National Library of Energy BETA

Sample records for includes hydroelectricity generated

  1. Hydro-electric generator

    SciTech Connect (OSTI)

    Vauthier, P.

    1980-06-03

    The efficiency of a hydro-electric generator is improved by providing open-ended hollow tubes having influx ends proximate the axis and efflux ends proximate the periphery of a fan-bladed turbine. The jets of water developed by rotation of the fanbladed turbine are directed against turbine vanes at the periphery of the fan blades. The device is particularly suitable for mounting in a water current such as in an ocean current or river.

  2. Microsoft PowerPoint - AECC Hydroelectric Generation 2010.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AECC H d l i AECC Hydroelectric Generation Facilities Generation Facilities Arkansas ... E i ti H d l t i Existing Hydroelectric Generating Resources g * Ellis Hydroelectric ...

  3. Water management for hydroelectric power generation at Matera and Kidatu in Tanzania

    SciTech Connect (OSTI)

    Matondo, J.I.; Rutashobya, D.G.

    1995-12-31

    The major sources of power in Tanzania are hydropower and thermo power. Most of the hydroelectric power is generated in the Great Ruaha river system (280 MW) and in the Pangani river system (46 MW). However, the generated power (hydro and thermo) does not meet the power demand and as a result, an accute power shortage occurred in August 1992. This paper explores the hydropower generation mechanism at Mtera and Kidatu hydroelectric power plants. It also looks into what measures could have been taken in order to avoid the massive power shedding which officially lasted for about six months, although unofficially, power shedding was continued well beyond that period. Strategies for future water management in the Great Ruaha river system for efficient generation of power are also presented.

  4. Review of Pacific Northwest Laboratory research on aquatic effects of hydroelectric generation and assessment of research needs

    SciTech Connect (OSTI)

    Fickeisen, D.H.; Becker, C.D.; Neitzel, D.A.

    1981-05-01

    This report is an overview of Pacific Northwest Laboratory's (PNL) research on how hydroelectric generation affects aquatic biota and environments. The major accomplishments of this research are described, and additional work needed to permit optimal use of available data is identified. The research goals are to: (1) identify impacts of hydroelectric generation, (2) provide guidance in allocating scarce water resources, and (3) develop techniques to avoid or reduce the impacts on aquatic communities or to compensate for unavoidable impacts. Through laboratory and field experiments, an understanding is being developed of the generic impacts of hydrogeneration. Because PNL is located near the Columbia River, which is extensively developed for hydroelectric generation, it is used as a natural laboratory for studying a large-scale operating system. Although the impacts studied result from a particular system of dams and operating procedures and occur within a specific ecosystem, the results of these studies have application at hydroelectric generating facilities throughout the United States.

  5. Power generation method including membrane separation

    DOE Patents [OSTI]

    Lokhandwala, Kaaeid A.

    2000-01-01

    A method for generating electric power, such as at, or close to, natural gas fields. The method includes conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas by means of a membrane separation step. This step creates a leaner, sweeter, drier gas, which is then used as combustion fuel to run a turbine, which is in turn used for power generation.

  6. 2013 Electrical Production: EPAct 2005 Section 242 Hydroelectric Incentive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program | Department of Energy 3 Electrical Production: EPAct 2005 Section 242 Hydroelectric Incentive Program 2013 Electrical Production: EPAct 2005 Section 242 Hydroelectric Incentive Program In 2014, Congress appropriated funds for Hydroelectric Production Incentives under Section 242 of the Energy Policy Act of 2005. Qualified hydroelectric facilities-existing powered or non-powered dams and conduits that added a new turbine or other hydroelectric generating device-may receive up to 1.8

  7. 2015 Electrical Production: EPACT 2005 Section 242 Hydroelectric Incentive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program | Department of Energy 5 Electrical Production: EPACT 2005 Section 242 Hydroelectric Incentive Program 2015 Electrical Production: EPACT 2005 Section 242 Hydroelectric Incentive Program In 2016, Congress appropriated funds for Hydroelectric Production Incentives under Section 242 of the Energy Policy Act of 2005. Qualified hydroelectric facilities-existing powered or non-powered dams and conduits that added a new turbine or other hydroelectric generating device-may receive up to 1.8

  8. 2015 Electrical Production: EPACT 2005 Section 242 Hydroelectric Incentive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program | Department of Energy 2015 Electrical Production: EPACT 2005 Section 242 Hydroelectric Incentive Program 2015 Electrical Production: EPACT 2005 Section 242 Hydroelectric Incentive Program In 2016, Congress appropriated funds for Hydroelectric Production Incentives under Section 242 of the Energy Policy Act of 2005. Qualified hydroelectric facilities-existing powered or non-powered dams and conduits that added a new turbine or other hydroelectric generating device-may receive up to

  9. Underground pumped hydroelectric storage

    SciTech Connect (OSTI)

    Allen, R.D.; Doherty, T.J.; Kannberg, L.D.

    1984-07-01

    Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-leveling requirements of a greater metropolitan area with population of 1 million or more. The technical feasibility of UPHS depends upon excavation of a subterranean powerhouse cavern and reservoir caverns within a competent, impervious rock formation, and upon selection of reliable and efficient turbomachinery - pump-turbines and motor-generators - all remotely operable.

  10. Factors affecting the failure of copper connectors brazed to copper bus bar segments on a 615-MVA hydroelectric generator at Grand Coulee Dam

    SciTech Connect (OSTI)

    Atteridge, D.G.; Klein, R.F.; Layne, R.; Anderson, W.E.; Correy, T.B.

    1988-01-01

    On March 21, 1986, the United States Bureau of Reclamation experienced a ground fault in the main parallel ring assembly of Unit G19 - a 615-MVA hydroelectric generator - at Grand Coulee Dam, Washington. Inspection of the unit revealed that the ground fault had been induced by fracture of one or more of the copper connectors used to join adjacent segments of one of the bus bars in the north half of the assembly. Various experimental techniques were used to detect and determine the presence of cracks, crack morphology, corrosion products, and material microstructure and/or embrittlement. The results of these inspections and recommendations are given. 7 refs., 27 figs.

  11. Small-Scale Hydroelectric Power Demonstration Project

    SciTech Connect (OSTI)

    Gleeson, L.

    1991-12-01

    The US Department of Energy Field Office, Idaho, Small-Scale Hydroelectric Power Program was initiated in conjunction with the restoration of three power generating plants in Idaho Falls, Idaho, following damage caused by the Teton Dam failure on June 5, 1976. There were many parties interested in this project, including the state and environmental groups, with different concerns. This report was prepared by the developer and describes the design alternatives the applicant provided in an attempt to secure the Federal Energy Regulatory Commission license. Also included are correspondence between the related parties concerning the project, major design alternatives/project plan diagrams, the license, and energy and project economics.

  12. Energy 101: Hydroelectric Power

    Broader source: Energy.gov [DOE]

    Learn how hydroelectric power, or hydropower, captures the kinetic energy of flowing water and turns it into electricity for our homes and businesses.

  13. Energy Department Seeks Feedback on Draft Guidance for the Hydroelectr...

    Energy Savers [EERE]

    Any qualified owner or operator of a hydroelectric facility who added hydropower to non-powered dams or conduits ... applications for generation produced in calendar year ...

  14. Accepting Applications: $3.96 Million Hydroelectric Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The incentive is available to developers who added hydroelectric power generating capabilities to existing non-powered dams throughout the United States. Equipping local, ...

  15. Hydroelectric energy | Open Energy Information

    Open Energy Info (EERE)

    Hydroelectric energy Jump to: navigation, search TODO: Add description List of Hydroelectric Incentives Retrieved from "http:en.openei.orgwindex.php?titleHydroelectricenergy&...

  16. Small Hydroelectric | Open Energy Information

    Open Energy Info (EERE)

    Small Hydroelectric Jump to: navigation, search TODO: Add description List of Small Hydroelectric Incentives Retrieved from "http:en.openei.orgwindex.php?titleSmallHydroelect...

  17. Impact of High Wind Power Penetration on Hydroelectric Unit Operations: Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Lew, D.; Milligan, M.

    2011-10-01

    This paper examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating unit patterns are examined for an aggregation of all hydro generators.

  18. Impact of High Wind Power Penetration on Hydroelectric Unit Operations in the WWSIS

    SciTech Connect (OSTI)

    Hodge, B.-M.; Lew, D.; Milligan, M.

    2011-07-01

    This report examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating patterns are examined both for an aggregation of all hydro generators and for select individual plants.

  19. The Belleville Hydroelectric Project - An overview

    SciTech Connect (OSTI)

    Gemperline, E.J.; Konstantellos, C.; Meier, P.E.

    1995-12-31

    The Belleville Hydroelectric Project, a 42 MW project on the Ohio River at the U.S. Army Corps of Engineers (USACE) Belleville Locks and Dam was licensed to the City of Jackson, Ohio in 1989. In 1993 a joint venture of 42 Ohio municipal electric suppliers was formed to develop the project - known as Ohio Municipal Electric Generation Agency Joint Venture 5. Design of the project, including procurement of the turbines and generators, began the same year. At the time this paper is being published project construction is beginning with development of the cofferdams. Completion of the project is scheduled for late 1997. The project will be located on the east bank of the Ohio River. Energy will be generated by two identical 24.6 ft (7.5 m) runner diameter 21 MW bulb turbines, among the world`s largest. Each unit will operate over a head range of from 5 ft to 22 ft (1.5 m to 6.7 m), and discharges from 3000 ft{sup 3}/sec (cfs) to 20,000 cfs (85 m{sup 3}/s to 566 m{sup 3}/s). This paper includes discussions of project history, operation, siting, layout, design and other considerations.

  20. Energy Department Accepting Applications for a $3.6 Million Hydroelectric Production Incentive Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department today announced an incentive program for developers adding hydroelectric power generating capabilities to existing non-powered dams throughout the United States.

  1. Lushui County Quande Hydroelectrical Power Development Ltd |...

    Open Energy Info (EERE)

    County Quande Hydroelectrical Power Development Ltd Jump to: navigation, search Name: Lushui County Quande Hydroelectrical Power Development Ltd. Place: Yunnan Province, China...

  2. Potential Hydroelectric Development at Existing Federal Facilities...

    Open Energy Info (EERE)

    Potential Hydroelectric Development at Existing Federal Facilities Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Potential Hydroelectric Development at...

  3. Lessons Learned: Pangue Hydroelectric | Open Energy Information

    Open Energy Info (EERE)

    Learned: Pangue Hydroelectric Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Lessons Learned: Pangue Hydroelectric AgencyCompany Organization: International Finance...

  4. Hoopa Valley Small Scale Hydroelectric Feasibility Project

    SciTech Connect (OSTI)

    Curtis Miller

    2009-03-22

    This study considered assessing the feasibility of developing small scale hydro-electric power from seven major tributaries within the Hoopa Valley Indian Reservation of Northern California (http://www.hoopa-nsn.gov/). This study pursued the assessment of seven major tributaries of the Reservation that flow into the Trinity River. The feasibility of hydropower on the Hoopa Valley Indian Reservation has real potential for development and many alternative options for project locations, designs, operations and financing. In order to realize this opportunity further will require at least 2-3 years of intense data collection focusing on stream flow measurements at multiple locations in order to quantify real power potential. This also includes on the ground stream gradient surveys, road access planning and grid connectivity to PG&E for sale of electricity. Imperative to this effort is the need for negotiations between the Hoopa Tribal Council and PG&E to take place in order to finalize the power rate the Tribe will receive through any wholesale agreement that utilizes the alternative energy generated on the Reservation.

  5. Electrode assemblies, plasma apparatuses and systems including electrode assemblies, and methods for generating plasma

    DOE Patents [OSTI]

    Kong, Peter C; Grandy, Jon D; Detering, Brent A; Zuck, Larry D

    2013-09-17

    Electrode assemblies for plasma reactors include a structure or device for constraining an arc endpoint to a selected area or region on an electrode. In some embodiments, the structure or device may comprise one or more insulating members covering a portion of an electrode. In additional embodiments, the structure or device may provide a magnetic field configured to control a location of an arc endpoint on the electrode. Plasma generating modules, apparatus, and systems include such electrode assemblies. Methods for generating a plasma include covering at least a portion of a surface of an electrode with an electrically insulating member to constrain a location of an arc endpoint on the electrode. Additional methods for generating a plasma include generating a magnetic field to constrain a location of an arc endpoint on an electrode.

  6. Request for Comments on Including Onsite Renewable Energy Generation under Energy Savings Performance Contracts

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Comments on Including Onsite Renewable Energy Generation under Energy Savings Performance Contracts February 2, 2016 The purpose of this request for comments is to obtain information on potential obstacles associated with the implementation of onsite renewable energy generation projects under the federal energy savings performance contract (ESPC) authority, including potential issues with regard to project eligibility for the federal solar investment tax credit (ITC) and the use of the ESPC

  7. Impact of High Wind Power Penetration on Hydroelectric Unit Operations

    SciTech Connect (OSTI)

    Hodge, B. M.; Lew, D.; Milligan, M.

    2011-01-01

    The Western Wind and Solar Integration Study (WWSIS) investigated the operational impacts of very high levels of variable generation penetration rates (up to 35% by energy) in the western United States. This work examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating unit patterns are examined for an aggregation of all hydro generators. The cost impacts of maintaining hydro unit flexibility are assessed and compared for a number of different modes of system operation.

  8. AEA Hydroelectric Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    * Technical assistance, regional planning and project management * Provide synergy between ... hydrograph from stream gauging data collection EIA Generation data from ...

  9. EIS-0456: Cushman Hydroelectric Project, Tacoma, Washington

    Broader source: Energy.gov [DOE]

    This EIS is for the design and construction of certain components of the Cushman Hydroelectric Project in Mason County, Washington.

  10. Energy 101: Hydroelectric Power | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydroelectric Power Energy 101: Hydroelectric Power Addthis Description Learn how hydropower captures the kinetic energy of flowing water and turns it into electricity for our homes and businesses. Topic Water Text Version Below is the text version for the Energy 101: Hydroelectric Power video: The video opens with the words "Energy 101: Hydroelectric Power." This is followed by a montage of rivers and streams, then a shot of an older water wheel. People have been capturing the energy

  11. Request for Comments on Including Onsite Renewable Energy Generation under Energy Savings Performance Contracts

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Federal Energy Management Program (FEMP) released this Request for Comments on February 1, 2016, in an effort to obtain information about potential obstacles associated with the implementation of onsite renewable energy generation projects under the federal Energy Savings Performance Contract (ESPC) Authority, including potential issues with regard to project eligibility for the federal solar investment tax credit and the use of the ESPC ENABLE program for such projects.

  12. Electric power monthly, September 1990. [Glossary included

    SciTech Connect (OSTI)

    Not Available

    1990-12-17

    The purpose of this report is to provide energy decision makers with accurate and timely information that may be used in forming various perspectives on electric issues. The power plants considered include coal, petroleum, natural gas, hydroelectric, and nuclear power plants. Data are presented for power generation, fuel consumption, fuel receipts and cost, sales of electricity, and unusual occurrences at power plants. Data are compared at the national, Census division, and state levels. 4 figs., 52 tabs. (CK)

  13. Hydroelectric power provides a cheap source of electricity with few carbon emissions. Yet, reservoirs are not operated sustainably, which we define as meeting societal needs for water and power while protecting long-term health of the river ecosystem. Reservoirs that generate hydropower are typically operated with the goal of maximizing energy reve

    SciTech Connect (OSTI)

    Jager, Yetta; Smith, Brennan T

    2008-02-01

    Hydroelectric power provides a cheap source of electricity with few carbon emissions. Yet, reservoirs are not operated sustainably, which we define as meeting societal needs for water and power while protecting long-term health of the river ecosystem. Reservoirs that generate hydropower are typically operated with the goal of maximizing energy revenue, while meeting other legal water requirements. Reservoir optimization schemes used in practice do not seek flow regimes that maximize aquatic ecosystem health. Here, we review optimization studies that considered environmental goals in one of three approaches. The first approach seeks flow regimes that maximize hydropower generation, while satisfying legal requirements, including environmental (or minimum) flows. Solutions from this approach are often used in practice to operate hydropower projects. In the second approach, flow releases from a dam are timed to meet water quality constraints on dissolved oxygen (DO), temperature and nutrients. In the third approach, flow releases are timed to improve the health of fish populations. We conclude by suggesting three steps for bringing multi-objective reservoir operation closer to the goal of ecological sustainability: (1) conduct research to identify which features of flow variation are essential for river health and to quantify these relationships, (2) develop valuation methods to assess the total value of river health and (3) develop optimal control softwares that combine water balance modelling with models that predict ecosystem responses to flow.

  14. Electric Power Monthly, August 1990. [Glossary included

    SciTech Connect (OSTI)

    Not Available

    1990-11-29

    The Electric Power Monthly (EPM) presents monthly summaries of electric utility statistics at the national, Census division, and State level. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data includes generation by energy source (coal, oil, gas, hydroelectric, and nuclear); generation by region; consumption of fossil fuels for power generation; sales of electric power, cost data; and unusual occurrences. A glossary is included.

  15. Final Technical Report - Modernization of the Boulder Canyon Hydroelectric Project

    SciTech Connect (OSTI)

    Joe Taddeucci, P E

    2013-03-29

    double nozzle Pelton turbine with a 10-to-1 flow turndown and a maximum turbine/generator efficiency of 88%. This alone represents a 6% increase in overall efficiency. The old turbine operated at low efficiencies due to age and non-optimal sizing of the turbine for the water flow available to the unit. It was shut down whenever water flow dropped to less than 4-5 cfs, and at that flow, efficiency was 55 to 60%. The new turbine will operate in the range of 70 to 88% efficiency through a large portion of the existing flow range and would only have to be shut down at flow rates less than 3.7 cfs. Efficiency is expected to increase by 15-30%, depending on flow. In addition to the installation of new equipment, other goals for the project included: Increasing safety at Boulder Canyon Hydro Increasing protection of the Boulder Creek environment Modernizing and integrating control equipment into Boulder's municipal water supply system, and Preserving significant historical engineering information prior to power plant modernization. From January 1, 2010 through December 31, 2012, combined consultant and contractor personnel hours paid for by both the city and the federal government have totaled approximately 40,000. This equates roughly to seven people working full time on the project from January 2010 through December 2012. This project also involved considerable material expense (steel pipe, a variety of valves, electrical equipment, and the various components of the turbine and generator), which were not accounted for in terms of hours spent on the project. However, the material expense related to this project did help to create or preserve manufacturing/industrial jobs throughout the United States. As required by ARRA, the various components of the hydroelectric project were manufactured or substantially transformed in the U.S. BCH is eligible for nomination to the National Register of Historic Places due in part to its unique engineering features and innovative construction

  16. Hydroelectric power: Technology and planning. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    The bibliography contains citations concerning hydroelectric power technology and planning. Reservoir, dam, water tunnel, and hydraulic gate design, construction, and operation are discussed. Water supply, flood control, irrigation programs, and environmental effects of hydroelectric power plants are presented. Mathematical modeling and simulation analysis are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  17. Hydroelectric power: Technology and planning. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    The bibliography contains citations concerning hydroelectric power technology and planning. Reservoir, dam, water tunnel, and hydraulic gate design, construction, and operation are discussed. Water supply, flood control, irrigation programs, and environmental effects of hydroelectric power plants are presented. Mathematical modeling and simulation analysis are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  18. Thayer Creek Hydroelectric Update - 2015

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thayer Creek Hydroelectric Update - 2015 2015 Program Review Meeting DOE Tribal Energy Program Denver, Colorado May 5, 2015 Sharon Love General Manger/President Kootznoowoo, Inc. Harold Frank, Jr., M.S. Land and Environmental Planner Kootznoowoo, Inc. Angoon, Alaska Vicinity Map Angoon, Alaska * City of Angoon - 457 people (2013) * Angoon Community Association (IRA tribe) * Kootznoowoo, Inc. - 1,000(+) shareholders (629 original) - ANCSA village corporation * Angoon area inhabited at least

  19. China Hydroelectric Corp | Open Energy Information

    Open Energy Info (EERE)

    Corp Jump to: navigation, search Name: China Hydroelectric Corp Place: Beijing, Beijing Municipality, China Zip: 100010 Sector: Hydro Product: Engaged in the acquisition of small...

  20. Hebei Hydroelectric Company Limited | Open Energy Information

    Open Energy Info (EERE)

    Place: Shijiazhuang, Hebei Province, China Zip: 50011 Sector: Hydro Product: China-based small hydro project developer. References: Hebei Hydroelectric Company Limited1 This...

  1. Marine Hydroelectric Company | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: Marine Hydroelectric Company Address: 24040 Camino Del Avion A 107 Place: Monarch Beach Sector: Marine and Hydrokinetic Year Founded: 1983 Phone...

  2. List of Hydroelectric Incentives | Open Energy Information

    Open Energy Info (EERE)

    Coal with CCS Concentrating Solar Power Energy Storage Fuel Cells Geothermal Electric Natural Gas Nuclear Tidal Energy Wave Energy Wind energy BiomassBiogas Hydroelectric...

  3. Vermont Water Quality Certification Application for Hydroelectric...

    Open Energy Info (EERE)

    Water Quality Certification Application for Hydroelectric Facilities Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Vermont Water Quality Certification...

  4. Huaiji Hydroelectric Power Project | Open Energy Information

    Open Energy Info (EERE)

    Power Project Jump to: navigation, search Name: Huaiji Hydroelectric Power Project Place: Guangzhou, Guangdong Province, China Zip: 510620 Product: The Huaiji project involves nine...

  5. Hydroelectric Webinar Presentation Slides and Text Version

    Broader source: Energy.gov [DOE]

    Download presentation slides and a text version of the audio from the DOE Office of Indian Energy webinar on hydroelectric renewable energy. 

  6. Tazimina Hydroelectric Project, Iliamna, Alaska Final Technical and Construction Cost Report

    SciTech Connect (OSTI)

    HDR Alaska, Inc.

    1998-11-01

    The Iliamna-Newhalen-Nondalton Electric Cooperative (INNEC) provides electrical power to three communities of the same names. These communities are located near the north shore of Iliamna Lake in south-central Alaska approximately 175 miles southwest of Anchorage. These communities have a combined population of approximately 600 residents. There is no direct road connection from these villages to larger population centers. Electric power has been generated by INNEC since 1983 using diesel generators located in the community of Newhalen. Fuel for these generators was transported up the Kvichak River, an important salmon river, and across Iliamna Lake. In dry years the river is low and fuel is flown into Iliamna and then trucked five miles into Newhalen. The cost, difficult logistics and potential spill hazard of this fuel was a primary reason for development of hydroelectric power in this area. A hydroelectric project was constructed for these communities, starting in the spring of 1996 and ending in the spring of 1998. The project site is at Tazimina Falls about 9 miles upstream of the confluence of the Tazimina River and the Newhalen River. The project has an installed capacity of 824 kilowatts (kW) and is expandable to 1.5 megawatts (MW). The project is run-of-the-river (no storage) and uses the approximately 100 feet of natural head provided by the falls. The project features include a channel control sill, intake structure, penstock, underground powerhouse, tailrace, surface control building, buried transmission line and communication cable, and access road.

  7. Longyang Zone Hongqiang Hydroelectric Power Development Co Ltd...

    Open Energy Info (EERE)

    Longyang Zone Hongqiang Hydroelectric Power Development Co Ltd Jump to: navigation, search Name: Longyang Zone Hongqiang Hydroelectric Power Development Co., Ltd. Place: Baoshan...

  8. Yingjiang County Binglang River Hydroelectric Power Co Ltd |...

    Open Energy Info (EERE)

    Yingjiang County Binglang River Hydroelectric Power Co Ltd Jump to: navigation, search Name: Yingjiang County Binglang River Hydroelectric Power Co., Ltd. Place: Dehong Dai-Jingpo...

  9. Bihar State Hydroelectric Power Corp BSHPC | Open Energy Information

    Open Energy Info (EERE)

    Hydroelectric Power Corp BSHPC Jump to: navigation, search Name: Bihar State Hydroelectric Power Corp (BSHPC) Place: Patna, Bihar, India Sector: Hydro Product: Patna-based nodal...

  10. List of Small Hydroelectric Incentives | Open Energy Information

    Open Energy Info (EERE)

    using Renewable Fuels Geothermal Electric Photovoltaics Renewable Fuels Solar Water Heat Natural Gas Hydroelectric energy Small Hydroelectric Yes Alternative Energy Development...

  11. Ningguo Liucunba Hydroelectric Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ningguo Liucunba Hydroelectric Co Ltd Jump to: navigation, search Name: Ningguo Liucunba Hydroelectric Co., Ltd. Place: Ningguo, Anhui Province, China Zip: Ningguo Sector: Hydro...

  12. Hunan Mayang Hengyuan Hydroelectric Development Co Ltd | Open...

    Open Energy Info (EERE)

    Hengyuan Hydroelectric Development Co Ltd Jump to: navigation, search Name: Hunan Mayang Hengyuan Hydroelectric Development Co. Ltd. Place: Huaihua, Hunan Province, China Zip:...

  13. Wuxi Longshui Hydroelectric Power Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Longshui Hydroelectric Power Development Co Ltd Jump to: navigation, search Name: Wuxi Longshui Hydroelectric Power Development Co. Ltd Place: Chongqing, Chongqing Municipality,...

  14. Xinhuang Xincun Hydroelectric Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Xinhuang Xincun Hydroelectric Co Ltd Jump to: navigation, search Name: Xinhuang Xincun Hydroelectric Co. Ltd. Place: Huaihua, Hunan Province, China Zip: 419200 Sector: Hydro...

  15. Shangri La County Minhe Hydroelectric Development Co Ltd | Open...

    Open Energy Info (EERE)

    Minhe Hydroelectric Development Co Ltd Jump to: navigation, search Name: Shangri-La County Minhe Hydroelectric Development Co., Ltd. Place: Yunnan Province, China Zip: 650051...

  16. Zixing Liyujiang Hydroelectric Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Zixing Liyujiang Hydroelectric Co Ltd Jump to: navigation, search Name: Zixing Liyujiang Hydroelectric Co., Ltd Place: Hunan Province, China Zip: 423402 Sector: Hydro Product:...

  17. Sangzhi Zhongyuan Hydroelectric Power Station | Open Energy Informatio...

    Open Energy Info (EERE)

    Zhongyuan Hydroelectric Power Station Jump to: navigation, search Name: Sangzhi Zhongyuan Hydroelectric Power Station Place: Zhangjiajie, Hunan Province, China Zip: 427100 Sector:...

  18. Jinping Guoneng Hydroelectric Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Hydroelectric Development Co Ltd Jump to: navigation, search Name: Jinping Guoneng Hydroelectric Development Co., Ltd Place: Jinping, Yunnan Province, China Zip: 661507 Sector:...

  19. Hunan Zhexi hydroelectric Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Zhexi hydroelectric Co Ltd Jump to: navigation, search Name: Hunan Zhexi hydroelectric Co., Ltd. Place: Shaoyang, Hunan Province, China Zip: 422200 Sector: Hydro Product:...

  20. Sichuan Bahe Hydroelectric Development Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Bahe Hydroelectric Development Co Ltd Jump to: navigation, search Name: Sichuan Bahe Hydroelectric Development Co. Ltd. Place: Bazhong, Sichuan Province, China Zip: 635400 Sector:...

  1. Cangxi Jianghe Hydroelectric Power Development Co Ltd | Open...

    Open Energy Info (EERE)

    Cangxi Jianghe Hydroelectric Power Development Co Ltd Jump to: navigation, search Name: Cangxi Jianghe Hydroelectric Power Development Co., Ltd. Place: Guanyuan, Sichuan Province,...

  2. Guangxi Shenghui Haihe Hydroelectric Development Co Ltd | Open...

    Open Energy Info (EERE)

    Shenghui Haihe Hydroelectric Development Co Ltd Jump to: navigation, search Name: Guangxi Shenghui Haihe Hydroelectric Development Co., Ltd Place: Hechi, Guangxi Autonomous Region,...

  3. Shimen Boyuan Hydroelectric Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Shimen Boyuan Hydroelectric Co Ltd Jump to: navigation, search Name: Shimen Boyuan Hydroelectric Co. Ltd. Place: Changsha, Hunan Province, China Zip: 410004 Sector: Hydro Product:...

  4. Lintan Luertai Hydroelectric Power Company Ltd | Open Energy...

    Open Energy Info (EERE)

    Luertai Hydroelectric Power Company Ltd Jump to: navigation, search Name: Lintan Luertai Hydroelectric Power Company, Ltd Place: Lintan County, Gansu Province, China Sector: Hydro...

  5. Qiyang Yangguang Hydroelectric Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hydroelectric Co Ltd Jump to: navigation, search Name: Qiyang Yangguang Hydroelectric Co., Ltd Place: Yongzhou, Hunan Province, China Zip: 426100 Sector: Hydro Product: Hunan-based...

  6. Guangxi Baise City Chenyu Hydroelectric Development Co Ltd |...

    Open Energy Info (EERE)

    Baise City Chenyu Hydroelectric Development Co Ltd Jump to: navigation, search Name: Guangxi Baise City Chenyu Hydroelectric Development Co., Ltd. Place: Baise, Guangxi Autonomous...

  7. Hunan Caishi Hydroelectric Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Caishi Hydroelectric Co Ltd Jump to: navigation, search Name: Hunan Caishi Hydroelectric Co., Ltd Place: Hunan Province, China Zip: 427221 Sector: Hydro Product: Hunan-based small...

  8. Qiyang Haojie Hydroelectric Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Haojie Hydroelectric Co Ltd Jump to: navigation, search Name: Qiyang Haojie Hydroelectric Co., Ltd Place: Yongzhou City, Hunan Province, China Zip: 426100 Sector: Hydro Product:...

  9. Shaowu Jinwei Hydroelectric Power Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Shaowu Jinwei Hydroelectric Power Development Co Ltd Jump to: navigation, search Name: Shaowu Jinwei Hydroelectric Power Development Co., Ltd. Place: Shaowu City, Fujian Province,...

  10. Golmud Kunlun Hydroelectric Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Golmud Kunlun Hydroelectric Co Ltd Jump to: navigation, search Name: Golmud Kunlun Hydroelectric Co., Ltd. Place: Qinghai Province, China Sector: Hydro Product: China-based small...

  11. Zhijiang Peace Hydroelectric Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Zhijiang Peace Hydroelectric Co Ltd Jump to: navigation, search Name: Zhijiang Peace Hydroelectric Co. Ltd Place: Huaihua City, Hunan Province, China Sector: Hydro Product:...

  12. Dongkou Zhexiang hydroelectric Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Zhexiang hydroelectric Co Ltd Jump to: navigation, search Name: Dongkou Zhexiang hydroelectric Co. Ltd. Place: Shaoyang, Hunan Province, China Zip: 422300 Sector: Hydro Product:...

  13. Xuan en Tongziying Hydroelectric Power Development Co Ltd | Open...

    Open Energy Info (EERE)

    Tongziying Hydroelectric Power Development Co Ltd Jump to: navigation, search Name: Xuan(tm)en Tongziying Hydroelectric Power Development Co., Ltd. Place: Enshi Prefecture,...

  14. Winter Hydroelectric Dam Feasibility Assessment: The Lac Courte...

    Broader source: Energy.gov (indexed) [DOE]

    WINTER HYDROELECTRIC DAM FEASIBILITY ASSESSMENT THE LAC COURTE OREILLES BAND OF LAKE ... IN 1920 AND COMPLETED BY 1923 THE HYDROELECTRIC FACILITY WAS BUILT IN 1988. ISSUES ...

  15. 2015 Electrical Production: EPACT 2005 Section 242 Hydroelectric...

    Broader source: Energy.gov (indexed) [DOE]

    In 2016, Congress appropriated funds for Hydroelectric Production Incentives under Section 242 of the Energy Policy Act of 2005. Qualified hydroelectric facilities-existing powered ...

  16. Hunan Jishou Sanlian Hydroelectric Investment Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Jishou Sanlian Hydroelectric Investment Co Ltd Jump to: navigation, search Name: Hunan Jishou Sanlian Hydroelectric Investment Co., Ltd Place: Jishou, Hunan Province, China Zip:...

  17. S ENERGY POLICY ACT OF 2005 SECTION 242 HYDROELECTRIC INCENTIVE...

    Broader source: Energy.gov (indexed) [DOE]

    Project Albany Engineering Corporation (AEC) Stuyvesant Falls Hydroelectric Project ... Hydro Green Mountain Power Corp. Essex Hydroelectric Station Unit 9 Hydrodynamics Inc. ...

  18. Wind and Hydroelectric Feasibility Study - Bristol Bay Native...

    Broader source: Energy.gov (indexed) [DOE]

    Wind and Wind and Hydroelectric Hydroelectric Feasibility Feasibility Study Study Tiel Smith Tiel Smith - - BBNC BBNC Doug Vaught, PE Doug Vaught, PE - - Consultant Consultant A ...

  19. Yacyreta hydroelectric project contract signed

    SciTech Connect (OSTI)

    Not Available

    1987-09-01

    On June 26, 1987 the $270 million contract for the supply of 20 large hydraulic turbines for the Yacyreta Hydroelectric Project was signed by the Entidad Binacional Yacyreta, (a binational agency created by the governments of Argentina and Paraguay for the development of Yacyreta), and by Voith Hydro, Inc., of York, Pennsylvania, and Canadian General Electric of Montreal, Canada. Under the terms of the contract, 9 turbine units will be supplied by Voith Hydro, Inc. from its York, Pennsylvania plant, 4 units by Canadian General Electric of Montreal, and 7 units by Metanac, a consortium of Argentine manufacturers, who will utilize technology and technical assistance from Voith and CGE. The Yacyreta Project is being built on the Parana River on the border between Argentina and Paraguay. Construction at the site commenced in late 1983. Voith's portion of this contrast represents approximately $130 million dollars worth of business for its York, Pennsylvania facility.

  20. What is the role of hydroelectric power in the United States?

    Reports and Publications (EIA)

    2011-01-01

    The importance of hydropower as a source of electricity generation varies by geographic region. While hydropower accounted for 6% of total U.S. electricity generation in 2010, it provided over half of the electricity in the Pacific Northwest. Because hydroelectric generation relies on precipitation, it varies widely from month to month and year to year.

  1. Following Nature's Current HYDROELECTRIC POWER IN THE NORTHWEST

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Environmental Protection, Mitigation and Enhancement at Hydroelectric Projects ----10 Fish Passage Tour ---...

  2. Indian River Hydroelectric Project Grant

    SciTech Connect (OSTI)

    Rebecca Garrett

    2005-04-29

    This Final Technical Report provides a concise retrospective and summary of all facets of the Sheldon Jackson College electrical Infrastructure Renovation portion of the Indian River Hydroelectric Project Grant of the City and Borough of Sitka, Alaska. The Project Overview describes the origins of the project, the original conditions that provided the impetus for the grant funding, how the grant amendment was developed, the conceptual design development, and the actual parameters of the final project as it went out to bid. The Project Overview also describes the ''before and after'' conditions of the project. The Objectives division of this Final Technical Report describes the amendment-funded goals of the project. It also describes the milestones of project development and implementation, as well as, the rationale behind the milestone array. The Description of Activities Performed division of this report provides an in-depth chronological analysis of progressive project implementation. Photographs will provide further illustration of particular functional aspects of the renovation project within project parameters. The Conclusions and Recommendations division of this report provides a comprehensive retrospective analysis of the project.

  3. Tone signal generator for producing multioperator tone signals using an operator circuit including a waveform generator, a selector and an enveloper

    DOE Patents [OSTI]

    Dong, Q.; Jenkins, M.V.; Bernadas, S.R.

    1997-09-09

    A frequency modulation (FM) tone signal generator for generating a FM tone signal is disclosed. The tone signal generator includes a waveform generator having a plurality of wave tables, a selector and an enveloper. The waveform generator furnishes a waveform signal in response to a phase angle address signal. Each wave table stores a different waveform. The selector selects one of the wave tables in response to a plurality of selection signals such that the selected wave table largely provides the waveform signal upon being addressed largely by the phase angle address signal. Selection of the selected wave table varies with each selection signal. The enveloper impresses an envelope signal on the waveform signal. The envelope signal is used as a carrier or modulator for generating the FM tone signal. 17 figs.

  4. Tone signal generator for producing multioperator tone signals using an operator circuit including a waveform generator, a selector and an enveloper

    DOE Patents [OSTI]

    Dong, Qiujie; Jenkins, Michael V.; Bernadas, Salvador R.

    1997-01-01

    A frequency modulation (FM) tone signal generator for generating a FM tone signal is disclosed. The tone signal generator includes a waveform generator having a plurality of wave tables, a selector and an enveloper. The waveform generator furnishes a waveform signal in response to a phase angle address signal. Each wave table stores a different waveform. The selector selects one of the wave tables in response to a plurality of selection signals such that the selected wave table largely provides the waveform signal upon being addressed largely by the phase angle address signal. Selection of the selected wave table varies with each selection signal. The enveloper impresses an envelope signal on the waveform signal. The envelope signal is used as a carrier or modulator for generating the FM tone signal.

  5. Hydroelectric power in Hawaii. A report on the statewide survey of potential hydroelectric sites

    SciTech Connect (OSTI)

    Beck, C. A.

    1981-02-01

    An assessment was made of the hydropower potential in Hawaii. The major conclusion of this study is that hydropower resources in the State of Hawaii are substantial, and they offer the potential for major increases in hydropower generating capacity. Hydropower resources on all islands total about 50 MW of potential generating capacity. Combined with the 18 MW of existing hydropower capacity, hydropower resources potentially could generate about 307 million kWh of electric energy annually. This represents about 28% of the present combined electricity needs of the Neighbor Islands, Kauai, Molokai, Maui, and the Big Island. Hydropower resources on Kauai equal 72% of that island's electricity needs; on Molokai, 40%, on the Big Island, 20%; and on Maui, 18%. The island of Oahu, however, has only small hydropower resources, and could only generate a negligible portion of its electricity needs from this energy source. A summary of existing and future (potential) hydropower capacities and estimated annual outputs for each island is presented. How much of the potential capacity is being actively considered for development and how much is only tentatively proposed at the time is indicated. The economics of hydropower at specific sites were analyzed. The major conclusion of this analysis is that hydropower development costs vary widely among the different sites, but that generally the cost of hydroelectric power is either less than or comparable to the cost of oil-fired power.

  6. Analysis of environmental issues related to small scale hydroelectric development. II. Design considerations for passing fish upstream around dams. Environmental Sciences Division Publication No. 1567

    SciTech Connect (OSTI)

    Hildebrand, S.G.

    1980-08-01

    The possible requirement of facilities to move migrating fish upstream around dams may be a factor in determining the feasibility of retrofitting small dams for hydroelectric generation. Basic design considerations are reported that should be evaluated on a site-specific basis if upstream fish passage facilities are being considered for a small scale hydroelectric project (defined as an existing dam that can be retrofitted to generate 25 MW or less). Information on general life history and geographic distribution of fish species that may require passage is presented. Biological factors important in the design of upstream passage facilities are discussed: gas bubble disease, fish swimming speed, oxygen consumption by fish, and diel and photo behavior. Three general types of facilities (fishways, fish locks, and fish lifts) appropriate for upstream fish passage at small scale hydroelectric projects are described, and size dimensions are presented. General design criteria for these facilities (including fish swimming ability and behavior) and general location of facilities at a site are discussed. Basic cost considerations for each type of passage facility, including unit cost, operation and maintenance costs, and costs for supplying attraction water, are indicated.

  7. Managing water temperatures below hydroelectric facilities

    SciTech Connect (OSTI)

    Johnson, P.L.; Vermeyen, T.B.; O`Haver, G.G.

    1995-05-01

    Due to drought-related water temperature problems in the Bureau of Reclamation`s California Central Valley Project in the early 1990`s, engineers were forced to bypass water from the plants during critical periods. This was done at considerable cost in the form of lost revenue. As a result, an alternative method of lowering water temperature was developed and it has successfully lowered water temperatures downstream from hydroelectric facilities by using flexible rubber curtains. This innovative technology is aiding the survival of endangered fish populations. This article outlines the efforts and discusses the implementation of this method at several hydroelectric facilities in the area.

  8. Title 16 USC 823a Conduit Hydroelectric Facilities | Open Energy...

    Open Energy Info (EERE)

    a Conduit Hydroelectric Facilities Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Title 16 USC 823a Conduit Hydroelectric...

  9. 2015 Electrical Production: EPACT 2005 Section 242 Hydroelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Section 242 of the Energy Policy Act of 2005. Qualified hydroelectric facilities-existing powered or non-powered dams and conduits that added a new turbine or other hydroelectric ...

  10. 2013 Electrical Production: EPAct 2005 Section 242 Hydroelectric...

    Broader source: Energy.gov (indexed) [DOE]

    Section 242 of the Energy Policy Act of 2005. Qualified hydroelectric facilities-existing powered or non-powered dams and conduits that added a new turbine or other hydroelectric ...

  11. Final Guidance for EPAct 2005 Section 242 Hydroelectric Incentive...

    Broader source: Energy.gov (indexed) [DOE]

    Section 242 of the Energy Policy Act of 2005. Qualified hydroelectric facilities-existing powered or non-powered dams and conduits that added a new turbine or other hydroelectric ...

  12. Tribal Renewable Energy Foundational Course: Hydroelectric | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Hydroelectric Tribal Renewable Energy Foundational Course: Hydroelectric Watch the U.S. Department of Energy Office of Indian Energy foundational course webinar on hydroelectric renewable energy by clicking on the .swf link below. You can also download the PowerPoint slides and a text version of the audio. See the full list of DOE Office of Indian Energy educational webinars and provide your feedback on the National Training & Education Resource (NTER) website. hydroelectric.swf

  13. Hydroelectric redevelopment maintains heritage values

    SciTech Connect (OSTI)

    Bulkovshteyn, L.; Chidiac, M.; Hall, W.

    1995-12-31

    The Seymour GS is an 80 year old generating station on the historic Trent-Severn Waterway in Ontario, Canada. The rehabilitation at Seymour was approved by Provincial and Federal authorities on condition that the original appearance of the building be maintained. The capacity of the Generating Station (GS) is being uprated from 3.15 MW to 5.7 MW, by replacing five vertical double runner Francis units with five horizontal Kaplan turbines. The replacement of vertical Francis units with horizontal Kaplan units, necessitated an extensive and innovative demolition approach for the substructure modification. The new turbines required a powerhouse base slab 3.5 m below the grade of the original slab. This required removal of the existing slabs and foundation rock along with most of the interior powerhouse walls. The type of modification and demolition were carefully chosen to accommodate a very tight schedule dictated by the requirement of the Federal Department of Fisheries and Oceans (DFO), where in-water work is restricted to certain months of the year.

  14. Installation of a Low Flow Unit at the Abiquiu Hydroelectric Facility

    SciTech Connect (OSTI)

    Jack Q. Richardson

    2012-06-28

    Final Technical Report for the Recovery Act Project for the Installation of a Low Flow Unit at the Abiquiu Hydroelectric Facility. The Abiquiu hydroelectric facility existed with two each 6.9 MW vertical flow Francis turbine-generators. This project installed a new 3.1 MW horizontal flow low flow turbine-generator. The total plant flow range to capture energy and generate power increased from between 250 and 1,300 cfs to between 75 and 1,550 cfs. Fifty full time equivalent (FTE) construction jobs were created for this project - 50% (or 25 FTE) were credited to ARRA funding due to the ARRA 50% project cost match. The Abiquiu facility has increased capacity, increased efficiency and provides for an improved aquatic environment owing to installed dissolved oxygen capabilities during traditional low flow periods in the Rio Chama. A new powerhouse addition was constructed to house the new turbine-generator equipment.

  15. Pumped storage for hydroelectric power. (Latest citations from Fluidex data base). Published Search

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    The bibliography contains citations concerning the design, development, construction, and characteristics of surface and underground pumped storage for hydroelectric power. Pumped storage projects and facilities worldwide are referenced. There is some consideration of research and experimental results of pumped storage studies, as well as modeling. (Contains a minimum of 192 citations and includes a subject term index and title list.)

  16. Pumped storage for hydroelectric power. (Latest citations from Fluidex (Fluid Engineering Abstracts) database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    The bibliography contains citations concerning the design, development, construction, and characteristics of surface and underground pumped storage for hydroelectric power. Pumped storage projects and facilities worldwide are referenced. There is some consideration of research and experimental results of pumped storage studies, as well as modeling. (Contains a minimum of 198 citations and includes a subject term index and title list.)

  17. Environmental Impacts of Increased Hydroelectric Development at Existing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dams | Department of Energy Impacts of Increased Hydroelectric Development at Existing Dams Environmental Impacts of Increased Hydroelectric Development at Existing Dams This report describes the environmental impacts of a proposed U.S. Department of Energy (DOE) initiative to promote the development of hydropower resources at existing dams. enviro_impacts_hydroelectric_dev_existing_dams.pdf (2.77 MB) More Documents & Publications EA-2017: Final Environmental Assessment Hydropower Vision

  18. FERC Handbook for Hydroelectric Project Licensing and 5 MW Exemptions...

    Open Energy Info (EERE)

    Handbook for Hydroelectric Project Licensing and 5 MW Exemptions from Licensing Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance -...

  19. Forest Service Handbook 2709.15 - Hydroelectric Handbook | Open...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Forest Service Handbook 2709.15 - Hydroelectric HandbookPermitting...

  20. Asia Power Leibo Hydroelectricity Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Province, China Sector: Hydro Product: China-based developer and operator of small hydro plants. References: Asia Power (Leibo) Hydroelectricity Co Ltd1 This article is a...

  1. FERC Handbook for Hydroelectric Filings other than Licenses and...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: FERC Handbook for Hydroelectric Filings other than Licenses and...

  2. FERC Hydroelectric Project Handbook for Filings other than Licenses...

    Open Energy Info (EERE)

    Hydroelectric Project Handbook for Filings other than Licenses and Exemptions Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance -...

  3. The development of advanced hydroelectric turbines to improve...

    Office of Scientific and Technical Information (OSTI)

    turbines to improve fish passage survival Citation Details In-Document Search Title: The development of advanced hydroelectric turbines to improve fish passage survival You ...

  4. The development of advanced hydroelectric turbines to improve...

    Office of Scientific and Technical Information (OSTI)

    turbines to improve fish passage survival Citation Details In-Document Search Title: The development of advanced hydroelectric turbines to improve fish passage survival Recent ...

  5. The Development of Small Hydroelectric Projects in Vermont |...

    Open Energy Info (EERE)

    potential, the state and federal regulatory processes, the impacts of dams on rivers, the principles behind hydroelectric facility design, the importance of streamflow protection,...

  6. MHK Projects/Deception Pass Tidal Energy Hydroelectric Project...

    Open Energy Info (EERE)

    Deception Pass Tidal Energy Hydroelectric Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice"...

  7. Final Guidance for EPAct 2005 Section 242 Hydroelectric Incentive Program

    Broader source: Energy.gov [DOE]

    This document contains the Final Guidance for the EPAct 2005 Section 242 Hydroelectric Incentive Program. Applications are due February 20, 2015.

  8. Accepting Applications: $3.96 Million Hydroelectric Production Incentive Program

    Broader source: Energy.gov [DOE]

    A second round of funding for the Section 242 Hydroelectric Incentive Program is now available from the Energy Department's Water Power Program.

  9. PP-89-1 Bangor Hydro-Electric Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -1 Bangor Hydro-Electric Company PP-89-1 Bangor Hydro-Electric Company Presidental permit authorizing Bangor Hydro-Electric Company to construc, operate and maintain electric ...

  10. A power system includes an engine, a motor/generator operatively connected to the engine, and a starter operatively connected to at least one of the engine and the motor/generator.

    DOE Patents [OSTI]

    Hoff, Brian D.; Algrain, Marcelo C.

    2008-12-09

    A power system includes an engine, a motor/generator operatively connected to the engine, and a starter operatively connected to at least one of the engine and the motor/generator.

  11. Grid-Connected Renewable Energy Generation Toolkit-Hydroelectric...

    Open Energy Info (EERE)

    United States Agency for International Development Sector: Energy Resource Type: Training materials Website: www.energytoolbox.orggcremod4index.shtml Grid-Connected...

  12. EERE Success Story-Hydropower Generators Will Deliver New Energy...

    Energy Savers [EERE]

    of the Cushman Hydroelectric Project for the first time since the dams were constructed in the late 1920s. ... for clean, domestic power generation from resources such as ...

  13. Hybrid (particle in cell-fluid) simulation of ion-acoustic soliton generation including super-thermal and trapped electrons

    SciTech Connect (OSTI)

    Nopoush, M.; Abbasi, H.

    2011-08-15

    The present paper is devoted to the simulation of the nonlinear disintegration of a localized perturbation into an ion-acoustic soliton in a plasma. Recently, this problem was studied by a simple model [H. Abbasi et al., Plasma Phys. Controlled Fusion 50, 095007 (2008)]. The main assumptions were (i) in the electron velocity distribution function (DF), the ion-acoustic soliton velocity was neglected in comparison to the electron thermal velocity, (ii) on the ion-acoustic evolution time-scale, the electron velocity DF was assumed to be stationary, and (iii) the calculation was restricted to the small amplitude case. In order to generalize the model, one has to consider the evolution of the electron velocity DF for finite amplitudes. For this purpose, a one dimensional electrostatic hybrid code, particle in cell (PIC)-fluid, was designed. It simulates the electrons dynamics by the PIC method and the cold ions dynamics by the fluid equations. The plasma contains a population of super-thermal electrons and, therefore, a Lorentzian (kappa) velocity DF is used to model the high energy tail in the electron velocity DF. Electron trapping is included in the simulation in view of their nonlinear resonant interaction with the localized perturbation. A Gaussian initial perturbation is used to model the localized perturbation. The influence of both the trapped and the super-thermal electrons on this process is studied and compared with the previous model.

  14. Analysis of Environmental Issues Related to Small-Scale Hydroelectric Development II: Design Consideration for Passing Fish Upstream Around Dams

    SciTech Connect (OSTI)

    Hildebrandt, S. G.; Bell, M. C.; Anderson, J. J.; Richey, E. P.; Parkhurst, Z. E.

    1980-08-01

    The purpose of this report is to provide general information for use by potential developers of small scale hydroelectric projects that will include facilities to pass migrating fish upstream around dams. The document is not intended to be a textbook on design of fish passage facilities, but rather to be a general guide to some factors that are important when designing such facilities.

  15. Legal obstacles and incentives to the development of small scale hydroelectric power in New York

    SciTech Connect (OSTI)

    None,

    1980-05-01

    The legal and institutional obstacles to the development of small-scale hydroelectric energy at the state level are discussed. The Federal government also exercises extensive regulatory authority in the area, and the dual regulatory system from the standpoint of the appropriate legal doctrine, the law of pre-emption, application of the law to the case of hydroelectric development, and an inquiry into the practical use of the doctrine by the FERC is examined. The first step the small scale hydroelectric developer must take is that of acquiring title to the real property comprising the development site. The real estate parcel must include the requisite interest in the land adjacent to the watercourse, access to the underlying streambed and where needed, the land necessary for an upstream impoundment area. Land acquisition may be effectuated by purchase, lease, or grant by the state. In addition to these methods, New York permits the use of the eminent domain power of the state for public utilities under certain circumstances.

  16. Reynolds Creek Hydroelectric Project, Project Status

    Broader source: Energy.gov (indexed) [DOE]

    Excellent School System November 17, 2009 ... South Fork (2.3 MW) Remainder of Generation is Diesel-fired November 17, 2009 6 Project ... Order TurbineGenerator - January 2010 ...

  17. Xianggelila Xian Ge Ji Liu Yu Xia Zhi En Hydroelectric Development...

    Open Energy Info (EERE)

    Ge Ji Liu Yu Xia Zhi En Hydroelectric Development Ltd Jump to: navigation, search Name: Xianggelila Xian Ge Ji Liu Yu Xia Zhi En Hydroelectric Development Ltd Place: Xianggelila...

  18. Federal Register Notice EPAct 2005 Section 242 Hydroelectric Incentive Program: January 2015

    Broader source: Energy.gov [DOE]

    Federal Register Notice for the EPAct 2005 Section 242 Hydroelectric Incentive Program application period announcement: January, 2015.

  19. S ENERGY POLICY ACT OF 2005 SECTION 242 HYDROELECTRIC INCENTIVE PROGRAM

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    S ENERGY POLICY ACT OF 2005 SECTION 242 HYDROELECTRIC INCENTIVE PROGRAM CALENDAR YEAR 2013 INCENTIVE PAYMENTS Payee (Applicant) Hydro Facility Albany Engineering Corporation (AEC) Mechanicville Hydroelectric Project Albany Engineering Corporation (AEC) Stuyvesant Falls Hydroelectric Project Barton (VT) Village, Inc., Electric Department Barton Hydro Bell Mountain Hydro LLC Bell Mountain Hydro Facility Bowersock Mills & Power Company Expanded Kansas River Hydropower Project-North Powerhouse

  20. EIS-0184: South Fork Tolt River Hydroelectric Project

    Broader source: Energy.gov [DOE]

    This EIS analyzes the Seattle City Light, a Department of the City of Seattle proposal to construct a hydroelectric project with an installed capacity of 15 MW on the South Fork Tolt River near the town of Carnation located in King County in the State of Washington.

  1. Hydroelectric power in Hawaii: a reconnaissance survey

    SciTech Connect (OSTI)

    1981-02-01

    The major conclusion of this study is that hydropower resources in the State of Hawaii are substantial, and they offer the potential for major increases in hydropower generating capacity. Hydropower resources on all islands total about 50 megawatts of potential generating capacity. Combined with the 18 megawatts of existing hydropower capacity, hydropower resources potentially could generate about 307 million kilowatt-hours of electric energy annually. This represents about 28% of the present combined electricity needs of the Neighbor Islands - Kauai, Molokai, Maui, and the Big Island. Hydropower resources on Kauai equal 72% of that island's electricity needs; on Molokai, 40%; on the Big Island, 20%; and on Maui, 18%. The island of Oahu, however, has only small hydropower resources, and could only generate a negligible portion of its electricity needs from this energy source. Existing and future (potential) hydropower capacities are summarized, and annual outputs for each island are estimated. Future hydropower facilities are subdivided into two categories, which show how much of the potential capacity is being actively considered for development, and how much is only tentatively proposed at the time.

  2. A Study of United States Hydroelectric Plant Ownership

    SciTech Connect (OSTI)

    Hall, Douglas G.; Reeves, Kelly S.

    2006-06-01

    Ownership of United States hydroelectric plants is reviewed from several perspectives. Plant owners are grouped into six owner classes as defined by the Federal Energy Regulatory Commission. The numbers of plants and the corresponding total capacity associated with each owner class are enumerated. The plant owner population is also evaluated based on the number of owners in each owner class, the number of plants owned by a single owner, and the size of plants based on capacity ranges associated with each owner class. Plant numbers and corresponding total capacity associated with owner classes in each state are evaluated. Ownership by federal agencies in terms of the number of plants owned by each agency and the corresponding total capacity is enumerated. A GIS application that is publicly available on the Internet that displays hydroelectric plants on maps and provides basic information about them is described.

  3. DOE Office of Indian Energy Foundational Course: Hydroelectric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Foundational Courses Renewable Energy Technologies Hydroelectric Presented by the National Renewable Energy Laboratory Course Outline What we will cover...  About the DOE Office of Indian Energy Education Initiative  Course Introduction  Resource Map & Project Scales  Technology Overview: - Siting - Costs  Successful Project Examples  Policies Relevant to Project Development  Additional Information & Resources Introduction The U.S. Department of Energy (DOE) Office

  4. Kootznoowoos Thayer Lake Hydroelectric Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    November 16, 2011 Tribal Energy Program The Project - Run of River Project - 200 ft of head - 6 miles North - 1000 kilowatt - 8 miles of road - Underwater crossing Angoon - Angoon and its people - from Time immemorial - Only year round community in Wilderness and National Monument - USDA is the land manager - 400 residents with potential to grow - Current spot demand of 600 kW - Commercial Rate unsubsidized $.60 plus kWh - Centrally located in Panhandle & Tongass - Considerable hydroelectric

  5. Federal financial assistance for hydroelectric power

    SciTech Connect (OSTI)

    Not Available

    1980-09-01

    The Rural Energy Initiative seeks to maximize the effectiveness of Federal programs in developing certain energy resources, including small-scale hydropower. The REI target is to arrange financing for 100 hydro sites by 1981, with about 300 MWe of additional capacity. The REI financial assistance programs for small hydropower development in the US DOE; Economic Development Administration; REA; HUD; Farmers Home Administration; DOI; DOL's CETA programs; and the Community Services Administration are described. (MCW)

  6. Generation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generation Generation Southeastern’s Power Operations employees perform the tasks of declaring, scheduling, dispatching, and accounting for capacity and energy generated at the 22 hydroelectric projects in the agency’s 11-state marketing area. Southeastern has Certified System Operators, meeting the criteria set forth by the North American Electric Reliability Corporation. Southeastern's Power Operations employees perform the tasks of declaring, scheduling, dispatching, and accounting

  7. DOE Office of Indian Energy Foundational Course on Hydroelectric Renewable Energy Text Version

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Foundational Courses Renewable Energy Technologies: Hydroelectric Webinar (text version) Below is the text version of the Webinar titled "DOE Office of Indian Energy Foundational Courses Renewable Energy Technologies: Hydroelectric." Amy Hollander: Hello. I'm Amy Hollander with the National Renewable Energy Laboratory. Welcome to today's webinar on hydroelectricity as a renewable energy, sponsored by the U.S. Department of Energy Office of Indian Energy Policy and Programs. This

  8. PACKAGE INCLUDES:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PACKAGE INCLUDES: Airfare from Seattle, 4 & 5 Star Hotels, Transfers, Select Meals, Guided Tours and Excursions DAY 01: BANGKOK - ARRIVAL DAY 02: BANGKOK - SIGHTSEEING DAY 03: BANGKOK - FLOATING MARKET DAY 04: BANGKOK - AT LEISURE DAY 05: BANGKOK - CHIANG MAI BY AIR DAY 06: CHIANG MAI - SIGHTSEEING DAY 07: CHIANG MAI - ELEPHANT CAMP DAY 08: CHIANG MAI - PHUKET BY AIR DAY 09: PHUKET - PHI PHI ISLAND BY FERRY DAY 10: PHUKET - AT LEISURE DAY 11: PHUKET - CORAL ISLAND BY SPEEDBOAT DAY 12: PHUKET

  9. Status Review of Wildlife Mitigation at Columbia Basin Hydroelectric Projects, Oregon Facilities, Final Report.

    SciTech Connect (OSTI)

    Bedrossian, Karen L.

    1984-08-01

    The report presents a review and documentation of existing information on wildlife resources at Columbia River Basin hydroelectric facilities within Oregon. Effects of hydroelectric development and operation; existing agreements; and past, current and proposed wildlife mitigation, enhancement, and protection activities were considered. (ACR)

  10. Federal legal obstacles and incentives to the development of the small-scale hydroelectric potential of the nineteen Northeastern states. Executive summary

    SciTech Connect (OSTI)

    None,

    1980-05-01

    The main report for which this report is the executive summary, DOE/RA--23-216.00.0-01 (see EAPA 5:3929), was published in revised form in March 1979. Also, since that time, Energy Law Institute has produced detailed legal memoranda on obstacles and incentives for each of the 19 states. This executive summary summarizes the findings and observations of the original report. Specific summaries included are: Federal Jurisdiction Over Small-Scale Hydroelectric Facilities; The FERC; The Regulation of Construction in and the Discharge of Dredged, Fill, and Other Materials into the Waters of the US; The Protection of Fish, Wildlife, and Endangered Species; The Preservation of Historic Places, Archaeological Sites, and Natural Areas; Regulation of the Use of Federal Lands; Federal Dam Construction and Power-Distribution Agencies; Additional Federal Agencies Concerned with Small-Scale Hydroelectric Dams; Federal Tax Devices and Business Structures Affecting Small-Scale Hydroelectric Development; and an Outline of Federal-Assistance programs Available for Small-Scale Hydroelectric Development.

  11. Draft Guidance for Section 242 of the Energy Policy Act of 2005- Hydroelectric Production Incentive Program- July 2014

    Broader source: Energy.gov [DOE]

    This document contains draft guidance for Section 242 of the Energy Policy Act of 2005, the "Hydroelectric Production Incentive Program"

  12. 51-Mile Hydroelectric Power Project Demonstration of new methodologies to reduce the LCOE for small, hydropower development

    Broader source: Energy.gov [DOE]

    51-Mile Hydroelectric Power Project Demonstration of new methodologies to reduce the LCOE for small, hydropower development

  13. ''Rancho Hydro'': a low-head, high volume residential hydroelectric power system, Anahola, Kauai, Hawaii

    SciTech Connect (OSTI)

    Harder, J.D.

    1982-07-01

    The site is a 1.75 acre residential site with two households. The Anahola stream intersects the property line. Design of the proposed hydroelectric system is described, along with the permit process. Construction is in progress. (DLC)

  14. Energy Department Seeks Feedback on Draft Guidance for the Hydroelectric Production Incentive Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Department of Energy is currently inviting comments from the general public on guidance relating to the implementation of Section 242 of the Energy Policy Act of 2005, the “Hydroelectric Production Incentive Program.”

  15. Energy Department Seeks Additional Feedback on Draft Guidance for the Hydroelectric Production Incentive Program

    Broader source: Energy.gov [DOE]

    The Department of Energy is currently inviting comments from the general public on revised guidance relating to the implementation of Section 242 of the Energy Policy Act of 2005, the “Hydroelectric Production Incentive Program.”

  16. Second international conference on alkali-aggregate reactions in hydroelectric plants and dams

    SciTech Connect (OSTI)

    1995-12-31

    This document is the report of the Second International Conference on Alkali-Aggregate Reactions in Hydroelectric Plants and Dams. This conference was held in October 1995 in Chattanooga, TN and sponsored by the Tennessee Valley Authority. Thirty five papers were presented, with technical sessions covering: (1) The TVA experience, (2) AAR in Hydroelectric Powerplants, (3) AAR in Dams and Spillways, and (4) Long-term management of AAR. Additionally, there were several workshop sessions.

  17. Southwestern Federal Power System's Fiscal Year 2010 Financial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... presentation includes all of the hydroelectric generating and power operations of one ... of Southwestern and the related hydroelectric generating facilities and power ...

  18. Protection from ground faults in the stator winding of generators at power plants in the Siberian networks

    SciTech Connect (OSTI)

    Vainshtein, R. A.; Lapin, V. I.; Naumov, A. M.; Doronin, A. V.; Yudin, S. M.

    2010-05-15

    The experience of many years of experience in developing and utilization of ground fault protection in the stator winding of generators in the Siberian networks is generalized. The main method of protection is to apply a direct current or an alternating current with a frequency of 25 Hz to the primary circuits of the stator. A direct current is applied to turbo generators operating in a unit with a transformer without a resistive coupling to the external grid or to other generators. Applying a 25 Hz control current is appropriate for power generation systems with compensation of a capacitive short circuit current to ground. This method forms the basis for protection of generators operating on busbars, hydroelectric generators with a neutral grounded through an arc-suppression reactor, including in consolidated units with generators operating in parallel on a single low-voltage transformer winding.

  19. Table 8.2c Electricity Net Generation: Electric Power Sector...

    U.S. Energy Information Administration (EIA) Indexed Site

    c Electricity Net Generation: Electric Power Sector by Plant Type, 1989-2011 (Breakout of Table ... Total Conventional Hydroelectric Power 6 Biomass Geo- thermal Solar PV 9 Wind Total ...

  20. 1,"John Day","Hydroelectric","USACE Northwestern Division",2160

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"John Day","Hydroelectric","USACE Northwestern Division",2160 2,"The Dalles","Hydroelectric","USACE Northwestern Division",1822.7 3,"Bonneville","Hydroelectric","USACE Northwestern Division",1153.9 4,"McNary","Hydroelectric","USACE Northwestern

  1. Tazimina hydroelectric project, Iliamna, Alaska. Final technical and construction cost report

    SciTech Connect (OSTI)

    1998-08-01

    The Iliamna-Newhalen-Nondalton Electric Cooperative (INNEC) provides electrical power to three communities of the same names. These communities are located near the north shore of Iliamna Lake in south-central Alaska approximately 175 miles southwest of Anchorage. A hydroelectric project was constructed for these communities, starting in the spring of 1996 and ending in the spring of 1998. The project site is on the Tazimina River about 12 miles northeast of Iliamna Lake. The taximina River flows west from the Aleutian Range. The project site is at Tazimina Falls about 9 miles upstream of the confluence of the Tazimina River and the Newhalen River. The project has an installed capacity of 824 kilowatts (kW) and is expandable to 1.5 megawatts (MW). The project is run-of-the-river (no storage) and uses the approximately 100 feet of natural head provided by the falls. The project features include a channel control sill, intake structure, penstock, underground powerhouse, tailrace, surface control building, buried transmission line and communication cable, and access road.

  2. Recovery Act: Hydroelectric Facility Improvement Project - Replacement of Current Mechanical Seal System with Rope Packing System

    SciTech Connect (OSTI)

    Stephens, Jessica D.

    2013-05-29

    On January 27, 2010 the City of North Little Rock, Arkansas received notification of the awarding of a Department of Energy (DOE) grant totaling $450,000 in funding from the American Recovery and Reinvestment Act (ARRA) under the Project Title: Recovery Act: Hydroelectric Facility Improvement Project – Automated Intake Clearing Equipment and Materials Management. The purpose of the grant was for improvements to be made at the City’s hydroelectric generating facility located on the Arkansas River. Improvements were to be made through the installation of an intake maintenance device (IMD) and the purchase of a large capacity wood grinder. The wood grinder was purchased in order to receive the tree limbs, tree trunks, and other organic debris that collects at the intake of the plant during high flow. The wood grinder eliminates the periodic burning of the waste material that is cleared from the intake and reduces any additional air pollution to the area. The resulting organic mulch has been made available to the public at no charge. Design discussion and planning began immediately and the wood grinder was purchased in July of 2010 and immediately put to work mulching debris that was gathered regularly from the intake of the facility. The mulch is currently available to the public for free. A large majority of the design process was spent in discussion with the Corps of Engineers to obtain approval for drawings, documents, and permits that were required in order to make changes to the structure of the powerhouse. In April of 2011, the City’s Project Engineer, who had overseen the application, resigned and left the City’s employ. A new Systems Mechanical Engineer was hired and tasked with overseeing the project. The transfer of responsibility led to a re-examination of the original assumptions and research upon which the grant proposal was based. At that point, the project went under review and a trip was booked for July 2011 to visit facilities that currently

  3. Solar Energy Education. Renewable energy: a background text. [Includes glossary

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    Some of the most common forms of renewable energy are presented in this textbook for students. The topics include solar energy, wind power hydroelectric power, biomass ocean thermal energy, and tidal and geothermal energy. The main emphasis of the text is on the sun and the solar energy that it yields. Discussions on the sun's composition and the relationship between the earth, sun and atmosphere are provided. Insolation, active and passive solar systems, and solar collectors are the subtopics included under solar energy. (BCS)

  4. AUDIT REPORT Southwestern Federal Power System's Fiscal Year...

    Office of Environmental Management (EM)

    ... and operates hydroelectric generating facilities ... includes items such as dams, spillways, generators, ... the remainder applied to the unpaid generation investment. ...

  5. Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    ... includes items such as dams, spillways, generators, ... activities at hydroelectric generating facilities ... applied to the unpaid generation investment. (h) Accounts ...

  6. Status Review of Wildlife Mitigation, Columbia Basin Hydroelectric Projects, Columbia River Mainstem Facilities, 1984 Final Report.

    SciTech Connect (OSTI)

    Howerton, Jack; Hwang, Diana

    1984-11-01

    This report reviews the status of past, present, and proposed future wildlife planning and mitigation programs at existing hydroelectric projects in the Columbia River Basin. The project evaluations will form the basis for determining any needed remedial measures or additional project analysis. Each hydropower facility report is abstracted separately for inclusion in the Energy Data Base.

  7. Brigham City Hydro Generation Project

    SciTech Connect (OSTI)

    Ammons, Tom B.

    2015-10-31

    Brigham City owns and operates its own municipal power system which currently includes several hydroelectric facilities. This project was to update the efficiency and capacity of current hydro production due to increased water flow demands that could pass through existing generation facilities. During 2006-2012, this project completed efficiency evaluation as it related to its main objective by completing a feasibility study, undergoing necessary City Council approvals and required federal environmental reviews. As a result of Phase 1 of the project, a feasibility study was conducted to determine feasibility of hydro and solar portions of the original proposal. The results indicated that the existing Hydro plant which was constructed in the 1960’s was running at approximately 77% efficiency or less. Brigham City proposes that the efficiency calculations be refined to determine the economic feasibility of improving or replacing the existing equipment with new high efficiency equipment design specifically for the site. Brigham City completed the Feasibility Assessment of this project, and determined that the Upper Hydro that supplies the main culinary water to the city was feasible to continue with. Brigham City Council provided their approval of feasibility assessment’s results. The Upper Hydro Project include removal of the existing powerhouse equipment and controls and demolition of a section of concrete encased penstock, replacement of penstock just upstream of the turbine inlet, turbine bypass, turbine shut-off and bypass valves, turbine and generator package, control equipment, assembly, start-up, commissioning, Supervisory Control And Data Acquisition (SCADA), and the replacement of a section of conductors to the step-up transformer. Brigham City increased the existing 575 KW turbine and generator with an 825 KW turbine and generator. Following the results of the feasibility assessment Brigham City pursued required environmental reviews with the DOE and

  8. 2,"Big Bend Dam","Hydroelectric","USCE-Missouri River District",520

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Oahe","Hydroelectric","USCE-Missouri River District",714 2,"Big Bend Dam","Hydroelectric","USCE-Missouri River District",520 3,"Big Stone","Coal","Otter Tail Power Co",475.6 4,"Fort Randall","Hydroelectric","USCE-Missouri River District",360

  9. Case studies of the legal and institutional obstacles and incentives to the development of small-scale hydroelectric power: South Columbia Basin Irrigation District, Pasco, Washington

    SciTech Connect (OSTI)

    Schwartz, L.

    1980-05-01

    The case study concerns two modern human uses of the Columbia River - irrigation aimed at agricultural land reclamation and hydroelectric power. The Grand Coulee Dam has become synonomous with large-scale generation of hydroelectric power providing the Pacific Northwest with some of the least-expensive electricity in the United States. The Columbia Basin Project has created a half-million acres of farmland in Washington out of a spectacular and vast desert. The South Columbia River Basin Irrigation District is seeking to harness the energy present in the water which already runs through its canals, drains, and wasteways. The South District's development strategy is aimed toward reducing the costs its farmers pay for irrigation and raising the capital required to serve the remaining 550,000 acres originally planned as part of the Columbia Basin Project. The economic, institutional, and regulatory problems of harnessing the energy at site PEC 22.7, one of six sites proposed for development, are examined in this case study.

  10. Legal obstacles and incentives to the development of small scale hydroelectric potential in Wisconsin

    SciTech Connect (OSTI)

    None,

    1980-05-01

    The legal and institutional obstacles to the development of small-scale hydroelectric energy at the state level are discussed. The Federal government also exercises extensive regulatory in the area, and the dual regulatory system from the standpoint of the appropriate legal doctrine, the law of pre-emption, application of the law to the case of hydroelectric development, and an inquiry into the practical use of the doctrine by the FERC is examined. The initial obstacle that all developers confront in Wisconsin is obtaining the authority to utilize the bed, banks, and flowing water at a proposed dam site. This involves a determination of ownership of the stream banks and bed and the manner of obtaining either their title or use; and existing constraints with regard to the use of the water. Wisconsin follows the riparian theory of water law.

  11. Small-scale hydroelectric power in the Pacific Northwest: new impetus for an old energy source

    SciTech Connect (OSTI)

    Not Available

    1980-07-01

    Energy supply is one of the most important issues facing Northwestern legislators today. To meet the challenge, state legislatures must address the development of alternative energy sources. The Small-Scale Hydroelectric Power Policy Project of the National Conference of State Legislators (NCSL) was designed to assist state legislators in looking at the benefits of one alternative, small-scale hydro. Because of the need for state legislative support in the development of small-scale hydroelectric, NCSL, as part of its contract with the Department of Energy, conducted the following conference on small-scale hydro in the Pacific Northwest. The conference was designed to identify state obstacles to development and to explore options for change available to policymakers. A summary of the conference proceedings is presented.

  12. Wildlife and Wildlife Habitat Mitigation Plan for Libby Hydroelectric Project, Final Report.

    SciTech Connect (OSTI)

    Mundinger, John

    1985-01-01

    This report describes the proposed mitigation plan for wildlife losses attributable to the construction of the Libby hydroelectric project. Mitigation objectives and alternatives, the recommended mitigation projects, and the crediting system for each project are described by each target species. The report describes mitigation that has already taken place and 8 recommended mitigation projects designed to complete total wildlife mitigation. 8 refs., 2 figs., 12 tabs.

  13. Kootznoowoo Incorporated: 1+ MW Thayer Creek Hydro-electric Development Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation Kootznoowoo Incorporated 1+ MW Thayer Creek Hydro-electric Development Project Peter Naoroz General Manager Kootznoowoo, Inc. Final Design Grant No Construction Previous work done by HDR, Alaska Cost Reduction  Angoon Community Association  City of Angoon  Sealaska Corporation  Central Council of Tlingit and Haida Indian Tribes of Alaska  Inside Passage Electrical Cooperative  Our Neighboring Communities  Our First Nation Brothers and Sisters  DOE, USDA FS,

  14. Legal obstacles and incentives to the development of small scale hydroelectric power in West Virginia

    SciTech Connect (OSTI)

    None,

    1980-05-01

    The legal and institutional obstacles to the development of small-scale hydroelectric in West Virginia at the state level are described. The Federal government also exercises extensive regulatory authority in the area. The introductory section examines the dual regulatory system from the standpoint of the appropriate legal doctrine, the law of pre-emption, application of the law to the case of hydroelectric development, and concludes with an inquiry into the practical use of the doctrine by FERC. The development of small-scale hydroelectric energy depends on the selection of a site which will produce sufficient water power capacity to make the project economically attractive to a developer. In West Virginia, the right to use the flowing waters of a stream, creek, or river is appurtenant to the ownership of the lands bordering the watercourse. The lands are known as riparian lands. The water rights are known as riparian rights. Thus, the first obstacle a developer faces involves the acquisition of riparian lands and the subsequent right to the use of the water. The water law in West Virginia is discussed in detail followed by discussions on direct and indirect regulations; continuing obligations; financial considerations; and interstate organizations.

  15. Report on technical feasibility of underground pumped hydroelectric storage in a marble quarry site in the Northeast United States

    SciTech Connect (OSTI)

    Chas. T. Main, Inc.

    1982-03-01

    The technical and economic aspects of constructing a very high head underground hydroelectric pumped storage were examined at a prefeasibility level. Excavation of existing caverns in the West Rutland Vermont marble quarry would be used to construct the underground space. A plant capacity of 1200 MW and 12 h of continuous capacity were chosen as plant operating conditions. The site geology, plant design, and electrical and mechanical equipment required were considered. The study concluded that the cost of the 1200 MW underground pumped storage hydro electric project at this site even with the proposed savings from marketable material amounts to between $581 and $595 per kilowatt of installed capacity on a January 1982 pricing level. System studies performed by the planning group of the New England Power System indicate that the system could economically justify up to about $442 per kilowatt on an energy basis with no credit for capacity. To accommodate the plant with the least expensive pumping energy, a coal and nuclear generation mix of approximately 65% would have to be available before the project becomes feasible. It is not expected that this condition can be met before the year 2000 or beyond. It is therefore concluded that the West Rutland underground pumped storage facility is uneconomic at this time. Several variables however could have marked influence on future planning and should be examined on periodic basis.

  16. Wanaket Wildlife Area Management Plan : Five-Year Plan for Protecting, Enhancing, and Mitigating Wildlife Habitat Losses for the McNary Hydroelectric Facility.

    SciTech Connect (OSTI)

    Confederated Tribes of the Umatilla Indian Reservation Wildlife Program

    2001-09-01

    The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) propose to continue to protect, enhance, and mitigate wildlife and wildlife habitat at the Wanaket Wildlife Area. The Wanaket Wildlife Area was approved as a Columbia River Basin Wildlife Mitigation Project by the Bonneville Power Administration (BPA) and Northwest Power Planning Council (NWPPC) in 1993. This management plan will provide an update of the original management plan approved by BPA in 1995. Wanaket will contribute towards meeting BPA's obligation to compensate for wildlife habitat losses resulting from the construction of the McNary Hydroelectric facility on the Columbia River. By funding the enhancement and operation and maintenance of the Wanaket Wildlife Area, BPA will receive credit towards their mitigation debt. The purpose of the Wanaket Wildlife Area management plan update is to provide programmatic and site-specific standards and guidelines on how the Wanaket Wildlife Area will be managed over the next five years. This plan provides overall guidance on both short and long term activities that will move the area towards the goals, objectives, and desired future conditions for the planning area. The plan will incorporate managed and protected wildlife and wildlife habitat, including operations and maintenance, enhancements, and access and travel management. Specific project objectives are related to protection and enhancement of wildlife habitats and are expressed in terms of habitat units (HU's). Habitat units were developed by the US Fish and Wildlife Service's Habitat Evaluation Procedures (HEP), and are designed to track habitat gains and/or losses associated with mitigation and/or development projects. Habitat Units for a given species are a product of habitat quantity (expressed in acres) and habitat quality estimates. Habitat quality estimates are developed using Habitat Suitability Indices (HSI). These indices are based on quantifiable habitat features such as vegetation

  17. The Application of Traits-Based Assessment Approaches to Estimate the Effects of Hydroelectric Turbine Passage on Fish Populations

    SciTech Connect (OSTI)

    Cada, Glenn F; Schweizer, Peter E

    2012-04-01

    One of the most important environmental issues facing the hydropower industry is the adverse impact of hydroelectric projects on downstream fish passage. Fish that migrate long distances as part of their life cycle include not only important diadromous species (such as salmon, shads, and eels) but also strictly freshwater species. The hydropower reservoirs that downstream-moving fish encounter differ greatly from free-flowing rivers. Many of the environmental changes that occur in a reservoir (altered water temperature and transparency, decreased flow velocities, increased predation) can reduce survival. Upon reaching the dam, downstream-migrating fish may suffer increased mortality as they pass through the turbines, spillways and other bypasses, or turbulent tailraces. Downstream from the dam, insufficient environmental flow releases may slow downstream fish passage rates or decrease survival. There is a need to refine our understanding of the relative importance of causative factors that contribute to turbine passage mortality (e.g., strike, pressure changes, turbulence) so that turbine design efforts can focus on mitigating the most damaging components. Further, present knowledge of the effectiveness of turbine improvements is based on studies of only a few species (mainly salmon and American shad). These data may not be representative of turbine passage effects for the hundreds of other fish species that are susceptible to downstream passage at hydroelectric projects. For example, there are over 900 species of fish in the United States. In Brazil there are an estimated 3,000 freshwater fish species, of which 30% are believed to be migratory (Viana et al. 2011). Worldwide, there are some 14,000 freshwater fish species (Magurran 2009), of which significant numbers are susceptible to hydropower impacts. By comparison, in a compilation of fish entrainment and turbine survival studies from over 100 hydroelectric projects in the United States, Winchell et al. (2000

  18. Table 2. Ten largest plants by generation capacity, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Grand Coulee","Hydroelectric","U S Bureau of Reclamation",7079 2,"Chief Joseph","Hydroelectric","USACE Northwestern Division",2456.2 3,"Transalta Centralia Generation","Coal","TransAlta Centralia Gen LLC",1340 4,"Rocky

  19. Legal obstacles and incentives to the development of small scale hydroelectric potential in Michigan

    SciTech Connect (OSTI)

    None,

    1980-05-01

    The legal and institutional obstacles to the development of small-scale hydroelectric energy at the state level is described. The Federal government also exercises extensive regulatory authority in the area. The first obstacle which any developer must confront in Michigan is obtaining the authority to utilize the river bed, banks, and flowing water at a proposed dam site. This involves a determination of ownership of the stream banks and bed, and the manner of obtaining either their title or use; and existing constraints with regard to the use of the water. Michigan follows the riparian theory of water law. The direct regulation; indirect regulation; public utilities regulation; financing; and taxation are discussed.

  20. Status Review of Wildlife Mitigation, Columbia Basin Hydroelectric Projects, Washington Facilities (Intrastate) Final Report.

    SciTech Connect (OSTI)

    Howerton, Jack

    1984-11-01

    This report was prepared for BPA in fulfillment of section 1004 (b)(1) of the Pacific Northwest Electric Power Planning and Conservation Act of 1980, to review the status of past, present, and proposed future wildlife planning and mitigation program at existing hydroelectric projects in the Columbia River Basin. The project evaluations will form the basis for determining any needed remedial measures or additional project analysis. Projects addressed are: Merwin Dam; Swift Project; Yale Project; Cowlitz River; Boundary Dam; Box Canyon Dam; Lake Chelan; Condit Project; Enloe Project; Spokane River; Tumwater and Dryden Dam; Yakima; and Naches Project.

  1. Impact of High Wind Power Penetrations on Hydroelectric Unit Operations in the WWSIS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Impact of High Wind Power Penetrations on Hydroelectric Unit Operations in the WWSIS Bri-Mathias Hodge, Debra Lew, and Michael Milligan Technical Report NREL/TP-5500-52251 July 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 The

  2. Pump apparatus including deconsolidator

    DOE Patents [OSTI]

    Sonwane, Chandrashekhar; Saunders, Timothy; Fitzsimmons, Mark Andrew

    2014-10-07

    A pump apparatus includes a particulate pump that defines a passage that extends from an inlet to an outlet. A duct is in flow communication with the outlet. The duct includes a deconsolidator configured to fragment particle agglomerates received from the passage.

  3. Legal obstacles and incentives to the development of small scale hydroelectric power in Maryland

    SciTech Connect (OSTI)

    None,

    1980-05-01

    The legal and institutional obstacles to the development of small-scale hydroelectric energy at the state level in Maryland are described. The Federal government also exercises extensive regulatory authority in the area. The dual regulatory system is examined with the aim of creating a more orderly understanding of the vagaries of the system, focusing on the appropriate legal doctrine, the law of pre-emption, application of the law to the case of hydroelectric development, and an inquiry into the practical use of the doctrine by the FERC. In Maryland, by common law rule, title to all navigable waters and to the soil below the high-water mark of those waters is vested in the state as successor to the Lord Proprietary who had received it by grant from the Crown. Rights to non-navigable water, public trust doctrine, and eminent domain are also discussed. Direct and indirect regulations, continuing obligations, loan programs, and regional organizations are described in additional sections.

  4. Can Fish Morphological Characteristics be Used to Re-design Hydroelectric Turbines?

    SciTech Connect (OSTI)

    Cada, G. F.; Richmond, Marshall C.

    2011-07-19

    Safe fish passage affects not only migratory species, but also populations of resident fish by altering biomass, biodiversity, and gene flow. Consequently, it is important to estimate turbine passage survival of a wide range of susceptible fish. Although fish-friendly turbines show promise for reducing turbine passage mortality, experimental data on their beneficial effects are limited to only a few species, mainly salmon and trout. For thousands of untested species and sizes of fish, the particular causes of turbine passage mortality and the benefits of fish-friendly turbine designs remain unknown. It is not feasible to measure the turbine-passage survival of every species of fish in every hydroelectric turbine design. We are attempting to predict fish mortality based on an improved understanding of turbine-passage stresses (pressure, shear stress, turbulence, strike) and information about the morphological, behavioral, and physiological characteristics of different fish taxa that make them susceptible to the stresses. Computational fluid dynamics and blade strike models of the turbine environment are re-examined in light of laboratory and field studies of fish passage effects. Comparisons of model-predicted stresses to measured injuries and mortalities will help identify fish survival thresholds and the aspects of turbines that are most in need of re-design. The coupled model and fish morphology evaluations will enable us to make predictions of turbine-passage survival among untested fish species, for both conventional and advanced turbines, and to guide the design of hydroelectric turbines to improve fish passage survival.

  5. Optical modulator including grapene

    DOE Patents [OSTI]

    Liu, Ming; Yin, Xiaobo; Zhang, Xiang

    2016-06-07

    The present invention provides for a one or more layer graphene optical modulator. In a first exemplary embodiment the optical modulator includes an optical waveguide, a nanoscale oxide spacer adjacent to a working region of the waveguide, and a monolayer graphene sheet adjacent to the spacer. In a second exemplary embodiment, the optical modulator includes at least one pair of active media, where the pair includes an oxide spacer, a first monolayer graphene sheet adjacent to a first side of the spacer, and a second monolayer graphene sheet adjacent to a second side of the spacer, and at least one optical waveguide adjacent to the pair.

  6. S. 737: A Bill to extend the deadlines applicable to certain hydroelectric projects, and for other purposes. Introduced in the Senate of the United States, One Hundred Fourth Congress, First session

    SciTech Connect (OSTI)

    1995-12-31

    This bill was proposed to extend the deadlines applicable to certain hydroelectric projects, and for other purposes. The bill proposes extending the deadlines applying to certain hydroelectric projects in West Virginia, Kentucky, Washington, Oregon, and Arkansas. It proposes limited exemptions for licensing provisions for a power transmission project in New Mexico, extends Alaska`s state jurisdiction over small hydroelectric projects in the state, and amends the jurisdiction of FERC for licensing fresh water hydroelectric projects in Hawaii.

  7. Turbulence at Hydroelectric Power Plants and its Potential Effects on Fish.

    SciTech Connect (OSTI)

    Cada, Glenn F.; Odeh, Mufeed

    2001-01-01

    The fundamental influence of fluid dynamics on aquatic organisms is receiving increasing attention among aquatic ecologists. For example, the importance of turbulence to ocean plankton has long been a subject of investigation (Peters and Redondo 1997). More recently, studies have begun to emerge that explicitly consider the effects of shear and turbulence on freshwater invertebrates (Statzner et al. 1988; Hart et al. 1996) and fishes (Pavlov et al. 1994, 1995). Hydraulic shear stress and turbulence are interdependent natural fluid phenomena that are important to fish, and consequently it is important to develop an understanding of how fish sense, react to, and perhaps utilize these phenomena under normal river flows. The appropriate reaction to turbulence may promote movement of migratory fish or prevent displacement of resident fish. It has been suggested that one of the adverse effects of flow regulation by hydroelectric projects is the reduction of normal turbulence, particularly in the headwaters of reservoirs, which can lead to disorientation and slowing of migration (Williams et al. 1996; Coutant et al. 1997; Coutant 1998). On the other hand, greatly elevated levels of shear and turbulence may be injurious to fish; injuries can range from removal of the mucous layer on the body surface to descaling to torn opercula, popped eyes, and decapitation (Neitzel et al. 2000a,b). Damaging levels of fluid stress can occur in a variety of circumstances in both natural and man-made environments. This paper discusses the effects of shear stress and turbulence on fish, with an emphasis on potentially damaging levels in man-made environments. It defines these phenomena, describes studies that have been conducted to understand their effects, and identifies gaps in our knowledge. In particular, this report reviews the available information on the levels of turbulence that can occur within hydroelectric power plants, and the associated biological effects. The final section

  8. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    (Small), Hydroelectric (Small) Renewable Energy Systems Exemption Recognized forms of energy generation include solar photovoltaics, passive solar, wind, solid waste,...

  9. Evaluation of advanced turbomachinery for underground pumped hydroelectric storage. Part 3. Multistage unregulated pump/turbines for operating heads of 1000 to 1500 m

    SciTech Connect (OSTI)

    Frigo, A.A.; Pistner, C.

    1980-08-01

    This is the final report in a series of three on studies of advanced hydraulic turbomachinery for underground pumped hydroelectric storage. All three reports address Francis-type, reversible pump/turbines. The first report covered single-stage regulated units; the second report covered two-stage regulated units; the present report covers multistage unregulated units. Multistage unregulated pump/turbines offer an economically attractive option for heads of 1000 to 1500 m. The feasibility of developing such machines for capacities up to 500 MW and operating heads up to 1500 m has been evaluated. Preliminary designs have been generated for six multistage pump/turbines. The designs are for nominal capacities of 350 and 500 MW and for operating heads of 1000, 1250, and 1500 m. Mechanical, hydraulic, and economic analyses indicate that these machines will behave according to the criteria used to design them and that they can be built at a reasonable cost with no unsolvable problems. Efficiencies of 85.8% and 88.5% in the generating and pumping modes, respectively, can be expected for the 500-MW, 1500-m unit. Performances of the other five machines are at least comparable, and usually better. Over a 1000 to 1500-m head range, specific $/kW costs of the pump/turbines in mid-1978 US dollars vary from 19.0 to 23.1 for the 500-MW machines, and from 21.0 to 24.1 for the 350-MW machines.

  10. Status Review of Wildlife Mitigation at 14 of 27 Major Hydroelectric Projects in Idaho, 1983-1984 Final Report.

    SciTech Connect (OSTI)

    Martin, Robert C.; Mehrhoff, L.A.

    1985-01-01

    The Pacific Northwest Electric Power Planning and Conservation Act and wildlife and their habitats in the Columbia River Basin and to compliance with the Program, the wildlife mitigation status reports coordination with resource agencies and Indian Tribes. developed the Columbia River Basin Fish and Wildlife Program development, operation, and maintenance of hydroelectric projects on existing agreements; and past, current, and proposed wildlife factual review and documentation of existing information on wildlife meet the requirements of Measure 1004(b)(l) of the Program. The mitigation, enhancement, and protection activities were considered. In mitigate for the losses to those resources resulting from the purpose of these wildlife mitigation status reports is to provide a resources at some of the Columbia River Basin hydroelectric projects the river and its tributaries. To accomplish this goal, the Council were written with the cooperation of project operators, and in within Idaho.

  11. Small-scale hydroelectric power in the southeast: new impetus for an old energy source

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    The Southeastern conference, Small-Scale Hydroelectric Power: New Impetus for an Old Energy Source, was convened to provide a forum for state legislators and other interested persons to discuss the problems facing small-scale hydro developers, and to recommend appropriate solutions to resolve those problems. During the two-day meeting state legislators and their staffs, along with dam developers, utility and industry representatives, environmentalists and federal/state officials examined and discussed the problems impeding small-scale hydro development at the state level. Based upon the problem-oriented discussions, alternative policy options were recommended for consideration by the US Department of Energy, state legislatures and the staff of the National Conference of State Legislatures (NCSL). Emphasis was placed on the legal, institutional, environmental and economic barriers at the state level, as well as the federal delays associated with licensing small-scale hydro projects. Whereas other previously held conferences have emphasized the identification and technology of small-scale hydro as an alternative energy source, this conference stressed legislative resolution of the problems and delays in small-scale hydro licensing and development. Panel discussions and workshops are summarized. Papers on the environmental, economic, and legal aspects of small-scale hydropower development are presented. (LCL)

  12. Observations of Velocity Conditions near a Hydroelectric Turbine Draft Tube Exit using ADCP Measurements

    SciTech Connect (OSTI)

    Cook, Christopher B.; Richmond, Marshall C.; Serkowski, John A.

    2007-10-01

    Measurement of flow characteristics near hydraulic structures is an ongoing challenge because of the need to obtain rapid measurements of time-varying velocity over a relatively large spatial domain. This paper discusses use of an acoustic Doppler current profiler (ADCP) to measure the rapidly diverging flow exiting from an operating hydroelectric turbine draft tube exit. The resolved three-dimensional velocity vectors show a highly complex and helical flow pattern developed near to and downstream of the exit. Velocity vectors were integrated across the exit and we computed an uneven percentage of flow (67%/33%) passing through the two draft tube barrels at a mid-range turbine discharge, consistent with physical model results. In addition to the three-dimensional velocity vectors, the individual one-dimensional velocities measured by each of the four ADCP beams can be separately used as calibration and validation datasets for numerical and physical models. This technique is demonstrated by comparing along-beam ADCP velocity measurements to data collected in a scaled physical model.

  13. Hydropower Generators Will Deliver New Energy from an Old Dam...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cushman No. 2, which is part of the Cushman Hydroelectric Project owned by Tacoma Power. ... populations upstream of the Cushman Hydroelectric Project for the first time since the ...

  14. AUDIT REPORT Southwestern Federal Power System's Fiscal Year...

    Broader source: Energy.gov (indexed) [DOE]

    ... and the related hydroelectric generating facilities ... includes items such as dams, spillways, generators, ... the remainder applied to the unpaid generation investment. ...

  15. Images of energy: Policy perspectives on the introduction of hydroelectricity in Italy, 1882-1914

    SciTech Connect (OSTI)

    Laszlo, A.R.

    1992-01-01

    This study considers the link between energy technologies and cultural attitudes. Contemporary energy policy makers lack the conceptual tools with which to evaluate culturally appropriate energy choices. A way to regain a contextual capability is needed; that is, the capacity to recognize and avert situations where technological advance is insufficiently harmonized with its embedding environment. This study explores how both policy makers and the general public form their [open quotes]images of energy.[close quotes] It does so in three parts, beginning with an examination of the concepts of [open quotes]technology,[close quotes] [open quotes]culture[close quotes] and [open quotes]cognitive map,[close quotes] and an explanation of their interrelationship. The second part presents two historical case-studies of the introduction of hydroelectricity in Italy from 1882-1914. It considers how a relatively unknown technology made its way into urban and rural life, who its primary surveyors were, and how it shaped and was shaped by the cognitive maps of those into whose lives it marched. The final part extends the investigation to contemporary socio-cultural dynamics. Through concepts derived from General System Theory, the process of technological integration is interpreted in light of events that shape the world today. The design of a model to be used by energy makers and educators alike in conceiving culturally attuned energy alternatives is proposed. Such a model would describe energy-related cognitive maps and could serve as the basis for informed decision-making on energy choice at all levels of society. The study concludes with suggestions for a research agenda to further explore individual and collective energy-related cognitive maps.

  16. Some environmental and social impacts of the James Bay hydroelectric project, Canada

    SciTech Connect (OSTI)

    Berkes, F.

    1981-03-01

    The construction of the James Bay hydroelectric power project in subarctic Canada started in 1972, but environmental information that would permit mitigation measures did not become available until about 1975. It is suggested that this pattern may be characteristic of large-scale development projects in remote areas where the time lags involved in obtaining environmental data, beyond the simply descriptive information, are such that engineering plans would proceed, for economic reasons, without such environmental data as a planning input. Some environmental and social impact case studies are presented in this paper with regard to the LaGrande Complex phase of the James Bay development. The environmental impact case study involves the subsystem of estuarine fisheries and the effect on it of changes in the flow regime of the LaGrande River, the relocation of the first dam (LG-1) on the LaGrande, saltwater encroachment up the river during the filling of the second dam (LG-2), and the changes in the thermal regime of the river. The social impact case study examines the effect of the road network associated with the hydro development, on the land tenure system of the native Cree Indians of the area. The behavior of developers, as they optimize their engineering plans over the years to develop as much power as is feasible, is contrasted with the behavior of the organizations representing the native peopleof the area, first opposing the project but later giving up the aboriginal title to the land in exchange for some legally recognized rights, and subsequently making additional concessions from their established rights in exchange for various community benefits. It is argued that this process has been resulting in an incremental erosion of the land and resource base of the Cree Indian people.

  17. Oregon Trust Agreement Planning Project : Potential Mitigations to the Impacts on Oregon Wildlife Resources Associated with Relevant Mainstem Columbia River and Willamette River Hydroelectric Projects.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1993-10-01

    A coalition of the Oregon wildlife agencies and tribes (the Oregon Wildlife Mitigation Coalition) have forged a cooperative effort to promote wildlife mitigation from losses to Oregon wildlife resources associated with the four mainstream Columbia River and the eight Willamette River Basin hydroelectric projects. This coalition formed a Joint Advisory Committee, made up of technical representatives from all of the tribes and agencies, to develop this report. The goal was to create a list of potential mitigation opportunities by priority, and to attempt to determine the costs of mitigating the wildlife losses. The information and analysis was completed for all projects in Oregon, but was gathered separately for the Lower Columbia and Willamette Basin projects. The coalition developed a procedure to gather information on potential mitigation projects and opportunities. All tribes, agencies and interested parties were contacted in an attempt to evaluate all proposed or potential mitigation. A database was developed and minimum criteria were established for opportunities to be considered. These criteria included the location of the mitigation site within a defined area, as well as other criteria established by the Northwest Power Planning Council. Costs were established for general habitats within the mitigation area, based on estimates from certified appraisers. An analysis of the cost effectiveness of various types of mitigation projects was completed. Estimates of operation and maintenance costs were also developed. The report outlines strategies for gathering mitigation potentials, evaluating them, determining their costs, and attempting to move towards their implementation.

  18. Analysis of environmental issues related to small-scale hydroelectric development. VI. Dissolved oxygen concentrations below operating dams

    SciTech Connect (OSTI)

    Cada, G.F.; Kumar, K.D.; Solomon, J.A.; Hildebrand, S.G.

    1982-01-01

    Results are presented of an effort aimed at determining whether or not water quality degradation, as exemplified by dissolved oxygen concentrations, is a potentially significant issue affecting small-scale hydropower development in the US. The approach was to pair operating hydroelectric sites of all sizes with dissolved oxygen measurements from nearby downstream US Geological Survey water quality stations (acquired from the WATSTORE data base). The USGS data were used to calculate probabilities of non-compliance (PNCs), i.e., the probabilities that dissolved oxygen concentrations in the discharge waters of operating hydroelectric dams will drop below 5 mg/l. PNCs were estimated for each site, season (summer vs remaining months), and capacity category (less than or equal to 30 MW vs >30 MW). Because of the low numbers of usable sites in many states, much of the subsequent analysis was conducted on a regional basis. During the winter months (November through June) all regions had low mean PNCs regardless of capacity. Most regions had higher mean PNCs in summer than in winter, and summer PNCs were greater for large-scale than for small-scale sites. Among regions, the highest mean summer PNCs were found in the Great Basin, the Southeast, and the Ohio Valley. To obtain a more comprehensive picture of the effects of season and capacity on potential dissolved oxygen problems, cumulative probability distributions of PNC were developed for selected regions. This analysis indicates that low dissolved oxygen concentrations in the tailwaters below operating hydroelectric projects are a problem largely confined to large-scale facilities.

  19. Belleville Hydroelectric Project: A {open_quotes}model{close_quotes} project

    SciTech Connect (OSTI)

    Hughes, B.R.; Gemperline, E.J.; Meier, P.E.

    1995-12-31

    With the development of hydropower stations at existing lock and dam structures, there is a need to develop a project layout that will provide efficient power generation with minimal impacts on the existing river conditions. Model studies have proven to be a cost effective method of ensuring that the most appropriate project layout is achieved prior to the large capital investment required for construction. Physical models provide a means of visualizing the overall project, including river flow patterns and sedimentation, and permit the acquisition of numerical data which can be used to aid in the refinement of the project design or to guide the regulatory bodies in assessing the potential impacts. As part of the proposed hydropower add-on at the existing Belleville Lock and Dam, a physical hydraulic model study was undertaken at Northwest Hydraulic Consultants laboratories in Vancouver, British Columbia to aid in the development of a project layout which would meet all project objectives. These objectives included refinement of the approach and tailrace channels to optimize the powerhouse performance and minimize the potential impacts on river navigation.

  20. Lincoln Electric System - Renewable Generation Rate (Nebraska...

    Open Energy Info (EERE)

    Applicable Sector Commercial, Industrial Eligible Technologies Solar Thermal Electric, Photovoltaics, Landfill Gas, Wind, Biomass, Hydroelectric, Anaerobic Digestion, Small...

  1. Executive summary: legal obstacles and incentives to the development of small scale hydroelectric potential in the seven mid-western states

    SciTech Connect (OSTI)

    None,

    1980-05-01

    The relationship of Federal law and regulation to state law and regulation of small-scale hydroelectric facilities is described. Important features of the constitutional law, statutory law, case law, and regulations of each of the 7 mid-western states (Illinois, Indiana, Kentucky, Michigan, Ohio, West Virginia, and Wisconsin) are highlighted. The introductory section examines the dual regulatory system from the standpoint of the appropriate legal doctrine, i.e., the law of pre-emption, and the application of this law to the case of hydroelectric development and regulation of water resources. A state-by-state synopsis of these important provisions of the laws of the states that have a bearing on small-scale hydroelectric development is presented.

  2. Cluster generator

    DOE Patents [OSTI]

    Donchev, Todor I.; Petrov, Ivan G.

    2011-05-31

    Described herein is an apparatus and a method for producing atom clusters based on a gas discharge within a hollow cathode. The hollow cathode includes one or more walls. The one or more walls define a sputtering chamber within the hollow cathode and include a material to be sputtered. A hollow anode is positioned at an end of the sputtering chamber, and atom clusters are formed when a gas discharge is generated between the hollow anode and the hollow cathode.

  3. Southwestern Federal Power System's Fiscal Year 2011 Financial...

    Energy Savers [EERE]

    ... requirements of the Corps hydroelectric power generation function to gain a better ... Utility plant includes items such as dams, spillways, generators, turbines, ...

  4. Southwestern Federal Power System's Fiscal Year 2012 Financial...

    Energy Savers [EERE]

    ... requirements of the Corps hydroelectric power generation function to gain a better ... Utility plant includes items such as dams, spillways, generators, turbines, ...

  5. Gamma ray generator

    DOE Patents [OSTI]

    Firestone, Richard B; Reijonen, Jani

    2014-05-27

    An embodiment of a gamma ray generator includes a neutron generator and a moderator. The moderator is coupled to the neutron generator. The moderator includes a neutron capture material. In operation, the neutron generator produces neutrons and the neutron capture material captures at least some of the neutrons to produces gamma rays. An application of the gamma ray generator is as a source of gamma rays for calibration of gamma ray detectors.

  6. Pollution prevention opportunity assessment of the United States Army Corps of Engineers Garrison Dam Hydroelectric Powerplant, Riverdale, North Dakota. Report for March-September 1994

    SciTech Connect (OSTI)

    Bowman, D.; Buschow, R.; Smith, J.

    1995-08-01

    The report describes the results of pollution prevention opportunity assessments conducted at a representative U.S. Army Corps of Engineers civil works dam and hydroelectric power plant. Recommended methods for reducing pollution resulting primarily from the operation of these facilities are addressed.

  7. MHK technology developments include current

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technology developments include current energy conversion (CEC) devices, for example, hydrokinetic turbines that extract power from water currents (riverine, tidal, and ocean) and wave energy conversion (WEC) devices that extract power from wave motion. Sandia's MHK research leverages decades of experience in engineering, design, and analysis of wind power technologies, and its vast research complex, including high- performance computing (HPC), advanced materials and coatings, nondestructive

  8. Analysis of Environmental Issues Related to Small-Scale Hydroelectric Development V: Instream Flow Needs for Fishery Resources

    SciTech Connect (OSTI)

    Loar, James M.; Sale, Michael J.

    1981-10-01

    The purpose of this document is to provide guidance to developers of small-scale hydroelectric projects on the assessment of instream flow needs. While numerous methods have been developed to assess the effects of stream flow regulation on aquatic biota in coldwater streams in the West, no consensus has been reached regarding their general applicability, especially to streams in the eastern United States. This report presents and reviews these methods (Section 2.0), which is intended to provide the reader with general background information that is the basis for the critical evaluation of the methods (Section 3.0). The strategy for instream flow assessment presented in Section 4.0 is, in turn, based on the implicit assumptions, data needs, costs, and decision-making capabilities of the various methods as discussed in Section 3.0.

  9. The effect of rapid and sustained decompression on barotrauma in juvenile brook lamprey and Pacific lamprey: implications for passage at hydroelectric facilities

    SciTech Connect (OSTI)

    Colotelo, Alison HA; Pflugrath, Brett D.; Brown, Richard S.; Brauner, Colin J.; Mueller, Robert P.; Carlson, Thomas J.; Deng, Zhiqun; Ahmann, Martin L.; Trumbo, Bradly A.

    2012-10-01

    Fish passing downstream through hydroelectric facilities may pass through hydroturbines where they experience a rapid decrease in barometric pressure as they pass by turbine blades, which can lead to barotraumas including swim bladder rupture, exopthalmia, emboli, and hemorrhaging. In juvenile Chinook salmon, the main mechanism for injury is thought to be expansion of existing gases (particularly those present in the swim bladder) and the rupture of the swim bladder ultimately leading to exopthalmia, emboli and hemorrhaging. In fish that lack a swim bladder, such as lamprey, the rate and severity of barotraumas due to rapid decompression may be reduced however; this has yet to be extensively studied. Another mechanism for barotrauma can be gases coming out of solution and the rate of this occurrence may vary among species. In this study, juvenile brook and Pacific lamprey acclimated to 146.2 kPa (equivalent to a depth of 4.6 m) were subjected to rapid (<1 sec; brook lamprey only) or sustained decompression (17 minutes) to a very low pressure (13.8 kPa) using a protocol previously applied to juvenile Chinook salmon. No mortality or evidence of barotraumas, as indicated by the presence of hemorrhages, emboli or exopthalmia, were observed during rapid or sustained decompression, nor following recovery for up to 120 h following sustained decompression. In contrast, mortality or injury would be expected for 97.5% of juvenile Chinook salmon exposed to a similar rapid decompression to these very low pressures. Additionally, juvenile Chinook salmon experiencing sustained decompression died within 7 minutes, accompanied by emboli in the fins and gills and hemorrhaging in the tissues. Thus, juvenile lamprey may not be susceptible to barotraumas associated with hydroturbine passage to the same degree as juvenile salmonids, and management of these species should be tailored to their specific morphological and physiological characteristics.

  10. The Influence of Tag Presence on the Mortality of Juvenile Chinook Salmon Exposed to Simulated Hydroturbine Passage: Implications for Survival Estimates and Management of Hydroelectric Facilities

    SciTech Connect (OSTI)

    Carlson, Thomas J.; Brown, Richard S.; Stephenson, John R.; Pflugrath, Brett D.; Colotelo, Alison HA; Gingerich, Andrew J.; Benjamin, Piper L.; Langeslay, Mike; Ahmann, Martin L.; Johnson, Robert L.; Skalski, John R.; Seaburg, Adam; Townsend, Richard L.

    2012-05-01

    Each year, millions of fish have telemetry tags (acoustic, radio, inductive) surgically implanted to assess their passage and survival through hydropower facilities. One route of passage of particular concern is through hydro turbines, in which fish may be exposed to a range of potential injuries, including barotraumas from rapid decompression. The change in pressure from acclimation to exposure (nadir) has been found to be an important factor in predicting the likelihood of mortality and injury for juvenile Chinook salmon undergoing rapid decompression associated with simulated turbine passage. The presence of telemetry tags has also been shown to influence the likelihood of injury and mortality for juvenile Chinook salmon. This research investigated the likelihood of mortality and injury for juvenile Chinook salmon carrying telemetry tags and exposed to a range of simulated turbine passage. Several factors were examined as predictors of mortal injury for fish undergoing rapid decompression, and the ratio of pressure change and tag burden were determined to be the most predictive factors. As the ratio of pressure change and tag burden increase, the likelihood of mortal injury also increases. The results of this study suggest that previous survival estimates of juvenile Chinook salmon passing through hydro turbines may have been biased due to the presence of telemetry tags, and this has direct implications to the management of hydroelectric facilities. Realistic examples indicate how the bias in turbine passage survival estimates could be 20% or higher, depending on the mass of the implanted tags and the ratio of acclimation to exposure pressures. Bias would increase as the tag burden and pressure ratio increase, and have direct implications on survival estimates. It is recommended that future survival studies use the smallest telemetry tags possible to minimize the potential bias that may be associated with carrying the tag.

  11. Thermoelectric generator

    DOE Patents [OSTI]

    Pryslak, N.E.

    1974-02-26

    A thermoelectric generator having a rigid coupling or stack'' between the heat source and the hot strap joining the thermoelements is described. The stack includes a member of an insulating material, such as ceramic, for electrically isolating the thermoelements from the heat source, and a pair of members of a ductile material, such as gold, one each on each side of the insulating member, to absorb thermal differential expansion stresses in the stack. (Official Gazette)

  12. Photon generator

    DOE Patents [OSTI]

    Srinivasan-Rao, Triveni

    2002-01-01

    A photon generator includes an electron gun for emitting an electron beam, a laser for emitting a laser beam, and an interaction ring wherein the laser beam repetitively collides with the electron beam for emitting a high energy photon beam therefrom in the exemplary form of x-rays. The interaction ring is a closed loop, sized and configured for circulating the electron beam with a period substantially equal to the period of the laser beam pulses for effecting repetitive collisions.

  13. Effects of Hydroelectric Dam Operations on the Restoration Potential of Snake River Fall Chinook Salmon (Oncorhynchus tshawytscha) Spawning Habitat Final Report, October 2005 - September 2007.

    SciTech Connect (OSTI)

    Hanrahan, Timothy P.; Richmond, Marshall C.; Arntzen, Evan V.

    2007-11-13

    This report describes research conducted by the Pacific Northwest National Laboratory for the Bonneville Power Administration (BPA) as part of the Fish and Wildlife Program directed by the Northwest Power and Conservation Council. The study evaluated the restoration potential of Snake River fall Chinook salmon spawning habitat within the impounded lower Snake River. The objective of the research was to determine if hydroelectric dam operations could be modified, within existing system constraints (e.g., minimum to normal pool levels; without partial removal of a dam structure), to increase the amount of available fall Chinook salmon spawning habitat in the lower Snake River. Empirical and modeled physical habitat data were used to compare potential fall Chinook salmon spawning habitat in the Snake River, under current and modified dam operations, with the analogous physical characteristics of an existing fall Chinook salmon spawning area in the Columbia River. The two Snake River study areas included the Ice Harbor Dam tailrace downstream to the Highway 12 bridge and the Lower Granite Dam tailrace downstream approximately 12 river kilometers. These areas represent tailwater habitat (i.e., riverine segments extending from a dam downstream to the backwater influence from the next dam downstream). We used a reference site, indicative of current fall Chinook salmon spawning areas in tailwater habitat, against which to compare the physical characteristics of each study site. The reference site for tailwater habitats was the section extending downstream from the Wanapum Dam tailrace on the Columbia River. Fall Chinook salmon spawning habitat use data, including water depth, velocity, substrate size and channelbed slope, from the Wanapum reference area were used to define spawning habitat suitability based on these variables. Fall Chinook salmon spawning habitat suitability of the Snake River study areas was estimated by applying the Wanapum reference reach habitat

  14. Monthly Energy Review The Monthly Energy Review

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    included. c Includes lease condensate. d "Other" is hydroelectric and nuclear electric power, and electricity generated for distribution from wood, waste, geothermal, wind,...

  15. Scramjet including integrated inlet and combustor

    SciTech Connect (OSTI)

    Kutschenreuter, P.H. Jr.; Blanton, J.C.

    1992-02-04

    This patent describes a scramjet engine. It comprises: a first surface including an aft facing step; a cowl including: a leading edge and a trailing edge; an upper surface and a lower surface extending between the leading edge and the trailing edge; the cowl upper surface being spaced from and generally parallel to the first surface to define an integrated inlet-combustor therebetween having an inlet for receiving and channeling into the inlet-combustor supersonic inlet airflow; means for injecting fuel into the inlet-combustor at the step for mixing with the supersonic inlet airflow for generating supersonic combustion gases; and further including a spaced pari of sidewalls extending between the first surface to the cowl upper surface and wherein the integrated inlet-combustor is generally rectangular and defined by the sidewall pair, the first surface and the cowl upper surface.

  16. Energy Department Report Finds Major Potential to Increase Clean Hydroelectric Power

    Broader source: Energy.gov [DOE]

    As part of President Obama’s all-out, all-of-the-above energy strategy, the Energy Department today released a renewable energy resource assessment detailing the potential to develop electric power generation at existing dams across the United States that aren’t currently equipped to produce power.

  17. Electric generator

    DOE Patents [OSTI]

    Foster, Jr., John S.; Wilson, James R.; McDonald, Jr., Charles A.

    1983-01-01

    1. In an electrical energy generator, the combination comprising a first elongated annular electrical current conductor having at least one bare surface extending longitudinally and facing radially inwards therein, a second elongated annular electrical current conductor disposed coaxially within said first conductor and having an outer bare surface area extending longitudinally and facing said bare surface of said first conductor, the contiguous coaxial areas of said first and second conductors defining an inductive element, means for applying an electrical current to at least one of said conductors for generating a magnetic field encompassing said inductive element, and explosive charge means disposed concentrically with respect to said conductors including at least the area of said inductive element, said explosive charge means including means disposed to initiate an explosive wave front in said explosive advancing longitudinally along said inductive element, said wave front being effective to progressively deform at least one of said conductors to bring said bare surfaces thereof into electrically conductive contact to progressively reduce the inductance of the inductive element defined by said conductors and transferring explosive energy to said magnetic field effective to generate an electrical potential between undeformed portions of said conductors ahead of said explosive wave front.

  18. Triboelectric generator

    DOE Patents [OSTI]

    Wang, Zhong L; Fan, Fengru; Lin, Long; Zhu, Guang; Pan, Caofeng; Zhou, Yusheng

    2015-11-03

    A generator includes a thin first contact charging layer and a thin second contact charging layer. The thin first contact charging layer includes a first material that has a first rating on a triboelectric series. The thin first contact charging layer has a first side with a first conductive electrode applied thereto and an opposite second side. The thin second contact charging layer includes a second material that has a second rating on a triboelectric series that is more negative than the first rating. The thin first contact charging layer has a first side with a first conductive electrode applied thereto and an opposite second side. The thin second contact charging layer is disposed adjacent to the first contact charging layer so that the second side of the second contact charging layer is in contact with the second side of the first contact charging layer.

  19. Proposed changes to generating capacity 1980-1989 for the contiguous United States: as projected by the Regional Electric Reliability Councils in their April 1, 1980 long-range coordinated planning reports to the Department of Energy

    SciTech Connect (OSTI)

    1980-12-01

    The changes in generating capacity projected for 1980 to 1989 are summarized. Tabulated data provide summaries to the information on projected generating unit construction, retirements, and changes, in several different categories and groupings. The new generating units to be completed by the end of 1989 total 699, representing 259,490 megawatts. This total includes 10 wind power and one fuel cell installations totaling 48.5 MW to be completed by the end of 1989. There are 321 units totaling 13,222 MW to be retired. There are capacity changes due to upratings and deratings. Summary data are presented for: total requirement for electric energy generation for 1985; hydroelectric energy production for 1985; nuclear energy production for 1985; geothermal and other energy production for 1985; approximate non-fossil generation for 1985; range of fossil energy requirements for 1985; actual fossil energy sources 1974 to 1979; estimated range of fossil fuel requirements for 1985; coal capacity available in 1985; and computation of fuel use in 1985. Power plant capacity factors are presented. Extensive data on proposed generating capacity changes by individual units in the 9 Regional Electric Reliability Councils are presented.

  20. Motor/generator

    DOE Patents [OSTI]

    Hickam, Christopher Dale

    2008-05-13

    A motor/generator is provided for connecting between a transmission input shaft and an output shaft of a prime mover. The motor/generator may include a motor/generator housing, a stator mounted to the motor/generator housing, a rotor mounted at least partially within the motor/generator housing and rotatable about a rotor rotation axis, and a transmission-shaft coupler drivingly coupled to the rotor. The transmission-shaft coupler may include a clamp, which may include a base attached to the rotor and a plurality of adjustable jaws.

  1. U.S. electricity generation from renewables to increase in 2016

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. electricity generation from renewables to increase in 2016 The amount of U.S. electricity generated by hydropower, wind, solar, and other renewable energy sources is expected to grow in 2016. In its new monthly forecast, the U.S. Energy Information Administration said hydroelectric generation is expected to increase by 9.2% this year while wind power is forecast to grow by over 16% and solar power by 34%. All renewables combined are expected to account for 15% of total U.S. electricity

  2. Renewable Electricity Generation

    SciTech Connect (OSTI)

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

  3. Expansion of the 5 DE Noviembre hydroelectric project, El Salvador, C.A.

    SciTech Connect (OSTI)

    Fuerte, E.G.; Mendoza, V.; Wang, L.L.

    1995-12-31

    With an area of 21,050 square kilometers, the Republic of El Salvador is the smallest country in Central American. El Salvador, independent since 1821, is a democratic country with its President elected by popular vote for a five-year term. The population in El Salvador was estimated at 5.1 million in 1992. Over the period of 1984 to 1993, the peak load of the Comision Ejecutiva Hidroelectrica del Rio Lempa (CEL) system, which serves about 98 percent of the country`s power needs, grew 6.5 percent per year. During the same period the energy generation increased at an annual rate of 6.8 percent. These growths were achieved in spite of the political turmoil and civil war that had gripped the country from 1980 to 1992. Since the end of the civil war, the country has witnessed significant economic recovery and growth. System demands will continue to increase at a rapid rate, due primarily to continued economic recovery and expansion resulting from establishment of the now political system. CEL generating facilities will be undergoing significant rehabilitation to correct the problems accumulated over the civil war period.

  4. Hydroelectric facility in Montana. Introduced in the Senate of the United States, One Hundred Fourth Congress, First Session, July 11, 1995

    SciTech Connect (OSTI)

    1995-12-31

    The report addresses S. 552 a bill to allow the refurbishent and continued operation of a small hydroelectric power plant in central Montana by adjusting the amount of charges to be paid to the United States under the Federal Power Act. The Flint Creek Project, Federal Energy Regulatory Commission (FERC) project number 1473, was completed in 1900. In 1988, Montana Power allowed its original license to expire due to the licensing costs and the cost to refurbish the facilities.

  5. Reducing the Impacts of Hydroelectric Dams on Juvenile Anadromous Fishes: Bioengineering Evaluations Using Acoustic Imaging in the Columbia River, USA

    SciTech Connect (OSTI)

    Johnson, Gary E.; Ploskey, Gene R.; Hedgepeth, J.; Khan, Fenton; Mueller, Robert P.; Nagy, William T.; Richmond, Marshall C.; Weiland, Mark A.

    2008-07-29

    Dams impact the survival of juvenile anadromous fishes by obstructing migration corridors, lowering water quality, delaying migrations, and entraining fish in turbine discharge. To reduce these impacts, structural and operational modifications to dams— such as voluntary spill discharge, turbine intake guidance screens, and surface flow outlets—are instituted. Over the last six years, we have used acoustic imaging technology to evaluate the effects of these modifications on fish behavior, passage rates, entrainment zones, and fish/flow relationships at hydroelectric projects on the Columbia River. The imaging technique has evolved from studies documenting simple movement patterns to automated tracking of images to merging and analysis with concurrent hydraulic data. This chapter chronicles this evolution and shows how the information gleaned from the scientific evaluations has been applied to improve passage conditions for juvenile salmonids. We present data from Bonneville and The Dalles dams that document fish behavior and entrainment zones at sluiceway outlets (14 to 142 m3/s), fish passage rates through a gap at a turbine intake screen, and the relationship between fish swimming effort and hydraulic conditions. Dam operators and fisheries managers have applied these data to support decisions on operational and structural changes to the dams for the benefit of anadromous fish populations in the Columbia River basin.

  6. Hydropower Generators Will Deliver New Energy from an Old Dam

    Broader source: Energy.gov [DOE]

    City of Tacoma expands hydroelectric dam to produce more than 23,000 megawatt hours of electricity annually.

  7. [Article 1 of 7: Motivates and Includes the Consumer]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 of 7: Research on the Characteristics of a Modern Grid by the NETL Modern Grid Strategy Team Accommodates All Generation and Storage Options Last month we presented the first Principal Characteristic of a Modern Grid, "Motivates and Includes the Consumer". This month we present a second characteristic, "Accommodates All Generation and Storage Options". This characteristic will fundamentally transition today's grid from a centralized model for generation to one that also has

  8. EERE Success Story- Hydropower Fellowship Program Leading Students...

    Office of Environmental Management (EM)

    about hydroelectric technology, including efficiency ... energy and is an important part of our nation's energy mix. ... clean, domestic power generation from resources such as ...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydroelectric (Small) Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Renewable Energy Systems Exemption Recognized forms of energy generation include solar...

  10. Alternative Energy Development Incentive (Corporate)

    Broader source: Energy.gov [DOE]

    Eligible projects include the construction of electricity generation facilities of 2 megawatts or greater that utilize hydroelectric, solar, biomass, geothermal, wind, or waste heat from an indus...

  11. Alternative Energy Development Incentive (Personal)

    Broader source: Energy.gov [DOE]

    Eligible projects include the construction of electricity generation facilities of 2 megawatts or greater that utilize hydroelectric, solar, biomass, geothermal, wind, or waste heat from an indus...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydroelectric (Small) Renewable Energy Systems Exemption Recognized forms of energy generation include solar photovoltaics, passive solar, wind, solid waste, decomposition of...

  13. A Warm Weather Win-Win: Summer Fun and Clean Energy with Hydropower...

    Office of Environmental Management (EM)

    For example, some dams schedule water releases for ... addition to hydropower generation including recreation, ... Watch our Hydroelectric Power Energy 101 video to see how ...

  14. Southwestern Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... issues, energy efficiency, and distributed generation. ... maintenance of eight hydroelectric projects in Oklahoma ... various military and civil works, including hydropower dams. ...

  15. Assessment of Natural Stream Sites for Hydroelectric Dams in the Pacific Northwest Region

    SciTech Connect (OSTI)

    Douglas G. Hall; Kristin L. Verdin; Randy D. Lee

    2012-03-01

    This pilot study presents a methodology for modeling project characteristics using a development model of a stream obstructing dam. The model is applied to all individual stream reaches in hydrologic region 17, which encompasses nearly all of Idaho, Oregon, and Washington. Project site characteristics produced by the modeling technique include: capacity potential, principal dam dimensions, number of required auxiliary dams, total extent of the constructed impoundment boundary, and the surface area of the resulting reservoir. Aggregated capacity potential values for the region are presented in capacity categories including total, that at existing dams, within federal and environmentally sensitive exclusion zones, and the balance which is consider available for greenfield development within the limits of the study. Distributions of site characteristics for small hydropower sites are presented and discussed. These sites are screened to identify candidate small hydropower sites and distributions of the site characteristics of this site population are presented and discussed. Recommendations are made for upgrading the methodology and extensions to make the results more accessible and available on a larger scale.

  16. Buildings Energy Data Book: 6.2 Electricity Generation, Transmission, and Distribution

    Buildings Energy Data Book [EERE]

    2010 Existing Capacity, by Energy Source (GW) Number of Generator Nameplate Net Summer Net Winter Plant Fuel Type Generators Capacity Capacity Capacity Coal Petroleum Natural Gas Other Gases Nuclear Hydroelectric Conventional Wind Solar Thermal and Photovoltaic Wood and Wood Derived Fuels Geothermal Other Biomass Pumped Storage Other Total Source(s): EIA, Electric Power Annual 2010, Feb. 2012, Table 1.2. 51 1.0 0.9 0.9 18,150 1,138.6 1,039.1 1,078.7 1,574 5.0 4.4 4.4 151 20.5 22.2 22.1 346 7.9

  17. Final Project Report, Bristol Bay Native Corporation Wind and Hydroelectric Feasibility Study

    SciTech Connect (OSTI)

    Vaught, Douglas J.

    2007-03-31

    The Bristol Bay Native Corporation (BBNC) grant project focused on conducting nine wind resource studies in eight communities in the Bristol Bay region of southwest Alaska and was administered as a collaborative effort between BBNC, the Alaska Energy Authority, Alaska Village Electric Cooperative, Nushagak Electric Cooperative (NEC), Naknek Electric Association (NEA), and several individual village utilities in the region. BBNCs technical contact and the project manager for this study was Douglas Vaught, P.E., of V3 Energy, LLC, in Eagle River, Alaska. The Bristol Bay region of Alaska is comprised of 29 communities ranging in size from the hub community of Dillingham with a population of approximately 3,000 people, to a few Native Alaska villages that have a few tens of residents. Communities chosen for inclusion in this project were Dillingham, Naknek, Togiak, New Stuyahok, Kokhanok, Perryville, Clarks Point, and Koliganek. Selection criteria for conduction of wind resource assessments in these communities included population and commercial activity, utility interest, predicted Class 3 or better wind resource, absence of other sources of renewable energy, and geographical coverage of the region. Beginning with the first meteorological tower installation in October 2003, wind resource studies were completed at all sites with at least one year, and as much as two and a half years, of data. In general, the study results are very promising for wind power development in the region with Class 6 winds measured in Kokhanok; Class 4 winds in New Stuyahok, Clarks Point, and Koliganek; Class 3 winds in Dillingham, Naknek, and Togiak; and Class 2 winds in Perryville. Measured annual average wind speeds and wind power densities at the 30 meter level varied from a high of 7.87 meters per second and 702 watts per square meter in Kokhanok (Class 6 winds), to a low of 4.60 meters per second and 185 watts per square meter in Perryville (Class 2 winds).

  18. Quantum random number generator

    DOE Patents [OSTI]

    Pooser, Raphael C.

    2016-05-10

    A quantum random number generator (QRNG) and a photon generator for a QRNG are provided. The photon generator may be operated in a spontaneous mode below a lasing threshold to emit photons. Photons emitted from the photon generator may have at least one random characteristic, which may be monitored by the QRNG to generate a random number. In one embodiment, the photon generator may include a photon emitter and an amplifier coupled to the photon emitter. The amplifier may enable the photon generator to be used in the QRNG without introducing significant bias in the random number and may enable multiplexing of multiple random numbers. The amplifier may also desensitize the photon generator to fluctuations in power supplied thereto while operating in the spontaneous mode. In one embodiment, the photon emitter and amplifier may be a tapered diode amplifier.

  19. Monitoring of Downstream Salmon and Steelhead at Federal Hydroelectric Facilities, 2005-2006 Annual Report.

    SciTech Connect (OSTI)

    Martinson, Rick D.; Kovalchuk, Gregory M.; Ballinger, Dean

    2006-04-01

    year, we successfully held Pacific lamprey ammocetes. The number of fish sampled at Bonneville Dam was also down this year to 260,742, from 444,580 last year. Reasons for the decline are the same as stated above for John Day. Passage timing at Bonneville Dam was quite similar to previous years with one notable exception, sockeye. Sockeye passage was dominated by two large spikes in late May that greatly condensed the passage pattern, with the middle 80% passing Bonneville in just 18 days. Unlike John Day, passage for the rest of the species was well disbursed from late April through early June. Fish condition was good, with reductions in descaling rates for all species except unclipped steelhead and sockeye. Sockeye mortality matched last year's rate but was considerably lower for all other species. Rare species sampled at Bonneville this year included a bull trout and a eulachon.

  20. Draft environmental impact statement for construction and operation of the proposed Bangor Hydro-Electric Company`s second 345-kV transmission tie line to New Brunswick

    SciTech Connect (OSTI)

    1993-10-01

    This Draft Environmental Impact Statement (DEIS) was prepared by the US Department of Energy (US DOE). The proposed action is the issuance of Presidential Permit PP-89 by DOE to Bangor Hydro-Electric Company to construct and operate a new international transmission line interconnection to New Brunswick, Canada that would consist of an 83.8 mile (US portion), 345-kilovolt (kV) alternating current transmission line from the US-Canadian border at Baileyville, Maine to an existing substation at Orrington, Maine. The principal environmental impacts of the construction and operation of the transmission line would be incremental in nature and would include the conversion of forested uplands (mostly commercial timberlands) and wetlands to right-of-way (small trees, shrubs, and herbaceous vegetation). The proposed line would also result in localized minor to moderate visual impacts and would contribute a minor incremental increase in the exposure of some individuals to electromagnetic fields. This DEIS documents the purpose and need for the proposed action, describes the proposed action and alternatives considered and provides a comparison of the proposed and alternatives routes, and provides detailed information on analyses of the environmental consequences of the proposed action and alternatives, as well as mitigative measures to minimize impacts.

  1. Microfluidic devices and methods including porous polymer monoliths

    DOE Patents [OSTI]

    Hatch, Anson V.; Sommer, Gregory j.; Singh, Anup K.; Wang, Ying-Chih; Abhyankar, Vinay

    2015-12-01

    Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.

  2. Microfluidic devices and methods including porous polymer monoliths

    DOE Patents [OSTI]

    Hatch, Anson V; Sommer, Gregory J; Singh, Anup K; Wang, Ying-Chih; Abhyankar, Vinay V

    2014-04-22

    Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.

  3. 1,"Robert Moses Niagara","Hydroelectric","New York Power Authority",2438.8

    U.S. Energy Information Administration (EIA) Indexed Site

    York" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Robert Moses Niagara","Hydroelectric","New York Power Authority",2438.8 2,"Ravenswood","Natural gas","TC Ravenswood LLC",2216.5 3,"Nine Mile Point Nuclear Station","Nuclear","Nine Mile Point Nuclear Sta LLC",1937 4,"Oswego Harbor

  4. Generation Planning (pbl/generation)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Generation Planning Thumbnail image of BPA White Book BPA White Book (1998-2014) Draft Dry...

  5. Laser beam generating apparatus

    DOE Patents [OSTI]

    Warner, Bruce E. (Livermore, CA); Duncan, David B. (Auburn, CA)

    1994-01-01

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect).

  6. Laser beam generating apparatus

    DOE Patents [OSTI]

    Warner, Bruce E. (Livermore, CA); Duncan, David B. (Auburn, CA)

    1993-01-01

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect).

  7. Internal split field generator

    DOE Patents [OSTI]

    Thundat; Thomas George; Van Neste, Charles W.; Vass, Arpad Alexander

    2012-01-03

    A generator includes a coil of conductive material. A stationary magnetic field source applies a stationary magnetic field to the coil. An internal magnetic field source is disposed within a cavity of the coil to apply a moving magnetic field to the coil. The stationary magnetic field interacts with the moving magnetic field to generate an electrical energy in the coil.

  8. Laser beam generating apparatus

    DOE Patents [OSTI]

    Warner, B.E.; Duncan, D.B.

    1994-02-15

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus is described. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect). 7 figures.

  9. Laser beam generating apparatus

    DOE Patents [OSTI]

    Warner, B.E.; Duncan, D.B.

    1993-12-28

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect). 11 figures.

  10. Falls Creek Hydroelectric Project

    SciTech Connect (OSTI)

    Gustavus Electric Company; Richard Levitt; DOE Project Officer - Keith Bennett

    2007-06-12

    This project was for planning and construction of a 700kW hydropower project on the Fall River near Gustavus, Alaska.

  11. Exploring Hydroelectricity (9 activities)

    Broader source: Energy.gov [DOE]

    Integrated and inquiry-based activities that provide a comprehensive understanding of the scientific, economic, environmental, technological, and societal aspects of hydropower to secondary students

  12. Microfluidic devices and methods including porous polymer monoliths

    Office of Scientific and Technical Information (OSTI)

    (Patent) | SciTech Connect Microfluidic devices and methods including porous polymer monoliths Citation Details In-Document Search Title: Microfluidic devices and methods including porous polymer monoliths Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous

  13. Pulse transmission transmitter including a higher order time derivate filter

    DOE Patents [OSTI]

    Dress, Jr., William B.; Smith, Stephen F.

    2003-09-23

    Systems and methods for pulse-transmission low-power communication modes are disclosed. A pulse transmission transmitter includes: a clock; a pseudorandom polynomial generator coupled to the clock, the pseudorandom polynomial generator having a polynomial load input; an exclusive-OR gate coupled to the pseudorandom polynomial generator, the exclusive-OR gate having a serial data input; a programmable delay circuit coupled to both the clock and the exclusive-OR gate; a pulse generator coupled to the programmable delay circuit; and a higher order time derivative filter coupled to the pulse generator. The systems and methods significantly reduce lower-frequency emissions from pulse transmission spread-spectrum communication modes, which reduces potentially harmful interference to existing radio frequency services and users and also simultaneously permit transmission of multiple data bits by utilizing specific pulse shapes.

  14. Distributed Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Untapped Value of Backup Generation While new guidelines and regulations such as IEEE (Institute of Electrical and Electronics Engineers) 1547 have come a long way in addressing interconnection standards for distributed generation, utilities have largely overlooked the untapped potential of these resources. Under certain conditions, these units (primarily backup generators) represent a significant source of power that can deliver utility services at lower costs than traditional centralized

  15. Distributed Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and regulations such as IEEE (Institute of Electrical and Electronics Engineers) 1547 have come a long way in addressing interconnection standards for distributed generation, ...

  16. Quantitative Analysis of Biofuel Sustainability, Including Land...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quantitative Analysis of Biofuel Sustainability, Including Land Use Change GHG Emissions Quantitative Analysis of Biofuel Sustainability, Including Land Use Change GHG Emissions ...

  17. Distributed generation hits market

    SciTech Connect (OSTI)

    1997-10-01

    The pace at which vendors are developing and marketing gas turbines and reciprocating engines for small-scale applications may signal the widespread growth of distributed generation. Loosely defined to refer to applications in which power generation equipment is located close to end users who have near-term power capacity needs, distributed generation encompasses a broad range of technologies and load requirements. Disagreement is inevitable, but many industry observers associate distributed generation with applications anywhere from 25 kW to 25 MW. Ten years ago, distributed generation users only represented about 2% of the world market. Today, that figure has increased to about 4 or 5%, and probably could settle in the 20% range within a 3-to-5-year period, according to Michael Jones, San Diego, Calif.-based Solar Turbines Inc. power generation marketing manager. The US Energy Information Administration predicts about 175 GW of generation capacity will be added domestically by 2010. If 20% comes from smaller plants, distributed generation could account for about 35 GW. Even with more competition, it`s highly unlikely distributed generation will totally replace current market structures and central stations. Distributed generation may be best suited for making market inroads when and where central systems need upgrading, and should prove its worth when the system can`t handle peak demands. Typical applications include small reciprocating engine generators at remote customer sites or larger gas turbines to boost the grid. Additional market opportunities include standby capacity, peak shaving, power quality, cogeneration and capacity rental for immediate demand requirements. Integration of distributed generation systems--using gas-fueled engines, gas-fired combustion engines and fuel cells--can upgrade power quality for customers and reduce operating costs for electric utilities.

  18. Striking a balance between hydropower generation and fish habitat in the Owens Gorge, California

    SciTech Connect (OSTI)

    Brodt, G.W.; Pettijohn, D.R.

    1995-12-31

    The City of Los Angeles Department of Water and Power (LADWP), is currently in the process of rehabilitating a stream in the Owens Valley, California. This stream is located in the Owens Gorge and had been dry from 1953 to 1991. This paper gives an overview of the history of hydroelectric generation in the Gorge, and an explanation of how the LADWP is working with Mono County and the California Department of Fish and Game (CDFG), to rehabilitate the stream and establish a fishery in the Gorge.

  19. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass, Hydroelectric, Municipal Solid Waste, Combined Heat & Power, Landfill Gas, Wind (Small), Hydroelectric (Small), Anaerobic Digestion, Other Distributed Generation...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Combined Heat & Power, Wind (Small), Hydroelectric (Small), Other Distributed Generation Technologies Alternative...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Combined Heat & Power, Wind (Small), Hydroelectric (Small), Other Distributed Generation Technologies Net...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass, Hydroelectric, Municipal Solid Waste, Combined Heat & Power, Wind (Small), Hydroelectric (Small), Other Distributed Generation Technologies State Energy Loan Program...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass, Hydroelectric, Municipal Solid Waste, Combined Heat & Power, Wind (Small), Hydroelectric (Small), Other Distributed Generation Technologies Net Metering Eligibility...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydroelectric, Municipal Solid Waste, Combined Heat & Power, Landfill Gas, Wind (Small), Hydroelectric (Small), Anaerobic Digestion, Other Distributed Generation Technologies...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass, Hydroelectric, Municipal Solid Waste, Combined Heat & Power, Wind (Small), Hydroelectric (Small), Other Distributed Generation Technologies Alternative Energy...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydroelectric, Municipal Solid Waste, Combined Heat & Power, Landfill Gas, Wind (Small), Hydroelectric (Small), Anaerobic Digestion, Other Distributed Generation Technologies New...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass, Hydroelectric, Municipal Solid Waste, Combined Heat & Power, Wind (Small), Hydroelectric (Small), Other Distributed Generation Technologies Interconnection Standards...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydroelectric, Municipal Solid Waste, Combined Heat & Power, Landfill Gas, Wind (Small), Hydroelectric (Small), Anaerobic Digestion, Other Distributed Generation Technologies Net...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Combined Heat & Power, Wind (Small), Hydroelectric (Small), Other Distributed Generation Technologies...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Combined Heat & Power, Wind (Small), Hydroelectric (Small), Other Distributed Generation Technologies Net...