort to improve the energy efficiency of the industrial sector. There are very few comprehensive evaluations of these industrial sector energy efficiency policies; however a number of recent workshops and conferences have included a focus on these policies. Three important meetings were the International Energy Agency's Industrial Energy Efficiency: Policies and Programs Conference in 1994, Industrial Energy Efficiency Policies: Understanding Success and Failure - A Workshop Organized by the International Network for Energy Demand Analysis in the Industrial Sector in 1998, and the American Council for an Energy-Efficient Economy's 1999 Summer Study on Energy Efficiency in Industry. Man y articles from these meetings are included as attachments to this memo. This paper provides a brief description of each of seven categories of individual industrial energy efficiency policies and programs, discuss which industrial sectors or types of equipment they apply to, and provide references for articles and reports that discuss each policy or program in more detail. We begin with mandatory-type policies and move to more voluntary-type policies. We then provide a brief description of four integrated industrial energy efficiency policies and provide references for articles and reports that describe these policies in greater detail.

Price, Lynn; Worrell, Ernst

2000-01-01T23:59:59.000Z

470

Deregulation-restructuring: Evidence for individual industries  

SciTech Connect

Several studies have measured the effects of regulation on a particular industry. These studies range widely in sophistication, from simple observation (comparison) of pre-transformation and post-transformation actual industry performance to econometric analysis that attempt to separate the effects of deregulation from other factors in explaining changes in an industry`s performance. The major problem with observation studies is that they are unable to measure the effect of one particular event, such as deregulation, on an industry`s performance. For example, at the same time that the United Kingdom privatized its electric power industry, it also radically restructured the industry to encourage competition and instituted a price-cap mechanism to regulate the prices of transmission, distribution, and bundled retail services. Subsequent to these changes in 1991, real prices for most UK electricity customers have fallen. It is not certain however, which of these factors was most important or even contributed to the decline in price. In any event, one must be cautious in interpreting the results of studies that attempt to measure the effect of deregulation per se for a specific industry. This report highlights major outcomes for five industries undergoing deregulation or major regulatory and restructuring reforms. These include the natural gas, transportation, UK electric power, financial, and telecommunications industries. Particular attention was given to the historical development of events in the telecommunications industry.

Costello, K.W.; Graniere, R.J.

1997-05-01T23:59:59.000Z

471

Climate VISION: Industry Associations  

Office of Scientific and Technical Information (OSTI)

Industry Associations Industry Associations Aluminum Aluminum Association (Coordinating aluminum industry Climate VISION activities) The Aluminum Association, Inc. is the trade association for producers of primary aluminum, recyclers and semi-fabricated aluminum products, as well as suppliers to the industry. The Association provides leadership to the industry through its programs and services which aim to enhance aluminum's position in a world of proliferating materials, increase its use as the "material of choice," remove impediments to its fullest use, and assist in achieving the industry's environmental, societal, and economic objectives. Automobile Manufacturers Alliance of Automobile Manufacturers (Coordinating automobile industry Climate VISION activities) The Alliance of Automobile Manufacturers, Inc. is a trade association

472

Interconnection Standards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Interconnection Standards Interconnection Standards Interconnection Standards < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Wind Energy Sources Solar Program Info State New Mexico Program Type Interconnection Provider New Mexico Public Regulation Commission Interconnection in New Mexico is governed by New Mexico Public Regulation Commission (PRC) Rule 568 and Rule 569. These rules, adopted in July 2008, revised and clarified the state's existing rules. Rule 569 applies to all qualifying facilities (QFs) under PURPA, which generally includes all renewable-energy systems and combined-heat-and-power (CHP) systems up to 80

473

Balance of Plant Needs and Integration of Stack Components for Stationary Power and CHP Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

Balance of Plant Needs and Balance of Plant Needs and Integration of Stack Components for Stationary Power and CHP Applications Applications Chris Ainscough P.E. Chief Engineer - PowerEdge Nuvera Fuel Cells cainscough@nuvera.com Background  Experience integrating systems based on fuel cells and reformers.  Applications include vehicles, combined heat and power (CHP), industrial plants, and forklifts. Who Needs Balance of Plant?  "...an electric generator that has no moving parts...This elegant device is called a fuel cell." Skerrett, P. J. "Fuel Cell Update." Popular Science. June 1993:89. print. No Moving Parts Except These  The typical fluid components in a PEM CHP system based on steam/methane reformer technology. (in red) SWITCH STACK PRV

474

Building Technologies Office: Global Superior Energy Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Superior Energy Performance Partnership Global Superior Energy Performance Partnership Graphic of Global Superior Energy Performance working groups, including energy management led by the United States, power led by Japan, combined heat and power led by Finland, steel led by Japan, cool roofs led by the United states, and cement led by Japan. GSEP, a multi-country effort to create and coordinate nationally accredited energy performance certification programs, comprises a number of working groups. Credit: DOE The U.S. Department of Energy (DOE) supports the Superior Energy Performance (SEP) program, which provides industrial facilities and commercial buildings a framework for achieving continual improvement in energy efficiency while maintaining market competitiveness. SEP aims to provide a transparent, globally accepted system for energy management and continuous energy performance improvement.

475

May 2003pub  

NLE Websites -- All DOE Office Websites (Extended Search)

Central newsletter features GHG Central newsletter features GHG technologies. A discussion of clean coal and combined heat and power includes technology overviews. "Sparking a Less Carbon-Intensive Future - Greenhouse Gas Technologies," C3 Views, April 2003, http://www.climatechangecentral.com/ info_centre/C3Views/default.asp Major aluminum smelting company cuts emissions. Alcoa reduced GHG emissions 22.5% from 1990 levels, according to the company's sustainability report. "Alcoa cuts emissions," CSRwire, April 22, 2003, http:// www.socialfunds.com/news/release.cgi/1776.html United Technologies Corp. to join Climate Leaders. Since 1997, UTC has lowered its GHG emissions by 15 percent, and is now joining the voluntary industry-government partnership. The EPA Climate Leaders program, now

476

NREL: Learning - Biopower  

NLE Websites -- All DOE Office Websites (Extended Search)

Biopower Biopower Biopower, or biomass power, is the use of biomass to generate electricity. Biopower system technologies include direct-firing, cofiring, gasification, pyrolysis, and anaerobic digestion. Most biopower plants use direct-fired systems. They burn bioenergy feedstocks directly to produce steam. This steam drives a turbine, which turns a generator that converts the power into electricity. In some biomass industries, the spent steam from the power plant is also used for manufacturing processes or to heat buildings. Such combined heat and power systems greatly increase overall energy efficiency. Paper mills, the largest current producers of biomass power, generate electricity or process heat as part of the process for recovering pulping chemicals. Co-firing refers to mixing biomass with fossil fuels in conventional power

477

PURPOSE  

U.S. Energy Information Administration (EIA) Indexed Site

923 923 POWER PLANT OPERATIONS REPORT INSTRUCTIONS OMB No. 1905-0129 Approval Expires: 12/31/2016 Burden: 2.3 Hours 1 PURPOSE Form EIA-923 collects information on the operation of electric power plants and combined heat and power (CHP) plants in the United States (see Required Respondents immediately below). Data collected on this form include electric power generation, fuel consumption, fossil fuel stocks, delivered fossil fuel cost, combustion byproducts, operational cooling water data, and operational data for NO x , SO 2 , particulate matter mercury and acid gas control equipment. These data are used to monitor the status and trends of the electric power industry and appear in many U.S. Energy Information Administration (EIA) publications

478

Distributed Energy Resources at Federal Facilities. Federal Energy Management Program (FEMP) Technical Assistance Fact Sheet  

DOE Green Energy (OSTI)

This two-page overview describes how the use of distributed energy resources at Federal facilities is being supported by the U.S. Department of Energy's (DOE's) Federal Energy Management Program (FEMP). Distributed energy resources include both existing and emerging energy technologies: advanced industrial turbines and microturbines; combined heat and power (CHP) systems; fuel cells; geothermal systems; natural gas reciprocating engines; photovoltaics and other solar systems; wind turbines; small, modular biopower; energy storage systems; and hybrid systems. DOE FEMP is investigating ways to use these alternative energy systems in government facilities to meet greater demand, to increase the reliability of the power-generation system, and to reduce the greenhouse gases associated with burning fossil fuels.

Pitchford, P.

2001-07-16T23:59:59.000Z

479

Technologies for Distributed Energy Resources. Federal Energy Management Program (FEMP) Technical Assistance Fact Sheet  

DOE Green Energy (OSTI)

This four-page fact sheet describes distributed energy resources for Federal facilities, which are being supported by the U.S. Department of Energy's (DOE's) Federal Energy Management Program (FEMP). Distributed energy resources include both existing and emerging energy technologies: advanced industrial turbines and microturbines; combined heat and power (CHP) systems; fuel cells; geothermal systems; natural gas reciprocating engines; photovoltaics and other solar systems; wind turbines; small, modular biopower; energy storage systems; and hybrid systems. DOE FEMP is investigating ways to use these alternative energy systems in government facilities to meet greater demand, to increase the reliability of the power-generation system, and to reduce the greenhouse gases associated with burning fossil fuels.

Pitchford, P.; Brown, T.

2001-07-16T23:59:59.000Z

480

Global Superior Energy Performance Partnership | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Buildings » Global Superior Energy Performance Commercial Buildings » Global Superior Energy Performance Partnership Global Superior Energy Performance Partnership Graphic of Global Superior Energy Performance working groups, including energy management led by the United States, power led by Japan, combined heat and power led by Finland, steel led by Japan, cool roofs led by the United states, and cement led by Japan. The U.S. Department of Energy (DOE) supports the Superior Energy Performance (SEP) program, which provides industrial facilities and commercial buildings a framework for achieving continual improvement in energy efficiency while maintaining market competitiveness. SEP aims to provide a transparent, globally accepted system for energy management and continuous energy performance improvement.

Note: This page contains sample records for the topic "includes industrial combined-heat-and-power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Percent of Industrial Natural Gas Deliveries in U.S. Total ...  

U.S. Energy Information Administration (EIA)

Percentage of Total Natural Gas Industrial Deliveries included in Prices ; U.S. Natural Gas Prices ...

482

Pulp & Paper Industry- A Strategic Energy Review  

E-Print Network (OSTI)

The pulp and paper industry with yearly energy purchases of $5 billion per year including 50 billion kWh of power is one of the largest industrial energy producers in the U.S. However, structural changes in the global pulp and paper industry could greatly impact the energy purchases of U.S. firms. Depending on how energy suppliers react, this change could represent a threat or an opportunity.

Stapley, C. E.

1997-04-01T23:59:59.000Z

483

Energy efficient industrialized housing research program  

SciTech Connect

This is the second volume of a two volume report on energy efficient industrialized housing. Volume II contains support documentation for Volume I. The following items are included: individual trip reports; software bibliography; industry contacts in the US, Denmark, and Japan; Cost comparison of industrialized housing in the US and Denmark; draft of the final report on the systems analysis for Fleetwood Mobile Home Manufacturers. (SM)

Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; Mc Donald, M.; McGinn, B.; Ryan, P.; Sekiguchi, T. (Oregon Univ., Eugene, OR (USA). Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Maxwell, L.; Roland, J.; Swart, W. (Florida Solar Energy Center, Cape Canaveral, FL (USA))

1989-01-01T23:59:59.000Z

484

Industrial Decision Making  

E-Print Network (OSTI)

Domestic industrial investment has declined due to unfavorable energy prices, and external markets. Investment behavior has changed over the past few years, and will continue due to high labor costs, tight markets and an unstable U.S. economy although, freight costs, favorable exchange rates and high capacity utilization will encourage future industrial investment. Industry will eventually enter a new period of major investment. Future industrial investment will be an opportunity to influence the energy efficiency of these facilities for generations to come. Program managers must begin engaging industrial customers now, in order to exploit this unprecedented opportunity to change future energy use patterns. This paper reviews recent market trends and industrial investment decision-making. The paper will also address several important questions: • Why has industrial investment declined? • What is the outlook for industrial investment? • How can programs engage industry for future opportunities?

Elliott, R. N.; McKinney, V.; Shipley, A.

2008-01-01T23:59:59.000Z

485

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 12 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module forecasts energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region forecast using the SEDS 27 data.

486

Industrial energy-efficiency-improvement program  

SciTech Connect

Progress made by industry toward attaining the voluntary 1980 energy efficiency improvement targets is reported. The mandatory reporting population has been expanded from ten original industries to include ten additional non-targeted industries and all corporations using over one trillion Btu's annually in any manufacturing industry. The ten most energy intensive industries have been involved in the reporting program since the signing of the Energy Policy and Conservation Act and as industrial energy efficiency improvement overview, based primarily on information from these industries (chemicals and allied products; primary metal industry; petroleum and coal products; stone, clay, and glass products; paper and allied products; food and kindred products; fabricated metal products; transportation equipment; machinery, except electrical; and textile mill products), is presented. Reports from industries, now required to report, are included for rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products. Additional data from voluntary submissions are included for American Gas Association; American Hotel and Motel Association; General Telephone and Electronics Corporation; and American Telephone and Telegraph Company. (MCW)

1980-12-01T23:59:59.000Z

487

Science Accelerator content now includes multimedia  

Office of Scientific and Technical Information (OSTI)

Science Accelerator content now includes multimedia Science Accelerator has expanded its suite of collections to include ScienceCinema, which contains videos produced by the U.S....

488

and Industry Dynamics  

E-Print Network (OSTI)

We assess the long-run dynamic implications of market-based regulation of carbon dioxide emissions in the US Portland cement industry. We consider several alternative policy designs, including mechanisms that use production subsidies to partially offset compliance costs and border tax adjustments to penalize emissions associated with foreign imports. Our results highlight two general countervailing market distortions. First, following Buchanan (1969), reductions in product market surplus and allocative inefficiencies due to market power in the domestic cement market counteract the social benefits of carbon abatement. Second, tradeexposure to unregulated foreign competitors leads to emissions “leakage ” which offsets domestic emissions reductions. Taken together, these forces result in social welfare losses under policy regimes that fully internalize the emissions externality. In contrast, market-based policies that incorporate design features to mitigate the exercise of market power and emissions leakage can deliver welfare gains. 1

Meredith Fowlie; Mar Reguant; Stephen P. Ryan; Meredith Fowlie; Mar Reguant; Stephen P. Ryan

2013-01-01T23:59:59.000Z

489

Principles of biotechnological treatment of industrial wastes  

Science Conference Proceedings (OSTI)

This review includes current information on biodegradation processes of pollutants, digestor biocenosis and bioadditives, sludge production, measurement of pollution, and advances regarding biotechnological treatment of a series of specific industrial effluents. It was foreseen in 1980 that biotechnology would foster the creation of new industries with low energy requirements. This is because the growth of microorganisms provides a renewable source of energy.

Roig, M.G.; Martin Rodriguez, M.J.M.; Cachaza, J.M. (Univ. de Salamanca, Salamanca (Spain). Dept. de Quimica Fisica); Mendoza Sanchez, L. (C/Sol Oriente, Salamanca (Spain). Estudios y Proyectos); Kennedy, J.F. (Univ. of Birmingham, Birmingham (United Kingdom). Research Lab. for the Chemistry of Bioactive Carbohydrates and Proteins)

1993-07-01T23:59:59.000Z

490

Users from Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

Users from Industry Users from Industry Users from Industry Print The Advanced Light Source (ALS) welcomes industrial users from large and small companies whose projects advance scientific knowledge, investigate the development of new products and manufacturing methods, or provide economic benefits and jobs to the economy. The nature of industrial research can be different from traditional university and government sponsored projects, so the ALS has created unique opportunities for new and existing industrial users to access our user facilities and engage in productive relationships with our scientific and engineering staff. Examples of past and current research conducted at the ALS can be viewed on the Industry @ ALS Web page. There are several modes of access; the ALS User and Scientific Support Groups are especially committed to helping new industrial users gain a foothold in our user community and welcome inquiries about how to make that happen.

491

Industrial | Open Energy Information  

Open Energy Info (EERE)

to: navigation, search Click to return to AEO2011 page AEO2011 Data From AEO2011 report . Market Trends Despite a 54-percent increase in industrial shipments, industrial energy...

492

Microsoft Word - appa.docx  

Gasoline and Diesel Fuel Update (EIA)

525.63 626.49 660.62 684.55 739.61 858.06 1.7% 1 Includes electricity-only and combined heat and power plants that have a regulatory status. 2 Includes both hydrothermal...

493

Tom Rogers Director, Industrial Partnerships  

NLE Websites -- All DOE Office Websites (Extended Search)

Tom Rogers, rogerstc@ornl.gov 865-241-2149 Tom Rogers, rogerstc@ornl.gov 865-241-2149 Tom Rogers Director, Industrial Partnerships and Economic Development Tom Rogers was named Director of Industrial Partnerships and Economic Development at the Oak Ridge National Laboratory in June, 2008. His responsibilities include directing engagements with industrial partners, forging new ORNL entrepreneurial support efforts, and leading a number of strategic initiatives such as the Carbon Fiber Composites Cluster and development of the Oak Ridge Science and Technology Park. Prior to joining ORNL, Tom was the founding President and CEO of Technology 2020, a national award-winning public-private partnership focused on a building a robust regional entrepreneurial support system. Tom has also served as the Executive Director of the Tennessee Technology

494

Petroleum Gasoline & Distillate Needs Including the Energy ...  

U.S. Energy Information Administration (EIA)

Petroleum Gasoline & Distillate Needs Including the Energy Independence and Security Act (EISA) Impacts

495

Petroleum Gasoline & Distillate Needs Including the Energy ...  

U.S. Energy Information Administration (EIA)

Home > Petroleum > Analysis > Petroleum Gasoline & Distillate Needs Including the Energy Independence and Security Act (EISA) ...

496

Quality Services: Solid Wastes, Part 361: Siting of Industrial Hazardous  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1: Siting of Industrial 1: Siting of Industrial Hazardous Waste Facilities (New York) Quality Services: Solid Wastes, Part 361: Siting of Industrial Hazardous Waste Facilities (New York) < Back Eligibility Commercial Fed. Government Industrial Investor-Owned Utility Local Government Municipal/Public Utility State/Provincial Govt Tribal Government Utility Program Info State New York Program Type Siting and Permitting Provider NY Department of Environmental Conservation These regulations describe the siting of new industrial hazardous waste facilities located wholly or partially within the State. Industrial hazardous waste facilities are defined as facilities used for the purpose of treating, storing, compacting, recycling, exchanging or disposing of industrial hazardous waste materials, including treatment, compacting,

497

America's Booming Wind Industry  

Energy.gov (U.S. Department of Energy (DOE))

Sharing key findings from two new Energy Department reports that highlight the record growth of America's wind industry.

498

The Copper Industry  

Science Conference Proceedings (OSTI)

...These products are sold to a wide variety of industrial users. Certain mill productsâ??chiefly wire, cable, and most

499

NIST Industry Day 2012  

Science Conference Proceedings (OSTI)

... at www.fedbizopps.gov. Search NIST-AMD-INDUSTRY-DAY-2012 in the Quick Search engine. Deadline for registration ...

2013-08-30T23:59:59.000Z

500

Process Energy Audit for Large Industries  

E-Print Network (OSTI)

This paper discusses the author's approach to energy audits of large industries. Five large industrial segments, with energy intensive processes have been selected as examples. Items include: 1) the general methodology of conducting comprehensive industrial energy audit, 2) how one can identify energy efficiency opportunities, and 3) illustrate a few case study examples of energy conservation measures implemented in some of the industries, and 4) the importance of quality assurance/quality control in an energy audit. I will restrict this discussion to only electrical energy audit.

Chari, S.

1993-03-01T23:59:59.000Z