Powered by Deep Web Technologies
Note: This page contains sample records for the topic "includes furnace fans" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Energy saving furnace controller  

Science Conference Proceedings (OSTI)

This patent describes a forced air heating system including a furnace controlled by a household thermostat. The furnace includes a burner, burning valve, heat exchanger, plenum and fan for circulating air through the heat exchanger and plenum. An auxiliary controller comprises: relay means connectable between the household thermostat and the furnace burner valve; and timing means for controlling the duty cycle of the furnace burner valve by opening and closing the relay. The timing means includes means for timing alternating first and second intervals, the first interval at least substantially equal to the length of time the furnace delays between a cell for heat from the household thermostat and the start of the furnace fan when the furnace is started from a cool state. The second interval corresponds to a percentage of the first interval.

Johnson, H.R.; Lombardi, S.E.

1987-05-26T23:59:59.000Z

2

Evaluation of ASD Systems for Electric Arc Furnace and Argon Oxygen Decarburization Refiner Baghouse Fans  

Science Conference Proceedings (OSTI)

An adjustable speed drive (ASD) offers opportunities to operate dust collection fans in a more energy efficient manner. This report focuses on the system requirements and provides a method for successfully applying ASDs to dust extraction baghouse systems in a steel melting and refining application in order to realize full energy savings and operational improvements.

1998-01-23T23:59:59.000Z

3

Investigation of performance improvements including application of inlet guide vanes to a cross-flow fan .  

E-Print Network (OSTI)

??The inherent characteristics of a cross-flow fan allowing for easy thrust vectoring as well as potential airfoil boundary layer control make it an attractive propulsive… (more)

Cordero, Samuel F.

2009-01-01T23:59:59.000Z

4

Furnace Systems Technology Workshop  

Science Conference Proceedings (OSTI)

TMS Networking and Online Tools, X ... TMS Social Network and Site Tools .... furnace technology, fundamentals of fans and blowers, reduction of melt loss, refractory ... Sutton - Harbison-Walker Refractories; Jon Gillespie - Gillespie & Powers ...

5

Reduce Air Infiltration in Furnaces (English/Chinese) (Fact Sheet)  

Science Conference Proceedings (OSTI)

Chinese translation of the Reduce Air Infiltration in Furnaces fact sheet. Provides suggestions on how to improve furnace energy efficiency. Fuel-fired furnaces discharge combustion products through a stack or a chimney. Hot furnace gases are less dense and more buoyant than ambient air, so they rise, creating a differential pressure between the top and the bottom of the furnace. This differential, known as thermal head, is the source of a natural draft or negative pressure in furnaces and boilers. A well-designed furnace (or boiler) is built to avoid air leakage into the furnace or leakage of flue gases from the furnace to the ambient. However, with time, most furnaces develop cracks or openings around doors, joints, and hearth seals. These openings (leaks) usually appear small compared with the overall dimensions of the furnace, so they are often ignored. The negative pressure created by the natural draft (or use of an induced-draft fan) in a furnace draws cold air through the openings (leaks) and into the furnace. The cold air becomes heated to the furnace exhaust gas temperature and then exits through the flue system, wasting valuable fuel. It might also cause excessive oxidation of metals or other materials in the furnaces. The heat loss due to cold air leakage resulting from the natural draft can be estimated if you know four major parameters: (1) The furnace or flue gas temperature; (2) The vertical distance H between the opening (leak) and the point where the exhaust gases leave the furnace and its flue system (if the leak is along a vertical surface, H will be an average value); (3) The area of the leak, in square inches; and (4) The amount of operating time the furnace spends at negative pressure. Secondary parameters that affect the amount of air leakage include these: (1) The furnace firing rate; (2) The flue gas velocity through the stack or the stack cross-section area; (3) The burner operating conditions (e.g., excess air, combustion air temperature, and so on). For furnaces or boilers using an induced-draft (ID) fan, the furnace negative pressure depends on the fan performance and frictional losses between the fan inlet and the point of air leakage. In most cases, it would be necessary to measure or estimate negative pressure at the opening. The amount of air leakage, the heat lost in flue gases, and their effects on increased furnace or boiler fuel consumption can be calculated by using the equations and graphs given in Industrial Furnaces (see W. Trinks et al., below). Note that the actual heat input required to compensate for the heat loss in flue gases due to air leakage would be greater than the heat contained in the air leakage because of the effect of available heat in the furnace. For a high-temperature furnace that is not maintained properly, the fuel consumption increase due to air leakage can be as high as 10% of the fuel input.

Not Available

2011-10-01T23:59:59.000Z

6

Fans for Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fans for Cooling Fans for Cooling Fans for Cooling May 30, 2012 - 7:46pm Addthis Ceiling fans circulate air in a room to help keep occupants cool. | Photo courtesy of ©iStockphoto/jimkruger Ceiling fans circulate air in a room to help keep occupants cool. | Photo courtesy of ©iStockphoto/jimkruger What does this mean for me? You may be able to keep your home cool with energy-efficient and well-placed fans. Fans are less expensive to operate than air conditioners. Circulating fans include ceiling fans, table fans, floor fans, and fans mounted to poles or walls. These fans create a wind chill effect that will make you more comfortable in your home, even if it's also cooled by natural ventilation or air conditioning. Ceiling Fans Ceiling fans are considered the most effective of these types of fans,

7

Smart Fan Modules And System  

DOE Patents (OSTI)

A fan module including: two or more individual fans, each fan having an air movement means and a motor engaged with the air movement means for accelerating air entering each of the two or more individual fans; a temperature sensor for sensing a temperature associated with the two or more fans and for outputting a first signal corresponding to the temperature; rotational speed sensor for outputting a second signal corresponding to a rotational speed of each of the two or more fans; and a processor for receiving the first and second signals and controlling the two or more individual fans based on the first and second signals. A fan module including: two or more individual fans, each fan having an air movement means and a motor engaged with the air movement means for accelerating air entering each of the two or more individual fans; a temperature sensor for sensing a temperature associated with the two or more fans and for outputting a first signal corresponding to the temperature; rotational speed sensor for outputting a second signal corresponding to a rotational speed of each of the two or more fans; and a processor for receiving the first and second signals and controlling the two or more individual fans based on the first and second signals.

Cipolla, Thomas M. (Katonah, NY); Kaufman, Richard I. (Somers, NY); Mok, Lawrence S. (Brewster, NY)

2003-07-15T23:59:59.000Z

8

Rui Fan  

NLE Websites -- All DOE Office Websites (Extended Search)

Rui Fan Rui Fan 1 Cyclotron Road MS 90-4000 Berkeley CA 94720 Office Location: 90-2087 (510) 486-6305 RFan@lbl.gov Vision & Mission Organization Awards Fellowship Staff Services...

9

Modeling energy consumption of residential furnaces and boilers in U.S. homes  

E-Print Network (OSTI)

is standard in HVAC design and fan selection books 6 . Theof modulating design options. The cooling fan curve passesfan curve and the duct system curve. We calculated the furnace fuel consumption for each design

Lutz, James; Dunham-Whitehead, Camilla; Lekov, Alex; McMahon, James

2004-01-01T23:59:59.000Z

10

Fan Repair Guideline  

Science Conference Proceedings (OSTI)

The successful repair of a fan component is affected by a number of different factors. These include correctly assessing the root cause of failure, determining the best repair option, implementation of proper repair procedures, and compliance with applicable codes and standards. However, in many situations the proper solution is not clearly evident. The purpose of this document is to provide guidance in the area of induced draft / forced draft fan repair. Specifically, this document deals with the repair...

2002-08-15T23:59:59.000Z

11

Fan Dai  

NLE Websites -- All DOE Office Websites (Extended Search)

Fan Dai Fan Dai China Energy Group Lawrence Berkeley National Laboratory 1 Cyclotron Road MS 90R2002 Berkeley CA 94720 Office Location: 90-2117S (510) 486-4000 FDai@lbl.gov Fan Dai is a Ph.D. Candidate in Environmental Policy at the College of Environmental Science and Forestry, State University of New York, and a LL.M. Candidate at Berkeley School of Law, University of California. Fan's research during her stay in LBNL's China Energy Group focuses on Energy Efficiency Governance, U.S.-China Clean Energy Partnership, the Carbon Cap-and-Trade Program in California and what China can learn from California's program. Prior to LBNL, she interned at the China National Center for Climate Change Strategy and International Cooperation (NCSC), China Youth Action Climate Network (CYCAN), and China State Forestry

12

FANS - Control  

Science Conference Proceedings (OSTI)

... If set to H+ and a magnet controller is connected, you are ... Typically motors 3, 4, 5, and 6 are fixed for FANS operation A fixed motor will not be ...

13

ZHAOSHENG FAN  

NLE Websites -- All DOE Office Websites (Extended Search)

ZHAOSHENG FAN Biosciences Division, Argonne National Laboratory, Argonne, IL 60439 Phone: (630) 252-1566; email: zfan@anl.gov EDUCATION Ph.D., Soil Physics, 2007, North Dakota...

14

Museum Fan Downloads  

NLE Websites -- All DOE Office Websites (Extended Search)

Museum Fan Downloads Participate with us Participate Share your Stories Museum Fan Downloads invisible utility element Museum Fan Downloads Help the Bradbury Science Museum by...

15

Reduce Air Infiltration in Furnaces  

Science Conference Proceedings (OSTI)

This DOE Industrial Technologies Program tip sheet describes how to save energy and costs by reducing air infiltration in industrial furnaces; tips include repairing leaks and increasing insulation.

Not Available

2006-01-01T23:59:59.000Z

16

EVALUATION OF TRANSITIONS FOR TESTING AGRICULTURAL VENTILATION FANS WITH THE FAN ASSESSMENT NUMERATION SYSTEM (FANS).  

E-Print Network (OSTI)

??The Fan Assessment Numeration System (FANS) is an improved air velocity traverse method for measuring in situ fan performance. The FANS has been widely used,… (more)

Lopes, Igor Moreira

2012-01-01T23:59:59.000Z

17

The effects of improved residential furnace filtration on airborne particles  

SciTech Connect

Forced air furnaces with distributed ducting systems have always had an air filter, but traditionally the filter quality was only adequate to protect the furnace fan and heat exchanger from debris. In the past several years, there has been an increasing number of more effective particulate filters that are being marketed to reduce airborne particulate or dust. These include upgraded panel filters, passive electrostatic, active electrostatic, and HEPA or near-HEPA variants. Consumers are bewildered by the lack of standardized and comprehensible performance results and need better advice on whether it would be useful for them to upgrade their current furnace filter. In order to help them make these decisions, the whole range of available furnace filters were tested in six occupied houses. The filter efficiency was determined by particulate measurement in the ducting system before and after the filter. Indoor particulates were measured in a bedroom and living room, and outdoor levels were monitored simultaneously. Testing encompassed several weeks in each house, and the results are available in the whole range of particle sizes. The project also looked at the air-cleaning effectiveness of a stand-alone air cleaner and at the ozone production of electrostatic precipitators installed in 20 houses. Test results will be helpful in specifying suitable filtration for houses.

Fugler, D.; Bowser, D.; Kwan, W.

2000-07-01T23:59:59.000Z

18

Fan Mei | BNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Fan Mei Postdoctoral Research Associate Fan is currently working as a postdoctoral research associate with Jian Wang, investigating aerosol microphysical properties in three recent...

19

Measurement of airflow in residential furnaces  

E-Print Network (OSTI)

Barometric Pressure Fan Motor Volts Fan Motor Amps Fan MotorBarometric Pressure Fan Motor Volts Fan Motor Amps Fan MotorBarometric Pressure Fan Motor Volts Fan Motor Amps Fan Motor

Biermayer, Peter J.; Lutz, James; Lekov, Alex

2004-01-01T23:59:59.000Z

20

Tube furnace  

DOE Patents (OSTI)

A vermiculite insulated tube furnace is heated by a helically-wound resistance wire positioned within a helical groove on the surface of a ceramic cylinder, that in turn is surroundingly disposed about a doubly slotted stainless steel cylindrical liner. For uniform heating, the pitch of the helix is of shorter length over the two end portions of the ceramic cylinder. The furnace is of large volume, provides uniform temperature, offers an extremely precise programmed heating capability, features very rapid cool-down, and has a modest electrical power requirement.

Foster, K.G.; Frohwein, E.J.; Taylor, R.W.; Bowen, D.W.

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "includes furnace fans" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Enameling Furnaces  

Science Conference Proceedings (OSTI)

Table 13 Cycles for firing ground-coated and cover-coated sheet steel parts in a continuous furnace...Architectural panels 16-22 805 1480 2-4 Home laundry equipment 18-22 805 1480 4-5 Water heater tanks 7-16 870 1600 8-12 Range equipment 18-24 805 1480 3-5 Sanitary ware 14-18 815 1500 4-6 Signs 16-22 805 1480 3-5 (a) Temperature varies with composition of frit. (b) Time in hot zone of furnace...

22

Standard Methods of Characterizing Performance of Fan Filter Units, Version 3.0  

E-Print Network (OSTI)

power input to operate the FFU at certain airflow conditions, including fan motor, controller, and transformerpower supply to the fan motor, speed control and display device, transformer,power demand shall include fan motor, speed control and display device, transformer,

Xu, Tengfang

2007-01-01T23:59:59.000Z

23

An Innovative Method for Dynamic Characterization of Fan Filter Unit Operation.  

E-Print Network (OSTI)

power for fan motor, controller, and accessories such as transformerpower demand shall include fan motor, speed control and display device, transformer,power demand shall include the fan, frequency drive motor, speed control device, transformer

Xu, Tengfang

2006-01-01T23:59:59.000Z

24

Furnace assembly  

DOE Patents (OSTI)

A method of and apparatus for heating test specimens to desired elevated temperatures for irradiation by a high energy neutron source. A furnace assembly is provided for heating two separate groups of specimens to substantially different, elevated, isothermal temperatures in a high vacuum environment while positioning the two specimen groups symmetrically at equivalent neutron irradiating positions.

Panayotou, Nicholas F. (Kennewick, WA); Green, Donald R. (Richland, WA); Price, Larry S. (Pittsburg, CA)

1985-01-01T23:59:59.000Z

25

The Lillehammer Submarine Fan Complex.  

E-Print Network (OSTI)

??Abstract The Lillehammer Submarine Fan Complex is a mixed mud/sand rich turbidite fan system. The fan complex was deposited in the Neoproterozoic Hedmark rift basin… (more)

Skaten, Maren Kristin Møllerup

2006-01-01T23:59:59.000Z

26

Ceiling Fan | Open Energy Information  

Open Energy Info (EERE)

Ceiling Fan Jump to: navigation, search TODO: Add description List of Ceiling Fan Incentives Retrieved from "http:en.openei.orgwindex.php?titleCeilingFan&oldid267151"...

27

Aerodynamic Experiments on a Ducted Fan in Hover and Edgewise Flight.  

E-Print Network (OSTI)

??Ducted fans and ducted rotors have been integrated into a wide range of aerospace vehicles, including manned and unmanned systems. Ducted fans offer many potential… (more)

Myers, Leighton

2009-01-01T23:59:59.000Z

28

Insulation of Pipe Bends Improves Efficiency of Hot Oil Furnaces  

E-Print Network (OSTI)

Thermodynamic analyses of processes indicated low furnace efficiencies on certain hot oil furnaces. Further investigation, which included Infrared (IR) thermography testing of several furnaces, identified extremely hot surfaces on the outside of the convective sections. Consultation with the furnace manufacturer then revealed that furnaces made in the 1960's tended to not insulate the pipe bends in the convective section. When insulation was added within the covers of the pipe bends on one furnace, the energy efficiency improved by approximately 11%. The total savings are approximately 14,000 Million Btu/yr on one furnace. Insulation will be applied to several other furnaces at the site.

Haseltine, D. M.; Laffitte, R. D.

1999-05-01T23:59:59.000Z

29

Microsoft Word - ACEEE_06_FurnaceBlower_Paper413_lbl.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

motors in non-condensing non-weatherized gas furnaces at a range of static pressures. Fan performance data is based on manufacturer product literature and laboratory tests. We...

30

Nien-fan Zhang  

Science Conference Proceedings (OSTI)

Nien-fan Zhang. Technical Areas of Research and Consulting: Statistical process control Time series analysis and forecasting. Awards: ...

2012-07-16T23:59:59.000Z

31

Fan Energy Savings Decisions  

E-Print Network (OSTI)

Axial fans are used for thousands of industrial applications consuming millions of kilowatts daily. The decision that saves dollars is to either automatically change fan speed or change blade pitch to save up to 50 percent of consumed power over a fixed pitch, constant speed fan. A discussion of the merits of each type is presented with actual test results.

Monroe, R. C.

1985-05-01T23:59:59.000Z

32

Tritium extraction furnace  

DOE Patents (OSTI)

This invention is comprised of apparatus for heating an object such as a nuclear target bundle to release and recover hydrogen and contain the disposable residue for disposal. The apparatus comprises an inverted furnace, a sleeve/crucible assembly for holding and enclosing the bundle, conveying equipment for placing the sleeve onto the crucible and loading the bundle into the sleeve/crucible, a lift for raising the enclosed bundle into the furnace, and hydrogen recovery equipment including a trap and strippers, all housed in a containment having, negative internal pressure. The crucible/sleeve assembly has an internal volume that is sufficient to enclose and hold the bundle before heating; the crucible`s internal volume is sufficient by itself to hold and enclose the bundle`s volume after heating. The crucible can then be covered and disposed of, the sleeve, on the other hand, can be reused.

Heung, L.K.

1992-12-31T23:59:59.000Z

33

Record of Communication Concerning Ceiling Fan and Ceiling Fan...  

NLE Websites -- All DOE Office Websites (Extended Search)

Record of Communication Concerning Ceiling Fan and Ceiling Fan Light Kit Framework Document-Docket No. EERE-2012-BT-STD-0045 Record of Communication Concerning Ceiling Fan and...

34

Variable frequency microwave furnace system  

DOE Patents (OSTI)

A variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency microwave furnace system includes a microwave signal generator or microwave voltage-controlled oscillator for generating a low-power microwave signal for input to the microwave furnace. A first amplifier may be provided to amplify the magnitude of the signal output from the microwave signal generator or the microwave voltage-controlled oscillator. A second amplifier is provided for processing the signal output by the first amplifier. The second amplifier outputs the microwave signal input to the furnace cavity. In the preferred embodiment, the second amplifier is a traveling-wave tube (TWT). A power supply is provided for operation of the second amplifier. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 5 figs.

Bible, D.W.; Lauf, R.J.

1994-06-14T23:59:59.000Z

35

INFLUENCE OF FAN OPERATION ON FAN ASSESSMENT NUMERATION SYSTEM (FANS) TEST RESULTS.  

E-Print Network (OSTI)

??The use of velocity traverses to measure in-situ air flow rate of ventilation fans can be subject to significant errors. The Fan Assessment Numeration System… (more)

Morello, Gabriela Munhoz

2011-01-01T23:59:59.000Z

36

Furnace and Boiler Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Furnace and Boiler Basics Furnace and Boiler Basics Furnace and Boiler Basics August 16, 2013 - 2:50pm Addthis Furnaces heat air and distribute the heated air through a building using ducts; boilers heat water, providing either hot water or steam for heating. Furnaces Furnaces are the most common heating systems used in homes in the United States. They can be all electric, gas-fired (including propane or natural gas), or oil-fired. Boilers Boilers consist of a vessel or tank where heat produced from the combustion of such fuels as natural gas, fuel oil, or coal is used to generate hot water or steam. Many buildings have their own boilers, while other buildings have steam or hot water piped in from a central plant. Commercial boilers are manufactured for high- or low-pressure applications.

37

Furnaces and Energy  

Science Conference Proceedings (OSTI)

Cast Shop for Aluminum Production: Furnaces and Energy ... Computational Analysis of Thermal Process of a Regenerative Aluminum Melting Furnace: Jimin ... and the appearance of innovative and competing stirrer systems in the market.

38

Measurement of airflow in residential furnaces  

SciTech Connect

In order to have a standard for furnaces that includes electricity consumption or for the efficiency of furnace blowers to be determined, it is necessary to determine the airflow of a furnace or furnace blower. This study focused on airflow testing, in order to determine if an existing test method for measuring blower airflow could be used to measure the airflow of a furnace, under conditions seen in actual installations and to collect data and insights into the operating characteristics of various types of furnace blowers, to use in the analysis of the electricity consumption of furnaces. Results of the measured airflow on furnaces with three types of blower and motor combinations are presented in the report. These included: (1) a forward-curved blower wheel with a typical permanent split capacitor (PSC) motor, (2) a forward-curved blower wheel with an electronically-commutated motor (ECM), and (3) a prototype blower, consisting of a backward-inclined blower wheel matched to an ECM motor prototype, which is being developed as an energy-saving alternative to conventional furnace blowers. The testing provided data on power consumption, static and total pressure, and blower speed.

Biermayer, Peter J.; Lutz, James; Lekov, Alex

2004-01-24T23:59:59.000Z

39

Furnace Design and Operation  

Science Conference Proceedings (OSTI)

...S. Lampman, Energy-Efficient Heat-Treating Furnace Design and Operation, Heat Treating, Vol 4, ASM Handbook, ASM International,

40

Anode Baking Furnace Operation  

Science Conference Proceedings (OSTI)

The course is directed toward plant managers, anode area managers, process engineers, technical managers, and baking furnace ... ENERGY MANAGEMENT.

Note: This page contains sample records for the topic "includes furnace fans" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Forced air fireplace furnace  

Science Conference Proceedings (OSTI)

The design of heating system for buildings including a fireplace with an open front hearth for burning firewood, a chimney extending from the upper portion of the hearth, a metal firebox being open in the front and closed on the sides and back, a plenum chamber within and surrounding the sides and back of the metal firebox and the chimney lower portion, a horizontal heat distribution chamber positioned in the building attic and communicating at one end with the plenum chamber is described. An air distribution duct connects to the other end of the air distributing chamber, the duct extending to discharge heated air to a place in the building remote from the fireplace. A fan is placed in the horizontal air distributing chamber, and a return air duct extends from selected place in the building and communicates with the plenum chamber lower portion so that the fan draws air through the return air duct, through the plenum chamber around the firebox where the air is heated, through the horizontal distribution chamber, and out through the distribution duct for circulation of the heated air within the building.

Bruce, R.W.; Gorman, R.E.

1980-10-28T23:59:59.000Z

42

Thermal Imaging Control of Furnaces and Combustors  

Science Conference Proceedings (OSTI)

The object if this project is to demonstrate and bring to commercial readiness a near-infrared thermal imaging control system for high temperature furnaces and combustors. The thermal imaging control system, including hardware, signal processing, and control software, is designed to be rugged, self-calibrating, easy to install, and relatively transparent to the furnace operator.

David M. Rue; Serguei Zelepouga; Ishwar K. Puri

2003-02-28T23:59:59.000Z

43

Evaluation of the cooling fan efficiency index.  

E-Print Network (OSTI)

Evaluation of the Cooling Fan Efficiency indexfor a desk fan anda computer fan Stefano Schiavon 1,2,* , M. Sc. PhD

Schiavon, Stefano; Melikov, Arsen

2009-01-01T23:59:59.000Z

44

Control system for heat exchangers fans in a refrigeration system  

Science Conference Proceedings (OSTI)

The paper presents a method for controlling evaporator and condenser fans in a refrigeration system. The refrigeration system includes a refrigerant circuit defined by a compressor, a condenser, a throttling device, and an evaporator. The system includes ... Keywords: controlling, fan, refrigeration system, variable frequency drive unit

Cristian Iosifescu; Valeriu Damian; C?lin Ciufudean

2010-05-01T23:59:59.000Z

45

Furnaces and Boilers  

Energy.gov (U.S. Department of Energy (DOE))

Furnaces heat air and distribute the heated air through a building using ducts; boilers heat water, providing either hot water or steam for heating.

46

Introduction of a Cooling Fan Efficiency Index  

E-Print Network (OSTI)

with four cooling fans of different designs available on thedesign, installation, and use, the performance of cooling fans

Schiavon, Stefano; Melikov, Arsen

2009-01-01T23:59:59.000Z

47

High pressure furnace  

DOE Patents (OSTI)

A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

Morris, Donald E. (Kensington, CA)

1993-01-01T23:59:59.000Z

48

High pressure oxygen furnace  

DOE Patents (OSTI)

A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized, the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 5 figs.

Morris, D.E.

1992-07-14T23:59:59.000Z

49

High pressure oxygen furnace  

DOE Patents (OSTI)

A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

Morris, Donald E. (Kensington, CA)

1992-01-01T23:59:59.000Z

50

High pressure furnace  

DOE Patents (OSTI)

A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum)). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 19 figures.

Morris, D.E.

1993-09-14T23:59:59.000Z

51

Fan Foundation Systems--Analysis and Design Guidelines  

Science Conference Proceedings (OSTI)

Dynamic analysis is the most effective tool for determining the root causes of excessive fan vibration. This study demonstrated the importance of using such analysis in conjunction with a "total systems" approach that considers how the properties of all major fan system components, including foundation, piles, and soil conditions, contribute to vibration.

1986-08-19T23:59:59.000Z

52

Furnace Black Characterization  

E-Print Network (OSTI)

Furnace Black Characterization Sid Richardson Carbon Co Fort Worth, TX Dr. Michel Gerspacher #12 of Crystallographic Studies #12;005F7 Methodologies #12;005F8 Summary · For all furnace carbon black 12� Surface Unorganized Carbon Identified #12;005F11 SRCC's Model #12;005F12 Carbon Black Surface Activity

53

Furnace Black Characterization  

NLE Websites -- All DOE Office Websites (Extended Search)

Furnace Black Furnace Black Characterization Sid Richardson Carbon Co Fort Worth, TX Dr. Michel Gerspacher 005F 2 Definitions Particle Aggregate = 20nm to 100nm "Diameter" = 200nm to 1,000nm "Length" = Set of Percolated Aggregates Particle (?) Aggregate Agglomerate Constituents Size = Tech/Scientific Challenge 005F 3 Furnace Process High Temperature Refractory Feedstock Oil Air Natural Gas Reaction Zone Quench 005F 4 Specific Surface Area 005F 5 Structure 3-D Morphology Key Characteristic Summary of Crystallographic Studies 005F 7 Methodologies 005F 8 Summary * For all furnace carbon black 12Å < L C < 17Å * Crystallite L a ≈ 25Å * Amorphous Carbon * No micropores * Very few surface groups (hetero atoms) { 005F 9 Effect of Heat Treatment on Amorphous Carbon

54

High temperature furnace  

DOE Patents (OSTI)

A high temperature furnace for use above 2000.degree.C is provided that features fast initial heating and low power consumption at the operating temperature. The cathode is initially heated by joule heating followed by electron emission heating at the operating temperature. The cathode is designed for routine large temperature excursions without being subjected to high thermal stresses. A further characteristic of the device is the elimination of any ceramic components from the high temperature zone of the furnace.

Borkowski, Casimer J. (Oak Ridge, TN)

1976-08-03T23:59:59.000Z

55

Save Energy with Axial Fans  

E-Print Network (OSTI)

There are several ways to save energy in wet cooling towers and air cooled heat exchangers using axial fans. This paper will discuss ways to improve fan system efficiency in wet and dry towers both during the design phase and after installation by specifying energy efficient equipment. Variable pitch fan versus fixed pitch fan operation is discussed in terms of energy savings and means of control. The areas of interest to wet cooling tower users would be the influence on fan diameter and operating point on horsepower, how and when are velocity recovery stacks effective, the effect of varying fan speed to improve efficiency, and tip clearance effects. The areas of interest to dry tower (air cooled heat exchanger) users would be the effect of inlet losses, approach velocity losses, and losses due to air recirculation.

Monroe, R. C.

1981-01-01T23:59:59.000Z

56

Introduction of a Cooling Fan Efficiency Index  

E-Print Network (OSTI)

°C °F Cooling Effect (?t eq ) °C °F Fan Power, W (P f ) Cooling-Fan Efficiency (CFE) °C/W °F/Wand B. Jones. 1983. Ceiling fans as extenders of the summer

Schiavon, Stefano; Melikov, Arsen

2009-01-01T23:59:59.000Z

57

Partially Reduced Feedstocks and Blast Furnace Ironmaking ...  

Science Conference Proceedings (OSTI)

... Partially Reduced Feedstocks and Blast Furnace Ironmaking Carbon Intensity ... simple Rist-style blast furnace mass and energy balance, assuming furnace ...

58

Argonne Software Licensing: Glass Furnace Model (GFM)  

The Glass Furnace Model (GFM) The Glass Furnace Model (GFM) Version 4.0, a computational fluid dynamic (CFD) glass furnace simulation code was developed at Argonne ...

59

The Internet World of Fan Fiction.  

E-Print Network (OSTI)

??Fan fiction, the most popular creative outlet for fans, allows the amateur writer an opportunity to be published and receive immediate feedback from peers. As… (more)

Herzing, Melissa Jean

2008-01-01T23:59:59.000Z

60

THE WORLD'S Biggest Fan Collection  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WORLD'S Biggest Fan Collection WORLD'S Biggest Fan Collection If you only know the Big Ass Fan Company as the preeminent designer and manufacturer of high volume, low speed fans for factories and cows, it's time you get to know us better. While we continue to lead the way in industrial and agricultural air movement, we've also refined these designs to bring the same innovation and benefits of our famous fans to circulate an ocean of air in sound-sensitive commercial spaces and homes. And when our customers said they wanted something for smaller spaces, we listened - and we think you'll like the results. We've got you covered - ceiling to floor, wall to door! Features ï‚ž New patented airfoil system uses 10 Powerfoil airfoils, winglets and patent-pending AirFence(tm) technology to increase

Note: This page contains sample records for the topic "includes furnace fans" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Furnace | OpenEI  

Open Energy Info (EERE)

Furnace Furnace Dataset Summary Description The following data-set is for a benchmark residential home for all TMY3 locations across all utilities in the US. The data is indexed by utility service provider which is described by its "unique" EIA ID ( Source National Renewable Energy Laboratory Date Released April 05th, 2012 (2 years ago) Date Updated April 06th, 2012 (2 years ago) Keywords AC apartment CFL coffeemaker Computer cooling cost demand Dishwasher Dryer Furnace gas HVAC Incandescent Laptop load Microwave model NREL Residential television tmy3 URDB Data text/csv icon Residential Cost Data for Common Household Items (csv, 14.5 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL)

62

Measure Guideline: High Efficiency Natural Gas Furnaces  

SciTech Connect

This Measure Guideline covers installation of high-efficiency gas furnaces. Topics covered include when to install a high-efficiency gas furnace as a retrofit measure, how to identify and address risks, and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

Brand, L.; Rose, W.

2012-10-01T23:59:59.000Z

63

Mass and fans in attached sunspaces  

DOE Green Energy (OSTI)

The effect of thermal storage mass on the performance of an attached sunspace is investigated for a particular design in Boston. Mass in the sunspace and in the adjoining building are compared. Performance is evaluated in terms of temperature conditions in the sunspace and delivery of useful solar heat to the adjoining building. The dependence of the results on the manner of heat delivery is studied. Both natural convection and fan-forced air flow are included.

Jones, R.W.; McFarland, R.D.; Lazarus, G.S.

1982-01-01T23:59:59.000Z

64

Combustion Air Preheat on Steam Cracker Furnaces  

E-Print Network (OSTI)

Beginning in 1978, Exxon has started up nine large new steam cracking furnaces with various levels of air preheat, and has seven more under construction. Sources of heat have included process streams, flue gas and gas turbine exhaust. Several aspects of the technology employed have been patented in the U.S. and elsewhere. This paper discusses the use of process heat and gas turbine exhaust for air preheat to provide plant fuel savings of about 8% over and above a modern, fuel efficient alternative furnace without air preheat.

Kenney, W. F.

1983-01-01T23:59:59.000Z

65

Furnace Blower Electricity: National and Regional Savings Potential  

Science Conference Proceedings (OSTI)

Currently, total electricity consumption of furnaces is unregulated, tested at laboratory conditions using the DOE test procedure, and is reported in the GAMA directory as varying from 76 kWh/year to 1,953 kWh/year. Furnace blowers account for about 80percent of the total furnace electricity consumption and are primarily used to distribute warm air throughout the home during furnace operation as well as distribute cold air during air conditioning operation. Yet the furnace test procedure does not provide a means to calculate the electricity consumption during cooling operation or standby, which account for a large fraction of the total electricity consumption. Furthermore, blower electricity consumption is strongly affected by static pressure. Field data shows that static pressure in the house distribution ducts varies widely and that the static pressure used in the test procedure as well as the calculated fan power is not representative of actual field installations. Therefore, accurate determination of the blower electricity consumption is important to address electricity consumption of furnaces and air conditioners. This paper compares the potential regional and national energy savings of two-stage brushless permanent magnet (BPM) blower motors (the blower design option with the most potential savings that is currently available in the market) to single-stage permanent split capacitor (PSC) blower motors (the most common blower design option). Computer models were used to generate the heating and cooling loads for typical homes in 16 different climates which represent houses throughout the United States. The results show that the potential savings of using BPM motors vary by region and house characteristics, and are very strongly tied to improving house distribution ducts. Savings decrease dramatically with increased duct pressure. Cold climate locations will see savings even in the high static pressure duct situations, while warm climate locations will see less savings overall and negative savings in the high static pressure duct situations. Moderate climate locations will see little or no savings.

Florida Solar Energy Center; Franco, Victor; Franco, Victor; Lutz, Jim; Lekov, Alex; Gu, Lixing

2008-05-16T23:59:59.000Z

66

Furnace Blower Electricity: National and Regional Savings Potential  

NLE Websites -- All DOE Office Websites (Extended Search)

Furnace Blower Electricity: National and Regional Savings Potential Furnace Blower Electricity: National and Regional Savings Potential Title Furnace Blower Electricity: National and Regional Savings Potential Publication Type Report LBNL Report Number LBNL-417E Year of Publication 2008 Authors Franco, Victor H., James D. Lutz, Alexander B. Lekov, and Lixing Gu Document Number LBNL-417E Pagination 14 Date Published August 1 Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract Currently, total electricity consumption of furnaces is unregulated, tested at laboratory conditions using the DOE test procedure, and is reported in the GAMA directory as varying from 76 kWh/year to 1,953 kWh/year. Furnace blowers account for about 80% of the total furnace electricity consumption and are primarily used to distribute warm air throughout the home during furnace operation as well as distribute cold air during air conditioning operation. Yet the furnace test procedure does not provide a means to calculate the electricity consumption during cooling operation or standby, which account for a large fraction of the total electricity consumption. Furthermore, blower electricity consumption is strongly affected by static pressure. Field data shows that static pressure in the house distribution ducts varies widely and that the static pressureused in the test procedure as well as the calculated fan power is not representative of actual field installations. Therefore, accurate determination of the blower electricity consumption is important to address electricity consumption of furnaces and air conditioners. This paper compares the potential regional and national energy savings of two-stage brushless permanent magnet (BPM) blower motors (the blower design option with the most potential savings that is currently available in the market) to single-stage permanent split capacitor (PSC) blower motors (the most common blower design option). Computer models were used to generate the heating and cooling loads for typical homes in 16 different climates which represent houses throughout the United States. The results show that the potential savings of using BPM motors vary by region and house characteristics, and are very strongly tied to improving house distribution ducts. Savings decrease dramatically with increased duct pressure. Cold climate locations will see savings even in the high static pressure duct situations, whilewarm climate locations will see less savings overall and negative savings in the high static pressure duct situations. Moderate climate locations will see little or no savings.

67

Best Practice for Energy Efficient Cleanrooms: Fan-FilterUnits  

Science Conference Proceedings (OSTI)

The HVAC systems in cleanrooms may use 50 percent or more of the total cleanroom energy use. Fan energy use accounts for a significant portion (e.g., over 50%) of the HVAC energy use in cleanrooms such as ISO Classes 3, 4, or 5. Three types of air-handling systems for recirculating airflows are commonly used in cleanrooms: (1) fan-tower systems with pressurized plenum, (2) ducted HEPA systems with distributed-fans, and (3) systems with fan-filter units. Because energy efficiency of the recirculation systems could vary significantly from system type to system type, optimizing aerodynamic performance in air recirculation systems appears to be a useful approach to improve energy efficiency in cleanrooms. Providing optimal airflows through careful planning, design and operation, including air change rate, airflow uniformity, and airflow speed, is important for controlling particle contamination in cleanrooms. In practice, the use of fan-filter units (FFUs) in the air-handling system is becoming more and more popular because of this type of system may offer a number of advantages. Often modular and portable than traditional recirculation airflow systems, FFUs are easier to install, and can be easily controlled and monitored to maintain filtration performance. Energy efficiency of air handling systems using fan-filter units can, however, be lower than their counterparts and may vary significantly from system to system because of the difference in energy performance, airflow paths, and the operating conditions of FFUs.

Xu, Tengfang

2005-06-15T23:59:59.000Z

68

Furnace Technology Systems Workshop Preliminary Schedule ...  

Science Conference Proceedings (OSTI)

Mar 3, 2013 ... and emissions. 9:40 – 10:25. Robinson Fans Inc. Deanna Weaver. Blowers/ Exhausters. This presentation will cover the basics of fan design.

69

title Potential Global Benefits of Improved Ceiling Fan Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fan Energy Efficiency year month keywords bottom up Ceiling fan Celing Fans efficiency energy efficiency Financial incentives Market Transformation residential Standards and...

70

Simple Maintenance Saves Costly Furnace Repair/Replacement | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Simple Maintenance Saves Costly Furnace Repair/Replacement Simple Maintenance Saves Costly Furnace Repair/Replacement Simple Maintenance Saves Costly Furnace Repair/Replacement January 6, 2010 - 8:26am Addthis Chris Stewart Senior Communicator at DOE's National Renewable Energy Laboratory For the past few weeks, my forced-air gas furnace has been on the fritz. I blame this on the fact that I haven't been as diligent as I should have been with regular furnace maintenance, which includes: Checking the condition of the vent connection pipe and chimney Checking the physical integrity of the heat exchanger Adjusting the controls to provide optimum water and air temperature settings for both efficiency and comfort Having a technician perform a combustion-efficiency test Checking the combustion chamber for cracks. Testing for carbon monoxide

71

HIGH TEMPERATURE MICROSCOPE AND FURNACE  

DOE Patents (OSTI)

A high-temperature microscope is offered. It has a reflecting optic situated above a molten specimen in a furnace and reflecting the image of the same downward through an inert optic member in the floor of the furnace, a plurality of spaced reflecting plane mirrors defining a reflecting path around the furnace, a standard microscope supported in the path of and forming the end terminus of the light path.

Olson, D.M.

1961-01-31T23:59:59.000Z

72

BPM Motors in Residential Gas Furnaces: What are theSavings?  

Science Conference Proceedings (OSTI)

Residential gas furnaces contain blowers to distribute warm air. Currently, furnace blowers use either a Permanent Split Capacitor (PSC) or a Brushless Permanent Magnet (BPM) motor. Blowers account for the majority of furnace electricity consumption. Therefore, accurate determination of the blower electricity consumption is important for understanding electricity consumption of furnaces. The electricity consumption of blower motors depends on the static pressure across the blower. This paper examines both types of blower motors in non-condensing non-weatherized gas furnaces at a range of static pressures. Fan performance data is based on manufacturer product literature and laboratory tests. We use field-measured static pressure in ducts to get typical system curves to calculate how furnaces would operate in the field. We contrast this with the electricity consumption of a furnace blower operating under the DOE test procedure and manufacturer rated conditions. Furnace electricity use is also affected by operating modes that happen at the beginning and end of each furnace firing cycle. These operating modes are the pre-purge and post-purge by the draft inducer, the on-delay and off-delay of the blower, and the hot surface ignitor operation. To accurately calculate this effect, we use the number of firing cycles in a typical California house in the Central Valley of California. Cooling hours are not considered in the DOE test procedure. We also account for furnace blower use by the air conditioner and stand-by power. Overall BPM motors outperform PSC motors, but the total electricity savings are significantly less than projected using the DOE test procedure conditions. The performance gains depend on the static pressure of the household ducts, which are typically much higher than in the test procedures.

Lutz, James; Franco, Victor; Lekov, Alex; Wong-Parodi, Gabrielle

2006-05-12T23:59:59.000Z

73

Ceiling Fan and Ceiling Fan Light Kit use in the U.S. Results of a Survey on Amazon Mechanical Turk  

E-Print Network (OSTI)

Ceiling Fan and Ceiling Fan Light Kit use in the U.S. —Ceiling Fan and Ceiling Fan Light Kit use in the U.S. —fans and ceiling fan light kits in the United States (

Kantner, Colleen L.S.

2013-01-01T23:59:59.000Z

74

Cupola Furnace Computer Process Model  

Science Conference Proceedings (OSTI)

The cupola furnace generates more than 50% of the liquid iron used to produce the 9+ million tons of castings annually. The cupola converts iron and steel into cast iron. The main advantages of the cupola furnace are lower energy costs than those of competing furnaces (electric) and the ability to melt less expensive metallic scrap than the competing furnaces. However the chemical and physical processes that take place in the cupola furnace are highly complex making it difficult to operate the furnace in optimal fashion. The results are low energy efficiency and poor recovery of important and expensive alloy elements due to oxidation. Between 1990 and 2004 under the auspices of the Department of Energy, the American Foundry Society and General Motors Corp. a computer simulation of the cupola furnace was developed that accurately describes the complex behavior of the furnace. When provided with the furnace input conditions the model provides accurate values of the output conditions in a matter of seconds. It also provides key diagnostics. Using clues from the diagnostics a trained specialist can infer changes in the operation that will move the system toward higher efficiency. Repeating the process in an iterative fashion leads to near optimum operating conditions with just a few iterations. More advanced uses of the program have been examined. The program is currently being combined with an ''Expert System'' to permit optimization in real time. The program has been combined with ''neural network'' programs to affect very easy scanning of a wide range of furnace operation. Rudimentary efforts were successfully made to operate the furnace using a computer. References to these more advanced systems will be found in the ''Cupola Handbook''. Chapter 27, American Foundry Society, Des Plaines, IL (1999).

Seymour Katz

2004-12-31T23:59:59.000Z

75

Sound maintenance practices protect fan investments  

Science Conference Proceedings (OSTI)

Since underground coal miners depend on axial fans, lack of maintenance could prove costly. A number of pre-emptive actions that can help keep fans running at optimal performance can also be taken. 2 photos.

Bauer, M.

2009-11-15T23:59:59.000Z

76

MECHANICAL DRAFT FANS FOR THE MODERN INCINERATOR  

E-Print Network (OSTI)

design and modiftcation. Spe cial blading and fan construction for use under corrosive conditions this will be kept fairly constant by air or water cooling during noral op eration. Since the fan will be designed. Volume control on a single inlet fan can be accomplished with a variable inlet #12;vane, designed

Columbia University

77

Regenerative Burners Assessment in Holding Reverberatory Furnace  

Science Conference Proceedings (OSTI)

The assessment showed that the regenerative burner furnaces are not profitable in saving energy in addition to the negative impact on the furnace life.

78

Molten metal holder furnace and casting system incorporating the molten metal holder furnace  

DOE Patents (OSTI)

A bottom heated holder furnace (12) for containing a supply of molten metal includes a storage vessel (30) having sidewalls (32) and a bottom wall (34) defining a molten metal receiving chamber (36). A furnace insulating layer (42) lines the molten metal receiving chamber (36). A thermally conductive heat exchanger block (54) is located at the bottom of the molten metal receiving chamber (36) for heating the supply of molten metal. The heat exchanger block (54) includes a bottom face (65), side faces (66), and a top face (67). The heat exchanger block (54) includes a plurality of electrical heaters (70) extending therein and projecting outward from at least one of the faces of the heat exchanger block (54), and further extending through the furnace insulating layer (42) and one of the sidewalls (32) of the storage vessel (30) for connection to a source of electrical power. A sealing layer (50) covers the bottom face (65) and side faces (66) of the heat exchanger block (54) such that the heat exchanger block (54) is substantially separated from contact with the furnace insulating layer (42).

Kinosz, Michael J. (Apollo, PA); Meyer, Thomas N. (Murrysville, PA)

2003-02-11T23:59:59.000Z

79

WaterFurnace Renewable Energy Inc formerly WaterFurnace Industries Inc WFI  

Open Energy Info (EERE)

WaterFurnace Renewable Energy Inc formerly WaterFurnace Industries Inc WFI WaterFurnace Renewable Energy Inc formerly WaterFurnace Industries Inc WFI Jump to: navigation, search Name WaterFurnace Renewable Energy Inc (formerly: WaterFurnace Industries, Inc (WFI)) Place Indiana Zip 46809 Sector Geothermal energy Product WaterFurnace develops and manufactures geothermal heating and cooling systems. References WaterFurnace Renewable Energy Inc (formerly: WaterFurnace Industries, Inc (WFI))[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. WaterFurnace Renewable Energy Inc (formerly: WaterFurnace Industries, Inc (WFI)) is a company located in Indiana . References ↑ "WaterFurnace Renewable Energy Inc (formerly: WaterFurnace Industries, Inc (WFI))"

80

Fossil fuel furnace reactor  

DOE Patents (OSTI)

A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

Parkinson, William J. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "includes furnace fans" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Covered Product Category: Residential Gas Furnaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas Furnaces Gas Furnaces Covered Product Category: Residential Gas Furnaces October 7, 2013 - 10:39am Addthis ENERGY STAR Qualified Products FEMP provides acquisition guidance across a variety of product categories, including residential gas furnaces, which are an ENERGY STAR®-qualified product category. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Most manufacturers display the ENERGY STAR label on complying models. For a model not displaying this label, check the manufacturer's literature to determine if it meets the efficiency requirements outlined by ENERGY STAR. Performance Requirements for Federal Purchases For the most up-to-date efficiency levels required by ENERGY STAR, look for

82

Legendary West Virginia Senior Citizen Stays Warm With New Furnace |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Legendary West Virginia Senior Citizen Stays Warm With New Furnace Legendary West Virginia Senior Citizen Stays Warm With New Furnace Legendary West Virginia Senior Citizen Stays Warm With New Furnace April 1, 2010 - 7:16pm Addthis Joshua DeLung For the last 56 years, Beulah Sisk has lived in the same house in Princeton, W.Va. Beulah, who worked for 25 years at Lloyd's Pastry Shop, is well known in Princeton. People still see her on the streets today and recognize her as an icon in the community. After a wind storm damaged Beulah's home last year, it came as no surprise when a senior center employee, concerned for Beulah's safety, told her about the weatherization assistance program. "A tree fell on my house and damaged a lot of things, including my furnace," Beulah says. "I tried to have it repaired, but it still

83

Experimental Evaluation of Installed Cooking Exhaust Fan Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Experimental Evaluation of Installed Cooking Exhaust Fan Performance Experimental Evaluation of Installed Cooking Exhaust Fan Performance Title Experimental Evaluation of Installed Cooking Exhaust Fan Performance Publication Type Report LBNL Report Number LBNL-4183E Year of Publication 2010 Authors Singer, Brett C., William W. Delp, and Michael G. Apte Publisher Lawrence Berkeley National Laboratory City Berkeley Keywords airflow & pollutant transport group, cooktop, energy analysis and environmental impacts department, gas burners, indoor air quality, indoor environment department, kitchen, nitrogen dioxide, oven, pollutant emissions, range hood, residential, source control, task ventilation, technology, sustainability and impact assessment group Abstract The installed performance of cooking exhaust fans was evaluated through residential field experiments conducted on a sample of 15 devices varying in design and other characteristics. The sample included two rear downdraft systems, two under-cabinet microwave over range (MOR) units, three different installations of an under-cabinet model with grease screens across the bottom and no capture hood, two devices with grease screens covering the bottom of a large capture hood (one under-cabinet, one wall-mount chimney), four under-cabinet open hoods, and two open hoods with chimney mounts over islands. Performance assessment included measurement of airflow and sound levels across fan settings and experiments to quantify the contemporaneous capture efficiency for the exhaust generated by natural gas cooking burners. Capture efficiency is defined as the fraction of generated pollutants that are removed through the exhaust and thus not available for inhalation of household occupants. Capture efficiency (CE) was assessed for various configurations of burner use (e.g. single front, single back, combination of one front and one back, oven) and fan speed setting. Measured airflow rates were substantially lower than the levels noted in product literature for many of the units. This shortfall was observed for several units costing in excess of $1000. Capture efficiency varied widely (from <5% to roughly 100%) across devices and across conditions for some devices. As expected, higher capture efficiencies were achieved with higher fan settings and the associated higher air flow rates. In most cases, capture efficiencies were substantially higher for rear burners than for front burners. The best and most consistent performance was observed for open hoods that covered all cooktop burners and operated at higher airflow rates. The lowest capture efficiencies were measured when a front burner was used with a rear backdraft system or with lowest fan setting for above the range systems that do not cover the front burners.

84

Development of a High Efficiency Ceiling Fan  

E-Print Network (OSTI)

The potential of ceiling fans to improve comfort during the cooling season is well documented (Rohles et al.. 1983; Fairey et al.. 1986). There are at least two cases: In the first where air conditioning is unavailable, adding ceiling fans may significantly improve building comfort and health although actually increasing energy use. However, the more common circumstance is where ceiling fans are used with the objective of providing a higher cooling system thermostat set point with acceptable comfort. Fans can also potentially avoid the use of air conditioning during "swing" seasons. Although studies commonly suggest a 2-6OF increase in the thermostat set point, data from 386 surveyed Central Florida households suggests that although fans are used an average of 13.4 hours per day, no statistically valid difference can be observed in thermostat settings between households using fans and those without them (James et al., 1996). Part of this may be due to the lack of sufficiently wide air distribution coverage within rooms (Rohles et al, 1983; Sonne and Parker, 1998). Studies touting potential cooling savings of up to 40% have usually been sponsored by fan manufacturers (eg. A.D. Little, 1981). These often make unrealistic assumptions such as presuming that occupants are within four feet of a fan with only one fan in use and a 6°F elevation of the thermostat setting. An environmental chamber study by Consumer Reports showed that the long-reported de-stratification benefits when heating are largely unsubstantiated (Consumer Reports. 1993). Thus. benefits from ceiling fans are only to reduce cooling needs and this is completely contingent on sufficient changes in interior comfort to warrant raising of the cooling thermostat. Two other factors must be taken into account in assessing the benefits of fans: their actual energy use and the added internal heat gains produced by the fans during operation. The measured electrical demand of ceiling fans varies between 5 and 115 Watts depending on model and speed selection. A power demand of 40 W at medium speed is probably typical (Chandra, 1985). Thus, a fan used for six months of the year would use 175 kwh. With 4.3 ceiling fans in an average Florida home, this amounts to about 800 kwh of fan energy consumption --about 5% of total electricity use. Also, all of the energy use of fans is eventually converted to heat within the home which must eventually be removed by ventilation air or the cooling system.

Parker, D. S.; Callahan, M. P.; Sonne, J. K.; Su, G. H.; Hibbs, B. D.

2000-01-01T23:59:59.000Z

85

Knowing fans, knowing music : an exploration of fan interaction on Twitter  

E-Print Network (OSTI)

know many local Ritter fans yet” 26 She responded about aI see you're a Buffy fanare you also a Browncoat? : )”The term Browncoats refers to fans of the short-lived sci-fi

McCollum, Nick

2011-01-01T23:59:59.000Z

86

Engine having hydraulic and fan drive systems using a single high pressure pump  

DOE Patents (OSTI)

An engine comprises a hydraulic system attached to an engine housing that includes a high pressure pump and a hydraulic fluid flowing through at least one passageway. A fan drive system is also attached to the engine housing and includes a hydraulic motor and a fan which can move air over the engine. The hydraulic motor includes an inlet fluidly connected to the at least one passageway.

Bartley, Bradley E. (Manito, IL); Blass, James R. (Bloomington, IL); Gibson, Dennis H. (Chillicothe, IL)

2000-01-01T23:59:59.000Z

87

Submitting Organization Hongyou Fan Sandia National Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

&24; 2007 R&D 100 Award Entry Form &24; Submitting Organization Hongyou Fan Sandia National Laboratories Advanced Materials Laboratory 1001 University Boulevard SE Albuquerque, NM...

88

Active Noise Control of a Radial Fan.  

E-Print Network (OSTI)

??This thesis work aims at investigating the use of an active noise control (ANC) system on a radial fan. This was done by studying the… (more)

Murthy, Muddala

2009-01-01T23:59:59.000Z

89

Laboratory Evaluation of Residential Furnace BlowerPerformance  

SciTech Connect

A testing program was undertaken at Lawrence Berkeley National Laboratory and an electric utility (Pacific Gas and Electric Co.) to compare the performance of furnace blowers. This laboratory testing program was undertaken to support potential changes to California Building Standards regarding in-field furnace blower energy use. This technical support includes identifying suitable performance metrics and target performance levels for use in standards. Five different combinations of blowers and residential furnaces were tested for air moving performance. Three different types of blower and motor combinations were tested in two different furnace cabinets. The blowers were standard forward--curved impellors and a prototype impeller with reverse-inclined blades. The motors were two 6-pole permanent split capacitor (PSC) single-phase induction motors, a brushless permanent magnet (BPM) motor and a prototype BPM designed for use with a prototype reverse-inclined impellor. The laboratory testing operated each blower and furnace combination over a range of air flows and pressure differences to determine air flow performance, power consumption and efficiency. Additional tests varied the clearance between the blower housing and the furnace cabinet, and the routing of air flow into the blower cabinet.

Walker, Iain S.; Lutz, Jim D.

2005-09-01T23:59:59.000Z

90

Furnace Blower Electricity: National and Regional Savings Potential  

E-Print Network (OSTI)

Inc. Pigg, Scott. 2003. Electricity Use by New Furnaces: Astage furnaces offer national electricity savings, but withABORATORY Furnace Blower Electricity: National and Regional

Franco, Victor; Florida Solar Energy Center

2008-01-01T23:59:59.000Z

91

Residential Two-Stage Gas Furnaces - Do They Save Energy?  

E-Print Network (OSTI)

Method for Measuring the Energy Consumption of Furnaces andcalculating the energy consumption of two-stage furnaces.residential gas furnace energy consumption in the DOE test

Lekov, Alex; Franco, Victor; Lutz, James

2006-01-01T23:59:59.000Z

92

A passive margin-type submarine fan complex, Permian Ecca Group, South Africa  

Science Conference Proceedings (OSTI)

A submarine fan complex, comprising five arenaceous fan systems separated by basinal shale units, occurs in the southwestern part of the intracratonic Karoo basin in South Africa. Although basin development is related to a subduction zone bordering the palaeo-Pacific ocean to the south of Gondwanaland and the evolution of the Cape Fold Belt, the entire Lower Permian Ecca Group basin-fill succession reflects depositional characteristics of a passive-margin setting. The submarine fan complex, 250 m thick, originated from sediments supplied by Mississippi-type deltas dominating the Ecca coastline. The fine grain-size and low sand/shale ratio of the submarine fan and deltaic deposits reflect the maturity of the ancient river systems. Outcrops of the fan complex are well exposed and cover an area of 650 km{sup 2}. The strata are not affected by folding, and deep erosion allows three-dimensional viewing of mid-fan to outer-fan deposits. Features of interest include stacked lobe deposits displayed along 2.5 km of a 60 m high cliff section, and a transverse cliff section through channel-fill deposits 500 m wide. Paleocurrent directions reveal that each sequence had its own main source area located to the northwest and south of its present geographic location. The cyclic nature of the fan complex is attributed to relative sea-level changes; deposition took place on the basin floor in water depths that do not exceed 500 m. Shoaling of the basin to wave base depths is reflected in the pro-delta and delta front deposits overlying the uppermost fan sequence. Major factors in controlling direction of fan progradation were delta switching and basin floor topography.

Wickens, H.D. (SOEKOR-Pty. Ltd., Parow (South Africa)); Bouma, A.H. (Louisiana State Univ., Baton Rouge (United States))

1991-03-01T23:59:59.000Z

93

Advanced Energy-Efficient Filtration: Fan Filter Unit  

E-Print Network (OSTI)

Efficient Fan- Filter Units, Proceedings of SEMI TechnicalFor Evaluating Fan-Filter Unit Performance – Applications inPerformance of Fan-Filter Units, Version 1.2 (2004, public

Xu, Tengfang

2005-01-01T23:59:59.000Z

94

Advanced Energy-Efficient Filtration: Fan Filter Unit  

E-Print Network (OSTI)

Cleanrooms: Energy Efficient Fan- Filter Units, ProceedingsStandard Method For Evaluating Fan-Filter Unit Performance –Energy Performance of Fan-Filter Units, Version 1.2 (2004,

Xu, Tengfang

2005-01-01T23:59:59.000Z

95

Best Practice for Energy Efficient Cleanrooms: Fan-Filter Units  

E-Print Network (OSTI)

control F iltra ti on ? Fan Efficiency ? Right Sizing ?Energy Performance of Fan-Filte r Units, Version 1.3 (2005),RP36.1 (Draft). Testing Fan-Filter Units. Draft Recommended

Xu, Tengfang

2005-01-01T23:59:59.000Z

96

Experimental Evaluation of Installed Cooking Exhaust Fan Performance  

SciTech Connect

The installed performance of cooking exhaust fans was evaluated through residential field experiments conducted on a sample of 15 devices varying in design and other characteristics. The sample included two rear downdraft systems, two under-cabinet microwave over range (MOR) units, three different installations of an under-cabinet model with grease screens across the bottom and no capture hood, two devices with grease screens covering the bottom of a large capture hood (one under-cabinet, one wall-mount chimney), four under-cabinet open hoods, and two open hoods with chimney mounts over islands. Performance assessment included measurement of airflow and sound levels across fan settings and experiments to quantify the contemporaneous capture efficiency for the exhaust generated by natural gas cooking burners.Capture efficiency is defined as the fraction of generated pollutants that are removed through the exhaust and thus not available for inhalation of household occupants. Capture efficiency (CE) was assessed for various configurations of burner use (e.g., single front, single back, combination of one front and one back, oven) and fan speed setting. Measured airflow rates were substantially lower than the levels noted in product literature for many of the units. This shortfall was observed for several units costing in excess of $1000. Capture efficiency varied widely (from<5percent to roughly 100percent) across devices and across conditions for some devices. As expected, higher capture efficiencies were achieved with higher fan settings and the associated higher air flow rates. In most cases, capture efficiencies were substantially higher for rear burners than for front burners. The best and most consistent performance was observed for open hoods that covered all cooktop burners and operated at higher airflow rates. The lowest capture efficiencies were measured when a front burner was used with a rear backdraft system or with lowest fan setting for above the range systems that do not cover the front burners.

Singer, Brett C.; Delp, William W.; Apte, Michael G.

2010-11-01T23:59:59.000Z

97

The Effect of Inlet Flow Profile Distortion on Fan Performance  

Science Conference Proceedings (OSTI)

Performance tests on fans for utility and industrial applications are based on codes that expect a relatively uniform velocity profile at the fan inlet. Unfortunately, when fans scaled up from the ideal model fans are installed in actual utility and industrial applications, non-uniform or distorted flow patterns often occur at the inlet of the fan. This project sought to determine and, if possible, quantify the effect on fan performance of distorted inlet flow profiles. A second goal was to determine whe...

2010-02-22T23:59:59.000Z

98

Operation and Maintenance Guidelines for Draft Fans  

Science Conference Proceedings (OSTI)

The reliability, efficiency, and safety of draft fans in fossil fuel power plants depend on effective operating and maintenance practices. These guidelines systematically present state-of-the-art techniques that utility personnel can use in operation, maintenance, troubleshooting, inspection, and weld repair of major fan components and auxiliary systems.

1999-05-13T23:59:59.000Z

99

Redesign of ceiling fan - adapted to the Scandinavian market.  

E-Print Network (OSTI)

?? The master degree thesis project, at Halmstad University, was made in cooperation with Hunter Fan, one of the leading fan companies on the American… (more)

Eliasson, Anna

2007-01-01T23:59:59.000Z

100

Potential Global Benefits of Improved Ceiling Fan Energy Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Benefits of Improved Ceiling Fan Energy Efficiency Title Potential Global Benefits of Improved Ceiling Fan Energy Efficiency Publication Type Report LBNL Report Number...

Note: This page contains sample records for the topic "includes furnace fans" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Characterization of air recirculation in multiple fan ventilation systems.  

E-Print Network (OSTI)

??Booster fans, large underground fans, can increase the volumetric efficiency of ventilation systems by helping to balance the pressure and quantity distribution throughout a mine,… (more)

Wempen, Jessica Michelle

2012-01-01T23:59:59.000Z

102

Fan-fold shielded electrical leads  

DOE Patents (OSTI)

Disclosed are fan-folded electrical leads made from copper cladded Kapton, for example, with the copper cladding on one side serving as a ground plane and the copper cladding on the other side being etched to form the leads. The Kapton is fan folded with the leads located at the bottom of the fan-folds. Electrical connections are made by partially opening the folds of the fan and soldering, for example, the connections directly to the ground plane and/or the lead. The fan folded arrangement produces a number of advantages, such as electrically shielding the leads from the environment, is totally non-magnetic, and has a very low thermal conductivity, while being easy to fabricate. 3 figs.

Rohatgi, R.R.; Cowan, T.E.

1996-06-11T23:59:59.000Z

103

Fan-fold shielded electrical leads  

DOE Patents (OSTI)

Fan-folded electrical leads made from copper cladded Kapton, for example, with the copper cladding on one side serving as a ground plane and the copper cladding on the other side being etched to form the leads. The Kapton is fan folded with the leads located at the bottom of the fan-folds. Electrical connections are made by partially opening the folds of the fan and soldering, for example, the connections directly to the ground plane and/or the lead. The fan folded arrangement produces a number of advantages, such as electrically shielding the leads from the environment, is totally non-magnetic, and has a very low thermal conductivity, while being easy to fabricate.

Rohatgi, Rajeev R. (Mountain View, CA); Cowan, Thomas E. (Livermore, CA)

1996-01-01T23:59:59.000Z

104

Furnaces and Boilers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Furnaces and Boilers Furnaces and Boilers Furnaces and Boilers June 24, 2012 - 4:56pm Addthis Upgrading to a high efficiency furnace or boiler is an effective way to save money on home heating. Upgrading to a high efficiency furnace or boiler is an effective way to save money on home heating. What does this mean for me? To maintain your heating system's efficiency and ensure healthy indoor air quality, it's critical to maintain the unit and its venting mechanism. Proper maintenance extends the life of your furnace or boiler and saves you money. Most U.S. homes are heated with either furnaces or boilers. Furnaces heat air and distribute the heated air through the house using ducts. Boilers heat water, and provide either hot water or steam for heating. Steam is distributed via pipes to steam radiators, and hot water can be distributed

105

Measurement of airflow in residential furnaces  

E-Print Network (OSTI)

cut out of a piece of plywood that is attached to the inlet.the size of the furnace outlet cut in the plywood. ESLtaped the furnace to the plywood and strapped it in place.

Biermayer, Peter J.; Lutz, James; Lekov, Alex

2004-01-01T23:59:59.000Z

106

Furnace Systems Technology Workshop Brochure (PDF)  

Science Conference Proceedings (OSTI)

To register, visit the furnace systems technology ... transfer, atmospheres and purging requirements, effective control systems, and fuel efficiency, production ...

107

Ceiling Fan and Ceiling Fan Light Kit use in the U.S. Results of a Survey on Amazon Mechanical Turk  

E-Print Network (OSTI)

Intellect, LLC (2011). Ceiling fan consumer survey data fromconsumption from ceiling fans. 5 References Amazon.com. (January/February 2001). Ceiling fans: Fulfilling the energy

Kantner, Colleen L.S.

2013-01-01T23:59:59.000Z

108

Direct current, closed furnace silicon technology  

Science Conference Proceedings (OSTI)

The dc closed furnace technology for smelting silicon offers technical operating challenges, as well as, economic opportunities for off-gas recovery, reduced electrode consumption, reduced reductant oxidation losses, reduced energy consumption, and improved silicon recovery. The 10 mva dc closed furnace is located in East Selkirk, Manitoba. Construction of this pilot plant was started in September 1990. Following successful commissioning of the furnace in 1992, a number of smelting tests have been conducted aimed at optimization of the furnace operation and the raw material mix. The operation of a closed furnace is significantly different from an open furnace operation. The major difference being in the mechanical movement of the mix, off-gas recovery, and inability to observe the process. These differences made data collection and analysis critical in making operating decisions. This closed furnace was operated by computer control (state of the art in the smelling industry).

Dosaj, V.D. [Dow Corning Corp., Midland, MI (United States); May, J.B. [Dow Corning Corp., Freeland, MI (United States); Arvidson, A.N. [Meadow Materials, Manitoba (Canada)

1994-05-01T23:59:59.000Z

109

Laboratory Evaluation of Residential Furnace Blower Performance  

E-Print Network (OSTI)

showing different blade design and fan to housing clearancesfan efficiencies are on the order of 15%, but poor cabinet and duct design

Walker, Iain S.; Lutz, Jim D.

2005-01-01T23:59:59.000Z

110

Fan System Assessment - End User Training | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fan System Assessment - End User Training Fan System Assessment - End User Training Fan System Assessment - End User Training December 18, 2013 7:30AM to 4:30PM EST Boise, Idaho Optimizing industrial fan systems can take on many forms, but any fan optimization project must meet the needs of the process. This self-paced workshop highlights the benefits of fan system optimization and examines fan system performance characteristics and practical issues concerning measurement data. The session introduces the FSAT software. This powerful analysis software helps you quantify the potential benefits of configuring fan systems for optimal performance, calculate the amount of energy use by your fan system, and estimate fan system efficiency. Learn how the software works, what data is required for FSAT, and how to interpret assessment

111

Cooling with a Whole House Fan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooling with a Whole House Fan Cooling with a Whole House Fan Cooling with a Whole House Fan May 30, 2012 - 6:54pm Addthis Whole house fan installed as part of a home retrofit project in California. | Photo courtesy of Lieko Earle, NREL. Whole house fan installed as part of a home retrofit project in California. | Photo courtesy of Lieko Earle, NREL. What does this mean for me? A whole-house fan may be sufficient to cool your house, at least for part of the year. In many climates, a whole-house fan can save you money and maintain comfort during the cooling season. How does it work? A whole-house fan works by pulling air in through windows and exhausting it through the attic and roof. Whole house cooling using a whole house fan can substitute for an air conditioner most of the year in most climates. Whole house fans combined

112

Laugh out loud in real life : women's humor and fan identity; Women's humor and fan identity.  

E-Print Network (OSTI)

??The emerging field of fan studies has, until recently, been defined only by the research that has taken place within it. Almost universally, this research… (more)

Klink, Madeline LeNore

2010-01-01T23:59:59.000Z

113

Fanning the Flames of Romance: An Exploration of Fan Fiction and the Romance Novel.  

E-Print Network (OSTI)

??Fan fiction and romance novels constitute two bodies of romantic literature being produced for and by women within dramatically different environments. The purpose of this… (more)

Morrissey, Katherine

114

Evaluation of the cooling fan efficiency index.  

E-Print Network (OSTI)

between the cooling effect (measured with a thermal manikin)output is the body cooling effect [5]. Thermal manikins withThermal manikins can be used to measure the fan cooling

Schiavon, Stefano; Melikov, Arsen

2009-01-01T23:59:59.000Z

115

Advanced Manufacturing Office: Training: Fan Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

the tool and presents the basics-and the benefits-of using it to target opportunities for energy savings in your plant. Fan System Assessment - self-paced workshop Availability:...

116

Experimental Evaluation of Installed Cooking Exhaust Fan Performance  

Science Conference Proceedings (OSTI)

The installed performance of cooking exhaust fans was evaluated through residential field experiments conducted on a sample of 15 devices varying in design and other characteristics. The sample included two rear downdraft systems, two under-cabinet microwave over range (MOR) units, three different installations of an under-cabinet model with grease screens across the bottom and no capture hood, two devices with grease screens covering the bottom of a large capture hood (one under-cabinet, one wall-mount chimney), four under-cabinet open hoods, and two open hoods with chimney mounts over islands. Performance assessment included measurement of airflow and sound levels across fan settings and experiments to quantify the contemporaneous capture efficiency for the exhaust generated by natural gas cooking burners.Capture efficiency is defined as the fraction of generated pollutants that are removed through the exhaust and thus not available for inhalation of household occupants. Capture efficiency (CE) was assessed for various configurations of burner use (e.g., single front, single back, combination of one front and one back, oven) and fan speed setting. Measured airflow rates were substantially lower than the levels noted in product literature for many of the units. This shortfall was observed for several units costing in excess of $1000. Capture efficiency varied widely (fromfan settings and the associated higher air flow rates. In most cases, capture efficiencies were substantially higher for rear burners than for front burners. The best and most consistent performance was observed for open hoods that covered all cooktop burners and operated at higher airflow rates. The lowest capture efficiencies were measured when a front burner was used with a rear backdraft system or with lowest fan setting for above the range systems that do not cover the front burners.

Singer, Brett C.; Delp, William W.; Apte, Michael G.

2010-11-01T23:59:59.000Z

117

Parametric System Curves: Correlations Between Fan Pressure Rise and Flow for Large Commercial Buildings  

SciTech Connect

A substantial fraction of HVAC energy use in large commercial buildings is due to fan operation. Fan energy use depends in part on the relationship between system pressure drop and flow through the fan, which is commonly called a "system curve." As a step toward enabling better selections of air-handling system components and analyses of common energy efficiency measures such as duct static pressure reset and duct leakage sealing, this paper shows that a simple four-parameter physical model can be used to define system curves. Our model depends on the square of the fan flow, as is commonly considered. It also includes terms that account for linear-like flow resistances such as filters and coils, and for supply duct leakage when damper positions are fixed or are changed independently of static pressure or fan flow. Only two parameters are needed for systems with variable-position supply dampers (e.g., VAV box dampers modulating to control flow). For these systems, reducing or eliminating supply duct leakage does not change the system curve. The parametric system curve may be most useful when applied to field data. Non-linear techniques could be used to fit the curve to fan pressure rise and flow measurements over a range of operating conditions. During design, when measurements are unavailable, one could use duct design calculation tools instead to determine the coefficients.

Sherman, Max; Wray, Craig

2010-05-19T23:59:59.000Z

118

Improving the Field Performance of Natural Gas Furnaces, Chicago, Illinois (Fact Sheet)  

SciTech Connect

The objective of this project is to examine the impact that common installation practices and age-induced equipment degradation may have on the installed performance of natural gas furnaces, as measured by steady-state efficiency and AFUE. PARR identified twelve furnaces of various ages and efficiencies that were operating in residential homes in the Des Moines Iowa metropolitan area and worked with a local HVAC contractor to retrieve them and test them for steady-state efficiency and AFUE in the lab. Prior to removal, system airflow, static pressure, equipment temperature rise, and flue loss measurements were recorded for each furnace. After removal from the field the furnaces were transported to the Gas Technology Institute (GTI) laboratory, where PARR conducted steady-state efficiency and AFUE testing. The test results show that steady-state efficiency in the field was 6.4% lower than that measured for the same furnaces under standard conditions in the lab, which included tuning the furnace input and air flow rate. Comparing AFUE measured under ASHRAE standard conditions with the label value shows no reduction in efficiency for the furnaces in this study over their 15 to 24 years of operation when tuned to standard conditions. Further analysis of the data showed no significant correlation between efficiency change and the age or the rated efficiency of the furnace.

Rothgeb, S.; Brand, L.

2013-11-01T23:59:59.000Z

119

An Innovative Method for Dynamic Characterization of Fan Filter Unit Operation.  

E-Print Network (OSTI)

Filtration: Fan filter units. Final Report, LawrencePerformance of Fan Filter Units, Version 1.3. ” BerkeleyEfficient Fan filter units,” Proceedings of Semiconductor

Xu, Tengfang

2006-01-01T23:59:59.000Z

120

Uranium-series comminution ages of continental sediments: Case study of a Pleistocene alluvial fan  

E-Print Network (OSTI)

of a stream-dominated alluvial fan, San Joaquin valley,on Quaternary fluvial fans, San Joaquin Basin, California,M. , (Eds), Alluvial Fans: Geomorphology, Sedimentology,

Lee, Victoria E.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "includes furnace fans" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Parametric System Curves: Correlations Between Fan Pressure Rise and Flow for Large Commercial Buildings  

E-Print Network (OSTI)

Filter Pressure Loss Model for Fan Energy Calculation in Air2010. “Selecting Efficient Fans”. ASHRAE Journal, Vol. 52,Equipment: Chapter 20 – Fans”. Atlanta, GA: American Society

Sherman, Max

2010-01-01T23:59:59.000Z

122

An Innovative Method for Dynamic Characterization of Fan Filter Unit Operation.  

E-Print Network (OSTI)

Laboratory Methods of Testing Fans for Rating. ASHRAE. 1987.Efficient Filtration: Fan filter units. Final Report,Energy Performance of Fan Filter Units, Version 1.3. ”

Xu, Tengfang

2006-01-01T23:59:59.000Z

123

Coarse-clastic turbidite sedimentation : the neoproterozoic Imsdalen submarine fan complex, Hedmark Basin, South Norway.  

E-Print Network (OSTI)

??The Imsdalen Submarine Fan Complex is a gravel and coarse sand dominated turbidite fan system. The fan complex was deposited in the Neoproterozoic Hedmark rift… (more)

Stalsberg, Martin

2004-01-01T23:59:59.000Z

124

Ferrosilicon smelting in a direct current furnace  

DOE Patents (OSTI)

The present invention is a process for smelting ferrosilicon alloy. The process comprises adding a carbon source and tailings comprising oxides of silicon and iron to a substantially closed furnace. Heat is supplied to the furnace by striking a direct current arc between a cathode electrode and an anode functional hearth. In a preferred embodiment of the present invention, the cathode electrode is hollow and feed to the substantially closed furnace is through the hollow electrode. 1 figure.

Dosaj, V.D.; May, J.B.

1992-12-29T23:59:59.000Z

125

List of Furnaces Incentives | Open Energy Information  

Open Energy Info (EERE)

Furnaces Incentives Furnaces Incentives Jump to: navigation, search The following contains the list of 688 Furnaces Incentives. CSV (rows 1-500) CSV (rows 501-688) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP (Central and North) - CitySmart Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Schools Boilers Central Air conditioners Chillers Comprehensive Measures/Whole Building Custom/Others pending approval Energy Mgmt. Systems/Building Controls Furnaces Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Motors Roofs Windows Yes AEP (Central, North and SWEPCO) - Commercial Solutions Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Nonprofit

126

Blast Furnace Granulated Coal Injection System Demonstration...  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Blast Furnace Granulated Coal Injection System Demonstration Project: A DOE Assessment June 2000 U. S. Department of Energy National Energy Technology Laboratory P.O. Box 880,...

127

Energy Control in Primary Aluminium Casthouse Furnaces  

Science Conference Proceedings (OSTI)

In order to effectively run a furnace with low energy consumption the burner's fuel ... Oxidation of Commercial Purity Aluminium Melts: An Experimental Study.

128

Condensing furnaces: Lessons from a utility  

SciTech Connect

for the last several years about 90% of the new natural gas furnaces installed in Wisconsin have been condensing furnaces and a number of lessons have been learned. If you avoid the common mistakes, condensing furnaces typically can deliver heating savings of 20-35 % assuming the old furnace was in the 60% AFUE range. This article describes the common mistakes and how to avoid them: outside air needed 100%; benefits of sealed combustion; follow the installation manual scrupulously; how to avoid potential problems; tips on venting.

Beers, J. [Madison Gas and Electric Company, WI (United States)

1994-11-01T23:59:59.000Z

129

Dataplot Commands for Furnace Case Study  

Science Conference Proceedings (OSTI)

... variable label run Run Number variable label zone Furnace Location variable label wafer Wafer Number variable label filmthic Film Thickness (ang ...

2012-03-31T23:59:59.000Z

130

High Performance Sealing for Anode Baking Furnaces  

Science Conference Proceedings (OSTI)

Operation of an Open Type Anode Baking Furnace with a Temporary Crossover ... Wireless Communication for Secured Firing and Control Systems of Anode ...

131

Energy Efficiency Improvement in Anode Baking Furnaces  

Science Conference Proceedings (OSTI)

One of the high energy consumption facilities in a smelter is the Anode Baking ... Hydro Aluminium's Historical Evolution of Closed Type Anode Baking Furnace ...

132

Minnesota | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

equipment includes a variety of appliances, central air conditioning, heat pumps, boilers, furnaces, water heaters, lighting, ceiling fans, insulation, programmable...

133

VAPOR SHIELD FOR INDUCTION FURNACE  

DOE Patents (OSTI)

This patent relates to a water-cooled vapor shield for an inductlon furnace that will condense metallic vapors arising from the crucible and thus prevent their condensation on or near the induction coils, thereby eliminating possible corrosion or shorting out of the coils. This is accomplished by placing, about the top, of the crucible a disk, apron, and cooling jacket that separates the area of the coils from the interior of the cruclbIe and provides a cooled surface upon whlch the vapors may condense.

Reese, S.L.; Samoriga, S.A.

1958-03-11T23:59:59.000Z

134

Plan for the Startup of HA-21I Furnace Operations at the Plutonium Finishing Plant (PFP)  

Science Conference Proceedings (OSTI)

Achievement of Thermal Stabilization mission elements require the installation and startup of three additional muffle furnaces for the thermal stabilization of plutonium and plutonium bearing materials at the Plutonium Finishing Plant (PFP). The release to operate these additional furnaces will require an Activity Based Startup Review. The conduct of the Activity Based Startup Review (ABSR) was approved by Fluor Daniel Hanford on October 15, 1999. This plan has been developed with the objective of identifying those activities needed to guide the controlled startup of five furnaces from authorization to unrestricted operations by adding the HA-211 furnaces in an orderly and safe manner after the approval to Startup has been given. The Startup Plan provides a phased approach that bridges the activities between the completion of the Activity Based Startup Review authorizing the use of the three additional furnaces and the unrestricted operation of the five thermal stabilization muffle furnaces. The four phases are: (1) the initiation of five furnace operations using three empty (simulated full) boat charges from HA-211 and two full charges from HC-21C; (2) three furnace operations (one full charge from HA-211 and two full charges from HC-21C); (3) four furnace operations (two full charges from HA-211 and two full charges from HC-21C); and (4) integrated five furnace operations and unrestricted operations. Phase 1 of the Plan will be considered as the cold runs. This Plan also provides management oversight and administrative controls that are to be implemented until unrestricted operations are authorized. It also provides a formal review process for ensuring that all preparations needed for full five furnace operations are completed and formally reviewed prior to proceeding to the increased activity levels associated with five furnace operations. Specific objectives include: (1) To ensure that activities are conducted in a safe manner. (2) To provide supplemental technical and managerial support to Thermal Stabilization activities during the initial use of the HA-211 Furnaces until the commencement of full five furnace, unrestricted operations. (3) Ensure that operations can be conducted in a manner that meets PFP and DOE expectations associated with the principles of integrated safety management. (4) To ensure that all interfacing activities needed to meet Thermal Stabilization mission objectives are completed.

WILLIS, H.T.

2000-02-17T23:59:59.000Z

135

Vertical two chamber reaction furnace  

DOE Patents (OSTI)

A vertical two chamber reaction furnace is disclosed. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

Blaugher, R.D.

1999-03-16T23:59:59.000Z

136

Amazing furnace-free house  

Science Conference Proceedings (OSTI)

A new 24,450 ft/sub 2/ house is described which has the following features: (1) 100% solar heating in a 6500 degree-day climate; (2) a greenhouse which never drops below 32/sup 0/F; (3) steady fresh air inflow; (4) building costs comparable to conventional homes of the same size; (5) roof solar collector and high temperature attic thermal storage; (6) a Solar Staircase which controls seasonal insolation; (7) a rock bin (100 ton) for low temperature storage; and (8) durability with low maintenance. The design features necessary to obtain the above criteria are discussed as well as the operation of the house for winter and summer use. An air moving system (fan plus ducts) is an essential part of the house. (MJJ)

Shurcliff, W.A.

1982-11-01T23:59:59.000Z

137

Fan-less long range alpha detector  

DOE Patents (OSTI)

A fan-less long range alpha detector which operates by using an electrical field between a signal plane and the surface or substance to be monitored for air ions created by collisions with alpha radiation. Without a fan, the detector can operate without the possibility of spreading dust and potential contamination into the atmosphere. A guard plane between the signal plane and the electrically conductive enclosure and maintained at the same voltage as the signal plane, reduces leakage currents. The detector can easily monitor soil, or other solid or liquid surfaces.

MacArthur, Duncan W. (Los Alamos, NM); Bounds, John A. (Los Alamos, NM)

1994-01-01T23:59:59.000Z

138

Fan-less long range alpha detector  

DOE Patents (OSTI)

A fan-less long range alpha detector is disclosed which operates by using an electrical field between a signal plane and the surface or substance to be monitored for air ions created by collisions with alpha radiation. Without a fan, the detector can operate without the possibility of spreading dust and potential contamination into the atmosphere. A guard plane between the signal plane and the electrically conductive enclosure and maintained at the same voltage as the signal plane, reduces leakage currents. The detector can easily monitor soil, or other solid or liquid surfaces. 2 figures.

MacArthur, D.W.; Bounds, J.A.

1994-05-10T23:59:59.000Z

139

Optimized Design of a Furnace Cooling System  

E-Print Network (OSTI)

This paper presents a case study of manufacturing furnace optimized re-design. The bottleneck in the production process is the cooling of heat treatment furnaces. These ovens are on an approximate 24-hour cycle, heating for 12 hours and cooling for 12 hours. Pressurized argon and process water are used to expedite cooling. The proposed modifications aim to minimize cycling by reducing cooling time; they are grouped into three fundamental mechanisms. The first is a recommendation to modify current operating procedures. This entails opening the furnace doors at higher than normal temperatures. A furnace temperature model based on current parameters is used to show the reduction in cooling time in response to opening the furnace doors at higher temperatures. The second mechanism considers the introduction of forced argon convection. Argon is used in the process to mitigate part oxidation. Cycling argon through the furnace during cooling increases convection over the parts and removes heat from the furnace envelope. Heat transfer models based on convective Nusselt correlations are used to determine the increase in heat transfer rate. The last mechanism considers a modification to the current heat exchanger. By decreasing the temperature of the water jacket and increasing heat exchanger efficiency, heat transfer from the furnace is increased and cooling time is shortened. This analysis is done using the Effectiveness-NTU method.

Morelli, F.; Bretschneider, R.; Dauzat, J.; Guymon, M.; Studebaker, J.; Rasmussen, B. P.

2013-01-01T23:59:59.000Z

140

Fan blade development. Final report Sep 81-Sep 82  

SciTech Connect

The objective of this program was to develop an improved fan blade that could be utilized in place of the current steel fan blade on the Pedal Ventilator Kit (PVK). The goals of the program were to reduce both the unit cost and weight of the fan while maintaining its effectiveness and reliability. A value analysis study was conducted on the fan blade to determine material/design revisions that offered potential manufacturing economies. Based on the conclusions of the study, two designs were chosen for fabrication. The two fan designs were constructed and tested. As a result of the performance testing, one fan blade emerged as the optimum design. Fifteen fan blades of the optimum design were constructed for FEMA inspection and distribution. Preliminary specifications were generated for the fan blade assembly. in addition, production cost estimates based on a procurement of 100,000 units were formulated for FEMA budgetary purposes.

Buday, J.M.

1982-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "includes furnace fans" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Precision control of high temperature furnaces  

DOE Patents (OSTI)

It is an object of the present invention to provide precision control of high temperature furnaces. It is another object of the present invention to combine the power of two power supplies of greatly differing output capacities in a single furnace. This invention combines two power supplies to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved. Further, this invention comprises a means for high speed measurement of temperature of the process by the method of measuring the amount of current flow in a deliberately induced charged particle current.

Pollock, G.G.

1994-12-31T23:59:59.000Z

142

Laboratory evaluation of fan/filter units' aerodynamic and energy performance  

E-Print Network (OSTI)

such as motor types, fan wheels, design, and orientations ofventilation system design, testing of fans and ventilation

Xu, Tengfang; Jeng, Ming-Shan

2004-01-01T23:59:59.000Z

143

Building Technologies Office: Residential Furnaces and Boilers Framework  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Furnaces Residential Furnaces and Boilers Framework Meeting to someone by E-mail Share Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Facebook Tweet about Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Twitter Bookmark Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Google Bookmark Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Delicious Rank Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Digg Find More places to share Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on AddThis.com... About Standards & Test Procedures Implementation, Certification & Enforcement

144

Coke battery with 51-m{sup 3} furnace chambers and lateral supply of mixed gas  

SciTech Connect

The basic approaches employed in the construction of coke battery 11A at OAO Magnitogorskii Metallurgicheskii Kombinat are outlined. This battery includes 51.0-m{sup 3} furnaces and a dust-free coke-supply system designed by Giprokoks with lateral gas supply; it is heated exclusively by low-calorific mixed gas consisting of blast-furnace gas with added coke-oven gas. The 82 furnaces in the coke battery are divided into two blocks of 41. The gross coke output of the battery (6% moisture content) is 1140000 t/yr.

V.I. Rudyka; N.Y. Chebotarev; O.N. Surenskii; V.V. Derevich [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

145

Fan Blade Fracture in a Welded Assembly - Programmaster.org  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2013. Symposium, Failure Analysis and Prevention. Presentation Title, Fan Blade Fracture in a ...

146

TR-034 Geomorphology March 2006 Coastal fan destabilization  

E-Print Network (OSTI)

the watershed boundary). 3.0 STUDY DESIGN AND METHODS To evaluate fans from a broad range of coastal conditionsTR-034 Geomorphology March 2006 Coastal fan destabilization and forest management by T.H. Millard Columbia V9L 1V2 Citation: Millard, T.H., D.J. Wilford and M.E. Oden. 2006. Coastal fan destabilization

147

Recent Sediments of the Monterey Deep-Sea Fan  

E-Print Network (OSTI)

T Or THE MONTEREV DEEP SEA FAN PLAlE Conpl1.d and ren1our.dO F THE MONTEREY DEEP- SEA FAN by P a t Wilde Berkeley,of segmented alluvial fans in w e s t e r n F r e s n o

Wilde, Pat

1965-01-01T23:59:59.000Z

148

High Efficiency Fans and High Efficiency Electrical Motors  

E-Print Network (OSTI)

Replacing nominal efficient electrical motors with premium efficiency can save on electrical power costs in cotton gins. Connected horsepower load on industrial air fans is approximately 60% of the total horsepower in a typical cotton gin. By replacing old inefficient centrifugal fans with new higher efficiency fans, additional power savings can be achieved.

Breedlove, C. W.

1989-09-01T23:59:59.000Z

149

Data Linking with Ontology Alignment Zhengjie Fan  

E-Print Network (OSTI)

Data Linking with Ontology Alignment Zhengjie Fan INRIA & LIG 655, avenue de l'Europe, Montbonnot data on the web, so that users can share information semantically. Then, linking isolated data sets to to be compared, so that it enhances the accuracy of the linking process. I propose a data linking method

150

Lattice congruences, fans and Hopf algebras  

Science Conference Proceedings (OSTI)

We give a unified explanation of the geometric and algebraic properties of two well-known maps, one from permutations to triangulations, and another from permutations to subsets. Furthermore we give a broad generalization of the maps. Specifically for ... Keywords: Malvenuto-Reutenauer Hopf algebra, coexter group, fan poset, hyperplane arrangement, pattern avoidance, permutohedron, poset of regions, weak order

Nathan Reading

2005-05-01T23:59:59.000Z

151

Infrared Imaging of Temperature Distribution in a High Temperature X-Ray Diffraction Furnace  

Science Conference Proceedings (OSTI)

High Temperature X-ray Diffraction (HTXRD) is a very powerful tool for studies of reaction kinetics, phase transformations, and lattice thermal expansion of advanced materials. Accurate temperature measurement is a critical part of the technique. Traditionally, thermocouples, thermistors, and optical pyrometers have been used for temperature control and measurement and temperature could only be measured at a single point. Infrared imaging was utilized in this study to characterize the thermal gradients resulting from various sample and furnace configurations in a commercial strip heater furnace. Furnace configurations include a metallic strip heater, with and without a secondary surround heater, or a surround heater alone. Sample configurations include low and high thermal conductivity powders and solids. The IR imaging results have been used to calibrate sample temperatures in the HTXRD furnace.

Payzant, E.A.; Wang, H.

1999-04-05T23:59:59.000Z

152

List of Whole House Fans Incentives | Open Energy Information  

Open Energy Info (EERE)

Whole House Fans Incentives Whole House Fans Incentives Jump to: navigation, search The following contains the list of 26 Whole House Fans Incentives. CSV (rows 1 - 26) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alliant Energy Interstate Power and Light (Gas and Electric) - Farm Equipment Energy Efficiency Incentives (Iowa) Utility Rebate Program Iowa Agricultural Agricultural Equipment Ceiling Fan Clothes Washers Custom/Others pending approval Dishwasher Doors Heat recovery Lighting Motor VFDs Motors Refrigerators Water Heaters Windows Whole House Fans Room Air Conditioners Ground Source Heat Pumps Yes Alliant Energy Interstate Power and Light - Farm Equipment Energy Efficiency Incentives (Minnesota) Utility Rebate Program Minnesota Agricultural Agricultural Equipment

153

List of Ceiling Fan Incentives | Open Energy Information  

Open Energy Info (EERE)

Fan Incentives Fan Incentives Jump to: navigation, search The following contains the list of 99 Ceiling Fan Incentives. CSV (rows 1 - 99) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP Ohio (Electric) - Residential Energy Efficiency Rebate Program (Ohio) Utility Rebate Program Ohio Residential Building Insulation Ceiling Fan Central Air conditioners Custom/Others pending approval Duct/Air sealing Heat pumps Lighting Motors Programmable Thermostats Windows Yes AEP Ohio (Gas) - Residential Energy Efficiency Rebate Program (Ohio) Utility Rebate Program Ohio Residential Building Insulation Ceiling Fan Central Air conditioners Custom/Others pending approval Dehumidifiers Duct/Air sealing Heat pumps Lighting Motors Programmable Thermostats

154

Ladle Refining Furnaces for the Steel Industry  

Science Conference Proceedings (OSTI)

There has been a tremendous interest in the use of ladle refining furnaces in the last few years. Several units have been or are being constructed in the United States and most steel companies are seriously considering installing them. The purpose of this report is to inform the member companies of EPRI of the development and operations of ladle furnaces and to assist steel companies in determining if ladle furnaces fit their goals and which particular unit would be best for their operation. In this repo...

1990-01-31T23:59:59.000Z

155

Demonstration of Intelligent Control and Fan Improvements in Computer Room  

NLE Websites -- All DOE Office Websites (Extended Search)

Demonstration of Intelligent Control and Fan Improvements in Computer Room Demonstration of Intelligent Control and Fan Improvements in Computer Room Air Handlers Title Demonstration of Intelligent Control and Fan Improvements in Computer Room Air Handlers Publication Type Report Refereed Designation Unknown LBNL Report Number LBNL-6007E Year of Publication 2012 Authors Coles, Henry C., Steve E. Greenberg, and Corrine Vita Document Number LBNL-6007E Date Published 12/2012 Publisher Lawrence Berkeley National Laboratory City Berkeley, CA Keywords air distribution, building technology and urban systems department, computer room air handler, crah control, data center, data center crah, ec fan, ecm, ecm fan, fan speed control, high tech and industrial systems group, plug fan, variable frequency drive, vfd, wireless control Abstract

156

Modeling of Electronically Commutated Motor Controlled Fan-powered Terminal Units  

E-Print Network (OSTI)

Empirical models of airflow and power consumption were developed for series and parallel variable air volume fan powered terminal units (FPTUs). An experimental setup and test procedure were developed to test the terminal units over typical operating ranges. The terminal units in this study used either an 8 in. (20.32 cm) or a 12 in. (30.48 cm) primary air inlet. All terminal units utilized electronically commutated motor (ECM) controllers. Data collected were compared against previous data collected for silicon controlled rectifier (SCR) units. Generalized models were developed for both series and parallel units, and compared against models developed for SCR units. In addition to the performance modeling, power factor and power quality data were also collected for each terminal unit. The power quality analysis included recording and analyzing harmonic distortion for current, voltage, and power up to the 25th harmonic. The total harmonic distortion (THD) was also recorded and presented. For the series terminal units, models were developed for fan airflow, fan power, and primary airflow. The models for fan airflow all had R2 values above 0.987. The models for fan power all had R2 values above 0.968. The models for primary airflow all had R2 values above 0.895. For the parallel terminal units, models were developed for leakage, fan airflow, fan power, and primary airflow. All of the leakage models had R2 values above 0.826. All of the fan airflow models had R2 values above 0.955. All of the fan power models had R2 values above 0.922. All of the primary airflow models had R2 values above 0.872. The real power THD was below 1.5 percent for both series and parallel FPTUs. The current THD ranged from 84 percent to 172 percent for series FPTUs and from 83 percent to 183 percent for parallel FPTUs. The voltage THD was below 1.4 percent for both series and parallel FPTUs. The performance models developed will help improve the accuracy of building energy simulation programs for heating, ventilation, and air conditioning (HVAC) systems utilizing ECM controlled FPTUs. Increasing the accuracy of these simulations will allow HVAC system designers to better optimize their designs for specific building types in a wide variety of climates.

Edmondson, Jacob Lee

2009-12-01T23:59:59.000Z

157

Analysing International Sports Fan Motivations and Constraints: The Case of Japanese International Sports Fan Tourists and Rugby World Cup Fan Tourists.  

E-Print Network (OSTI)

??The scale of professional sports leagues and mega sports events has expanded recently. Many sports fans travel to foreign countries to watch international events featuring… (more)

Nishio, Tatsuru

2013-01-01T23:59:59.000Z

158

Multiple hearth furnace for reducing iron oxide  

SciTech Connect

A multiple moving hearth furnace (10) having a furnace housing (11) with at least two moving hearths (20) positioned laterally within the furnace housing, the hearths moving in opposite directions and each moving hearth (20) capable of being charged with at least one layer of iron oxide and carbon bearing material at one end, and being capable of discharging reduced material at the other end. A heat insulating partition (92) is positioned between adjacent moving hearths of at least portions of the conversion zones (13), and is capable of communicating gases between the atmospheres of the conversion zones of adjacent moving hearths. A drying/preheat zone (12), a conversion zone (13), and optionally a cooling zone (15) are sequentially positioned along each moving hearth (30) in the furnace housing (11).

Brandon, Mark M. (Charlotte, NC); True, Bradford G. (Charlotte, NC)

2012-03-13T23:59:59.000Z

159

Optical Furnace offers improved semiconductor device ...  

This means that the furnace is almost immune to the contamination from hot walls of ... NREL 94-26 US 5,897,331 High Efficiency Low Cost Thin Film ...

160

Furnaces and Boilers | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

and Boilers June 24, 2012 - 4:56pm Addthis Upgrading to a high efficiency furnace or boiler is an effective way to save money on home heating. Upgrading to a high efficiency...

Note: This page contains sample records for the topic "includes furnace fans" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Detailed model for practical pulverized coal furnaces and gasifiers  

Science Conference Proceedings (OSTI)

This study has been supported by a consortium of nine industrial and governmental sponsors. Work was initiated on May 1, 1985 and completed August 31, 1989. The central objective of this work was to develop, evaluate and apply a practical combustion model for utility boilers, industrial furnaces and gasifiers. Key accomplishments have included: Development of an advanced first-generation, computer model for combustion in three dimensional furnaces; development of a new first generation fouling and slagging submodel; detailed evaluation of an existing NO{sub x} submodel; development and evaluation of an improved radiation submodel; preparation and distribution of a three-volume final report: (a) Volume 1: General Technical Report; (b) Volume 2: PCGC-3 User's Manual; (c) Volume 3: Data Book for Evaluation of Three-Dimensional Combustion Models; and organization of a user's workshop on the three-dimensional code. The furnace computer model developed under this study requires further development before it can be applied generally to all applications; however, it can be used now by specialists for many specific applications, including non-combusting systems and combusting geseous systems. A new combustion center was organized and work was initiated to continue the important research effort initiated by this study. 212 refs., 72 figs., 38 tabs.

Smith, P.J.; Smoot, L.D.

1989-08-01T23:59:59.000Z

162

Performance Assessment of Photovoltaic Attic Ventilator Fans  

E-Print Network (OSTI)

Controlling summer attic heat gain is important to reducing air conditioning energy use in homes in hot-humid climates. Both heat transfer through ceilings and t attic duct systems can make up a large part of peak cooling demand, Attic ventilation has long been identified as a method to abate such heat gains. We present test results from using the photovoltaic (PV) attic ventilator fans in a test home to assess impact on attic and cooling energy performance.

Parker, D. S.; Sherwin, J. R.

2000-01-01T23:59:59.000Z

163

HVAC Fans and Dampers Maintenance Guide  

Science Conference Proceedings (OSTI)

Heating, ventilation, and air conditioning (HVAC) systems serve an important function in nuclear power plants because these systems are responsible for maintaining many environmental conditions throughout the facility. Failure of these components can induce undesirable radiological conditions and stressful working conditions, and can compromise the life of qualified equipment. Some HVAC fan and damper failures are preventable by monitoring operating parameters and performing recommended maintenance activ...

1999-08-26T23:59:59.000Z

164

Nonlinear fan instability of electromagnetic waves  

Science Conference Proceedings (OSTI)

This paper studies the linear and nonlinear stages of the fan instability, considering electromagnetic waves of the whistler frequency range interacting resonantly with energetic electron fluxes in magnetized plasmas. The main attention is paid to determine the wave-particle interaction processes that can lead to the excitation of intense electromagnetic waves by nonequilibrium particle distributions involving suprathermal tails, and to explain under what conditions and through what mechanisms they can occur, develop, and saturate. This paper presents and discusses two main processes: (i) the linear fan instability and (ii) the nonlinear process of dynamical resonance merging, which can significantly amplify the energy carried by linearly destabilized waves after they saturate due to particle trapping. This study consists of (i) determining analytically and numerically, for parameters typical of space and laboratory plasmas, the linear growth rates of whistlers excited by suprathermal particle fluxes through the fan instability, as well as the corresponding thresholds and the physical conditions at which the instability can appear, (ii) building a theoretical self-consistent 3D model and a related numerical code for describing the nonlinear evolution of the wave-particle system, and (iii) performing numerical simulations to reveal and characterize the nonlinear amplification process at work, its conditions of development, and its consequences, notably in terms of electromagnetic wave radiation. The simulations show that when the waves have reached sufficient energy levels owing to the linear fan instability, they saturate by trapping particles and due to the complex dynamics of these particles in the electromagnetic fields, the resonant velocities' domains of the waves overlap and merge, meanwhile a strong increase of the wave energy occurs.

Krafft, C. [Laboratoire de Physique des Plasmas, Ecole Polytechnique, 91128 Palaiseau Cedex (France) and University Paris Sud, 91405 Orsay Cedex (France); Volokitin, A. [Space Research Institute (IKI), 117997, 84/32 Profsoyuznaya Str., Moscow (Russian Federation)

2010-10-15T23:59:59.000Z

165

Power Reduction Scheme of Fans in a Blade System by Considering the Imbalance of CPU Temperatures  

Science Conference Proceedings (OSTI)

In order to develop a data center power efficiency index, we built a test bed of a data center and measured power components and environmental variables in some detail, including the power consumption and temperature of each node, rack and air conditioning ... Keywords: Data center, Power consumption, Power efficiency, CPU temperature, Fan speed

Yuetsu Kodama; Satoshi Itoh; Toshiyuki Shimizu; Satoshi Sekiguchi; Hiroshi Nakamura; Naohiko Mori

2010-12-01T23:59:59.000Z

166

Use of fan rig data for the understanding and prediction of fan broadband noise and noise changes due to a variable area nozzle.  

E-Print Network (OSTI)

??This thesis presents the results of the research component of this EngD, entitled Use of fan rig data for the understanding and prediction of fan… (more)

Deane, Eugene Pio

2009-01-01T23:59:59.000Z

167

An Aerodynamic Design Technique For Optimizing Fan Blade Spacing  

E-Print Network (OSTI)

INTRODUCTION Aerodynamic shape optimization involves designing the most efficient shapes of bodies that move through fluids. An optimization algorithm perturbs the shape of an airfoil until it finds the shape which best exhibits a given design objective. For an inverse design technique, this objective is a prescribed aerodynamic distribution, usually the surface pressure distribution. Liebeck pressure distributions [1], for example, have been demonstrated to generate airfoils with high lift to drag ratios. When designing fans, consideration must be given not only to the shape of the fan blades, but also to the distance separating the fan blades. This spacing is defined by the pitch/chord ratio t/l, where the pitch, t, is the distance between fan blades, and the chord, l, is the length of each fan blade. In this work, an inverse algorithm is developed, then used to design fan blade shapes and to find the optimal blade spacing.

T. Rogalsky; R.W. Derksen; Rt N; Rt N; S. Kocabiyik

1999-01-01T23:59:59.000Z

168

Development of In-Situ Fan Curve Measurement with One Airflow Measurement  

E-Print Network (OSTI)

Fan airflow is the key parameter for air volume tracking control in variable air volume systems. One of the airflow measurement methods is to determine airflow using the fan speed, fan head, and fan curve. Both fan speed and fan head can be measured accurately. Therefore, the accuracy of the fan airflow depends on the accuracy of the fan curve. An experimental method has been developed to determine the in-situ fan curve with only one airflow measurement. This paper presents the theoretical background, experimental procedures, and verification results.

Liu, G.; Joo, I. S.; Song, L.; Liu, M.

2003-01-01T23:59:59.000Z

169

Effect of baselevel change on floodplain and fan sediment storage and ephemeral tributary channel morphology, Navarro River, California  

E-Print Network (OSTI)

CHANGE ON FLOODPLAIN AND FAN SEDIMENT STORAGE AND EPHEMERALaffects floodplain and fan sediment storage and smalllowered baselevel on floodplain and fan sediment storage and

Florsheim, Joan L; Mount, Jeffrey F.; Rutten, Luke T.

2000-01-01T23:59:59.000Z

170

Field Study of Exhaust Fans for Mitigating Indoor Air Quality Problems: Final Report to Bonneville Power Administration  

E-Print Network (OSTI)

Using Mechanical Ventilation Exhaust Fans Air-to-Air Heatexpected from exhaust fan A-I Infiltration contribution toIndoor Air Quality -- Exhaust Fan Mitigation" Final Report

Grimsrud, David T.

2009-01-01T23:59:59.000Z

171

Stratigraphic evolution and characteristics of lobes : a high-resolution study of Fan 3, Tanqua Karoo, South Africa.  

E-Print Network (OSTI)

??Fan 3 is one of four basin-floor fans that form part of the Tanqua Karoo Fan Complex in South Africa. It can be subdivided into… (more)

Neethling, J. M.

2009-01-01T23:59:59.000Z

172

Active control of fan noise and vortex shedding.  

E-Print Network (OSTI)

??[Truncated abstract] The subject of fan noise generating mechanisms and its control has been studied intensively over the past few decades as a result of… (more)

Wong, Yee-Jun

2004-01-01T23:59:59.000Z

173

Optimization of Active Noise Control for Small Axial Cooling Fans.  

E-Print Network (OSTI)

??Previous work has shown that active noise control is a feasible solution to attenuate tonal noise radiated by small axial cooling fans, such as those… (more)

Monson, Brian B 1979-

2006-01-01T23:59:59.000Z

174

Characteristics of Residential Housing Units by Ceiling Fans, 2001  

U.S. Energy Information Administration (EIA)

A reporting of the number of housing units using ceiling fans in U.S. households as reported in the 2001 Residential Energy Consumption Survey

175

Supply Fan Control for Constant Air Volume Air Handling Units  

E-Print Network (OSTI)

Since terminal boxes do not have a modulation damper in constant volume (CV) air handling unit (AHU) systems, zone reheat coils have to be modulated to maintain the space temperature with constant supply airflow. This conventional control sequence causes a significant amount of reheat and constant fan power under partial load conditions. Variable Frequency Drives (VFDs) can be installed on these constant air volume systems. The fan speed can be modulated based on the maximum zone load. This paper present the procedure to control the supply fan speed and analyzes the thermal performance and major fan energy and thermal energy savings without expensive VAV retrofit through the actual system operation.

Cho, Y.; Wang, G.; Liu, M.

2007-01-01T23:59:59.000Z

176

Water-side Economizer for Non-Fan Cooling Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

changes to the commercial provisions of the 2012 IECC: Water-side Economizer for Non-Fan Cooling Systems R Hart Pacific Northwest National Laboratory January 2013 Proposal...

177

Table 1. Household Characteristics by Ceiling Fans, 2001  

U.S. Energy Information Administration (EIA)

A reporting of the number of housing units using ceiling fans in U.S. households as reported in the 2001 Residential Energy Consumption Survey

178

Self-calibrated active pyrometer for furnace temperature measurements  

DOE Patents (OSTI)

Pyrometer with a probe beam superimposed on its field-of-view for furnace temperature measurements. The pyrometer includes a heterodyne millimeter/sub-millimeter-wave or microwave receiver including a millimeter/sub-millimeter-wave or microwave source for probing. The receiver is adapted to receive radiation from a surface whose temperature is to be measured. The radiation includes a surface emission portion and a surface reflection portion which includes the probe beam energy reflected from the surface. The surface emission portion is related to the surface temperature and the surface reflection portion is related to the emissivity of the surface. The simultaneous measurement of surface emissivity serves as a real time calibration of the temperature measurement. In an alternative embodiment, a translatable base plate and a visible laser beam allow slow mapping out of interference patterns and obtaining peak values therefor. The invention also includes a waveguide having a replaceable end portion, an insulating refractory sleeve and/or a source of inert gas flow. The pyrometer may be used in conjunction with a waveguide to form a system for temperature measurements in a furnace. The system may employ a chopper or alternatively, be constructed without a chopper. The system may also include an auxiliary reflector for surface emissivity measurements.

Woskov, Paul P. (Bedford, MA); Cohn, Daniel R. (Chestnuthill, MA); Titus, Charles H. (Newtown Square, PA); Surma, Jeffrey E. (Kennewick, WA)

1998-01-01T23:59:59.000Z

179

Air Leakage of Furnaces and Air Handlers  

NLE Websites -- All DOE Office Websites (Extended Search)

Air Leakage of Furnaces and Air Handlers Air Leakage of Furnaces and Air Handlers Title Air Leakage of Furnaces and Air Handlers Publication Type Journal Article LBNL Report Number LBNL-5553E Year of Publication 2010 Authors Walker, Iain S., Mile Lubliner, Darryl J. Dickerhoff, and William W. Delp Journal 2010 ACEEE Summer Study on Energy Efficiency in Buildings The Climate for efficiency is now Date Published 08/2010 Abstract In recent years, great strides have been made in reducing air leakage in residential and to a lesser extent small commercial forced air duct systems. Several authorities have introduced low leakage limits for thermal distribution systems; for example, the State of California Energy Code for Buildings gives credit for systems that leak less than 6% of the total air flow at 25 Pa.

180

Waste Heat Recovery – Submerged Arc Furnaces (SAF)  

E-Print Network (OSTI)

Submerged Arc Furnaces are used to produce high temperature alloys. These furnaces typically run at 3000°F using high voltage electricity along with metallurgical carbon to reduce metal oxides to pure elemental form. The process as currently designed consumes power and fuel that yields an energy efficiency of approximately 40% (Total Btu’s required to reduce to elemental form/ Btu Input). The vast majority of heat is lost to the atmosphere or cooling water system. The furnaces can be modified to recover this heat and convert it to power. The system will then reduce the amount of purchased power by approximately 25% without any additional use of fuel. The cost of this power is virtually unchanged over the life of the project because of the use of capital to displace fuel consumed from the purchased power source.

O'Brien, T.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "includes furnace fans" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Cooling Tower Fan Motor Power Optimization Study  

Science Conference Proceedings (OSTI)

Cooling towers are in use at more than 200 major electric generating plants in the United States, representing approximately 800 units and a total of more than 210,000 MW. The auxiliary power consumed by cooling tower fan motors can significantly reduce the net power output of steam-cycle power plants. Cooling tower specifications are established by the economic and operational requirements of maximum unit load and the most demanding environmental conditions expected in the tower’s locale. Since power pl...

2011-11-16T23:59:59.000Z

182

Control of energy use in a furnace  

Science Conference Proceedings (OSTI)

This patent describes, in a residential furnace of the type which is responsive to a thermostat and has an electronic ignitor, and a circulating air blower that May be operated on a continuous basis, an improved process of controlling the thermostat, electrical ignitor and blower in an ignition sequence of the furnace. It comprises: upon receiving a call for heat from a thermostat, checking to determine if the circulating air blower is on; if the blower is on, turning it off; and only after the blower is turned off, turning on the ignitor to initiate the combustion process.

Ballard, G.W.; Dempsey, D.J.

1990-01-02T23:59:59.000Z

183

Segmented ceramic liner for induction furnaces  

DOE Patents (OSTI)

A non-fibrous ceramic liner for induction furnaces is provided by vertically stackable ring-shaped liner segments made of ceramic material in a light-weight cellular form. The liner segments can each be fabricated as a single unit or from a plurality of arcuate segments joined together by an interlocking mechanism. Also, the liner segments can be formed of a single ceramic material or can be constructed of multiple concentric layers with the layers being of different ceramic materials and/or cellular forms. Thermomechanically damaged liner segments are selectively replaceable in the furnace. 5 figs.

Gorin, A.H.; Holcombe, C.E.

1994-07-26T23:59:59.000Z

184

An Innovative Method for Dynamic Characterization of Fan Filter Unit Operation.  

E-Print Network (OSTI)

that is affected by fan-wheel design, air-path and size,by- 4-ft) fan filter units with various design, operation,differential – the design and control schemes of fan filter

Xu, Tengfang

2006-01-01T23:59:59.000Z

185

Development of a Fan-Filter Unit Test Standard, Laboratory Validations, and its Applications across Industries  

E-Print Network (OSTI)

Energy Performance of Fan-Filter Units, Version 1.3 (2005).Energy Performance of Fan-Filter Units, Version 2.0 (2006).Evaluation of Fan-filter Units’ Aerodynamic and Energy

Xu, Tengfang

2008-01-01T23:59:59.000Z

186

Toward green systems for cleanrooms: Energy efficient fan-filter units  

E-Print Network (OSTI)

M. and F. Tsau. 2002. Fan-Filter Unit (FFU) Test Procedures.Laboratory Methods of Testing Fans for Rating, Air MovementTest Procedure For Fan-Filter Units (not published). [6] Xu,

Jeng, Ming-Shan; Xu, Tengfang; Lan, Chao-Ho

2004-01-01T23:59:59.000Z

187

Development of a Fan-Filter Unit Test Standard, Laboratory Validations, and its Applications across Industries  

E-Print Network (OSTI)

Energy Performance of Fan-Filter Units, Version 1.3 (2005).Energy Performance of Fan-Filter Units, Version 2.0 (2006).Laboratory Evaluation of Fan-filter Units’ Aerodynamic and

Xu, Tengfang

2008-01-01T23:59:59.000Z

188

Laboratory evaluation of fan/filter units' aerodynamic and energy performance  

E-Print Network (OSTI)

Jeng, M.S. , F. Tsau. 2002. Fan-Filter Unit (FFU) TestLaboratory Methods of Testing Fans for Rating, Air MovementTest Procedure For Fan-Filter Units (not published). Xu,

Xu, Tengfang; Jeng, Ming-Shan

2004-01-01T23:59:59.000Z

189

Standard Methods of Characterizing Performance of Fan Filter Units, Version 3.0  

E-Print Network (OSTI)

Efficient Filtration: Fan-filter Units. Final Report,Xu. 2007. “The Development of Fan Filter Unit with Flow Rate2007. “Performance of Large Fan Filter Units for Cleanroom

Xu, Tengfang

2007-01-01T23:59:59.000Z

190

“Starring” Madhuri as Durga: The Madhuri Dixit Temple and Performative Fan-Bhakti of Pappu Sardar  

E-Print Network (OSTI)

Devotion and Defiance in Fan Activity. ” In Ravi Vasudevan,Temple and Performative Fan-Bhakti of Pappu Sardar / 415Temple and Performative Fan-Bhakti of Pappu Sardar Shalini

Kakar, Shalini

2009-01-01T23:59:59.000Z

191

Fan System Effects: How Fan Ductwork Design Impacts Overall System Efficiency and What the Approach Should be for Optimization  

E-Print Network (OSTI)

"In order to establish the aerodynamic performance characteristics of a custom fan or even a line of fans, the accepted practice of the industry is to carry out testing on a scale model in a laboratory to develop its fan performance curve. Then by applying affinity laws in conjunction with very specific rules that address scaling issues, the performance characteristics of geometrically similar fans can be predicted. These affinity laws (frequently referred to as fan laws) also allow the performance of fans operating at different speeds or handling gases at different density values to be accurately predicted. However, it is often found that even fans with well defined and pedigreed performance curves are unable to meet their performance expectations once they are installed on the systems for which they have been sold. This is primarily due to the adverse aerodynamic impact of the inlet or outlet connections on the performance capacity of the fan and thus on the overall system efficiency. The general term for design conditions at inlets or outlets of fans that cause deficient aerodynamic performance is ‘system effects’. The characteristics of fan system effects are that they reduce fan capacity and are both velocity and geometry dependent. On the inlet side of a fan, this generally characterizes itself by a flow pattern that is highly non?uniform. On the discharge side, the high and low velocity flow streams leaving the fan may simply be prevented from redeveloping a uniform flow profile and normal static pressure conversion before encountering a disturbance. The term can also apply to system elements such as silencers, elbows and transitions. For these components, the actual pressure drop across them may be significantly higher than their calculated or rated values if the velocity profile of the entering flow is skewed or non?uniform. For either case (fan connection or system component), the result is that additional power will be required to address the flow rate required by the system. In many instances, system designers are simply unfamiliar with the importance of understanding system effects as it pertains to new fan selections and the attendant power requirements. At a minimum, a reasonable approach for new fan projects should be to establish the theoretical system effect of connection designs by using a recognized document such as Air Movement and Control Association Publication 201. The objective should be to first minimize their impact through appropriate connection design modifications in conjunction with potential fan inlet and outlet re?orientation. Once the system effects are minimized, the residual value should be applied to the fan performance specification in order to ensure that the fan is selected for the required aerodynamic capacity. For system components, an approach that has proved to be of significant value is to predict the flow pattern using computation fluid dynamics (CFD) modelling tools and in this process, the design can be tweaked until the designer finds the overall pressure drops of a system are minimized to the greatest practical extent. Similarly, CFD can be used to predict the flow profile at a fan inlet to ensure that it is as uniform as practically possible. This paper reviews the concept of system effects from the perspective of fan power requirements and provides a methodology for approaching system design from the perspective of optimizing fan energy use while achieving the required system capacity."

Martin, V.

2009-05-01T23:59:59.000Z

192

Modeling Energy Consumption of Residential Furnaces and Boilers...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Consumption of Residential Furnaces and Boilers in U.S. homes Title Modeling Energy Consumption of Residential Furnaces and Boilers in U.S. homes Publication Type Report...

193

Furnace Blower Electricity: National and Regional Savings Potential  

E-Print Network (OSTI)

Ducts Total Electricity Consumption (kWh/year) ity ni x FrDucts Total Electricity Consumption (kWh/year) nt a ni x Fryear. Furnace blowers account for about 80% of the total furnace electricity consumption

Franco, Victor; Florida Solar Energy Center

2008-01-01T23:59:59.000Z

194

Grate Furnace Combustion: A Submodel for the Solid Fuel Layer  

Science Conference Proceedings (OSTI)

The reduction of NOx-formation in biomass fired grate furnaces requires the development of numerical models. To represent the variety in scales and physical processes playing a role in the conversion, newly developed ... Keywords: Grate furnace, biomass, reverse combustion

H. A. Kuijk; R. J. Bastiaans; J. A. Oijen; L. P. Goey

2007-05-01T23:59:59.000Z

195

Design and fabrication of a tin-sulfide annealing furnace  

E-Print Network (OSTI)

A furnace was designed and its heat transfer properties were analyzed for use in annealing thin-film tins-ulfide solar cells. Tin sulfide has been explored as an earth abundant solar cell material, and the furnace was ...

Lewis, Raymond, S.M. (Raymond A.) Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

196

Fan-speed-aware scheduling of data intensive jobs  

Science Conference Proceedings (OSTI)

As server processor power densities increase, the cost of air cooling also grows resulting from higher fan speeds. Our measurements show that vibrations induced by fans in high-end servers and its rack neighbors cause a dramatic drop in hard disk bandwidth, ... Keywords: cooling, disk i/o, energy, thermal, vibration

Christine S. Chan; Yanqin Jin; Yen-Kuan Wu; Kenny Gross; Kalyan Vaidyanathan; Tajana `imuni Rosing

2012-07-01T23:59:59.000Z

197

Choosing the right boiler air fans at Weston 4  

SciTech Connect

When it came to choosing the three 'big' boiler air fans - forced draft, induced draft and primary air, the decision revolved around efficiency. The decision making process for fan selection for the Western 4 supercritical coal-fired plant is described in this article. 3 photos.

Spring, N.

2009-04-15T23:59:59.000Z

198

Design and Specification Guidelines for Large Draft Fans and Systems  

Science Conference Proceedings (OSTI)

Design shortcomings in draft fans and related air-gas systems can cause fan failure and costly outages of large fossil fuel power plants. These guidelines will help engineers and manufacturers achieve a better understanding of the design features needed to minimize such failures.

1983-12-01T23:59:59.000Z

199

Condition Monitoring of Fans With Rolling Element Bearings  

Science Conference Proceedings (OSTI)

Data on high-frequency vibration caused by the impacts of bearing pits and spalls can help utilities schedule equipment maintenance. One data collection technique, developed through long-term monitoring of combustion air axial fans at the Pennsylvania Electric Company Homer City station, helps plant personnel anticipate failures of draft fan antifriction bearings by several months.

1988-03-22T23:59:59.000Z

200

Furnace Efficiency – Energy and Throughput - Programmaster.org  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, 2011 TMS Annual Meeting & Exhibition. Symposium, Furnace Efficiency – Energy and Throughput. Sponsorship, The Minerals ...

Note: This page contains sample records for the topic "includes furnace fans" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

The information furnace: consolidated home control  

Science Conference Proceedings (OSTI)

?The Information Furnace is a basement-installed PC-type device that integrates existing consumer home-control, infotainment, security and communication technologies to transparently provide accessible and value-added services. A modern home contains ... Keywords: Automation, Consumer electronics, Home-control, Multi-modal interfaces

Diomidis D. Spinellis

2003-05-01T23:59:59.000Z

202

Feedback Applications in Active Noise Control for Small Axial Cooling Fans.  

E-Print Network (OSTI)

??Feedback active noise control (ANC) has been applied as a means of attenuating broadband noise from a small axial cooling fan. Such fans are used… (more)

Green, Matthew J 1978-

2006-01-01T23:59:59.000Z

203

The effect of fan and heat sink design on heat removal from microprocessor chips.  

E-Print Network (OSTI)

??Air flow and heat removal characteristics for fan/heat sink designs used to cool Pentium class processors were analyzed. Five designs were tested for fan speed,… (more)

Baltrip, Kedra G

2012-01-01T23:59:59.000Z

204

Exact solutions to combinatorial optimizations and the traveling baseball fan problem.  

E-Print Network (OSTI)

?? The traveling baseball fan problem is an extension of the classic traveling salesman problem, in which a sports fan wishes to travel to the… (more)

Terrell, Neal D.

2013-01-01T23:59:59.000Z

205

Il fenomeno dei fan nel mercato della musica. Analisi netnografica dei seguaci italiani di Bruce Springsteen.  

E-Print Network (OSTI)

??Lo studio ha ad oggetto la comunità dei fan italiani di Bruce Springsteen. Dopo aver analizzato la letteratura e descritto il fenomeno dei fan e… (more)

Gallo, Sara

2007-01-01T23:59:59.000Z

206

Costs and benefits of energy efficiency improvements in ceiling fans  

SciTech Connect

Ceiling fans contribute significantly to residential electricity consumption, especially in developing countries with warm climates. The paper provides analysis of costs and benefits of several options to improve the efficiency of ceiling fans to assess the global potential for electricity savings and green house gas (GHG) emission reductions. Ceiling fan efficiency can be cost-effectively improved by at least 50% using commercially available technology. If these efficiency improvements are implemented in all ceiling fans sold by 2020, 70 terawatt hours per year could be saved and 25 million metric tons of carbon dioxide equivalent (CO2-e) emissions per year could be avoided, globally. We assess how policies and programs such as standards, labels, and financial incentives can be used to accelerate the adoption of efficient ceiling fans in order to realize potential savings.

Shah, Nihar; Sathaye, Nakul; Phadke, Amol; Letschert, Virginie [Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technology Division] [Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technology Division

2013-10-15T23:59:59.000Z

207

Method for fabricating fan-fold shielded electrical leads  

DOE Patents (OSTI)

Fan-folded electrical leads made from copper cladded Kapton, for example, with the copper cladding on one side serving as a ground plane and the copper cladding on the other side being etched to form the leads. The Kapton is fan folded with the leads located at the bottom of the fan-folds. Electrical connections are made by partially opening the folds of the fan and soldering, for example, the connections directly to the ground plane and/or the lead. The fan folded arrangement produces a number of advantages, such as electrically shielding the leads from the environment, is totally non-magnetic, and has a very low thermal conductivity, while being easy to fabricate.

Rohatgi, Rajeev R. (Mountain View, CA); Cowan, Thomas E. (Livermore, CA)

1994-01-01T23:59:59.000Z

208

Method for fabricating fan-fold shielded electrical leads  

DOE Patents (OSTI)

Fan-folded electrical leads made from copper cladded Kapton, for example, with the copper cladding on one side serving as a ground plane and the copper cladding on the other side being etched to form the leads. The Kapton is fan folded with the leads located at the bottom of the fan-folds. Electrical connections are made by partially opening the folds of the fan and soldering, for example, the connections directly to the ground plane and/or the lead. The fan folded arrangement produces a number of advantages, such as electrically shielding the leads from the environment, is totally non-magnetic, and has a very low thermal conductivity, while being easy to fabricate. 3 figures.

Rohatgi, R.R.; Cowan, T.E.

1994-12-27T23:59:59.000Z

209

Field Demonstration of the Thermostone III Electric Thermal Storage Furnace  

Science Conference Proceedings (OSTI)

Heat storage furnaces use low-cost, off-peak electricity to satisfy all of a customer's heating needs. This field demonstration showed that prototype heat storage furnaces maintained comfort under diverse climate conditions, usage patterns, and lengths of off-peak periods. In addition, these furnaces effectively shifted the load to off-peak hours.

1992-04-01T23:59:59.000Z

210

Review: The Dragon & The Elephant: Agricultural and Rural Reforms in China and India edited by Ashok Gulati and Shenggen Fan  

E-Print Network (OSTI)

Ashok Gulati and Shenggen Fan (Eds. ) Reviewed by VarinderIndia Gulati, Ashok and Fan, Shenggen (Eds. ). The Dragon &

Jain, Varinder

2008-01-01T23:59:59.000Z

211

FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL  

Science Conference Proceedings (OSTI)

This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2003 through September, 2003. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Group is the prime contractor. This is the eighth reporting period for the subject Cooperative Agreement. During previous reporting periods, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant), and a byproduct magnesium hydroxide slurry (both Gavin Plant and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. The SO{sub 3} removal results were presented in the semi-annual Technical Progress Report for the time period April 1, 2001 through September 30, 2001. Additional balance of plant impact information for the two tests was reported in the Technical Progress Report for the time period October 1, 2001 through March 30, 2002. Additional information became available about the effects of byproduct magnesium hydroxide injection on SCR catalyst coupons during the long-term test at BMP, and those results were reported in the report for the time period April 1, 2002 through September 30, 2002. During the current period, process economic estimates were developed, comparing the costs of the furnace magnesium hydroxide slurry injection process tested as part of this project to a number of other candidate SO{sub 3}/sulfuric acid control technologies for coal-fired power plants. The results of this economic evaluation are included in this progress report.

Gary M. Blythe

2003-10-01T23:59:59.000Z

212

The Fan Observatory Bench Optical Spectrograph (FOBOS)  

E-Print Network (OSTI)

The Fan Observatory Bench Optical Spectrograph (FOBOS) is intended for single-object optical spectroscopy at moderate resolution (R~1500-3000) using a fiber-fed, bench-mounted design to maintain stability. Whenever possible, the instrument uses off-the-shelf components to maintain a modest cost. FOBOS supports Galactic astronomy projects that require consistently well-measured (~5 km/sec) radial velocities for large numbers of broadly distributed and relatively bright (Vdesign was optimized for use in the range 470-670 nm. Test data indicate that the instrument is stable and capable of measuring radial velocities with precision better than 3 km/sec at a resolution of R~1500 with minimal calibration overhead.

Jeffrey D. Crane; Steven R. Majewski; Richard J. Patterson; Michael F. Skrutskie; Elena Y. Adams; Peter M. Frinchaboy

2005-02-23T23:59:59.000Z

213

Submitting Organization Hongyou Fan Sandia National Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

 2007 R&D 100 Award Entry Form  Submitting Organization Hongyou Fan Sandia National Laboratories Advanced Materials Laboratory 1001 University Boulevard SE Albuquerque, NM 87106, USA 505-272-7128 (phone) 505-272-7336 (fax) hfan@sandia.gov AFFIRMATION: I affirm that all information submitted as a part of, or supplemental to, this entry is a fair and accurate represen- tation of this product. Submitter's signature_______________________________ Earl Stromberg Lockheed Martin Aeronautics Mail Zone 2893 PO Box 748 Fort Worth, TX 76101, USA 817-763-7376 (phone) 817-762-6911 (fax) Earl.W.Stromberg@lmco.com Self-Assembling Process for Fabricating Tailored Thin Films This simple, economical nanotechnology coating process enables the development of nanoparticle thin films

214

Recovery Act: ArcelorMittal USA Blast Furnace Gas Flare Capture  

SciTech Connect

The U.S. Department of Energy (DOE) awarded a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (Recovery Act) to ArcelorMittal USA, Inc. (ArcelorMittal) for a project to construct and operate a blast furnace gas recovery boiler and supporting infrastructure at ArcelorMittal’s Indiana Harbor Steel Mill in East Chicago, Indiana. Blast furnace gas (BFG) is a by-product of blast furnaces that is generated when iron ore is reduced with coke to create metallic iron. BFG has a very low heating value, about 1/10th the heating value of natural gas. BFG is commonly used as a boiler fuel; however, before installation of the gas recovery boiler, ArcelorMittal flared 22 percent of the blast furnace gas produced at the No. 7 Blast Furnace at Indiana Harbor. The project uses the previously flared BFG to power a new high efficiency boiler which produces 350,000 pounds of steam per hour. The steam produced is used to drive existing turbines to generate electricity and for other requirements at the facility. The goals of the project included job creation and preservation, reduced energy consumption, reduced energy costs, environmental improvement, and sustainability.

Seaman, John

2013-01-14T23:59:59.000Z

215

Particle trajectories and acceleration during 3D fan reconnection  

E-Print Network (OSTI)

Context. The primary energy release in solar flares is almost certainly due to magnetic reconnection, making this a strong candidate as a mechanism for particle acceleration. While particle acceleration in 2D geometries has been widely studied, investigations in 3D are a recent development. Two main classes of reconnection regimes at a 3D magnetic null point have been identified: fan and spine reconnection Aims. Here we investigate particle trajectories and acceleration during reconnection at a 3D null point, using a test particle numerical code, and compare the efficiency of the fan and spine regimes in generating an energetic particle population. Methods. We calculated the time evolution of the energy spectra. We discuss the geometry of particle escape from the two configurations and characterise the trapped and escaped populations. Results. We find that fan reconnection is less efficent than spine reconnection in providing seed particles to the region of strong electric field where acceleration is possible. The establishment of a steady-state spectrum requires approximately double the time in fan reconnection. The steady-state energy spectrum at intermediate energies (protons 1 keV to 0.1 MeV) is comparable in the fan and spine regimes. While in spine reconnection particle escape takes place in two symmetric jets along the spine, in fan reconnection no jets are produced and particles escape in the fan plane, in a ribbon-like structure.

S. Dalla; P. K. Browning

2008-11-07T23:59:59.000Z

216

Blast furnace granular coal injection project. Annual report, January--December 1993  

SciTech Connect

This initial annual report describes the Blast Furnace Granular Coal Injection project being implemented at Bethlehem Steel Corporation`s (BSC) Burns Harbor, Indiana, plant. This installation will be the first in the United States to employ British Steel technology that uses granular coal to provide part of the fuel requirement of blast furnaces. The project will demonstrate/assess a broad range of technical/economic issues associated with the use of coal for this purpose. These include: coal grind size, coal injection rate, coal source (type) and blast furnace conversion method. Preliminary Design (Phase 1) began in 1991 with detailed design commencing in 1993. Construction at Burns Harbor (Phase 2) began in August 1993. Construction is expected to complete in the first quarter of 1995 which will be followed by the demonstration test program (Phase 3). Progress is described.

1994-06-01T23:59:59.000Z

217

Final Report Independent Verification Survey of the High Flux Beam Reactor, Building 802 Fan House Brookhaven National Laboratory Upton, New York  

Science Conference Proceedings (OSTI)

On May 9, 2011, ORISE conducted verification survey activities including scans, sampling, and the collection of smears of the remaining soils and off-gas pipe associated with the 802 Fan House within the HFBR (High Flux Beam Reactor) Complex at BNL. ORISE is of the opinion, based on independent scan and sample results obtained during verification activities at the HFBR 802 Fan House, that the FSS (final status survey) unit meets the applicable site cleanup objectives established for as left radiological conditions.

Evan Harpeneau

2011-06-24T23:59:59.000Z

218

FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID REMOVAL  

Science Conference Proceedings (OSTI)

The objective of this project has been to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The project was co-funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-99FT40718, along with EPRI, the American Electric Power Company (AEP), FirstEnergy Corporation, the Tennessee Valley Authority, and Carmeuse North America. Sulfuric acid controls are becoming of increased interest for coal-fired power generating units for a number of reasons. In particular, sulfuric acid can cause plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of selective catalytic reduction (SCR) for NOX control, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project tested the effectiveness of furnace injection of four different magnesium-based or dolomitic alkaline sorbents on full-scale utility boilers. These reagents were tested during one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant (BMP) units. One of the sorbents tested was a magnesium hydroxide slurry byproduct from a modified Thiosorbic{reg_sign} Lime wet flue gas desulfurization process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercially available magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners. The other three reagents were injected as slurries through air-atomizing nozzles inserted through the front wall of the upper furnace. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests on two different units. The longer-term tests were conducted to confirm sorbent effectiveness over extended operation on two different boilers, and to determine balance-of-plant impacts. The first long-term test was conducted on FirstEnergy's BMP Unit 3, and the second was conducted on AEP's Gavin Plant, Unit 1. The Gavin Plant test provided an opportunity to evaluate the effects of sorbent injected into the furnace on SO{sub 3} formed across an operating SCR reactor. A final task in the project was to compare projected costs for furnace injection of magnesium hydroxide slurries to estimated costs for other potential sulfuric acid control technologies. Estimates were developed for reagent and utility costs, and capital costs, for furnace injection of magnesium hydroxide slurries and seven other sulfuric acid control technologies. The estimates were based on retrofit application to a model coal-fired plant.

Gary M. Blythe

2004-01-01T23:59:59.000Z

219

Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers  

E-Print Network (OSTI)

Supply Fan Motor Median Mean LCC Savings Ranges By DesignSupply Fan Motor Median Mean LCC Savings Ranges By DesignSupply Fan Motor Median Mean LCC Savings Ranges By Design

Lutz, James; Lekov, Alex; Whitehead, Camilla Dunham; Chan, Peter; Meyers, Steve; McMahon, James

2004-01-01T23:59:59.000Z

220

Acceptance test procedure MICON software exhaust fan control modifications  

Science Conference Proceedings (OSTI)

This acceptance test verifies the MICON program changes for the new automatic transfer switch ATS-2 alarms, the Closed Loop Cooling isolator status, the CB-3 position alarm, and the alarms for the new emergency fan damper backup air compressor.

SILVAN, G.R.

1999-05-21T23:59:59.000Z

Note: This page contains sample records for the topic "includes furnace fans" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Searching optimal shapes for blades of a fan  

E-Print Network (OSTI)

A nonlinear differential equation about optimal shapes for blades of a fan. A boundary value differential problem from engineering, geometrical or physical bonds. A relation between linear profiles and constant speed along the side under flow.

Gianluca Argentini

2008-03-26T23:59:59.000Z

222

Sinewave parameter estimation using the fast fan-chirp transform  

E-Print Network (OSTI)

Sinewave analysis/synthesis has long been an important tool for audio analysis, modification and synthesis. The recently introduced fan-chirp Transform (FChT) [2,3] has been shown to improve the fidelity of sinewave parameter ...

Dunn, Robert B.

223

Developing a Standard Test Method for Characterizing Fan-filter...  

NLE Websites -- All DOE Office Websites (Extended Search)

Developing a Standard Test Method for Characterizing Fan-filter Units Used in Industries Speaker(s): Tim Xu Date: July 21, 2008 - 12:00pm Location: 90-3122 Seminar HostPoint of...

224

Variable Speed Fan Retrofits for Computer Room Air Conditioners  

NLE Websites -- All DOE Office Websites (Extended Search)

Variable-Speed Fan Retrofits for Computer-Room Air Conditioners Prepared for the U.S. Department of Energy Federal Energy Management Program Technology Case Study Bulletin By...

225

Use of VFDs on Asphalt Plant Induced Draft Fans  

E-Print Network (OSTI)

Studies of 10 asphalt plants in the Intermountain Region have identified average ID fan energy savings of 68% by controlling airflow using Variable Frequency Drives (VFDs) on the fan motors in place of damper control (inlet or outlet). Average paybacks were 3-5 years before utility incentives. In the 10 plants evaluated, the ID fans accounted for as much as 30% of the total plant electrical consumption. In the majority of these plants the outlet dampers were typically 50%-60% closed. Fan motors ranged from 200 Hp to 500 Hp. With approximately 3,600 existing asphalt plants in operation across the United States, a large opportunity for retrofits exists. Working with manufacturers and owners, a new standard can be established for installing VFDs on all plants.

Anderson, G. R.; Case, P. L.; Lowery, J.

2005-01-01T23:59:59.000Z

226

Crossover distributions at the edge of the rarefaction fan  

E-Print Network (OSTI)

We consider the weakly asymmetric limit of simple exclusion process with drift to the left, starting from step Bernoulli initial data with $\\rho_-fan. We study the fluctuations of the process observed along slopes in the fan, which are given by the Hopf--Cole solution of the Kardar-Parisi-Zhang (KPZ) equation, with appropriate initial data. For slopes strictly inside the fan, the initial data is a Dirac delta function and the one point distribution functions have been computed in [Comm. Pure Appl. Math. 64 (2011) 466-537] and [Nuclear Phys. B 834 (2010) 523-542]. At the edge of the rarefaction fan, the initial data is one-sided Brownian. We obtain a new family of crossover distributions giving the exact one-point distributions of this process, which converge, as $T\

Ivan Corwin; Jeremy Quastel

2010-06-07T23:59:59.000Z

227

A Tip Driven Fan Based on SERAPHIM Technology  

SciTech Connect

SERAPHIM technology appears capable of efficiently driving a tip driven fan. If the motor is powered using an inverter and resonant circuit, the size and weight could be considerably below that of a comparable rotary electric motor.

MARDER, BARRY M.

2002-01-01T23:59:59.000Z

228

Property:Building/SPElectrtyUsePercCirculationFans | Open Energy  

Open Energy Info (EERE)

SPElectrtyUsePercCirculationFans SPElectrtyUsePercCirculationFans Jump to: navigation, search This is a property of type String. Circulation fans Pages using the property "Building/SPElectrtyUsePercCirculationFans" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 18.6715328229 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 3.84924044288 + Sweden Building 05K0004 + 13.5679722118 + Sweden Building 05K0005 + 10.115947775 + Sweden Building 05K0006 + 10.4348038368 + Sweden Building 05K0007 + 3.09034005771 + Sweden Building 05K0008 + 1.5024342653 + Sweden Building 05K0009 + 13.4365662073 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 2.75323793817 + Sweden Building 05K0012 + 15.8993705073 + Sweden Building 05K0013 + 1.11354848212 +

229

Property:Building/SPElectrtyUsePercFans | Open Energy Information  

Open Energy Info (EERE)

SPElectrtyUsePercFans SPElectrtyUsePercFans Jump to: navigation, search This is a property of type String. Fans Pages using the property "Building/SPElectrtyUsePercFans" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 7.29539104961 + Sweden Building 05K0002 + 16.7673965927 + Sweden Building 05K0003 + 27.9131959869 + Sweden Building 05K0004 + 12.2479817873 + Sweden Building 05K0005 + 29.1925346224 + Sweden Building 05K0006 + 15.8653423601 + Sweden Building 05K0007 + 12.809449974 + Sweden Building 05K0008 + 22.2979541594 + Sweden Building 05K0009 + 22.7088540206 + Sweden Building 05K0010 + 13.3738132017 + Sweden Building 05K0011 + 25.1040933765 + Sweden Building 05K0012 + 22.6542018423 + Sweden Building 05K0013 + 24.3166483485 +

230

Designing Axial Flow Fan for Flow and Noise  

E-Print Network (OSTI)

A comprehensive finite element methodology is developed to predict the compressible flow performance of a non-symmetric 7-blade axial flow fan, and to quantify the source strength and sound pressure levels at any location in the system. The acoustic and flow performances of the fan are predicted simultaneously using a computational aero-acoustic technique combining transient flow analysis and noise propagation. The calculated sound power levels compare favorably with the measured sound power data per AMCA 300-96 code.

Subrata Roy; Phillip Cho; Fred Périé; International Off-highway

1999-01-01T23:59:59.000Z

231

Treatment studies of plutonium-bearing INEEL waste surrogates in a bench-scale arc furnace  

SciTech Connect

Since 1989, the Subsurface Disposal Area (SDA) at the Idaho National Environmental and Engineering Laboratory (INEEL) has been included on the National Priority List for remediation. Arc- and plasma-heated furnaces are being considered for converting the radioactive mixed waste buried in the SDA to a stabilized-vitreous form. Nonradioactive, surrogate SDA wastes have been melted during tests in these types of furnaces, but data are needed on the behavior of transuranic (TRU) constituents, primarily plutonium, during thermal treatment. To begin collecting this data, plutonium-spiked SDA surrogates were processed in a bench-scale arc furnace to quantify the fate of the plutonium and other hazardous and nonhazardous metals. Test conditions included elevating the organic, lead, chloride, and sodium contents of the surrogates. Blends having higher organic contents caused furnace power levels to fluctuate. An organic content corresponding to 50% INEEL soil in a soil-waste blend was the highest achievable before power fluctuations made operating conditions unacceptable. The glass, metal, and off-gas solids produced from each surrogate blend tested were analyzed for elemental (including plutonium) content and the partitioning of each element to the corresponding phase was calculated.

Freeman, C.J.

1997-05-01T23:59:59.000Z

232

COOLING FAN AND SYSTEM PERFORMANCE AND EFFICIENCY IMPROVEMENTS  

Science Conference Proceedings (OSTI)

Upcoming emissions regulations (Tiers 3, 4a and 4b) are imposing significantly higher heat loads on the cooling system than lesser regulated machines. This work was a suite of tasks aimed at reducing the parasitic losses of the cooling system, or improving the design process through six distinct tasks: 1. Develop an axial fan that will provide more airflow, with less input power and less noise. The initial plan was to use Genetic Algorithms to do an automated fan design, incorporating forward sweep for low noise. First and second generation concepts could not meet either performance or sound goals. An experienced turbomachinery designer, using a specialized CFD analysis program has taken over the design and has been able to demonstrate a 5% flow improvement (vs 10% goal) and 10% efficiency improvement (vs 10% goal) using blade twist only. 2. Fan shroud developments, using an 'aeroshroud' concept developed at Michigan State University. Performance testing at Michigan State University showed the design is capable of meeting the goal of a 10% increase in flow, but over a very narrow operating range of fan performance. The goal of 10% increase in fan efficiency was not met. Fan noise was reduced from 0 to 2dB, vs. a goal of 5dB at constant airflow. The narrow range of fan operating conditions affected by the aeroshroud makes this concept unattractive for further development at this time 3. Improved axial fan system modeling is needed to accommodate the numbers of cooling systems to be redesigned to meet lower emissions requirements. A CFD fan system modeling guide has been completed and transferred to design engineers. Current, uncontrolled modeling practices produce flow estimates in some cases within 5% of measured values, and in some cases within 25% of measured values. The techniques in the modeling guide reduced variability to the goal of + 5% for the case under study. 4. Demonstrate the performance and design versatility of a high performance fan. A 'swept blade mixed flow' fan was rapid prototyped from cast aluminum for a performance demonstration on a small construction machine. The fan was mounted directly in place of the conventional fan (relatively close to the engine). The goal was to provide equal airflow at constant fan speed, with 75% of the input power and 5 dB quieter than the conventional fan. The result was a significant loss in flow with the prototype due to its sensitivity to downstream blockage. This sensitivity to downstream blockage affects flow, efficiency, and noise all negatively, and further development was terminated. 5. Develop a high efficiency variable speed fan drive to replace existing slipping clutch style fan drives. The goal for this task was to provide a continuously variable speed fan drive with an efficiency of 95%+ at max speed, and losses no greater than at max speed as the fan speed would vary throughout its entire speed range. The process developed to quantify the fuel savings potential of a variable speed fan drive has produced a simple tool to predict the fuel savings of a variable speed drive, and has sparked significant interest in the use of variable speed fan drive for Tier 3 emissions compliant machines. The proposed dual ratio slipping clutch variable speed fan drive can provide a more efficient system than a conventional single ratio slipping clutch fan drive, but could not meet the established performance goals of this task, so this task was halted in a gate review prior to the start of detailed design. 6. Develop a cooling system air filtration device to allow the use of automotive style high performance heat exchangers currently in off road machines. The goal of this task was to provide a radiator air filtration system that could allow high fin density, louvered radiators to operate in a find dust application with the same resistance to fouling as a current production off-road radiator design. Initial sensitivity testing demonstrated that fan speed has a significant impact on the fouling of radiator cores due to fine dusts, so machines equipped with continuously variabl

Ronald Dupree

2005-07-31T23:59:59.000Z

233

Induced draft fan innovation for heat recovery steam generators  

SciTech Connect

A first of its kind, induced draft (ID) heat recovery steam generators (HRSG) have been in service at a cogeneration facility since 1991. A preliminary engineering study considered a forced draft (FD) fan to supply combustion air to the HRSG duct burners (when the combustion turbine (CT) is out of service) as a traditional design; however, the study indicated that the FD fan may require the HRSG duct burner to be shut off following a CT trip and re-ignited after the FD fan was in service. Although the induced draft HRSG design cost more than the FD fan design, the induced draft design has improved the cogeneration facility's steam generation reliability by enabling the HRSG to remain in service following a CT trip. This paper briefly summarizes the preliminary engineering study that supported the decision to select the ID fan design. The paper also discusses the control system that operates the fresh-air louvers, duct burners, HRSG, and ID fan during a CT trip. Startup and operating experiences are presented that demonstrate the effectiveness of the design. Lessons learned are also summarized for input into future induced draft HRSG designs.

Beasley, O.W.; Hutchins, E.C. (Oklahoma Gas and Electric Co., Oklahoma City, OK (United States)); Predick, P.R.; Vavrek, J.M. (Sargent and Lundy, Chicago, IL (United States))

1994-04-01T23:59:59.000Z

234

Record of Communication Concerning Ceiling Fan and Ceiling Fan Light Kit Framework Document—Docket No. EERE-2012-BT-STD-0045  

Energy.gov (U.S. Department of Energy (DOE))

This memo provides an overview of communications made to DOE staff on the subject of possible changes to standards and test procedures for ceiling fans and ceiling fan light kits.

235

Gas-Fired Boilers and Furnaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces May 16, 2013 - 4:36pm Addthis A residential natural gas meter. A residential natural gas meter. What does this mean for me? Your gas boiler or furnace may be oversized, particularly if you've upgraded the energy efficiency of your home. Your gas boiler or furnace can be retrofitted to improve its energy efficiency. Gas boilers and furnaces can be fueled by either natural gas or propane with simple modifications accounting for the different characteristics of the fuels. Propane is usually more expensive as a fuel, but is available throughout the United States. Natural gas supplies depend on having a natural gas distribution system in your area, and areas at the end of the pipeline (such as the Northeast) tend to pay higher prices for natural gas.

236

Gas-Fired Boilers and Furnaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces May 16, 2013 - 4:36pm Addthis A residential natural gas meter. A residential natural gas meter. What does this mean for me? Your gas boiler or furnace may be oversized, particularly if you've upgraded the energy efficiency of your home. Your gas boiler or furnace can be retrofitted to improve its energy efficiency. Gas boilers and furnaces can be fueled by either natural gas or propane with simple modifications accounting for the different characteristics of the fuels. Propane is usually more expensive as a fuel, but is available throughout the United States. Natural gas supplies depend on having a natural gas distribution system in your area, and areas at the end of the pipeline (such as the Northeast) tend to pay higher prices for natural gas.

237

Ceiling Fan and Ceiling Fan Light Kit use in the U.S. Results of a Survey on Amazon Mechanical Turk  

E-Print Network (OSTI)

air conditioning .31   3.7   Impact of ceiling fans on air conditioningowners increased the air conditioning thermostat temperature

Kantner, Colleen L.S.

2013-01-01T23:59:59.000Z

238

Assessment of selected furnace technologies for RWMC waste  

SciTech Connect

This report provides a description and initial evaluation of five selected thermal treatment (furnace) technologies, in support of earlier thermal technologies scoping work for application to the Idaho National Engineering Laboratory Radioactive Waste Management Complex (RWMC) buried wastes. The cyclone furnace, molten salt processor, microwave melter, ausmelt (fuel fired lance) furnace, and molten metal processor technologies are evaluated. A system description and brief development history are provided. The state of development of each technology is assessed, relative to treatment of RWMC buried waste.

Batdorf, J.; Gillins, R. [Science Applications International Corp., Idaho Falls, ID (United States); Anderson, G.L. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

1992-03-01T23:59:59.000Z

239

BPM Motors in Residential Gas Furnaces: What are the Savings...  

NLE Websites -- All DOE Office Websites (Extended Search)

or a Brushless Permanent Magnet (BPM) motor. Blowers account for the majority of furnace electricity consumption. Therefore, accurate determination of the blower electricity...

240

Recovering Zinc and Lead from Electric Arc Furnace Dust  

Science Conference Proceedings (OSTI)

Aug 1, 2000 ... Non-member price: 25.00. TMS Student Member price: 10.00. Product In Stock. Description Increasing amounts of electric arc furnace dust ...

Note: This page contains sample records for the topic "includes furnace fans" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Induction Furnace Quench & Temper of Oil Field Tubular Goods  

Science Conference Proceedings (OSTI)

Because of the unique operating features of an induction furnace, each pipe is individually heat treated, producing more uniform properties than possible with ...

242

140th Annual Meeting & Exhibition Furnace Efficiency – Energy and ...  

Science Conference Proceedings (OSTI)

140th Annual Meeting & Exhibition. February 27 to March 3, 2011. San Diego Convention Center • San Diego, California USA. Furnace Efficiency – Energy and  ...

243

Effect Of Batch Charging Equipment On Glass Furnace Efficiency  

Science Conference Proceedings (OSTI)

This paper investigates the effects of batch pattern in the melt space caused by charging equipment on the energy efficiency of the furnace focusing on the ...

244

The Limitations of CFD Modeling for Furnace Atmosphere ... - TMS  

Science Conference Proceedings (OSTI)

Feb 1, 2002 ... The Limitations of CFD Modeling for Furnace Atmosphere Troubleshooting by P.F. Stratton, N. Saxena and M. Huggahalli ...

245

Maximum Rate of Pulverized Coal Injection into Blast Furnace with ...  

Science Conference Proceedings (OSTI)

The pulverized coal consumption efficiency is determined by means of microscopic and chemical analysis. The carbon structure of coke fines in the blast furnace ...

246

Energy Efficient Operation of Secondary Aluminum Melting Furnaces  

Science Conference Proceedings (OSTI)

Jun 1, 2007 ... Energy Efficient Operation of Secondary Aluminum Melting Furnaces by P.E. King, J.J. Hatem, and B.M. Golchert ...

247

The Comparison between Vertical Shaft Furnace and Rotary Kiln for ...  

Science Conference Proceedings (OSTI)

Therefore, calcination of coke used for aluminum reduction by vertical shaft furnace is more competitive based on the existing quality of the green petroleum  ...

248

Improved Furnace Efficiency through the Use of Refractory Materials  

Science Conference Proceedings (OSTI)

... refractory users, and academic institutions, to improve energy efficiency of U.S. industry through increased furnace efficiency brought about by the employment ...

249

Furnace Efficiency – Energy and Throughput - Programmaster.org  

Science Conference Proceedings (OSTI)

Since throughput and energy efficiency are very closely tied together, this symposium looks to optimize furnace operations in both areas. Specific methods to ...

250

Biological Kraft Chemical Recycle for Augmentation of Recovery Furnace Capacity  

DOE Green Energy (OSTI)

The chemicals used in pulping of wood by the kraft process are recycled in the mill in the recovery furnace, which oxidizes organics while simultaneously reducing sulfate to sulfide. The recovery furnace is central to the economical operation of kraft pulp mills, but it also causes problems. The total pulp production of many mills is limited by the recovery furnace capacity, which cannot easily be increased. The furnace is one of the largest sources of air pollution (as reduced sulfur compounds) in the kraft pulp mill.

Stuart E. Strand

2001-12-06T23:59:59.000Z

251

Economics of Residential Gas Furnaces and Water Heaters in United...  

NLE Websites -- All DOE Office Websites (Extended Search)

single-family home construction market, the choice of what gas furnace and gas water heater combination to install is primarily driven by first cost considerations. In this...

252

Biomass Boiler and Furnace Emissions and Safety Regulations in...  

Open Energy Info (EERE)

in the Northeast States Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biomass Boiler and Furnace Emissions and Safety Regulations in the Northeast States Agency...

253

Residential Two-Stage Gas Furnaces - Do They Save Energy?  

E-Print Network (OSTI)

Air-Handler Efficiency. ASHRAE Transactions, V. 110, Pt.1,Air Heating System Performance. ASHRAE Transactions, V. 104,Furnace Air Handlers Save? , ASHRAE Transactions, V. 110,

Lekov, Alex; Franco, Victor; Lutz, James

2006-01-01T23:59:59.000Z

254

NREL’s Optical Furnace Technology Sparks Solar Industry Interest  

NREL Principal Engineer Bhushan Sopori has fired up an optical furnace he developed to efficiently fabricate solar cells. Credit: Ray David, NREL

255

Breakthrough Furnace Can Cut Solar Industry Costs (Fact Sheet)  

SciTech Connect

A game-changing Optical Cavity Furnace (OCF), developed by NREL, uses optics to heat and purify solar cells at unmatched precision, while also boosting the cells' efficiency.

Not Available

2013-08-01T23:59:59.000Z

256

Furnace Blower Electricity: National and Regional Savings Potential  

E-Print Network (OSTI)

cooling operation or standby, which account for a largethe cooling season, and standby. Furnace electricity use isElectricity Use during Standby PE standby Burner Operating

Franco, Victor; Florida Solar Energy Center

2008-01-01T23:59:59.000Z

257

Development of Reverberatory Furnace Using in Copper Scrape ...  

Science Conference Proceedings (OSTI)

... Furnace Using in Copper Scrape Smelting by Reformed Natural Gas ... Oxidation Kinetics of Fe-Cr and Fe-V liquid Alloys under Controlled Oxygen Pressures.

258

Alloys for Ethylene Production Furnaces - Energy Innovation Portal  

Ethylene production is one of the most energy intensive processes in the chemical industry, due to the decoking necessary to maintain ethylene furnace ...

259

Control of carbon balance in a silicon smelting furnace  

DOE Patents (OSTI)

The present invention is a process for the carbothermic reduction of silicon dioxide to form elemental silicon. Carbon balance of the process is assessed by measuring the amount of carbon monoxide evolved in offgas exiting the furnace. A ratio of the amount of carbon monoxide evolved and the amount of silicon dioxide added to the furnace is determined. Based on this ratio, the carbon balance of the furnace can be determined and carbon feed can be adjusted to maintain the furnace in carbon balance.

Dosaj, V.D.; Haines, C.M.; May, J.B.; Oleson, J.D.

1992-12-29T23:59:59.000Z

260

Post combustion trials at Dofasco's KOBM furnace  

DOE Green Energy (OSTI)

Post combustion trials were conducted at Dofasco's 300 tonne KOBM furnace as part of the AISI Direct Steelmaking Program. The purpose of the project work was to measure the post combustion ratio (PCR) and heat transfer efficiency (HTE) of the post combustion reaction in a full size steelmaking vessel. A method of calculating PCR and HTE using off gas analysis and gas temperature was developed. The PCR and HTE were determined under normal operating conditions. Trials assessed the effect of lance height, vessel volume, foaming slag and pellet additions on PCR and HTE.

Farrand, B.L.; Wood, J.E.; Goetz, F.J.

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "includes furnace fans" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Comparison of Furnace Flue Gas Temperature Monitors  

Science Conference Proceedings (OSTI)

This report summarizes the results of a temperature monitor comparison study performed at Ameren Sioux Station, in Missouri. The study compared the accuracy and ease of use of two radiation-based monitors, an Infra-View and SpectraTemp, and a newer tunable-diode laser (TDL) absorption-based device, the LTS-100. The instruments, installed in the upper furnace and allowed to run continuously for approximately 8 weeks, monitored and recorded exit gas temperatures during normal boiler operation and one brief...

2006-09-22T23:59:59.000Z

262

Impacts of Static Pressure Reset on VAV System Air Leakage, Fan Power and Thermal Energy - Part I: Theoretical Model and Simulation  

E-Print Network (OSTI)

As for a variable air volume (VAV) system, the air duct static pressure is a typical control variable maintained by modulating supply fan speed. The static pressure equals to the summation of the duct pressure loss downstream of the sensor to the terminal box and box inlet static pressure. Typically, the air duct static pressure is set as a constant set point based on the system design information and sensor location. However, under partial load conditions, the terminal box dampers have to be closed more since either required airflow is less than the design airflow which directly leads to much less pressure loss. Thus the static pressure set point should be reset lower in order to reduce fan power, avoid noise at terminal box dampers and box damper malfunction due to excessive pressure. Different static pressure reset schedules are reviewed and compared, considering the influence of outside air temperature on the building load, availability of the VAV box damper positions, the airflow ratio based static pressure reset has also applicable advantages over the existing constant static pressure set point and two typical reset methods. This paper present the theoretical models to express the impacts of static pressure reset on fan airflow, fan head, air leakage, fan power and thermal energy for both pressure independent and pressure dependent boxes. The impacts are also demonstrated using the parametric analysis and numerical results to show the benefits of the static pressure reset including reducing fan power, cooling energy and heating energy.

Liu, M.; Feng, J.; Wang, Z.; Wu, L.; Zheng, K.; Pang, W.

2007-01-01T23:59:59.000Z

263

Measured Natural Cooling Enhancement of a While House Fan  

E-Print Network (OSTI)

An experimental study was carried out in the summer of 1991 to investigate the natural cooling potential of use of a whole house fan in Central Florida's hot and humid climate. The residential building, in Cocoa Beach, FL, is typical of much of the existing housing stock in Florida: a concrete block structure with R-11 ceiling insulation. The building was ventilated with all windows open during the three month summer test period (June- August). Air temperatures and relative humidity inside the home interior along with exterior meteorological conditions (insolation, wind speed, air temperature, relative humidity) were scanned every five seconds with integrated averages recorded on a multi-channel data logger every 15- minutes. The house was naturally ventilated during the first half of summer. After a significant period of pre-retrofit summer data had been collected characterizing the building's thermal response, a 24" whole house fan was installed. The house was then force ventilated during evening hours for the remainder of the summer to establish potential of whole-house fans to improve interior comfort conditions. The electrical consumption of the fan was measured at both available fan speeds. Measurements revealed that the building interior was 3 - 6°F cooler during the evening hours after the whole house fan was operated. However, data also showed that nighttime humidity levels rose: relative humidity increased from 74% to 83% during the nighttime period where fan-powered ventilation was used. Using the data results, an analysis was performed using Orlando, Florida TMY data to see how limits to whole house ventilation based on humidity and temperature conditions would affect the potential of such a cooling strategy.

Parker, D. S.

1994-01-01T23:59:59.000Z

264

Modelling the architecture of distal sand-rich lobe deposits : an example from Fan 2, Skoorsteenberg Formation, Tanqua Karoo, South Africa.  

E-Print Network (OSTI)

??Fan 2, one of five submarine fan systems of the Tanqua fan complex in the south-western Karoo Basin, South Africa, is subdivided into Lower, Middle… (more)

Steyn, Rochelle

2009-01-01T23:59:59.000Z

265

High-bandwidth continuous-flow arc furnace  

DOE Patents (OSTI)

A high-bandwidth continuous-flow arc furnace for stream welding applications includes a metal mass contained in a crucible having an orifice. A power source charges an electrode for generating an arc between the electrode and the mass. The arc heats the metal mass to a molten state. A pressurized gas source propels the molten metal mass through the crucible orifice in a continuous stream. As the metal is ejected, a metal feeder replenishes the molten metal bath. A control system regulates the electrode current, shielding gas pressure, and metal source to provide a continuous flow of molten metal at the crucible orifice. Independent control over the electrode current and shield gas pressure decouples the metal flow temperature and the molten metal flow rate, improving control over resultant weld characteristics. 4 figs.

Hardt, D.E.; Lee, S.G.

1996-08-06T23:59:59.000Z

266

Heat pipes and use of heat pipes in furnace exhaust  

DOE Patents (OSTI)

An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

Polcyn, Adam D. (Pittsburgh, PA)

2010-12-28T23:59:59.000Z

267

Application of Regenerative Combustion Technology on Reheating Furnace in PISCO  

Science Conference Proceedings (OSTI)

The key features of the regenerative combustion technology were introduced and its application in the reheating furnace of Rail & Beam plant of PISCO£¨Panzhihua Iron & Steel Co.£©was discussed£®Comparedwith the traditional combustion technology£¬the ... Keywords: Regenerative Style, Combustion Technology, Reheating Furnace, Energy Conservation

Chen Yong; Pan Hong; Xue Nianfu

2011-02-01T23:59:59.000Z

268

Furnace Standards Enforcement Policy Statement | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Furnace Standards Enforcement Policy Statement Furnace Standards Enforcement Policy Statement Furnace Standards Enforcement Policy Statement On January 11, 2013, the Department of Justice, on behalf of DOE, and the American Public Gas Association (APGA) filed a joint motion asking the court to enter an agreement to settle APGA's challenge to DOE's June 27, 2011 Direct Final Rule. The settlement agreement would, among other things, vacate the energy conservation standards applicable to non-weatherized gas furnaces established in the DFR. In an exercise of its enforcement discretion, DOE will, during the pendency of the litigation, act in a manner consistent with the terms of the settlement agreement with regard to the enforcement of the standards. Furnace Standards Enforcement Policy Statement - April 5, 2013

269

ENERGY STAR Qualified Gas Furnaces | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Furnaces Gas Furnaces Consumer Data Apps Challenges Resources About Blogs Let's Talk Feedback Consumer You are here Data.gov » Communities » Consumer » Data ENERGY STAR Qualified Gas Furnaces Dataset Summary Description Gas Furnaces that have earned the ENERGY STAR are more efficient than standard models. ENERGY STAR is the trusted symbol for energy efficiency helping consumers save money and protect the environment through energy-efficient products and practices. More information on ENERGY STAR is available at www.energystar.gov. Tags {Furnaces,"Energy Star",products,"energy efficiency",efficient,"greenhouse gas emissions",climate,utility,utilities,household,savings,labels,partners,certification} Dataset Ratings Overall 0 No votes yet Data Utility

270

Method of operating a centrifugal plasma arc furnace  

DOE Patents (OSTI)

A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe{sub 3}O{sub 4}. Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe{sub 2}O{sub 3}. Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater. 3 figs.

Kujawa, S.T.; Battleson, D.M.; Rademacher, E.L. Jr.; Cashell, P.V.; Filius, K.D.; Flannery, P.A.; Whitworth, C.G.

1998-03-24T23:59:59.000Z

271

Photo of the Week: Fan-tastic | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fan-tastic Fan-tastic Photo of the Week: Fan-tastic August 17, 2012 - 10:30am Addthis In Jonesboro, Arkansas, a Nordex USA employee stands between utility-scale components that will eventually make up a completed wind turbine. Under the Recovery Act, Nordex USA received a tax credit to assist in the creation of the Jonesboro manufacturing facility, which opened in October 2010. | Photo courtesy of Nordex USA. In Jonesboro, Arkansas, a Nordex USA employee stands between utility-scale components that will eventually make up a completed wind turbine. Under the Recovery Act, Nordex USA received a tax credit to assist in the creation of the Jonesboro manufacturing facility, which opened in October 2010. | Photo courtesy of Nordex USA. Sarah Gerrity Sarah Gerrity Multimedia Editor, Office of Public Affairs

272

Cooling Tower Energy Conservation Through Hydraulic Fan Drives  

E-Print Network (OSTI)

Many companies offer gearboxes, shafts, and couplings for cooling tower fan drives, with little or no innovation. These companies have traditionally been purchased with an emphasis on cost and not "Return on Investment!" In the past, when energy conservation or "Return on Investment" was emphasized, the only alternative was to add an expensive frequency inverter for variable speed control. This meant expensive rewiring, placing additional controls in an already crowded control room, or constructing a special building for them. However, with H.E.M.'s patented Hydraulic Fan Drive, one receives variable speed control and more efficiency for approximately the price of a mechanical drive. The new, more efficient Hydraulic Drive allows for a variable speed control and the ability to sense water temperature to control fan speed.

Dickerson, J.

1991-06-01T23:59:59.000Z

273

Field Study of Exhaust Fans for Mitigating Indoor Air Quality Problems: Final Report to Bonneville Power Administration  

E-Print Network (OSTI)

operation at low fan speeds (LBL design) and operation --continuously design in the heat exchangers exhaust fans onDesign The basic objective of this project, to study the effects of exhaust fan

Grimsrud, David T.

2009-01-01T23:59:59.000Z

274

Field testing of component-level model-based fault detection methods for mixing boxes and VAV fan systems  

E-Print Network (OSTI)

precluded testing the fan based on design data. Since thisStatic Pressure (inWg) fan CFM SF-SP SF-SP-Design-Sim time (supply fan pressure rise) SF- DP SF-DP-Design-simulated D.

Xu, Peng; Haves, Philip

2002-01-01T23:59:59.000Z

275

Field testing of component-level model-based fault detection methods for mixing boxes and VAV fan systems  

E-Print Network (OSTI)

measurement of airflow rate. Supply fan speed (0-1) SA S.A.Supply Fan test S.B.Fan pressure rise calibration SF-DP-Simulated Pressure

Xu, Peng; Haves, Philip

2002-01-01T23:59:59.000Z

276

Blue fan palm distribution and seed removal patterns in three desert oases of northern Baja California, Mexico  

E-Print Network (OSTI)

DOI 10.1007/s11258-009-9682-4 Blue fan palm distribution anddistribution patterns of the blue fan palm, Brahea armata,i) the levels of blue fan palm seed removal by vertebrates

Wehncke, Elisabet V.; López-Medellín, Xavier; Ezcurra, Exequiel

2010-01-01T23:59:59.000Z

277

Economic Recovery of Oil Trapped at Fan Margins Using Hig Angle Wells Multiple Hydraulic Fractures  

Science Conference Proceedings (OSTI)

The Yowlumne field is a giant field in the southern San Joaquin basin, Kern County, California. It is a deep (13,000 ft) waterflood operation that produces from the Miocene- aged Stevens Sand. The reservoir is interpreted as a layered, fan-shaped, prograding turbidite complex containing several lobe-shaped sand bodies that represent distinct flow units. A high ultimate recovery factor is expected, yet significant quantities of undrained oil remain at the fan margins. The fan margins are not economic to develop using vertical wells because of thinning pay, deteriorating rock quality, and depth. This project attempts to demonstrate the effectiveness of exploiting the northeast distal fan margin through the use of a high- angle well completed with multiple hydraulic- fracture treatments. A high-angle well offers greater pay exposure than can be achieved with a vertical well. Hydraulic-fracture treatments will establish vertical communication between thin interbedded layers and the wellbore. The equivalent production rate and reserves of three vertical wells are anticipated at a cost of approximately two vertical wells. The near-horizontal well penetrated the Yowlumne sand; a Stevens sand equivalent, in the distal fan margin in the northeast area of the field. The well was drilled in a predominately westerly direction towards the interior of the field, in the direction of improving rock quality. Drilling and completion operations proved to be very challenging, leading to a number of adjustments to original plans. Hole conditions resulted in obtaining less core material than desired and setting intermediate casing 1200 ft too high. The 7 in. production liner stuck 1000 ft off bottom, requiring a 5 in. liner to be run the rest of the way. The cement job on the 5 in. liner resulted in a very poor bond, which precluded one of three hydraulic fracture treatments originally planned for the well. Openhole logs confirmed most expectations going into the project about basic rock properties: the formation was shaly with low porosities, and water saturations were in line with expectations, including the presence of some intervals swept out by the waterflood. High water saturations at the bottom of the well eliminated one of the originally planned hydraulic fracture treatments. Although porosities proved to be low, they were more uniform across the formation than expected. Permeabilities of the various intervals continue to be evaluated, but appear to be better than expected from the porosity log model derived in Budget Period One. The well was perforated in all pay sections behind the 5 in. liner. Production rates and phases agree nicely with log calculations, fractional flow calculations, and an analytical technique used to predict the rate performance of the well.

Laue, M.L.

1997-11-21T23:59:59.000Z

278

Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers  

E-Print Network (OSTI)

1 FURNACE AND BOILER TECHNOLOGY19 Furnace and Boiler Lifetimes Used in the LCC Analysis (PBP RESULTS FOR GAS BOILERS USING ALTERNATIVE INSTALLATION

Lutz, James; Lekov, Alex; Whitehead, Camilla Dunham; Chan, Peter; Meyers, Steve; McMahon, James

2004-01-01T23:59:59.000Z

279

Income Tax Deduction for Solar-Powered Roof Vents or Fans (Indiana...  

Open Energy Info (EERE)

1232012 References DSIRE1 Summary Indiana allows taxpayers to take a deduction on solar-powered roof fans (or vent, also sometimes called an attic fan) installed in a home...

280

Income Tax Deduction for Solar-Powered Roof Vents or Fans  

Energy.gov (U.S. Department of Energy (DOE))

Indiana allows taxpayers to take a deduction on solar-powered roof fans (or vent, also sometimes called an attic fan) installed in a home that the taxpayer owns or leases. The deduction is for 50%...

Note: This page contains sample records for the topic "includes furnace fans" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Laugh out loud in real life : women's humor and fan identity  

E-Print Network (OSTI)

The emerging field of fan studies has, until recently, been defined only by the research that has taken place within it. Almost universally, this research focuses on self-identified fans. However, scholars are beginning ...

Klink, Madeline LeNore

2010-01-01T23:59:59.000Z

282

Experimental investigation of a six inch diameter, four inch span cross-flow fan .  

E-Print Network (OSTI)

??Investigations into the use of a cross-flow fan as a potential source of propulsion and lift have arisen due to the cross-flow fan's geometry, light… (more)

Ulvin, Jessica M.

2008-01-01T23:59:59.000Z

283

Improve the Energy Efficiency of Fan Systems, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

Science Conference Proceedings (OSTI)

This fact sheet describes how the Industrial Technologies Program Fan System Assessment Tool (FSAT) can help quantify energy consumption and savings opportunities in industrial fan systems.

Not Available

2008-12-01T23:59:59.000Z

284

An Initial Study on Applying Active Noise Control to an Insulated Box Fan Used in Ventilation System Applications.  

E-Print Network (OSTI)

??In many different applications and buildings fans are used to remove unwanted and used air. These fans often generate broadband and tonal noise. Commonly, passive… (more)

Larsson, Martin; Johansson, Sven; Muddala, S.M.; Gafar, A.E.; Håkansson, Lars; Tarkka, Juhani

2009-01-01T23:59:59.000Z

285

Glass Furnace Model (GFM) development and technology transfer program final report.  

Science Conference Proceedings (OSTI)

A Glass Furnace Model (GFM) was developed under a cost-shared R&D program by the U.S. Department of Energy's Argonne National Laboratory in close collaboration with a consortium of five glass industry members: Techneglas, Inc., Owens-Corning, Libbey, Inc., Osram Sylvania, Inc., and Visteon, Inc. Purdue University and Mississippi State University's DIAL Laboratory were also collaborators in the consortium. The GFM glass furnace simulation model that was developed is a tool industry can use to help define and evaluate furnace design changes and operating strategies to: (1) reduce energy use per unit of production; (2) solve problems related to production and glass quality by defining optimal operating windows to reduce cullet generation due to rejects and maximize throughput; and (3) make changes in furnace design and/or operation to reduce critical emissions, such as NO{sub x} and particulates. A two-part program was pursued to develop and validate the furnace model. The focus of the Part I program was to develop a fully coupled furnace model which had the requisite basic capabilities for furnace simulation. The principal outcome from the Phase I program was a furnace simulation model, GFM 2.0, which was copyrighted. The basic capabilities of GFM 2.0 were: (1) built-in burner models that can be included in the combustion space simulation; (2) a participating media spectral radiation model that maintains local and global energy balances throughout the furnace volume; and (3) a multiphase (liquid, solid) melt model that calculates (does not impose) the batch-melting rate and the batch length. The key objectives of the Part II program, which overlapped the Part I program were: (1) to incorporate a full multiphase flow analytical capability with reduced glass chemistry models in the glass melt model and thus be able to compute and track key solid, gas, and liquid species through the melt and the combustion space above; and (2) to incorporate glass quality indices into the simulation to facilitate optimization studies with regard to productivity, energy use and emissions. Midway through the Part II program, however, at the urging of the industrial consortium members, the decision was made to refocus limited resources on transfer of the existing GFM 2.0 software to the industry to speed up commercialization of the technology. This decision, in turn, necessitated a de-emphasis of the development of the planned final version of the GFM software that had full multiphase capability, GFM 3.0. As a result, version 3.0 was not completed; considerable progress, however, was made before the effort was terminated. The objectives of the Technology Transfer program were to transfer the Glass Furnace Model (GFM) to the glass industry and to promote its widespread use by providing the requisite technical support to allow effective use of the software. GFM Version 2.0 was offered at no cost on a trial, six-month basis to expedite its introduction to and use by the industry. The trial licenses were issued to generate a much more thorough user beta test of the software than the relatively small amount completed by the consortium members prior to the release of version 2.0.

Lottes, S. A.; Petrick, M.; Energy Systems

2007-12-04T23:59:59.000Z

286

A satisfiability algorithm for constant depth boolean circuits with unbounded fan-in gates  

E-Print Network (OSTI)

Boolean Circuits with Unbounded Fan-In Gates A dissertationAC 0 by allowing unbounded fan-in M OD m 1 , . . . , M OD mSince each gate in ? has fan-in at most k and ? has depth D

Matthews, William Grant

2011-01-01T23:59:59.000Z

287

Fan Aerodynamic Performance Guarantees: Do Your Policies, Procedures and Penalties Provide Adequate Certainty?  

E-Print Network (OSTI)

With few exceptions, fan vendors do not provide a written guarantee regarding aerodynamic performance. Some fan vendors even go so far as to state in their terms and conditions of sale that fan performance is not guaranteed unless it is specifically reque

Kaufman, S. G.; Martin, V.; Falk, M. A.

2004-01-01T23:59:59.000Z

288

Acceptance test report MICON software exhaust fan control modifications  

Science Conference Proceedings (OSTI)

This report documents the results the acceptance test HNF-4108 which verifies the MICON program changes for the new automatic transfer switch ATS-2 alarms, the Closed Loop Cooling isolator status, the CB-3 position alarm, the alarms for the new emergency fan damper backup air compressor, and the generator sequencer logic.

SILVAN, G.R.

1999-05-20T23:59:59.000Z

289

Performance of ECM controlled VAV fan powered terminal units  

E-Print Network (OSTI)

Empirical performance models of fan airflow, primary airflow and power consumption were developed for series and parallel variable air volume fan powered terminal units. An experimental setup and test procedure were created to test the terminal units at typical design pressures and airflows. Each terminal unit observed in this study used an 8 in (20.3 cm) primary air inlet. Two fan motor control methods were considered. The primary control of interest was the electronically commutated motor (ECM) controller. Data collected were compared with previous research regarding silicon rectified control (SCR) units. Generalized models were developed for both series and parallel terminal units. Coefficients for performance models were then compared with comparable SCR controlled units. Non-linear statistical modeling was performed using SPSS software (2008). In addition to airflow and power consumption modeling, power quality was also quantified. Relationships between real power (watts) and apparent power (VA) were presented as well as harmonic frequencies and total harmonic distortion. Power quality was recorded for each ECM controlled terminal unit tested. Additional tests were also made to SCR controlled terminal units used in previous research (Furr 2006). The airflow and power consumption performance models had an R2 equal to 0.990 or greater for every terminal unit tested. An air leakage model was employed to account for leakage in the parallel designed VAV terminal units when the internal fan was turned off. For the leakage model, both ECM and SCR controlled units achieved an R2 greater than or equal to 0.918.

Cramlet, Andrew Charles

2008-08-01T23:59:59.000Z

290

The Forming of AISI 409 sheets for fan blade manufacturing  

SciTech Connect

The necessity of adapting the standardized fan models to conditions of higher temperature has emerged due to the growth of concern referring to the consequences of the gas expelling after the Mont Blanc tunnel accident in Italy and France, where even though, with 100 fans in operation, 41 people died. The objective of this work is to present an alternative to the market standard fans considering a new technology in constructing blades. This new technology introduces the use of the stainless steel AISI 409 due to its good to temperatures of gas exhaust from tunnels in fire situation. The innovation is centered in the process of a deep drawing of metallic sheets in order to keep the ideal aerodynamic superficies for the fan ideal performance. Through the impression of circles on the sheet plane it is shown, experimentally, that, during the pressing process, the more deformed regions on the sheet plane of the blade can not reach the deformation limits of the utilized sheet material.

Foroni, F. D.; Menezes, M. A.; Moreira Filho, L. A. [ITA - Aeronautic Technological Institute, IEM, Praca Mal. Eduardo Gomes, 50 - Vila das Acacias - S. J. Campos, Brasil - CEP 1228-900 (Brazil)

2007-04-07T23:59:59.000Z

291

Strategic evaluation of investments in coal-dust fuel for blast furnaces  

SciTech Connect

The paper discusses the evaluation of venture investment projects in pulverized coal injection into blast furnaces.

S.V. Bogdanov; S.M. Kornilaev [State University of Management, Moscow (Russian Federation)

2009-07-01T23:59:59.000Z

292

Energy Efficient Single Stack Exhaust Fan Systems (E3S3F)  

E-Print Network (OSTI)

This paper first investigates the fan energy performance of a constant air volume exhaust system. Two single stack energy efficient exhaust fan systems (E3S3F) are presented. The E3S3F-I has the static pressure sensor located at the inlet of the exhaust fan. It has been found to consume up to 15% less fan power than conventional constant air volume exhaust systems. The E3S3F-II uses a variable speed device to maintain the static pressure at the entrance of the stack. It consumes up to 60% less fan power than conventional constant volume exhaust systems.

Wang, G.; Liu, M.

2001-01-01T23:59:59.000Z

293

DOE Increases Energy Efficiency Standards for Residential Furnaces &  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Increases Energy Efficiency Standards for Residential Furnaces DOE Increases Energy Efficiency Standards for Residential Furnaces & Boilers DOE Increases Energy Efficiency Standards for Residential Furnaces & Boilers November 19, 2007 - 4:31pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced it has increased the energy efficiency standards for residential furnaces and boilers, underscoring the Department's commitment to meet its aggressive, five-year appliance standard rulemaking schedule, as established in its January 31, 2006, Report to Congress. The Department estimates that these amended standards, which become effective in 2015, will save the equivalent of the total amount of energy consumed by 2.5 million American households in one year, or approximately 0.25 quadrillion (10x15) British thermal

294

Oil-Fired Boilers and Furnaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces May 16, 2013 - 3:15pm Addthis Diagram of an oil boiler. New tanks are generally double-wall or have a spill container built underneath to reduce the chances of an oil spill. Typically, the tank drip pan shown here is required only for single-wall tanks and would extend the full width of the tank. | Photo courtesy State of Massachusetts. Diagram of an oil boiler. New tanks are generally double-wall or have a spill container built underneath to reduce the chances of an oil spill. Typically, the tank drip pan shown here is required only for single-wall tanks and would extend the full width of the tank. | Photo courtesy State of Massachusetts. What does this mean for me? If you have an oil furnace or boiler, you can now burn oil blended

295

Oil-Fired Boilers and Furnaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces May 16, 2013 - 3:15pm Addthis Diagram of an oil boiler. New tanks are generally double-wall or have a spill container built underneath to reduce the chances of an oil spill. Typically, the tank drip pan shown here is required only for single-wall tanks and would extend the full width of the tank. | Photo courtesy State of Massachusetts. Diagram of an oil boiler. New tanks are generally double-wall or have a spill container built underneath to reduce the chances of an oil spill. Typically, the tank drip pan shown here is required only for single-wall tanks and would extend the full width of the tank. | Photo courtesy State of Massachusetts. What does this mean for me? If you have an oil furnace or boiler, you can now burn oil blended

296

DOE Increases Energy Efficiency Standards for Residential Furnaces &  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Increases Energy Efficiency Standards for Residential Furnaces DOE Increases Energy Efficiency Standards for Residential Furnaces & Boilers DOE Increases Energy Efficiency Standards for Residential Furnaces & Boilers November 19, 2007 - 4:31pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced it has increased the energy efficiency standards for residential furnaces and boilers, underscoring the Department's commitment to meet its aggressive, five-year appliance standard rulemaking schedule, as established in its January 31, 2006, Report to Congress. The Department estimates that these amended standards, which become effective in 2015, will save the equivalent of the total amount of energy consumed by 2.5 million American households in one year, or approximately 0.25 quadrillion (10x15) British thermal

297

EOI, Electric Tube Conversion Furnaces | Y-12 National Security...  

NLE Websites -- All DOE Office Websites (Extended Search)

Tube ... EOI, Electric Tube Conversion Furnaces B&W Y-12, LLC (hereafter known as "Y-12"; for additional company information, see the website), acting under its Prime Contract No....

298

Residential Two-Stage Gas Furnaces - Do They Save Energy?  

E-Print Network (OSTI)

DOE and 2006 ASHRAE Test Procedures Furnace Controls Household Heating Requirementsprocedure (DOE 2004; Habart 2005) Heating Requirements areIn the DOE test procedure, the heating requirements of the

Lekov, Alex; Franco, Victor; Lutz, James

2006-01-01T23:59:59.000Z

299

System for generating power with top pressure of blast furnaces  

SciTech Connect

A system for generating power with the top pressure of a plurality of blast furnaces by leading a gas from the top of the furnaces into turbines, corresponding in number to the furnaces, to convert the pressure of the gas into rotational energy and generate power by a generator coupled to the turbines. The turbines connected to the furnaces by main gas channels individually are aligned with their rotor shafts connected together into a single shaft which is connected to the generator. Preferably each pair of the adjacent turbines are arranged with their intake ends positioned in the center of the arrangement so that the gas flows toward the exhaust ends at both sides, or with their intake ends positioned at both sides to cause the gas to flow toward the exhaust ends in the center. The single shaft connecting the pair of turbines together has no intermediate bearing between these turbines.

Kihara, H.; Mizota, T.; Ohmachi, M.; Takao, K.; Toki, K.; Tomita, Y.

1983-06-14T23:59:59.000Z

300

Gas-Fired Boilers and Furnaces | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

gas meter. A residential natural gas meter. What does this mean for me? Your gas boiler or furnace may be oversized, particularly if you've upgraded the energy efficiency of...

Note: This page contains sample records for the topic "includes furnace fans" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Furnace characterization for horizontal shipping container thermal testing  

SciTech Connect

In order to perform regulatory thermal tests required by 10 CFR 71.73(c)(3) on the newly designed Horizontal Shipping Container (HSC), it was necessary to find a company involved in the business of heat treating who was willing to allow their furnace to be used for these tests. Of the companies responding to a request for interest, Lindberg Heat Treating Company`s Solon, Ohio, facility was found to be the best available vendor for this activity. Their furnace was instrumented and characterized such that these tests could be performed in a manner that would conform to the specifications contained in 10 CFR 71. It was found that Lindberg`s furnace was usable for this task, and recommendations concerning the use of this furnace for the above stated purpose are made herein.

Feldman, M.R.

1994-05-01T23:59:59.000Z

302

Effect of Batch Initial Velocity on the Glass Furnace Efficiency  

Science Conference Proceedings (OSTI)

There is a direct coloration between the batch distribution techniques and the furnace ... A Review: Solar Thermal Reactors for Materials Production ... Cellulose Acetate Membranes for CO2 Separation from Water-gas-shift Reaction Products.

303

Optical processing furnace with quartz muffle and diffuser ...  

An optical furnace for annealing a process wafer comprising a source of optical energy, a quartz muffle having a door to hold the wafer for processing, and a quartz ...

304

Development of the Household Sample for Furnace and Boiler Life...  

NLE Websites -- All DOE Office Websites (Extended Search)

households in the country. The data sample provides the household energy consumption and energy price inputs to the life-cycle cost analysis segment of the furnace and boiler...

305

Building America Top Innovations 2013 Profile Â… High-Performance Furnace Blowers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Annual Fuel Utilization Annual Fuel Utilization Efficiency [AFUE] and Seasonal Energy Efficiency Ratio [SEER] and at real installed conditions. A testing program was undertaken at two laboratories to compare the performance of furnace blowers over a range of static pressure differences that included standard rating points and measured field test pressures. Three different combinations of blowers and residential furnaces were tested. The laboratory test results for blower power and airflow were combined with DOE2 models of building loads, models of air conditioner performance, standby power, and igniter, and combustion air blower power to determine potential energy and peak demand impacts. BUILDING TECHNOLOGIES OFFICE Recognizing Top Innovations in Building Science - The U.S. Department of Energy's

306

Method for processing aluminum spent potliner in a graphite electrode arc furnace  

DOE Patents (OSTI)

A method of processing spent aluminum pot liner containing carbon, cyanide compositions, fluorides and inorganic oxides. The spend aluminum pot liner is crushed, iron oxide is added to form an agglomerated material. The agglomerated material is melted in an electric arc furnace having the electrodes submerged in the molten material to provide a reducing environment during the furnace operation. In the reducing environment, pot liner is oxidized while the iron oxides are reduced to produce iron and a slag substantially free of cyanide compositions and fluorides. An off-gas including carbon oxides and fluorine is treated in an air pollution control system with an afterburner and a scrubber to produce NaF, water and a gas vented to the atmosphere free of cyanide compositions, fluorine, and CO.

O' Connor, William K.; Turner, Paul C.; Addison, G.W. (AJT Enterprises, Inc.)

2002-12-24T23:59:59.000Z

307

Method for processing aluminum spent potliner in a graphite electrode ARC furnace  

SciTech Connect

A method of processing spent aluminum pot liner containing carbon, cyanide compositions, fluorides and inorganic oxides. The spent aluminum pot liner is crushed iron oxide is added to form an agglomerated material. The agglomerated material is melted in an electric arc furnace having the electrodes submerged in the molten material to provide a reducing environment during the furnace operation. In the reducing environment, pot liner is oxidized while the iron oxides are reduced to produce iron and a slag substantially free of cyanide compositions and fluorides. An off-gas including carbon oxides and fluorine is treated in an air pollution control system with an afterburner and a scrubber to produce NaF, water and a gas vented to the atmosphere free of cyanide compositions, fluorine and CO.

O' Connor, William K. (Lebanon, OR); Turner, Paul C. (Independence, OR); Addison, Gerald W. (St. Stephen, SC)

2002-12-24T23:59:59.000Z

308

Building America Top Innovations 2013 Profile Â… High-Performance Furnace Blowers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

annual fuel utilization annual fuel utilization efficiency (AFUE) and seasonal energy efficiency ratio (SEER) and at real installed conditions. A testing program was undertaken at two laboratories to compare the performance of furnace blowers over a range of static pressure differences that included standard rating points and measured field test pressures. Three different combinations of blowers and residential furnaces were tested. The laboratory test results for blower power and airflow were combined with DOE2 models of building loads, models of air conditioner performance, standby power, and igniter and combustion air blower power to determine potential energy and peak demand impacts. BUILDING TECHNOLOGIES OFFICE Recognizing Top Innovations in Building Science - The U.S. Department of Energy's

309

Vertical feed stick wood fuel burning furnace system  

DOE Patents (OSTI)

A new and improved stove or furnace for efficient combustion of wood fuel including a vertical feed combustion chamber for receiving and supporting wood fuel in a vertical attitude or stack, a major upper portion of the combustion chamber column comprising a water jacket for coupling to a source of water or heat transfer fluid and for convection circulation of the fluid for confining the locus of wood fuel combustion to the bottom of the vertical gravity feed combustion chamber. A flue gas propagation delay channel extending from the laterally directed draft outlet affords delayed travel time in a high temperature environment to assure substantially complete combustion of the gaseous products of wood burning with forced air as an actively induced draft draws the fuel gas and air mixture laterally through the combustion and high temperature zone. Active sources of forced air and induced draft are included, multiple use and circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.

Hill, Richard C. (Orono, ME)

1984-01-01T23:59:59.000Z

310

Vertical feed stick wood fuel burning furnace system  

DOE Patents (OSTI)

A stove or furnace for efficient combustion of wood fuel includes a vertical feed combustion chamber (15) for receiving and supporting wood fuel in a vertical attitude or stack. A major upper portion of the combustion chamber column comprises a water jacket (14) for coupling to a source of water or heat transfer fluid for convection circulation of the fluid. The locus (31) of wood fuel combustion is thereby confined to the refractory base of the combustion chamber. A flue gas propagation delay channel (34) extending laterally from the base of the chamber affords delayed travel time in a high temperature refractory environment sufficient to assure substantially complete combustion of the gaseous products of wood burning with forced air prior to extraction of heat in heat exchanger (16). Induced draft draws the fuel gas and air mixture laterally through the combustion chamber and refractory high temperature zone to the heat exchanger and flue. Also included are active sources of forced air and induced draft, multiple circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.

Hill, Richard C. (Orono, ME)

1982-01-01T23:59:59.000Z

311

Thermal Treatment of Solid Wastes Using the Electric Arc Furnace  

Science Conference Proceedings (OSTI)

A thermal waste treatment facility has been developed at the Albany Research Center (ARC) over the past seven years to process a wide range of heterogeneous mixed wastes, on a scale of 227 to 907 kg/h (500 to 2,000 lb/h). The current system includes a continuous feed system, a 3-phase AC, 0.8 MW graphite electrode arc furnace, and a dedicated air pollution control system (APCS) which includes a close-coupled thermal oxidizer, spray cooler, baghouse, and wet scrubber. The versatility of the complete system has been demonstrated during 5 continuous melting campaigns, ranging from 11 to 25 mt (12 to 28 st) of treated wastes per campaign, which were conducted on waste materials such as (a) municipal incinerator ash, (b) simulated low-level radioactive, high combustible-bearing mixed wastes, (c) simulated low-level radioactive liquid tank wastes, (d) heavy metal contaminated soils, and (e) organic-contaminated dredging spoils. In all cases, the glass or slag products readily passed the U.S. Environmental Protection Agency (EPA) Toxicity Characteristic Leachability Program (TCLP) test. Additional studies are currently under way on electric utility wastes, steel and aluminum industry wastes, as well as zinc smelter residues. Thermal treatment of these solid waste streams is intended to produce a metallic product along with nonhazardous glass or slag products.

O'Connor, W.K.; Turner, P.C.

1999-09-01T23:59:59.000Z

312

Improving the Field Performance of Natural Gas Furnaces, Chicago, Illinois (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Field Performance the Field Performance of Natural Gas Furnaces Chicago, Illinois PROJECT INFORMATION Project Name: Improving Gas Furnace Performance-A Field and Lab Study at End of Life Location: Chicago, IL Partnership for Advanced Residential Retrofit www.gastechnology.org Building Component: Natural Gas Furnaces Application: New and/or retrofit; Single and/or multifamily Year Tested: 2012/2013 Applicable Climate Zone(s): All or specify which ones PERFORMANCE DATA Cost of Energy Efficiency Measure (including labor): $250 for adjustments Projected Energy Savings: 6.4% heating savings Projected Energy Cost Savings: $100/year climate-dependent Gas furnaces can successfully operate in the field for 20 years or longer with

313

Residential Two-Stage Gas Furnaces - Do They Save Energy?  

SciTech Connect

Residential two-stage gas furnaces account for almost a quarter of the total number of models listed in the March 2005 GAMA directory of equipment certified for sale in the United States. Two-stage furnaces are expanding their presence in the market mostly because they meet consumer expectations for improved comfort. Currently, the U.S. Department of Energy (DOE) test procedure serves as the method for reporting furnace total fuel and electricity consumption under laboratory conditions. In 2006, American Society of Heating Refrigeration and Air-conditioning Engineers (ASHRAE) proposed an update to its test procedure which corrects some of the discrepancies found in the DOE test procedure and provides an improved methodology for calculating the energy consumption of two-stage furnaces. The objectives of this paper are to explore the differences in the methods for calculating two-stage residential gas furnace energy consumption in the DOE test procedure and in the 2006 ASHRAE test procedure and to compare test results to research results from field tests. Overall, the DOE test procedure shows a reduction in the total site energy consumption of about 3 percent for two-stage compared to single-stage furnaces at the same efficiency level. In contrast, the 2006 ASHRAE test procedure shows almost no difference in the total site energy consumption. The 2006 ASHRAE test procedure appears to provide a better methodology for calculating the energy consumption of two-stage furnaces. The results indicate that, although two-stage technology by itself does not save site energy, the combination of two-stage furnaces with BPM motors provides electricity savings, which are confirmed by field studies.

Lekov, Alex; Franco, Victor; Lutz, James

2006-05-12T23:59:59.000Z

314

RADIATION HEAT TRANSFER ENVIRONMENT IN FIRE AND FURNACE TESTS OF RADIOACTIVE MATERIALS PAKCAGES  

SciTech Connect

The Hypothetical Accident Conditions (HAC) sequential test of radioactive materials packages includes a thermal test to confirm the ability of the package to withstand a transportation fire event. The test specified by the regulations (10 CFR 71) consists of a 30 minute, all engulfing, hydrocarbon fuel fire, with an average flame temperature of at least 800 C. The requirements specify an average emissivity for the fire of at least 0.9, which implies an essentially black radiation environment. Alternate test which provide equivalent total heat input at the 800 C time averaged environmental temperature may also be employed. When alternate tests methods are employed, such as furnace or gaseous fuel fires, the equivalence of the radiation environment may require justification. The effects of furnace and open confinement fire environments are compared with the regulatory fire environment, including the effects of gases resulting from decomposition of package overpack materials. The results indicate that furnace tests can produce the required radiation heat transfer environment, i.e., equivalent to the postulated pool fire. An open enclosure, with transparent (low emissivity) fire does not produce an equivalent radiation environment.

Smith, A

2008-12-31T23:59:59.000Z

315

Pilot plant testing of Illinois coal for blast furnace injection. Technical report, September 1--November 30, 1994  

Science Conference Proceedings (OSTI)

The purpose of this study is to evaluate the combustion of Illinois coal in the blast furnace injection process in a new and unique pilot plant test facility. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This study is unique in that it is the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. It is intended to complete the study already underway with the Armco and Inland steel companies and to demonstrate quantitatively the suitability of both the Herrin No. 6 and Springfield No. 5 coals for blast furnace injection. The main feature of the current work is the testing of Illinois coals at CANMET`s (Canadian Centre for Mineral and Energy Technology) pilot plant coal combustion facility. This facility simulates blowpipe-tuyere conditions in an operating blast furnace, including blast temperature (900 C), flow pattern (hot velocity 200 m/s), geometry, gas composition, coal injection velocity (34 m/s) and residence time (20 ms). The facility is fully instrumented to measure air flow rate, air temperature, temperature in the reactor, wall temperature, preheater coil temperature and flue gas analysis. During this quarter a sample of the Herrin No. 6 coal (IBCSP 112) was delivered to the CANMET facility and testing is scheduled for the week of 11 December 1994. Also at this time, all of the IBCSP samples are being evaluated for blast furnace injection using the CANMET computer model.

Crelling, J.C. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Geology

1994-12-31T23:59:59.000Z

316

Variable Speed Fan Retrofits for Computer Room Air Conditioners  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Variable-Speed Fan Variable-Speed Fan Retrofits for Computer-Room Air Conditioners Prepared for the U.S. Department of Energy Federal Energy Management Program Technology Case Study Bulletin By Lawrence Berkeley National Laboratory Steve Greenberg September 2013 2 Contacts Steve Greenberg Lawrence Berkeley National Laboratory One Cyclotron Road, 90R3111 Berkeley, California 94720 (510) 486-6971 segreenberg@lbl.gov For more information on FEMP, please contact: Will Lintner, P.E., CEM Federal Energy Management Program U.S. Department of Energy 1000 Independence Ave. S.W. Washington, D. C. 20585-0121 (202) 586-3120 william.lintner@ee.doe.gov 3 Acknowledgements EPRI: Dennis Symanski, Brian Fortenbery Synapsense: Garret Smith, Patricia Nealon Vigilent: Corinne Vita

317

Generator Fan/Blower Design, Inspection, and Maintenance  

Science Conference Proceedings (OSTI)

Turbo-generator rotor cooling fans and blowers are highly stressed components of a generator rotor. As such, their failures can result in expensive damages and extended outages. This best practices document provides guidelines that help plant managers understand potential failure mechanisms and their root causes, anticipate issues before failures occur, and prepare inspection and contingency plans.The guidelines are applicable to both nuclear and fossil turbo-generator rotors. Both axial ...

2012-12-13T23:59:59.000Z

318

Method for providing variable output gas-fired furnace with a constant temperature rise and efficiency  

Science Conference Proceedings (OSTI)

A method is described for providing a variable output gas-fired furnace means with a constant temperature rise and efficiency where the furnace means includes burners, a blower, a thermostat and a delay timer, the method comprising the steps of: sensing the temperature in an area to be conditioned; comparing the sensed temperature to a predetermined set point; if the sensed temperature deviates from the predetermined set point by more than a predetermined amount, gas is supplied to the burners and the blower is started; determining the reference revolution per minute of the blower; determining the reference cubic feet per minute delivered by the blower; determining the manifold pressure; determining whether the furnace is in a high heat or a low heat mode of operation; determining the desired cubic feet per minute delivered by the blower for the current mode of operation; reading the actual revolution per minute of the blower; adjusting the speed of the blower motor if the actual and desired revolution per minute of the blower are not the same; determining whether the thermostat is satisfied; if the thermostat is not satisfied, returning to the step of determining the manifold pressure; and if the thermostat is satisfied, shutting off the gas and starting the delay timer.

Ballard, G.W.; Thompson, K.D.

1987-08-25T23:59:59.000Z

319

Turning on the Fan and Turning off the A/C | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Turning on the Fan and Turning off the A/C Turning on the Fan and Turning off the A/C Turning on the Fan and Turning off the A/C September 20, 2010 - 3:00pm Addthis As part of some recent money- and energy-savings improvements I've been making to my home, a couple of weeks ago I installed a ceiling fan in my main living room. Chris Stewart Senior Communicator at DOE's National Renewable Energy Laboratory As part of some recent money- and energy-savings improvements I've been making to my home, a couple of weeks ago I installed a ceiling fan in my main living room. Part of my research led me to understand how ceiling fans are considered the most effective fans compared among table fans, floor fans, and fans mounted to poles or walls because they effectively circulate the air in a room to create a draft throughout the room.

320

Turning on the Fan and Turning off the A/C | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Turning on the Fan and Turning off the A/C Turning on the Fan and Turning off the A/C Turning on the Fan and Turning off the A/C September 20, 2010 - 3:00pm Addthis As part of some recent money- and energy-savings improvements I've been making to my home, a couple of weeks ago I installed a ceiling fan in my main living room. Chris Stewart Senior Communicator at DOE's National Renewable Energy Laboratory As part of some recent money- and energy-savings improvements I've been making to my home, a couple of weeks ago I installed a ceiling fan in my main living room. Part of my research led me to understand how ceiling fans are considered the most effective fans compared among table fans, floor fans, and fans mounted to poles or walls because they effectively circulate the air in a room to create a draft throughout the room.

Note: This page contains sample records for the topic "includes furnace fans" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Biomass Boiler and Furnace Emissions and Safety Regulations in the  

Open Energy Info (EERE)

Biomass Boiler and Furnace Emissions and Safety Regulations in the Biomass Boiler and Furnace Emissions and Safety Regulations in the Northeast States Jump to: navigation, search Tool Summary Name: Biomass Boiler and Furnace Emissions and Safety Regulations in the Northeast States Agency/Company /Organization: CONEG Policy Research Center Inc. Partner: Massachusetts Department of Energy Resources, Rick Handley and Associates, Northeast States for Coordinated Air Use Management (NESCAUM) Sector: Energy Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels, Economic Development Phase: Determine Baseline, Evaluate Options, Develop Goals Resource Type: Guide/manual User Interface: Other Website: www.mass.gov/Eoeea/docs/doer/renewables/biomass/DOER%20Biomass%20Emiss Country: United States

322

Savings in electric cooling energy by the use of a whole-house fan. Final report  

Science Conference Proceedings (OSTI)

Hour-by-hour cooling performances of a typical ranch house, with and without the use of a whole-house fan, were compared for the climate conditions throughout the contiguous United States. The comparative analyses were made by the use of NBSWHF, a modified version of NBSLD, to simulate the complex thermal coupling of whole-house-fan ventilated attic space. The calculations were performed for two operational modes: a cyclic fan mode and a stepwise continuous mode.

Kusuda, T.; Bean, J.W.

1981-05-01T23:59:59.000Z

323

Effect of building airtightness and fan size on the performance of mechanical ventilation systems in new U.S. houses: a critique of ASHRAE standard 62.2-2003  

E-Print Network (OSTI)

Determining Air Leakage Rate by Fan Pressurization. Americanof Building Envelopes by the Fan Pressurization Method.Dominated by Strong Exhaust Fan. ASHRAE Transactions. Vol

Roberson, J.

2004-01-01T23:59:59.000Z

324

Application of Argonne's Glass Furnace Model to longhorn glass corporation oxy-fuel furnace for the production of amber glass.  

SciTech Connect

The objective of this project is to apply the Argonne National Laboratory's Glass Furnace Model (GFM) to the Longhorn oxy-fuel furnace to improve energy efficiency and to investigate the transport of gases released from the batch/melt into the exhaust. The model will make preliminary estimates of the local concentrations of water, carbon dioxide, elemental oxygen, and other subspecies in the entire combustion space as well as the concentration of these species in the furnace exhaust gas. This information, along with the computed temperature distribution in the combustion space may give indications on possible locations of crown corrosion. An investigation into the optimization of the furnace will be performed by varying several key parameters such as the burner firing pattern, exhaust number/size, and the boost usage (amount and distribution). Results from these parametric studies will be analyzed to determine more efficient methods of operating the furnace that reduce crown corrosion. Finally, computed results from the GFM will be qualitatively correlated to measured values, thus augmenting the validation of the GFM.

Golchert, B.; Shell, J.; Jones, S.; Energy Systems; Shell Glass Consulting; Anheuser-Busch Packaging Group

2006-09-06T23:59:59.000Z

325

Computational Fluid Dynamics Based Investigation of Sensitivity of Furnace Operational Conditions to Burner Flow Controls  

SciTech Connect

This is the first Semiannual Technical Report for DOE Cooperative Agreement No: DE-FC26-02NT41580. The goal of this project is to systematically assess the sensitivity of furnace operational conditions to burner air and fuel flows in coal fired utility boilers. Our approach is to utilize existing baseline furnace models that have been constructed using Reaction Engineering International's (REI) computational fluid dynamics (CFD) software. Using CFD analyses provides the ability to carry out a carefully controlled virtual experiment to characterize the sensitivity of NOx emissions, unburned carbon (UBC), furnace exit CO (FECO), furnace exit temperature (FEGT), and waterwall deposition to burner flow controls. The Electric Power Research Institute (EPRI) is providing co-funding for this program, and instrument and controls experts from EPRI's Instrument and Controls (I&C) Center are active participants in this project. This program contains multiple tasks and good progress is being made on all fronts. A project kickoff meeting was held in conjunction with NETL's 2002 Sensors and Control Program Portfolio Review and Roadmapping Workshop, in Pittsburgh, PA during October 15-16, 2002. Dr. Marc Cremer, REI, and Dr. Paul Wolff, EPRI I&C, both attended and met with the project COR, Susan Maley. Following the review of REI's database of wall-fired coal units, the project team selected a front wall fired 150 MW unit with a Riley Low NOx firing system including overfire air for evaluation. In addition, a test matrix outlining approximately 25 simulations involving variations in burner secondary air flows, and coal and primary air flows was constructed. During the reporting period, twenty-two simulations have been completed, summarized, and tabulated for sensitivity analysis. Based on these results, the team is developing a suitable approach for quantifying the sensitivity coefficients associated with the parametric tests. Some of the results of the CFD simulations of the single wall fired unit were presented in a technical paper entitled, ''CFD Investigation of the Sensitivity of Furnace Operational Conditions to Burner Flow Controls,'' presented at the 28th International Technical Conference on Coal Utilization and Fuel Systems in Clearwater, FL March 9-14, 2003. In addition to the work completed on the single wall fired unit, the project team made the selection of a 580 MW opposed wall fired unit to be the subject of evaluation in this program. Work is in progress to update the baseline model of this unit so that the parametric simulations can be initiated.

Marc Cremer; Kirsi St. Marie; Dave Wang

2003-04-30T23:59:59.000Z

326

OPTIMIZED FUEL INJECTOR DESIGN FOR MAXIMUM IN-FURNACE NOx REDUCTION AND MINIMUM UNBURNED CARBON  

SciTech Connect

Reaction Engineering International (REI) has established a project team of experts to develop a technology for combustion systems which will minimize NO x emissions and minimize carbon in the fly ash. This much need technology will allow users to meet environmental compliance and produce a saleable by-product. This study is concerned with the NO x control technology of choice for pulverized coal fired boilers, ?in-furnace NO x control,? which includes: staged low-NO x burners, reburning, selective non-catalytic reduction (SNCR) and hybrid approaches (e.g., reburning with SNCR). The program has two primary objectives: 1) To improve the performance of ?in-furnace? NO x control processes. 2) To devise new, or improve existing, approaches for maximum ?in-furnace? NO x control and minimum unburned carbon. The program involves: 1) fundamental studies at laboratory- and bench-scale to define NO reduction mechanisms in flames and reburning jets; 2) laboratory experiments and computer modeling to improve our two-phase mixing predictive capability; 3) evaluation of commercial low-NO x burner fuel injectors to develop improved designs, and 4) demonstration of coal injectors for reburning and low-NO x burners at commercial scale. The specific objectives of the two-phase program are to: 1 Conduct research to better understand the interaction of heterogeneous chemistry and two phase mixing on NO reduction processes in pulverized coal combustion. 2 Improve our ability to predict combusting coal jets by verifying two phase mixing models under conditions that simulate the near field of low-NO x burners. 3 Determine the limits on NO control by in-furnace NO x control technologies as a function of furnace design and coal type. 5 Develop and demonstrate improved coal injector designs for commercial low-NO x burners and coal reburning systems. 6 Modify the char burnout model in REI?s coal combustion code to take account of recently obtained fundamental data on char reactivity during the late stages of burnout. This will improve our ability to predict carbon burnout with low-NO x firing systems.

A.F. SAROFIM; BROWN UNIVERSITY. R.A. LISAUSKAS; D.B. RILEY, INC.; E.G. EDDINGS; J. BROUWER; J.P. KLEWICKI; K.A. DAVIS; M.J. BOCKELIE; M.P. HEAP; REACTION ENGINEERING INTERNATIONAL. D.W. PERSHING; UNIVERSITY OF UTAH. R.H. HURT

1998-01-01T23:59:59.000Z

327

Laser ultrasonic furnace tube coke monitor. Quarterly technical progress report No. 1, May 1--August 1, 1998  

Science Conference Proceedings (OSTI)

The overall aim of the project is to demonstrate the performance and practical use of a laser ultrasonic probe for measuring the thickness of coke deposits located within the high temperature tubes of a thermal cracking furnace. This aim will be met by constructing an optical probe that will be tested using simulated coke deposits that are positioned inside of a bench-scale furnace. Successful development of the optical coke detector will provide industry with the only available method for on-line measurement of coke deposits. The optical coke detector will have numerous uses in the refining and petrochemical sectors including monitoring of visbreakers, hydrotreaters, delayed coking units, vacuum tower heaters, and various other heavy oil heating applications where coke formation is a problem. The coke detector will particularly benefit the olefins industry where high temperature thermal crackers are used to produce ethylene, propylene, butylene and other important olefin intermediates. The ethylene industry requires development of an on-line method for gauging the thickness of coke deposits in cracking furnaces because the current lack of detailed knowledge of coke deposition profiles introduces the single greatest uncertainty in the simulation and control of modern cracking furnaces. The laser ultrasonic coke detector will provide operators with valuable new information allowing them to better optimize the decoking turnaround schedule and therefore maximize production capacity.

NONE

1998-08-15T23:59:59.000Z

328

How Has a Ceiling Fan Affected the Way You Heat and Cool Your Home? |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Has a Ceiling Fan Affected the Way You Heat and Cool Your Home? Has a Ceiling Fan Affected the Way You Heat and Cool Your Home? How Has a Ceiling Fan Affected the Way You Heat and Cool Your Home? September 23, 2010 - 7:30am Addthis On Monday, Chris told you about his new ceiling fan and how it's changed the way he cools his home. In warm weather, ceiling fans cool people (not rooms) by producing a wind-chill effect-which is why you should turn off fans when you leave the room. A ceiling fan allows you to raise the thermostat setting about 4°F with no reduction in comfort. Ceiling fans don't just cool in the summer; you can also reverse the direction in the winter to provide an updraft and force warm air down into the room. How has a ceiling fan affected the way you heat and cool your home? Each Thursday, you have the chance to share your thoughts on a question

329

How Has a Ceiling Fan Affected the Way You Heat and Cool Your Home? |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Has a Ceiling Fan Affected the Way You Heat and Cool Your Home? Has a Ceiling Fan Affected the Way You Heat and Cool Your Home? How Has a Ceiling Fan Affected the Way You Heat and Cool Your Home? September 23, 2010 - 7:30am Addthis On Monday, Chris told you about his new ceiling fan and how it's changed the way he cools his home. In warm weather, ceiling fans cool people (not rooms) by producing a wind-chill effect-which is why you should turn off fans when you leave the room. A ceiling fan allows you to raise the thermostat setting about 4°F with no reduction in comfort. Ceiling fans don't just cool in the summer; you can also reverse the direction in the winter to provide an updraft and force warm air down into the room. How has a ceiling fan affected the way you heat and cool your home? Each Thursday, you have the chance to share your thoughts on a question

330

Parametric System Curves: Correlations Between Fan Pressure Rise and Flow for Large Commercial Buildings  

E-Print Network (OSTI)

distribution, duct design, system curve, fans, leakage iiifan pressure rise and flow measurements over a range of operating conditions. During design,

Sherman, Max

2010-01-01T23:59:59.000Z

331

Toward green systems for cleanrooms: Energy efficient fan-filter units  

E-Print Network (OSTI)

filter unit (FFU), energy efficiency, green system, electricToward Green Systems for Cleanrooms: Energy Efficient Fan-energy efficient models; Market transformation toward “green”

Jeng, Ming-Shan; Xu, Tengfang; Lan, Chao-Ho

2004-01-01T23:59:59.000Z

332

NIST Test Fans the Flames for High-Rise Fire Safety  

Science Conference Proceedings (OSTI)

... Once the fires were under way, a variety of ventilation tests were conducted. For example, in one test, a large fan was placed at the front door to ...

2012-12-17T23:59:59.000Z

333

Toward green systems for cleanrooms: Energy efficient fan-filter units  

E-Print Network (OSTI)

Toward Green Systems for Cleanrooms: Energy Efficient Fan-FFU), energy efficiency, green system, electric power use,are challenges and benefits in green designs that integrate

Jeng, Ming-Shan; Xu, Tengfang; Lan, Chao-Ho

2004-01-01T23:59:59.000Z

334

Fallout fans: Negotiations over text integrity in the age of the active audience.  

E-Print Network (OSTI)

??This study investigated how fans and producers of media texts negotiate text integrity, which is defined as an ideal about the validity, wholeness, and truth… (more)

Milner, Ryan M.

2008-01-01T23:59:59.000Z

335

DISCRETE-FREQUENCY AND BROADBAND NOISE RADIATION FROM DIESEL ENGINE COOLING FANS.  

E-Print Network (OSTI)

??This effort focuses on measuring and predicting the discrete-frequency and broadband noise radiated by diesel engine cooling fans. Unsteady forces developed by the interaction of… (more)

Kim, Geon-Seok

2007-01-01T23:59:59.000Z

336

A Real Reflection of How I Write: Young Adult Female Authors Seizing Agency Through Fan Fiction.  

E-Print Network (OSTI)

??This research project examines ""fan fiction"" (stories based upon existing texts such as movies, books, and video games) written by a young adult female and… (more)

Coleman, Susanna

2008-01-01T23:59:59.000Z

337

Failure of a Fan Hub Blade Made of an A713 Al-Zn Alloy  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2012. Symposium, Failure Analysis and Prevention. Presentation Title, Failure of a Fan Hub Blade ...

338

Topography based fan control for heavy trucks; Topografibaserad kylfläktstyrning för tunga fordon.  

E-Print Network (OSTI)

?? This thesis is a study of how cooling fan control can be improved by using road topography information. Two such controllers are presented, one… (more)

Lerede, Niclas

2009-01-01T23:59:59.000Z

339

Error Sensor Placement for Active Control of an Axial Cooling Fan.  

E-Print Network (OSTI)

??Recent experimental achievements in active noise control (ANC) for cooling fans have used near-field error sensors whose locations are determined according to a theoretical condition… (more)

Shafer, Benjamin M 1979-

2007-01-01T23:59:59.000Z

340

DUCTED FAN INLET/EXIT AND ROTOR TIP FLOWIMPROVEMENTS FOR VERTICAL LIFT SYSTEMS.  

E-Print Network (OSTI)

??Ducted fan based vertical lift systems are excellent candidates to be in the group of the next generation vertical lift vehicles, with many potential applications… (more)

Akturk, Ali

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "includes furnace fans" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

FLIGHT CONTROL DESIGN OF TANDEM DUCTED FAN AIRCRAFT USING REDUNDANT CONTROL EFFECTORS.  

E-Print Network (OSTI)

??Controllability and stability of ducted fan air vehicles is a challenging problem due to their complex nonlinear aerodynamics and dynamic behavior. At the same time,… (more)

Ozdemir, Gurbuz

2010-01-01T23:59:59.000Z

342

Perimeter fan performance in forced draught air-cooled steam condensers.  

E-Print Network (OSTI)

??ENGLISH ABSTRACT: Axial flow fan arrays form part of air-cooled steam condensers in direct drycooled power plants. This dissertation investigates the performance of axial flow… (more)

Van der Spuy, Sybrand Johannes

2011-01-01T23:59:59.000Z

343

Blast furnaces make way for new steel technology  

Science Conference Proceedings (OSTI)

Increasingly stringent environmental regulations, aging production units, and a competitive market are forcing iron and steelmakers to improve the environmental performance and cost efficiencies of their processes. The traditional integrated steel unit isn`t obsolete -- yet. Blast furnaces will be around for at least another 15 years. However, traditional technology is in for some changes, and stepped up rivalry from electric arc furnace minimills and ironmaking processes that use gas or coal. The paper discusses direct iron making processes, the DRI-minimill connection, the iron carbide process, and reclaiming iron from waste.

Ondrey, G.; Parkinson, G.; Moore, S.

1995-03-01T23:59:59.000Z

344

Optical processing furnace with quartz muffle and diffuser plate  

SciTech Connect

An optical furnace for annealing a process wafer comprising a source of optical energy, a quartz muffle having a door to hold the wafer for processing, and a quartz diffuser plate to diffuse the light impinging on the quartz muffle; a feedback system with a light sensor located in the door or wall of the muffle is also provided for controlling the source of optical energy. The quartz for the diffuser plate is surface etched (to give the quartz diffusive qualities) in the furnace during a high intensity burn-in process.

Sopori, Bhushan L. (Denver, CO)

1995-01-01T23:59:59.000Z

345

Gas furnace efficiency has large implications for ...  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium. Uranium fuel, nuclear reactors, generation, spent fuel. ... ...

346

Arbitrary surface flank milling of fan, compressor, and impeller blades  

SciTech Connect

It is generally conceived that a blade surface is flank millable if it can be closely approximated by a ruled surface; otherwise the slow machining process of point milling has to be employed. However, the authors have now demonstrated that the ruled surface criterion for flank milling is neither necessary nor sufficient. Furthermore, many complex arbitrary surfaces typical of the blades in fans, axial compressors, and centrifugal impellers in aviation gas turbines are actually closely flank millable and can be rendered exactly flank millable with one or more passes per surface often without sacrificing, indeed usually with gain, in performance.

Wu, C.Y. [Pratt and Whitney Canada Incorporated, Longueuil, Quebec, (Canada). Design Engineering

1995-07-01T23:59:59.000Z

347

Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program Eligibility Multi-Family Residential...

348

NREL's Optical Cavity Furnace Brings Together a Myriad of Advances for Processing Solar Cells (Fact Sheet)  

DOE Green Energy (OSTI)

Fact sheet on 2011 R&D 100 Award winner, the Optical Cavity Furnace. The innovative furnace uses light and unique light-induced effects to make higher-efficiency solar cells at lower cost.

Not Available

2011-08-01T23:59:59.000Z

349

Laser-induced breakdown spectroscopy at high temperatures in industrial boilers and furnaces.  

DOE Green Energy (OSTI)

Laser-induced breakdown spectroscopy (LIBS) was applied (1) near the superheater of an electric power generation boiler burning biomass, coat, or both, (2) at the exit of a glass-melting furnace burning natural gas and oxygen, and (3) near the nose arches of two paper mill recovery boilers burning black liquor. Difficulties associated with the high temperatures and high particle loadings in these environments were surmounted by use of novel LIBS probes. Echelle and linear spectrometers coupled to intensified CCD cameras were used individually and sometimes simultaneously. Elements detected include Na, K, Ca, Mg, C, B, Si, Mn, Al, Fe, Rb, Cl, and Ti.

Walsh, Peter M. (University of Alabama at Birmingham and Southern Research Institute, Birmingham, AL); Shaddix, Christopher R.; Sickafoose, Shane M.; Blevins, Linda Gail

2003-02-01T23:59:59.000Z

350

CHANGES IN SANDSTONE DISTRIBUTIONS BETWEEN THE UPPER, MIDDLE, AND LOWER FAN IN THE ARKANSAS JACKFORK GROUP  

E-Print Network (OSTI)

This study is a statistical analysis of the sandstone distribution within the Arkansas Jackfork Group which is a passive margin fan complex. Passive margin fan systems are typically associated with long fluvial transport, fed by deltas, wide shelf, efficient basin transport, that result in a bypassing system. Passive margin fans are generally fine-grained, mud rich, and well sorted. These fans can be separated into three units (upper, middle, and lower fan) based on their location within the fan and how the sediments are deposited. Five outcrops from the Arkansas Jackfork Group have been chosen for this study and each were divided into different facies dependent on sandstone percentages in certain bed sets. The amount of sandstone for each facies was calculated and a statistical approximation for each outcrop was determined. Sandstone distribution curves were made for each outcrop to show a graphic representation of how the sandstone is dispersed. After analyzing different upper, middle, and lower fan outcrops, it is clear there is an obvious change in the sandstone percentage and distribution. The upper fan deposit has an overall sandstone percentage of approximately 77.5% and is deposited in beds that are mainly amalgamated; 10-30m thick. Sandstone is deposited moderately even and is quite concentrated throughout the exposure. The middle fan outcrops contain approximately 72.6% sandstone and show similar patterns, except that the amalgamated sandstone beds are not as thick, 5-15m and contain more shale in between layers. As expected the lower fan outcrop is completely different in both sandstone percentage and distribution. The lower fan has approximately 65.4% sandstone. The distribution of sandstone is more concentrated in each of the individual units, or systems, but the overall complex has two systems separated by a massive marine shale bed, 33.5 m, that contains virtually no sand.

Mack, Clayton P.

2009-05-01T23:59:59.000Z

351

Laboratory evaluation of fan/filter units' aerodynamic and energy performance  

SciTech Connect

The paper discusses the benefits of having a consistent testing method to characterize aerodynamic and energy performance of FFUs. It presents evaluation methods of laboratory-measured performance of ten relatively new, 1220 mm x 610 mm (or 4 ft x 2 ft) fan-filter units (FFUs), and includes results of a set of relevant metrics such as energy performance indices (EPI) based upon the sample FFUs tested. This paper concludes that there are variations in FFUs' performance, and that using a consistent testing and evaluation method can generate compatible and comparable FFU performance information. The paper also suggests that benefits and opportunities exist for our method of testing FFU energy performance to be integrated in future recommended practices.

Xu, Tengfang; Jeng, Ming-Shan

2004-07-27T23:59:59.000Z

352

The data furnace: heating up with cloud computing  

Science Conference Proceedings (OSTI)

In this paper, we argue that servers can be sent to homes and office buildings and used as a primary heat source. We call this approach the Data Furnace or DF. Data Furances have three advantages over traditional data centers: 1) a smaller carbon footprint ...

Jie Liu; Michel Goraczko; Sean James; Christian Belady; Jiakang Lu; Kamin Whitehouse

2011-06-01T23:59:59.000Z

353

Electrode immersion depth determination and control in electroslag remelting furnace  

DOE Patents (OSTI)

An apparatus and method for controlling an electroslag remelting furnace comprising adjusting electrode drive speed by an amount proportional to a difference between a metric of electrode immersion and a set point, monitoring impedance or voltage, and calculating the metric of electrode immersion depth based upon a predetermined characterization of electrode immersion depth as a function of impedance or voltage.

Melgaard, David K. (Albuquerque, NM); Beaman, Joseph J. (Austin, TX); Shelmidine, Gregory J. (Tijeras, NM)

2007-02-20T23:59:59.000Z

354

Lot sizing and furnace scheduling in small foundries  

Science Conference Proceedings (OSTI)

A lot sizing and scheduling problem prevalent in small market-driven foundries is studied. There are two related decision levels: (1) the furnace scheduling of metal alloy production, and (2) moulding machine planning which specifies the type and size ... Keywords: Lot sizing and scheduling, Meta-heuristics, Mixed integer programming

Silvio A. de Araujo; Marcos N. Arenales; Alistair R. Clark

2008-03-01T23:59:59.000Z

355

Coke quality for blast furnaces with coal-dust fuel  

SciTech Connect

Recently, plans have been developed for the introduction of pulverized coal injection (PCI) at various Russian metallurgical enterprises. The main incentive for switching to PCI is the recent price rises for Russian natural gas. The paper discusses the quality of coke for PCI into blast furnaces.

Y.A. Zolotukhin; N.S. Andreichikov [Eastern Coal-Chemistry Institute, Yekaterinburg (Russian Federation)

2009-07-01T23:59:59.000Z

356

Coke mineral transformations in the experimental blast furnace  

SciTech Connect

Blast furnace efficiency may be improved by optimizing coke reactivity. Some but not all forms of mineral matter in the coke modify its reactivity, but changes in mineral matter that occur within coke while in the blast furnace have not been fully quantified. To determine changes in mineral matter forms in the blast furnace, coke samples from a dissection study in the LKAB experimental blast furnace (EBF) were characterized using SEM/EDS analysis, EPMA (microprobe), and low-temperature ashing/quantitative XRD analysis. Variations in alkali concentration, particularly potassium, dominated the compositional changes. At high concentrations of potassium, the mineral matter was largely potassium-bearing but even more potassium was diffused throughout the coke and not associated with mineral matter. There was little difference in potassium concentration between the core and surface of the coke pieces, suggesting that potassium diffused rapidly through the whole coke. Iron, calcium, silicon, and aluminum concentrations were relatively constant in comparison, although the mineralogy of all elements changed significantly with changing temperature. 23 refs., 20 figs., 9 tabs.

Kelli Kazuberns; Sushil Gupta; Mihaela Grigore; David French; Richard Sakurovs; Mats Hallin; Bo Lindblom; Veena Sahajwalla [University of New South Wales, Sydney, NSW (Australia). Cooperative Research Centre for Coal in Sustainable Development (CCSD)

2008-09-15T23:59:59.000Z

357

Inlet swirl distortion effects on the generation and propagation of fan rotor shock noise  

E-Print Network (OSTI)

A body-force-based fan model for the prediction of multiple-pure-tone noise generation is developed in this thesis. The model eliminates the need for a full-wheel, three-dimensional unsteady RANS simulation of the fan blade ...

Defoe, Jeff (Jeffrey James)

2011-01-01T23:59:59.000Z

358

Performance Analysis of Dual-Fan, Dual-Duct Constant Volume Air-Handling Units  

E-Print Network (OSTI)

Dual-fan, dual-duct air-handling units introduce outside air directly into the cooling duct and use two variable speed devices to independently maintain the static pressure of the hot and the cold air ducts. Analytical models have been developed to compare fan power and thermal energy consumption of dualfan, dual-duct constant volume air-handling units with single-fan, dual-duct constant volume airhandling units. This study shows that the dual-fan, dual-duct system uses less fan power and less thermal energy during winter, and uses more thermal energy during summer. Thermal energy performance can be significantly improved if the thermal energy penalty can be decreased or eliminated.

Joo, I. S.; Liu, M.

2001-01-01T23:59:59.000Z

359

Impact-resistant boron/aluminum composites for large fan blades  

SciTech Connect

Blade-like specimens were subjected to static ballistic impact testing to determine their relative FOD impact resistance levels. It was determined that a plus or minus 15 deg layup exhibited good impact resistance. The design of a large solid boron/aluminum fan blade was conducted based on the FOD test results. The CF6 fan blade was used as a baseline for these design studies. The solid boron/aluminum fan blade design was used to fabricate two blades. This effort enabled the assessment of the scale up of existing blade manufacturing details for the fabrication of a large B/Al fan blade. Existing CF6 fan blade tooling was modified for use in fabricating these blades.

Oller, T.L.; Salemme, C.T.; Bowden, J.H.; Doble, G.S.; Melnyk, P.

1977-12-01T23:59:59.000Z

360

The Furnace combustion and radiation characteristics of methanol and a methanol/coal slurry  

DOE Green Energy (OSTI)

An experimental facility has been built to study the combustion of methanol and a slurry of methanol plus 5% coal in an environment similar to industrial and utility boilers. The furnace is a horizontal water cooled cylinder, 20 cm in diameter by one meter long, with a firing rate of 60 kW. The measurements taken throughout the furnace include temperature and concentration of carbon monoxide, carbon dioxide, water, oxides of nitrogen, methanol and particulates. Spectral radiation intensity measurements are taken along the axis of the furnace burning methanol and the methanol/coal slurry. The effect of the fuel on flame structure is reported. The temperatures in the pure methanol flame are, in general, higher than in the methanol/coal flame. The levels of the oxides of nitrogen are low in the pure methanol flame (less than 20 ppM NO). Addition of 5% coal to the methanol causes NO concentration to increase to 100 ppM. This represents a conversion of 40% of the coal bound nitrogen to NO. Particulate levels increase from less than .001 g/m/sup 3/ for the pure methanol to over .25 g/m/sup 3/ when pulverized coal is added. The low levels of soot and particulates in the methanol flame have an effect on the spectral intensity. No continuous radiation is measured in the methanol flame, but small amounts of particulate radiation can be seen from the spectra of the methanol/coal flame. The total emittance of the flame is increased from about .10 to .135 with the addition of 5% pulverized coal, but the radiation intensity is reduced because of the lower flame temperatures. A numerical program has been written to calculate the spectral intensity from an inhomogeneous mixture of combustion products. Comparisons are made between the calculated intensity and the measured intensity for both fuel systems. The numerical results are about 25% lower than the measured results. Reasons for this are discussed.

Grosshandler, W.L.

1977-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "includes furnace fans" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Batch Preheat for glass and related furnace processing operations  

SciTech Connect

The objectives that our development work addressed are: (1) Establish through lab tests a salt eutectic with a melting point of about 250 F and a working range of 250 to 1800 F. (2) Establish the most economical material of construction for the screened salt eutectics identified in the first objective. (3) Establish the material of construction for the salt heater liner. Objectives 2 and 3 were determined through corrosion tests using selected metallurgical samples. Successful completion of the above-stated goals will be incorporated in a heat recovery design that can be used in high temperature processes and furnaces, typical of which is the glass melting process. The process design incorporates the following unit operations: a vertical batch heater (whereby the batch flows down through tubes in a shell and tube exchanger; a molten salt eutectic is circulated on the shell side); a molten salt heater utilizing furnace flue gas in a radiation type heater (molten salt is circulated in the annular space between the inner and outer shells of the vertical heater, and flue gas passes from the furnace exhaust through the inner shell of the heater); a cantilever type molten salt circulating pump; and a jacketed mixer/conveyor to drive off moisture from the batch prior to feeding the batch to the vertical batch heater. Historically, radiation heaters, when applied to glass or fiberglass furnace recuperation, have experienced failures due to uneven heat flux rates, which increases internal stresses and spot overheating conditions. Low heat transfer coefficients result in requirements for large heat transfer surface areas in gas to gas or gas to air exchangers. Fouling is another factor that results in lower unit availability and reduced performance. These factors are accommodated in this process by the incorporation of several design features. The salt heater will be a vertical double wall radiation design, similar to radiation air heaters used in high temperature heat recovery. The unit utilizes an inner shell that the furnace exhaust gas passes through: this provides essentially a self-cleaning surface. Utilization of radiation air heaters in fiberglass furnaces has demonstrated that the inner shell provides a surface from which molten ash can drain down. The molten salt eutectic will be pumped through the annulus between this inner wall and the outer wall of the unit. The annular space tempering via the molten salt will promote more uniform expansion for the unit, and thereby promote more uniform heat flux rates. Heat transfer would be via radiation mainly, with a minor convective contributor.

Energy & Environmental Resources, Inc

2002-08-12T23:59:59.000Z

362

Microsoft Word - Control_and_Fan_Improvements_in_CRAHs.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

07E 07E Demonstration of Intelligent Control and Fan Improvements in Computer Room Air Handlers Henry Coles and Steve Greenberg, Lawrence Berkeley National Laboratory Corinne Vita, Vigilent Environmental Energy Technologies Division November 2012 DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe

363

Fan-shaped and toric textures of mesomorphic oxadiazoles  

E-Print Network (OSTI)

When a family of non symmetrical heterocycled compounds is investigated, a variety of mesophases can be observed with rather different features. Here we report the behaviour of seven different members among a family of such materials, that consists of mesomorphic oxadiazole compounds. In two of these compounds, the optical microscope investigation shows very interesting behaviours. In their smectic phases, fan-shaped and toric textures, sometimes with periodic instability, are observed. Moreover, the nematic phase displays a texture transition. Texture transitions have been previously observed only inside the nematic phase of some compounds belonging to the families of the oxybenzoic and cyclohexane acids. In these two oxadiazole compounds we can observe what we define as a "toric nematic phase", heating the samples from the smectic phase. The toric nematic texture disappears as the sample is further heated, changing into a smooth texture.

A. Sparavigna; A. Mello; B. Montrucchio

2007-04-11T23:59:59.000Z

364

Advanced Combustion Diagnostics and Control for Furnaces, Fired Heaters and Boilers  

SciTech Connect

The objective of this project was to develop and apply enabling tools and methods towards advanced combustion diagnostics and control of fired-equipment in large-scale petrochemical manufacturing. There are a number of technology gaps and opportunities for combustion optimization, including technologies involving advanced in-situ measurements, modeling, and thermal imaging. These technologies intersect most of manufacturing and energy systems within the chemical industry. This project leveraged the success of a previous DOE funded project led by Dow, where we co-developed an in-situ tunable diode laser (TDL) analyzer platform (with Analytical Specialties Inc, now owned by Yokogawa Electric Corp.). The TDL platform has been tested and proven in a number of combustion processes within Dow and outside of Dow. The primary focus of this project was on combustion diagnostics and control applied towards furnaces, fired heaters and boilers. Special emphasis was placed on the development and application of in-situ measurements for O2, CO and methane since these combustion gases are key variables in optimizing and controlling combustion processes safely. Current best practice in the industry relies on measurements that suffer from serious performance gaps such as limited sampling volume (point measurements), poor precision and accuracy, and poor reliability. Phase I of the project addressed these gaps by adding improved measurement capabilities such as CO and methane (ppm analysis at combustion zone temperatures) as well as improved optics to maintain alignment over path lengths up to 30 meters. Proof-of-concept was demonstrated on a modern olefins furnace located at Dow Chemical's facility in Freeport TX where the improved measurements were compared side-by-side to accepted best practice techniques (zirconium oxide and catalytic bead or thick film sensors). After developing and installing the improved combustion measurements (O2, CO, and methane), we also demonstrated the ability to improve control of an olefins furnace (via CO-trim) that resulted in significant energy savings and lower emissions such as NOx and other greenhouse gases. The cost to retrofit measurements on an existing olefins furnace was found to be very attractive, with an estimated payback achieved in 4 months or less.

Tate, J. D.; Le, Linh D.; Knittel,Trevor; Cowie, Alan

2010-03-20T23:59:59.000Z

365

Advanced Combustion Diagnostics and Control for Furnaces, Fired Heaters and Boilers  

SciTech Connect

The objective of this project was to develop and apply enabling tools and methods towards advanced combustion diagnostics and control of fired-equipment in large-scale petrochemical manufacturing. There are a number of technology gaps and opportunities for combustion optimization, including technologies involving advanced in-situ measurements, modeling, and thermal imaging. These technologies intersect most of manufacturing and energy systems within the chemical industry. This project leveraged the success of a previous DOE funded project led by Dow, where we co-developed an in-situ tunable diode laser (TDL) analyzer platform (with Analytical Specialties Inc, now owned by Yokogawa Electric Corp.). The TDL platform has been tested and proven in a number of combustion processes within Dow and outside of Dow. The primary focus of this project was on combustion diagnostics and control applied towards furnaces, fired heaters and boilers. Special emphasis was placed on the development and application of in-situ measurements for O2, CO and methane since these combustion gases are key variables in optimizing and controlling combustion processes safely. Current best practice in the industry relies on measurements that suffer from serious performance gaps such as limited sampling volume (point measurements), poor precision and accuracy, and poor reliability. Phase I of the project addressed these gaps by adding improved measurement capabilities such as CO and methane (ppm analysis at combustion zone temperatures) as well as improved optics to maintain alignment over path lengths up to 30 meters. Proof-of-concept was demonstrated on a modern olefins furnace located at Dow Chemical's facility in Freeport TX where the improved measurements were compared side-by-side to accepted best practice techniques (zirconium oxide and catalytic bead or thick film sensors). After developing and installing the improved combustion measurements (O2, CO, and methane), we also demonstrated the ability to improve control of an olefins furnace (via CO-trim) that resulted in significant energy savings and lower emissions such as NOx and other greenhouse gases. The cost to retrofit measurements on an existing olefins furnace was found to be very attractive, with an estimated payback achieved in 4 months or less.

Tate, J. D.; Le, Linh D.; Knittel,Trevor; Cowie, Alan

2010-03-20T23:59:59.000Z

366

Microsoft Word - ACEEE_08_FurnaceBlower_Paper484_2008-05-16_...  

NLE Websites -- All DOE Office Websites (Extended Search)

widely and that the static pressure used in the test procedure as well as the calculated fan power is not representative of actual field installations. Therefore, accurate...

367

Device for use in a furnace exhaust stream for thermoelectric generation  

SciTech Connect

A device for generating voltage or electrical current includes an inner elongated member mounted in an outer elongated member, and a plurality of thermoelectric modules mounted in the space between the inner and the outer members. The outer and/or inner elongated members each include a plurality of passages to move a temperature altering medium through the members so that the device can be used in high temperature environments, e.g. the exhaust system of an oxygen fired glass melting furnace. The modules are designed to include a biasing member and/or other arrangements to compensate for differences in thermal expansion between the first and the second members. In this manner, the modules remain in contact with the first and second members. The voltage generated by the modules can be used to power electrical loads.

Polcyn, Adam D.

2013-06-11T23:59:59.000Z

368

Optical processing furnace with quartz muffle and diffuser plate  

DOE Patents (OSTI)

An optical furnace for annealing a process wafer is disclosed comprising a source of optical energy, a quartz muffle having a door to hold the wafer for processing, and a quartz diffuser plate to diffuse the light impinging on the quartz muffle; a feedback system with a light sensor located in the wall of the muffle is also provided for controlling the source of optical energy. 5 figs.

Sopori, B.L.

1996-11-19T23:59:59.000Z

369

Furnace control apparatus using polarizing interferometer  

DOE Patents (OSTI)

A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading.

Schultz, Thomas J. (Maumee, OH); Kotidis, Petros A. (Waban, MA); Woodroffe, Jaime A. (North Reading, MA); Rostler, Peter S. (Newton, MA)

1995-01-01T23:59:59.000Z

370

Furnace control apparatus using polarizing interferometer  

DOE Patents (OSTI)

A system for nondestructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading. 38 figures.

Schultz, T.J.; Kotidis, P.A.; Woodroffe, J.A.; Rostler, P.S.

1995-03-28T23:59:59.000Z

371

Integrated emissions control system for residential CWS furnace. Final report, September 20, 1989--March 20, 1993  

SciTech Connect

One of the major obstacles to the successful development and commercialization of a coal-fired residential furnace is the need for a reliable, cost-effective emission control system. Tecogen is developing a novel, integrated control system to control NO{sub x}SO{sub 2}, and particulate emissions. At the heart of this system is a unique emissions control reactor for the control of SO{sub 2}. This reactor provides high sorbent particle residence time within the reactor while doing so in a very compact geometry. Final cleanup of any fine particulates exiting the reactor including respirable-sized particulates, is completed with the use of high efficiency bag filters. Under a previous contract with PETC (Contract No. DE-AC22-87PC79650), Tecogen developed a residential-scale Coal Water Slurry (CWS) combustor to control NO{sub x}emission. This combustor makes use of centrifugal forces, set up by a predominantly tangential flow field, to separate and confine larger unburned coal particles in the furnace upper chamber. Various partitions are used to retard the axial, downward flow of these particles, and thus maximize their residence time in the hottest section of the combustor. By operating this combustor under staged conditions, the local stoichiometry in the primary zone can be controlled in such a manner as to minimize NO{sub x} emission.

Breault, R.W.; McLarnon, C.

1993-03-01T23:59:59.000Z

372

Property:Building/SPBreakdownOfElctrcityUseKwhM2Fans | Open Energy  

Open Energy Info (EERE)

Fans Fans Jump to: navigation, search This is a property of type String. Fans Pages using the property "Building/SPBreakdownOfElctrcityUseKwhM2Fans" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 5.21311928139 + Sweden Building 05K0002 + 18.5995610535 + Sweden Building 05K0003 + 20.3514016294 + Sweden Building 05K0004 + 8.08671679198 + Sweden Building 05K0005 + 16.0166245259 + Sweden Building 05K0006 + 10.358795651 + Sweden Building 05K0007 + 8.3953561818 + Sweden Building 05K0008 + 9.28527472527 + Sweden Building 05K0009 + 12.8398873749 + Sweden Building 05K0010 + 20.0966982674 + Sweden Building 05K0011 + 6.90408963585 + Sweden Building 05K0012 + 8.60719192175 + Sweden Building 05K0013 + 16.7539365907 +

373

Property:Building/SPBreakdownOfElctrcityUseKwhM2CirculationFans | Open  

Open Energy Info (EERE)

CirculationFans CirculationFans Jump to: navigation, search This is a property of type String. Circulation fans Pages using the property "Building/SPBreakdownOfElctrcityUseKwhM2CirculationFans" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 13.3422495258 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 2.80646609789 + Sweden Building 05K0004 + 8.95823904901 + Sweden Building 05K0005 + 5.55016340076 + Sweden Building 05K0006 + 6.81308969891 + Sweden Building 05K0007 + 2.02541916787 + Sweden Building 05K0008 + 0.625641025641 + Sweden Building 05K0009 + 7.59721281624 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.757191316527 + Sweden Building 05K0012 + 6.04077487892 + Sweden Building 05K0013 + 0.767224182906 +

374

Microsoft Word - ACEEE_06_FurnaceBlower_Paper413_lbl.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

BPM Motors in Residential Gas Furnaces: What are the Savings? BPM Motors in Residential Gas Furnaces: What are the Savings? James Lutz, Victor Franco, Alex Lekov, and Gabrielle Wong-Parodi Lawrence Berkeley National Laboratory, Berkeley, California ABSTRACT Residential gas furnaces contain blowers to distribute warm air. Currently, furnace blowers use either a Permanent Split Capacitor (PSC) or a Brushless Permanent Magnet (BPM) motor. Blowers account for the majority of furnace electricity consumption. Therefore, accurate determination of the blower electricity consumption is important for understanding electricity consumption of furnaces. The electricity consumption of blower motors depends on the static pressure across the blower. This paper examines both types of blower motors in non-condensing non-weatherized

375

Quiet Computing with BSD: Fan control with sysctl hw.sensors.  

E-Print Network (OSTI)

We will discuss the topic of fan control and introduce sysctl-based interfacing with the fancontrolling capabilities of microprocessor system hardware monitors on OpenBSD. The discussed prototype implementation reduces the noise and power-consumption characteristics in fans of personal computers, especially of those PCs that are designed from off-the-shelf components. We further argue that our prototype is easier, robuster and more intuitive to use compared to solutions available elsewhere. 1.

Constantine A. Murenin; Raouf Boutaba

2010-01-01T23:59:59.000Z

376

Root-Cause Failure Analysis: Fossil-Fired Power Plant Draft Fans  

Science Conference Proceedings (OSTI)

This report describes the collection and analysis of fan-related outage data for 61 large fossil fuel steam power plants. The outage causes are ranked in terms of their impact on production, and a systematic search for generic root causes is described. Recommendations are made for short-term corrective measures and for longer-term research efforts to significantly improve fan system reliability.

1983-07-01T23:59:59.000Z

377

Application of Adjustable Speed Drives to Induced Draft Fans at NSP-SHERCO Power Plant  

Science Conference Proceedings (OSTI)

Induced draft (ID) fans on power boilers control the flow of flue gasses from the boiler to the atmosphere-and their smooth operation is essential to the efficient operation of any generating station. Adjustable speed drive (ASD) control of an electric motor ID fan can provide significant energy savings while increasing the accuracy and precision of boiler draft and fuel gas flow regulation. This study quantified the energy savings and identified other benefits of applying ASDs to four existing electric-...

1999-10-19T23:59:59.000Z

378

Generation of fan-states of radiation field in a cavity  

E-Print Network (OSTI)

A scheme of generating recently introduced fan-states | \\alpha, 2k>_F (\\alpha is complex, k=1,2,3,...) is proposed basing on a \\Lambda-type atom-cavity field interaction. We show that with suitable atomic preparations and measurements a passage of a sequence of N atoms through a cavity may transform an initial field coherent state | \\alpha> to a fan-state | \\alpha, 2k>_F with k=2^{N-2}.

Nguyen Ba An; Truong Minh Duc

2001-11-30T23:59:59.000Z

379

Precision control of high temperature furnaces using an auxiliary power supply and charged particle current flow  

DOE Patents (OSTI)

Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved. 5 figs.

Pollock, G.G.

1997-01-28T23:59:59.000Z

380

Precision control of high temperature furnaces using an auxiliary power supply and charged practice current flow  

DOE Patents (OSTI)

Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved.

Pollock, George G. (San Ramon, CA)

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "includes furnace fans" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Applicability of fan spray nozzles to stripping insoluble gases from viscous liquids  

SciTech Connect

Fan spray nozzle stripping appears to be a practical technique for separating dilute volatile solutes from nonvolatile solvents. In particular this technique can be used to strip molecular tritium and tritium fluoride at extremely small concentration (in the parts per million range) from molten salts used as blanket materials in a fusion reactor. Under adjusted operating conditions of the fan spray as it leaves the nozzle, a high percentage of the theoretically maximum achievable stripping would take place from the expanding sheet of the fan spray as it leaves the nozzle and before it breaks up. Although the only available experimental data are for aqueous solutions, a new theoretical analysis of the fan spray sheet demonstrates the applicability of this technique to nonaqueous liquids. The equation derived from this analysis relates the theoretically achievable mass transfer efficiency to the properties of the liquid flowing through the fan spray nozzle and to the operating conditions of the nozzle. Any fluid with viscosity higher than or equal to that of water would be expected to follow this equation as long as a fan-shaped sheet is formed under the operating conditions of the nozzle.

Tseng, H.H.; Johnson, E.F.

1983-08-01T23:59:59.000Z

382

The noise power spectrum in CT with direct fan beam reconstruction  

Science Conference Proceedings (OSTI)

The noise power spectrum (NPS) is a useful metric for understanding the noise content in images. To examine some unique properties of the NPS of fan beam CT, the authors derived an analytical expression for the NPS of fan beam CT and validated it with computer simulations. The nonstationary noise behavior of fan beam CT was examined by analyzing local regions and the entire field-of-view (FOV). This was performed for cases with uniform as well as nonuniform noise across the detector cells and across views. The simulated NPS from the entire FOV and local regions showed good agreement with the analytically derived NPS. The analysis shows that whereas the NPS of a large FOV in parallel beam CT (using a ramp filter) is proportional to frequency, the NPS with direct fan beam FBP reconstruction shows a high frequency roll off. Even in small regions, the fan beam NPS can show a sharp transition (discontinuity) at high frequencies. These effects are due to the variable magnification and therefore are more pronounced as the fan angle increases. For cases with nonuniform noise, the NPS can show the directional dependence and additional effects.

Baek, Jongduk; Pelc, Norbert J. [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Department of Radiology, Stanford University, Stanford, California 94305 (United States); Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States) and Department of Bioengineering, Stanford University, Stanford, California 94305 (United States)

2010-05-15T23:59:59.000Z

383

Channel complex architecture of fine-grained submarine fans at the base-of-slope  

Science Conference Proceedings (OSTI)

The fan-valley or upper fan channel connects the submarine canyon on the outer shelf-upper slope to the basin proper. It is an erosionally-formed channel that is a conduit for sediment transported to the basin. The valley may widen where it enters the base-of-slope area. Most of the density flows are much smaller than the initial flow and therefore will not occupy the entire width of the upper fan channel. Smaller individual channels will be constructed resulting in a massive fill comprised of amalgamated sandstones. Sand-rich levees and overbank deposits flank each channel. Channel switching may take place toward locations with a slightly steeper gradient. These switches most likely result from irregular flow successions and different flow sizes. Erosion between successive channels is common, removing part of the channel fill and levee-overbank deposits. This results in a disorderly distribution of low-permeability barriers creating local obstruction to connectivity. A study of the sedimentological architecture of the updip mid-fan channel complex was conducted on cliff sections of the Permian Tanqua Karoo subbasin in South Africa, and in Big Rock Quarry in North Little Rock, Arkansas. Seismic records of the base-of-slope of the Mississippi Fan show a widening pattern, and of the Bryant Canyon Fan Complex south of the Sigsbee Escarpment the channel complexity. Integration of seismic data in outcrop observations improves our understanding of the complexity of many good reservoir sands, typically overlain by slope shales.

Bouma, A.H. [Louisiana State Univ., Baton Rouge, LA (United States); Gwang, H. [Kunsan National Univ. (Korea, Democratic People`s Republic of); Van Antwerepen, O. [Univ. of Port Elizabeth (South Africa)] [and others

1995-10-01T23:59:59.000Z

384

Limit processes for TASEP with shocks and rarefaction fans  

E-Print Network (OSTI)

We consider the totally asymmetric simple exclusion process (TASEP) with two-sided Bernoulli initial condition, i.e., with left density rho_- and right density rho_+. We consider the associated height function, whose discrete gradient is given by the particle occurrences. Macroscopically one has a deterministic limit shape with a shock or a rarefaction fan depending on the values of rho_{+/-}. We characterize the large time scaling limit of the fluctuations as a function of the densities rho_{+/-} and of the different macroscopic regions. Moreover, using a slow decorrelation phenomena, the results are extended from fixed time to the whole space-time, except along the some directions (the characteristic solutions of the related Burgers equation) where the problem is still open. On the way to proving the results for TASEP, we obtain the limit processes for the fluctuations in a class of corner growth processes with external sources, of equivalently for the last passage time in a directed percolation model with two-sided boundary conditions. Additionally, we provide analogous results for eigenvalues of perturbed complex Wishart (sample covariance) matrices.

Ivan Corwin; Patrik L. Ferrari; Sandrine Péché

2010-02-18T23:59:59.000Z

385

Rohm and Haas: Furnace Replacement Project Saves Energy and Improves Production at a Chemical Plant  

Science Conference Proceedings (OSTI)

This DOE Industrial Technologies Program spotlight describes how Rohm and Haas's Deer Park, Texas, chemical plant reduced natural gas usage and energy costs by replacing inefficient furnace equipment.

Not Available

2006-02-01T23:59:59.000Z

386

Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S.  

E-Print Network (OSTI)

offsets the sizable electricity savings. References TitleElectricity and Natural Gas Efficiency Improvements forfueled by natural gas. Electricity consumption by a furnace

Lekov, Alex; Franco, Victor; Meyers, Steve; McMahon, James E.; McNeil, Michael; Lutz, Jim

2006-01-01T23:59:59.000Z

387

Economics of residential gas furnaces and water heaters in United States new construction market  

E-Print Network (OSTI)

Experiences of residential consumers and utilities. OakStar (2008). Energy Star Residential Water Heaters: Finalefficiency improvements for residential gas furnaces in the

Lekov, Alex B.

2010-01-01T23:59:59.000Z

388

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network (OSTI)

appliance_standards/residential/water_ pool_heaters_prelim_Star (2008). Energy star residential water heaters: Finalefficiency improvements for residential gas furnaces in the

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

389

Modeling energy consumption of residential furnaces and boilers in U.S. homes  

SciTech Connect

In 2001, DOE initiated a rulemaking process to consider whether to amend the existing energy efficiency standards for furnaces and boilers. A key factor in DOE's consideration of new standards is their cost-effectiveness to consumers. Determining cost-effectiveness requires an appropriate comparison of the additional first cost of energy efficiency design options with the savings in operating costs. This report describes calculation of equipment energy consumption (fuel and electricity) based on estimated conditions in a sample of homes that are representative of expected furnace and boiler installations. To represent actual houses with furnaces and boilers in the United States, we used a set of houses from the Residential Energy Consumption Survey of 1997 conducted by the Energy Information Administration. Our calculation methodology estimates the energy consumption of alternative (more-efficient) furnaces, if they were to be used in each house in place of the existing equipment. We developed the method of calculation described in this report for non-weatherized gas furnaces. We generalized the energy consumption calculation for this product class to the other furnace product classes. Fuel consumption calculations for boilers are similar to those for the other furnace product classes. The electricity calculations for boilers are simpler than for furnaces, because boilers do not provide thermal distribution for space cooling as furnaces often do.

Lutz, James; Dunham-Whitehead, Camilla; Lekov, Alex; McMahon, James

2004-02-01T23:59:59.000Z

390

Mathematical modelling of the flow and combustion of pulverized coal injected in ironmaking blast furnace.  

E-Print Network (OSTI)

??Pulverized coal injection (PCI) technology is widely practised in blast furnace ironmaking due to economic, operational and environmental benefits. High burnout of pulverized coal in… (more)

Shen, Yansong

2008-01-01T23:59:59.000Z

391

A 3D Mathematical Model of a Horizontal Anode Baking Furnace as ...  

Science Conference Proceedings (OSTI)

... phenomena occurring in the furnace and was validated using plant data. ... of the Composite Parts by Arranging Ply Lay-up for Even Resin Distribution and ...

392

Modeling energy consumption of residential furnaces and boilers in U.S. homes  

SciTech Connect

In 2001, DOE initiated a rulemaking process to consider whether to amend the existing energy efficiency standards for furnaces and boilers. A key factor in DOE's consideration of new standards is their cost-effectiveness to consumers. Determining cost-effectiveness requires an appropriate comparison of the additional first cost of energy efficiency design options with the savings in operating costs. This report describes calculation of equipment energy consumption (fuel and electricity) based on estimated conditions in a sample of homes that are representative of expected furnace and boiler installations. To represent actual houses with furnaces and boilers in the United States, we used a set of houses from the Residential Energy Consumption Survey of 1997 conducted by the Energy Information Administration. Our calculation methodology estimates the energy consumption of alternative (more-efficient) furnaces, if they were to be used in each house in place of the existing equipment. We developed the method of calculation described in this report for non-weatherized gas furnaces. We generalized the energy consumption calculation for this product class to the other furnace product classes. Fuel consumption calculations for boilers are similar to those for the other furnace product classes. The electricity calculations for boilers are simpler than for furnaces, because boilers do not provide thermal distribution for space cooling as furnaces often do.

Lutz, James; Dunham-Whitehead, Camilla; Lekov, Alex; McMahon, James

2004-02-01T23:59:59.000Z

393

Theoretical and experimental foundations for preparing coke for blast-furnace smelting  

SciTech Connect

This article examines the preparation of coke for blast-furnace smelting by a method that most fully meets the requirements of blast-furnace technology: screening of the -36 mm fraction, the separation of nut coke of the 15-36 mm fraction, and its charging into the furnace in a mixture with the iron-ore-bearing charge components. An analysis is made of trial use of coke of the Premium class on blast furnace No. 5 at the Enakievo Metallurgical Plant. Use of this coke makes it possible to reduce the consumption of skip coke by 3.2-4.1%.

A.L. Podkorytov; A.M. Kuznetsov; E.N. Dymchenko; V.P. Padalka; S.L. Yaroshevskii; A.V. Kuzin [Enakievo Metallurgical Plant, Enakievo (Ukraine)

2009-05-15T23:59:59.000Z

394

Co-gasification of biomass with coal and oil sands coke in a drop tube furnace.  

E-Print Network (OSTI)

??Chars were obtained from individual fuels and blends with different blend ratios of coal, coke and biomass in Drop Tube Furnace at different temperatures. Based… (more)

Gao, Chen

2010-01-01T23:59:59.000Z

395

Post combustion trials at Dofasco`s KOBM furnace  

DOE Green Energy (OSTI)

Post combustion trials were conducted at Dofasco`s 300 tonne KOBM furnace as part of the AISI Direct Steelmaking Program. The purpose of the project work was to measure the post combustion ratio (PCR) and heat transfer efficiency (HTE) of the post combustion reaction in a full size steelmaking vessel. A method of calculating PCR and HTE using off gas analysis and gas temperature was developed. The PCR and HTE were determined under normal operating conditions. Trials assessed the effect of lance height, vessel volume, foaming slag and pellet additions on PCR and HTE.

Farrand, B.L.; Wood, J.E.; Goetz, F.J.

1992-12-31T23:59:59.000Z

396

Variation in coke properties within the blast-furnace shop  

SciTech Connect

In active production at OAO Magnitogorskii Metallurgicheskii Kombinat (MMK), samples of melt materials were taken during shutdown and during planned repairs at furnaces 1 and 8. In particular, coke was taken from the tuyere zone at different distances from the tuyere tip. The mass of the point samples was 2-15 kg, depending on the sampling zone. The material extracted from each zone underwent magnetic separation and screening by size class. The resulting coke sample was averaged out and divided into parts: one for determining the granulometric composition and mechanical strength; and the other for technical analysis and determination of the physicochemical properties of the coke.

E.N. Stepanov; I.I. Mel'nikov; V.P. Gridasov; A.A. Stepanova [OAO Magnitogorskii Metallurgicheskii Kombinat (MMK), Magnitogorsk, (Russian Federation)

2009-04-15T23:59:59.000Z

397

Self-powered automatic secondary air controllers for woodstoves and small furnaces  

DOE Patents (OSTI)

A controller for automatically regulating the supply of secondary combustion air to woodstoves and small furnaces. The controller includes a movable air valve for controlling the amount of secondary air admitted into the chamber. A self powered means monitors the concentration of combustible gases and vapors and actuates the movable air valve to increase the supply of secondary air in response to increasing concentrations of the combustible gases and vapors. The self-powered means can be two fluid filled sensor bulbs, one of which has a coating of a combustion catalyst. Alternatively, the self powered means can be two metallic stripes laminated together, one of which is coated with a combustion catalyst, and when heated, causes the air valve to actuate.

Siemer, Darryl D. (Idaho Falls, ID)

1991-01-01T23:59:59.000Z

398

TF30 third-stage composite fan blade service program. Final technical report 1 Jul 1970--31 Dec 1977. [BORSIC/aluminum  

SciTech Connect

The successful application of advanced composites as the structural material for aircraft jet engine rotating parts will significantly reduce engine weight and improve engine performance characteristics. To solve the component design, manufacturing, and quality assurance problems associated with such an application, a program was conducted to design and develop BORSIC/Aluminum third-stage fan blades, which would operate satisfactorily in the TF30-P-7 or P-9 engine models. Program objectives successfully were to improve the existing design of a composite material fan blade, manufacture the blade, and demonstrate its quality by bench and engine environment testing. The scope of the program required to meet these objectives included establishing design and fabrication procedures, developing special tooling, evaluating current nondestructive inspection techniques and adapting these techniques to composite materials, establishing quality assurance criteria, and developing comprehensive bench and engine environment test programs to adequately demonstrate fan-blade quality. During the program, several sets of BORSIC/Aluminum blades weighing 40 percent less than comparable TF30 bill of material titanium blades were successfully produced and tested. On the basis of extensive test program, and with the establishment of quality control criteria and repair procedures, the blades were deemed acceptable for evaluation in a flight program. During the total program, 246 engine-configuration blades were manufactured and non-destructively inspected; with an overall acceptance rate of 92.3%.

Randall, D.G.

1978-05-15T23:59:59.000Z

399

Modeling of ECM Controlled Series Fan-powered VAV Terminal Units  

E-Print Network (OSTI)

Semi-empirical models for series fan-powered variable air volume terminal units (FPTUs) were developed based on models of the primary, plenum, fan airflow and the fan power consumption. The experimental setups and test procedures were developed respectively for primary, plenum and fan airflow to test each component of the FPTUs at typical design pressures and airflows. Two sizes of the terminal units from three manufacturers were used in this study. All of the FPTUs were equipped with electronically commutated motors (ECM). Data provided by the models were compared against the data from previous experiments to prove the models’ validity. Regression modeling was performed by using SigmaStat. The model of primary airflow had an R2 above 0.948 for all the terminal units evaluated while the plenum airflow model had an R2 above 0.99. For all the terminal units, the R2 of the fan airflow model was ranged from 0.973 to 0.998. Except for one fan, the fan power consumption model was able to characterize the power performance and had an R2 above 0.986. By combining the airflow and power models, the model for series FPTU was developed. Verification was made to prove the FPTU model’s validity by comparing the measured and predicted data of airflow and power consumption. Correction factors were used in the primary airflow model to compensate for the difference caused by large measurement errors and the system effects. The predicted values were consistent with measurements and no offset was needed in the primary airflow model. Generally, the newly established model was able to describe the airflow performance as well as power consumption of series FPTUs without adding complexity.

Yin, Peng

2010-08-01T23:59:59.000Z

400

Characteristics of some submarine fan channels, Permian Ecca Group, South Africa  

Science Conference Proceedings (OSTI)

The vary well exposed submarine fan complex in the southwestern part of the Karoo basin permits close examination of channel-fills and in places their associated overbank deposits. The complex comprises five arenaceous fan systems some of which attain 60 m in thickness. The fans are vertically stacked and separated by basinal shale deposits; each system with its own direction of growth. The association of channelized sandstone bodies and thin-bedded sandstone and shale packages in an updip position from predominantly stacked lobe deposits suggest preservation of middle fan settings. A 500 m wide, 20 m thick channel-fill consisting massive amalgamated sandstone beds occupying the channel thalweg occurs in a setting dominated by thin-bedded, ripple-laminated sandstone and shale. Gradual thinning of the channel-fill beds toward the channel edges, lack of internal lateral accretion, and a high width to depth ratio suggests a low sinuous to straight channel. The channel-fill is capped by an abandonment facies characterized by ripple-laminated sandstone and shale. Stacked, laterally offset channel-fill deposits with highly erosional contacts and typical well-bedded overbank deposits form channel-overbank complexes and characterize the mid-fan region of the uppermost fan system. Palaeocurrent directions and gradual diminishing of bed-thickness away from the generally massively bedded, amalgamated channel-fill sandstones confirm a simultaneous channel/overbank origin for these deposits. Levee morphology has not been recognized. Both examples of channel-fills cited reveal part of the complexity of the channelized portions of submarine fans and hence the implications thereof in exploring for hydrocarbon reservoirs.

Bouma, A.H. (Louisiana State Univ., Baton Rouge (United States)); Dev Wickens, H. (Soekor, Parow (South Africa))

1991-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "includes furnace fans" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Collection and conversion of silicon furnace waste gas into higher value products: Phase 3, 6 MW pilot plant dc closed furnace technology. Final report  

SciTech Connect

The construction and operation of a 6 MW, closed dc furnace for smelting silicon was the primary focus of Phase 3. A 6 MW, dc closed furnace pilot plant was built in East Selkirk, Manitoba, Canada. The furnace is equipped with world`s most modern automatic control system used to control and monitor the process variables and operational data. This control system is suitable for commercial applications and could be used with either closed or open dc furnaces for smelting silicon or ferrosilicon. The construction was started in September 1990, and the facility was operational within 18 months. Following successful commissioning of the pilot plant in June 1992, twelve smelting test campaigns were conducted through November 1994.

Dosaj, V.D.

1995-01-01T23:59:59.000Z

402

Evaluation of Possible Surrogates for Validation of the Oxidation Furnace for the Plutonium Disposition Project  

Science Conference Proceedings (OSTI)

The Plutonium Disposition project (PuD) is considering an alternative furnace design for direct metal oxidation (DMO) of plutonium metal to use as a feed for potential disposition routes. The proposed design will use a retort to oxidize the feed at temperatures up to 500 C. The atmosphere will be controlled using a metered mixture of oxygen, helium and argon to control the oxidation at approximately 400 torr. Since plutonium melts at 664 C, and may potentially react with retort material to form a lower melting point eutectic, the oxidation process will be controlled by metering the flow of oxygen to ensure that the bulk temperature of the material does not exceed this temperature. A batch processing time of <24 hours is desirable to meet anticipated furnace throughput requirements. The design project includes demonstration of concept in a small-scale demonstration test (i.e., small scale) and validation of design in a full-scale test. These tests are recommended to be performed using Pu surrogates due to challenges in consideration of the nature of plutonium and operational constraints required when handling large quantities of accountable material. The potential for spreading contamination and exposing workers to harmful levels of cumulative radioactive dose are motivation to utilize non-radioactive surrogates. Once the design is demonstrated and optimized, implementation would take place in a facility designed to accommodate these constraints. Until then, the use of surrogates would be a safer, less expensive option for the validation phase of the project. This report examines the potential for use of surrogates in the demonstration and validation of the DMO furnace for PuD. This report provides a compilation of the technical information and process requirements for the conversion of plutonium metal to oxide by burning in dry environments. Several potential surrogates were evaluated by various criteria in order to select a suitable candidate for large scale demonstration. First, the structure of the plutonium metal/oxide interface was compared to potential surrogates. Second the data for plutonium oxidation kinetics were reviewed and rates for oxidation were compared with surrogates. The criteria used as a basis for recommendation was selected in order to provide a reasonable oxidation rate during the validation phase. Several reference documents were reviewed and used to compile the information in this report. Since oxidation of large monolithic pieces of plutonium in 75% oxygen is the preferable oxidizing atmosphere for the intended process, this report does not focus on the oxidation of powders, but focuses instead on larger samples in flowing gas.

Duncan, A.

2007-12-31T23:59:59.000Z

403

Course Flier  

Science Conference Proceedings (OSTI)

combustion air, reverberatory furnace design, metal circulation, furnace technology, fundamentals of fans and blowers, reduction of melt loss, refractory selection ...

404

Self-powered automatic secondary air controllers for woodstoves and small furnaces  

DOE Patents (OSTI)

This invention relates to the regulation of combustion in woodstoves, small furnaces and the like, so as to produce efficient combustion, while maximizing the possible heat output and minimizing air pollution. More specifically, the invention relates to controllers for automatically regulating and the supply of secondary combustion air to woodstoves, small furnaces or the like. 9 figs.

Siemer, D.D.

1989-03-15T23:59:59.000Z

405

Field Study of Exhaust Fans for Mitigating Indoor Air Quality Problems: Final Report to Bonneville Power Administration  

E-Print Network (OSTI)

Fans Air-to-Air Heat Exchangers. . . . . . . . . . . . . . .expected from heat exchangers Ventilation expected fromventilation supplied by heat exchanger and exhaust flow. .

Grimsrud, David T.

2009-01-01T23:59:59.000Z

406

LETTER REPORT INDEPENDENT VERIFICATION OF THE HIGH FLUX BEAM REACTOR DECOMMISSIONING PROJECT FAN HOUSE, BUILDING 704 BNL  

Science Conference Proceedings (OSTI)

5098-LR-01-0 -LETTER REPORT INDEPENDENT VERIFICATION OF THE HIGH FLUX BEAM REACTOR DECOMMISSIONING PROJECT FAN HOUSE, BUILDING 704 BROOKHAVEN NATIONAL LABORATORY

P.C. Weaver

2010-10-22T23:59:59.000Z

407

Caratterizzazione del rumore generato dal fan di motori aeronautici e Metodo inverso per la ricostruzione della sorgente.  

E-Print Network (OSTI)

??Il seguente lavoro tratta una procedura per la ricostruzione della sorgente acustica del fan di un motore turbofan per uso aeronautico mediante metodo inverso. Tale… (more)

BIANCHI, FRANCESCO

2009-01-01T23:59:59.000Z

408

What Steps Do You Take to Maintain Your Furnace? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Steps Do You Take to Maintain Your Furnace? Steps Do You Take to Maintain Your Furnace? What Steps Do You Take to Maintain Your Furnace? January 7, 2010 - 7:30am Addthis This week, Chris told you about his plans to maintain his furnace to keep it running efficiently. Proper maintenance is key to ensuring your heating and cooling systems are in working order. No one wants to wake up on the coldest day of the year to find that they have no heat! What steps do you take to maintain your furnace? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. E-mail your responses to the Energy Saver team at consumer.webmaster@nrel.gov. Addthis Related Articles Brrrrr. It's Cold In There! Saving Energy and Money Starts at Home 31,000 Homes Weatherized in June

409

Minimization of Blast furnace Fuel Rate by Optimizing Burden and Gas Distribution  

Science Conference Proceedings (OSTI)

The goal of the research is to improve the competitive edge of steel mills by using the advanced CFD technology to optimize the gas and burden distributions inside a blast furnace for achieving the best gas utilization. A state-of-the-art 3-D CFD model has been developed for simulating the gas distribution inside a blast furnace at given burden conditions, burden distribution and blast parameters. The comprehensive 3-D CFD model has been validated by plant measurement data from an actual blast furnace. Validation of the sub-models is also achieved. The user friendly software package named Blast Furnace Shaft Simulator (BFSS) has been developed to simulate the blast furnace shaft process. The research has significant benefits to the steel industry with high productivity, low energy consumption, and improved environment.

Dr. Chenn Zhou

2012-08-15T23:59:59.000Z

410

Adaptation to space applications of a 2000 c furnace with oxidizing atmosphere  

SciTech Connect

The possibility of using a low weight low power consumption furnace with oxidizing atmosphere at 2000 C for space applications is discussed. The main heating element is made of zirconium oxide with a platinum preheating system. The structure and stabilization of zirconium oxide are detailed together with its application to the space situation. The static and dynamic regimes are discussed with regard to measurement of the resistivity as a function of temperature and dynamic model. The temperature distribution in the furnace and in a main heating element were studied in relation to thermal insulation and weight budget. A model is proposed for optimal control and thermostat using analog simulation. The final concept requires 350 W for an isothermal furnace of 20 mm diameter weighing 3 kg. The cases of temperature gradient furnaces and of universal furnaces are reviewed. (GRA)

1975-01-01T23:59:59.000Z

411

Stay Cool for Less Money with a Ceiling Fan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stay Cool for Less Money with a Ceiling Fan Stay Cool for Less Money with a Ceiling Fan Stay Cool for Less Money with a Ceiling Fan May 12, 2009 - 5:00am Addthis Allison Casey Senior Communicator, NREL After a few late snowstorms here in Colorado, I am more than ready to turn off the heat and enjoy some warm spring weather. We haven't had any heat waves here yet, but many of you have already been trying to stay cool; our friends in Washington, D.C. were sweltering (by comparison) in 90+°F weather just a couple short weeks ago! Whether you're still anticipating snow or have broken out the sandals and tank tops, you may be starting to think about keeping your summer cooling costs down. One easy way to keep cool while saving money is using a ceiling fan. Did you know that a ceiling fan could allow you to raise the thermostat

412

SYSTEM FOR DETECTION AND CONTROL OF DEPOSITION IN KRAFT CHEMICAL RECOVERY BOILERS AND MONITORING GLASS FURNACES  

SciTech Connect

Combustion Specialists, Inc. has just completed a project designed to develop the capability to monitor and control the formation of deposits on the outside of boiler tubes inside an operating kraft recovery furnace. This project, which was carried out in the period from April 1, 2001 to January 31, 2003, was funded by the Department of Energy's Inventions and Innovations program. The primary objectives of the project included the development and demonstration of the ability to produce clear images of deposits throughout the convective sections of operating recovery boilers using newly developed infrared imaging technology, to demonstrate the automated detection and quantification of these deposits using custom designed image processing software developed as part of the project, and to demonstrate the feasibility of all technical elements required for a commercial ''smart'' sootblowing control system based on direct feedback from automated imaging of deposits in real-time. All of the individual tasks have been completed and all objectives have been substantially achieved. Imaging of deposits throughout the convective sections of several recovery boilers has been demonstrated, a design for a combined sootblower/deposit inspection probe has been developed and a detailed heat transfer analysis carried out to demonstrate the feasibility of this design, an improved infrared imager which can be sufficiently miniaturized for this application has been identified, automated deposit detection software has been developed and demonstrated, a detailed design for all the necessary communications and control interfaces has been developed, and a test has been carried out in a glass furnace to demonstrate the applicability of the infrared imaging sensor in that environment. The project was completed on time and within the initial budget. A commercial partner has been identified and further federal funding will be sought to support a project to develop a commercial prototype sootblowing control system employing automated deposit imaging.

Dr. Peter Ariessohn

2003-04-15T23:59:59.000Z

413

Final report on the project entitled: Highly Preheated Combustion Air System with/without Oxygen Enrichment for Metal Processing Furnaces  

SciTech Connect

This work develops and demonstrates a laboratory-scale high temperature natural gas furnace that can operate with/without oxygen enrichment to significantly improve energy efficiency and reduce emissions. The laboratory-scale is 5ft in diameter & 8ft tall. This furnace was constructed and tested. This report demonstrates the efficiency and pollutant prevention capabilities of this test furnace. The project also developed optical detection technology to control the furnace output.

Arvind Atreya

2007-02-16T23:59:59.000Z

414

Sandjet- A New Alternative for Cleaning Furnace Tubes  

E-Print Network (OSTI)

Energy management in modern refineries is becoming more difficult as the real cost of in-house and purchased fuel escalates and the quality of feed stocks decreases. Furnace tube maintenance has been made more complex by the presence of not only coke but extensive inorganic deposits while the demands of efficient fuel utilization require superior results from decoking procedures. Union Carbide Industrial Services Co., (UCISCO), is continuing the development of its proprietary 'SANDJET' system that removes coke as well as other inorganic deposits efficiently and rapidly. The procedure features computerized job planning and control in order to assure accurate estimates of cost and the proper selection of cleaning parameters and materials. Energy saving benefits of the process have recently become obvious and case studies summarizing these results are discussed. A description of the newly developed job controls and a brief summary of recent experiences in the field will be described in this paper.

Pollock, C. B.

1981-01-01T23:59:59.000Z

415

Exergy-based analysis and efficiency evaluation for an aluminum melting furnace in a die-casting plant  

Science Conference Proceedings (OSTI)

The efficiency of a natural gas-fired aluminum melting furnace in a die-casting plant is examined using energy and exergy methods, to improve understanding of the burner system in the furnace and so that potential improvements can be identified. Such ... Keywords: aluminum, die-casting, efficiency, energy, exergy, melting furnace

Marc A. Rosen; Dennis L. Lee

2009-02-01T23:59:59.000Z

416

PCS Nitrogen: Combustion Fan System Optimization Improves Performance and Saves Energy at a Chemical Plant  

Science Conference Proceedings (OSTI)

This U.S. Department of Energy Industrial Technologies Program case study describes how, in 2003, PCS Nitrogen, Inc., improved the efficiency of the combustion fan on a boiler at the company's chemical fertilizer plant in Augusta, Georgia. The project saved $420,000 and 76,400 million British thermal units (MBtu) per year. In addition, maintenance needs declined, because there is now less stress on the fan motor and bearings and less boiler feed water usage. This project was so successful that the company has implemented more efficiency improvements that should result in energy cost savings of nearly $1 million per year.

Not Available

2005-01-01T23:59:59.000Z

417

Predicting of fan speed for energy saving in HVAC system based on adaptive network based fuzzy inference system  

Science Conference Proceedings (OSTI)

In this paper, a HVAC (heating, ventilating and air-conditioning) system has two different zones was designed and fan motor speed to minimize energy consumption of the HVAC system was controlled by a conventional (proportional-integral-derivative) PID ... Keywords: ANFIS, Air flow control, Energy saving, Fan motor speed predicting, HVAC system, PID control, Temperature control

Servet Soyguder; Hasan Alli

2009-05-01T23:59:59.000Z

418

Energy Efficiency Improvement by Measurement and Control: A Case Study of Reheating Furnaces in the Steel Industry  

E-Print Network (OSTI)

The aim of this paper is to analyze the possibilities for energy efficiency improvements through utilization of measurement and automatic control; this includes both direct fuel savings and indirect savings due to product quality improvements. Focus is on energy use in steel reheating furnaces for rolling mills. The demands on the reheating process and the operational conditions that are essential for its control are described. An analysis is made of possible reductions in energy use as a result of improved control. A survey is included of furnace control systems in steel plants; such equipment has been designed and implemented in order to optimize the reheating process. Reports of achieved savings are presented, and demands on measurement and control systems for successful implementation are discussed. Economic analyses, in terms of life cycle costs and estimated savings, are made for three levels of measurement and control systems. Reductions in energy use of up to 20 percent can be expected for the type of process studied, as a result of investments in information technology; it is also concluded that such investments are cost-effective.

Martensson, A.

1992-04-01T23:59:59.000Z

419

Adaptive planning using megavoltage fan-beam CT for radiation therapy with testicular shielding  

Science Conference Proceedings (OSTI)

This study highlights the use of adaptive planning to accommodate testicular shielding in helical tomotherapy for malignancies of the proximal thigh. Two cases of young men with large soft tissue sarcomas of the proximal thigh are presented. After multidisciplinary evaluation, preoperative radiation therapy was recommended. Both patients were referred for sperm banking and lead shields were used to minimize testicular dose during radiation therapy. To minimize imaging artifacts, kilovoltage CT (kVCT) treatment planning was conducted without shielding. Generous hypothetical contours were generated on each 'planning scan' to estimate the location of the lead shield and generate a directionally blocked helical tomotherapy plan. To ensure the accuracy of each plan, megavoltage fan-beam CT (MVCT) scans were obtained at the first treatment and adaptive planning was performed to account for lead shield placement. Two important regions of interest in these cases were femurs and femoral heads. During adaptive planning for the first patient, it was observed that the virtual lead shield contour on kVCT planning images was significantly larger than the actual lead shield used for treatment. However, for the second patient, it was noted that the size of the virtual lead shield contoured on the kVCT image was significantly smaller than the actual shield size. Thus, new adaptive plans based on MVCT images were generated and used for treatment. The planning target volume was underdosed up to 2% and had higher maximum doses without adaptive planning. In conclusion, the treatment of the upper thigh, particularly in young men, presents several clinical challenges, including preservation of gonadal function. In such circumstances, adaptive planning using MVCT can ensure accurate dose delivery even in the presence of high-density testicular shields.

Yadav, Poonam [Department of Human Oncology, University of Wisconsin, Madison, Madison, WI (United States); Department of Medical Physics, University of Wisconsin, Madison, Madison, WI (United States); School of Advance Sciences, Vellore Institue of Technology University, Vellore, Tamil Nadu (India); Kozak, Kevin [Department of Human Oncology, University of Wisconsin, Madison, Madison, WI (United States); Tolakanahalli, Ranjini [Department of Human Oncology, University of Wisconsin, Madison, Madison, WI (United States); Department of Medical Physics, University of Wisconsin, Madison, Madison, WI (United States); Ramasubramanian, V. [School of Advance Sciences, Vellore Institue of Technology University, Vellore, Tamil Nadu (India); Paliwal, Bhudatt R. [Department of Human Oncology, University of Wisconsin, Madison, Madison, WI (United States); Department of Medical Physics, University of Wisconsin, Madison, Madison, WI (United States); University of Wisconsin, Riverview Cancer Centre, Wisconsin Rapids, WI (United States); Welsh, James S. [Department of Human Oncology, University of Wisconsin, Madison, Madison, WI (United States); Department of Medical Physics, University of Wisconsin, Madison, Madison, WI (United States); Rong, Yi, E-mail: rong@humonc.wisc.edu [Department of Human Oncology, University of Wisconsin, Madison, Madison, WI (United States); University of Wisconsin, Riverview Cancer Centre, Wisconsin Rapids, WI (United States)

2012-07-01T23:59:59.000Z

420

Software Verification and Validation Test Report for the HEPA filter Differential Pressure Fan Interlock System  

Science Conference Proceedings (OSTI)

The HEPA Filter Differential Pressure Fan Interlock System PLC ladder logic software was tested using a Software Verification and Validation (V&V) Test Plan as required by the ''Computer Software Quality Assurance Requirements''. The purpose of his document is to report on the results of the software qualification.

ERMI, A.M.

2000-09-05T23:59:59.000Z

Note: This page contains sample records for the topic "includes furnace fans" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Automated Aspect Recommendation through Clustering-Based Fan-in Analysis  

Science Conference Proceedings (OSTI)

Identifying code implementing a crosscutting concern (CCC) automatically can benefit the maintainability and evolvability of the application. Although many approaches have been proposed to identify potential aspects, a lot of manual work is typically ... Keywords: ranking metric, automated aspect recommendation, clustering-based fan-in analysis, crosscutting concern, refactorable aspects, aspect mining, method clusters, lexical based clustering

Danfeng Zhang; Yao Guo; Xiangqun Chen

2008-09-01T23:59:59.000Z

422

Imbalance of CPU temperatures in a blade system and its impact for power consumption of fans  

Science Conference Proceedings (OSTI)

We are now developing a new metric of data center power efficiency to fairly evaluate the contribution of each improvement for power efficiency. In order to develop it, we built a testbed of a data center and measured power consumption of each components ... Keywords: CPU temperature, Data center, Fan speed, Power consumption, Power efficiency

Yuetsu Kodama; Satoshi Itoh; Toshiyuki Shimizu; Satoshi Sekiguchi; Hiroshi Nakamura; Naohiko Mori

2013-03-01T23:59:59.000Z

423

Experimental Modal Analysis on a Rotating Fan Using Tracking-CSLDV  

Science Conference Proceedings (OSTI)

Continuous Scan Laser Doppler Vibrometry (CSLDV) modifies the traditional mode of operation of a vibrometer by sweeping the laser measurement point continuously over the structure while measuring, enabling one to measure spatially detailed mode shapes quickly and minimizing the inconsistencies that can arise if the structure or test conditions change with time. When a periodic scan path is employed, one can decompose the measurement into the response that would have been measured at each point traversed by the laser and obtain the structure's mode shapes and natural frequencies using conventional modal analysis software. In this paper, continuous-scan vibrometry is performed on a rotating fan, using computer controlled mirrors to track the rotating fan blades while simultaneously sweeping the measurement point over the blades. This has the potential to circumvent the difficulty of attaching contact sensors such as strain gauges, which might modify the structure and invalidate the results. In this work, impact excitation was used to excite a 3-blade fan rotating at various speeds, and the blades were scanned with a cloverleaf pattern that captured the bending of all three blades simultaneously. Some specialized signal processing is helpful in minimizing the effect of rotation frequency harmonics in the measurements, and specific scan strategies are needed to avoid those frequencies, both of these issues are discussed in the paper. While noise in the laser vibrometer does pose some difficulty, the results show that several modes could be extracted and that the tracking-CSLDV results agree with measurements obtained from the parked fan.

Gasparoni, Andrea; Castellini, Paolo; Tomasini, Enrico P. [Dipartimento di Meccanica, Universita Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy); Allen, Matthew S.; Yang Shifei; Sracic, Michael W. [Department of Engineering Physics, University of Wisconsin-Madison, 535 Engineering Research Building, 1500 Engineering Drive, Madison, WI 53706 (United States)

2010-05-28T23:59:59.000Z

424

Engineering Task Plan for Hepa Filter Differential Pressure (DP) Fan Interlock Upgrades  

SciTech Connect

This document provides a plan for installation of Differential Pressure (DP) fan interlocks on the primary ventilation systems in selected Tank Farm facilities. This plan contains the engineering tasks required for installation and is summarized by the Acceptance for Beneficial Use list. Individuals responsible for each task are identified and scheduled accordingly.

SIMONS, S.R.

2000-05-19T23:59:59.000Z

425

Fan to parallel beam conversion in CAT by rubber sheet transformation  

SciTech Connect

A technique for converting fan-beam projections to parallel-beam projections for use in computed tomography is presented. The problem is approached by use of a rubber sheet transformation. Since the data is discretized, an interpolation step is necessary. For densely sampled data this approach appears satisfactory and a significant reduction in photon noise is observable in computer simulations.

Wecksung, G.W.; Kruger, R.P.; Morris, R.A.

1979-01-01T23:59:59.000Z

426

Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers  

E-Print Network (OSTI)

equipment = furnace Heating fuel = oil Home type = single orequipment = boiler Heating fuel = oil Home type = single orHOME HEATING FUEL CON 3 NATURAL GAS FROM UNDERGROUND PIPES = 1 BOTTLED GAS (LPG OR PROPANE) = 2 FUEL OIL

Lutz, James; Lekov, Alex; Whitehead, Camilla Dunham; Chan, Peter; Meyers, Steve; McMahon, James

2004-01-01T23:59:59.000Z

427

Economics of Residential Gas Furnaces and Water Heaters in United States  

NLE Websites -- All DOE Office Websites (Extended Search)

Economics of Residential Gas Furnaces and Water Heaters in United States Economics of Residential Gas Furnaces and Water Heaters in United States New Construction Market Speaker(s): Alex Lekov Gabrielle Wong-Parodi James McMahon Victor Franco Date: May 8, 2009 - 12:00pm Location: 90-3122 In the new single-family home construction market, the choice of what gas furnace and gas water heater combination to install is primarily driven by first cost considerations. In this study, the authors use a life-cycle cost analysis approach that accounts for uncertainty and variability of inputs to assess the economic benefits of installing different gas furnace and water heater combinations. Among other factors, it assesses the economic feasibility of eliminating the traditional metal vents and replacing them with vents made of plastic materials used in condensing and power vent

428

Improving Gas Furnace Performance: A Field and Laboratory Study at End of Life  

SciTech Connect

Natural gas furnaces are rated for efficiency using the U.S. Department of Energy (DOE) annual fuel utilization efficiency (AFUE) test standard under controlled laboratory test conditions. In the home, these furnaces are then installed under conditions that can vary significantly from the standard, require adjustment by the installing contractor to adapt to field conditions, may or may not be inspected over their useful lifetimes, and can operate with little maintenance over a 30-year period or longer. At issue is whether the installation practices, field conditions, and wear over the life of the furnace reduce the efficiency significantly from the rated efficiency. In this project, nine furnaces, with 15-24 years of field service, were removed from Iowa homes and tested in the lab under four conditions to determine the effects of installation practices, field operating conditions, and age on efficiency.

Brand, L.; Yee, S.; Baker, J.

2013-08-01T23:59:59.000Z

429

Refinery Furnaces Retrofit with Gas Turbines Achieve Both Energy Savings and Emission Reductions  

E-Print Network (OSTI)

Integrating gas turbines with refinery furnaces can be a cost effective means of reducing NOx emissions while also generating electricity at an attractive heat rate. Design considerations and system costs are presented.

Giacobbe, F.; Iaquaniello, G.; Minet, R. G.; Pietrogrande, P.

1985-05-01T23:59:59.000Z

430

Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers  

E-Print Network (OSTI)

of separate costs for natural gas or oil, and electricity.receives oil-fired boilers INPUTS First Cost Inputs The flowfurnaces, and oil-fired furnaces, we scaled the cost for

Lutz, James; Lekov, Alex; Whitehead, Camilla Dunham; Chan, Peter; Meyers, Steve; McMahon, James

2004-01-01T23:59:59.000Z

431

Microsoft Word - ACEEE_06_ModulatingFurnaces_Paper236_lbl.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

found in the DOE test procedure and provides an improved methodology for calculating the energy consumption of two-stage furnaces. The objectives of this paper are to explore the...

432

Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Maximum Rebate $6,000 Program Info Funding Source New Hampshire Renewable Energy Fund (FY 2013) Start Date 04/14/2010 Expiration Date When progr State New Hampshire Program Type State Rebate Program Rebate Amount 30% Provider New Hampshire Public Utilities Commission The New Hampshire Public Utilities Commission (PUC) is offering rebates of 30% of the installed cost of qualifying new residential bulk-fed, wood-pellet central heating boilers or furnaces. The maximum rebate is $6,000. To qualify, systems must (1) become operational on or after May 1,

433

Clean Coal III Project: Blast Furnace Granular Coal Injection Project Trial 1 Report - Blast Furnace Granular Coal Injection - Results with Low Volatile Coal  

SciTech Connect

This report describes the first coal trial test conducted with the Blast Furnace Granular Coal Injection System at Bethlehem Steel Corporation's Burns Harbor Plant. This demonstration project is divided into three phases: Phase I - Design Phase II - Construction Phase III - Operation The design phase was conducted in 1991-1993. Construction of the facility began in August 1993 and was completed in late 1994. The coal injection facility began operating in January 1995 and Phase III began in November 1995. The Trial 1 base test orI C furnace was carried out in October 1996 as a comparison period for the analysis of the operation during subsequent coal trials.

1997-11-01T23:59:59.000Z

434

Development of a bench-scale metal distillation furnace  

SciTech Connect

Design of an inductively heated bench-scale distillation furnace (retort) capable of processing actinides is described. The apparatus consists of a vacuum/inert gas bell jar, a bell-jar lift, a nonwater-cooled induction coil, the induction tank circuit, and a series of components designed to contain the metal melts and vapors. The apparatus is located within a nitrogen glovebox and is designed to process plutonium-containing feeds. The electrical parameters of the induction coil and tank circuit necessary for design were determined by two different methods; one is based solely on calculated impedance values, and the other used high-frequency impedance measurements on a mock-up of the induction coil/susceptor arrangement. During the design state, the two methods of determining electrical parameters gave similar results. With the as-built system, the impedance meter did detect some efficiency loss to the metal bell jar and coil support that the calculational method did not predict. These losses were not significant enough to cause operating problems, and thus, both methods were shown to be adequate for the intended purpose. Zinc and magnesium were distilled, and uranium was melted in a successful series of shake-down runs.

Vest, M.A.; Lewandowski, E.F.; Pierce, R.D.; Smith, J.L. [Argonne National Lab., IL (United States). Chemical Technology Div.

1997-12-01T23:59:59.000Z

435

Detailed model for practical pulverized coal furnaces and gasifiers  

SciTech Connect

The need to improve efficiency and reduce pollutant emissions commercial furnaces has prompted energy companies to search for optimized operating conditions and improved designs in their fossil-fuel burning facilities. Historically, companies have relied on the use of empirical correlations and pilot-plant data to make decisions about operating conditions and design changes. The high cost of collecting data makes obtaining large amounts of data infeasible. The main objective of the data book is to provide a single source of detailed three-dimensional combustion and combustion-related data suitable for comprehensive combustion model evaluation. Five tasks were identified as requirements to achieve the main objective. First, identify the types of data needed to evaluate comprehensive combustion models, and establish criteria for selecting the data. Second, identify and document available three-dimensional combustion data related to pulverized coal combustion. Third, collect and evaluate three-dimensional data cases, and select suitable cases based on selection criteria. Fourth, organize the data sets into an easy-to-use format. Fifth, evaluate and interpret the nature and quality of the data base. 39 refs., 15 figs., 14 tabs.

Philips, S.D.; Smoot, L.D.

1989-08-01T23:59:59.000Z

436

Expert Meeting Report: Achieving the Best Installed Performance from High-Efficiency Residential Gas Furnaces  

SciTech Connect

This report describes a Building America expert meeting hosted on July 28, 2011, by the Partnership for Advanced Residential Retrofit team. The purpose of this meeting was to identify installation practices that provide the best installed efficiency for residential gas furnaces, explain how AFUE and field efficiency can differ, and investigate the impact of installation practices on the efficiency and long-term durability of the furnace.

Brand, L.

2012-03-01T23:59:59.000Z

437

U.S. Building-Sector Energy Efficiency Potential  

E-Print Network (OSTI)

commutated permanent magnet motor, single-speed operationcommutated permanent magnet furnace-fan motor, single- speed

Brown, Rich

2008-01-01T23:59:59.000Z

438

Miscellaneous electricity use in U.S. homes  

E-Print Network (OSTI)

efficiency of fans for fuel-fired furnaces, and replacing halogen torchieres with more efficient CFL

Sanchez, Marla C.; Koomey, Jonathan G.; Moezzi, Mithra M.; Meier, Alan; Huber, Wolfgang

1999-01-01T23:59:59.000Z

439

Coal combustion under conditions of blast furnace injection. Final technical report, September 1, 1992--August 31, 1993  

Science Conference Proceedings (OSTI)

A potentially new use for Illinois coal is as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. During the first phase of this project a number of the objectives were realized, specifically: (1) a blast furnace sampling system was developed and used successfully to collect samples inside an active furnace; (2) two sets of blast furnace samples were collected and petrographic analysis showed that char derived from injected coal is entering the reduction zone of the furnace; (3) a coal/char sampling probe was designed and fabricated; (4) the completion of a program of reactivity experiments on the injected coal char, blast furnace coke and Herrin No. 6 char. The results of the reactivity experiments indicate that Herrin No. 6 coal is similar or even superior to coals now being used in blast furnace injection and that additional testing is warranted.

Crelling, J.C. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Geology; Case, E.R. [Armco, Inc., Middletown, OH (United States). Research and Technology Div.

1993-12-31T23:59:59.000Z

440

Furnace and Heat Recovery Area Design and Analysis for Conceptual Design of Oxygen-Based PC Boiler  

Science Conference Proceedings (OSTI)

The objective of the furnace and heat recovery area design and analysis task of the Conceptual Design of Oxygen-Based PC Boiler study is to optimize the location and design of the furnace, burners, over-fire gas ports, and internal radiant surfaces. The furnace and heat recovery area were designed and analyzed using the FW-FIRE and HEATEX computer programs. The furnace is designed with opposed wall-firing burners and over-fire air ports. Water is circulated in the furnace by natural circulation to the waterwalls and divisional wall panels. Compared to the air-fired furnace, the oxygen-fired furnace requires only 65% of the surface area and 45% of the volume. Two oxygen-fired designs were simulated: (1) without over-fire air and (2) with 20% over-fire air. The maximum wall heat flux in the oxygen-fired furnace is more than double that of the air-fired furnace due to the higher flame temperature and higher H{sub 2}O and CO{sub 2} concentrations. The coal burnout for the oxygen-fired case is 100% due to a 500 F higher furnace temperature and higher concentration of O{sub 2}. Because of the higher furnace wall temperature of the oxygen-fired case compared to the air-fired case, furnace water wall material was upgraded from carbon steel to T91. The total heat transfer surface required in the oxygen-fired heat recovery area (HRA) is 25% less than the air-fired HRA due to more heat being absorbed in the oxygen-fired furnace and the greater molecular weight of the oxygen-fired flue gas. The HRA tube materials and wall thickness are practically the same for the air-fired and oxygen-fired design since the flue gas and water/steam temperature profiles encountered by the heat transfer banks are very similar.

Andrew Seltzer

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "includes furnace fans" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Uncertainty of calorimeter measurements at NREL's high flux solar furnace  

DOE Green Energy (OSTI)

The uncertainties of the calorimeter and concentration measurements at the High Flux Solar Furnace (HFSF) at the National Renewable Energy Laboratory (NREL) are discussed. Two calorimeter types have been used to date. One is an array of seven commercially available circular foil calorimeters (gardon or heat flux gages) for primary concentrator peak flux (up to 250 W/cm{sup 2}). The second is a cold-water calorimeter designed and built by the University of Chicago to measure the average exit power of the reflective compound parabolic secondary concentrator used at the HFSF (over 3.3 kW across a 1.6cm{sup {minus}2} exit aperture, corresponding to a flux of about 2 kW/cm{sup 2}). This paper discussed the uncertainties of the calorimeter and pyrheliometer measurements and resulting concentration calculations. The measurement uncertainty analysis is performed according to the ASME/ANSI standard PTC 19.1 (1985). Random and bias errors for each portion of the measurement are analyzed. The results show that as either the power or the flux is reduced, the uncertainties increase. Another calorimeter is being designed for a new, refractive secondary which will use a refractive material to produce a higher average flux (5 kW/cm{sup 2}) than the reflective secondary. The new calorimeter will use a time derivative of the fluid temperature as a key measurement of the average power out of the secondary. A description of this calorimeter and test procedure is also presented, along with a pre-test estimate of major sources of uncertainty. 8 refs., 4 figs., 3 tabs.

Bingham, C.E.

1991-12-01T23:59:59.000Z

442

Nitrogen Control in Electric Arc Furnace Steelmaking by DRI (TRP 0009)  

SciTech Connect

Nitrogen is difficult to remove in electric arc furnace (EAF) steelmaking, requiring the use of more energy in the oxygen steelmaking route to produce low-nitrogen steel. The objective of this work was to determine if the injection of directly reduced iron (DRI) fines into EAFs could reduce the nitrogen content by creating fine carbon monoxide bubbles that rinse nitrogen from the steel. The proposed work included physical and chemical characterization of DRI fines, pilot-scale injection into steel, and mathematical modeling to aid in scale-up of the process. Unfortunately, the pilot-scale injections were unsuccessful, but some full-scale data was obtained. Therefore, the original objectives were met, and presented in the form of recommendations to EAF steelmakers regarding: (1) The best composition and size of DRI fines to use; (2) The amount of DRI fines required to achieve a specific reduction in nitrogen content in the steel; and (3) The injection conditions. This information may be used by steelmakers in techno-economic assessments of the cost of reducing nitrogen with this technology.

Dr. Gordon A. Irons

2004-03-31T23:59:59.000Z

443

Mathematical model of a tube furnace for catalytic conversion of hydrocarbons  

Science Conference Proceedings (OSTI)

The tube furnace is a complex unit in which there are hundreds of reaction tubes and coils for heating the reaction mixture, gas, air, steam and water. Optimum design of such a unit can be done only with a mathematical model of it. A number of physicochemical processes occur in the reaction furnace: conversions of natural gas with heat supplied through the wall of the tube, combustion of fuel in the firebox, transfer of heat from the radiating walls or flame to the reaction tubes, heating of the vapor-gas mixture and other flows in the convective zone of the furnace. These processes are interrelated and there are some difficulties in writing a mathematical model for the furnace. We have adopted the following principle for construction of a model: individual processes are being modeled and the starting data for calculation of these are the results of modeling of other processes. Calculation is made by sequential approximations until material and thermal balances are observed for all processes, as is indicated on the calculation flowsheet. Thermal calculations were made by methods discussed in (2). Modeling the tube furnace on a computer makes it possible to determine its working characteristics and range of safe operation. Computer calculations permit the time required for design of furnaces to be reduced substantially and the quality of the design to be improved. Higher demands are beingmade on tube furnaces for catalytic conversion of natural gas both with regard to operating reliability and economy because of the sharp increase of the unit capacities of ammonia and methanol synthesis plants.

Stepanov, A.V.; Sul'zhik, N.I.; Kadygrob, L.A.; Gorlov, V.F.; Mishin, V.P.; Dugach, V.V.

1981-02-01T23:59:59.000Z

444

Memorandum Memorializing Ex Parte Communication, DOE impending determination of coverage for commercial and industrial fans, blowers, and fume hoods.  

Energy.gov (U.S. Department of Energy (DOE))

The meeting was requested by AMCA International to introduce the association’s leadership, standards, and experience in developing fan standards to DOE; to learn more about the DOE process for...

445

Guidelines for Induced Flue Gas Recirculation: Volume 1: Reducing Air/Gas System Resistance and Enhancing Fan Capacity  

Science Conference Proceedings (OSTI)

This document guides users through a logical sequence, or "road map," of activities and decisions for optimizing solutions for fans, ducts, and related equipment in fossil plant combustion air and gas systems.

1999-12-13T23:59:59.000Z

446

Science on Saturday attracts science fans of all ages | Princeton Plasma  

NLE Websites -- All DOE Office Websites (Extended Search)

Science on Saturday attracts science fans of all ages Science on Saturday attracts science fans of all ages By Jeanne Jackson DeVoe January 28, 2013 Tweet Widget Facebook Like Google Plus One Joshua E. G. Peek, a Hubble Fellow at Columbia University's Department of Astronomy and son of PPPL physicist and former director Robert Goldston, discusses "Outer Space!" (Photo by Elle Starkman/PPPL Office of Communications) Joshua E. G. Peek, a Hubble Fellow at Columbia University's Department of Astronomy and son of PPPL physicist and former director Robert Goldston, discusses "Outer Space!" Gallery: High school senior Varuni Bewtra comes to the lectures to learn about possible careers in science. (Photo by Photo by Jeanne Jackson DeVoe/PPPL Office of Communications) High school senior Varuni Bewtra comes to the lectures to learn about

447

HEPA Filter Differential Pressure Fan Interlock System Functional Requirements and Technical Design Criteria  

SciTech Connect

Double-shell tanks (DSTs) and Double Contained Receiver Tanks (DCRTs) are actively ventilated, along with certain single-shell tanks (SSTs) and other RPP facilities. The exhaust air stream on a typical primary ventilation system is drawn through two stages of high-efficiency particulate air (HEPA) filtration to ensure confinement of airborne radioactive materials. Active ventilation exhaust stacks require a stack CAM interlock to detect releases from postulated accidents, and to shut down the exhaust fan when high radiation levels are detected in the stack airstream. The stack CAM interlock is credited as a mitigating control to stop continued unfiltered radiological and toxicological discharges from the stack, which may result from an accident involving failure of a HEPA filter. This document defines the initial technical design baseline for a HEPA filter AP fan interlock system.

TUCK, J.A.

2000-05-11T23:59:59.000Z

448

Improving Control of a Dual-Duct Single-Fan Variable Air Volume Systems  

E-Print Network (OSTI)

This paper discusses improved control strategies for dual-duct single-fan variable air volume (VAV) systems. Common control strategy for supply air volume modulation is evaluated, and an improved air volume control strategy that maintains separate cold and hot air duct static pressure set points is presented. The paper also explores the interactions between the cold and hot deck temperatures and duct static pressures, and discusses the impact of non-ideal deck temperature settings on duct static pressures and overall system energy consumption. To compensate the negative impact of non-ideal cold and hot deck temperature set points, the authors propose using real-time duct static pressure readings as feedback signals to fine-tune the deck temperature set points. These new control schemes can reduce simultaneous cooling and heating while reducing fan power consumption.

Wei, G.; Martinez, J.; Minihan, T.; Brundidge, T.; Claridge, D. E.; Turner, W. D.

2003-01-01T23:59:59.000Z

449

CSER 99-007 Criticality Safety Evaluation Report for PFP Glovebox HA-21I Muffle Furnace Operation for Plutonium Stabilization  

SciTech Connect

Criticality Safety Evaluation Report for operation of PFP Glovebox HA-21I muffle furnace for plutonium stabilization. Glovebox limits are specified for processing metal and oxide fissile materials.

DOBBIN, K.D.

1999-12-16T23:59:59.000Z

450

Architectural characteristics of fine-grained submarine fans: A model applicable to the Gulf of Mexico  

Science Conference Proceedings (OSTI)

Submarine fan deposits in the Gulf of Mexico, modern and ancient, fall in the category of fine-grained, low overall sand/shale ratio basin-floor fans. Models published over the years that have been applied to both exploration and production are based on sand-rich fans, most of which were deposited in active margin settings. These models should not be used for the Gulf of Mexico or any other deep water system with similar basinal settings. Observations from the excellent outcrops of the Permian Tanqua Karoo in southwestern South Africa, together with information from the modern Mississippi Fan, and the Jackfork turbidites in Arkansas, enable the construction of a model that addresses the architecture of both the macro and meso-scale depositional features of fine-grained turbidite systems. At the entrance to the basin floor the conduit, carved out across the slope, may start to widen. Most of the density flows moving through do not necessarily occupy the conduit`s entire width. The result is a complex of laterally and vertically stacked channel fills and associated levee-overbank deposits with a good degree of connectivity. The channel fills are mostly massive, whereas the levee deposits are low-contrast, low-resistivity thin-bedded sandstones and shales with high permeability. Such sandstones can be potentially very productive. The channels gradually become smaller and as their influence on directing the heads of turbidity currents decreases, oblong sheet sands are deposited, each having a very large width to thickness ratio and a high sand/shale ratio. The vertical stacking patterns within these sheet sands commonly display lateral offset of individual beds or groups of beds, and therefore form a distinct reservoir type with varying internal fluid-flow characteristics.

Bouma, A.H.; Coleman, J.H. [Louisiana State Univ., Baton Rouge, LA (United States); DeV Wickens, H. [and others

1995-10-01T23:59:59.000Z

451

Appendix F Cultural Resources, Including  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appendix F Appendix F Cultural Resources, Including Section 106 Consultation STATE OF CALIFORNIA - THE RESOURCES AGENCY EDMUND G. BROWN, JR., Governor OFFICE OF HISTORIC PRESERVATION DEPARTMENT OF PARKS AND RECREATION 1725 23 rd Street, Suite 100 SACRAMENTO, CA 95816-7100 (916) 445-7000 Fax: (916) 445-7053 calshpo@parks.ca.gov www.ohp.parks.ca.gov June 14, 2011 Reply in Reference To: DOE110407A Angela Colamaria Loan Programs Office Environmental Compliance Division Department of Energy 1000 Independence Ave SW, LP-10 Washington, DC 20585 Re: Topaz Solar Farm, San Luis Obispo County, California Dear Ms. Colamaria: Thank you for seeking my consultation regarding the above noted undertaking. Pursuant to 36 CFR Part 800 (as amended 8-05-04) regulations implementing Section

452

Coal combustion under conditions of blast furnace injection; [Quarterly] technical report, September 1--November 30, 1993  

SciTech Connect

A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This study is unique in that it will be the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. This proposal is a follow-up to one funded for the 1992--1993 period. It is intended to complete the study already underway with the Armco Inc. steel company and to initiate a new cooperative study along somewhat similar lines with the Inland Steel Company. The results of this study will lead to the development of a testing and evaluation protocol that will give a unique and much needed understanding of the behavior of coal in the injection process and prove the potential of Illinois coals f or such use.

Crelling, J.C.

1993-12-31T23:59:59.000Z

453

Economics of residential gas furnaces and water heaters in United States new construction market  

SciTech Connect

New single-family home construction represents a significant and important market for the introduction of energy-efficient gas-fired space heating and water-heating equipment. In the new construction market, the choice of furnace and water-heater type is primarily driven by first cost considerations and the availability of power vent and condensing water heaters. Few analysis have been performed to assess the economic impacts of the different combinations of space and water-heating equipment. Thus, equipment is often installed without taking into consideration the potential economic and energy savings of installing space and water-heating equipment combinations. In this study, we use a life-cycle cost analysis that accounts for uncertainty and variability of the analysis inputs to assess the economic benefits of gas furnace and water-heater design combinations. This study accounts not only for the equipment cost but also for the cost of installing, maintaining, repairing, and operating the equipment over its lifetime. Overall, this study, which is focused on US single-family new construction households that install gas furnaces and storage water heaters, finds that installing a condensing or power-vent water heater together with condensing furnace is the most cost-effective option for the majority of these houses. Furthermore, the findings suggest that the new construction residential market could be a target market for the large-scale introduction of a combination of condensing or power-vent water heaters with condensing furnaces.

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2009-05-06T23:59:59.000Z

454

A Feasibility Study for Recycling Used Automotive Oil Filters In A Blast Furnace  

SciTech Connect

This feasibility study has indicated that of the approximately 120,000 tons of steel available to be recycled from used oil filters (UOF's), a maximum blast furnace charge of 2% of the burden may be anticipated for short term use of a few months. The oil contained in the most readily processed UOF's being properly hot drained and crushed is approximately 12% to 14% by weight. This oil will be pyrolized at a rate of 98% resulting in additional fuel gas of 68% and a condensable hydrocarbon fraction of 30%, with the remaining 2% resulting as carbon being added into the burden. Based upon the writer's collected information and assessment, there appears to be no operational problems relating to the recycling of UOF's to the blast furnace. One steel plant in the US has been routinely charging UOF's at about 100 tons to 200 tons per month for many years. Extensive analysis and calculations appear to indicate no toxic consideration as a result of the pyrolysis of the small contained oil ( in the 'prepared' UOFs) within the blast furnace. However, a hydrocarbon condensate in the ''gasoline'' fraction will condense in the blast furnace scrubber water and may require additional processing the water treatment system to remove benzene and toluene from the condensate. Used oil filters represent an additional source of high quality iron units that may be effectively added to the charge of a blast furnace for beneficial value to the operator and to the removal of this resource from landfills.

Ralph M. Smailer; Gregory L. Dressel; Jennifer Hsu Hill

2002-01-21T23:59:59.000Z

455

Standard practice for examination of fiberglass reinforced plastic fan blades using acoustic emission  

E-Print Network (OSTI)

1.1 This practice provides guidelines for acoustic emission (AE) examinations of fiberglass reinforced plastic (FRP) fan blades of the type used in industrial cooling towers and heat exchangers. 1.2 This practice uses simulated service loading to determine structural integrity. 1.3 This practice will detect sources of acoustic emission in areas of sensor coverage that are stressed during the course of the examination. 1.4 This practice applies to examinations of new and in-service fan blades. 1.5 This practice is limited to fan blades of FRP construction, with length (hub centerline to tip) of less than 3 m [10 ft], and with fiberglass content greater than 15 % by weight. 1.6 AE measurements are used to detect emission sources. Other nondestructive examination (NDE) methods may be used to evaluate the significance of AE sources. Procedures for other NDE methods are beyond the scope of this practice. 1.7 Units—The values stated in either SI units or inch-pound units are to be regarded separately as sta...

American Society for Testing and Materials. Philadelphia

2010-01-01T23:59:59.000Z

456

Design, testing and two-dimensional flow modeling of a multiple-disk fan  

Science Conference Proceedings (OSTI)

A multiple-disk Tesla type fan has been designed, tested and analyzed two-dimensionally using the conservation of angular momentum principle. Experimental results showed that such multiple-disk fans exhibited exceptionally low performance characteristics, which could be attributed to the low viscosity, tangential nature of the flow, and large mechanical energy losses at both suction and discharge sections that are comparable to the total input power. By means of theoretical analysis, local and overall shearing stresses on the disk surfaces have been determined based on tangential and radial velocity distributions of the air flow of different volume flow rates at prescribed disk spaces and rotational speeds. Then the total power transmitted by rotating disks to air flow, and the power acquired by the air flow in the gap due to transfer of angular momentum have been obtained by numerically integrating shearing stresses over the disk surfaces. Using the measured shaft and hydraulic powers, these quantities were utilized to evaluate mechanical energy losses associated with the suction and discharge sections of the fan. (author)

Engin, Tahsin; Oezdemir, Mustafa; Cesmeci, Sevki [Department of Mechanical Engineering, The University of Sakarya, Esentepe Campus, 54187 Sakarya (Turkey)

2009-11-15T23:59:59.000Z

457

Random fan-out state induced by site-random interlayer couplings  

Science Conference Proceedings (OSTI)

We study the low-temperature properties of a classical Heisenberg model with site-random interlayer couplings on the cubic lattice. This model is introduced as a simplified effective model of Sr(Fe{sub 1-x}Mn{sub x})O{sub 2}, which was recently synthesized. In this material, when x=0.3, ({pi}{pi}{pi}) and ({pi}{pi}0) mixed ordering is observed by neutron diffraction measurements. Using Monte Carlo simulations, we find an exotic bulk spin structure that explains the experimentally obtained results. We name this spin structure the ''random fan-out state.'' The mean-field calculations provide an intuitive understanding of this phase being induced by the site-random interlayer couplings. Since Rietveld analysis assuming the random fan-out state agrees well with the neutron diffraction pattern of Sr(Fe{sub 0.7}Mn{sub 0.3})O{sub 2}, we conclude that the random fan-out state is reasonable for the spin-ordering pattern of Sr(Fe{sub 0.7}Mn{sub 0.3})O{sub 2} at the low-temperature phase.

Tamura, Ryo; Kawashima, Naoki; Yamamoto, Takafumi; Tassel, Cedric; Kageyama, Hiroshi [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8581 (Japan); Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyouku, Kyoto 615-8510 (Japan)

2011-12-01T23:59:59.000Z

458

Countries Gasoline Prices Including Taxes  

Gasoline and Diesel Fuel Update (EIA)

Countries (U.S. dollars per gallon, including taxes) Countries (U.S. dollars per gallon, including taxes) Date Belgium France Germany Italy Netherlands UK US 01/13/14 7.83 7.76 7.90 8.91 8.76 8.11 3.68 01/06/14 8.00 7.78 7.94 8.92 8.74 8.09 3.69 12/30/13 NA NA NA NA NA NA 3.68 12/23/13 NA NA NA NA NA NA 3.63 12/16/13 7.86 7.79 8.05 9.00 8.78 8.08 3.61 12/9/13 7.95 7.81 8.14 8.99 8.80 8.12 3.63 12/2/13 7.91 7.68 8.07 8.85 8.68 8.08 3.64 11/25/13 7.69 7.61 8.07 8.77 8.63 7.97 3.65 11/18/13 7.99 7.54 8.00 8.70 8.57 7.92 3.57 11/11/13 7.63 7.44 7.79 8.63 8.46 7.85 3.55 11/4/13 7.70 7.51 7.98 8.70 8.59 7.86 3.61 10/28/13 8.02 7.74 8.08 8.96 8.79 8.04 3.64 10/21/13 7.91 7.71 8.11 8.94 8.80 8.05 3.70 10/14/13 7.88 7.62 8.05 8.87 8.74 7.97 3.69

459

High-amplitude reflection packets (HARPs) of the Mississippi Fan, Gulf of Mexico  

E-Print Network (OSTI)

Examination of seismic data from the deep-water Gulf of Mexico reveals the presence of High-Amplitude Reflection Packets (HARPs). An analog study conducted by the Ocean Drilling Program Leg 155 identified and described Amazon Fan HARPs as a stacked, relatively unconfined series of graded turbidites overlain by a channel-levee. HARP seismic facies thin laterally and onlap antecedent bathymetry (preexisting submarine topography). HARP areal extent is controlled by antecedent bathymetry and turbidity flow sediment volumes. Mississippi Fan HARP deposition can be described by three depositional models: the "avulsion" model, the "fill and spill" model, and the "transition" model. The "avulsion" depositional model, developed by Flood et al. (1991), describes avulsion of submarine channel-levees by turbidity flows. Subsequent turbidity flows exit the channel-levee at the avulsion point and are deposited as unchannelized HARPs. The "fill and spill" model, developed by Satterfield and Behrens (1990), describes turbidite deposition in the Gulf of Mexico salt province. Initial stages of the "fill and spill" model accurately describe the seismic geometries of HARPs confined by adjacent salt structures. The "transition" model was developed in this study to describe the Gulf of Mexico HARP seismic geometries seen in the transition zone from the salt province to the abyssal plain. The HARPs described by the "transition" model contain an upslope segment confined by salt structures and a downslope segment confined by antecedent bathymetry. Utilizing seismic data from the Gulf of Mexico and core and well-log data from the Amazon Fan, this study has determined that HARPs and related channel-levees have hydrocarbon play potential. HARP sheet sands, internal HARP channel fill, overlying channel-levee fill, and overbank levee sands are potential reservoir units. Detrital carbonate and hemipelagic shale source rocks are in place in the deep-water Gulf of Mexico. In addition, structurally derived migration pathways combine with percolation as potential migration processes. This study integrates identification and description of HARP seismic facies relationships, current and newly developed depositional models, interpretation of stratigraphic controls, HARP internal reservoir architecture, and determination of HARP hydrocarbon potential in order to predict HARP deposition in the Mississippi Fan and other mud-rich fans worldwide.

Francis, Jason Michael

2000-01-01T23:59:59.000Z

460

The Impact of Forced Air System Blowers on Furnace Performance and Utility  

NLE Websites -- All DOE Office Websites (Extended Search)

The Impact of Forced Air System Blowers on Furnace Performance and Utility The Impact of Forced Air System Blowers on Furnace Performance and Utility Loads Speaker(s): Bert Phillips Date: November 7, 2003 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: James Lutz Bert Phillips will talk about the impact of forced air system blower performance on furnace or heating performance and on utility loads, and what can be done to reduce blower power requirements. He will also briefly discuss a ground source heat pump monitoring study that he just finished. Mr. Phillips is a registered Professional Engineer in three Canadian provinces and part owner of UNIES Ltd., an engineering firm in Winnipeg, Manitoba (60 miles straight north of the North Dakota/Minnesota border). He does research and HVAC system design and investigates

Note: This page contains sample records for the topic "includes furnace fans" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

HEU Holdup Measurements in 321-M B and Spare U-Al Casting Furnaces  

Science Conference Proceedings (OSTI)

The Analytical Development Section of Savannah River Technology Center (SRTC) was requested by the Facilities Decontamination Division (FDD) to determine the holdup of enriched uranium in the 321-M facility as part of an overall deactivation project of the facility. The 321-M facility was used to fabricate enriched uranium fuel assemblies, lithium-aluminum target tubes, neptunium assemblies, and miscellaneous components for the production reactors. This report covers holdup measurements in two uranium aluminum alloy (U-Al) casting furnaces. Our results indicate an upper limit of 235U content for the B and Spare furnaces of 51 and 67 g respectively. This report discusses the methodology, non-destructive assay (NDA) measurements, and results of the uranium holdup on the two furnaces.

Salaymeh, S.R.

2002-04-30T23:59:59.000Z

462

Apparatus having inductively coupled coaxial coils for measuring buildup of slay or ash in a furnace  

DOE Patents (OSTI)

The buildup of slag or ash on the interior surface of a furnace wall is monitored by disposing two coils to form a transformer which is secured adjacent to the inside surface of the furnace wall. The inductive coupling between the two coils of the transformer is affected by the presence of oxides of iron in the slag or ash which is adjacent to the transformer, and the application of a voltage to one winding produces a voltage at the other winding that is related to the thickness of the slag or ash buildup on the inside surface of the furnace wall. The output of the other winding is an electrical signal which can be used to control an alarm or the like or provide an indication of the thickness of the slag or ash buildup at a remote location.

Mathur, Mahendra P. (Pittsburgh, PA); Ekmann, James M. (Bethel Park, PA)

1989-01-01T23:59:59.000Z

463

DOE/EA-1745 FINAL ENVIRONMENTAL ASSESSMENT FOR THE BLAST FURNACE GAS FLARE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 5 FINAL ENVIRONMENTAL ASSESSMENT FOR THE BLAST FURNACE GAS FLARE CAPTURE PROJECT AT THE ARCELORMITTAL USA, INC. INDIANA HARBOR STEEL MILL, EAST CHICAGO, INDIANA U.S. Department of Energy National Energy Technology Laboratory August 2010 DOE/EA-1745 FINAL ENVIRONMENTAL ASSESSMENT FOR THE BLAST FURNACE GAS FLARE CAPTURE PROJECT AT THE ARCELORMITTAL USA, INC. INDIANA HARBOR STEEL MILL, EAST CHICAGO, INDIANA U.S. Department of Energy National Energy Technology Laboratory August 2010 DOE/EA-1745 iii COVER SHEET Responsible Agency: U.S. Department of Energy (DOE) Title: Final Environmental Assessment for the Blast Furnace Gas Flare Capture Project at the ArcelorMittal USA, Inc. Indiana Harbor Steel Mill, East Chicago, Indiana

464

Furnace Creek Ranch Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Furnace Creek Ranch Pool & Spa Low Temperature Geothermal Facility Furnace Creek Ranch Pool & Spa Low Temperature Geothermal Facility Facility Furnace Creek Ranch Sector Geothermal energy Type Pool and Spa Location Death Valley, California Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

465

Coal combustion under conditions of blast furnace injection. Technical report, March 1, 1994--May 31, 1994  

Science Conference Proceedings (OSTI)

A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This proposal is a follow-up to one funded for the 1992-93 period. It is intended to complete the study already underway with the Armco Inc. Steel Company and to initiate a new cooperative study along somewhat similar lines with the Inland Steel Company. The results of this study will lead to the development of a testing and evaluation protocol that will give a unique and much needed understanding of the behavior of coal in the injection process and prove the potential of Illinois coals for such use. During this quarter samples of two feed coals and the IBCSP 112 (Herrin No. 6) were prepared for reactivity testing and compared to blast furnace coke, and char fines taken from an active blast furnace. As the initial part of a broad reactivity analysis program, these same samples were also analyzed on a thermogravimetric analyzer (TGA) to determine their combustion and reactivity properties.

Crelling, J.C. [Southern Illinois Univ., Carbondale, IL (United States)

1994-09-01T23:59:59.000Z

466

Development of the Household Sample for Furnace and Boiler Life-Cycle Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of the Household Sample for Furnace and Boiler Life-Cycle Cost Development of the Household Sample for Furnace and Boiler Life-Cycle Cost Analysis Title Development of the Household Sample for Furnace and Boiler Life-Cycle Cost Analysis Publication Type Report LBNL Report Number LBNL-55088 Year of Publication 2005 Authors Whitehead, Camilla Dunham, Victor H. Franco, Alexander B. Lekov, and James D. Lutz Document Number LBNL-55088 Pagination 22 Date Published May 31 Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract Residential household space heating energy use comprises close to half of all residential energy consumption. Currently, average space heating use by household is 43.9 Mbtu for a year. An average, however, does not reflect regional variation in heating practices, energy costs, or fuel type. Indeed, a national average does not capture regional or consumer group cost impacts from changing efficiency levels of heating equipment. The US Department of Energy sets energy standards for residential appliances in, what is called, a rulemaking process. The residential furnace and boiler efficiency rulemaking process investigates the costs and benefits of possible updates to the current minimum efficiency regulations. Lawrence Berkeley National Laboratory (LBNL) selected the sample used in the residential furnace and boiler efficiency rulemaking from publically available data representing United States residences. The sample represents 107 million households in the country. The data sample provides the household energy consumption and energy price inputs to the life-cycle cost analysis segment of the furnace and boiler rulemaking. This paper describes the choice of criteria to select the sample of houses used in the rulemaking process. The process of data extraction is detailed in the appendices and is easily duplicated.The life-cycle cost is calculated in two ways with a household marginal energy price and a national average energy price. The LCC results show that using an national average energy price produces higher LCC savings but does not reflect regional differences in energy price.

467

Furnace and Heat Recovery Area Design and Analysis for Conceptual Design of Supercritical O2-Based PC Boiler  

Science Conference Proceedings (OSTI)

The objective of the furnace and heat recovery area design and analysis task of the Conceptual Design of Supercritical Oxygen-Based PC Boiler study is to optimize the location and design of the furnace, burners, over-fire gas ports, and internal radiant surfaces. The furnace and heat recovery area were designed and analyzed using the FW-FIRE, Siemens, and HEATEX computer programs. The furnace is designed with opposed wall-firing burners and over-fire air ports. Water is circulated in the furnace by forced circulation to the waterwalls at the periphery and divisional wall panels within the furnace. Compared to the air-fired furnace, the oxygen-fired furnace requires only 65% of the surface area and 45% of the volume. Two oxygen-fired designs were simulated: (1) with cryogenic air separation unit (ASU) and (2) with oxygen ion transport membrane (OITM). The maximum wall heat flux in the oxygen-fired furnace is more than double that of the air-fired furnace due to the higher flame temperature and higher H{sub 2}O and CO{sub 2} concentrations. The coal burnout for the oxygen-fired case is 100% due to a 500 F higher furnace temperature and higher concentration of O{sub 2}. Because of the higher furnace wall temperature of the oxygen-fired case compared to the air-fired case, furnace water wall material was upgraded from T2 to T92. Compared to the air-fired heat recovery area (HRA), the oxygen-fired HRA total heat transfer surface is 35% less for the cryogenic design and 13% less for the OITM design due to more heat being absorbed in the oxygen-fired furnace and the greater molecular weight of the oxygen-fired flue gas. The HRA tube materials and wall thickness are nearly the same for the air-fired and oxygen-fired design since the flue gas and water/steam temperature profiles encountered by the heat transfer banks are similar.

Andrew Seltzer

2006-05-01T23:59:59.000Z

468

Field Measurements of Heating Efficiency of Electric Forced-Air Furnaces in Six Manufactured Homes.  

Science Conference Proceedings (OSTI)

This report presents the results of field measurements of heating efficiency for six manufactured homes in the Pacific Northwest heated with electric forced-air systems. This is the first in a series of regional and national efforts to measure in detail the heating efficiency of manufactured homes. Only six homes were included in this study because of budgetary constraints; therefore this is not a representative sample. These investigations do provide some useful information on the heating efficiency of these homes. Useful comparisons can be drawn between these study homes and site-built heating efficiencies measured with a similar protocol. The protocol used to test these homes is very similar to another Ecotope protocol used in the study conducted in 1992 and 1993 for the Bonneville Power Administration to test the heating efficiency of 24 homes. This protocol combined real-time power measurements of furnace energy usage with energy usage during co-heat periods. Accessory data such as house and duct tightness measurements and tracer gas measurements were used to describe these homes and their heating system efficiency. Ensuring that manufactured housing is constructed in an energy and resource efficient manner is of increasing concern to manufactured home builders and consumers. No comparable work has been done to measure the heating system efficiency of MCS manufactured homes, although some co-heat tests have been performed on manufactured homes heated with natural gas to validate HUD thermal standards. It is expected that later in 1994 more research of this kind will be conducted, and perhaps a less costly and less time-consuming method for testing efficiencies will be develops.

Davis, Bob; Palmiter, Larry S.; Siegel, Jeff

1994-07-26T23:59:59.000Z

469

Active Noise Control of a Two-Fan Exhaust-Mounted Array Using Near-Field Control Sources and Error Sensors.  

E-Print Network (OSTI)

??Multiple fans are sometimes used in an array configuration to cool various types of electronic equipment. In addition to adding another noise source, using two… (more)

Rust, Ryan Leonard 1982-

2010-01-01T23:59:59.000Z

470

Reason and reaction: The dual route of decision making process on social media usage: The case of hospitality brand fan pages.  

E-Print Network (OSTI)

??A new phenomenon on Facebook, resulting from social media revolution, is the emergence of numerous Facebook fan pages. This form of online brand community is… (more)

Manthiou, Aikaterini

2012-01-01T23:59:59.000Z

471

Install Waste Heat Recovery Systems for Fuel-Fired Furnaces (English/Chinese) (Fact Sheet)  

SciTech Connect

Chinese translation of ITP fact sheet about installing Waste Heat Recovery Systems for Fuel-Fired Furnaces. For most fuel-fired heating equipment, a large amount of the heat supplied is wasted as exhaust or flue gases. In furnaces, air and fuel are mixed and burned to generate heat, some of which is transferred to the heating device and its load. When the heat transfer reaches its practical limit, the spent combustion gases are removed from the furnace via a flue or stack. At this point, these gases still hold considerable thermal energy. In many systems, this is the greatest single heat loss. The energy efficiency can often be increased by using waste heat gas recovery systems to capture and use some of the energy in the flue gas. For natural gas-based systems, the amount of heat contained in the flue gases as a percentage of the heat input in a heating system can be estimated by using Figure 1. Exhaust gas loss or waste heat depends on flue gas temperature and its mass flow, or in practical terms, excess air resulting from combustion air supply and air leakage into the furnace. The excess air can be estimated by measuring oxygen percentage in the flue gases.

Not Available

2011-10-01T23:59:59.000Z

472

Research on Stability Criterion of Furnace Flame Combustion Based on Image Processing  

Science Conference Proceedings (OSTI)

This paper proposes and analyzes the stability criterion of furnace flame combustion based on image processing, which uses the maximum criterion of gray scale difference, the distance criterion of gravity center and mass center in the high temperature ... Keywords: image processing, stability, flame detection, boiler safety

Rongbao Chen, Wuting Fan, Jingci Bian, Fanhui Meng

2012-12-01T23:59:59.000Z

473

Modeling energy consumption of residential furnaces and boilers in U.S. homes  

E-Print Network (OSTI)

alternative furnaces used in each house required derivation of the heating and coolingalternative efficiency levels and design options to meet the same heating and coolingand cooling loads of each sample house are known, it is possible to estimate what the energy consumption of alternative (

Lutz, James; Dunham-Whitehead, Camilla; Lekov, Alex; McMahon, James

2004-01-01T23:59:59.000Z

474

Estimation of Fuel Savings by Recuperation of Furnace Exhausts to Preheat Combustion Air  

E-Print Network (OSTI)

The recovery of waste energy in furnace exhaust gases is gaining in importance as fuel costs continue to escalate. Installation of a recuperator in the furnace exhaust stream to preheat the combustion air can result in considerable savings in fuel usage. These savings are primarily the result of the sensible heat increase of the combustion air and, to some extent, improved combustion efficiency. The amount of fuel saved will depend on the exhaust gas temperature, amount of excess air used, the type of burner and the furnace control system. These fuel savings may be accurately measured by metering the energy consumption per unit of production before and after installation of the recuperator. In the design of a waste heat recuperation system, it is necessary to be able to estimate the fuel saved by use of such a system. Standard industrial practice refers to the method described in the North American Combustion Handbook with its curves and tables that directly predict the percentage fuel savings. This paper analyzes the standard estimation technique and suggests a more realistic approach to calculation of percent fuel savings. Mass and enthalpy balances are provided for both methods and a typical furnace recuperation example is detailed to illustrate the differences in the two methods of calculating the percent energy saved.

Rebello, W. J.; Kohnken, K. H.; Phipps, H. R., Jr.

1980-01-01T23:59:59.000Z

475

Recovery of titanium values from titanium grinding swarf by electric furnace smelting  

DOE Patents (OSTI)

A method for the recovery of valuable materials from titanium grinding swarf is provided comprising the steps of sieving the accumulated titanium grinding swarf to remove unwanted coarse trash and grinding wheel fragments, pelletizing, and smelting in an electric arc furnace to produce ferrotitanium and/or high titanium slag. 1 fig.

Gerdemann, S.J.; White, J.C.

1998-08-04T23:59:59.000Z

476

Directly induced swing for closed loop control of electroslag remelting furnace  

DOE Patents (OSTI)

An apparatus and method are disclosed for controlling an electroslag remelting furnace, imposing a periodic fluctuation on electrode drive speed and thereby generating a predictable voltage swing signal. The fluctuation is preferably done by imposition of a sine, square, or sawtooth wave on the drive dc offset signal. 8 figs.

Damkroger, B.

1998-04-07T23:59:59.000Z

477

Atomic-absorption analysis in a graphite furnace fitted with a metal ballast collector  

SciTech Connect

One reason for the deterioration in sensitivity in the electrothermal atomic absorption spectroscopy of petroleum products is the uncontrolled spread and diffusion of the liquid throughout the furnace. This paper describes a metal ballast collector whose wettability and sorptive properties contain the sample and allow for its uniform and controlled evaporation and atomization.

Katskov, D.A.; Vasil' eva, L.A.; Grinshtein, I.L.; Savel' eva, G.O.

1987-10-01T23:59:59.000Z

478

Using coal-dust fuel in Ukrainian and Russian blast furnaces  

SciTech Connect

Ukrainian and Russian blast-furnace production falls short of the best global practices. It is no secret that, having switched to oxygen and natural gas in the 1960s, the blast-furnace industries have improved the batch and technological conditions and have attained a productivity of 2.5 and even 3 t/(m{sup 3} day), but have not been able to reduce coke consumption below 400 kg/t, which was the industry standard 40 years ago. The situation is particularly bad in Ukraine: in 2007, furnace productivity was 1.5-2 t/m{sup 3}, with a coke consumption of 432-530 kg/t. Theoretical considerations and industrial experience over the last 20 years show that the large-scale introduction of pulverized fuel, with simultaneous improvement in coke quality and in batch and technological conditions, is the only immediately available means of reducing coke consumption considerably (by 20-40%). By this means, natural-gas consumption is reduced or eliminated, and the efficiency of blast-furnace production and ferrous metallurgy as a whole is increased.

A.A. Minaev; A.N. Ryzhenkov; Y.G. Banninkov; S.L. Yaroshevskii; Y.V. Konovalov; A.V. Kuzin [Donetsk National Technical University, Donetsk (Russian Federation)

2008-02-15T23:59:59.000Z

479

Strategy for the Operation of Cooling Towers with variable Speed Fans  

E-Print Network (OSTI)

Within the SPS Cooling Water Project at CERN aimed at the reduction of water consumption, this primary open cooling loop will be closed and all the primary cooling circuit components will be upgraded to the new required duty and brought to the necessary safety and operability standards. In particular the tower fans will be fitted with variable frequency drives to replace the existing two speed motors. This paper presents a study to optimize the operation of SPS cooling towers taking into account outdoor conditions (wet and dry bulb temperatures) and the entirety of the primary circuit in which they will operate.

Iñigo-Golfín, J

2001-01-01T23:59:59.000Z

480

Busemann functions and the speed of a second class particle in the rarefaction fan  

E-Print Network (OSTI)

In this paper we will show how the results found in Cator and Pimentel 2009, about the Busemann functions in last-passage percolation, can be used to calculate the asymptotic distribution of the speed of a single second class particle starting from an arbitrary deterministic configuration which has a rarefaction fan, in either the totally asymetric exclusion process, or the Hammersley interacting particle process. The method will be to use the well known last-passage percolation description of the exclusion process and of the Hammersley process, and then the well known connection between second class particles and competition interfaces.

Eric Cator; Leandro P. R. Pimentel

2010-08-10T23:59:59.000Z

Note: This page contains sample records for the topic "includes furnace fans" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

FANS - Principle  

Science Conference Proceedings (OSTI)

... detecting all scattered neutrons with energy Ef energies, with moderate ... which changes to optimize intensity during the ...

482

FANS - Overview  

Science Conference Proceedings (OSTI)

... Pyrolytic Graphite [PG(002)], Without small shield: 2.5 meV ? E ? 25.0 meV With small shield: 3.7 meV ? E ? 45.0 meV. ...

483

Estimation of radiative properties and temperature distributions in coal-fired boiler furnaces by a portable image processing system  

Science Conference Proceedings (OSTI)

This paper presented an experimental investigation on the estimation of radiative properties and temperature distributions in a 670 t/h coal-fired boiler furnace by a portable imaging processing system. The portable system has been calibrated by a blackbody furnace. Flame temperatures and emissivities were measured by the portable system and equivalent blackbody temperatures were deduced. Comparing the equivalent blackbody temperatures measured by the portable system and the infrared pyrometer, the relative difference is less than 4%. The reconstructed pseudo-instantaneous 2-D temperature distributions in two cross-sections can disclose the combustion status inside the furnace. The measured radiative properties of particles in the furnace proved there is significant scattering in coal-fired boiler furnaces and it can provide useful information for the calculation of radiative heat transfer and numerical simulation of combustion in coal-fired boiler furnaces. The preliminary experimental results show this technology will be helpful for the combustion diagnosis in coal-fired boiler furnaces. (author)

Li, Wenhao; Lou, Chun; Sun, Yipeng; Zhou, Huaichun [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, 430074 Hubei (China)

2011-02-15T23:59:59.000Z

484

Influence of provenance on detrital and diagenetic mineralogy of small tertiary fans in southwestern Montana  

SciTech Connect

In the North Boulder River basin in southwestern Montana, alluvial fans of the Renova (Oligocene-Miocene) and the Sixmile Creek (Miocene) Formations were deposited on the flanks of north-south-trending uplifts that also supplied the detritus. The Elkhorn Mountain volcanics (78 m.y.) overlying the Boulder batholith make up the western highlands, a small patch of Precambrian Belt Group rocks occur in the southwest and Paleozoic siliciclastic and carbonate rocks forming the eastern margin. The fan sediments thus allow adequate control for studying the influence of source rocks on detrital and diagenetic mineralogy. Modal analysis of 6228 grains in 31 thin sections shows a decrease of VRF away from the igneous sources (37% to 1% in a north-south transect; 37% to 7% in a west-east transect) along with an increase in quartz (8% to 24% and 3% to 13%) and plagioclase (2% to 16% and 2% to 10%); orthoclase abundance is low except in the southwest. Volcanic ash and glass shards are found in the younger sediments in the northern part of the basin. Their data show a positive correlation between the abundance of orthoclase and kaolinite (north-south transect); between SRF and carbonate cement (west-east transect) and between glass shards and smectite (both north-south and west-east transects). They infer that the diagenetic mineralogy of these sands was controlled essentially by the detrital particles, which were strongly controlled by source rocks in this area.

Olson, J.; Basu, A.

1987-05-01T23:59:59.000Z

485

Correlation efficiency as a tool to establish depositional subenvironments in submarine fans  

Science Conference Proceedings (OSTI)

Depositional units in submarine fan systems commonly are too large to be entirely or sufficiently exposed in an outcrop to properly identify. Channel fills can be massive, bedded, or any combination thereof. The layering can be horizontal or inclined. Typical bedded series can be thick or thin bedded, or a combination with or without a certain cyclicity. Occurrence of sedimentary structures is not yet a decisive interpretation characteristic. At the present, the Lower Permian Skoorsteenberg Formation of the Southwest Karoo in South Africa may be the best example of long, nontilted, outcrops where entire subenvironments can be observed. Using that knowledge, outcrop information from several areas, and ideas from the literature, we attempted correlations in two spillways in the Jackfork Group in Arkansas. A layer-by-layer correlation failed, even after small layer package could be established using an occasional thick shale break, a major slump, or a very thick massive sandstone layer for dividing both sides of the spillway. A [open quotes]semi-logarithmic[close quotes] display of measured thickness provides patterns of variations in layer thickness that normally are sufficiently typical to use as a correlation tool between both sides. This is not a foolproof system and one should consider additional parameters, such as location within the entire fan system. However, the degree of correlatibility helps identify or suggest depositional environments.