Critical point anomalies include expansion shock waves
Nannan, N. R., E-mail: ryan.nannan@uvs.edu [Mechanical Engineering Discipline, Anton de Kom University of Suriname, Leysweg 86, PO Box 9212, Paramaribo, Suriname and Process and Energy Department, Delft University of Technology, Leeghwaterstraat 44, 2628 CA Delft (Netherlands); Guardone, A., E-mail: alberto.guardone@polimi.it [Department of Aerospace Science and Technology, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Colonna, P., E-mail: p.colonna@tudelft.nl [Propulsion and Power, Delft University of Technology, Kluyverweg 1, 2629 HS Delft (Netherlands)
2014-02-15T23:59:59.000Z
From first-principle fluid dynamics, complemented by a rigorous state equation accounting for critical anomalies, we discovered that expansion shock waves may occur in the vicinity of the liquid-vapor critical point in the two-phase region. Due to universality of near-critical thermodynamics, the result is valid for any common pure fluid in which molecular interactions are only short-range, namely, for so-called 3-dimensional Ising-like systems, and under the assumption of thermodynamic equilibrium. In addition to rarefaction shock waves, diverse non-classical effects are admissible, including composite compressive shock-fan-shock waves, due to the change of sign of the fundamental derivative of gasdynamics.
Including stereoscopic information in the reconstruction of coronal magnetic fields
T. Wiegelmann; T. Neukirch
2008-01-23T23:59:59.000Z
We present a method to include stereoscopic information about the three dimensional structure of flux tubes into the reconstruction of the coronal magnetic field. Due to the low plasma beta in the corona we can assume a force free magnetic field, with the current density parallel to the magnetic field lines. Here we use linear force free fields for simplicity. The method uses the line of sight magnetic field on the photosphere as observational input. The value of $\\alpha$ is determined iteratively by comparing the reconstructed magnetic field with the observed structures. The final configuration is the optimal linear force solution constrained by both the photospheric magnetogram and the observed plasma structures. As an example we apply our method to SOHO MDI/EIT data of an active region. In the future it is planned to apply the method to analyse data from the SECCHI instrument aboard the STEREO mission.
Quantum field theory in the presence of a medium: Green's function expansions
Kheirandish, Fardin [Department of Physics, Islamic Azad University, Shahreza-Branch, Shahreza (Iran, Islamic Republic of); Salimi, Shahriar [Department of Physics, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)
2011-12-15T23:59:59.000Z
Starting from a Lagrangian and using functional-integration techniques, series expansions of Green's function of a real scalar field and electromagnetic field, in the presence of a medium, are obtained. The parameter of expansion in these series is the susceptibility function of the medium. Relativistic and nonrelativistic Langevin-type equations are derived. Series expansions for Lifshitz energy in finite temperature and for an arbitrary matter distribution are derived. Covariant formulations for both scalar and electromagnetic fields are introduced. Two illustrative examples are given.
Green's Function expansion of scalar and vector fields in the presence of a medium
Fardin Kheirandish; Shahriar Salimi
2010-10-17T23:59:59.000Z
Based on a canonical approach and functional-integration techniques, a series expansion of Green's function of a scalar field, in the presence of a medium, is obtained. A series expansion for Lifshitz-energy, in finite-temperature, in terms of the susceptibility of the medium is derived and the whole formalism is generalized to the case of electromagnetic field in the presence of some dielectrics. A covariant formulation of the problem is presented.
Effects of Electromagnetic Field on The Collapse and Expansion of Anisotropic Gravitating Source
G. Abbas
2014-05-27T23:59:59.000Z
This paper is devoted to study the effects of electromagnetic on the collapse and expansion of anisotropic gravitating source. For this purpose, we have evaluated the generating solutions of Einstein-Maxwell field equations with spherically symmetric anisotropic gravitating source. We found that a single function generates the various anisotropic solutions. In this case every generating function involves an arbitrary function of time which can be chosen to fit several astrophysical time profiles. Two physical phenomenon occur, one is gravitational collapse and other is the cosmological expanding solution. In both cases electromagnetic field effects the anisotropy of the model. For collapse the anisotropy is increased while for expansion it deceases from maximum value to finite positive value. In case of collaps there exits two horizons like in case of Reissner-Nordstr$\\ddot{o}$m metric.
Campbell, Andrew T.
process #12;#include #include pid_t pid = fork(); if (pid () failed */ } else if (pid == 0) { /* parent process */ } else { /* child process */ } #12;thread #12
Achim Kempf; David M. Jackson; Alejandro H. Morales
2014-09-23T23:59:59.000Z
We derive new all-purpose methods that involve the Dirac Delta distribution. Some of the new methods use derivatives in the argument of the Dirac Delta. We highlight potential avenues for applications to quantum field theory and we also exhibit a connection to the problem of blurring/deblurring in signal processing. We find that blurring, which can be thought of as a result of multi-path evolution, is, in Euclidean quantum field theory without spontaneous symmetry breaking, the strong coupling dual of the usual small coupling expansion in terms of the sum over Feynman graphs.
Zafred, Paolo R. (Murrysville, PA); Gillett, James E. (Greensburg, PA)
2012-04-24T23:59:59.000Z
A plurality of integral bundle assemblies contain a top portion with an inlet fuel plenum and a bottom portion containing a base support, the base supports a dense, ceramic air exhaust manifold having four supporting legs, the manifold is below and connects to air feed tubes located in a recuperator zone, the air feed tubes passing into the center of inverted, tubular, elongated, hollow electrically connected solid oxide fuel cells having an open end above a combustion zone into which the air feed tubes pass and a closed end near the inlet fuel plenum, where the open end of the fuel cells rest upon and within a separate combination ceramic seal and bundle support contained in a ceramic support casting, where at least one flexible cushion ceramic band seal located between the recuperator and fuel cells protects and controls horizontal thermal expansion, and where the fuel cells operate in the fuel cell mode and where the base support and bottom ceramic air exhaust manifolds carry from 85% to all of the weight of the generator.
Poinsot, Laurent
#include #include //Rappels : "getpid()" permet d'obtenir son propre pid // "getppid()" renvoie le pid du pÃ¨re d'un processus int main (void) { pid_t pid_fils; pid_fils = fork(); if(pid_fils==-1) { printf("Erreur de crÃ©ation du processus fils\
Durgavich, Joel
2012-01-01T23:59:59.000Z
??The current NRL Tight-Binding suite of programs was designed to only include s, p, and d orbitals in the basis. Because of this limitation, materials… (more)
Quantum field theory in curved spacetime, the operator product expansion, and dark energy
S. Hollands; R. M. Wald
2008-05-22T23:59:59.000Z
To make sense of quantum field theory in an arbitrary (globally hyperbolic) curved spacetime, the theory must be formulated in a local and covariant manner in terms of locally measureable field observables. Since a generic curved spacetime does not possess symmetries or a unique notion of a vacuum state, the theory also must be formulated in a manner that does not require symmetries or a preferred notion of a ``vacuum state'' and ``particles''. We propose such a formulation of quantum field theory, wherein the operator product expansion (OPE) of the quantum fields is elevated to a fundamental status, and the quantum field theory is viewed as being defined by its OPE. Since the OPE coefficients may be better behaved than any quantities having to do with states, we suggest that it may be possible to perturbatively construct the OPE coefficients--and, thus, the quantum field theory. By contrast, ground/vacuum states--in spacetimes, such as Minkowski spacetime, where they may be defined--cannot vary analytically with the parameters of the theory. We argue that this implies that composite fields may acquire nonvanishing vacuum state expectation values due to nonperturbative effects. We speculate that this could account for the existence of a nonvanishing vacuum expectation value of the stress-energy tensor of a quantum field occurring at a scale much smaller than the natural scales of the theory.
METRIC PROPERTIES AND EXCEPTIONAL SETS OF THE OPPENHEIM EXPANSIONS
Fan, Ai-Hua
METRIC PROPERTIES AND EXCEPTIONAL SETS OF THE OPPENHEIM EXPANSIONS OVER THE FIELD OF LAURENT SERIES in a large class of Oppenheim expansions of Laurent series, including Luroth, Engel, Sylvester expansions properties fail to hold. Key Words and Phrases Oppenheim expansions, Laurent series, #12;nite #12;eld
Edwin Barnes; E. H. Hwang; R. E. Throckmorton; S. Das Sarma
2014-06-30T23:59:59.000Z
Many-body electron-electron interaction effects are theoretically considered in monolayer graphene from a continuum effective field-theoretic perspective by going beyond the standard leading-order perturbative renormalization group (RG) analysis. Given that the bare fine structure constant in graphene is of order unity, which is neither small to justify a perturbative expansion nor large enough for strong-coupling theories to be applicable, the problem is a difficult one, with some similarity to 2+1-dimensional strong-coupling quantum electrodynamics (QED). In this work, we take a systematic and comprehensive analytical approach, working primarily at the Dirac point (intrinsic graphene), by going up to three loops in the diagrammatic expansion to both ascertain the validity of perturbation theory and to estimate quantitatively higher-order renormalization effects. While no direct signatures for non-Fermi liquid behavior at the Dirac point have yet been observed experimentally, there is ample evidence for the interaction-induced renormalization of the graphene velocity as the carrier density approaches zero. We provide a critical comparison between theory and experiment, using both bare- and screened-interaction (RPA) calculations. We find that while the one-loop RG analysis gives reasonable agreement with the experimental data, especially when screening and finite-density effects are included through the RPA, the two-loop analysis reveals a strong-coupling critical point in suspended graphene, signifying either a quantum phase transition or a breakdown of the weak-coupling RG approach. We show that the latter is more likely by adapting Dyson's argument for the breakdown of perturbative QED to the case of graphene. We propose future experiments and theoretical directions to make further progress on this important and difficult problem.
L. H. Li; P. Ventura; S. Basu; S. Sofia; P. Demarque
2006-01-27T23:59:59.000Z
A high-precision two-dimensional stellar evolution code has been developed for studying solar variability due to structural changes produced by varying internal magnetic fields of arbitrary configurations. Specifically, we are interested in modeling the effects of a dynamo-type field on the detailed internal structure and on the global parameters of the Sun. The high precision is required both to model very small solar changes (of order of $10^{-4}$) and short time scales (or order of one year). It is accomplished by using the mass coordinate to replace the radial coordinate, by using fixed and adjustable time steps, a realistic stellar atmosphere, elements diffusion, and by adjusting the grid points. We have also built into the code the potential to subsequently include rotation and turbulence. The current code has been tested for several cases, including its ability to reproduce the 1-D results.
Nuclear relativistic Hartree-Fock calculations including pions interacting with a scalar field
Marcos, S.; Lopez-Quelle, M.; Niembro, R.; Savushkin, L. N. [Departamento de Fisica Moderna, Universidad de Cantabria, Santander (Spain); Departamento de Fisica Aplicada, Universidad de Cantabria, Santander (Spain); Departamento de Fisica Moderna, Universidad de Cantabria, Santander (Spain); Department of Physics, St. Petersburg University for Telecommunications, St. Petersburg (Russian Federation)
2012-10-20T23:59:59.000Z
The effect of pions on the nuclear shell structure is analyzed in a relativistic Hartree-Fock approximation (RHFA). The Lagrangian includes, in particular, a mixture of {pi}N pseudoscalar (PS) and pseudovector (PV) couplings, self-interactions of the scalar field {sigma} and a {sigma} - {pi} interaction that dresses pions with an effective mass (m*{sub {pi}}). It is found that an increase of m*{sub {pi}} strongly reduces the unrealistic effect of pions, keeping roughly unchanged their contribution to the total binding energy.
Self consistent kinetic simulations of SPT and HEMP thrusters including the near-field plume region
Matyash, K; Mutzke, A; Kalentev, O; Taccogna, F; Koch, N; Schirra, M
2009-01-01T23:59:59.000Z
The Particle-in-Cell (PIC) method was used to study two different ion thruster concepts - Stationary Plasma Thrusters (SPT) and High Efficiency Multistage Plasma Thrusters (HEMP-T), in particular the plasma properties in the discharge chamber due to the different magnetic field configurations. Special attention was paid to the simulation of plasma particle fluxes on the thrusters channel surfaces. In both cases, PIC proved itself as a powerful tool, delivering important insight into the basic physics of the different thruster concepts. The simulations demonstrated that the new HEMP thruster concept allows for a high thermal efficiency due to both minimal energy dissipation and high acceleration efficiency. In the HEMP thruster the plasma contact to the wall is limited only to very small areas of the magnetic field cusps, which results in much smaller ion energy flux to the thruster channel surface as compared to SPT. The erosion yields for dielectric discharge channel walls of SPT and HEMP thrusters were calc...
Solar Energy Education. Home economics: teacher's guide. Field test edition. [Includes glossary
Not Available
1981-06-01T23:59:59.000Z
An instructional aid is provided for home economics teachers who wish to integrate the subject of solar energy into their classroom activities. This teacher's guide was produced along with the student activities book for home economics by the US Department of Energy Solar Energy Education. A glossary of solar energy terms is included. (BCS)
Solar Energy Education. Industrial arts: teacher's guide. Field test edition. [Includes glossary
Not Available
1981-05-01T23:59:59.000Z
An instructional aid is presented which integrates the subject of solar energy into the classroom study of industrial arts. This guide for teachers was produced in addition to the student activities book for industrial arts by the USDOE Solar Energy Education. A glossary of solar energy terms is included. (BCS)
Polly, David
G429 Clothing/Equipment/Supply List Clothing Field clothes, field boots, and field equipment field day, a windbreaker over a sweater or sweatshirt is a more versatile field dress than a heavy Water shoes (tevas or old tennis shoes) for use in G429e and/or recreation o Flip flops (optional
Polly, David
G433 Clothing/Equipment/Supply List Clothing Field clothes, field boots, and field equipment field day, a windbreaker over a sweater or sweatshirt is a more versatile field dress than a heavy Water shoes (tevas or old tennis shoes) o Flip flops (optional) for shower area o Scree Gaitors
Polly, David
G429 Clothing/Equipment/Supply List Clothing Field clothes, field boots, and field equipment field day, a windbreaker over a sweater or sweatshirt is a more versatile field dress than a heavy Water shoes (tevas or old tennis shoes) o Flip flops (optional) for shower area o Scree Gaitors
Polly, David
G433 Clothing/Equipment/Supply List Clothing Field clothes, field boots, and field equipment field day, a windbreaker over a sweater or sweatshirt is a more versatile field dress than a heavy Water shoes (tevas or old tennis shoes) o Flip flops (optional) for shower area o Scree Gaitors
Abhijit Dandekar; Shirish Patil; Santanu Khataniar
2008-12-31T23:59:59.000Z
Numerous early reports on experimental works relating to the role of wettability in various aspects of oil recovery have been published. Early examples of laboratory waterfloods show oil recovery increasing with increasing water-wetness. This result is consistent with the intuitive notion that strong wetting preference of the rock for water and associated strong capillary-imbibition forces gives the most efficient oil displacement. This report examines the effect of wettability on waterflooding and gasflooding processes respectively. Waterflood oil recoveries were examined for the dual cases of uniform and non-uniform wetting conditions. Based on the results of the literature review on effect of wettability and oil recovery, coreflooding experiments were designed to examine the effect of changing water chemistry (salinity) on residual oil saturation. Numerous corefloods were conducted on reservoir rock material from representative formations on the Alaska North Slope (ANS). The corefloods consisted of injecting water (reservoir water and ultra low-salinity ANS lake water) of different salinities in secondary as well as tertiary mode. Additionally, complete reservoir condition corefloods were also conducted using live oil. In all the tests, wettability indices, residual oil saturation, and oil recovery were measured. All results consistently lead to one conclusion; that is, a decrease in injection water salinity causes a reduction in residual oil saturation and a slight increase in water-wetness, both of which are comparable with literature observations. These observations have an intuitive appeal in that water easily imbibes into the core and displaces oil. Therefore, low-salinity waterfloods have the potential for improved oil recovery in the secondary recovery process, and ultra low-salinity ANS lake water is an attractive source of injection water or a source for diluting the high-salinity reservoir water. As part of the within-scope expansion of this project, cyclic water injection tests using high as well as low salinity were also conducted on several representative ANS core samples. These results indicate that less pore volume of water is required to recover the same amount of oil as compared with continuous water injection. Additionally, in cyclic water injection, oil is produced even during the idle time of water injection. It is understood that the injected brine front spreads/smears through the pores and displaces oil out uniformly rather than viscous fingering. The overall benefits of this project include increased oil production from existing Alaskan reservoirs. This conclusion is based on the performed experiments and results obtained on low-salinity water injection (including ANS lake water), vis-a-vis slightly altering the wetting conditions. Similarly, encouraging cyclic water-injection test results indicate that this method can help achieve residual oil saturation earlier than continuous water injection. If proved in field, this would be of great use, as more oil can be recovered through cyclic water injection for the same amount of water injected.
Li Linghuai; Sofia, Sabatino; Basu, Sarbani; Demarque, Pierre [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Ventura, Paolo [INAF, Osservatorio Astronomico di Roma, 00040 Monteporzio Catone (Italy); Penza, Valentina [Universita Di Roma 'Tor Vergata', Via Della Ricerca Scientifica 1, 00133 Roma (Italy); Bi Shaolan [Department of Astronomy, Beijing Normal University, Beijing 100875 (China)], E-mail: li@astro.yale.edu
2009-06-15T23:59:59.000Z
In the second paper of this series we pursue two objectives. First, in order to make the code more sensitive to small effects, we remove many approximations made in Paper I. Second, we include turbulence and rotation in the two-dimensional framework. The stellar equilibrium is described by means of a set of five differential equations, with the introduction of a new dependent variable, namely the perturbation to the radial gravity, that is found when the nonradial effects are considered in the solution of the Poisson equation. Following the scheme of the first paper, we write the equations in such a way that the two-dimensional effects can be easily disentangled. The key concept introduced in this series is the equipotential surface. We use the underlying cause-effect relation to develop a recurrence relation to calculate the equipotential surface functions for uniform rotation, differential rotation, rotation-like toroidal magnetic fields, and turbulence. We also develop a more precise code to numerically solve the two-dimensional stellar structure and evolution equations based on the equipotential surface calculations. We have shown that with this formulation we can achieve the precision required by observations by appropriately selecting the convergence criterion. Several examples are presented to show that the method works well. Since we are interested in modeling the effects of a dynamo-type field on the detailed envelope structure and global properties of the Sun, the code has been optimized for short timescales phenomena (down to 1 yr). The time dependence of the code has so far been tested exclusively to address such problems.
Linghuai Li; Sabatino Sofia; Paolo Ventura; Valentina Penza; Shaolan Bi; Sarbani Basu; Pierre Demarque
2008-10-27T23:59:59.000Z
In the second paper of this series we pursue two objectives. First, in order to make the code more sensitive to small effects, we remove many approximations made in Paper I. Second, we include turbulence and rotation in the two-dimensional framework. The stellar equilibrium is described by means of a set of five differential equations, with the introduction of a new dependent variable, namely the perturbation to the radial gravity, that is found when the non-radial effects are considered in the solution of the Poisson equation; following the scheme of the first paper, we write the equations in such a way that the two-dimensional effects can be easily disentangled. The key concept introduced in this series is the equipotential surface. We use the underlying cause-effect relation to develop a recurrence relation to calculate the equipotential surface functions for uniform rotation, differential rotation, rotation-like toroidal magnetic fields and turbulence. We also develop a more precise code to numerically solve the two-dimensional stellar structure and evolution equations based on the equipotential surface calculations. We have shown that with this formulation we can achieve the precision required by observations by appropriately selecting the convergence criterion. Several examples are presented to show that the method works well. Since we are interested in modeling the effects of a dynamo-type field on the detailed envelope structure and global properties of the Sun, the code has been optimized for short timescales phenomena (down to 1 yr). The time dependence of the code has so far been tested exclusively to address such problems.
Gerold Doyen; Deiana Drakova
2014-08-12T23:59:59.000Z
We construct a world model consisting of a matter field living in 4 dimensional spacetime and a gravitational field living in 11 dimensional spacetime. The seven hidden dimensions are compactified within a radius estimated by reproducing the particle - wave characteristic of diffraction experiments. In the presence of matter fields the gravitational field develops localized modes with elementary excitations called gravonons which are induced by the sources (massive particles). The final world model treated here contains only gravonons and a scalar matter field. The solution of the Schroedinger equation for the world model yields matter fields which are localized in the 4 dimensional subspace. The localization has the following properties: (i) There is a chooser mechanism for the selection of the localization site. (ii) The chooser selects one site on the basis of minor energy differences and differences in the gravonon structure between the sites, which appear statistical. (iii) The changes from one localization site to a neighbouring one take place in a telegraph-signal like manner. (iv) The times at which telegraph like jumps occur dependent on subtleties of the gravonon structure which appear statistical. (v) The fact that the dynamical law acts in the configuration space of fields living in 11 dimensional spacetime lets the events observed in 4 dimensional spacetime appear non-local. In this way the phenomenology of Copenhagen quantum mechanics is obtained without the need of introducing the process of collapse and a probabilistic interpretation of the wave function. Operators defining observables need not be introduced. All experimental findings are explained in a deterministic way as a consequence of the time development of the wave function in configuration space according to Schroedinger's equation.
Fernandez, Eduardo
All majors in geology are required to complete GLY 4750 (Field Methods) which includes classroom lectures on Appalachian Geology, a nine day trip to the Southern Appalachians, and two oneday field trips geological data and interpretations, and requires the student to demonstrate proficiency in integrating
Yasinsac, Alec
1 1. Introduction Ad hoc networks are a hot research topic. The enabling technology for this field, with their computers turned on and connected. Ad hoc networks are a natural result of user demand meeting the enabling technology. Highly mobile devices that dynamically organize ad hoc networks, intercommunicate, pass
Sobol, A.V.; Fedotov, A.; Bruhwiler, D.L.; Bell, G.I.; Litvinenko, V.
2010-09-24T23:59:59.000Z
The orders-of-magnitude higher luminosities required by future electron-ion collider concepts require a dissipative force to counteract the numerous factors acting to gradually increase the phase space volume of relativistic ion beams. High-energy electron cooling systems could provide the necessary dissipation via dynamical friction, but will have to be designed for new parameter regimes. It is expected that magnetic field errors, finite interaction time and other effects will reduce the dynamical friction and hence increase the cooling time, so improved understanding of the underlying dynamics is important. We present a generalized form of the classical field-free friction force equation, which conveniently captures some of these effects. Previous work (Bell et al 2008 J. Comput. Phys. 227 8714) shows both numerical and conceptual subtleties associated with undersampling of strong collisions, and we present a rigorous mathematical treatment of such difficulties, based on the use of a modified Pareto distribution for the electron-ion impact parameters. We also present a very efficient numerical algorithm for calculating the dynamical friction on a single ion in the field free case. For the case of arbitrary magnetic field errors, we present numerical simulation results, showing agreement with our generalized friction force formula.
A. W. Beckwith
2006-01-11T23:59:59.000Z
We previously showed that we can use di quark pairs as a model of how nucleation of a new universe occurs. We now can construct a model showing evolution from a dark matter dark energy mix to a pure cosmological constant cosmology due to changes in the slope of the resulting scalar field,using much of Scherrer's k-essence model.This same construction permits a use of the speed of sound,in k-essence models evolving from zero to one. Having the sound speed eventually reach unity permits matching conventional cosmological observations in the aftermath of change of slope of a di quark pair generated scalar field during the nucleation process of a new universe. These results are consistent with applying Bunyi and Hu's semi classical criteria for cosmological potentials to indicate a phase transition alluded to by Dr. Edward Kolbs model of how the initial degrees of freedom declined from over 100 to something approaching what we see today in flat space cosmology.
M. Zalewski; J. Dobaczewski; W. Satula; T. R. Werner
2008-01-07T23:59:59.000Z
A new strategy of fitting the coupling constants of the nuclear energy density functional is proposed, which shifts attention from ground-state bulk to single-particle properties. The latter are analyzed in terms of the bare single-particle energies and mass, shape, and spin core-polarization effects. Fit of the isoscalar spin-orbit and both isoscalar and isovector tensor coupling constants directly to the f5/2-f7/2 spin-orbit splittings in 40Ca, 56Ni, and 48Ca is proposed as a practical realization of this new programme. It is shown that this fit requires drastic changes in the isoscalar spin-orbit strength and the tensor coupling constants as compared to the commonly accepted values but it considerably and systematically improves basic single-particle properties including spin-orbit splittings and magic-gap energies. Impact of these changes on nuclear binding energies is also discussed.
SAGEWASP. Optimal Electric Utility Expansion
Clark, P.D.II; Ullrich, C.J. [Lakeland Electric and Water, FL (United States)
1989-10-10T23:59:59.000Z
SAGE-WASP is designed to find the optimal generation expansion policy for an electrical utility system. New units can be automatically selected from a user-supplied list of expansion candidates which can include hydroelectric and pumped storage projects. The existing system is modeled. The calculational procedure takes into account user restrictions to limit generation configurations to an area of economic interest. The optimization program reports whether the restrictions acted as a constraint on the solution. All expansion configurations considered are required to pass a user supplied reliability criterion. The discount rate and escalation rate are treated separately for each expansion candidate and for each fuel type. All expenditures are separated into local and foreign accounts, and a weighting factor can be applied to foreign expenditures.
Load regulating expansion fixture
Wagner, L.M.; Strum, M.J.
1998-12-15T23:59:59.000Z
A free standing self contained device for bonding ultra thin metallic films, such as 0.001 inch beryllium foils is disclosed. The device will regulate to a predetermined load for solid state bonding when heated to a bonding temperature. The device includes a load regulating feature, whereby the expansion stresses generated for bonding are regulated and self adjusting. The load regulator comprises a pair of friction isolators with a plurality of annealed copper members located therebetween. The device, with the load regulator, will adjust to and maintain a stress level needed to successfully and economically complete a leak tight bond without damaging thin foils or other delicate components. 1 fig.
Load regulating expansion fixture
Wagner, Lawrence M. (San Jose, CA); Strum, Michael J. (San Jose, CA)
1998-01-01T23:59:59.000Z
A free standing self contained device for bonding ultra thin metallic films, such as 0.001 inch beryllium foils. The device will regulate to a predetermined load for solid state bonding when heated to a bonding temperature. The device includes a load regulating feature, whereby the expansion stresses generated for bonding are regulated and self adjusting. The load regulator comprises a pair of friction isolators with a plurality of annealed copper members located therebetween. The device, with the load regulator, will adjust to and maintain a stress level needed to successfully and economically complete a leak tight bond without damaging thin foils or other delicate components.
Self-similar expansion of a warm dense plasma
Djebli, Mourad [USTHB, Faculty of Physics, Theoretical Physics Laboratory, B.P. 32 Bab-Ezzouar, 16079 Algiers (Algeria)] [USTHB, Faculty of Physics, Theoretical Physics Laboratory, B.P. 32 Bab-Ezzouar, 16079 Algiers (Algeria); Moslem, Waleed M. [Department of Physics, Faculty of Science, Port Said University, Port Said (Egypt)] [Department of Physics, Faculty of Science, Port Said University, Port Said (Egypt)
2013-07-15T23:59:59.000Z
The properties of an expanding plasma composed of degenerate electron fluid and non-degenerate ions are studied. For our purposes, we use fluid equations for ions together with the electron momentum equation that include quantum forces (e.g., the quantum statistical pressure, forces due to the electron-exchange and electron correlations effects) and the quasi-neutrality condition. The governing equation is written in a tractable form by using a self-similar transformation. Numerical results for typical beryllium plasma parameters revealed that, during the expansion, the ion acoustic speed decreases for both isothermal and adiabatic ion pressure. When compared with classical hydrodynamic plasma expansion model, the electrons and ions are found to initially escape faster in vacuum creating thus an intense electric field that accelerates most of the particles into the vacuum ahead of the plasma expansion. The relevancy of the present model to beryllium plasma produced by a femto-second laser is highlighted.
Polly, David
G429/429e/G429g Clothing, Equipment, Supply List Clothing Field clothes, field boots, and field than a heavy jacket over just a t- shirt. At least two pairs of hiking or work boots are strongly suit (optional) o Water shoes (tevas or old tennis shoes) for use in G429e and/or recreation o Flip
Including Outsiders: Social Policy Expansion in Latin America
Garay, Maria Candelaria
2010-01-01T23:59:59.000Z
unrest. In the 1920s, Alessandri of the conservative partya military coup forced Alessandri to pass social legislation
Including Outsiders: Social Policy Expansion in Latin America
Garay, Maria Candelaria
2010-01-01T23:59:59.000Z
Change in Chile and Uruguay, 1973-1998, PhD Dissertation,República Oriental del Uruguay. 1999. Diario de Sesiones deRepública Oriental del Uruguay. 2003. Diario de Sesiones de
Including Outsiders: Social Policy Expansion in Latin America
Garay, Maria Candelaria
2010-01-01T23:59:59.000Z
Ações e programas do governo federal. Brasilia, July.mínima,? JdoB 02/12/1993; ?Governo pode adotar no ano queCB 03/16/2003; CB 05/20/2003; ?Governo saberá contrariar
Including Outsiders: Social Policy Expansion in Latin America
Garay, Maria Candelaria
2010-01-01T23:59:59.000Z
CUT FV IMSS MDSCF MIDEPLAN PAN PDC PFL PHM PJ PT PPD PS PSDBChristian Democratic Party (PDC) intensified competition inOxhorn 1995). In fact the PDC managed to form an electoral
Systematic expansion of porous crystals to include large molecules | Center
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Burst BufferFluorite TopologyPlasma Physicsfor
Including Outsiders: Social Policy Expansion in Latin America
Garay, Maria Candelaria
2010-01-01T23:59:59.000Z
which characterize policies in Argentina and Brazil. Socialin almost all policy areas in Argentina and Brazil, and lesscontrasts in policy models among Argentina and Brazil—which
Earth pressures and deformations in civil infrastructure in expansive soils
Hong, Gyeong Taek
2008-10-10T23:59:59.000Z
This dissertation includes the three major parts of the study: volume change, and lateral earth pressure due to suction change in expansive clay soils, and design of civil infrastructure drilled pier, retaining wall and pavement in expansive soils...
A test of Taylor- and modified Taylor-expansion
Max Wilfling; Christof Gattringer
2014-04-08T23:59:59.000Z
We compare Taylor expansion and a modified variant of Taylor expansion, which incorporates features of the fugacity series, for expansions in the chemical potential around a zero-density lattice field theory. As a first test we apply both series to the cases of free fermions and free bosons. Convergence and other properties are analyzed.
Grid cell firing patterns signal environmental novelty by expansion
Burgess, Neil
Grid cell firing patterns signal environmental novelty by expansion Caswell Barrya,b,c,1 , Lin Lin novelty causes the spatial firing patterns of grid cells to expand in scale and reduce in regularity firing fields remapped and showed a smaller, temporary expansion. Grid expansion provides a potential
Calculate thermal-expansion coefficients
Yaws, C.L. [Lamar Univ., Beaumont, TX (United States)
1995-08-01T23:59:59.000Z
To properly design and use process equipment, an engineer needs a sound knowledge of physical and thermodynamic property data. A lack of such knowledge can lead to design or operating mistakes that can be dangerous, costly or even fatal. One useful type of property data is the thermal-expansion coefficient. This article presents equations and tables to find the thermal-expansion coefficients of many liquids that contain carbon. These data are useful in process-engineering applications, including the design of relief systems which are crucial to safeguarding process equipment. Data are provided for approximately 350 compounds. A computer software program, which contains the thermophysical property data for all of the compounds discussed in this article, is available for $43 prepaid from the author (Carl L. Yaws, Box 10053, Lamar University, beaumont, TX 77710; Tel. 409-880-8787; fax 409-880-8404). The program is in ASCII format, which can be accessed by most other types of computer software.
Simons, Jack
Chapter 19 Corrections to the mean-field model are needed to describe the instantaneous Coulombic-Fock (UHF) theory in which each spin-orbital i has its own orbital energy i and LCAO-MO coefficients C flexible than the single-determinant HF procedure are needed. In particular, it may be necessary to use
Walsworth, Ronald L.
, Marseille, France. doi:10.1016/j.mri.2007.01.021 Improved noble gas polarization production for porous, University of Nottingham, c Department of Physics, Harvard University Laser-polarized xenon NMR and MRI in granular systems including fluidized beds [2]; (iii) more general two-phase fluid dynamics studies
Mendell, Mark; Eliseeva, Ekaterina; Spears, Michael; Fisk, William J.
2009-06-01T23:59:59.000Z
We developed and pilot-tested an overall protocol for intervention studies to evaluate the effects of indoor environmental changes in office buildings on the health symptoms and comfort of occupants. The protocol includes a web-based survey to assess the occupant's responses, as well as specific features of study design and analysis. The pilot study, carried out on two similar floors in a single building, compared two types of ventilation system filter media. With support from the building's Facilities staff, the implementation of the filter change intervention went well. While the web-based survey tool worked well also, low overall response rates (21-34percent among the three work groups included) limited our ability to evaluate the filter intervention., The total number of questionnaires returned was low even though we extended the study from eight to ten weeks. Because another simultaneous study we conducted elsewhere using the same survey had a high response rate (>70percent), we conclude that the low response here resulted from issues specific to this pilot, including unexpected restrictions by some employing agencies on communication with occupants.
Guzek, J.C.; Lujan, R.A.
1984-01-01T23:59:59.000Z
Disclosed is a cooler for television cameras and other temperature sensitive equipment. The cooler uses compressed gas ehich is accelerated to a high velocity by passing it through flow passageways having nozzle portions which expand the gas. This acceleration and expansion causes the gas to undergo a decrease in temperature thereby cooling the cooler body and adjacent temperature sensitive equipment.
Wisconsin at Madison, University of
://www.colonialclub.org/volunteer/ Teach a craft or hobby to Adult Day Center participants. Must be interested in working with the frailThis list includes a sampling of volunteer opportunities and organizations working in the field of Art. These opportunities may be suitable for students majoring or interested in these areas. You can
Wisconsin at Madison, University of
important to our animals and their habitats. Depending on interest and availability, volunteers may workThis list includes a sampling of volunteer opportunities and organizations working in the field of agriculture. These opportunities may be suitable for students majoring or interested in these areas. You can
Sheridan, Jennifer
to our animals and their habitats. Depending on interest and availability, volunteers may work aloneThis list includes a sampling of volunteer opportuni es and organiza ons working in the field of agriculture. These opportuni es may be suitable for students majoring or interested in these areas. You can
Wisconsin at Madison, University of
This list includes a sampling of volunteer opportunities and organizations working in the field of business. These opportunities may be suitable for students majoring or interested in these areas. You can, and Education. This unique opportunity will pair you with someone who is currently working on a specific
Wisconsin at Madison, University of
This list includes a sampling of volunteer opportunities and organizations working in the environ- mental studies field. These opportunities may be suitable for students majoring or interested restoration team members assist and work alongside the Arboretum's Filed Staff to carry out ecological resto
Wisconsin at Madison, University of
nights. Volunteers are required to have an interest in science and in working with young children and be a positive adult role model. Volunteers must be interested in working with diverse populations and buildThis list includes a sampling of volunteer opportunities and organizations working in the field
Wisconsin at Madison, University of
This list includes a sampling of volunteer opportunities and organizations working in the field of Spanish. These opportunities may be suitable for students majoring or interested in these areas. You can to coming in and working with students to promote the importance of an education and making good choices
China petrochemical expansion progressing
Not Available
1991-08-05T23:59:59.000Z
This paper reports on China's petrochemical expansion surge which is picking up speed. A worldscale petrochemical complex is emerging at Shanghai with an eye to expanding China's petrochemical exports, possibly through joint ventures with foreign companies, China Features reported. In other action, Beijing and Henan province have approved plans for a $1.2 billion chemical fibers complex at the proposed Luoyang refinery, China Daily reported.
Infra-red divergences in the large-N expansion
Bortolo Matteo Mognetti
2007-03-20T23:59:59.000Z
We investigate a vectorial O(N) model with a generic nearest-neighbor interaction W(\\bsigma_i\\cdot \\bsigma_j) (depending on {\\cal N} tunable parameters), a Yukawa (and Gross Neveu) model with N_f fermions at finite temperature and the vectorial \\phi^6 model, in the large N (N_f) limit. All this models exhibit a Mean Field critical point for N=\\infinity. When 1/N fluctuations are included, infra red divergences appear near the critical point. In the framework of a generalized 1/N expansion we show that these divergences are related to a universal crossover mechanism between the Mean Field universality class (N=\\infinity) and the nonclassical one for N<\\infinity. For the generic nearest-neighbor interaction multicritical points are also investigated.
AIAA 20030185 Aerodynamically Controlled Expansion
Texas at Arlington, University of
undesirable over-expansion in generalized supersonic nozzle flows. Nomenclature A cross-sectional area fgAIAA 20030185 Aerodynamically Controlled Expansion Nozzle for STOVL Aircraft D.A. Terrier Lockheed Controlled Expansion Nozzle for STOVL Aircraft Douglas A. Terrier* Lockheed Martin Aeronautics Company, Fort
Dark Energy, Expansion History of the Universe, and SNAP
Eric V. Linder
2003-02-03T23:59:59.000Z
This talk presents a pedagogical discussion of how precision distance-redshift observations can map out the recent expansion history of the universe, including the present acceleration and the transition to matter dominated deceleration. The proposed Supernova/Acceleration Probe (SNAP) will carry out observations determining the components and equations of state of the energy density, providing insights into the cosmological model, the nature of the accelerating dark energy, and potentially clues to fundamental high energy physics theories and gravitation. This includes the ability to distinguish between various dynamical scalar field models for the dark energy, as well as higher dimension and alternate gravity theories. A new, advantageous parametrization for the study of dark energy to high redshift is also presented.
Non-minimal Kinetic coupling to gravity and accelerated expansion
L. N. Granda
2009-11-19T23:59:59.000Z
We study a scalar field with kinetic term coupled to itself and to the curvature, as a source of dark energy, and analyze the role of this new coupling in the accelerated expansion at large times. In the case of scalar field dominance, the scalar field and potential giving rise to power-law expansion are found in some cases, and a dynamical equation of state is calculated for a given solution of the field equations. A behavior very close to that of the cosmological constant was found.
Expansion of the Volpentest Hazardous Materials Management and...
Broader source: Energy.gov (indexed) [DOE]
federal, state, and private lands. A total of 60,254 acres (24,384 hectares) within the Hanford Site burned, including areas in and around the HAMMER expansion. Fire suppression...
Warp Drive With Zero Expansion
Jose Natario
2002-03-13T23:59:59.000Z
It is commonly believed that Alcubierre's warp drive works by contracting space in front of the warp bubble and expanding space behind it. We show that this expansion/contraction is but a marginal consequence of the choice made by Alcubierre, and explicitly construct a similar spacetime where no contraction/expansion occurs. Global and optical properties of warp drive spacetimes are also discussed.
Locally-smeared operator product expansions
Monahan, Christopher; Orginos, Kostantinos
2014-12-01T23:59:59.000Z
We propose a "locally-smeared Operator Product Expansion" (sOPE) to decompose non-local operators in terms of a basis of locally-smeared operators. The sOPE formally connects nonperturbative matrix elements of smeared degrees of freedom, determined numerically using the gradient flow, to non-local operators in the continuum. The nonperturbative matrix elements do not suffer from power-divergent mixing on the lattice, provided the smearing scale is kept fixed in the continuum limit. The presence of this smearing scale prevents a simple connection to the standard operator product expansion and therefore requires the construction of a two-scale formalism. We demonstrate the feasibility of our approach using the example of real scalar field theory.
Energy recovery during expansion of compressed gas using power plant low-quality heat sources
Ochs, Thomas L. (Albany, OR); O'Connor, William K. (Lebanon, OR)
2006-03-07T23:59:59.000Z
A method of recovering energy from a cool compressed gas, compressed liquid, vapor, or supercritical fluid is disclosed which includes incrementally expanding the compressed gas, compressed liquid, vapor, or supercritical fluid through a plurality of expansion engines and heating the gas, vapor, compressed liquid, or supercritical fluid entering at least one of the expansion engines with a low quality heat source. Expansion engines such as turbines and multiple expansions with heating are disclosed.
Internship Contract (Includes Practicum)
Thaxton, Christopher S.
Internship Contract (Includes Practicum) Student's name-mail: _________________________________________ Internship Agency Contact Agency Name: ____________________________________ Address-mail: __________________________________________ Location of Internship, if different from Agency: ________________________________________________ Copies
Capricious Cables: Understanding the Key Concepts in Transmission Expansion Planning and Its Models
Donohoo, P.; Milligan, M.
2014-06-01T23:59:59.000Z
The extra-high-voltage transmission network is the bulk transport network of the electric power system. To understand how the future power system may react to planning decisions today, wide-area transmission models are increasingly used to aid decision makers and stakeholders. The goal of this work is to illuminate these models for a broader audience that may include policy makers or relative newcomers to the field of transmission planning. This paper explains the basic transmission expansion planning model formulation. It highlights six of the major simplifications made in transmission expansion planning models and the resulting need to contextualize model results using knowledge from other models and knowledge not captured in the modeling process.
Residential construction on expansive soils
Phipps, James Frederick
1993-01-01T23:59:59.000Z
Residences founded on expansive soils experience billions of dollars each year in damage caused by the heaving and shrinking of the foundation soils. It is thought that stiffening the foundation, while increasing the cost of the home, will save...
Pump apparatus including deconsolidator
Sonwane, Chandrashekhar; Saunders, Timothy; Fitzsimmons, Mark Andrew
2014-10-07T23:59:59.000Z
A pump apparatus includes a particulate pump that defines a passage that extends from an inlet to an outlet. A duct is in flow communication with the outlet. The duct includes a deconsolidator configured to fragment particle agglomerates received from the passage.
Simplified expansions for radiation from a baffled circular piston
Mast, T. Douglas
Simplified expansions for radiation from a baffled circular piston T. Douglas Mast Department from a baffled circular piston continues be an active area of investigation, both as a canonical computations of piston fields in lossless and attenuative fluid media. For the region r a, where
THE EXPANSION OF ACTIVE REGIONS INTO THE EXTENDED SOLAR CORONA
Morgan, Huw; Jeska, Lauren; Leonard, Drew, E-mail: hmorgan@aber.ac.uk [Sefydliad Mathemateg a Ffiseg, Prifysgol Aberystwyth, Ceredigion SY23 3BZ (United Kingdom)
2013-06-01T23:59:59.000Z
Advanced image processing of Large Angle and Spectrometric Coronagraph Experiment (LASCO) C2 observations reveals the expansion of the active region closed field into the extended corona. The nested closed-loop systems are large, with an apparent latitudinal extent of 50 Degree-Sign , and expanding to heights of at least 12 R{sub Sun }. The expansion speeds are {approx}10 km s{sup -1} in the AIA/SDO field of view, below {approx}20 km s{sup -1} at 2.3 R{sub Sun }, and accelerate linearly to {approx}60 km s{sup -1} at 5 R{sub Sun }. They appear with a frequency of one every {approx}3 hr over a time period of around three days. They are not coronal mass ejections (CMEs) since their gradual expansion is continuous and steady. They are also faint, with an upper limit of 3% of the brightness of background streamers. Extreme ultraviolet images reveal continuous birth and expansion of hot, bright loops from a new active region at the base of the system. The LASCO images show that the loops span a radial fan-like system of streamers, suggesting that they are not propagating within the main coronal streamer structure. The expanding loops brighten at low heights a few hours prior to a CME eruption, and the expansion process is temporarily halted as the closed field system is swept away. Closed magnetic structures from some active regions are not isolated from the extended corona and solar wind, but can expand to large heights in the form of quiescent expanding loops.
Indian Policy and Westward Expansion
Malin, James Claude
1921-11-01T23:59:59.000Z
and the in vestigation of his activity on that committee led to a study of Indian policy in the Trans-Mississippi Valley and its relation to the westward movement. This latter problem, begun as a phase of Atchison's career in the Senate, de veloped into one... policy and its relation to westward expansion now furnish a frame-work upon which the history of the Trans-Mississippi Valley before the Civil War may be written. The period is given a unity otherwise impossible and a foundation is laid upon which...
OMV studies ethylene expansion in Germany
NONE
1996-10-23T23:59:59.000Z
OMV(Vienna) is evaluating plans to debottleneck its ethylene plant at Burghausen from 310,000 m.t./year to at least 400,000 m.t./year. Senior v.p. Jochen Berger says OMV is studying the limits to which the cracker can be expanded. {open_quotes}We`re pretty sure we can go to 400,000 m.t./year, but in two months we`ll have a better idea,{close_quotes} says Berger. The expansion will also depend on the future requirements of downstream operations at the Burghausen site, which include OMV plastics subsidiary PCD`s high-density polyethylene and polypropylene units and the vinyl chloride monomer and polyvinyl chloride units operated by Hoechst-Wacker joint venture Vinnolit.
EMPIRE ULTIMATE EXPANSION: RESONANCES AND COVARIANCES.
HERMAN,M.; MUGHABGHAB, S.F.; OBLOZINSKY, P.; ROCHMAN, D.; PIGNI, M.T.; KAWANO, T.; CAPOTE, R.; ZERKIN, V.; TRKOV, A.; SIN, M.; CARSON, B.V.; WIENKE, H. CHO, Y.-S.
2007-04-22T23:59:59.000Z
The EMPIRE code system is being extended to cover the resolved and unresolved resonance region employing proven methodology used for the production of new evaluations in the recent Atlas of Neutron Resonances. Another directions of Empire expansion are uncertainties and correlations among them. These include covariances for cross sections as well as for model parameters. In this presentation we concentrate on the KALMAN method that has been applied in EMPIRE to the fast neutron range as well as to the resonance region. We also summarize role of the EMPIRE code in the ENDF/B-VII.0 development. Finally, large scale calculations and their impact on nuclear model parameters are discussed along with the exciting perspectives offered by the parallel supercomputing.
Generating expansion model incorporating compact DC power flow equations
Nderitu, D.G.; Sparrow, F.T.; Yu, Z. [Purdue Inst. for Interdisciplinary Engineering Studies, West Lafayette, IN (United States)
1998-12-31T23:59:59.000Z
This paper presents a compact method of incorporating the spatial dimension into the generation expansion problem. Compact DC power flow equations are used to provide real-power flow coordination equations. Using these equations the marginal contribution of a generator to th total system loss is formulated as a function of that generator`s output. Incorporating these flow equations directly into the MIP formulation of the generator expansion problem results in a model that captures a generator`s true net marginal cost, one that includes both the cost of generation and the cost of transport. This method contrasts with other methods that iterate between a generator expansion model and an optimal power flow model. The proposed model is very compact and has very good convergence performance. A case study with data from Kenya is used to provide a practical application to the model.
Gyrification from constrained cortical expansion
Tuomas Tallinen; Jun Young Chung; John S. Biggins; L. Mahadevan
2015-03-12T23:59:59.000Z
The exterior of the mammalian brain - the cerebral cortex - has a conserved layered structure whose thickness varies little across species. However, selection pressures over evolutionary time scales have led to cortices that have a large surface area to volume ratio in some organisms, with the result that the brain is strongly convoluted into sulci and gyri. Here we show that the gyrification can arise as a nonlinear consequence of a simple mechanical instability driven by tangential expansion of the gray matter constrained by the white matter. A physical mimic of the process using a layered swelling gel captures the essence of the mechanism, and numerical simulations of the brain treated as a soft solid lead to the formation of cusped sulci and smooth gyri similar to those in the brain. The resulting gyrification patterns are a function of relative cortical expansion and relative thickness (compared with brain size), and are consistent with observations of a wide range of brains, ranging from smooth to highly convoluted. Furthermore, this dependence on two simple geometric parameters that characterize the brain also allows us to qualitatively explain how variations in these parameters lead to anatomical anomalies in such situations as polymicrogyria, pachygyria, and lissencephalia.
Abductive Reasoning, Belief Expansion and Nonmonotonic Consequence \\Lambda
Pagnucco, Maurice
Abductive Reasoning, Belief Expansion and Nonmonotonic Consequence \\Lambda Maurice Pagnucco Abhaya operator known as abductive expansion which adds abductive inference to the belief expansion process. They develop rationality postulates for abductive belief expansion and provide a construction in terms
Quantum fields in curved spacetime
Stefan Hollands; Robert M. Wald
2014-06-10T23:59:59.000Z
We review the theory of quantum fields propagating in an arbitrary, classical, globally hyperbolic spacetime. Our review emphasizes the conceptual issues arising in the formulation of the theory and presents known results in a mathematically precise way. Particular attention is paid to the distributional nature of quantum fields, to their local and covariant character, and to microlocal spectrum conditions satisfied by physically reasonable states. We review the Unruh and Hawking effects for free fields, as well as the behavior of free fields in deSitter spacetime and FLRW spacetimes with an exponential phase of expansion. We review how nonlinear observables of a free field, such as the stress-energy tensor, are defined, as well as time-ordered-products. The "renormalization ambiguities" involved in the definition of time-ordered products are fully characterized. Interacting fields are then perturbatively constructed. Our main focus is on the theory of a scalar field, but a brief discussion of gauge fields is included. We conclude with a brief discussion of a possible approach towards a nonperturbative formulation of quantum field theory in curved spacetime and some remarks on the formulation of quantum gravity.
Accelerated expansion from cosmological holography
van Putten, Maurice H P M
2015-01-01T23:59:59.000Z
It is shown that holographic cosmology implies an evolving Hubble radius $c^{-1}\\dot{R}_H = -1 + 3\\Omega_m$ in the presence of a dimensionless matter density $\\Omega_m$ scaled to the closure density $3H^2/8\\pi G$, where $c$ denotes the velocity of light and $H$ and $G$ denote the Hubble parameter and Newton's constant. It reveals a dynamical dark energy and a sixfold increase in gravitational attraction to matter on the scale of the Hubble acceleration. It reproduces the transition redshift $z_t\\simeq 0.4$ to the present epoch of accelerated expansion and is consistent with $(q_0,(dq/dz)_0)$ of the deceleration parameter $q(z)=q_0+(dq/dz)_0z$ observed in Type Ia supernovae.
Glass ceramics for sealing to high-thermal-expansion metals
Wilder, Jr., J. A.
1980-10-01T23:59:59.000Z
Glass ceramics were studied, formulated in the Na/sub 2/O CaO.P/sub 2/O/sub 5/, Na/sub 2/O.BaOP/sub 2/O/sub 5/, Na/sub 2/O.Al/sub 2/O/sub 3/.P/sub 2/O/sub 5/, and Li/sub 2/O.BaO.P/sub 2/O/sub 5/ systems to establish their suitability for sealing to high thermal expansion metals, e.g. aluminum, copper, and 300 series stainless steels. Glass ceramics in Na/sub 2/O.CaO.P/sub 2/O/sub 5/ and Na/sub 2/O.BaO.P/sub 2/O/sub 5/ systems have coefficients of thermal expansion in the range 140 x 10/sup -1/ per /sup 0/C less than or equal to ..cap alpha.. less than or equal to 225 x 10/sup -7/ per /sup 0/C and fracture toughness values generally greater than those of phosphate glasses; they are suitable for fabricating seals to high thermal expansion metals. Crystal phases include NaPo/sub 3/, (NaPO/sub 3/)/sub 3/, NaBa(PO/sub 3/)/sub 3/, and NaCa(PO/sub 3/)/sub 3/. Glass ceramics formed in the Na/sub 2/O.Al/sub 2/O/sub 3/.P/sub 2/O/sub 5/ systems have coefficients of thermal expansion greater than 240 x 10/sup -7/ per /sup 0/C, but they have extensive microcracking. Due to their low thermal expansion values (..cap alpha.. less than or equal to 120 x 10/sup -7/ per /sup 0/C), glass ceramics in the Li/sub 2/O.BaO.P/sub 2/O/sub 5/ system are unsuitable for sealing to high thermal expansion metals.
Cosmic Growth History and Expansion History
Linder, Eric V.
2009-01-01T23:59:59.000Z
of the expansion history dark energy equation of state,and growth history constraints on the dark energy equationand growth history constraints on the dark energy equation
Generation capacity expansion in restructured energy markets.
Nanduri, Vishnuteja
2009-01-01T23:59:59.000Z
??With a significant number of states in the U.S. and countries around the world trading electricity in restructured markets, a sizeable proportion of capacity expansion… (more)
Energy Infrastructure Events and Expansions Infrastructure Security...
Broader source: Energy.gov (indexed) [DOE]
Year-in-Review: 2010 Energy Infrastructure Events and Expansions Infrastructure Security and Energy Restoration Office of Electricity Delivery and Energy Reliability U.S....
Decays of excited baryons in the large Nc expansion of QCD
Jose Goity; Norberto Scoccola
2006-05-06T23:59:59.000Z
We present the analysis of the decay widths of excited baryons in the framework of the 1/Nc expansion of QCD. These studies are performed up to order 1/Nc and include both positive and negative parity excited baryons.
Impact of unit commitment constraints on generation expansion planning with renewables
Palmintier, Bryan Stephen
Growing use of renewables pushes thermal generators against operating constraints - e.g. ramping, minimum output, and operating reserves - that are traditionally ignored in expansion planning models. We show how including ...
Delayed Linear Expansion of Two Ultra-low Expansion Dental Stones
Oppedisano, Michael
2013-12-20T23:59:59.000Z
The purpose of this study was to measure the linear setting expansion of two ultra-low expansion dental stones used in definitive cast/ prosthesis fabrication which claim to have very low to no setting expansion. Five specimens of each material...
Matched asymptotic expansions in financial engineering
Howison, Sam
Matched asymptotic expansions in financial engineering Sam Howison OCIAM and Nomura Centre of the approach in `plain vanilla' option valuation, in valuation using a fast mean-reverting-stochastic expansions applied directly to stochastic processes of diffusion type is also proposed. Keywords: option
Multipole Expansion Model in Gravitational Lensing
T. Fukuyama; Y. Kakigi; T. Okamura
1997-01-31T23:59:59.000Z
Non-transparent models of multipole expansion model and two point-mass model are analyzed from the catastrophe theory. Singularity behaviours of $2^n$-pole moments are discussed. We apply these models to triple quasar PG1115+080 and compare with the typical transparent model, softened power law spheroids. Multipole expansion model gives the best fit among them.
Cosmic expansion and growth histories in Galileon scalar-tensor models of dark energy
Tsutomu Kobayashi
2010-05-29T23:59:59.000Z
We study models of late-time cosmic acceleration in terms of scalar-tensor theories generalized to include a certain class of non-linear derivative interaction of the scalar field. The non-linear effect suppress the scalar-mediated force at short distances to pass solar-system tests of gravity. It is found that the expansion history until today is almost indistinguishable from that of the $\\Lambda$CDM model or some (phantom) dark energy models, but the fate of the universe depends clearly on the model parameter. The growth index of matter density perturbations is computed to show that its past asymptotic value is given by 9/16, while the value today is as small as 0.4.
A Rigorous Numerical Analysis of the Transformed Field Expansion ...
2009-07-30T23:59:59.000Z
where y = ?(x, t) is the free air-fluid interface (we have replaced g with the more ...... [2] I. Babuška and S. A. Sauter, Is the pollution effect of the FEM avoidable for
An additive measure in o-minimal expansions of fields
Otero DomÃnguez, Margarita
a definition of integral. In section 4 we show that if M is 1Âsaturated, the standard part map st: Fin(Md ) Rd
An additive measure in o-minimal expansions of fields
Berarducci, Alessandro
a definition of integral. In section 4 we show that if M is @1-saturated, the standard part map st:F in
Meals included in Conference Registrations
Arnold, Jonathan
Meals included in Conference Registrations Meals included as part of the cost of a conference the most reasonable rates are obtained. Deluxe hotels and motels should be avoided. GSA rates have been for Georgia high cost areas. 75% of these amounts would be $21 for non- high cost areas and $27 for high cost
On Perturbation theory improved by Strong coupling expansion
Masazumi Honda
2014-10-13T23:59:59.000Z
In theoretical physics, we sometimes have two perturbative expansions of physical quantity around different two points in parameter space. In terms of the two perturbative expansions, we introduce a new type of smooth interpolating function consistent with the both expansions, which includes the standard Pad\\'e approximant and fractional power of polynomial method constructed by Sen as special cases. We point out that we can construct enormous number of such interpolating functions in principle while the "best" approximation for the exact answer of the physical quantity should be unique among the interpolating functions. We propose a criterion to determine the "best" interpolating function, which is applicable except some situations even if we do not know the exact answer. It turns out that our criterion works for various examples including specific heat in two-dimensional Ising model, average plaquette in four-dimensional SU(3) pure Yang-Mills theory on lattice and free energy in c=1 string theory at self-dual radius. We also mention possible applications of the interpolating functions to system with phase transition.
Tim-Torben Paetz
2014-03-14T23:59:59.000Z
We derive necessary-and-sufficient conditions on characteristic initial data for Friedrich's conformal field equations in $3+1$ dimensions to have no logarithmic terms in an asymptotic expansion at null infinity.
Design Under Uncertainty Employing Stochastic Expansion Methods
Non-intrusive polynomial chaos expansion (PCE) and stochastic collocation (SC) meth- ods and ability to produce functional representations of stochastic variability. PCE estimates coefficients with both techniques for general probabilistic analysis problems. Once PCE or SC representations have been
Low expansion superalloy with improved toughness
Smith, D.F.; Stein, L.I.; Hwang, I.S.
1995-06-20T23:59:59.000Z
A high strength, low coefficient of thermal expansion superalloy exhibiting improved toughness over a broad temperature range down to about 4 K is disclosed. The composition is adapted for use with wrought superconducting sheathing.
Major Business Expansion Bond Program (Maine)
Broader source: Energy.gov [DOE]
The Major Business Expansion Bond Program provides long-term, credit-enhanced financing up to $25,000,000 at taxable bond rates for businesses creating or retaining at least 50 jobs; up to $10,000...
Brain choline concentration: early quantitative marker of ischemia and infarct expansion?
Karaszewski, B.; Thomas, R.G.R.; Chappell, F.M.; Armitage, P.A.; Carpenter, T.K.; Lymer, G.K.S.; Dennis, M.S.; Marshall, I.; Wardlaw, J.M.
–28) there were 108 infarct "non-expansion” voxels and 113 infarct "expansion” voxels (of which 80 were “complete expansion” and 33 “partial expansion” voxels). Brain choline concentration increased for each change in expansion category from "non-expansion", via...
Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production...
Office of Environmental Management (EM)
Celebrates Expansion of Lithium-Ion Battery Production in North Carolina Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production in North Carolina July 26, 2011 -...
Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
15eswise2012p.pdf More Documents & Publications Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production Expansion of Novolyte Capacity for Lithium Ion Electrolyte...
Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
15eswise2011p.pdf More Documents & Publications Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production Expansion of Novolyte Capacity for Lithium Ion Electrolyte...
Heat Flow Database Expansion for NGDS Data Development, Collection...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Heat Flow Database Expansion for NGDS Data Development, Collection and Maintenance (SMU) Heat Flow Database Expansion for NGDS Data Development, Collection and Maintenance (SMU)...
Effective field theory for dilute fermions with pairing
Furnstahl, R.J. [Department of Physics, Ohio State University, Columbus, OH 43210 (United States)], E-mail: furnstahl.1@osu.edu; Hammer, H.-W. [Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie), Universitaet Bonn, Nussallee 14-16, D-53115 Bonn (Germany)], E-mail: hammer@itkp.uni-bonn.de; Puglia, S.J. [SBIG PLC, Berkeley Square House, London W1J 6BR (United Kingdom)], E-mail: spuglia@sbiguk.com
2007-11-15T23:59:59.000Z
Effective field theory (EFT) methods for a uniform system of fermions with short-range, natural interactions are extended to include pairing correlations, as part of a program to develop a systematic Kohn-Sham density functional theory (DFT) for medium and heavy nuclei. An effective action formalism for local composite operators leads to a free-energy functional that includes pairing by applying an inversion method order by order in the EFT expansion. A consistent renormalization scheme is demonstrated for the uniform system through next-to-leading order, which includes induced-interaction corrections to pairing.
Power generation method including membrane separation
Lokhandwala, Kaaeid A. (Union City, CA)
2000-01-01T23:59:59.000Z
A method for generating electric power, such as at, or close to, natural gas fields. The method includes conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas by means of a membrane separation step. This step creates a leaner, sweeter, drier gas, which is then used as combustion fuel to run a turbine, which is in turn used for power generation.
Effects of restraint on expansion due to delayed ettringite formation
Bouzabata, Hassina [Universite de Toulouse, UPS, INSA, LMDC (Laboratoire Materiaux et Durabilite des Constructions), 135, avenue de Rangueil, F-31 077 Toulouse Cedex 04 (France); Laboratoire Materiaux et Durabilite des Constructions, Department of Civil Engineering, University of Constantine (Algeria); Multon, Stephane, E-mail: multon@insa-toulouse.fr [Universite de Toulouse, UPS, INSA, LMDC (Laboratoire Materiaux et Durabilite des Constructions), 135, avenue de Rangueil, F-31 077 Toulouse Cedex 04 (France); Sellier, Alain [Universite de Toulouse, UPS, INSA, LMDC (Laboratoire Materiaux et Durabilite des Constructions), 135, avenue de Rangueil, F-31 077 Toulouse Cedex 04 (France); Houari, Hacene [Laboratoire Materiaux et Durabilite des Constructions, Department of Civil Engineering, University of Constantine (Algeria)
2012-07-15T23:59:59.000Z
Delayed ettringite formation (DEF) is a chemical reaction that causes expansion in civil engineering structures. The safety level of such damaged structures has to be reassessed. To do this, the mechanical conditions acting on DEF expansions have to be analysed and, in particular, the variation of strength with expansion and the effect of restraint on the DEF expansion. This paper highlights several points: DEF expansion is isotropic in stress-free conditions, compressive stresses decrease DEF expansion in the direction subjected to restraint and lead to cracks parallel to the restraint, and expansion measured in the stress-free direction of restrained specimens is not modified. Thus restraint causes a decrease of the volumetric expansion and DEF expansion under restraint is anisotropic. Moreover, the paper examines the correlation between DEF expansion and concrete damage, providing data that can be used for the quantification of the effect of stresses on DEF induced expansion.
The genome of Nectria haematococca: contribution of supernumerary chromosomes to gene expansion
Coleman, J.J.; Rounsley, S.D.; Rodriguez-Carres, M.; Kuo, A.; Wasmann, C.c.; Grimwood, J.; Schmutz, J.; Taga, M.; White, G.J.; Zhuo, S.; Schwartz, D.C.; Freitag, M.; Ma, L.-J.; Danchin, E.G.J.; Henrissat, B.; Cutinho, P.M.; Nelson, D.R.; Straney, D.; Napoli, C.A.; Baker, B.M.; Gribskov, M.; Rep, M.; Kroken, S.; Molnar, I.; Rensing, C.; Kennell, J.C.; Zamora, J.; Farman, M.L.; Selker, E.U.; Salamov, A.; Shapiro, H.; Pangilinan, J.; Lindquist, E.; Lamers, C.; Grigoriev, I.V.; Geiser, D.M.; Covert, S.F.; Temporini, S.; VanEtten, H.D.
2009-04-20T23:59:59.000Z
The ascomycetous fungus Nectria haematococca, (asexual name Fusarium solani), is a member of a group of .50 species known as the"Fusarium solani species complex". Members of this complex have diverse biological properties including the ability to cause disease on .100 genera of plants and opportunistic infections in humans. The current research analyzed the most extensively studied member of this complex, N. haematococca mating population VI (MPVI). Several genes controlling the ability of individual isolates of this species to colonize specific habitats are located on supernumerary chromosomes. Optical mapping revealed that the sequenced isolate has 17 chromosomes ranging from 530 kb to 6.52 Mb and that the physical size of the genome, 54.43 Mb, and the number of predicted genes, 15,707, are among the largest reported for ascomycetes. Two classes of genes have contributed to gene expansion: specific genes that are not found in other fungi including its closest sequenced relative, Fusarium graminearum; and genes that commonly occur as single copies in other fungi but are present as multiple copies in N. haematococca MPVI. Some of these additional genes appear to have resulted from gene duplication events, while others may have been acquired through horizontal gene transfer. The supernumerary nature of three chromosomes, 14, 15, and 17, was confirmed by their absence in pulsed field gel electrophoresis experiments of some isolates and by demonstrating that these isolates lacked chromosome-specific sequences found on the ends of these chromosomes. These supernumerary chromosomes contain more repeat sequences, are enriched in unique and duplicated genes, and have a lower G+C content in comparison to the other chromosomes. Although the origin(s) of the extra genes and the supernumerary chromosomes is not known, the gene expansion and its large genome size are consistent with this species' diverse range of habitats. Furthermore, the presence of unique genes on supernumerary chromosomes might account for individual isolates having different environmental niches.
Sponsorship includes: Agriculture in the
Nebraska-Lincoln, University of
Sponsorship includes: Â· Agriculture in the Classroom Â· Douglas County Farm Bureau Â· Gifford Farm Â· University of Nebraska Agricultural Research and Development Center Â· University of Nebraska- Lincoln Awareness Coalition is to help youth, primarily from urban communities, become aware of agriculture
Influence of structure formation on the cosmic expansion
Clarkson, Chris; Ananda, Kishore; Larena, Julien [Cosmology and Gravity Group, Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701, Cape Town (South Africa)
2009-10-15T23:59:59.000Z
We investigate the effect that the average backreaction of structure formation has on the dynamics of the cosmological expansion, within the concordance model. Our approach in the Poisson gauge is fully consistent up to second order in a perturbative expansion about a flat Friedmann background, including a cosmological constant. We discuss the key length scales which are inherent in any averaging procedure of this kind. We identify an intrinsic homogeneity scale that arises from the averaging procedure, beyond which a residual offset remains in the expansion rate and deceleration parameter. In the case of the deceleration parameter, this can lead to a quite large increase in the value, and may therefore have important ramifications for dark energy measurements, even if the underlying nature of dark energy is a cosmological constant. We give the intrinsic variance that affects the value of the effective Hubble rate and deceleration parameter. These considerations serve to add extra intrinsic errors to our determination of the cosmological parameters, and, in particular, may render attempts to measure the Hubble constant to percent precision overly optimistic.
Pressurized heat treatment of glass-ceramic to control thermal expansion
Kramer, Daniel P. (Dayton, OH)
1985-01-01T23:59:59.000Z
A method of producing a glass-ceramic having a specified thermal expansion value is disclosed. The method includes the step of pressurizing the parent glass material to a predetermined pressure during heat treatment so that the glass-ceramic produced has a specified thermal expansion value. Preferably, the glass-ceramic material is isostatically pressed. A method for forming a strong glass-ceramic to metal seal is also disclosed in which the glass-ceramic is fabricated to have a thermal expansion value equal to that of the metal. The determination of the thermal expansion value of a parent glass material placed in a high-temperature environment is also used to determine the pressure in the environment.
Renormalized Energy and Asymptotic Expansion of Optimal Logarithmic Energy on the Sphere
Paris-Sud XI, UniversitÃ© de
satisfying some growth assumption and some properties detailed below. The discrete energy wn is linkedRenormalized Energy and Asymptotic Expansion of Optimal Logarithmic Energy on the Sphere Laurent B repelling points confined by an external field verifying the weak growth assumption of Hardy and Kuijlaars
Loop expansion in Yang-Mills thermodynamics
Ralf Hofmann
2009-11-05T23:59:59.000Z
We argue that a selfconsistent spatial coarse-graining, which involves interacting (anti)calorons of unit topological charge modulus, implies that real-time loop expansions of thermodynamical quantities in the deconfining phase of SU(2) and SU(3) Yang-Mills thermodynamics are, modulo 1PI resummations, determined by a finite number of connected bubble diagrams.
Climate Science: Tropical Expansion by Ocean Swing
Lu, Jian
2014-04-01T23:59:59.000Z
The tropical belt has become wider over the past decades, but climate models fall short of capturing the full rate of the expansion. The latest analysis of the climate simulations suggests that a long-term swing of the Pacific Decadal Oscillation is the main missing cause.
Polymer Expansions for Cycle LDPC Codes
Nicolas Macris; Marc Vuffray
2012-02-13T23:59:59.000Z
We prove that the Bethe expression for the conditional input-output entropy of cycle LDPC codes on binary symmetric channels above the MAP threshold is exact in the large block length limit. The analysis relies on methods from statistical physics. The finite size corrections to the Bethe expression are expressed through a polymer expansion which is controlled thanks to expander and counting arguments.
216-B-3 expansion ponds closure plan
Not Available
1994-10-01T23:59:59.000Z
This document describes the activities for clean closure under the Resource Conservation and Recovery Act of 1976 (RCRA) of the 216-B-3 Expansion Ponds. The 216-B-3 Expansion Ponds are operated by the US Department of Energy, Richland Operations Office (DOE-RL) and co-operated by Westinghouse Hanford Company (Westinghouse Hanford). The 216-B-3 Expansion Ponds consists of a series of three earthen, unlined, interconnected ponds that receive waste water from various 200 East Area operating facilities. The 3A, 3B, and 3C ponds are referred to as Expansion Ponds because they expanded the capability of the B Pond System. Waste water (primarily cooling water, steam condensate, and sanitary water) from various 200 East Area facilities is discharged to the Bypass pipe (Project X-009). Water discharged to the Bypass pipe flows directly into the 216-B-3C Pond. The ponds were operated in a cascade mode, where the Main Pond overflowed into the 3A Pond and the 3A Pond overflowed into the 3C Pond. The 3B Pond has not received waste water since May 1985; however, when in operation, the 3B Pond received overflow from the 3A Pond. In the past, waste water discharges to the Expansion Ponds had the potential to have contained mixed waste (radioactive waste and dangerous waste). The radioactive portion of mixed waste has been interpreted by the US Department of Energy (DOE) to be regulated under the Atomic Energy Act of 1954; the dangerous waste portion of mixed waste is regulated under RCRA.
Introduction to spherical field theory
Dean Lee
1998-11-12T23:59:59.000Z
Spherical field theory is a new non-perturbative method for studying quantum field theories. It uses the spherical partial wave expansion to reduce a general d-dimensional Euclidean field theory into a set of coupled one-dimensional systems. The coupled one-dimensional systems are then converted to partial differential equations and solved numerically. We demonstrate the methods of spherical field theory by analyzing Euclidean phi^4 theory in two dimensions.
Frostless heat pump having thermal expansion valves
Chen, Fang C. (Knoxville, TN); Mei, Viung C. (Oak Ridge, TN)
2002-10-22T23:59:59.000Z
A heat pump system having an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant and further having a compressor, an interior heat exchanger, an exterior heat exchanger, a heat pump reversing valve, an accumulator, a thermal expansion valve having a remote sensing bulb disposed in heat transferable contact with the refrigerant piping section between said accumulator and said reversing valve, an outdoor temperature sensor, and a first means for heating said remote sensing bulb in response to said outdoor temperature sensor thereby opening said thermal expansion valve to raise suction pressure in order to mitigate defrosting of said exterior heat exchanger wherein said heat pump continues to operate in a heating mode.
Tests for the Expansion of the Universe
Lopez-Corredoira, Martin
2015-01-01T23:59:59.000Z
Almost all cosmologists accept nowadays that the redshift of the galaxies is due to the expansion of the Universe (cosmological redshift), plus some Doppler effect of peculiar motions, but can we be sure of this fact by means of some other independent cosmological test? Here I will review some recent tests: CMBR temperature versus redshift, time dilation, the Hubble diagram, the Tolman or surface brightness test, the angular size test, the UV surface brightness limit and the Alcock--Paczy\\'nski test. Some tests favour expansion and others favour a static Universe. Almost all the cosmological tests are susceptible to the evolution of galaxies and/or other effects. Tolman or angular size tests need to assume very strong evolution of galaxy sizes to fit the data with the standard cosmology, whereas the Alcock--Paczynski test, an evaluation of the ratio of observed angular size to radial/redshift size, is independent of it.
Low thermal expansion seal ring support
Dewis, David W. (San Diego, CA); Glezer, Boris (Del Mar, CA)
2000-01-01T23:59:59.000Z
Today, the trend is to increase the temperature of operation of gas turbine engines. To cool the components with compressor discharge air, robs air which could otherwise be used for combustion and creates a less efficient gas turbine engine. The present low thermal expansion sealing ring support system reduces the quantity of cooling air required while maintaining life and longevity of the components. Additionally, the low thermal expansion sealing ring reduces the clearance "C","C'" demanded between the interface between the sealing surface and the tip of the plurality of turbine blades. The sealing ring is supported by a plurality of support members in a manner in which the sealing ring and the plurality of support members independently expand and contract relative to each other and to other gas turbine engine components.
Shock compression and expansion in central collisions
Danielewicz, P. [Univ. of Washington, Seattle, WA (United States). Institute for Nuclear Theory]|[Michigan State Univ., East Lansing, MI (United States)
1995-01-01T23:59:59.000Z
Physics of central symmetric reactions of heavy nuclei, in the beam energy range from few tens of MeV to a couple of GeV per nucleon, is discussed. Within transport simulations, it is shown that shock fronts perpendicular to the beam axis form in the head-on reactions. The fronts propagate into projectile and target and they separate hot compressed matter from normal matter. With an increase of the impact parameter, the angle of inclination of fronts relative to the beam axis decreases, and in-between the fronts a weak tangential discontinuity develops. Hot matter exposed to the vacuum in directions perpendicular to the shock motion (and parallel to fronts), starts to expand sideways, early within reactions. Expansion in the direction of shock motion follows, after the shocks traverse nuclei, but due to the delay does not acquire same strength. Expansion affects angular distributions and mean-energy components, and further shapes of spectra and mean energies of different particles emitted into any one direction, and also particle yields. Both the anisotropy in the expansion and a collective motion associated with the weak discontinuity, affect the magnitude of sideward flow within reaction plane. Differences in mean particle energy components in and out of the reaction plane in semicentral collisions, depend sensitively on the relative magnitude of shock speed in normal matter and speed of sound in hot matter. The missing energy, considered in the past in association with low measured pion-multiplicity in central reactions, may be identified with the energy of collective expansion.
Expansion and Collapse in the Cosmic Web
Michael Rauch; George D. Becker; Matteo Viel; Wallace L. W. Sargent; Alain Smette; Robert A. Simcoe; Thomas A. Barlow; Martin G. Haehnelt
2005-09-09T23:59:59.000Z
We study the kinematics of the gaseous cosmic web at high redshift with Lyman alpha forest absorption in multiple QSO sightlines. Using a simple analytic model and a cosmological hydrodynamic simulation we constrain the underlying three-dimensional distribution of velocities from the observed line-of-sight distribution of velocity shear across the plane of the sky. The distribution is found to be in good agreement with the intergalactic medium (IGM) undergoing large scale motions dominated by the Hubble flow. Modeling the Lyman alpha clouds analytically and with a hydrodynamics simulation, the average expansion velocity of the gaseous structures causing the Lyman alpha forest in the lower redshift (z = 2) sample appears about 20 percent lower than the local Hubble expansion velocity. We interpret this as tentative evidence for some clouds undergoing gravitational collapse. However, the distribution of velocities is highly skewed, and the majority of clouds at redshifts from 2 to 3.8 expand typically about 5 - 20 percent faster than the Hubble flow. This behavior is explained if most absorbers in the column density range typically detectable are expanding filaments that stretch and drain into more massive nodes. We find no evidence for the observed distribution of velocity shear being significantly influenced by processes other than Hubble expansion and gravitational instability, like galactic winds. To avoid overly disturbing the IGM, winds may be old and/or limp by the time we observe them in the Lyman alpha forest, or they may occupy only an insignificant volume fraction of the IGM. (abridged)
Construction of operator product expansion coefficients via consistency conditions
Jan Holland
2009-06-30T23:59:59.000Z
In this thesis an iterative scheme for the construction of operator product expansion (OPE) coefficients is applied to determine low order coefficients in perturbation theory for a specific toy model. We use the approach to quantum field theory proposed by S. Hollands [arXiv:0802.2198], which is centered around the OPE and a number of axioms on the corresponding OPE coefficients. This framework is reviewed in the first part of the thesis. In the second part we apply an algorithm for the perturbative construction of OPE coefficients to a toy model: Euclidean $\\varphi^6$-theory in 3-dimensions. Using a recently found formulation in terms of vertex operators and a diagrammatic notation in terms of trees [arXiv:0906.5313v1], coefficients up to second order are constructed, some general features of coefficients at arbitrary order are presented and an exemplary comparison to the corresponding customary method of computation is given.
Statement from Energy Secretary Samuel W. Bodman on the Expansion...
Broader source: Energy.gov (indexed) [DOE]
the Expansion of the Strategic Petroleum Reserve to 1.5 Billion Statement from Energy Secretary Samuel W. Bodman on the Expansion of the Strategic Petroleum Reserve to 1.5 Billion...
An Expansion in the Exponent for Compound Binomial Approximations
Roos, Bero
distributions. One paper in this direction was published by Bikelis [5], who proposed an expansion, which identic
Internal split field generator
Thundat; Thomas George (Knoxville, TN); Van Neste, Charles W. (Kingston, TN); Vass, Arpad Alexander (Oak Ridge, TN)
2012-01-03T23:59:59.000Z
A generator includes a coil of conductive material. A stationary magnetic field source applies a stationary magnetic field to the coil. An internal magnetic field source is disposed within a cavity of the coil to apply a moving magnetic field to the coil. The stationary magnetic field interacts with the moving magnetic field to generate an electrical energy in the coil.
Dynamical effects in the Coulomb expansion following nuclear fragmentation
Chung, K.C.; Donangelo, R.; Schechter, H.
1987-09-01T23:59:59.000Z
The effects of the Coulomb expansion on the fragment kinetic energy spectrum for a fragmentating hot nuclear system is investigated. In particular, /sup 12/C-fragment spectra are calculated and compared with those predicted by the uniform expansion approximation. The results indicate that the energy spectra of fragments are quite sensitive to the details of the Coulomb expansion treatment.
Exploring Small-Scale Meat Processing Expansions in Iowa
Debinski, Diane M.
Exploring Small-Scale Meat Processing Expansions in Iowa A Technical Report Submitted@iastate.edu #12;2Exploring Small-Scale Meat Processing Expansions in Iowa April 2011 Overview of Findings Iowa;3Exploring Small-Scale Meat Processing Expansions in Iowa April 2011 Introduction Iowa is a national leader
Matching of asymptotic expansions for the wave propagation in media
Paris-Sud XI, UniversitÃ© de
Matching of asymptotic expansions for the wave propagation in media with thin slot S-SAM Matching of asymptotic expansions for the wave propagation in media with thin slot Â p.1/38 inria-00528070 of asymptotic expansions for the wave propagation in media with thin slot Â p.2/38 inria-00528070,version1-21Oct
Matching of asymptotic expansions for the wave propagation in media
Paris-Sud XI, UniversitÃ© de
Matching of asymptotic expansions for the wave propagation in media with thin slot S-SAM Matching of asymptotic expansions for the wave propagation in media with thin slot Â p.1/29 inria-00528072 The wavelength The width of the slot Â¡ Matching of asymptotic expansions for the wave propagation in media
Expansion joint for guideway for magnetic levitation transportation system
Rossing, Thomas D. (DeKalb, IL)
1993-01-01T23:59:59.000Z
An expansion joint that allows a guideway of a magnetic levitation transportation system to expand and contract while minimizing transients occurring in the magnetic lift and drag forces acting on a magnetic levitation vehicle traveling over the joint includes an upper cut or recess extending downwardly from the upper surface of the guideway and a non-intersecting lower cut or recess that extends upwardly from the lower surface of the guideway. The sidewalls of the cuts can be parallel to each other and the vertical axis of the guideway; the depth of the lower cut can be greater than the depth of the upper cut; and the overall combined lengths of the cuts can be greater than the thickness of the guideway from the upper to lower surface so that the cuts will overlap, but be spaced apart from each other. The distance between the cuts can be determined on the basis of the force transients and the mechanical behavior of the guideway. A second pair of similarly configured upper and lower cuts may be disposed in the guideway; the expansion joint may consist of two upper cuts and one lower cut; or the cuts may have non-parallel, diverging sidewalls so that the cuts have a substantially dove-tail shape.
Expansion joint for guideway for magnetic levitation transportation system
Rossing, T.D.
1993-02-09T23:59:59.000Z
An expansion joint that allows a guideway of a magnetic levitation transportation system to expand and contract while minimizing transients occurring in the magnetic lift and drag forces acting on a magnetic levitation vehicle traveling over the joint includes an upper cut or recess extending downwardly from the upper surface of the guideway and a non-intersecting lower cut or recess that extends upwardly from the lower surface of the guideway. The side walls of the cuts can be parallel to each other and the vertical axis of the guideway; the depth of the lower cut can be greater than the depth of the upper cut; and the overall combined lengths of the cuts can be greater than the thickness of the guideway from the upper to lower surface so that the cuts will overlap, but be spaced apart from each other. The distance between the cuts can be determined on the basis of the force transients and the mechanical behavior of the guideway. A second pair of similarly configured upper and lower cuts may be disposed in the guideway; the expansion joint may consist of two upper cuts and one lower cut; or the cuts may have non-parallel, diverging side walls so that the cuts have a substantially dove-tail shape.
Hubble expansion & Structure Formation in Time Varying Vacuum Models
S. Basilakos; M. Plionis; J. Sola
2009-09-22T23:59:59.000Z
We investigate the properties of the FLRW flat cosmological models in which the vacuum energy density evolves with time, $\\Lambda(t)$. Using different versions of the $\\Lambda(t)$ model, namely quantum field vacuum, power series vacuum and power law vacuum, we find that the main cosmological functions such as the scale factor of the universe, the Hubble expansion rate $H$ and the energy densities are defined analytically. Performing a joint likelihood analysis of the recent supernovae type Ia data, the Cosmic Microwave Background (CMB) shift parameter and the Baryonic Acoustic Oscillations (BAOs) traced by the Sloan Digital Sky Survey (SDSS) galaxies, we put tight constraints on the main cosmological parameters of the $\\Lambda(t)$ scenarios. Furthermore, we study the linear matter fluctuation field and the growth rate of clustering of the above vacuum models. Finally, we derived the theoretically predicted dark-matter halo mass function and the corresponding distribution of cluster-size halos for all the models studied. Their expected redshift distribution indicates that it will be difficult to distinguish the closely resembling models (constant vacuum, quantum field and power-law vacuum), using realistic future X-ray surveys of cluster abundances. However, cluster surveys based on the Sunayev-Zeldovich detection method give some hope to distinguish the closely resembling models at high redshifts.
U.S. Biofuels Baseline and Impact of E-15 Expansion on Biofuel Markets
Noble, James S.
May 2012 U.S. Biofuels Baseline and Impact of E-15 Expansion on Biofuel Markets FAPRI-MU Report #02 for agricultural and biofuel markets.1 That baseline assumes current biofuel policy, including provisions credit expired, as scheduled, at the end of 2011. The additional tax credit for cellulosic biofuel
Mining Linguistic Cues for Query Expansion: Applications to Drug Interaction Search
Ramakrishnan, Naren
Mining Linguistic Cues for Query Expansion: Applications to Drug Interaction Search Sheng Guo answers to this question, by mining the literature, are valuable for pharmaceuti- cal companies, both in designing combination therapies for complex diseases including cancers. We study this problem as one
Lattice-structures and constructs with designed thermal expansion coefficients
Spadaccini, Christopher; Hopkins, Jonathan
2014-10-28T23:59:59.000Z
A thermal expansion-managed lattice structure having a plurality of unit cells each having flexure bearing-mounted tabs supported on a base and actuated by thermal expansion of an actuator having a thermal expansion coefficient greater than the base and arranged so that the tab is inwardly displaced into a base cavity. The flexure bearing-mounted tabs are connected to other flexure-bearing-mounted tabs of adjacent unit cells so that the adjacent unit cells are spaced from each other to accommodate thermal expansion of individual unit cells while maintaining a desired bulk thermal expansion coefficient of the lattice structure as a whole.
OPEC production: Capital limitations, environmental movements may interfere with expansion plans
Ismail, I.A.H. (Organization of the Petroleum Exporting Countries, Vienna (Austria))
1994-05-09T23:59:59.000Z
Obtaining capital is a critical element in the production expansion plans of OPEC member countries. Another issue that may impact the plans is the environmental taxes that may reduce the call on OPEC oil by 5 million b/d in 2000 and about 16 million b/d in the year 2010. This concluding part of a two-part series discusses the expansion possibilities of non-Middle East OPEC members, OPEC's capital requirements, and environmental concerns. Non-Middle East OPEC includes Algeria, Gabon, Indonesia, Libya, Nigeria, and Venezuela.
Accelerating cycle expansions by dynamical conjugacy
Ang Gao; Jianbo Xie; Yueheng Lan
2011-06-06T23:59:59.000Z
Periodic orbit theory provides two important functions---the dynamical zeta function and the spectral determinant for the calculation of dynamical averages in a nonlinear system. Their cycle expansions converge rapidly when the system is uniformly hyperbolic but greatly slowed down in the presence of non-hyperbolicity. We find that the slow convergence can be associated with singularities in the natural measure. A properly designed coordinate transformation may remove these singularities and results in a dynamically conjugate system where fast convergence is restored. The technique is successfully demonstrated on several examples of one-dimensional maps and some remaining challenges are discussed.
Stability of Anisotropic Cylinder with Zero Expansion
M. Sharif; M. Azam
2013-05-24T23:59:59.000Z
We study the dynamical instability of anisotropic collapsing cylinder with the expansion-free condition, which generates vacuum cavity within fluid distribution. The perturbation scheme is applied to distinguish Newtonian, post-Newtonian and post-post Newtonian terms, which are used for constructing dynamical equation at Newtonian and post-Newtonian regimes. We analyze the role of pressure anisotropy and energy density inhomogeneity on the stability of collapsing cylinder. It turns out that stability of the cylinder depends upon these physical properties of the fluid, not on the stiffness of the fluid.
Calculations of Surface Thermal-Expansion
KENNER, VE; Allen, Roland E.
1973-01-01T23:59:59.000Z
, the quasiharmon- ic approximation (plus the Lennard-Jones potential) predicts values of e???which are too large. " The monic approximation (plus the Lennard- Jones poten- 0 20 40 TEMPERATURE T 60 FIG. 9. Surface thermal expansion for Xe. tial) thus tend... to cancel, so that our results are more accurate than those obtained in more rigorous calcu- lations based on the quasihar monic approximation. The bulk results shown in Figs. 1-6 were ob- tained for a slab having a (111)surface orientation...
Background field method and nonrelativistic QED matching
Jong-Wan Lee; Brian C. Tiburzi
2014-11-15T23:59:59.000Z
We discuss the resolution of an inconsistency between lattice background field methods and nonrelativistic QED matching conditions. In particular, we show that lack of on-shell conditions in lattice QCD with time-dependent background fields generally requires that certain operators related by equations of motion should be retained in an effective field theory to correctly describe the behavior of Green's functions. The coefficients of such operators in a nonrelativistic hadronic theory are determined by performing a robust nonrelativistic expansion of QED for relativistic scalar and spin-half hadrons including nonminimal electromagnetic couplings. Provided that nonrelativistic QED is augmented with equation-of-motion operators, we find that the background field method can be reconciled with the nonrelativistic QED matching conditions without any inconsistency. We further investigate whether nonrelativistic QED can be employed in the analysis of lattice QCD correlation function in background fields, but we are confronted with difficulties. Instead, we argue that the most desirable approach is a hybrid one which relies on a relativistic hadronic theory with operators chosen based on their relevance in the nonrelativistic limit. Using this hybrid framework, we obtain practically useful forms of correlation functions for scalar and spin-half hadrons in uniform electric and magnetic fields.
Is Hubble's Expansion due to Dark Energy
R. C. Gupta; Anirudh Pradhan
2010-10-19T23:59:59.000Z
{\\it The universe is expanding} is known (through Galaxy observations) since 1929 through Hubble's discovery ($V = H D$). Recently in 1999, it is found (through Supernovae observations) that the universe is not simply expanding but is accelerating too. We, however, hardly know only $4\\%$ of the universe. The Wilkinson Microwave Anisotropy Probe (WMAP) satellite observational data suggest $73\\%$ content of the universe in the form of dark-energy, $23\\%$ in the form of non-baryonic dark-matter and the rest $4\\%$ in the form of the usual baryonic matter. The acceleration of the universe is ascribed to this dark-energy with bizarre properties (repulsive-gravity). The question is that whether Hubble's expansion is just due to the shock of big-bang & inflation or it is due to the repulsive-gravity of dark-energy? Now, it is believed to be due to dark-energy, say, by re-introducing the once-discarded cosmological-constant $\\Lambda$. In the present paper, it is shown that `the formula for acceleration due to dark-energy' is (almost) exactly of same-form as `the acceleration formula from the Hubble's law'. Hence, it is concluded that: yes, `indeed it is the dark-energy responsible for the Hubble's expansion too, in-addition to the current on-going acceleration of the universe'.
$1/d$ Expansion for $k$-Core Percolation
A. B. Harris; J. M. Schwarz
2005-05-12T23:59:59.000Z
The physics of $k$-core percolation pertains to those systems whose constituents require a minimum number of $k$ connections to each other in order to participate in any clustering phenomenon. Examples of such a phenomenon range from orientational ordering in solid ortho-para ${\\rm H}_2$ mixtures to the onset of rigidity in bar-joint networks to dynamical arrest in glass-forming liquids. Unlike ordinary ($k=1$) and biconnected ($k=2$) percolation, the mean field $k\\ge3$-core percolation transition is both continuous and discontinuous, i.e. there is a jump in the order parameter accompanied with a diverging length scale. To determine whether or not this hybrid transition survives in finite dimensions, we present a $1/d$ expansion for $k$-core percolation on the $d$-dimensional hypercubic lattice. We show that to order $1/d^3$ the singularity in the order parameter and in the susceptibility occur at the same value of the occupation probability. This result suggests that the unusual hybrid nature of the mean field $k$-core transition survives in high dimensions.
Relativistic plasma expansion with Maxwell-Juettner distribution
Huang, Yongsheng; Wang, Naiyan; Tang, Xiuzhang; Shi, Yijin [China Institute of Atomic Energy, Beijing 102413 (China)] [China Institute of Atomic Energy, Beijing 102413 (China)
2013-11-15T23:59:59.000Z
A self-similar analytical solution is proposed to describe the relativistic ion acceleration with the local Maxwell-Juettner relativistic distribution electrons. It is an alternative to the existing static model [M. Passoni and M. Lontano, Phys. Rev. Lett. 101, 115001 (2008)], which exploits a limited solution for the acceleration potential. With our model, the potential is finite naturally and has an upper limitation proportional to the square root of the electron temperature. The divergent potential in the non-relativistic case is the linear items of the Taylor expansion of that obtained relativistic one here. The energy distribution of ions and the dependence of the ion momentum on the acceleration time are obtained analytically. Maximum ion energy has an upper limitation decided by the finite potential difference. In the ultra-relativistic region, the ion energy at the ion front is proportional to t{sup 4/5} and the energy of the ions behind the ion front is proportional to t{sup 2/3} since the field there is shielded by the ions beyond them and the field at the ion front is the most intense.
Adiabatic expansion, early x-ray data and the central engine in GRBs
R. Barniol Duran; P. Kumar
2009-03-02T23:59:59.000Z
The Swift satellite early x-ray data shows a very steep decay in most of the Gamma-Ray Bursts light curves. This decay is either produced by the rapidly declining continuation of the central engine activity or by some left-over radiation starting right after the central engine shuts off. The latter scenario consists of the emission from an "ember" that cools via adiabatic expansion and, if the jet angle is larger than the inverse of the source Lorentz factor, the large angle emission. In this work, we calculate the temporal and spectral properties of the emission from such a cooling ember, providing a new treatment for the micro-physics of the adiabatic expansion. We use the adiabatic invariance of p_{\\perp}^2/B (p_{\\perp} is the component of the electrons' momentum normal to the magnetic field, B) to calculate the electrons' Lorentz factor during the adiabatic expansion; the electron momentum becomes more and more aligned with the local magnetic field as the expansion develops. We compare the theoretical expectations of the adiabatic expansion (and the large angle emission) with the current observations of the early x-ray data and find that only about 20% of our sample of 107 bursts is potentially consistent with this model. This leads us to believe that, for most bursts, the central engine does not turn off completely during the steep decay of the x-ray light curve; therefore, this phase is produced by the continued rapidly declining activity of the central engine.
Thermal expansion recovery microscopy: Practical design considerations
Mingolo, N., E-mail: nmingol@fi.uba.ar; Martínez, O. E. [Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colon 850, 1063 Buenos Aires (Argentina)] [Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colon 850, 1063 Buenos Aires (Argentina)
2014-01-15T23:59:59.000Z
A detailed study of relevant parameters for the design and operation of a photothermal microscope technique recently introduced is presented. The technique, named thermal expansion recovery microscopy (ThERM) relies in the measurement of the defocusing introduced by a surface that expands and recovers upon the heating from a modulated source. A new two lens design is presented that can be easily adapted to commercial infinite conjugate microscopes and the sensitivity to misalignment is analyzed. The way to determine the beam size by means of a focus scan and the use of that same scan to verify if a thermoreflectance signal is overlapping with the desired ThERM mechanism are discussed. Finally, a method to cancel the thermoreflectance signal by an adequate choice of a nanometric coating is presented.
Systematic expansion for infrared oscillator basis extrapolations
R. J. Furnstahl; S. N. More; T. Papenbrock
2014-03-20T23:59:59.000Z
Recent work has demonstrated that the infrared effects of harmonic oscillator basis truncations are well approximated by imposing a partial-wave Dirichlet boundary condition at a properly identified radius L. This led to formulas for extrapolating the corresponding energy E_L and other observables to infinite L and thus infinite basis size. Here we reconsider the energy for a two-body system with a Dirichlet boundary condition at L to identify and test a consistent and systematic expansion for E_L that depends only on observables. We also generalize the energy extrapolation formula to nonzero angular momentum, and apply it to the deuteron. Formulas given previously for extrapolating the radius are derived in detail.
Load Expansion of Stoichiometric HCCI Using Spark Assist and...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
of Stoichiometric HCCI Using Spark Assist and Hydraulic Valve Actuation Load Expansion of Stoichiometric HCCI Using Spark Assist and Hydraulic Valve Actuation Presentation given at...
FOA aimed at growing expansive database of Renewable Energy and...
FOA aimed at growing expansive database of Renewable Energy and Energy Efficiency Incentives and Policies Home > Groups > Utility Rate Graham7781's picture Submitted by...
accelerated cosmic expansion: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
an accelerated expansion (cosmological constant, quintessence) introduce a component of dark energy besides standard'' cold dark matter (CDM) we resort to a phenomenological...
Load Expansion with Diesel/Gasoline RCCI for Improved Engine...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
with DieselGasoline RCCI for Improved Engine Efficiency and Emissions Load Expansion with DieselGasoline RCCI for Improved Engine Efficiency and Emissions This poster will...
Prices include compostable serviceware and linen tablecloths
California at Davis, University of
APPETIZERS Prices include compostable serviceware and linen tablecloths for the food tables.ucdavis.edu. BUTTERNUT SQUASH & BLACK BEAN ENCHILADAS #12;BUFFETS Prices include compostable serviceware and linen
Horizon surface gravity as 2d geodesic expansion
Ted Jacobson; Renaud Parentani
2008-08-13T23:59:59.000Z
The surface gravity of any Killing horizon, in any spacetime dimension, can be interpreted as a local, two-dimensional expansion rate seen by freely falling observers when they cross the horizon. Any two-dimensional congruence of geodesics invariant under the Killing flow can be used to define this expansion, provided that the observers have unit Killing energy.
POSITIVITY CASES, ESTIMATES AND ASYMPTOTIC EXPANSIONS FOR CONDENSER CAPACITIES.
Boyer, Edmond
POSITIVITY CASES, ESTIMATES AND ASYMPTOTIC EXPANSIONS FOR CONDENSER CAPACITIES. ALAIN BONNAFÂ´E Abstract. We study positivity cases, estimates and asymptotic expansions of condenser p the internal part of the condenser has a non-empty interior. The study of the point and its approximation
The effective pyroelectric and thermal expansion coefficients of ferroelectric ceramics
Li, Jiangyu
The effective pyroelectric and thermal expansion coefficients of ferroelectric ceramics JiangYu Li an estimate on the effective pyroelectric and thermal expansion coefficients of fer- roelectric ceramics, and thermal-medical diagnostics (Cross, 1993). A ceramic made of pyroelectric grains does not necessarily
ON PROVING FUTURE STABILITY OF COSMOLOGICAL SOLUTIONS WITH ACCELERATED EXPANSION
RingstrÃ¶m, Hans
ON PROVING FUTURE STABILITY OF COSMOLOGICAL SOLUTIONS WITH ACCELERATED EXPANSION HANS RINGSTR at an accelerated rate. As a consequence, it is of interest to prove that cosmological solutions to Ein- stein's equations with accelerated expansion are future stable. That is the topic of the present contribution
Sullivan, P.; Eurek, K.; Margolis, R.
2014-07-01T23:59:59.000Z
Because solar power is a rapidly growing component of the electricity system, robust representations of solar technologies should be included in capacity-expansion models. This is a challenge because modeling the electricity system--and, in particular, modeling solar integration within that system--is a complex endeavor. This report highlights the major challenges of incorporating solar technologies into capacity-expansion models and shows examples of how specific models address those challenges. These challenges include modeling non-dispatchable technologies, determining which solar technologies to model, choosing a spatial resolution, incorporating a solar resource assessment, and accounting for solar generation variability and uncertainty.
A model for accelerated expansion of the universe from $\\mathcal{N}=1$ Supergravity
Landim, Ricardo C G
2015-01-01T23:59:59.000Z
In this paper we present a model for accelerated expansion of the universe, both during inflation and the present stage of the expansion, from four dimensional $\\mathcal{N}=1$ supergravity. We evaluate the tensor-to-scalar ratio ($r\\approx 0.00034$), the scalar spectral index ($n_s\\approx 0.970$) and the running spetral index ($dn_s/dk\\approx -6\\times10^{-5}$), and we notice that these parameters are in agreement with Planck+WP+lensing data and with BICEP2/Keck and Planck joint analysis, at $95\\%$ CL. The number of e-folds is $50$ or higher. The reheating period has an associated temperature $T_R\\sim10^{12}$ Gev, which agrees with the one required by thermal leptogenesis. Regarding the scalar field as dark energy, the autonomous system for the scalar field in the presence of a barotropic fluid provides a stable fixed point that leads to a late-time accelerated expansion of the universe, with an equation of state that mimics the cosmological constant ($w_\\Phi\\approx -0.997$).
Methods of Purchasing Purchasing methods include the different
" purchases must be reviewed and approved by the Controller's Office. This may result in the end user beingMethods of Purchasing Purchasing methods include the different processes of ordering goods and/or services, and encumbering funds. #12;Method of Purchase Field Purchase Orders (FPO) Accepted
EA-1934: Expansion of Active Borrow Areas, Hanford Site, Richland, Washington
Broader source: Energy.gov [DOE]
This EA evaluate the potential environmental impacts of expansion or continued use of existing sand and gravel pits located on the Hanford Site (Pits F, H, N, 6, 9, 18, 21, 23, 24, 30, and 34) and establishing one new borrow area source in the 100 Area for ongoing construction activities and fill material following remediation activities. The scope of this EA does not include borrow sources for silt-loam material.
Transmission Expansion in Argentina 5: The Regional Electricity Forum of Buenos Aires Province
Littlechild, Stephen C; Ponzano, Eduardo A
’. In Argentina (and most of Latin America and Spain), this generally includes making rules for a given sector within the framework set by a law and the related decrees issued by the head of the executive branch (the president at federal level, the governors... of renewable energy, 2) acting as the public sector counterpart of private organisations such as FREBA, in this case approving the transmission expansion plan, 3) compiling statistics, 4) issuing technical authorisations to build new facilities within...
Site recycling: From Brownfield to football field
Lee, C.; Haas, W.L. [HDR Engineering Inc., Charlotte, NC (United States)
1995-07-01T23:59:59.000Z
The Carolina Panther`s new home, Carolinas Stadium, will be impressive. It will include a 75,000-seat stadium, about 2,000 parking spaces, and a practice facility equipped with three full-sized football fields, all located on 30 acres bordering the central business district of Charlotte, NC. Fans of the NFL expansion team may never know that, until recently, 13 of those 30 acres were a former state Superfund site contaminated by a commercial scrapyard that had operated from the early 1930s to 1983. The salvage of nonferrous metals from lead-acid batteries, copper from transformers and other electrical equipment, and ferrous metal scrap from junk automobiles at the Smith Metal and Iron (SMI) site had left a complex contamination legacy. The soil contained lead, polychlorinated biphenyls (PCBs), lesser amounts of semivolatiles (polyaromatic hydrocarbons, or PAHs), and volatile organic compounds and petroleum hydrocarbons. The site had remained dormant, like many former industrial sites that have come be called {open_quotes}brownfields,{close_quotes} for nearly a decade when in 1993, Charlotte was selected as the future home of the Carolina Panthers, a National Football League expansion team. The city was able to attract the team in part by offering to redevelop the site, a prime location adjacent to the downtown area. An eight-month-long site remediation effort by HDR Engineering Inc. was completed March 31, on schedule for a June 1996 unveiling of the team`s new facility.
Local gravitational physics of the Hubble expansion
Sergei Kopeikin
2015-01-21T23:59:59.000Z
We study physical consequences of the Hubble expansion of FLRW manifold on measurement of space, time and light propagation in the local inertial frame. We analyse the solar system radar ranging and Doppler tracking experiments, and time synchronization. FLRW manifold is covered by global coordinates (t,y^i), where t is the cosmic time coinciding with the proper time of the Hubble observers. We introduce local inertial coordinates x^a=(x^0,x^i) in the vicinity of a world line of a Hubble observer with the help of a special conformal transformation. The local inertial metric is Minkowski flat and is materialized by the congruence of time-like geodesics of static observers being at rest with respect to the local spatial coordinates x^i. We consider geodesic motion of test particles and notice that the local coordinate time x^0=x^0(t) taken as a parameter along the world line of particle, is a function of the Hubble's observer time t. This function changes smoothly from x^0=t for a particle at rest (observer's clock), to x^0=t+1/2 Ht^2 for photons, where H is the Hubble constant. Thus, motion of a test particle is non-uniform when its world line is parametrized by time t. NASA JPL Orbit Determination Program presumes that motion of light (after the Shapiro delay is excluded) is uniform with respect to the time t but it does not comply with the non-uniform motion of light on cosmological manifold. For this reason, the motion of light in the solar system analysed with the Orbit Determination Program appears as having a systematic blue shift of frequency, of radio waves circulating in the Earth-spacecraft radio link. The magnitude of the anomalous blue shift of frequency is proportional to the Hubble constant H that may open an access to the measurement of this fundamental cosmological parameter in the solar system radiowave experiments.
Energy Prices and the Expansion of World Trade
Benjamin Bridgman
2008-01-01T23:59:59.000Z
The oil shocks of the 1970s coincided with a number of economic disturbances. However, it has been difficult to develop models where oil shocks have a quantitatively important impact on the economy. In this paper, I show that the disturbances in transportation caused by the oil shocks can significantly affect the economy. I argue that changes in energy prices were responsible for a worldwide slowdown in the growth of trade and may help explain the apparent change in the price-trade elasticity. While tariffs have fallen steadily since 1970, trade growth slowed in the mid-1970s and has grown rapidly since the mid-1980s. In a standard trade model, this pattern implies that the price-import elasticity increased sharply in the mid-1980s. In this paper, I argue that the oil crises of the 1970s led to higher transportation costs. In 1986 energy prices fell to their pre-crisis level, reducing transportation costs and by extension trade barriers. I present a trade model with an energy using transportation sector. In model simulations, I show that total trade costs (transportation cost plus tariffs) are constant from 1974 to 1982. Once transportation costs are accounted for, the price-import elasticity no longer needs to radically change. I also show that trade expansion since 1960 is 50 percent higher in a standard trade model that includes a transportation sector compared to one that does not.
Project Fever - Fostering Electric Vehicle Expansion in the Rockies
Swalnick, Natalia
2013-06-30T23:59:59.000Z
Project FEVER (Fostering Electric Vehicle Expansion in the Rockies) is a part of the Clean Cities Community Readiness and Planning for Plug-in Electric Vehicles and Charging Infrastructure Funding Opportunity funded by the U.S. Department of Energy (DOE) for the state of Colorado. Tasks undertaken in this project include: Electric Vehicle Grid Impact Assessment; Assessment of Electrical Permitting and Inspection for EV/EVSE (electric vehicle/electric vehicle supply equipment); Assessment of Local Ordinances Pertaining to Installation of Publicly Available EVSE;Assessment of Building Codes for EVSE; EV Demand and Energy/Air Quality Impacts Assessment; State and Local Policy Assessment; EV Grid Impact Minimization Efforts; Unification and Streamlining of Electrical Permitting and Inspection for EV/EVSE; Development of BMP for Local EVSE Ordinances; Development of BMP for Building Codes Pertaining to EVSE; Development of Colorado-Specific Assessment for EV/EVSE Energy/Air Quality Impacts; Development of State and Local Policy Best Practices; Create Final EV/EVSE Readiness Plan; Develop Project Marketing and Communications Elements; Plan and Schedule In-person Education and Outreach Opportunities.
West Foster Creek Expansion Project 2007 HEP Report.
Ashley, Paul R.
2008-02-01T23:59:59.000Z
During April and May 2007, the Columbia Basin Fish and Wildlife Authority's (CBFWA) Regional HEP Team (RHT) conducted baseline Habitat Evaluation Procedures (HEP) (USFWS 1980, 1980a) analyses on five parcels collectively designated the West Foster Creek Expansion Project (3,756.48 acres). The purpose of the HEP analyses was to document extant habitat conditions and to determine how many baseline/protection habitat units (HUs) to credit Bonneville Power Administration (BPA) for funding maintenance and enhancement activities on project lands as partial mitigation for habitat losses associated with construction of Grand Coulee and Chief Joseph Dams. HEP evaluation models included mule deer (Odocoileus hemionus), western meadowlark (Sturnella neglecta), sharp-tailed grouse, (Tympanuchus phasianellus), Bobcat (Lynx rufus), mink (Neovison vison), mallard (Anas platyrhynchos), and black-capped chickadee (Parus atricapillus). Combined 2007 baseline HEP results show that 4,946.44 habitat units were generated on 3,756.48 acres (1.32 HUs per acre). HEP results/habitat conditions were generally similar for like cover types at all sites. Unlike crediting of habitat units (HUs) on other WDFW owned lands, Bonneville Power Administration received full credit for HUs generated on these sites.
External split field generator
Thundat, Thomas George (Knoxville, TN); Van Neste, Charles W. (Kingston, TN); Vass, Arpad Alexander (Oak Ridge, TN)
2012-02-21T23:59:59.000Z
A generator includes a coil disposed about a core. A first stationary magnetic field source may be disposed on a first end portion of the core and a second stationary magnetic field source may be disposed on a second end portion of core. The first and second stationary magnetic field sources apply a stationary magnetic field to the coil. An external magnetic field source may be disposed outside the coil to apply a moving magnetic field to the coil. Electrical energy is generated in response to an interaction between the coil, the moving magnetic field, and the stationary magnetic field.
Nonabelian plasma instabilities in Bjorken expansion
Anton Rebhan
2008-10-17T23:59:59.000Z
Plasma instabilities are parametrically the dominant nonequilibrium dynamics of a weakly coupled quark-gluon plasma. In recent years the time evolution of the corresponding collective colour fields has been studied in stationary anisotropic situations. Here I report on recent numerical results on the time evolution of the most unstable modes in a longitudinally expanding plasma as they grow from small rapidity fluctuations to amplitudes where non-Abelian self-interactions become important.
Net Taxable Gasoline Gallons (Including Aviation Gasoline)
Net Taxable Gasoline Gallons (Including Aviation Gasoline) Period 2000 2001 (2) 2002 2003 2004 "gross" to "net" , was deemed impractical. (5) This report replaces the Gross Taxable Gasoline Gallons (Including Aviation Gasoline) report which will not be produced after December 2002. (6) The November 2007
Lane, Michael
2013-06-28T23:59:59.000Z
Map of field observations including depressions, springs, evidence of former springs, travertine terraces and vegetation patterns. Map also contains interpretation of possible spring alignments.
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Lane, Michael
Map of field observations including depressions, springs, evidence of former springs, travertine terraces and vegetation patterns. Map also contains interpretation of possible spring alignments.
Sai Venkata Ramana, A., E-mail: asaivenk@barc.gov.in [Theoretical Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)
2014-04-21T23:59:59.000Z
The coupling parameter series expansion and the high temperature series expansion in the thermodynamic perturbation theory of fluids are shown to be equivalent if the interaction potential is pairwise additive. As a consequence, for the class of fluids with the potential having a hardcore repulsion, if the hard-sphere fluid is chosen as reference system, the terms of coupling parameter series expansion for radial distribution function, direct correlation function, and Helmholtz free energy follow a scaling law with temperature. The scaling law is confirmed by application to square-well fluids.
Value of Options in Airport Expansion - Example of AICM
Morgado, Frederico
Investments decisions for airport capacity expansion are usually taken, either when demand exceeds the current capacity and the airport is working under congestion, or when current demand is expected to overcome current ...
Expansion Joint Concepts for High Temperature Insulation Systems
Harrison, M. R.
1980-01-01T23:59:59.000Z
EXPANSION JOINT CONCEPTS FOR HIGH TEMPERATURE INSULATION SYSTEMS Michael R. Harrison Johns-Manville Sales Corporation ";.,' Denver, Colorado ABSTRACT As high temperature steam and process piping expands with heat, joints beg in to open...
Ion emission and expansion in laser-produced tin plasma
Burdt, Russell Allen
2011-01-01T23:59:59.000Z
scale length laser-produced tin plasmas, PhD dissertation,and Expansion in Laser-Produced Tin Plasma A dissertationof a CO 2 laser pulse with tin-based plasma for an extreme
Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon
Camara, Gilberto
Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon Douglas C ranching or new deforestation has not been quantified and has major implications for future deforestation dynamics, carbon fluxes, forest fragmentation, and other ecosystem services. We combine deforestation maps
Pressure recovery in a radiused sudden expansion Barton L. Smith
Smith, Barton L.
Pressure recovery in a radiused sudden expansion Barton L. Smith Abstract Experiments on a steady were motivated by a similar study for oscillatory flow in the same geometry. Smith and Swift (2003
How are Feynman graphs resumed by the Loop Vertex Expansion?
Vincent Rivasseau; Zhituo Wang
2010-06-23T23:59:59.000Z
The purpose of this short letter is to clarify which set of pieces of Feynman graphs are resummed in a Loop Vertex Expansion, and to formulate a conjecture on the $\\phi^4$ theory in non-integer dimension.
Train track expansions of measured foliations February 16, 2003
Mosher, Lee
Train track expansions of measured foliations Lee Mosher February 16, 2003 Contents 1 Introduction foliations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.5 Train tracks and train track's classification of mapping classes . . . . . . . . . . . . . . 47 3 Train tracks 49 3.1 Pretracks
Train track expansions of measured foliations December 28, 2003
Mosher, Lee
Train track expansions of measured foliations Lee Mosher December 28, 2003 Contents 1 Introduction foliations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.5 Train tracks and train track's classification of mapping classes . . . . . . . . . . . . . . 53 3 Train tracks 55 3.1 Pretracks
Major PM expansion at Universal-Cyclops features new consolidation process
Not Available
1981-12-01T23:59:59.000Z
A major expansion of powder-metallurgy facilities at Bridgeville, PA., has been recently announced by Universal-Cyclops Speciality Steel Div., Cyclops Corp. Production capacity for high-temperature alloys initially will be increased to two million pounds. Included in the planned project will be expansion of vacuum-induction melting (VIM), gas atomization, screening, blending, degassing, and handling capabilities. Air-atmosphere sintering furnaces will be installed to consolidate powder preforms by Universal-Cyclops' patented CAP (Consolidation by Atmospheric Pressure) process. Production from the new facility will serve the aircraft gas-turbine market. After chemical activation, the powder is placed in glass molds which are then evacuated and sealed. The filled molds are placed in a refractory container, surrounded by sand, and the entire assembly is heated in conventional air atmosphere electric or gas-fired furnace to temperatures over 2000/degree/F.
Cryogenic Thermal Expansion of Y-12 Graphite Fuel Elements
Eash, D. T.
2013-07-08T23:59:59.000Z
Thermal expansion measurements betwccn 20°K and 300°K were made on segments of three uranium-loaded Y-12 uncoated graphite fuel elements. The thermal expansion of these fuel elements over this temperature range is represented by the equation: {Delta}L/L = -39.42 x 10{sup -5} + 1.10 x 10{sup -7} T + 6.47 x 10{sup -9} T{sup 2} - 8.30 x 10{sup -12} T{sup 3}.
EE Regional Technology Roadmap Includes comparison
EE Regional Technology Roadmap Includes comparison against 6th Power Plan (Update cyclically Data Clearinghouse BPA/RTF NEEA/Regional Programs Group Update Regional EE Technology Roadmap Lighting
DIDACTICAL HOLOGRAPHIC EXHIBIT INCLUDING (HOLOGRAPHIC TELEVISION)
de Aguiar, Marcus A. M.
DIDACTICAL HOLOGRAPHIC EXHIBIT INCLUDING HoloTV (HOLOGRAPHIC TELEVISION) JosÃ© J. Lunazzi , DanielCampinasSPBrasil Abstract: Our Institute of Physics exposes since 1980 didactical exhibitions of holography in Brazil where
Gas storage materials, including hydrogen storage materials
Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji
2014-11-25T23:59:59.000Z
A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.
Gas storage materials, including hydrogen storage materials
Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji
2013-02-19T23:59:59.000Z
A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.
A new approach to gravitational clustering: a path-integral formalism and large-N expansions
P. Valageas
2004-07-01T23:59:59.000Z
We show that the formation of large-scale structures through gravitational instability in the expanding universe can be fully described through a path-integral formalism. We derive the action S[f] which gives the statistical weight associated with any phase-space distribution function f(x,p,t). This action S describes both the average over the Gaussian initial conditions and the Vlasov-Poisson dynamics. Next, applying a standard method borrowed from field theory we generalize our problem to an N-field system and we look for an expansion over powers of 1/N. We describe three such methods and we derive the corresponding equations of motion at the lowest non-trivial order for the case of gravitational clustering. This yields a set of non-linear equations for the mean $\\fb$ and the two-point correlation G of the phase-space distribution f, as well as for the response function R. These systematic schemes match the usual perturbative expansion on quasi-linear scales but should also be able to handle the non-linear regime. Our approach can also be extended to non-Gaussian initial conditions and may serve as a basis for other tools borrowed from field theory.
A. L. Kataev; S. V. Mikhailov
2015-01-11T23:59:59.000Z
We discuss generalizations of the BLM optimization procedure for renormalization group invariant quantities. In this respect, we discuss in detail the features and construction of the $\\{\\beta\\}$--expansion representation instead of the standard perturbative series with regards to the Adler $D$-function and Bjorken polarized sum rules obtained in order of ${\\cal O}(\\alpha_s^4)$. Based on the $\\{\\beta\\}$--expansion we analyse different schemes of optimization, including the corrected Principle of Maximal Conformality, numerically illustrating their results. We suggest our scheme for the series optimization and apply it to both the above quantities.
Magnetic Fields in Molecular Cloud Cores
Shantanu Basu
2004-10-22T23:59:59.000Z
Observations of magnetic field strengths imply that molecular cloud fragments are individually close to being in a magnetically critical state, even though both magnetic field and column density measurements range over two orders of magnitude. The turbulent pressure also approximately balances the self-gravitational pressure. These results together mean that the one-dimensional velocity dispersion $\\sigv$ is proportional to the mean \\Alf speed of a cloud $\\va$. Global models of MHD turbulence in a molecular cloud show that this correlation is naturally satisfied for a range of different driving strengths of the turbulence. For example, an increase of turbulent driving causes a cloud expansion which also increases $\\va$. Clouds are in a time averaged balance but exhibit large oscillatory motions, particularly in their outer rarefied regions. We also discuss models of gravitational fragmentation in a sheet-like region in which turbulence has already dissipated, including the effects of magnetic fields and ion-neutral friction. Clouds with near-critical mass-to-flux ratios lead to subsonic infall within cores, consistent with some recent observations of motions in starless cores. Conversely, significantly supercritical clouds are expected to produce extended supersonic infall.
Defects in Four-Dimensional Continua: A Paradigm for the Expansion of the Universe?
A. Tartaglia
2008-08-24T23:59:59.000Z
The presence of defects in material continua is known to produce internal permanent strained states. Extending the theory of defects to four dimensions and allowing for the appropriate signature, it is possible to apply these concepts to space-time. In this case a defect would induce a non-trivial metric tensor, which can be interpreted as a gravitational field. The image of a defect in space-time can be applied to the description of the Big Bang. A review of the four-dimensional generalisation of defects and an application to the expansion of the universe will be presented.
Boltzmann expansion in a radiofrequency conical helicon thruster operating in xenon and argon
Charles, C.; Boswell, R. [Space Plasma, Power and Propulsion Laboratory, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia)] [Space Plasma, Power and Propulsion Laboratory, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia); Takahashi, K. [Space Plasma, Power and Propulsion Laboratory, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia) [Space Plasma, Power and Propulsion Laboratory, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia); Department of Electrical Engineering, Tohoku University, Sendai 980-9579 (Japan)
2013-06-03T23:59:59.000Z
A low pressure ({approx}0.5 mTorr in xenon and {approx}1 mTorr in argon) Boltzmann expansion is experimentally observed on axis within a magnetized (60 to 180 G) radiofrequency (13.56 MHz) conical helicon thruster for input powers up to 900 W using plasma parameters measured with a Langmuir probe. The axial forces, respectively, resulting from the electron and magnetic field pressures are directly measured using a thrust balance for constant maximum plasma pressure and show a higher fuel efficiency for argon compared to xenon.
The Political History of Hydraulic Fracturing’s Expansion Across the West
Forbis, Robert E.
2014-01-01T23:59:59.000Z
Political History of Hydraulic Fracturing’s Expansion AcrossPolitical History of Hydraulic Fracturing’s Expansion Acrosss use of the hydraulic fracturing development process.
Coal production expansion: a selected bibliography
Grissom, M.C. (ed.)
1980-07-01T23:59:59.000Z
The expeditious and economic transport of coal from producing regions to consuming regions is essential to any policy designed to increase the use of coal as an energy source. Obtaining an optimal coal transportation system, including terminal facilities, is significant in providing US coal to its users in the United States and abroad. Rail, barge, truck, slurry pipeline, and ship are the modes used to move coal from the producer to the user. Transportation costs represent a large percentage of the delivered price. This bibliography includes 138 selected citations on coal export, transport, and production. The references are to reports from the Department of Energy and its contractors, reports from other government or private organizations, and journal articles, books, conference papers, and monographs from US originators. These citations and hundreds of additional citations on this subject are available for on-line searching and retrieval from the Technical Information Center's Energy Data Base using the DOE/RECON interactive system. Approximately 50,000 citations on coal and coal products are a part of this data base. Current additions to data base on this subject are announced monthly in Fossil Energy Update. DOE-sponsored work is also announced in Energy Research Abstracts. The citations in this publication are arranged in broad subject categories as shown in the table of contents. Five indexes are provided: Corporate, Author, Subject, Contract Number, and Report Number. Included as an appendix are some tables and figures from Energy Information Administration reports covering coal production and disposition.
Scramjet including integrated inlet and combustor
Kutschenreuter, P.H. Jr.; Blanton, J.C.
1992-02-04T23:59:59.000Z
This patent describes a scramjet engine. It comprises: a first surface including an aft facing step; a cowl including: a leading edge and a trailing edge; an upper surface and a lower surface extending between the leading edge and the trailing edge; the cowl upper surface being spaced from and generally parallel to the first surface to define an integrated inlet-combustor therebetween having an inlet for receiving and channeling into the inlet-combustor supersonic inlet airflow; means for injecting fuel into the inlet-combustor at the step for mixing with the supersonic inlet airflow for generating supersonic combustion gases; and further including a spaced pari of sidewalls extending between the first surface to the cowl upper surface and wherein the integrated inlet-combustor is generally rectangular and defined by the sidewall pair, the first surface and the cowl upper surface.
Electric Power Monthly, August 1990. [Glossary included
Not Available
1990-11-29T23:59:59.000Z
The Electric Power Monthly (EPM) presents monthly summaries of electric utility statistics at the national, Census division, and State level. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data includes generation by energy source (coal, oil, gas, hydroelectric, and nuclear); generation by region; consumption of fossil fuels for power generation; sales of electric power, cost data; and unusual occurrences. A glossary is included.
Hypersonic expansion of the Fokker--Planck equation
Fernandez-Feria, R.
1989-02-01T23:59:59.000Z
A systematic study of the hypersonic limit of a heavy species diluted in a much lighter gas is made via the Fokker--Planck equation governing its velocity distribution function. In particular, two different hypersonic expansions of the Fokker--Planck equation are considered, differing from each other in the momentum equation of the heavy gas used as the basis of the expansion: in the first of them, the pressure tensor is neglected in that equation while, in the second expansion, the pressure tensor term is retained. The expansions are valid when the light gas Mach number is O(1) or larger and the difference between the mean velocities of light and heavy components is small compared to the light gas thermal speed. They can be applied away from regions where the spatial gradient of the distribution function is very large, but it is not restricted with respect to the temporal derivative of the distribution function. The hydrodynamic equations corresponding to the lowest order of both expansions constitute two different hypersonic closures of the moment equations. For the subsequent orders in the expansions, closed sets of moment equations (hydrodynamic equations) are given. Special emphasis is made on the order of magnitude of the errors of the lowest-order hydrodynamic quantities. It is shown that if the heat flux vanishes initially, these errors are smaller than one might have expected from the ordinary scaling of the hypersonic closure. Also it is found that the normal solution of both expansions is a Gaussian distribution at the lowest order.
Energy Consumption of Personal Computing Including Portable
Namboodiri, Vinod
Energy Consumption of Personal Computing Including Portable Communication Devices Pavel Somavat1 consumption, questions are being asked about the energy contribution of computing equipment. Al- though studies have documented the share of energy consumption by this type of equipment over the years, research
Communication in automation, including networking and wireless
Antsaklis, Panos
Communication in automation, including networking and wireless Nicholas Kottenstette and Panos J and networking in automation is given. Digital communication fundamentals are reviewed and networked control are presented. 1 Introduction 1.1 Why communication is necessary in automated systems Automated systems use
Cluster virial expansion for the equation of state of partially ionized hydrogen plasma
Omarbakiyeva, Y. A. [Institute of Physics, University of Rostock, D-18051 Rostock (Germany); IETP, Al-Farabi Kazakh National University, 96a, Tole bi St., Almaty 050012 (Kazakhstan); Fortmann, C. [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095 (United States); Ramazanov, T. S. [IETP, Al-Farabi Kazakh National University, 96a, Tole bi St., Almaty 050012 (Kazakhstan); Roepke, G. [Institute of Physics, University of Rostock, D-18051 Rostock (Germany)
2010-08-15T23:59:59.000Z
We study the contribution of electron-atom interaction to the equation of state for partially ionized hydrogen plasma using the cluster-virial expansion. We use the Beth-Uhlenbeck approach to calculate the second virial coefficient for the electron-atom (bound cluster) pair from the corresponding scattering phase shifts and binding energies. Experimental scattering cross-sections as well as phase shifts calculated on the basis of different pseudopotential models are used as an input for the Beth-Uhlenbeck formula. By including Pauli blocking and screening in the phase shift calculation, we generalize the cluster-virial expansion in order to cover also near solid density plasmas. We present results for the electron-atom contribution to the virial expansion and the corresponding equation of state, i.e. pressure, composition, and chemical potential as a function of density and temperature. These results are compared with semiempirical approaches to the thermodynamics of partially ionized plasmas. Avoiding any ill-founded input quantities, the Beth-Uhlenbeck second virial coefficient for the electron-atom interaction represents a benchmark for other, semiempirical approaches.
Subterranean barriers including at least one weld
Nickelson, Reva A.; Sloan, Paul A.; Richardson, John G.; Walsh, Stephanie; Kostelnik, Kevin M.
2007-01-09T23:59:59.000Z
A subterranean barrier and method for forming same are disclosed, the barrier including a plurality of casing strings wherein at least one casing string of the plurality of casing strings may be affixed to at least another adjacent casing string of the plurality of casing strings through at least one weld, at least one adhesive joint, or both. A method and system for nondestructively inspecting a subterranean barrier is disclosed. For instance, a radiographic signal may be emitted from within a casing string toward an adjacent casing string and the radiographic signal may be detected from within the adjacent casing string. A method of repairing a barrier including removing at least a portion of a casing string and welding a repair element within the casing string is disclosed. A method of selectively heating at least one casing string forming at least a portion of a subterranean barrier is disclosed.
Completion strategy includes clay and precipitate control
Sandy, T.; Gardner, G.R.
1985-05-06T23:59:59.000Z
This article describes the conditions which are necessary for a successful oil well completion in the Mississippi and Cherokee zones of South Central Kansas. Topics considered include paraffin precipitation, clay swelling and migration, and iron precipitation. Clays in these zones are sensitive to water-base treating fluids and tend to swell and migrate to the well bore, thereby causing permeability damage. The presence of iron in the Mississippi and Cherokee formations has been indicated by cuttings, core samples, and connate water samples.
Rotor assembly including superconducting magnetic coil
Snitchler, Gregory L. (Shrewsbury, MA); Gamble, Bruce B. (Wellesley, MA); Voccio, John P. (Somerville, MA)
2003-01-01T23:59:59.000Z
Superconducting coils and methods of manufacture include a superconductor tape wound concentrically about and disposed along an axis of the coil to define an opening having a dimension which gradually decreases, in the direction along the axis, from a first end to a second end of the coil. Each turn of the superconductor tape has a broad surface maintained substantially parallel to the axis of the coil.
Nuclear reactor shield including magnesium oxide
Rouse, Carl A. (Del Mar, CA); Simnad, Massoud T. (La Jolla, CA)
1981-01-01T23:59:59.000Z
An improvement in nuclear reactor shielding of a type used in reactor applications involving significant amounts of fast neutron flux, the reactor shielding including means providing structural support, neutron moderator material, neutron absorber material and other components as described below, wherein at least a portion of the neutron moderator material is magnesium in the form of magnesium oxide either alone or in combination with other moderator materials such as graphite and iron.
Electric power monthly, September 1990. [Glossary included
Not Available
1990-12-17T23:59:59.000Z
The purpose of this report is to provide energy decision makers with accurate and timely information that may be used in forming various perspectives on electric issues. The power plants considered include coal, petroleum, natural gas, hydroelectric, and nuclear power plants. Data are presented for power generation, fuel consumption, fuel receipts and cost, sales of electricity, and unusual occurrences at power plants. Data are compared at the national, Census division, and state levels. 4 figs., 52 tabs. (CK)
hal-00123470,version1-9Jan2007 Expansion of a lithium gas in the BEC-BCS crossover
Paris-Sud XI, Université de
hal-00123470,version1-9Jan2007 Expansion of a lithium gas in the BEC-BCS crossover L. Tarruell1 , M an experimental study of the time of flight properties of a gas of ultra-cold fermions in the BEC-BCS crossover. Since interactions can be tuned by changing the value of the magnetic field, we are able to probe both
TEMPERATURE DEPENDENT CREEP EXPANSION OF Ti-6Al-4V LOW DENSITY CORE SANDWICH STRUCTURES
Wadley, Haydn
by their high manufacturing costs. Interest has therefore developed in an entrapped gas expansion process entrapped gas expansion processing the driving force governing the re-expansion step is the internal pore of the expansion itself (an increase in void volume lowers the gas pressure) or because of gas lost through
Perturbation Expansion for Option Pricing with Stochastic Volatility
Petr Jizba; Hagen Kleinert; Patrick Haener
2007-08-22T23:59:59.000Z
We fit the volatility fluctuations of the S&P 500 index well by a Chi distribution, and the distribution of log-returns by a corresponding superposition of Gaussian distributions. The Fourier transform of this is, remarkably, of the Tsallis type. An option pricing formula is derived from the same superposition of Black-Scholes expressions. An explicit analytic formula is deduced from a perturbation expansion around a Black-Scholes formula with the mean volatility. The expansion has two parts. The first takes into account the non-Gaussian character of the stock-fluctuations and is organized by powers of the excess kurtosis, the second is contract based, and is organized by the moments of moneyness of the option. With this expansion we show that for the Dow Jones Euro Stoxx 50 option data, a Delta-hedging strategy is close to being optimal.
Overlapping Community Detection Using Neighborhood-Inflated Seed Expansion
Whang, Joyce Jiyoung; Dhillon, Inderjit S
2015-01-01T23:59:59.000Z
Community detection is an important task in network analysis. A community (also referred to as a cluster) is a set of cohesive vertices that have more connections inside the set than outside. In many social and information networks, these communities naturally overlap. For instance, in a social network, each vertex in a graph corresponds to an individual who usually participates in multiple communities. In this paper, we propose an efficient overlapping community detection algorithm using a seed expansion approach. The key idea of our algorithm is to find good seeds, and then greedily expand these seeds based on a community metric. Within this seed expansion method, we investigate the problem of how to determine good seed nodes in a graph. In particular, we develop new seeding strategies for a personalized PageRank clustering scheme that optimizes the conductance community score. Experimental results show that our seed expansion algorithm outperforms other state-of-the-art overlapping community detection meth...
Eikonal Approximation in AdS/CFT: Resumming the Gravitational Loop Expansion
Lorenzo Cornalba; Miguel S. Costa; Joao Penedones
2007-12-06T23:59:59.000Z
We derive an eikonal approximation to high energy interactions in Anti-de Sitter spacetime, by generalizing a position space derivation of the eikonal amplitude in flat space. We are able to resum, in terms of a generalized phase shift, ladder and cross ladder graphs associated to the exchange of a spin j field, to all orders in the coupling constant. Using the AdS/CFT correspondence, the resulting amplitude determines the behavior of the dual conformal field theory four point function for small values of the cross ratios, in a Lorentzian regime. Finally we show that the phase shift is dominated by graviton exchange and computes, in the dual CFT, the anomalous dimension of the double trace primary operators O_1 \\partial ... \\partial O_2 of large dimension and spin, corresponding to the relative motion of the two interacting particles. The results are valid at strong t'Hooft coupling and are exact in the 1/N expansion.
Electromagnetic field with induced massive term: Case with scalar field
Yu. P. Rybakov; G. N. Shikin; Yu. A. Popov; Bijan Saha
2010-04-21T23:59:59.000Z
We consider an interacting system of massless scalar and electromagnetic field, with the Lagrangian explicitly depending on the electromagnetic potentials, i.e., interaction with broken gauge invariance. The Lagrangian for interaction is chosen in such a way that the electromagnetic field equation acquires an additional term, which in some cases is proportional to the vector potential of the electromagnetic field. This equation can be interpreted as the equation of motion of photon with induced nonzero rest-mass. This system of interacting fields is considered within the scope of Bianchi type-I (BI) cosmological model. It is shown that, as a result of interaction the electromagnetic field vanishes at $t \\to \\infty$ and the isotropization process of the expansion takes place.
Electromagnetic field with induced massive term: Case with spinor field
Yu. P. Rybakov; G. N. Shikin; Yu. A. Popov; Bijan Saha
2010-08-12T23:59:59.000Z
We consider an interacting system of spinor and electromagnetic field, explicitly depending on the electromagnetic potentials, i.e., interaction with broken gauge invariance. The Lagrangian for interaction is chosen in such a way that the electromagnetic field equation acquires an additional term, which in some cases is proportional to the vector potential of the electromagnetic field. This equation can be interpreted as the equation of motion of photon with induced non-trivial rest-mass. This system of interacting spinor and scalar fields is considered within the scope of Bianchi type-I (BI) cosmological model. It is shown that, as a result of interaction the electromagnetic field vanishes at $t \\to \\infty$ and the isotropization process of the expansion takes place.
Relic gravitational waves and the cosmic accelerated expansion
German Izquierdo
2006-01-10T23:59:59.000Z
The possibility of reconstructing the whole history of the scale factor of the Universe from the power spectrum of relic gravitational waves (RGWs) makes the study of these waves quite interesting. First, we explore the impact of a hypothetical era -right after reheating- dominated by mini black holes and radiation that may lower the spectrum several orders of magnitude. Next, we calculate the power spectrum of the RGWs taking into account the present stage of accelerated expansion and an hypothetical second dust era. Finally, we study the generalized second law of gravitational thermodynamics applied to the present era of accelerated expansion of the Universe.
Optical panel system including stackable waveguides
DeSanto, Leonard (Dunkirk, MD); Veligdan, James T. (Manorville, NY)
2007-11-20T23:59:59.000Z
An optical panel system including stackable waveguides is provided. The optical panel system displays a projected light image and comprises a plurality of planar optical waveguides in a stacked state. The optical panel system further comprises a support system that aligns and supports the waveguides in the stacked state. In one embodiment, the support system comprises at least one rod, wherein each waveguide contains at least one hole, and wherein each rod is positioned through a corresponding hole in each waveguide. In another embodiment, the support system comprises at least two opposing edge structures having the waveguides positioned therebetween, wherein each opposing edge structure contains a mating surface, wherein opposite edges of each waveguide contain mating surfaces which are complementary to the mating surfaces of the opposing edge structures, and wherein each mating surface of the opposing edge structures engages a corresponding complementary mating surface of the opposite edges of each waveguide.
Thermovoltaic semiconductor device including a plasma filter
Baldasaro, Paul F. (Clifton Park, NY)
1999-01-01T23:59:59.000Z
A thermovoltaic energy conversion device and related method for converting thermal energy into an electrical potential. An interference filter is provided on a semiconductor thermovoltaic cell to pre-filter black body radiation. The semiconductor thermovoltaic cell includes a P/N junction supported on a substrate which converts incident thermal energy below the semiconductor junction band gap into electrical potential. The semiconductor substrate is doped to provide a plasma filter which reflects back energy having a wavelength which is above the band gap and which is ineffectively filtered by the interference filter, through the P/N junction to the source of radiation thereby avoiding parasitic absorption of the unusable portion of the thermal radiation energy.
Optical panel system including stackable waveguides
DeSanto, Leonard; Veligdan, James T.
2007-03-06T23:59:59.000Z
An optical panel system including stackable waveguides is provided. The optical panel system displays a projected light image and comprises a plurality of planar optical waveguides in a stacked state. The optical panel system further comprises a support system that aligns and supports the waveguides in the stacked state. In one embodiment, the support system comprises at least one rod, wherein each waveguide contains at least one hole, and wherein each rod is positioned through a corresponding hole in each waveguide. In another embodiment, the support system comprises at least two opposing edge structures having the waveguides positioned therebetween, wherein each opposing edge structure contains a mating surface, wherein opposite edges of each waveguide contain mating surfaces which are complementary to the mating surfaces of the opposing edge structures, and wherein each mating surface of the opposing edge structures engages a corresponding complementary mating surface of the opposite edges of each waveguide.
Assemblies and methods for mitigating effects of reactor pressure vessel expansion
Challberg, Roy C. (Livermore, CA); Gou, Perng-Fei (Saratoga, CA); Chu, Cherk Lam (San Jose, CA); Oliver, Robert P. (Topsham, ME)
1999-01-01T23:59:59.000Z
Support assemblies for allowing RPV radial expansion while simultaneously limiting horizontal, vertical, and azimuthal movement of the RPV within a nuclear reactor are described. In one embodiment, the support assembly includes a support block and a guide block. The support block includes a first portion and a second portion, and the first portion is rigidly coupled to the RPV adjacent the first portion. The guide block is rigidly coupled to a reactor pressure vessel support structure and includes a channel sized to receive the second portion of the support block. The second portion of the support block is positioned in the guide block channel to movably couple the guide block to the support block.
Assemblies and methods for mitigating effects of reactor pressure vessel expansion
Challberg, R.C.; Gou, P.F.; Chu, C.L.; Oliver, R.P.
1999-07-27T23:59:59.000Z
Support assemblies for allowing RPV radial expansion while simultaneously limiting horizontal, vertical, and azimuthal movement of the RPV within a nuclear reactor are described. In one embodiment, the support assembly includes a support block and a guide block. The support block includes a first portion and a second portion, and the first portion is rigidly coupled to the RPV adjacent the first portion. The guide block is rigidly coupled to a reactor pressure vessel support structure and includes a channel sized to receive the second portion of the support block. The second portion of the support block is positioned in the guide block channel to movably couple the guide block to the support block. 6 figs.
Broadening Industry Governance to Include Nonproliferation
Hund, Gretchen; Seward, Amy M.
2008-11-11T23:59:59.000Z
As industry is the first line of defense in detecting and thwarting illicit trade networks, the engagement of the private sector is critical to any government effort to strengthen existing mechanisms to protect goods and services throughout the supply chain. This study builds on previous PNNL work to continue to evaluate means for greater industry engagement to complement and strengthen existing governmental efforts to detect and stem the trade of illicit goods and to protect and secure goods that could be used in making a weapon of mass destruction. Specifically, the study evaluates the concept of Industry Self Regulation, defined as a systematic voluntary program undertaken by an industry or by individual companies to anticipate, implement, supplement, or substitute for regulatory requirements in a given field, generally through the adoption of best practices. Through a series of interviews with companies with a past history of non-compliance, trade associations and NGOs, the authors identify gaps in the existing regulatory infrastructure, drivers for a self regulation approach and the form such an approach might take, as well as obstacles to be overcome. The authors conclude that it is at the intersection of industry, government, and security that—through collaborative means—the effectiveness of the international nonproliferation system—can be most effectively strengthened to the mutual benefit of both government and the private sector. Industry has a critical stake in the success of this regime, and has the potential to act as an integrating force that brings together the existing mechanisms of the global nonproliferation regime: export controls, physical protection, and safeguards. The authors conclude that industry compliance is not enough; rather, nonproliferation must become a central tenant of a company’s corporate culture and be viewed as an integral component of corporate social responsibility (CSR).
Courts Soccer Field Swimming pool Bandeen Hall Mountain House # 3 # 2 Golf Course Security Patterson Hall.B. Scott Arena Library Centennial Theater Mc Greer Hall Pollack Hall New Johnson Science Building Dewhurst Dining Hall Champlain Regional College # 4 Mackinnon Hall Residence # 6 Memorial House Retired Faculty
Thermal expansion normalization for large steam turbines in service
Avrutsky, G.D.; Savenkova, I.A.; Don, E.A.; Lyudomirsky, B.N.; Berezin, M.G. [All-Russia Thermal Engineering Research Inst., Moscow (Russian Federation)
1999-11-01T23:59:59.000Z
Some large steam turbines encounter some problems with their thermal expansion. This shows itself in the broken (leap-like) movement of the bearing pedestals while the turbine is being heated or cooled in the course of transients. This also results in distortion of the casings, torsion of the foundation frame crossbars, increased vibration, damage of the bearings and couplings, etc. The thermal expansion freedom problems hamper the turbine`s start-ups since the relative rotor expansions attain their limits. The main causes why the turbine loses the thermal expansion freedom are the increased friction on the sliding surfaces between the bearing pedestals and foundation frame, increased transversal load on the turbine from the steam-lines connected to the cylinders, poor transition of the axial thrust between the cylinders, and insufficient rigidity of the foundation crossbars. Under consideration are a set of diagnostic, design, and technological measures to reveal the specific causes of the problems and to eliminate them. Among the most widespread and effective countermeasures are the placing of special fluoroplastometallic bands under the bearing pedestals and electrochemical facing of the keys` surfaces, adjustment of the support-and-suspension system and tightening of the foundation frame.
ORIGINAL PAPER Range expansion and prey use of American mink
Boyer, Edmond
ORIGINAL PAPER Range expansion and prey use of American mink in Argentinean Patagonia: dilemmas of American mink as an introduced species in Patagonia and elsewhere, together with our own survey, we discuss the implications of this invasion for biodiversity conservation in Argentinean Patagonia and the associated
SOME CLASSICAL EXPANSIONS FOR KNOP-SAHI AND MACDONALD POLYNOMIALS
Morse, Jennifer
SOME CLASSICAL EXPANSIONS FOR KNOP-SAHI AND MACDONALD* *t gives the non-symmetric Macdonald polynomial Eff(x; q, t). Macdonald shows that fo* *r any* * symmetrization of Effyields the Macdonald polynomial P~(x; q, t). In the original papers a* *ll
YOKAYO BIOFUELS, INC. GRANT FOR IMPROVEMENTS AND EXPANSION OF
YOKAYO BIOFUELS, INC. GRANT FOR IMPROVEMENTS AND EXPANSION OF AN EXISTING FACILITY INITIAL STUDY-11-601) to expand an existing biofuels production facility (Yokayo Biofuels, Inc.) located at 350 Orr: THE PROPOSED PROJECT: Yokayo Biofuels, Inc. is an existing biofuels facility located at 350 Orr Springs Road
Beta-conjugates of real algebraic numbers as Puiseux expansions
Paris-Sud XI, UniversitÃ© de
Beta-conjugates of real algebraic numbers as Puiseux expansions Jean-Louis Verger-Gaugry Abstract. The beta-conjugates of a base of numeration > 1, being a Parry number, were introduced by Boyd, in the context of the RÂ´enyi-Parry dynamics of numeration system and the beta-transformation. These beta
Technology Transfer Expansion Planned UTCA is conducting a major project
Carver, Jeffrey C.
Technology Transfer Expansion Planned UTCA is conducting a major project to evaluate and extend its technology transfer activities (UTCA project 03217). Steven Jones and David Eckhoff of UAB are working to expand the current technology transfer program to showcase the successes of the UTCA projects. Samples
Right tail expansion of Tracy-Widom beta laws
Gaëtan Borot; Céline Nadal
2011-11-11T23:59:59.000Z
Using loop equations, we compute the large deviation function of the maximum eigenvalue to the right of the spectrum in the Gaussian beta matrix ensembles, to all orders in 1/N. We then give a physical derivation of the all order asymptotic expansion of the right tail Tracy-Widom beta laws, for all positive beta, by studying the double scaling limit.
Models of Procyon A including seismic constraints
P. Eggenberger; F. Carrier; F. Bouchy
2005-01-14T23:59:59.000Z
Detailed models of Procyon A based on new asteroseismic measurements by Eggenberger et al (2004) have been computed using the Geneva evolution code including shellular rotation and atomic diffusion. By combining all non-asteroseismic observables now available for Procyon A with these seismological data, we find that the observed mean large spacing of 55.5 +- 0.5 uHz favours a mass of 1.497 M_sol for Procyon A. We also determine the following global parameters of Procyon A: an age of t=1.72 +- 0.30 Gyr, an initial helium mass fraction Y_i=0.290 +- 0.010, a nearly solar initial metallicity (Z/X)_i=0.0234 +- 0.0015 and a mixing-length parameter alpha=1.75 +- 0.40. Moreover, we show that the effects of rotation on the inner structure of the star may be revealed by asteroseismic observations if frequencies can be determined with a high precision. Existing seismological data of Procyon A are unfortunately not accurate enough to really test these differences in the input physics of our models.
Seepage Model for PA Including Dift Collapse
G. Li; C. Tsang
2000-12-20T23:59:59.000Z
The purpose of this Analysis/Model Report (AMR) is to document the predictions and analysis performed using the Seepage Model for Performance Assessment (PA) and the Disturbed Drift Seepage Submodel for both the Topopah Spring middle nonlithophysal and lower lithophysal lithostratigraphic units at Yucca Mountain. These results will be used by PA to develop the probability distribution of water seepage into waste-emplacement drifts at Yucca Mountain, Nevada, as part of the evaluation of the long term performance of the potential repository. This AMR is in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (CRWMS M&O 2000 [153447]). This purpose is accomplished by performing numerical simulations with stochastic representations of hydrological properties, using the Seepage Model for PA, and evaluating the effects of an alternative drift geometry representing a partially collapsed drift using the Disturbed Drift Seepage Submodel. Seepage of water into waste-emplacement drifts is considered one of the principal factors having the greatest impact of long-term safety of the repository system (CRWMS M&O 2000 [153225], Table 4-1). This AMR supports the analysis and simulation that are used by PA to develop the probability distribution of water seepage into drift, and is therefore a model of primary (Level 1) importance (AP-3.15Q, ''Managing Technical Product Inputs''). The intended purpose of the Seepage Model for PA is to support: (1) PA; (2) Abstraction of Drift-Scale Seepage; and (3) Unsaturated Zone (UZ) Flow and Transport Process Model Report (PMR). Seepage into drifts is evaluated by applying numerical models with stochastic representations of hydrological properties and performing flow simulations with multiple realizations of the permeability field around the drift. The Seepage Model for PA uses the distribution of permeabilities derived from air injection testing in niches and in the cross drift to stochastically simulate the 3D flow of water in the fractured host rock (in the vicinity of potential emplacement drifts) under ambient conditions. The Disturbed Drift Seepage Submodel evaluates the impact of the partial collapse of a drift on seepage. Drainage in rock below the emplacement drift is also evaluated.
Hubble expansion and structure formation in the "running FLRW model" of the cosmic evolution
Javier Grande; Joan Sola; Spyros Basilakos; Manolis Plionis
2011-08-07T23:59:59.000Z
A new class of FLRW cosmological models with time-evolving fundamental parameters should emerge naturally from a description of the expansion of the universe based on the first principles of quantum field theory and string theory. Within this general paradigm, one expects that both the gravitational Newton's coupling, G, and the cosmological term, Lambda, should not be strictly constant but appear rather as smooth functions of the Hubble rate. This scenario ("running FLRW model") predicts, in a natural way, the existence of dynamical dark energy without invoking the participation of extraneous scalar fields. In this paper, we perform a detailed study of these models in the light of the latest cosmological data, which serves to illustrate the phenomenological viability of the new dark energy paradigm as a serious alternative to the traditional scalar field approaches. By performing a joint likelihood analysis of the recent SNIa data, the CMB shift parameter, and the BAOs traced by the Sloan Digital Sky Survey, we put tight constraints on the main cosmological parameters. Furthermore, we derive the theoretically predicted dark-matter halo mass function and the corresponding redshift distribution of cluster-size halos for the "running" models studied. Despite the fact that these models closely reproduce the standard LCDM Hubble expansion, their normalization of the perturbation's power-spectrum varies, imposing, in many cases, a significantly different cluster-size halo redshift distribution. This fact indicates that it should be relatively easy to distinguish between the "running" models and the LCDM cosmology using realistic future X-ray and Sunyaev-Zeldovich cluster surveys.
Rautman, Christopher Arthur; Snider, Anna C.; Looff, Karl M. (Geologic Consultant, Lovelady, TX)
2006-11-01T23:59:59.000Z
The Stratton Ridge salt dome is a large salt diapir located only some ten miles from the currently active Strategic Petroleum Reserve Site at Bryan Mound, Texas. The dome is approximately 15 miles south-southwest of Houston. The Stratton Ridge salt dome has been intensively developed, in the desirable central portions, with caverns for both brine production and product storage. This geologic technical assessment indicates that the Stratton Ridge salt dome may be considered a viable, if less-than-desirable, candidate site for potential expansion of the Strategic Petroleum Reserve (SPR). Past development of underground caverns significantly limits the potential options for use by the SPR. The current conceptual design layout of proposed caverns for such an expansion facility is based upon a decades-old model of salt geometry, and it is unacceptable, according to this reinterpretation of salt dome geology. The easternmost set of conceptual caverns are located within a 300-ft buffer zone of a very major boundary shear zone, fault, or other structural feature of indeterminate origin. This structure transects the salt stock and subdivides it into an shallow western part and a deeper eastern part. In places, the distance from this structural boundary to the design-basis caverns is as little as 150 ft. A 300-ft distance from this boundary is likely to be the minimum acceptable stand-off, from both a geologic and a regulatory perspective. Repositioning of the proposed cavern field is possible, as sufficient currently undeveloped salt acreage appears to be available. However, such reconfiguration would be subject to limitations related to land-parcel boundaries and other existing infrastructure and topographic constraints. More broadly speaking, the past history of cavern operations at the Stratton Ridge salt dome indicates that operation of potential SPR expansion caverns at this site may be difficult, and correspondingly expensive. Although detailed information is difficult to come by, widely accepted industry rumors are that numerous existing caverns have experienced major operational problems, including salt falls, sheared casings, and unintended releases of stored product(s). Many of these difficulties may be related to on-going differential movement of individual salt spines or to lateral movement at the caprock-salt interface. The history of operational problems, only some of which appear to be a matter of public record, combined with the potential for encountering escaped product from other operations, renders the Stratton Ridge salt dome a less-than-desirable site for SPR purposes.
Duble, Richard L.
1995-07-31T23:59:59.000Z
Coaches are often more concerned with injuries, personnel problems and opponents than with the condition of the turf on their playing fields. This publication discusses management strategies, including mowing, fertilizing, watering and renovating...
West Elk Mine expansion and degasification plans approved
NONE
2008-04-01T23:59:59.000Z
West Elk Mine recently applied for and received approval for an expansion of its mining and methane drainage operation sin Gunnison County, Colorado. The deliberation over this planned expansion among several federal agencies and other groups received considerable local press coverage. One of the key issues focused on the fate of the additional; methane that would be emitted from the mine's degasification system. This article summarizes this process, which highlights the numerous barriers that still affect many coal mine methane (CMM) project opportunities is the United states. As the debate over climate change legislation moves forward in the US Congress and awareness of greenhouse gas emissions increases around the country, lawmakers, regulators, and non-governmental organizations will continue to focus more attention on CMM reduction opportunities,.
Theoretical model for plasma expansion generated by hypervelocity impact
Ju, Yuanyuan; Zhang, Qingming, E-mail: qmzhang@bit.edu.cn; Zhang, Dongjiang; Long, Renrong; Chen, Li; Huang, Fenglei [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China); Gong, Zizheng [National Key Laboratory of Science and Technology on Reliability and Environment Engineering, Beijing Institute of Spacecraft Environment Engineering, Beijing 100094 (China)
2014-09-15T23:59:59.000Z
The hypervelocity impact experiments of spherical LY12 aluminum projectile diameter of 6.4?mm on LY12 aluminum target thickness of 23?mm have been conducted using a two-stage light gas gun. The impact velocity of the projectile is 5.2, 5.7, and 6.3?km/s, respectively. The experimental results show that the plasma phase transition appears under the current experiment conditions, and the plasma expansion consists of accumulation, equilibrium, and attenuation. The plasma characteristic parameters decrease as the plasma expands outward and are proportional with the third power of the impact velocity, i.e., (T{sub e}, n{sub e})???v{sub p}{sup 3}. Based on the experimental results, a theoretical model on the plasma expansion is developed and the theoretical results are consistent with the experimental data.
Meter Expansion Plan Existing Multi-Space Meter
Duchowski, Andrew T.
Meter Expansion Plan 11 35 9 7 10 20 12 11 12 46 23 15 15 60 23 Existing Multi-Space Meter Split Regulations 136 New Multi-Space Meter Visitor Only New Multi-Space Meter Split Regulations KEY 97 Updated 7/8/13 11 5 #12;HAVE.HAVE. UNION DR. 1 2 3 4 5 New Multi-space Meter After: 5 Meter Spaces Regulations
An engineering geology analysis of home foundations on expansive clays
Castleberry, Joe Patterson
2012-06-07T23:59:59.000Z
temperature associated with the wetting of dry kaolinite 113 Thermal and isothermal di f f us ivity values versus soil water content in accord with the theory of Philip and de Vries 113 APPENDIX C C-1 Probable general form of the rela- tionship between... limited treatment from three disciplines. The soils engineer has developed a broad understanding of expansive soils based on practical experience, but has only recently becun to apply classical soil mechanics theory to this area. Within the tield...
Dynamics of charged fluids and 1/L perturbation expansions
Miloslav Znojil; Uwe Guenther
2007-04-19T23:59:59.000Z
Some features of the calculation of fluid dynamo systems in magnetohydrodynamics are studied. In the coupled set of the ordinary linear differential equations for the spherically symmetric $\\alpha^2-$dynamos, the problem represented by the presence of the mixed (Robin) boundary conditions is addressed and a new treatment for it is proposed. The perturbation formalism of large$-\\ell$ expansions is shown applicable and its main technical steps are outlined.
Procedures to predict vertical differential soil movement for expansive soils
Naiser, Donald David
1997-01-01T23:59:59.000Z
OF TABLES Table Page 1. Soil profile considered in all sample calculations, 2. Gardner's coefficient. 3. Measured suction profile values. 4. Summary of vertical differential soil movements for Appendix C. . . . 50 . . . 54 70 . . . . 74 LIST... OF FIGURES Figure 1. United States map of expansive soils after Wiggins. 2. Center lift distortion mode Page 3. Edge lift distortion mode. 4. The structure of kaolinite (a) atomic structure (b) symbolic structure. . . 5. The structure of serpentine (a...
Inhomogeneous High Frequency Expansion-Free Gravitational Waves
C. Barrabes; P. A. Hogan
2007-06-18T23:59:59.000Z
We describe a natural inhomogeneous generalization of high frequency plane gravitational waves. The waves are high frequency waves of the Kundt type whose null propagation direction in space-time has vanishing expansion, twist and shear but is not covariantly constant. The introduction of a cosmological constant is discussed in some detail and a comparison is made with high frequency gravity waves having wave fronts homeomorphic to 2-spheres.
Cylinder kernel expansion of Casimir energy with a Robin boundary
Liu, Zhonghai
2006-10-30T23:59:59.000Z
: : : : : : : : : : : : : : : 7 A. How to construct the Green function for a single bound- ary condition . . . . . . . . . . . . . . . . . . . . . . . . . 7 B. How to construct the Green function for a slab . . . . . . . 10 III CASIMIR ENERGY OF A SLAB WITH DIRICHLET OR NEUMANN....B.G. Casimir published his famous paper [2] in 1948. The Casimir energy can be de?ned directly as the sum of half-frequencies that is interpreted via 3 ?-function regularization [8]. The Green function formalism [9], multiple scattering expansion [10] and heat...
ARM - Lesson Plans: Expansion of Population and Environment
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC : XDCResearch Related InformationAcid Rain Outreach HomeExpansion of
Texas at Austin, University of
Bone Spring Seay Nance Regional Study (Cimarex Energy) West Texas (Various Counties) West Texas Yates Seay Nance Regional Study (Lynx Production) West Texas (Various Counties) #12;Bar Mar field Umbrella Point field Nuare field East Texas field Copano Bay Bar Mar field Umbrella
Wigner-Kirkwood expansion for semi-infinite quantum fluids
L. Samaj; B. Jancovici
2007-01-31T23:59:59.000Z
For infinite (bulk) quantum fluids of particles interacting via pairwise sufficiently smooth interactions, the Wigner-Kirkwood formalism provides a semiclassical expansion of the Boltzmann density in configuration space in even powers of the thermal de Broglie wavelength $\\lambda$. This result permits one to generate an analogous $\\lambda$-expansion for the bulk free energy and many-body densities. The present paper brings a technically nontrivial generalization of the Wigner-Kirkwood technique to semi-infinite quantum fluids, constrained by a plane hard wall impenetrable to particles. In contrast to the bulk case, the resulting Boltzmann density involves also position-dependent terms of type $\\exp(-2x^2/\\lambda^2)$ ($x$ denotes the distance from the wall boundary) which are non-analytic in $\\lambda$. Under some condition, the analyticity in $\\lambda$ is restored by integrating the Boltzmann density over configuration space; however, in contrast to the bulk free energy, the semiclassical expansion of the surface part of the free energy (surface tension) contains odd powers of $\\lambda$, too. Explicit expressions for the leading quantum corrections in the presence of the boundary are given for the one-body and two-body densities. As model systems for explicit calculations, we use Coulomb fluids, in particular the one-component plasma defined in the $\
Phase structure of topological insulators by lattice strong-coupling expansion
Araki, Yasufumi; Sekine, Akihiko; Nomura, Kentaro; Nakano, Takashi Z
2013-01-01T23:59:59.000Z
The effect of the strong electron correlation on the topological phase structure of 2-dimensional (2D) and 3D topological insulators is investigated, in terms of lattice gauge theory. The effective model for noninteracting system is constructed similarly to the lattice fermions with the Wilson term, corresponding to the spin-orbit coupling. Introducing the electron-electron interaction as the coupling to the gauge field, we analyze the behavior of emergent orders by the strong coupling expansion methods. We show that there appears a new phase with the in-plane antiferromagnetic order in the 2D topological insulator, which is similar to the so-called "Aoki phase" in lattice QCD with Wilson fermions. In the 3D case, on the other hand, there does not appear such a new phase, and the electron correlation results in the shift of the phase boundary between the topological phase and the normal phase.
Dynamical Instability and Expansion-free Condition in $f(R,T)$ Gravity
Noureen, Ifra
2015-01-01T23:59:59.000Z
Dynamical analysis of spherically symmetric collapsing star surrounding in locally anisotropic environment with expansion-free condition is presented in $f(R,T)$ gravity, where $R$ corresponds to Ricci scalar and $T$ stands for the trace of energy momentum tensor. The modified field equations and evolution equations are reconstructed in the framework of $f(R,T)$ gravty. In order to acquire the collapse equation we implement the perturbation on all matter variables and dark source components comprising the viable $f(R,T)$ model. The instability range is described in Newtonian and post-Newtonian eras by constraining the adiabatic index $\\Gamma$ to maintain viability of considered model and stable stellar configuration.
SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION, L.P. & FLNG LIQUEFACTI...
Broader source: Energy.gov (indexed) [DOE]
FOR FREEPORT LNG EXPANSION, L.P. & FLNG LIQUEFACTION, LLC - FE DKT. NO. 11-161-LNG - ORDER 3357 SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION, L.P. & FLNG LIQUEFACTION, LLC - FE...
SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTIO...
Broader source: Energy.gov (indexed) [DOE]
EXPANSION L.P. & FLNG LIQUEFACTION, LLC - FE DKT. 10-160-LNG - ORDER 2913 SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTION, LLC - FE DKT. 10-160-LNG - ORDER...
SEMI-ANNUAL REPORTS - FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTION...
Broader source: Energy.gov (indexed) [DOE]
- FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTION, LLC - FE DKT. 10-161-LNG - ORDER 3282 SEMI-ANNUAL REPORTS - FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTION, LLC - FE DKT....
Dodds, Walter
The expansion of woody riparian vegetation, and subsequent stream restoration, influences, the restoration allowed recovery of some features of open-canopy prairie streams. Woody expansion apparently. Keywords: macroalgae, microalgae, primary production, restoration, streams Introduction North American
Raphael Wittkowski; Hartmut Löwen; Helmut R. Brand
2010-07-09T23:59:59.000Z
Using a generalized order parameter gradient expansion within density functional theory, we derive a phase-field-crystal model for liquid crystals composed by apolar particles in three spatial dimensions. Both the translational density and the orientational direction and ordering are included as order parameters. Different terms involving gradients in the order parameters in the resulting free energy functional are compared to the macroscopic Ginzburg-Landau approach as well as to the hydrodynamic description for liquid crystals. Our approach provides microscopic expressions for all prefactors in terms of the particle interactions. Our phase-field-crystal model generalizes the conventional phase-field-crystal model of spherical particles to orientational degrees of freedom and can be used as a starting point to explore phase transitions and interfaces for various liquid-crystalline phases.
Incomplete beta-function expansions of the solutions to the confluent Heun equation
Artur Ishkhanyan
2009-09-09T23:59:59.000Z
Several expansions of the solutions to the confluent Heun equation in terms of incomplete Beta functions are constructed. A new type of expansion involving certain combinations of the incomplete Beta functions as expansion functions is introduced. The necessary and sufficient conditions when the derived expansions are terminated, thus generating closed-form solutions, are discussed. It is shown that termination of a Beta-function series solution always leads to a solution that is necessarily an elementary function.
Exploring scalar field dynamics with Gaussian processes
Remya Nair; Sanjay Jhingan; Deepak Jain
2014-01-01T23:59:59.000Z
The origin of the accelerated expansion of the Universe remains an unsolved mystery in Cosmology. In this work we consider a spatially flat Friedmann-Robertson-Walker (FRW) Universe with non-relativistic matter and a single scalar field contributing to the energy density of the Universe. Properties of this scalar field, like potential, kinetic energy, equation of state etc. are reconstructed from Supernovae and BAO data using Gaussian processes. We also reconstruct energy conditions and kinematic variables of expansion, such as the jerk and the slow roll parameter. We find that the reconstructed scalar field variables and the kinematic quantities are consistent with a flat Lambda-CDM Universe. Further we find that the null energy condition is satisfied for the redshift range of the Supernovae data considered in the paper but, the strong energy condition is violated.
de Doncker, Elise
2011 Chiller Line Expansion Phase I -Complete Aug 2011 Phase II -Aug 2011- Nov 2011 Lot 31 (Draper Dock
Uncorrelated Measurements of the Cosmic Expansion History and Dark Energy from Supernovae
Yun Wang; Max Tegmark
2005-05-13T23:59:59.000Z
We present a method for measuring the cosmic expansion history H(z) in uncorrelated redshift bins, and apply it to current and simulated type Ia supernova data assuming spatial flatness. If the matter density parameter Omega_m can be accurately measured from other data, then the dark energy density history X(z)=rho_X(z)/rho_X(0) can trivially be derived from this expansion history H(z). In contrast to customary ``black box'' parameter fitting, our method is transparent and easy to interpret: the measurement of H(z)^{-1} in a redshift bin is simply a linear combination of the measured comoving distances for supernovae in that bin, making it obvious how systematic errors propagate from input to output. We find the Riess et al. (2004) ``gold'' sample to be consistent with the ``vanilla'' concordance model where the dark energy is a cosmological constant. We compare two mission concepts for the NASA/DOE Joint Dark Energy Mission (JDEM), the Joint Efficient Dark-energy Investigation (JEDI), and the Supernova Accelaration Probe (SNAP), using simulated data including the effect of weak lensing (based on numerical simulations) and a systematic bias from K-corrections. Estimating H(z) in seven uncorrelated redshift bins, we find that both provide dramatic improvements over current data: JEDI can measure H(z) to about 10% accuracy and SNAP to 30-40% accuracy.
RESEARCH ARTICLE Statistics of the surface temperature field of an air/water interface
Saylor, John R.
is the coefficient of thermal expansion, m is the kinematic viscosity, a is the thermal diffusivity, DTRESEARCH ARTICLE Statistics of the surface temperature field of an air/water interface under air
The Vector Meson Mass in Chiral Effective Field Theory
Jonathan M M Hall
2014-05-01T23:59:59.000Z
A brief overview of Quantum Chromodynamics (QCD) as a non-Abelian gauge field theory, including symmetries and formalism of interest, will precede a focused discussion on the use of an Effective Field Theory (EFT) as a low energy perturbative expansion technique. Regularization schemes involved in Chiral Perturbation Theory (\\c{hi}PT) will be reviewed and compared with EFT. Lattices will be discussed as a useful procedure for studying large mass particles. An Effective Field Theory will be formulated, and the self energy of the \\r{ho} meson for a Finite-Range Regulated (FRR) theory will be calculated. This will be performed in both full QCD and the simpler quenched approximation (QQCD). Finite-volume artefacts, due to the finite box size on the lattice, will be quantified. Currently known lattice results will be used to calculate the \\r{ho} meson mass, and the possibility of unquenching will be explored. The aim of the research was to determine whether a stable unquenching procedure for the \\r{ho} meson could be discovered. The results from the original research indicate that there is no such procedure because the \\r{ho} mesons are unstable. Unless additional data involving lighter quark masses is available, an element of modelling is needed for successful unquenching.
Century Expansion (4Q07) Wind Farm | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWindSyracuse,CER.png El CER es unaExpansion
Dynamics of gravitational clustering I. Building perturbative expansions
P. Valageas
2001-10-09T23:59:59.000Z
We develop a systematic method to obtain the solution of the collisionless Boltzmann equation which describes the growth of large-scale structures as a perturbative series over the initial density perturbations. We give an explicit calculation of the second-order terms which are shown to agree with the results obtained from the hydrodynamical description of the system. Then, we explain that this identity extends to all orders of perturbation theory and that the perturbative series actually diverge for hierarchical scenarios. However, since the collisionless Boltzmann equation provides the exact description of the dynamics (including the non-linear regime) these results may serve as a basis for a study of the non-linear regime. In particular, we derive a non-perturbative quadratic integral equation which explicitly relates the actual non-linear distribution function to the initial conditions (more precisely, to the linear growing mode). This allows us to write an explicit path-integral expression for the probability distribution of the exact non-linear density field.
Strong-coupling expansions for the topologically inhomogeneous Bose-Hubbard model
Buonsante, P.; Penna, V.; Vezzani, A. [Dipartimento di Fisica, Politecnico di Torino and INFM, Corso Duca degli Abruzzi 24, I-10129 Torino (Italy); Dipartimento di Fisica, Universita degli Studi di Parma and INFM, Parco Area delle Scienze 7/a, I-43100 Parma (Italy)
2004-11-01T23:59:59.000Z
We consider a Bose-Hubbard model with an arbitrary hopping term and provide the boundary of the insulating phase thereof in terms of third-order strong coupling perturbative expansions for the ground state energy. In the general case two previously unreported terms occur, arising from triangular loops and hopping inhomogeneities, respectively. Quite interestingly the latter involves the entire spectrum of the hopping matrix rather than its maximal eigenpair, like the remaining perturbative terms. We also show that hopping inhomogeneities produce a first order correction in the local density of bosons. Our results apply to ultracold bosons trapped in confining potentials with arbitrary topology, including the realistic case of optical superlattices with uneven hopping amplitudes. Significant examples are provided. Furthermore, our results can be extended to magnetically tuned transitions in Josephson junction arrays.
Boyer, Edmond
pore fluid is anomalously higher than the one of pure bulk water. The micromechanics model water-to-cement ratios. It permits also to calculate the pore volume thermal expansion coefficient expansion and thermal pressurization of a hardened cement paste, Cement and Concrete Research, DOI 10.1016/j
Turbulence and Magnetic Fields in Clouds
Shantanu Basu
2004-11-15T23:59:59.000Z
We discuss several categories of models which may explain the IMF, including the possible role of turbulence and magnetic fields.
Lattice thermal expansion for normal tetrahedral compound semiconductors
Omar, M.S. [Department of Physics, College of Science, University of Salahaddin, Arbil, Iraqi Kurdistan (Iraq)]. E-mail: dr_m_s_omar@yahoo.com
2007-02-15T23:59:59.000Z
The cubic root of the deviation of the lattice thermal expansion from that of the expected value of diamond for group IV semiconductors, binary compounds of III-V and II-VI, as well as several ternary compounds from groups I-III-VI{sub 2}, II-IV-V{sub 2} and I-IV{sub 2}V{sub 3} semiconductors versus their bonding length are given straight lines. Their slopes were found to be 0.0256, 0.0210, 0.0170, 0.0259, 0.0196, and 0.02840 for the groups above, respectively. Depending on the valence electrons of the elements forming these groups, a formula was found to correlate all the values of the slopes mentioned above to that of group IV. This new formula which depends on the melting point and the bonding length as well as the number of valence electrons for the elements forming the compounds, will gives best calculated values for lattice thermal expansion for all compounds forming the groups mentioned above. An empirical relation is also found between the mean ionicity of the compounds forming the groups and their slopes mentioned above and that gave the mean ionicity for the compound CuGe{sub 2}P{sub 3} in the range of 0.442.
Multipole expansions and Fock symmetry of the Hydrogen atom
A. V. Meremianin; J-M. Rost
2006-06-27T23:59:59.000Z
The main difficulty in utilizing the O(4) symmetry of the Hydrogen atom in practical calculations is the dependence of the Fock stereographic projection on energy. This is due to the fact that the wave functions of the states with different energies are proportional to the hyperspherical harmonics (HSH) corresponding to different points on the hypersphere. Thus, the calculation of the matrix elements reduces to the problem of re-expanding HSH in terms of HSH depending on different points on the hypersphere. We solve this problem by applying the technique of multipole expansions for four-dimensional HSH. As a result, we obtain the multipole expansions whose coefficients are the matrix elements of the boost operator taken between hydrogen wave functions (i.e. hydrogen form-factors). The explicit expressions for those coefficients are derived. It is shown that the hydrogen matrix elements can be presented as derivatives of an elementary function. Such an operator representation is convenient for the derivation of recurrency relations connecting matrix elements between states corresponding to different values of the quantum numbers $n$ and $l$.
Conversion of batch to molten glass, I: Volume expansion
Henager, Samuel H.; Hrma, Pavel R.; Swearingen, Kevin J.; Schweiger, Michael J.; Marcial, Jose; Tegrotenhuis, Nathan E.
2011-02-01T23:59:59.000Z
Batches designed to simulate nuclear high-level waste glass were compressed into pellets that were heated at a rate of 5°C/min and photographed to obtain the profile area as a function of temperature. Three types of batches were prepared with different nitrate-carbonate ratios. To determine the impact of the heat supply by an exothermic reaction and the batch expansion, the nitrated batches were prepared with varying addition of sucrose. To obtain the impact of the grain size of the quartz component, the mixed nitrate-carbonate batches were prepared with silica particles ranging in size from 5 µm to 195 µm. One batch containing only carbonates was also tested. Sucrose addition had little effect on the batch expansion, while the size of silica was very influential. The 5-?m grains had a strongest effect, causing the generation of both primary and secondary foam, whereas only secondary foam was produced in batches with grains of 45 µm and larger. The retention of gases evolved as the batch melts creates primary foam. Gases evolved from oxidation-reduction reactions once the batch has melted produce secondary foam. We suggest that the viscosity of the melt and the amount of gas evolved are the main influences on foam production. As more gas is produced in the melt and as the glass becomes less viscous, the bubbles of gas coalesce into larger and larger cavities, until the glass can no longer contain the bubbles and they burst, causing the foam to collapse.
Magnetic-field-dosimetry system
Lemon, D.K.; Skorpik, J.R.; Eick, J.L.
1981-01-21T23:59:59.000Z
A device is provided for measuring the magnetic field dose and peak field exposure. The device includes three Hall-effect sensors all perpendicular to each other, sensing the three dimensional magnetic field and associated electronics for data storage, calculating, retrieving and display.
Holographic Representation of Higher Spin Gauge Fields
Debajyoti Sarkar; Xiao Xiao
2014-11-17T23:59:59.000Z
Extending the results of \\cite{Heem}, \\cite{KLRS} on the holographic representation of local gauge field operators in anti de Sitter space, here we construct the bulk operators for higher spin gauge fields in the leading order of $\\frac{1}{N}$ expansion. Working in holographic gauge for higher spin gauge fields, we show that gauge field operators with integer spin $s>1$ can be represented by an integration over a ball region, which is the interior region of the spacelike bulk lightcone on the boundary. The construction is shown to be AdS-covariant up to gauge transformations, and the two-point function between higher spin gauge fields and boundary higher spin current exhibit singularities on both bulk and boundary lightcones. We also comment on possible extension to the level of three-point functions and carry out a causal construction for higher spin fields in de Sitter spacetime.
J. A. Valiente Kroon
2004-08-26T23:59:59.000Z
The Conformal Einstein equations and the representation of spatial infinity as a cylinder introduced by Friedrich are used to analyse the behaviour of the gravitational field near null and spatial infinity for the development of data which are asymptotically Euclidean, conformally flat and time asymmetric. Our analysis allows for initial data whose second fundamental form is more general than the one given by the standard Bowen-York Ansatz. The Conformal Einstein equations imply upon evaluation on the cylinder at spatial infinity a hierarchy of transport equations which can be used to calculate in a recursive way asymptotic expansions for the gravitational field. It is found that the the solutions to these transport equations develop logarithmic divergences at certain critical sets where null infinity meets spatial infinity. Associated to these, there is a series of quantities expressible in terms of the initial data (obstructions), which if zero, preclude the appearance of some of the logarithmic divergences. The obstructions are, in general, time asymmetric. That is, the obstructions at the intersection of future null infinity with spatial infinity are different, and do not generically imply those obtained at the intersection of past null infinity with spatial infinity. The latter allows for the possibility of having spacetimes where future and past null infinity have different degrees of smoothness. Finally, it is shown that if both sets of obstructions vanish up to a certain order, then the initial data has to be asymptotically Schwarzschildean to some degree.
PPN expansion and FRW scalar perturbations in n-DBI gravity
Flávio S. Coelho; Carlos Herdeiro; Shinji Hirano; Yuki Sato
2014-09-29T23:59:59.000Z
n-DBI gravity explicitly breaks Lorentz invariance by the introduction of a unit time-like vector field, thereby giving rise to an extra (scalar) degree of freedom. We look for observational consequences of this mode in two setups. Firstly, we compute the parametrized post-Newtonian (PPN) expansion of the metric to first post-Newtonian order. Surprisingly, we find that the PPN parameters are exactly the same as in General Relativity (GR), and no preferred-frame effects are produced. In particular this means that n-DBI gravity is consistent with all GR solar system experimental tests. We discuss the origin of such degeneracy between n-DBI gravity and GR, and suggest it may also hold in higher post-Newtonian order. Secondly, we study gravitational scalar perturbations of a Friedmann-Robertson-Walker space-time with a cosmological constant $\\Lambda \\geq 0$. In the case of de Sitter space, we show that the scalar mode grows as the universe expands and, in contrast with a canonical scalar field coupled to GR, it does not freeze on super horizon scales.
Thermodynamics of the pion gas using the O(N) model in 1/N expansion
Tomas Brauner
2008-12-02T23:59:59.000Z
We investigate the thermodynamics of a pion gas within the O(N) model in the 1/N expansion. Using the auxiliary field technique, we compute the effective potential up to the next-to-leading order (NLO) and show that it can be renormalized in a temperature-independent manner. The crucial step for the consistency of the calculation turns out to be the elimination of the auxiliary field prior to renormalization. Subsequently, we solve the NLO gap equation for the chiral condensate as a function of temperature both in the chiral limit and with explicit symmetry breaking. We propose a simple semi-analytic estimate of the NLO correction to the condensate and compare it to the exact numerical solution. Finally, we show that in the chiral limit the chiral symmetry is restored at finite temperature by a second-order phase transition, and determine the critical scaling of the order parameter. We study the dependence of the critical temperature on the renormalized coupling and find that in contrast to the weak-coupling limit, at strong coupling the critical temperature increases at NLO.
Melaina, M. W.; Heath, G.; Sandor, D.; Steward, D.; Vimmerstedt, L.; Warner, E.; Webster, K. W.
2013-04-01T23:59:59.000Z
Achieving the Department of Energy target of an 80% reduction in greenhouse gas emissions by 2050 depends on transportation-related strategies combining technology innovation, market adoption, and changes in consumer behavior. This study examines expanding low-carbon transportation fuel infrastructure to achieve deep GHG emissions reductions, with an emphasis on fuel production facilities and retail components serving light-duty vehicles. Three distinct low-carbon fuel supply scenarios are examined: Portfolio: Successful deployment of a range of advanced vehicle and fuel technologies; Combustion: Market dominance by hybridized internal combustion engine vehicles fueled by advanced biofuels and natural gas; Electrification: Market dominance by electric drive vehicles in the LDV sector, including battery electric, plug-in hybrid, and fuel cell vehicles, that are fueled by low-carbon electricity and hydrogen. A range of possible low-carbon fuel demand outcomes are explored in terms of the scale and scope of infrastructure expansion requirements and evaluated based on fuel costs, energy resource utilization, fuel production infrastructure expansion, and retail infrastructure expansion for LDVs. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored transportation-related strategies for abating GHGs and reducing petroleum dependence.
Piszczatowski, Konrad; Komasa, Jacek; Jeziorski, Bogumil; Szalewicz, Krzysztof
2015-01-01T23:59:59.000Z
Future metrology standards will be partly based on physical quantities computed from first principles rather than measured. In particular, a new pressure standard can be established if the dynamic polarizability of helium can be determined from theory with an uncertainty smaller than 0.2 ppm. We present calculations of the frequency-dependent part of this quantity including relativistic effects with full account of leading nuclear recoil terms and using highly optimized explicitly correlated basis sets. A particular emphasis is put on uncertainty estimates. At the He-Ne laser wavelength of 632.9908 nm, the computed polarizability value of 1.391 811 41 a.u. has uncertainty of 0.1 ppm that is two orders of magnitude smaller than those of the most accurate polarizability measurements. We also obtained an accurate expansion of the helium refractive index in powers of density.
SCALING LAW FOR THE IMPACT OF MAGNET FRINGE FIELDS.
WEI,J.; PAPAPHILIPPOU,Y.; TALMAN,R.
2000-06-30T23:59:59.000Z
A general scaling law can be derived for the relative momentum deflection produced on a particle beam by fringe fields, to leading order. The formalism is applied to two concrete examples, for magnets having dipole and quadrupole symmetry. During recent years, the impact of magnet fringe fields is becoming increasingly important for rings of relatively small circumference but large acceptance. A few years ago, following some heuristic arguments, a scaling law was proposed [1], for the relative deflection of particles passing through a magnet fringe-field. In fact, after appropriate expansion of the magnetic fields in Cartesian coordinates, which generalizes the expansions of Steffen [2], one can show that this scaling law is true for any multipole magnet, at leading order in the transverse coefficients [3]. This paper intends to provide the scaling law to estimate the impact of fringe fields in the special cases of magnets with dipole and quadrupole symmetry.
Direct drive field actuator motors
Grahn, A.R.
1998-03-10T23:59:59.000Z
A positive-drive field actuator motor is described which includes a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately. 62 figs.
Growth of Cosmic Structure: Probing Dark Energy Beyond Expansion
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Huterer D.; May M.; Kirkby, D.; Bean, R.; Connolly, A.; Dawson, K; Dodelson, S.; Evrard, A.; Jain, B.; Jarvis, M.; Linder, E.; Mandelbaum, R.; Raccanelli, A.; Reid, B; Rozo, E.; Schmidt, F.; Sehgal, N.; Slosar, A.; Van Engelen, A.; Wu, H-Y.; Zhao, G.
2015-03-01T23:59:59.000Z
The quantity and quality of cosmic structure observations have greatly accelerated in recent years, and further leaps forward will be facilitated by imminent projects. These will enable us to map the evolution of dark and baryonic matter density fluctuations over cosmic history. The way that these fluctuations vary over space and time is sensitive to several pieces of fundamental physics: the primordial perturbations generated by GUT-scale physics; neutrino masses and interactions; the nature of dark matter and dark energy. We focus on the last of these here: the ways that combining probes of growth with those of the cosmic expansion such as distance-redshift relations will pin down the mechanism driving the acceleration of the Universe.
Ultra low thermal expansion, highly thermal shock resistant ceramic
Limaye, Santosh Y. (1440 Sandpiper Cir. #38, Salt Lake City, UT 84117)
1996-01-01T23:59:59.000Z
Three families of ceramic compositions having the given formula: .phi..sub.1+X Zr.sub.4 P.sub.6-2X Si.sub.2X O.sub.24, .phi..sub.1+X Zr.sub.4-2X Y.sub.2X P.sub.6 O.sub.24 and .phi..sub.1+X Zr.sub.4-X Y.sub.X P.sub.6-2X Si.sub.X O.sub.24 wherein .phi. is either Strontium or Barium and X has a value from about 0.2 to about 0.8 have been disclosed. Ceramics formed from these compositions exhibit very low, generally near neutral, thermal expansion over a wide range of elevated temperatures.
Ultra low thermal expansion, highly thermal shock resistant ceramic
Limaye, S.Y.
1996-01-30T23:59:59.000Z
Three families of ceramic compositions having the given formula: {phi}{sub 1+X}Zr{sub 4}P{sub 6{minus}2X}Si{sub 2X}O{sub 24}, {phi}{sub 1+X}Zr{sub 4{minus}2X}Y{sub 2X}P{sub 6}O{sub 24} and {phi}{sub 1+X}Zr{sub 4{minus}X}Y{sub X}P{sub 6{minus}2X}Si{sub X}O{sub 24} wherein {phi} is either strontium or barium and X has a value from about 0.2 to about 0.8 have been disclosed. Ceramics formed from these compositions exhibit very low, generally near neutral, thermal expansion over a wide range of elevated temperatures. 7 figs.
Low Temperature Thermal Expansion of G-10 Plastic and Mylar
Bell, D.; /Fermilab
1993-05-24T23:59:59.000Z
This engineering note is a summary of test information and conclusions from the thermal expansion tests conducted at D-O during the fall of 1992. Each test was conducted separately but using the same basic procedure and equipment. While information on material properties at room temperature and above for these products is quite well doccumented, the companies producing these products had no available data about the thermal properties of these materials at cryogenic temperatures. This lack of readily available information prompted these tests to determine the accuracy of using the elevated temperature data for lower temperatures also. The results of each test were written up separately as stand alone short reports for immediate use in the design stages of the V.L.P.C. cryostat cassette. Both short reports are gathered here for convenient reference.
HAZARDS OF THERMAL EXPANSION FOR RADIOLOGICAL CONTAINER ENGULFED IN FIRE
Donna Post Guillen
2013-05-01T23:59:59.000Z
Fire accidents pose a serious threat to nuclear facilities. It is imperative that transport casks or shielded containers designed to transport/contain radiological materials have the ability to withstand a hypothetical fire. A numerical simulation was performed for a shielded container constructed of stainless steel and lead engulfed in a hypothetical fire as outlined by 10 CFR §71.73. The purpose of this analysis was to determine the thermal response of the container during and after the fire. The thermal model shows that after 30 minutes of fire, the stainless steel will maintain its integrity and not melt. However, the lead shielding will melt since its temperature exceeds the melting point. Due to the method of construction of the container under consideration, ample void space must be provided to allow for thermal expansion of the lead upon heating and melting, so as to not overstress the weldment.
Dynamic Time Expansion and Compression Using Nonlinear Waveguides
Findikoglu, Alp T.; Hahn, Sangkoo F.; Jia, Quanxi
2004-06-22T23:59:59.000Z
Dynamic time expansion or compression of a small amplitude input signal generated with an initial scale is performed using a nonlinear waveguide. A nonlinear waveguide having a variable refractive index is connected to a bias voltage source having a bias signal amplitude that is large relative to the input signal to vary the reflective index and concomitant speed of propagation of the nonlinear waveguide and an electrical circuit for applying the small amplitude signal and the large amplitude bias signal simultaneously to the nonlinear waveguide. The large amplitude bias signal with the input signal alters the speed of propagation of the small-amplitude signal with time in the nonlinear waveguide to expand or contract the initial time scale of the small-amplitude input signal.
Ultracold plasma expansion as a function of charge neutrality
Witte, Craig; Roberts, Jacob L. [Colorado State University, Fort Collins, Colorado 80523 (United States)
2014-10-15T23:59:59.000Z
Ultracold plasmas (UCPs) are created under conditions of near but not perfect neutrality. In the limit of zero electron temperature, electron screening results in non-neutrality manifesting itself as an interior region of the UCP with both electrons and ions and an exterior region composed primarily of ions. The interior region is the region of the most scientific interest for 2-component ultracold plasma physics. This work presents a theoretical model through which the time evolution of non-neutral UCPs is calculated. Despite Debye screening lengths much smaller than the characteristic plasma spatial size, model calculations predict that the expansion rate and the electron temperature of the UCP interior is sensitive to the neutrality of the UCP. The predicted UCP dependence on neutrality has implications for the correct measurement of several UCP properties, such as electron temperature, and a proper understanding of evaporative cooling of the electrons in the UCP.
Winding expansion techniques for lattice QCD with chemical potential
Julia Danzer; Christof Gattringer
2008-09-16T23:59:59.000Z
We analytically derive a decomposition of the lattice fermion determinant for Wilson's Dirac operator with chemical potential into winding sectors, i.e., factors with a fixed number of quarks. Dividing the lattice into four domains, the determinant is factorized into terms which can be classified with respect to the winding number of the closed loops they consist of. The individual factors are expressed in terms of subdeterminants and propagators on the domains of the lattice. We numerically analyze properties of the factorization formula and discuss two applications for the determination of canonical partition functions with a fixed quark number: A speedup for the Fourier transformation technique through a dimensional reduction, and a power series expansion.
Analysis of crystallographic texture information by the hyperspherical harmonic expansion
Mason, Jeremy K. (Jeremy Kyle)
2009-01-01T23:59:59.000Z
The field of texture analysis is fundamentally concerned with measuring and analyzing the distribution of crystalline orientations in a given polycrystalline material. Traditionally, the orientation distribution function ...
Glenn Eric Johnson
2014-12-21T23:59:59.000Z
The quantum field theories (QFT) constructed in [1,2] include phenomenology of interest. The constructions approximate: scattering by $1/r$ and Yukawa potentials in non-relativistic approximations; and the first contributing order of the Feynman series for Compton scattering. To have a semi-norm, photon states are constrained to transverse polarizations and for Compton scattering, the constructed cross section deviates at large momentum exchanges from the cross section prediction of the Feynman rules. Discussion includes the incompatibility of canonical quantization with the constructed interacting fields, and the role of interpretations of quantum mechanics in realizing QFT.
The Role of Demand Resources In Regional Transmission Expansion Planning and Reliable Operations
Kirby, Brendan J [ORNL
2006-07-01T23:59:59.000Z
Investigating the role of demand resources in regional transmission planning has provided mixed results. On one hand there are only a few projects where demand response has been used as an explicit alternative to transmission enhancement. On the other hand there is a fair amount of demand response in the form of energy efficiency, peak reduction, emergency load shedding, and (recently) demand providing ancillary services. All of this demand response reduces the need for transmission enhancements. Demand response capability is typically (but not always) factored into transmission planning as a reduction in the load which must be served. In that sense demand response is utilized as an alternative to transmission expansion. Much more demand response is used (involuntarily) as load shedding under extreme conditions to prevent cascading blackouts. The amount of additional transmission and generation that would be required to provide the current level of reliability if load shedding were not available is difficult to imagine and would be impractical to build. In a very real sense demand response solutions are equitably treated in every region - when proposed, demand response projects are evaluated against existing reliability and economic criteria. The regional councils, RTOs, and ISOs identify needs. Others propose transmission, generation, or responsive load based solutions. Few demand response projects get included in transmission enhancement plans because few are proposed. But this is only part of the story. Several factors are responsible for the current very low use of demand response as a transmission enhancement alternative. First, while the generation, transmission, and load business sectors each deal with essentially the same amount of electric power, generation and transmission companies are explicitly in the electric power business but electricity is not the primary business focus of most loads. This changes the institutional focus of each sector. Second, market and reliability rules have, understandably, been written around the capabilities and limitations of generators, the historic reliability resources. Responsive load limitations and capabilities are often not accommodated in markets or reliability criteria. Third, because of the institutional structure, demand response alternatives are treated as temporary solutions that can delay but not replace transmission enhancement. Financing has to be based on a three to five year project life as opposed to the twenty to fifty year life of transmission facilities. More can be done to integrate demand response options into transmission expansion planning. Given the societal benefits it may be appropriate for independent transmission planning organizations to take a more proactive role in drawing demand response alternatives into the resource mix. Existing demand response programs provide a technical basis to build from. Regulatory and market obstacles will have to be overcome if demand response alternatives are to be routinely considered in transmission expansion planning.
Review of Jamaica Public Service Company, Ltd. least-cost expansion plan.
Koritarov, V.; Buehring, W.; Cirillo, R.; Decision and Information Sciences
2008-02-28T23:59:59.000Z
Argonne National Laboratory has been asked to review the least-cost expansion plan (LCEP) of the Jamaica Public Service Company, Ltd. (JPSCo). The material that has been initially provided to Argonne included: (1) An electronic copy of the data and results from JPSCo's running the WASP electric system expansion planning model, (2) Approximately 20 pages of a document 'JPSCo Generation Expansion Plan', marked 'DRAFT 002', date unknown, and (3) The report 'JPSCo Least Cost Generation Expansion Plans, (1999-2009)', January 1999. It was noticed that the 20 pages from the 'DRAFT 002' document were different from the January 1999 report. An explanation was provided to Argonne that the excerpt was from an earlier draft and that the review should focus on the January 1999 report. Further, the electronic copy of the WASP case did not correspond to either the January 1999 report or to the 20-page excerpt. Again, the reason for these discrepancies was that the WASP case provided to Argonne was an earlier case and not the final one that was presented in the report. Based on the review of the available material, Argonne experts have prepared and submitted to the National Investment Bank of Jamaica (NIBJ) a preliminary draft report containing the initial findings, comments, questions and observations. As many of the comments and questions raised in the preliminary review needed to be discussed with the appropriate staff of JPSCo and other Jamaican experts, a 3-day mission to Jamaica was carried out by one Argonne expert (V. Koritarov) in the period July 20-23, 1999. Besides JPSCo experts, the discussions and the review of the LCEP during the mission included several experts from NIBJ, Ministry of Energy, and the Petroleum Corporation of Jamaica. Mr. Koritarov also worked with the JPSCo technical staff to reconstruct the WASP base case that was used as a basis for the January 1999 report. The first step was to verify that the results obtained after the resimulation of this case were identical to those presented in the January 1999 report. Then, in the next step, the Argonne expert and JPSCo team reviewed this case in detail and performed certain modifications and improvements of data where necessary. These modifications and data adjustments resulted in a new base case that served as a basis for further review and for the sensitivity analyses. Several sensitivity analyses were performed together with JPSCo experts and the results were discussed with the JPSCo management and other Jamaican experts at the end of the mission. Additional sensitivity analyses, as well as the cases for high and low load forecasts, were conducted by Mr. Koritarov after returning from Jamaica. The main findings of the review and issues that have been discussed with the Jamaican team can be summarized.
[Article 1 of 7: Motivates and Includes the Consumer
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
and include the consumer exist. Some examples include advanced two-way metering (AMI), demand response (DR), and distributed energy resources (DER). A common misconception is...
THE INTER-ERUPTION TIMESCALE OF CLASSICAL NOVAE FROM EXPANSION OF THE Z CAMELOPARDALIS SHELL
Shara, Michael M.; Mizusawa, Trisha; Zurek, David [Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192 (United States); Martin, Christopher D.; Neill, James D. [Department of Physics, Math and Astronomy, California Institute of Technology, 1200 East California Boulevard, Mail Code 405-47, Pasadena, CA 91125 (United States); Seibert, Mark [Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States)
2012-09-10T23:59:59.000Z
The dwarf nova Z Camelopardalis is surrounded by the largest known classical nova shell. This shell demonstrates that at least some dwarf novae must have undergone classical nova eruptions in the past, and that at least some classical novae become dwarf novae long after their nova thermonuclear outbursts. The current size of the shell, its known distance, and the largest observed nova ejection velocity set a lower limit to the time since Z Cam's last outburst of 220 years. The radius of the brightest part of Z Cam's shell is currently {approx}880 arcsec. No expansion of the radius of the brightest part of the ejecta was detected, with an upper limit of {<=}0.17 arcsec yr{sup -1}. This suggests that the last Z Cam eruption occurred {>=}5000 years ago. However, including the important effect of deceleration as the ejecta sweeps up interstellar matter in its snowplow phase reduces the lower limit to 1300 years. This is the first strong test of the prediction of nova thermonuclear runaway theory that the interoutburst times of classical novae are longer than 1000 years. The intriguing suggestion that Z Cam was a bright nova, recorded by Chinese imperial astrologers in October-November 77 B.C.E., is consistent with our measurements. If Z Cam was indeed the nova of 77 B.C.E. we predict that its ejecta are currently expanding at 85 km s{sup -1}, or 0.11 arcsec yr{sup -1}. Detection and measurement of this rate of expansion should be possible in just a few years.
E. S. Nani; M. P. Gururajan
2014-04-13T23:59:59.000Z
In this paper, we show how to incorporate cubic and hexagonal anisotropies in interfacial energies in phase field models; this incorporation is achieved by including upto sixth rank tensor terms in the free energy expansion, assuming that the free energy is only a function of coarse grained composition, its gradient, curvature and aberration. We derive the number of non-zero and independent components of these tensors. Further, by demanding that the resultant interfacial energy is positive definite for inclusion of each of the tensor terms individually, we identify the constraints imposed on the independent components of these tensors. The existing results in the invariant group theory literature can be used to simplify the process of construction of some (but not all) of the higher order tensors. Finally, we derive the relevant phase field evolution equations.
E-Print Network 3.0 - anisotropic thermal expansion Sample Search...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Thermal Conductivity Summary: sensors, actuators, logic circuits, and organic optoelectronic devices. The high thermal expansion... and the dielectric constant 9 of these...
E-Print Network 3.0 - article volume expansion Sample Search...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Technologies and Information Sciences 52 Anisotropic thermal expansion in silicates: A density functional study of -eucryptite and related materials Summary: that the...
Retreat of the state and the market: liberalisation and education expansion in Sudan under the NCP.
Mann, Laura Elizabeth
2012-01-01T23:59:59.000Z
??This thesis is an analysis of two concurrent processes - the liberalisation of the economy and the expansion of the tertiary education system - by… (more)
Microsoft Word - CX-SnoKingSubstationExpansionFY12_WEB.doc
Broader source: Energy.gov (indexed) [DOE]
REPLY TO ATTN OF: KEPR-4 SUBJECT: Environmental Clearance Memorandum Michael Marleau Project Manager - TEP-TPP-1 Proposed Action: Sno-King Substation Expansion Categorical...
Kong, Peter C; Grandy, Jon D; Detering, Brent A; Zuck, Larry D
2013-09-17T23:59:59.000Z
Electrode assemblies for plasma reactors include a structure or device for constraining an arc endpoint to a selected area or region on an electrode. In some embodiments, the structure or device may comprise one or more insulating members covering a portion of an electrode. In additional embodiments, the structure or device may provide a magnetic field configured to control a location of an arc endpoint on the electrode. Plasma generating modules, apparatus, and systems include such electrode assemblies. Methods for generating a plasma include covering at least a portion of a surface of an electrode with an electrically insulating member to constrain a location of an arc endpoint on the electrode. Additional methods for generating a plasma include generating a magnetic field to constrain a location of an arc endpoint on an electrode.
Zornberg, Jorge G.
The need to design and construct roadways on highly plastic clays is common in central and eastern Texas, where expansive clays are prevalent. Roadways constructed on highly plastic clay subgrades may the infiltration of water into highly plastic clays under an increased gravity field in a centrifuge. Project
The effective field theory of inflation models with sharp features
Bartolo, Nicola; Cannone, Dario; Matarrese, Sabino, E-mail: nicola.bartolo@pd.infn.it, E-mail: dario.cannone@pd.infn.it, E-mail: sabino.matarrese@pd.infn.it [Dipartimento di Fisica e Astronomia ''G. Galilei'', Università degli Studi di Padova, via Marzolo 8, I-35131 Padova (Italy)
2013-10-01T23:59:59.000Z
We describe models of single-field inflation with small and sharp step features in the potential (and sound speed) of the inflaton field, in the context of the Effective Field Theory of Inflation. This approach allows us to study the effects of features in the power-spectrum and in the bispectrum of curvature perturbations, from a model-independent point of view, by parametrizing the features directly with modified ''slow-roll'' parameters. We can obtain a self-consistent power-spectrum, together with enhanced non-Gaussianity, which grows with a quantity ? that parametrizes the sharpness of the step. With this treatment it is straightforward to generalize and include features in other coefficients of the effective action of the inflaton field fluctuations. Our conclusion in this case is that, excluding extrinsic curvature terms, the only interesting effects at the level of the bispectrum could arise from features in the first slow-roll parameter ? or in the speed of sound c{sub s}. Finally, we derive an upper bound on the parameter ? from the consistency of the perturbative expansion of the action for inflaton perturbations. This constraint can be used for an estimation of the signal-to-noise ratio, to show that the observable which is most sensitive to features is the power-spectrum. This conclusion would change if we consider the contemporary presence of a feature and a speed of sound c{sub s} < 1, as, in such a case, contributions from an oscillating folded configuration can potentially make the bispectrum the leading observable for feature models.
Substorm expansion phase: Observations from Geotail, Polar and IMAGE network
California at Berkeley, University of
is not at the center of the sheet anymore, detects an ion velocity directed earthward but essentially field aligned Plasma Sheet (CPS) and Plasma Sheet Boundary Layer (PSBL) and on the relation between this transport
Thermodynamics of Modified Chaplygin Gas and Tachyonic Field
Samarpita Bhattacharya; Ujjal Debnath
2010-12-26T23:59:59.000Z
Here we generalize the results of the work of ref. [10] in modified Chaplygin gas model and tachyonic field model. Here we have studied the thermodynamical behaviour and the equation of state in terms of volume and temperature for both models. We have used the solution and the corresponding equation of state of our previous work [12] for tachyonic field model. We have also studied the thermodynamical stability using thermal equation of state for the tachyonic field model and have shown that there is no critical points during thermodynamical expansion. The determination of $T_{*}$ due to expansion for the tachyonic field have been discussed by assuming some initial conditions. Here, the thermal quantities have been investigated using some reduced parameters.
Expansion of the Planet Detection Channels in Next-Generation Microlensing Surveys
Cheongho Han
2007-07-28T23:59:59.000Z
We classify various types of planetary lensing signals and the channels of detecting them. We estimate the relative frequencies of planet detections through the individual channels with special emphasis on the new channels to be additionally provided by future lensing experiments that will survey wide fields continuously at high cadence by using very large-format imaging cameras. From this investigation, we find that the fraction of wide-separation planets that would be discovered through the new channels of detecting planetary signals as independent and repeating events would be substantial. We estimate that the fraction of planets detectable through the new channels would comprise ~15 -- 30% of all planets depending on the models of the planetary separation distribution and mass ratios of planets. Considering that a significant fraction of planets might exist in the form of free-floating planets, the frequency of planets to be detected through the new channel would be even higher. With the expansion of the channels of detecting planet, future lensing surveys will greatly expand the range of planets to be probed.
PHOTOSPHERIC RADIUS EXPANSION IN SUPERBURST PRECURSORS FROM NEUTRON STARS
Keek, L., E-mail: keek@nscl.msu.edu [National Superconducting Cyclotron Laboratory, Department of Physics and Astronomy, and Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, MI 48824 (United States)
2012-09-10T23:59:59.000Z
Thermonuclear runaway burning of carbon is in rare cases observed from accreting neutron stars as day-long X-ray flares called superbursts. In the few cases where the onset is observed, superbursts exhibit a short precursor burst at the start. In each instance, however, the data are of insufficient quality for spectral analysis of the precursor. Using data from the propane anti-coincidence detector of the Proportional Counter Array instrument on the Rossi X-ray Timing Explorer, we perform the first detailed time-resolved spectroscopy of precursors. For a superburst from 4U 1820-30 we demonstrate the presence of photospheric radius expansion. We find the precursor to be 1.4-2 times more energetic than other short bursts from this source, indicating that the burning of accreted helium is insufficient to explain the full precursor. Shock heating would be able to account for the shortfall in energy. We argue that this precursor is a strong indication that the superburst starts as a detonation, and that a shock induces the precursor. Furthermore, we employ our technique to study the superexpansion phase of the same superburst in greater detail.
Economic Costs and Benefits of the Trans Mountain Expansion Project (TMX)
Economic Costs and Benefits of the Trans Mountain Expansion Project (TMX) for BC and Metro.thegoodman.com November 10, 2014 #12;SCHOOL OF PUBLIC POLICY Economic Costs and Benefits of the Trans Mountain Expansion Project (TMX) for BC and Metro Vancouver ii Table of Contents 1 Executive Summary
Final Independent External Peer Review Report for the Savannah Harbor Expansion Project
US Army Corps of Engineers
for the Savannah Harbor Expansion Project General Reevaluation Report EXECUTIVE SUMMARY Savannah Harbor is a deep and 600 feet wide from deep water in the ocean (River Mile 11.4B) to the channel between the jettiesFinal Independent External Peer Review Report for the Savannah Harbor Expansion Project General
Beta-expansions for cubic Pisot numbers Fr ed erique Bassino
Bassino, FrÃ©dÃ©rique
Beta-expansions for cubic Pisot numbers Fr#19;ed#19;erique Bassino I.G.M., Universit#19;e de Marne of fa 2 N j a beta-shift. This dynamical system is characterized by the beta a simple beta-number. We #12;rst compute the beta-expansion of 1 for any cubic Pisot number. Next we show
SOLVING GENERATION EXPANSION PLANNING PROBLEMS WITH ENVIRONMENTAL CONSTRAINTS BY A BUNDLE METHOD
Solodov, Mikhail V.
for the construction of new power plants, while ensuring economic and reliable supply to the future electricity demandSOLVING GENERATION EXPANSION PLANNING PROBLEMS WITH ENVIRONMENTAL CONSTRAINTS BY A BUNDLE METHOD discuss the energy generation expansion planning with environmental constraints, formulated as a nonsmooth
Nuclear Electric Propulsion and Power Systems By Bryan K. Smith Submitted to the System Design, expansion and screening of Nuclear Electric Propulsion and Power concepts capable of achieving planetaryDefinition, Expansion and Screening of Architectures for Planetary Exploration Class Nuclear
Internal structure and expansion dynamics of laser ablation plumes into ambient gases
Harilal, S. S.
Internal structure and expansion dynamics of laser ablation plumes into ambient gases S. S. Harilal 13 December 2002 The effect of ambient gas on the expansion dynamics of the plasma generated by laser together with time resolved emission diagnostics, a triple structure of the plume was observed
Anterior-to-posterior wave of buccal expansion in suction feeding fishes is critical
Wainwright, Peter C.
fluid dynamic model to demonstrate that the inclusion of an anterior-to-posterior wave of buccal constrained conditions, whereas models that do not allow this wave of expansion inevitably predict peakAnterior-to-posterior wave of buccal expansion in suction feeding fishes is critical for optimizing
Relation between thermal expansion and interstitial formation energy in pure Fe and Cr
Relation between thermal expansion and interstitial formation energy in pure Fe and Cr Janne potentials give lower interstitial formation energy, but predict too small thermal expansion. We also show University, Uppsala, Sweden Abstract By fitting a potential of modified FinnisÂSinclair type to the thermal
D'Ambrosio, Domenic
the magnetic field source (solenoid or permanent magnet). To test the technique, we show the results obtainedTwo-dimensional numerical methods in electromagnetic hypersonics including fully coupled Maxwell Keplerlaan 1, 2200 AG Noordwijk, The Netherlands We describe a numerical technique for solving the coupled
Biomarkers Core Lab Price List Does NOT Include
Grishok, Alla
v3102014 Biomarkers Core Lab Price List Does NOT Include Kit Cost PURCHASED by INVESTIGATOR/1/2013 Page 1 of 5 #12;Biomarkers Core Lab Price List Does NOT Include Kit Cost PURCHASED by INVESTIGATOR
Apparatuses and methods for generating electric fields
Scott, Jill R; McJunkin, Timothy R; Tremblay, Paul L
2013-08-06T23:59:59.000Z
Apparatuses and methods relating to generating an electric field are disclosed. An electric field generator may include a semiconductive material configured in a physical shape substantially different from a shape of an electric field to be generated thereby. The electric field is generated when a voltage drop exists across the semiconductive material. A method for generating an electric field may include applying a voltage to a shaped semiconductive material to generate a complex, substantially nonlinear electric field. The shape of the complex, substantially nonlinear electric field may be configured for directing charged particles to a desired location. Other apparatuses and methods are disclosed.
Including Retro-Commissioning in Federal Energy Savings Performance Contracts
Broader source: Energy.gov [DOE]
Guidance document on the importance of (and steps to) including retro-commissioning in Federal energy savings performance contracts (ESPCs).
N. V. Antonov; N. M. Gulitskiy
2015-01-21T23:59:59.000Z
Inertial-range asymptotic behavior of a vector (e.g., magnetic) field, passively advected by a strongly anisotropic turbulent flow, is studied by means of the field theoretic renormalization group and the operator product expansion. The advecting velocity field is Gaussian, not correlated in time, with the pair correlation function of the form $\\propto \\delta(t-t') / k_{\\bot}^{d-1+\\xi}$, where $k_{\\bot}=|{\\bf k}_{\\bot}|$ and ${\\bf k}_{\\bot}$ is the component of the wave vector, perpendicular to the distinguished direction (`direction of the flow') -- the $d$-dimensional generalization of the ensemble introduced by Avellaneda and Majda [{\\it Commun. Math. Phys.} {\\bf 131}: 381 (1990)]. The stochastic advection-diffusion equation for the transverse (divergence-free) vector field includes, as special cases, the kinematic dynamo model for magnetohydrodynamic turbulence and the linearized Navier--Stokes equation. In contrast to the well known isotropic Kraichnan's model, where various correlation functions exhibit anomalous scaling behavior with infinite sets of anomalous exponents, here the dependence on the integral turbulence scale $L$ has a logarithmic behavior: instead of power-like corrections to ordinary scaling, determined by naive (canonical) dimensions, the anomalies manifest themselves as polynomials of logarithms of $L$. The key point is that the matrices of scaling dimensions of the relevant families of composite operators appear nilpotent and cannot be diagonalized. The detailed proof of this fact is given for correlation functions of arbitrary order.
Harskamp, W. E. N. van; Brouwer, C. M.; Schram, D. C.; Sanden, M. C. M. van de; Engeln, R. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, NL-5600 MB Eindhoven (Netherlands)
2011-03-15T23:59:59.000Z
A weakly magnetized expanding hydrogen plasma, created by a cascaded arc, was investigated using optical emission spectroscopy. The emission of the expanding plasma is dominated by H{sub {alpha}} emission in the first part of the plasma expansion, after which a sharp transition to a blue afterglow is observed. The position of this sharp transition along the expansion axis depends on the magnetic field strength. The blue afterglow emission is associated with population inversion of the electronically excited atomic hydrogen states n=4-6 with respect to n=3. By comparing the measured densities with the densities using an atomic collisional radiative model, we conclude that atomic recombination processes cannot account for the large population densities observed. Therefore, molecular processes must be important for the formation of excited states and for the occurrence of population inversion. This is further corroborated at the transition from red to blue, where a hollow profile of the excited states n=4-6 in the radial direction is observed. This hollow profile is explained by the molecular mutual neutralization process of H{sub 2}{sup +} with H{sup -}, which has a maximum production for excited atomic hydrogen 1-2 cm outside the plasma center.
Cosmic Acceleration and Anisotropic models with Magnetic field
S. K. Tripathy; K. L. Mahanta
2014-12-10T23:59:59.000Z
Plane symmetric cosmological models are investigated with or without any dark energy components in the field equations. Keeping an eye on the recent observational constraints concerning the accelerating phase of expansion of the universe, the role of magnetic field is assessed. In the absence of dark energy components, magnetic field can favour an accelerating model even if we take a linear relationship between the directional Hubble parameters. In presence of dark energy components in the form of a time varying cosmological constant, the influence of magnetic field is found to be limited.
activity profile including: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
close to the polarity inversion line (PIL) at the flaring site. At two locations in the umbra we encounter strong fields (approx. 3 kG), as inferred from the Stokes I profiles...
Solid phase microextraction field kit
Nunes, Peter J.; Andresen, Brian D.
2005-08-16T23:59:59.000Z
A field kit for the collection, isolation and concentration of trace amounts of high explosives (HE), biological weapons (BW) and chemical weapons (CW) residues in air, soil, vegetation, swipe, and liquid samples. The field kit includes a number of Solid Phase Microextraction (SPME) fiber and syringe assemblies in a hermetically sealed transportation container or tubes which includes a sampling port, a number of extra SPME fiber and syringe assemblies, the fiber and syringe assemblies including a protective cap for the fiber, and an extractor for the protective cap, along with other items including spare parts, protective glove, and an instruction manual, all located in an airtight container.
Surface Tension of Electrolyte Interfaces: Ionic Specificity within a Field-Theory Approach
Andelman, David
Surface Tension of Electrolyte Interfaces: Ionic Specificity within a Field-Theory Approach Tomer, 1000 Ljubljana, Slovenia (Dated: November 19, 2014) We study the surface tension of ionic solutions expansion beyond the mean-field result. We calculate the excess surface tension and obtain analytical
Chiral expansion of the $?^0\\rightarrow??$ decay width
Bing An Li
2011-09-07T23:59:59.000Z
A chiral field theory of mesons has been applied to study the contribution of the current quark masses to the $\\pi^0\\rightarrow\\gamma\\gamma$ decay width at the next leading order. $2\\%$ enhancement has been predicted and there is no new parameter.
GRAVITATIONAL FIELD SHIELDING AND SUPERNOVA EXPLOSIONS
Zhang, T. X. [Physics Department, Alabama A and M University, Normal, AL 35762 (United States)
2010-12-20T23:59:59.000Z
A new mechanism for supernova explosions called gravitational field shielding is proposed, in accord with a five-dimensional fully covariant Kaluza-Klein theory with a scalar field that unifies the four-dimensional Einsteinian general relativity and Maxwellian electromagnetic theory. It is shown that a dense compact collapsing core of a star will suddenly turn off or completely shield its gravitational field when the core collapses to a critical density, which is inversely proportional to the square of mass of the core. As the core suddenly turns off its gravity, the extremely large pressure immediately stops the core collapse and pushes the mantle material of supernova moving outward. The work done by the pressure in the expansion can be the order of energy released in a supernova explosion. The gravity will resume and stop the core from a further expansion when the core density becomes less than the critical density. Therefore, the gravitational field shielding leads a supernova to impulsively explode and form a compact object such as a neutron star as a remnant. It works such that a compressed spring will shoot the oscillator out when the compressed force is suddenly removed.
Expansion analyses of strategic petroleum reserve in Bayou Choctaw : revised locations.
Ehgartner, Brian L.; Park, Byoung Yoon
2010-11-01T23:59:59.000Z
This report summarizes a series of three-dimensional simulations for the Bayou Choctaw Strategic Petroleum Reserve. The U.S. Department of Energy plans to leach two new caverns and convert one of the existing caverns within the Bayou Choctaw salt dome to expand its petroleum reserve storage capacity. An existing finite element mesh from previous analyses is modified by changing the locations of two caverns. The structural integrity of the three expansion caverns and the interaction between all the caverns in the dome are investigated. The impacts of the expansion on underground creep closure, surface subsidence, infrastructure, and well integrity are quantified. Two scenarios were used for the duration and timing of workover conditions where wellhead pressures are temporarily reduced to atmospheric pressure. The three expansion caverns are predicted to be structurally stable against tensile failure for both scenarios. Dilatant failure is not expected within the vicinity of the expansion caverns. Damage to surface structures is not predicted and there is not a marked increase in surface strains due to the presence of the three expansion caverns. The wells into the caverns should not undergo yield. The results show that from a structural viewpoint, the locations of the two newly proposed expansion caverns are acceptable, and all three expansion caverns can be safely constructed and operated.
analysis including plasma: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Assembly 2010 Space Plasmas in the Solar System, including Planetary Magnetospheres (D) Solar Variability, Cosmic Rays and Climate (D21) GEOMAGNETIC ACTIVITY AT HIGH-LATITUDE:...
Energy Department Expands Gas Gouging Reporting System to Include...
Office of Environmental Management (EM)
Washington, DC - Energy Secretary Samuel W. Bodman announced today that the Department of Energy has expanded its gas gouging reporting system to include a toll-free telephone...
PLOT: A UNIX PROGRAM FOR INCLUDING GRAPHICS IN DOCUMENTS
Curtis, Pavel
2013-01-01T23:59:59.000Z
simple, easy-to-read graphics language designed specificallyPROGRAM FOR INCLUDING GRAPHICS IN DOCUMENTS Pavel Curtismeanings as in the GRAFPAC graphics system. Definl. ~ tions
U-182: Microsoft Windows Includes Some Invalid Certificates
Broader source: Energy.gov [DOE]
The operating system includes some invalid intermediate certificates. The vulnerability is due to the certificate authorities and not the operating system itself.
A study of the mechanism of laser welding defects in low thermal expansion superalloy GH909
Yan, Fei; Wang, Chunming, E-mail: yanxiangfei225@163.com; Wang, Yajun; Hu, Xiyuan; Wang, Tianjiao; Li, Jianmin; Li, Guozhu
2013-04-15T23:59:59.000Z
In this paper, we describe experimental laser welding of low-thermal-expansion superalloy GH909. The main welding defects of GH909 by laser in the weld are liquation cracks and porosities, including hydrogen and carbon monoxide porosity. The forming mechanism of laser welding defects was investigated. This investigation was conducted using an optical microscope, scanning electron microscope, energy diffraction spectrum, X-ray diffractometer and other methodologies. The results demonstrated that porosities appearing in the central weld were related to incomplete removal of oxide film on the surface of the welding samples. The porosities produced by these bubbles were formed as a result of residual hydrogen or oxygenium in the weld. These elements failed to escape from the weld since laser welding has both a rapid welding speed and cooling rate. The emerging crack in the heat affected zone is a liquation crack and extends along the grain boundary as a result of composition segregation. Laves–Ni{sub 2}Ti phase with low melting point is a harmful phase, and the stress causes grain boundaries to liquefy, migrate and even crack. Removing the oxides on the surface of the samples before welding and carefully controlling technological parameters can reduce welding defects and improve formation of the GH909 alloy weld. - Highlights: ? It is a new process for the forming of GH909 alloy via laser welding. ? The forming mechanism of laser welding defects in GH909 has been studied. ? It may be a means to improve the efficiency of aircraft engine production.
Taghizadeh, Rouzbeh R
2006-01-01T23:59:59.000Z
Ex vivo expansion of hematopoietic stem cells (HSCs) is a long-standing challenge faced by both researchers and clinicians. To date, no robust, efficient method for the pure, ex vivo expansion of human HSCs has been ...
Edgeworth Expansion of the Largest Eigenvalue Distribution Function of GUE and LUE
Leonard N. Choup
2006-05-31T23:59:59.000Z
We derive expansions of the Hermite and Laguerre kernels at the edge of the spectrum of the finite n Gaussian Unitary Ensemble (GUEn) and the finite n Laguerre Unitary Ensem- ble (LUEn), respectively. Using these large n kernel expansions, we prove an Edgeworth type theorem for the largest eigenvalue distribution function of GUEn and LUEn. In our Edgeworth expansion, the correction terms are expressed in terms of the same Painleve II function appearing in the leading term, i.e. in the Tracy-Widom distribution. We conclude with a brief discussion of the universality of these results.
Highly Anisotropic Thermal Expansion in Molecular Films of Dicarboxylic Fatty Acids
Tamam L.; Ocko B.; Kraack, H.; Sloutskin, E.; Deutsch, M.
2012-05-25T23:59:59.000Z
Angstrom-resolution x-ray measurements reveal the existence of two-dimensional (2D) crystalline order in molecularly thin films of surface-parallel-oriented fatty diacid molecules supported on a liquid mercury surface. The thermal expansion coefficients along the two unit cell vectors are found to differ 17-fold. The high anisotropy of the 2D thermal expansion and the crystalline coherence length are traced to the different bonding in the two directions: van der Waals normal to, and covalent plus hydrogen bonding along the molecular backbone axis. Similarities with, and differences from, negative thermal expansion materials are discussed.
Energy Transitions: A Systems Approach Including Marcellus Shale Gas Development
Angenent, Lars T.
Energy Transitions: A Systems Approach Including Marcellus Shale Gas Development A Report Transitions: A Systems Approach Including Marcellus Shale Gas Development Executive Summary In the 21st the Marcellus shale In addition to the specific questions identified for the case of Marcellus shale gas in New
Articles which include chevron film cooling holes, and related processes
Bunker, Ronald Scott; Lacy, Benjamin Paul
2014-12-09T23:59:59.000Z
An article is described, including an inner surface which can be exposed to a first fluid; an inlet; and an outer surface spaced from the inner surface, which can be exposed to a hotter second fluid. The article further includes at least one row or other pattern of passage holes. Each passage hole includes an inlet bore extending through the substrate from the inlet at the inner surface to a passage hole-exit proximate to the outer surface, with the inlet bore terminating in a chevron outlet adjacent the hole-exit. The chevron outlet includes a pair of wing troughs having a common surface region between them. The common surface region includes a valley which is adjacent the hole-exit; and a plateau adjacent the valley. The article can be an airfoil. Related methods for preparing the passage holes are also described.
Cosmic expansion and structure formation in running vacuum cosmologies
Basilakos, Spyros
2015-01-01T23:59:59.000Z
We investigate the dynamics of the FLRW flat cosmological models in which the vacuum energy varies with redshift. A particularly well motivated model of this type is the so-called quantum field vacuum, in which both kind of terms $H^{2}$ and constant appear in the effective dark energy density affecting the evolution of the main cosmological functions at the background and perturbation levels. Specifically, it turns out that the functional form of the quantum vacuum endows the vacuum energy of a mild dynamical evolution which could be observed nowadays and appears as dynamical dark energy. Interestingly, the low-energy behaviour is very close to the usual $\\Lambda$CDM model, but it is by no means identical. Finally, within the framework of the quantum field vacuum we generalize the large scale structure properties, namely growth of matter perturbations, cluster number counts and spherical collapse model.
Ceder, Gerbrand
Vacancies in ordered and disordered binary alloys treated with the cluster expansion A. Van der Ven far neglected the presence of vacancies. Here, we invoke a local cluster expansion as a perturbation to the standard binary cluster expansion to model the equilibrium vacancy concentration in a binary alloy
Rezaei, F.; Tavassoli, S. H. [Laser and Plasma Research Institute, ShahidBeheshti University, 19396 4716, G. C., Evin, Tehran (Iran, Islamic Republic of)
2013-01-15T23:59:59.000Z
In the present study, the ablation behavior of aluminum target and its plasma radiation in noble ambient gases by a laser pulse with wavelength of 266 nm and pulse duration of 10 ns are numerically studied. A thermal model of laser ablation considering heat conduction, Euler equations, Saha-Eggert equations, Knudsen layer, mass and energy balance relations and optical shielding effects are used for calculation of plasma parameters. Effects of excitation energy on plasma expansion and its emissivity are investigated. Time and spatial-resolved plasma emission including bremsstrahlung, recombination and spectral emission at early delay times after laser irradiation is obtained. Effects of two ambient gases (He and Ar) as well as different gas pressures of 100, 300, 500, and 760 Torr on plasma expansion and its spectrum are studied. Results illustrate that at initial delay times, especially at high noble gas pressures, ionic lines have the maximum intensities, while at later times neutral lines dominate. When the pressure of ambient gas increases, a confinement of the plasma plume is predicted and the intensity of neutral lines decreases. Continuous emission increases with wavelength in both ambient gases. Spatially resolved analysis shows that an intense continuous emission is predicted next to the sample surface decreasing with distance from the latter.
Logarithmic Opinion Pools for Conditional Random Fields
Smith, Andrew
2007-06-26T23:59:59.000Z
Since their recent introduction, conditional random fields (CRFs) have been successfully applied to a multitude of structured labelling tasks in many different domains. Examples include natural language processing ...
Turbomachine injection nozzle including a coolant delivery system
Zuo, Baifang (Simpsonville, SC)
2012-02-14T23:59:59.000Z
An injection nozzle for a turbomachine includes a main body having a first end portion that extends to a second end portion defining an exterior wall having an outer surface. A plurality of fluid delivery tubes extend through the main body. Each of the plurality of fluid delivery tubes includes a first fluid inlet for receiving a first fluid, a second fluid inlet for receiving a second fluid and an outlet. The injection nozzle further includes a coolant delivery system arranged within the main body. The coolant delivery system guides a coolant along at least one of a portion of the exterior wall and around the plurality of fluid delivery tubes.
Freeport LNG Expansion, L.P., FLNG Liquefaction, LLC, FLNG Liquefactio...
Broader source: Energy.gov (indexed) [DOE]
Application of Freeport LNG Expansion, L.P., FLNG Liquefaction, LLC, FLNG Liquefaction 2, LLC and FLNG Liquefaction 3, LLC to Transfer Control of Long-term Authorization to Export...
Comment on ``Success of collinear expansion in the calculation of induced gluon emission''
P. Aurenche; B. G. Zakharov; H. Zaraket
2008-06-01T23:59:59.000Z
We show that the arguments against our recent paper on the failure of the collinear expansion in the calculation of the induced gluon emission raised by X.N. Wang are either incorrect or irrelevant.
E-Print Network 3.0 - apparent area expansivity Sample Search...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
<< < 1 2 3 4 5 > >> 1 Measurement of rate of expansion in the perception of radial motion Jeff D. Wurfel a,b,*, Jose F. Barraza d Summary: in a circular area of 5 when the...
White food-type sorghum in direct-expansion extrusion applications
Acosta Sanchez, David
2004-09-30T23:59:59.000Z
distribution similar to corn meal produced extrudates with higher expansion, lower bulk density and similar texture. In addition, sorghum extrudates were rated equal to corn meal extrudates by a taste panel for appearance, flavor, texture and overall...
SAVANNAH HARBOR EXPANSION PROJECT CHATHAM COUNTY, GEORGIA AND JASPER COUNTY, SOUTH CAROLINA
US Army Corps of Engineers
SAVANNAH HARBOR EXPANSION PROJECT CHATHAM COUNTY, GEORGIA AND JASPER COUNTY, SOUTH CAROLINA 22 (Kings Island Turning Basin at Stations 98+500 to 100+500) 5 feet deeper (to an authorized navigation #12
WKB-expansion of the HarishChandra-Itzykson-Zuber integral for arbitrary beta
S. Hikami; E. Brezin
2006-04-18T23:59:59.000Z
This article is devoted to the asymptotic expansion of the generalized Harish Chandra-Itzykson-Zuber matrix integral for non-unitary symmetries characterized by a parameter beta(as usual beta =1,2 and 4 correspond to the orthogonal, unitary and symplectic group integrals). A WKB-expansion for f is derived from the heat kernel differential equation, for general values of k and beta. From an expansion in terms of zonal polynomials, one obtain an expansion in powers of the tau's for beta=1, and generalizations are considered for general beta. A duality relation, and a transformation of products of pairs of symmetric functions into tau polynomials, is used to obtain the expression for f(tau ij) for general beta.
Okan, Osman Burak
2008-01-01T23:59:59.000Z
We present a general outline for automating cluster expansions of configurational energetics in systems with crystallographic order and well defined space group symmetry. The method presented herein combines constrained ...
Russell, George 1983-
2012-11-28T23:59:59.000Z
and asphalt concretes. The Texas Department of Transportation (TXDOT) and Texas A&M Transportation Institute (TTI) evaluated the methylene blue adsorption test for its potential to identify and estimate quantities of expansive clays in aggregate stockpiles...
The Appell hypergeometric expansions of the solutions of the general Heun equation
A. M. Ishkhanyan
2014-05-12T23:59:59.000Z
Starting from the equation obeyed by the derivative, we construct several expansions of the solutions of the general Heun equation in terms of the Appell generalized hypergeometric functions of two variables of the fist kind. Several cases when the expansions reduce to ones written in terms of simpler mathematical functions such as the incomplete Beta function or the Gauss hypergeometric function are identified. The conditions for deriving finite-sum solutions via termination of the series are discussed. In general, the coefficients of the expansions obey four-term recurrence relations; however, there exist certain sets of the parameters for which the recurrence relations involve only two terms, though not successive. The coefficients of the expansions are then explicitly calculated and the general solution of the Heun equation is constructed in terms of the Gauss hypergeometric functions.
arbitrary power-law expansion: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
are also presented. Burin Gumjudpai 2007-08-27 3 The power-law expansion universe and dark energy evolution Astrophysics (arXiv) Summary: In order to depict the transition from...
Temperature as a driver for the expansion of the microalga Gonyostomum semen in Swedish lakes
Temperature as a driver for the expansion of the microalga Gonyostomum semen in Swedish lakes Karin is an example of invasive harmful microalgae (Neilan et al., 2003). Another presumably invasive species
Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC - FE...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
1-161-LNG Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC - FE Dkt. No. 11-161-LNG On November 15, 2013, the Office of Fossil Energy of the Department of Energy (DOEFE)...
Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC - FE...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
0-161-LNG Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC - FE Dkt. No. 10-161-LNG On May 17, 2013, the Office of Fossil Energy of the Department of Energy (DOEFE) issued...
Farzad, Mohsen
An experimental and analytical study concerned with the off-design refrigerant charging of air conditioners is presented. A series of experiments were conducted to characterize the effects of refrigerant charge and type of expansion device...
Jordan, Rhonda LeNai
2013-01-01T23:59:59.000Z
This research develops a novel approach to long-term power system capacity expansion planning for developing countries by incorporating endogenous demand dynamics resulting from social processes of technology adoption. ...
Calef, Daniel F.; Friesner, Richard; Korzeniewski, Gregory; Laird, Brian Bostian; Silbey, Robert
1984-05-01T23:59:59.000Z
We investigate density expansions for the configurationally averaged Green's function for a random walk on a (site) disordered lattice. Two-point Padé summation techniques are used in conjunction with scaling arguments to examine behavior near...
Including costs of supply chain risk in strategic sourcing decisions
Jain, Avani
2009-01-01T23:59:59.000Z
Cost evaluations do not always include the costs associated with risks when organizations make strategic sourcing decisions. This research was conducted to establish and quantify the impact of risks and risk-related costs ...
FINITE ELEMENT ANALYSIS OF STEEL WELDED COVERPLATE INCLUDING COMPOSITE DOUBLERS
Petri, Brad
2008-05-15T23:59:59.000Z
With the increasing focus on welded bridge members resulting in crack initiation and propagation, there is a large demand for creative solutions. One of these solutions includes the application of composite doublers over the critical weld. In order...
atlantic region including: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
R: L. Tossey, T. Beeson, Parks, B. TruittTNC, UD MPEO staff 2 Climate scenarios of sea level rise for the northeast Atlantic Ocean: a study including the effects of ocean...
T-603: Mac OS X Includes Some Invalid Comodo Certificates
Broader source: Energy.gov [DOE]
The operating system includes some invalid certificates. The vulnerability is due to the invalid certificates and not the operating system itself. Other browsers, applications, and operating systems are affected.
Mitchell, D.W.
1982-01-01T23:59:59.000Z
This paper presents the techniques that were utilized to verify that expansion joints could be eliminated from the critical 20 inch Raw Gas Cooler piping from the Gasifiers in a coal gasification project. It details the parameters that were considered in the analysis showing particular attention to determining shell flexibilites and preventing flange leakages. The expansion joints were unnecessary, with much of the credit coming from the flexibility in the shell and by proper selection of gasket material.
Dabir, Aditi Sandeep
2010-07-14T23:59:59.000Z
AUTOMATION OF THE LAGUERRE EXPANSION TECHNIQUE FOR ANALYSIS OF TIME-RESOLVED FLUORESCENCE SPECTROSCOPY DATA A Thesis by ADITI SANDEEP DABIR Submitted to the Office of Graduate Studies of Texas A&M University in partial... fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2009 Major Subject: Biomedical Engineering AUTOMATION OF THE LAGUERRE EXPANSION TECHNIQUE FOR ANALYSIS OF TIME-RESOLVED FLUORESCENCE SPECTROSCOPY DATA A Thesis...
Ramanujan's Harmonic Number Expansion into Negative Powers of a Triangular Number
Mark B. Villarino
2007-07-28T23:59:59.000Z
An algebraic transformation of the DeTemple-Wang half-integer approximation to the harmonic series produces the general formula and error estimate for the Ramanujan expansion for the nth harmonic number into negative powers of the nth triangular number. We also discuss the history of the Ramanujan expansion for the nth harmonic number as well as sharp estimates of its accuracy, with complete proofs, and we compare it with other approximative formulas.
Limited Personal Use of Government Office Equipment including Information Technology
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
2005-01-07T23:59:59.000Z
The Order establishes requirements and assigns responsibilities for employees' limited personal use of Government resources (office equipment and other resources including information technology) within DOE, including NNSA. The Order is required to provide guidance on appropriate and inappropriate uses of Government resources. This Order was certified 04/23/2009 as accurate and continues to be relevant and appropriate for use by the Department. Certified 4-23-09. No cancellation.
Entomology 489 Field Entomology Field Project Guide
Behmer, Spencer T.
with information, people, materials). Field Projects (your project should...) FEntomology 489 Â Field Entomology Field Project Guide A small-group field project is required for ENTO 489 Â Field Entomology. This guide provides general information about the field-project
Plates and Shells: Asymptotic Expansions and Hierarchic Models
Yosibash, Zohar
includes the fact that the principal curvatures have the same order of magnitude as the dimensions of S) is considered. The opposite situation is when the curvatures have the order of d: We are then in the presence coordinate system on S, depending on the choice of a local chart in an atlas, and x3 is the coordinate along
Composites with extremal thermal expansion coefficients O. Sigmunda)
Torquato, Salvatore
Materials Institute and Department of Civil Engineering and Operations Research, Princeton University include Kevlar, carbon fibers, plastically deformed anisotropic Invar FeÂNi alloys ,4 and certain is a modification9 of standard methods10 see also Ref. 6 . The design domain is the periodic base cell
Zhang, Yan; Sahinidis, Nikolaos V.
2013-04-06T23:59:59.000Z
In this paper, surrogate models are iteratively built using polynomial chaos expansion (PCE) and detailed numerical simulations of a carbon sequestration system. Output variables from a numerical simulator are approximated as polynomial functions of uncertain parameters. Once generated, PCE representations can be used in place of the numerical simulator and often decrease simulation times by several orders of magnitude. However, PCE models are expensive to derive unless the number of terms in the expansion is moderate, which requires a relatively small number of uncertain variables and a low degree of expansion. To cope with this limitation, instead of using a classical full expansion at each step of an iterative PCE construction method, we introduce a mixed-integer programming (MIP) formulation to identify the best subset of basis terms in the expansion. This approach makes it possible to keep the number of terms small in the expansion. Monte Carlo (MC) simulation is then performed by substituting the values of the uncertain parameters into the closed-form polynomial functions. Based on the results of MC simulation, the uncertainties of injecting CO{sub 2} underground are quantified for a saline aquifer. Moreover, based on the PCE model, we formulate an optimization problem to determine the optimal CO{sub 2} injection rate so as to maximize the gas saturation (residual trapping) during injection, and thereby minimize the chance of leakage.
Ju, J.-C., E-mail: jujinchuan@126.com [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China); Laboratoire de Physique des Gaz et des Plasmas, CNRS-Université Paris-Sud, Orsay 91405 (France); Liu, L.; Cai, D. [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)
2014-06-09T23:59:59.000Z
Thermal plasma expansion is characterised during the operation of a high power diode with an explosive emission carbon-fiber-aluminum cathode driven by a 250?kV, 150?ns accelerating pulse. It is found that a quasi-stationary state of plasma expansion is obtained during the main part of the accelerating pulse and the whole plasma expansion exhibits an “U”-shape velocity evolution. A theoretical model describing the dynamics of plasma expansion is developed, which indicates that the plasma expansion velocity is determined by equilibrium between the diode current density and plasma thermal electron current density.
Surface Tension of Electrolyte Interfaces: Ionic Specificity within a Field-Theory Approach
Markovich, Tomer; Podgornik, Rudolf
2014-01-01T23:59:59.000Z
We study the surface tension of ionic solutions at air/water and oil/water interfaces. By using field-theoretical methods and including a finite proximal surface-region with ionic-specific interactions. The free energy is expanded to first-order in a loop expansion beyond the mean-field result. We calculate the excess surface tension and obtain analytical predictions that reunite the Onsager-Samaras pioneering result (which does not agree with experimental data), with the ionic specificity of the Hofmeister series. We derive analytically the surface-tension dependence on the ionic strength, ionic size and ion-surface interaction, and show consequently that the Onsager-Samaras result is consistent with the one-loop correction beyond the mean-field result. Our theory fits well a wide range of salt concentrations for different monovalent ions using one fit parameter, and reproduces the reverse Hofmeister series for anions at the air/water and oil/water interfaces.
Surface Tension of Electrolyte Interfaces: Ionic Specificity within a Field-Theory Approach
Tomer Markovich; David Andelman; Rudolf Podgornik
2015-01-10T23:59:59.000Z
We study the surface tension of ionic solutions at air/water and oil/water interfaces. By using field-theoretical methods and including a finite proximal surface-region with ionic-specific interactions. The free energy is expanded to first-order in a loop expansion beyond the mean-field result. We calculate the excess surface tension and obtain analytical predictions that reunite the Onsager-Samaras pioneering result (which does not agree with experimental data), with the ionic specificity of the Hofmeister series. We derive analytically the surface-tension dependence on the ionic strength, ionic size and ion-surface interaction, and show consequently that the Onsager-Samaras result is consistent with the one-loop correction beyond the mean-field result. Our theory fits well a wide range of salt concentrations for different monovalent ions using one fit parameter per electrolyte, and reproduces the reverse Hofmeister series for anions at the air/water and oil/water interfaces.
Nonlinear gravitational self-force. I. Field outside a small body
Adam Pound
2012-09-04T23:59:59.000Z
A small extended body moving through an external spacetime $g_{\\alpha\\beta}$ creates a metric perturbation $h_{\\alpha\\beta}$, which forces the body away from geodesic motion in $g_{\\alpha\\beta}$. The foundations of this effect, called the gravitational self-force, are now well established, but concrete results have mostly been limited to linear order. Accurately modeling the dynamics of compact binaries requires proceeding to nonlinear orders. To that end, I show how to obtain the metric perturbation outside the body at all orders in a class of generalized wave gauges. In a small buffer region surrounding the body, the form of the perturbation can be found analytically as an expansion for small distances $r$ from a representative worldline. Given only a specification of the body's multipole moments, the field obtained in the buffer region suffices to find the metric everywhere outside the body via a numerical puncture scheme. Following this procedure at first and second order, I calculate the field in the buffer region around an arbitrarily structured compact body at sufficiently high order in $r$ to numerically implement a second-order puncture scheme, including effects of the body's spin. I also define $n$th-order (local) generalizations of the Detweiler-Whiting singular and regular fields and show that in a certain sense, the body can be viewed as a skeleton of multipole moments.
Jing-Fei Zhang; Ming-Ming Zhao; Yun-He Li; Xin Zhang
2015-02-13T23:59:59.000Z
The model of holographic dark energy (HDE) with massive neutrinos and/or dark radiation is investigated in detail. The background and perturbation evolutions in the HDE model are calculated. We employ the PPF approach to overcome the gravity instability difficulty (perturbation divergence of dark energy) led by the equation-of-state parameter $w$ evolving across the phantom divide $w=-1$ in the HDE model with $cradiation on the CMB anisotropy power spectrum and the matter power spectrum in the HDE scenario are discussed. Furthermore, we constrain the models of HDE with massive neutrinos and/or dark radiation by using the latest measurements of expansion history and growth of structure, including the Planck CMB temperature data, the baryon acoustic oscillation data, the JLA supernova data, the Hubble constant direct measurement, the cosmic shear data of weak lensing, the Planck CMB lensing data, and the redshift space distortions data. We find that $\\sum m_\
Zhang, Jing-Fei; Li, Yun-He; Zhang, Xin
2015-01-01T23:59:59.000Z
The model of holographic dark energy (HDE) with massive neutrinos and/or dark radiation is investigated in detail. The background and perturbation evolutions in the HDE model are calculated. We employ the PPF approach to overcome the gravity instability difficulty (perturbation divergence of dark energy) led by the equation-of-state parameter $w$ evolving across the phantom divide $w=-1$ in the HDE model with $cdark radiation on the CMB anisotropy power spectrum and the matter power spectrum in the HDE scenario are discussed. Furthermore, we constrain the models of HDE with massive neutrinos and/or dark radiation by using the latest measurements of expansion history and growth of structure, including the Planck CMB temperature data, the baryon acoustic oscillation data, the JLA supernova data, the Hubble constant direct measurement, the cosmic shear...
Thin film solar cell including a spatially modulated intrinsic layer
Guha, Subhendu (Troy, MI); Yang, Chi-Chung (Troy, MI); Ovshinsky, Stanford R. (Bloomfield Hills, MI)
1989-03-28T23:59:59.000Z
One or more thin film solar cells in which the intrinsic layer of substantially amorphous semiconductor alloy material thereof includes at least a first band gap portion and a narrower band gap portion. The band gap of the intrinsic layer is spatially graded through a portion of the bulk thickness, said graded portion including a region removed from the intrinsic layer-dopant layer interfaces. The band gap of the intrinsic layer is always less than the band gap of the doped layers. The gradation of the intrinsic layer is effected such that the open circuit voltage and/or the fill factor of the one or plural solar cell structure is enhanced.
Solar Energy Education. Renewable energy: a background text. [Includes glossary
Not Available
1985-01-01T23:59:59.000Z
Some of the most common forms of renewable energy are presented in this textbook for students. The topics include solar energy, wind power hydroelectric power, biomass ocean thermal energy, and tidal and geothermal energy. The main emphasis of the text is on the sun and the solar energy that it yields. Discussions on the sun's composition and the relationship between the earth, sun and atmosphere are provided. Insolation, active and passive solar systems, and solar collectors are the subtopics included under solar energy. (BCS)
Methods of producing adsorption media including a metal oxide
Mann, Nicholas R; Tranter, Troy J
2014-03-04T23:59:59.000Z
Methods of producing a metal oxide are disclosed. The method comprises dissolving a metal salt in a reaction solvent to form a metal salt/reaction solvent solution. The metal salt is converted to a metal oxide and a caustic solution is added to the metal oxide/reaction solvent solution to adjust the pH of the metal oxide/reaction solvent solution to less than approximately 7.0. The metal oxide is precipitated and recovered. A method of producing adsorption media including the metal oxide is also disclosed, as is a precursor of an active component including particles of a metal oxide.
Hamilton flow generated by field lines near a toroidal magnetic surface
Skovoroda, A. A., E-mail: skovorod@nfi.kiae.ru [National Research Center Kurchatov Institute (Russian Federation)
2013-07-15T23:59:59.000Z
A method is described for obtaining the Hamiltonian of a vacuum magnetic field in a given 3D toroidal magnetic surface (superconducting shell). This method is used to derive the expression for the integrable surface Hamiltonian in the form of the expansion of a rotational transform of field lines on embedded near-boundary magnetic surfaces into a Taylor series in the distance from the boundary. This expansion contains the value of the rotational transform and its shear at the boundary surface. It is shown that these quantities are related to the components of the first and second quadratic forms of the boundary surface.
Biomass Potentials from California Forest and Shrublands Including Fuel
Biomass Potentials from California Forest and Shrublands Including Fuel Reduction Potentials-04-004 February 2005 Revised: October 2005 Arnold Schwarzenegger, Governor, State of California #12;Biomass Tiangco, CEC Bryan M. Jenkins, University of California #12;Biomass Potentials from California Forest
Project Management Business Process Project Delivery Processes Includes VE Budget
US Army Corps of Engineers
Project Management Business Process Project Delivery Processes Includes VE Budget Schedule Activities that do/could feed into PMBP LEGEND VE Cost Avoidance Program Coverage Document Results (Before, could use the value methodology to facilitate after action review. The project manager is responsible
DISTINCTIONS The unique combination of factors which distinguish Berea includes
Baltisberger, Jay H.
throughout Appala- chia. SUSTAINABLE CAMPUS FEATURES The College environment demonstrates sustainable living and enhances student learning. Recently renovated historical buildings and residence halls include sustain, Washington Monthly ranked Berea the #1 liberal arts college in the nation Listed as a "Best Buy" college
Free Energy Efficiency Kit includes CFL light bulbs,
Rose, Annkatrin
Free Energy Efficiency Kit Kit includes CFL light bulbs, spray foam, low-flow shower head, and more! Building Science 101 Presentation BPI Certified Building Professionals will present home energy efficiency for discounted energy assessments. FREE HOME ENERGY EFFICIENCY SEMINAR N e w R i ver L i g ht & Pow e r a n d W
Area of cooperation includes: Joint research and development on
Buyya, Rajkumar
Technologies August 2, 2006: HCL Technologies Ltd (HCL), India's leading global IT services company, has signed projects that are using this technology currently such as BioGrid in Japan, National Grid Service in UKArea of cooperation includes: Â· Joint research and development on Grid computing technologies
Energy Transitions: A Systems Approach Including Marcellus Shale Gas Development
Walter, M.Todd
Energy Transitions: A Systems Approach Including Marcellus Shale Gas Development A Report Engineering) W. VA #12;Energy Transitions: A Systems Approach August 2011 version Page 2 Energy Transitions sources globally, some very strong short-term drivers of energy transitions reflect rising concerns over
Procedures in Modules (1) Including all procedures within modules
Procedures in Modules (1) Including all procedures within modules works very well in almost all designing these if possible #12;Procedures in Modules (2) These are very much like internal procedures Works very well in almost all programs Everything accessible in the module can also be used in the procedure
FORUMA Hamilton Spectator Town Hall Event SPEAKERS INCLUDE
Thompson, Michael
R001990104 OPEN FORUMA Hamilton Spectator Town Hall Event SPEAKERS INCLUDE: STEVE BUIST, Spectator, former chairman of Hamilton-Wentworth region and now president and CEO of the Hamilton Community Foundation. DR. CHRIS MACKIE, Hamilton's associate medical officer of health. MARK CHAMBERLAIN, president
DO NOT INCLUDE: flatten cardboard staples, tape & envelope windows ok
Wolfe, Patrick J.
/ bottles Metal items other than cans/foil Napkins Paper towels Plastic bags Plastic films Plastic utensilsDO NOT INCLUDE: flatten cardboard staples, tape & envelope windows ok Aerosol cans Books Bottle, PDAs, inkjet cartridges, CFL bulbs (cushioned, sealed in plastic) computers, printers, printer
cDNA encoding a polypeptide including a hevein sequence
Raikhel, N.V.; Broekaert, W.F.; Namhai Chua; Kush, A.
1993-02-16T23:59:59.000Z
A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1,018 nucleotides long and includes an open reading frame of 204 amino acids.
ASTRO-F/FIS observing simulation including detector characteristics
Pak, Soojong
ASTRO-F/FIS observing simulation including detector characteristics Woong-Seob Jeong a,*, Soojong instruments, the far-infrared surveyor (FIS) will map the entire sky in four bands using short wavelength (SW- oped a suite of software with an aim to simulate the FIS observations (Jeong et al., 2000, 2003, 2004
ASTRO-F/FIS Observing Simulation Including Detector Characteristics
Lee, Hyung Mok
ASTRO-F/FIS Observing Simulation Including Detector Characteristics Woong-Seob Jeong1, Soojong Pak1 simulations to examined the detector characteristics on the FIS instrument (Far- Infrared Surveyor) images narrow and wide bands using a short wavelength (SW) and long wavelength (LW) detector array. The FIS (Far
Including Blind Students in Computer Science Through Access to Graphs
Young, R. Michael
Including Blind Students in Computer Science Through Access to Graphs Suzanne Balik, Sean Mealin SKetching tool, GSK, to provide blind and sighted people with a means to create, examine, and share graphs (node-link diagrams) in real-time. GSK proved very effective for one blind computer science student
HTS Conductor Design Issues Including Quench and Stability,
/background Â· Stability and protection are crucial issues for HTS tapes and coils applied to electric power devices. ÂBoth for the economic argument for HTS AC applications like cables and transformers. Â· Conductor design is importantHTS Conductor Design Issues Including Quench and Stability, AC Losses, and Fault Currents M. J
Bayesian hierarchical reconstruction of protein profiles including a digestion model
Paris-Sud XI, Université de
Bayesian hierarchical reconstruction of protein profiles including a digestion model Pierre to recover the protein biomarkers content in a robust way. We will focus on the digestion step since and each branch to a molecular processing such as digestion, ionisation and LC-MS separation
GRADUATE STUDIES IN BUILDING TECHNOLOGY AN INTERDISCIPLINARY PROGRAM INCLUDING
Reif, Rafael
-growing economies in other parts of the world, there is a growing demand for practical, sustainable building designs as the broader architectural design and construction processes. Likely careers of graduates are in the building1 GRADUATE STUDIES IN BUILDING TECHNOLOGY AN INTERDISCIPLINARY PROGRAM INCLUDING DEPARTMENT
Requirements: A minimum of 15 PSYC credits, including
Alpay, S. Pamir
Â» Three other 2000-3000-level PSYC courses (any area) No more than 3 credits of PSYC 3889 or 3999 canRequirements: A minimum of 15 PSYC credits, including: Â» One Area I course Â» One Area II course) ___2100 (Principles of Research in Psychology) Area I. Social, Developmental, Clinical, & Industrial
Effect of MgO Additive on Volumetric Expansion of Self-Degradable Cements
Sugama T.; Warren, J.; Butcher, T.
2011-09-30T23:59:59.000Z
We identified hard-burned magnesium oxide (MgO) as a suitable expansive additive for improving the plugging performance of self-degradable, temporary sodium silicate-activated slag/Class C fly ash (SSASC) blend cement sealers into rock fractures in Enhanced Geothermal Systems (EGSs). MgO extended the volumetric expansion of sealers during their exposure to a hydrothermal environment at 200 C under pressures, ranging from 300 to 1500 psi. A great expansion ratc of 19.3% was observed by adding 3.0 wt% MgO under 300 psi pressure, thus promising to plug thoroughly inner fracture. When the pressure was increased from 300 psi to 1500 psi, the expansion rate of cement markedly reduced, corresponding to the formaLion of crack-free specimens and the improvement of compressive strength. However, with 3.0 wt% MgO, the specimens still engendered the generation of numerous visual cracks, although they were prepared under a high pressure of 1500 psi. The effective content of MgO in minimizing and eliminating the generation of cracks was 2.0 wt%, which provided a moderate expansion of {ge} 0.5%. The compressive strength of 2.0 wt% MgO specimens made under a pressure of 300 psi rose {approx} 1.7-fold to 4816 psi with an increasing pressure to 1500 psi. The in-situ growth of brucite crystal formed by the hydrothermal hydration of MgO was responsive for such an expansion of the SSASC cement; meanwhile. two crystalline hydrothermal reaction products, 1.1 nm tobermorite and calcium silicate hydrated, contributed to the development of the sealer's compressive strength. Thus, the increasing pressure seems to suppress and control a growth rate of brucite crystal in response to a lower extension of expansion. Furthermore, all MgO-conlaining SSASC sealers possessed the water-catalyzed self-degradable properties.
Wies, Thomas
2005-11-03T23:59:59.000Z
We introduce field constraint analysis, a new technique for verifying data structure invariants. A field constraint for a field is a formula specifying a set of objects to which the field can point. Field constraints ...
Demonstration of local expansion toward large-scale entangled webs
Toshiyuki Tashima; Tsuyoshi Kitano; Sahin Kaya Ozdemir; Takashi Yamamoto; Masato Koashi; Nobuyuki Imoto
2010-11-18T23:59:59.000Z
We demonstrate an optical gate that increases the size of polarization-based W states by accessing only one of the qubits. Using this gate, we have generated three-photon and four-photon W states with fidelities $0.836\\pm 0.042 $ and $0.784\\pm 0.028$, respectively. We also confirmed existence of pairwise entanglement in every pair of the qubits including the one that was left untouched by the gate. The gate is applicable to any size of W states and hence is a universal tool for expanding entanglement.
Constraints on Dark Energy from the Observed Expansion of our Cosmic Horizon
Fulvio Melia
2008-12-27T23:59:59.000Z
Within the context of standard cosmology, an accelerating universe requires the presence of a third `dark' component of energy, beyond matter and radiation. The available data, however, are still deemed insufficient to distinguish between an evolving dark energy component and the simplest model of a time-independent cosmological constant. In this paper, we examine the cosmological expansion in terms of observer-dependent coordinates, in addition to the more conventional co-moving coordinates. This procedure explicitly reveals the role played by the radius R_h of our cosmic horizon in the interrogation of the data. (In Rindler's notation, R_h coincides with the `event horizon' in the case of de Sitter, but changes in time for other cosmologies that also contain matter and/or radiation.) With this approach, we show that the interpretation of dark energy as a cosmological constant is clearly disfavored by the observations. Within the framework of standard Friedman-Robertson-Walker cosmology, we derive an equation describing the evolution of R_h, and solve it using the WMAP and Type Ia supernova data. In particular, we consider the meaning of the observed equality (or near equality) R_h(t_0) ~ ct_0, where t_0 is the age of the Universe. This empirical result is far from trivial, for a cosmological constant would drive R_h(t) towards ct (where t is the cosmic time) only once--and that would have to occur right now. Though we are not here espousing any particular alternative model of dark energy, for comparison we also consider scenarios in which dark energy is given by scaling solutions, which simultaneously eliminate several conundrums in the standard model, including the `coincidence' and `flatness' problems, and account very well for the fact that R_h(t_0) ~ ct_0.
Quark propagator in the Nambu-Jona-Lasinio model in a self-consistent 1/N{sub c} expansion
Mueller, D.; Buballa, M.; Wambach, J. [Institut fuer Kernphysik, Technische Universitaet Darmstadt (Germany)
2010-05-01T23:59:59.000Z
The quark propagator is calculated in the Nambu-Jona-Lasinio model in a self-consistent 1/N{sub c}-expansion at next-to-leading order. The calculations are carried out iteratively in Euclidean space. The chiral quark condensate and its dependence on temperature and chemical potential is calculated directly and compared with the mean-field results. In the chiral limit, we find a second-order phase transition at finite temperature and zero chemical potential, in agreement with universality arguments. At zero temperature and finite chemical potential, the phase transition is first order. In comparison with the mean-field results, the critical temperature and chemical potential are slightly reduced. We determine spectral functions from the Euclidean propagators by employing the maximum-entropy method. Thereby quark and meson masses are estimated and decay channels identified. For testing this method, we also apply it to evaluate perturbative spectral functions, which can be calculated directly in Minkowski space. In most cases we find that the maximum-entropy method is able to reproduce the rough features of the spectral functions, but not the details.
Emmanuel Pereira; Mateus S. Mendonça; Humberto C. F. Lemos
2014-11-23T23:59:59.000Z
We investigate a chain of oscillators with anharmonic on-site potentials, with long range interparticle interactions, and coupled both to external and internal stochastic thermal reservoirs of Ornstein-Uhlenbeck type. We develop an integral representation, a la Feynman-Kac, for the correlations and the heat current. We assume the approximation of discrete times in the integral formalism (together with a simplification in a subdominant part of the harmonic interaction) in order to develop a suitable polymer expansion for the model. In the regime of strong anharmonicity, strong harmonic pinning, and for the interparticle interaction with integrable polynomial decay, we prove the convergence of the polymer expansion uniformly in volume (number of sites and time). We also show that the two-point correlation decays in space such as the interparticle interaction. The existence of a convergent polymer expansion is of practical interest: it establishes a rigorous support for a perturbative analysis of the heat flow problem and for the computation of the thermal conductivity in related anharmonic crystals, including those with inhomogeneous potentials and long range interparticle interactions.
Cosmic Streaming Field at Low Redshift
Lifan Wang
2007-05-04T23:59:59.000Z
We study the expansion of the nearby Universe using a sample of Type Ia supernovae at redshifts below 0.08. These supernovae allow peculiar velocities to be measured at unprecedented precision. We have investigated in detail the possibility of a varying Hubble constant with redshift and found no evidence of a monopole term for the nearby Universe. A large scale streaming motion is found at an amplitude of about $340^{63}_{-71}$ km/sec, aligned in the direction of $(l_0, b_0) = (312^{\\rm o}.0^{13.5}_{-7.4}, 25^{\\rm o}.7^{8.0}_{-9.2})$, which is close to the direction of the center of Shapley supercluster of galaxies. The large scale streaming motion is best fit by a function involving a strong bipolar term. The streaming velocity field extends from the lowest redshift ($\\sim 0.007$) to beyond 0.025 and likely out to even higher redshifts. The velocity field at redshift below 0.01 can be equally well described by a dipole field or by the same bipolar streaming velocity field that reaches out to beyond $z \\sim 0.025$. We are also able to deduce a robust estimate of the random velocity component of the peculiar velocity field. Within the volume of redshift below 0.01 (weighted average redshift of $\\sim$ 0.067), this thermal component is found to be about 270 km/sec. After correcting this smooth streaming motion, we are able to significantly improve the Hubble expansion fits of these supernovae. The CMAGIC method gives a dramatic decrease of $\\chi^2$ from 90 to 63 for 69 degrees of freedom, and yields a residual scatter of only 0.12 magnitude; the maximum light method gives also a moderate improvement.
None
2013-12-31T23:59:59.000Z
This final report document summarizes the activities undertaken and the output from three primary deliverables generated during this project. This fifteen month effort comprised numerous key steps including the creation of an international methane hydrate science team, determining and reporting the current state of marine methane hydrate research, convening an international workshop to collect the ideas needed to write a comprehensive Marine Methane Hydrate Field Research Plan and the development and publication of that plan. The following documents represent the primary deliverables of this project and are discussed in summary level detail in this final report. • Historical Methane Hydrate Project Review Report • Methane Hydrate Workshop Report • Topical Report: Marine Methane Hydrate Field Research Plan • Final Scientific/Technical Report
Transport of Magnetic Fields in Convective, Accreting Supernova Cores
Christopher Thompson; Norman Murray
2001-05-24T23:59:59.000Z
We consider the amplification and transport of a magnetic field in the collapsed core of a massive star, including both the region between the neutrinosphere and the shock, and the central, opaque core. An analytical argument explains why rapid convective overturns persist within a newly formed neutron star for roughly 10 seconds ($> 10^3$ overturns), consistent with recent numerical models. A dynamical balance between turbulent and magnetic stresses within this convective layer corresponds to flux densities in excess of $10^{15}$G. Material accreting onto the core is heated by neutrinos and also becomes strongly convective. We compare the expected magnetic stresses in this convective `gain layer' with those deep inside the neutron core. Buoyant motions of magnetized fluid are greatly aided by the intense neutrino flux. We calculate the transport rate through a medium containing free neutrons protons, and electrons, in the limiting cases of degenerate or non-degenerate nucleons. Fields stronger than $\\sim 10^{13}$ G are able to rise through the outer degenerate layers of the neutron core during the last stages of Kelvin-Helmholtz cooling (up to 10 seconds post-collapse), even though these layers have become stable to convection. We also find the equilibrium shape of a thin magnetic flux rope in the dense hydrostatic atmosphere of the neutron star, along with the critical separation of the footpoints above which the rope undergoes unlimited expansion against gravity. The implications of these results for pulsar magnetism are summarized, and applied to the case of late fallback over the first 1,000-10,000 s of the life of a neutron star
Multi-processor including data flow accelerator module
Davidson, George S. (Albuquerque, NM); Pierce, Paul E. (Albuquerque, NM)
1990-01-01T23:59:59.000Z
An accelerator module for a data flow computer includes an intelligent memory. The module is added to a multiprocessor arrangement and uses a shared tagged memory architecture in the data flow computer. The intelligent memory module assigns locations for holding data values in correspondence with arcs leading to a node in a data dependency graph. Each primitive computation is associated with a corresponding memory cell, including a number of slots for operands needed to execute a primitive computation, a primitive identifying pointer, and linking slots for distributing the result of the cell computation to other cells requiring that result as an operand. Circuitry is provided for utilizing tag bits to determine automatically when all operands required by a processor are available and for scheduling the primitive for execution in a queue. Each memory cell of the module may be associated with any of the primitives, and the particular primitive to be executed by the processor associated with the cell is identified by providing an index, such as the cell number for the primitive, to the primitive lookup table of starting addresses. The module thus serves to perform functions previously performed by a number of sections of data flow architectures and coexists with conventional shared memory therein. A multiprocessing system including the module operates in a hybrid mode, wherein the same processing modules are used to perform some processing in a sequential mode, under immediate control of an operating system, while performing other processing in a data flow mode.
Conversion of geothermal waste to commercial products including silica
Premuzic, Eugene T. (East Moriches, NY); Lin, Mow S. (Rocky Point, NY)
2003-01-01T23:59:59.000Z
A process for the treatment of geothermal residue includes contacting the pigmented amorphous silica-containing component with a depigmenting reagent one or more times to depigment the silica and produce a mixture containing depigmented amorphous silica and depigmenting reagent containing pigment material; separating the depigmented amorphous silica and from the depigmenting reagent to yield depigmented amorphous silica. Before or after the depigmenting contacting, the geothermal residue or depigmented silica can be treated with a metal solubilizing agent to produce another mixture containing pigmented or unpigmented amorphous silica-containing component and a solubilized metal-containing component; separating these components from each other to produce an amorphous silica product substantially devoid of metals and at least partially devoid of pigment. The amorphous silica product can be neutralized and thereafter dried at a temperature from about 25.degree. C. to 300.degree. C. The morphology of the silica product can be varied through the process conditions including sequence contacting steps, pH of depigmenting reagent, neutralization and drying conditions to tailor the amorphous silica for commercial use in products including filler for paint, paper, rubber and polymers, and chromatographic material.
Radiative Neutron Capture on Carbon-14 in Effective Field Theory
Gautam Rupak; Lakma Fernando; Akshay Vaghani
2012-04-19T23:59:59.000Z
The cross section for radiative capture of neutron on carbon-14 is calculated using the model-independent formalism of halo effective field theory. The dominant contribution from E1 transition is considered, and the cross section is expressed in terms of elastic scattering parameters of the effective range expansion. Contributions from both resonant and non-resonant interaction are calculated. Significant interference between these leads to a capture contribution that deviates from simple Breit-Wigner resonance form.
Radiative Neutron Capture on Carbon-14 in Effective Field Theory
Rupak, Gautam; Vaghani, Akshay
2012-01-01T23:59:59.000Z
The cross section for radiative capture of neutron on carbon-14 is calculated using the model-independent formalism of halo effective field theory. The dominant contribution from E1 transition is considered, and the cross section is expressed in terms of elastic scattering parameters of the effective range expansion. Contributions from both resonant and non-resonant interaction are calculated. Significant interference between these leads to a capture contribution that deviates from simple Breit-Wigner resonance form.
Direct-drive field actuator motors
Grahn, A.R.
1995-07-11T23:59:59.000Z
A high-torque, low speed, positive-drive field actuator motor is disclosed including a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately. 37 figs.
Heat Kernel Asymptotic Expansion on Unbounded Domains with Polynomially Confining Potentials
Guglielmo Fucci
2014-05-14T23:59:59.000Z
In this paper we analyze the small-t asymptotic expansion of the trace of the heat kernel associated with a Laplace operator endowed with a spherically symmetric polynomially confining potential on the unbounded, d-dimensional Euclidean space. To conduct this study, the trace of the heat kernel is expressed in terms of its partially resummed form which is then represented as a Mellin-Barnes integral. A suitable contour deformation then provides, through the use of Cauchy's residue theorem, closed formulas for the coefficients of the asymptotic expansion. The general expression for the asymptotic expansion, valid for any dimension and any polynomially confining potential, is then specialized to two particular cases: the general quartic and sestic oscillator potentials.
Edgeworth Expansion of the Largest Eigenvalue Distribution Function of GUE Revisited
Leonard N. Choup
2007-11-27T23:59:59.000Z
We derive expansions of the resolvent Rn(x;y;t)=(Qn(x;t)Pn(y;t)-Qn(y;t)Pn(x;t))/(x-y) of the Hermite kernel Kn at the edge of the spectrum of the finite n Gaussian Unitary Ensemble (GUEn) and the finite n expansion of Qn(x;t) and Pn(x;t). Using these large n expansions, we give another proof of the derivation of an Edgeworth type theorem for the largest eigenvalue distribution function of GUEn. We conclude with a brief discussion on the derivation of the probability distribution function of the corresponding largest eigenvalue in the Gaussian Orthogonal Ensemble (GOEn) and Gaussian Symplectic Ensembles (GSEn).
Expansion of a Fermi gas interacting with a Bose-Einstein condensate
F. Ferlaino; E. de Mirandes; G. Roati; G. Modugno; M. Inguscio
2003-12-10T23:59:59.000Z
We study the expansion of an atomic Fermi gas interacting attractively with a Bose-Einstein condensate. We find that the interspecies interaction affects dramatically both the expansion of the Fermi gas and the spatial distribution of the cloud in trap. We observe indeed a slower evolution of the radial-to-axial aspect ratio which reveals the importance of the mutual attraction between the two samples during the first phase of the expansion. For large atom numbers, we also observe a bimodal momentum distribution of the Fermi gas, which reflects directly the distribution of the mixture in trap. This effect allows us to extract information on the dynamics of the system at the collapse.
A coke oven model including thermal decomposition kinetics of tar
Munekane, Fuminori; Yamaguchi, Yukio [Mitsubishi Chemical Corp., Yokohama (Japan); Tanioka, Seiichi [Mitsubishi Chemical Corp., Sakaide (Japan)
1997-12-31T23:59:59.000Z
A new one-dimensional coke oven model has been developed for simulating the amount and the characteristics of by-products such as tar and gas as well as coke. This model consists of both heat transfer and chemical kinetics including thermal decomposition of coal and tar. The chemical kinetics constants are obtained by estimation based on the results of experiments conducted to investigate the thermal decomposition of both coal and tar. The calculation results using the new model are in good agreement with experimental ones.
Composite armor, armor system and vehicle including armor system
Chu, Henry S.; Jones, Warren F.; Lacy, Jeffrey M.; Thinnes, Gary L.
2013-01-01T23:59:59.000Z
Composite armor panels are disclosed. Each panel comprises a plurality of functional layers comprising at least an outermost layer, an intermediate layer and a base layer. An armor system incorporating armor panels is also disclosed. Armor panels are mounted on carriages movably secured to adjacent rails of a rail system. Each panel may be moved on its associated rail and into partially overlapping relationship with another panel on an adjacent rail for protection against incoming ordnance from various directions. The rail system may be configured as at least a part of a ring, and be disposed about a hatch on a vehicle. Vehicles including an armor system are also disclosed.
cDNA encoding a polypeptide including a hevein sequence
Raikhel, Natasha V. (Okemos, MI); Broekaert, Willem F. (Dilbeek, BE); Chua, Nam-Hai (Scarsdale, NY); Kush, Anil (New York, NY)
1993-02-16T23:59:59.000Z
A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a pu GOVERNMENT RIGHTS This application was funded under Department of Energy Contract DE-AC02-76ER01338. The U.S. Government has certain rights under this application and any patent issuing thereon.
Compression part of Egan Hub facility`s expansion
NONE
1997-11-01T23:59:59.000Z
Egan Hub Partners, L.P. (EHP), a subsidiary of Market Hub Partners (MHP), is the owner and operator of the Egan Hub Partners gas storage facility located near the town of Evangeline in south Louisiana. Located on the Jennings salt dome, EHP provides high-deliverability (injection and/or withdrawal capabilities on demand) salt storage, giving its customers rapid response to market fluctuation and demand. In addition to long-term storage contracts, EHP offers natural gas hub services using interruptible storage entitlements and multiple pipeline interchange flexibility. Hub services include wheeling, parking, loaning and balancing. The EHP facility was put into service in September 1995. EHP just completed the installation of a fourth compressor unit. This is the second unit to be put in service at the facility this year and is identical to the previous one. Hanover Compression packaged both units which consist of a Caterpillar G-3616 engine (4,450 hp) and an Ariel JGC-6 compressor. The units are configured to accommodate the wide operating range encountered at a natural gas salt dome storage facility and are designed to operate with a suction range of 600--900 psi and a discharge range of 800--3,000 psi.
Cogeneration handbook for the petroleum refining industry. [Glossary included
Not Available
1984-02-01T23:59:59.000Z
This Handbook deals only with industrial cogeneration, that is, simultaneous production of both heat and electricity at the industrial plant site. The cogenerator has the option of either selling all cogenerated power to the utility while simultaneously purchasing power to satisfy his plant demand, or directly supplying the plant demand with cogenerated power, thus displacing utility-supplied power. This Handbook provides the refinery plant manager or company energy coordinator with a framework for making a preliminary assessment of the feasibility and viability of cogeneration at a particular plant. The handbook is intended to provide an understanding of the potential of several standardized cogeneration systems, as well as their limitations. However, because the decision to cogenerate is very site specific, the handbook cannot provide all of the answers. It does attempt, however, to bring to light the major issues that should be addressed in the decision-making process. The decision of whether to cogenerate involves several considerations, including technical, economic, environmental, legal, and regulatory issues. Each of these issues is addressed separately in this handbook. In addition, a chapter is included on preparing a three-phase work statement, which is needed to guide the design of a cogeneration system. 39 figures, 37 tables.
Community Assessment Tool for Public Health Emergencies Including Pandemic Influenza
ORAU's Oak Ridge Institute for Science Education (HCTT-CHE)
2011-04-14T23:59:59.000Z
The Community Assessment Tool (CAT) for Public Health Emergencies Including Pandemic Influenza (hereafter referred to as the CAT) was developed as a result of feedback received from several communities. These communities participated in workshops focused on influenza pandemic planning and response. The 2008 through 2011 workshops were sponsored by the Centers for Disease Control and Prevention (CDC). Feedback during those workshops indicated the need for a tool that a community can use to assess its readiness for a disaster - readiness from a total healthcare perspective, not just hospitals, but the whole healthcare system. The CAT intends to do just that - help strengthen existing preparedness plans by allowing the healthcare system and other agencies to work together during an influenza pandemic. It helps reveal each core agency partners (sectors) capabilities and resources, and highlights cases of the same vendors being used for resource supplies (e.g., personal protective equipment [PPE] and oxygen) by the partners (e.g., public health departments, clinics, or hospitals). The CAT also addresses gaps in the community's capabilities or potential shortages in resources. This tool has been reviewed by a variety of key subject matter experts from federal, state, and local agencies and organizations. It also has been piloted with various communities that consist of different population sizes, to include large urban to small rural communities.
Effective Field Theory for Bound State Reflection
Michelle Pine; Dean Lee
2013-01-17T23:59:59.000Z
Elastic quantum bound-state reflection from a hard-wall boundary provides direct information regarding the structure and compressibility of quantum bound states. We discuss elastic quantum bound-state reflection and derive a general theory for elastic reflection of shallow dimers from hard-wall surfaces using effective field theory. We show that there is a small expansion parameter for analytic calculations of the reflection scattering length. We present a calculation up to second order in the effective Hamiltonian in one, two, and three dimensions. We also provide numerical lattice results for all three cases as a comparison with our effective field theory results. Finally, we provide an analysis of the compressibility of the alpha particle confined to a cubic lattice with vanishing Dirichlet boundaries.
Thermal expansion and lattice dynamics of RB66 compounds at low temperatures
Novikov, V V [Petrovsky Bryansk State University; Avdashchenko, D V [Petrovsky Bryansk State University; Mitroshenkov, N V [Petrovsky Bryansk State University; Matovnikov, A V [Petrovsky Bryansk State University; Budko, Serguei L [Ames Laboratory
2014-10-01T23:59:59.000Z
Thermal characteristics of the phonon and magnon subsystems of icosahedral borides RB66 (R = Gd, Tb, Dy, Ho, Eu, or Lu) have been studied based on the obtained experimental data on the thermal expansion of the borides and the earlier results on their heat capacity in the range of 2–300 K. The contribution to the expansion of borides containing paramagnetic R 3+ ions, which is characteristic of transition to the spin-glass state, has been revealed. The phonon spectrum moments of RB66 compounds and the Grüneisen parameters have been calculated.
Thermal expansion of multiwall carbon nanotube reinforced nanocrystalline silver matrix composite
Sharma, Manjula, E-mail: manjula.physics@gmail.com; Sharma, Vimal [Department of Physics, NIT Hamirpur - 177005, HP (India); Pal, Hemant [Department of Physics, NIT Hamirpur - 177005, HP, India and Department of Physics, Govt. College Chamba - 176310, HP (India)
2014-04-24T23:59:59.000Z
Multiwall carbon nanotube reinforced silver matrix composite was fabricated by novel molecular level mixing method, which involves nucleation of Ag ions inside carbon nanotube dispersion at the molecular level. As a result the carbon nanotubes get embedded within the powder rather than on the surfaces. Micro structural characterization by X- ray diffraction and scanning electron microscopy reveals that the nanotubes are homogeneously dispersed and anchored within the matrix. The thermal expansion of the composite with the multiwall nanotube content (0, 1.5 vol%) were investigated and it is found that coefficient of thermal expansion decreases with the addition of multiwall nanotube content and reduce to about 63% to that of pure Ag.
The Thermal Expansion, Elastic and Fracture Properties of Porous Cordierite at Elevated Temperatures
Shyam, Amit [ORNL; Lara-Curzio, Edgar [ORNL; Pandey, Amit [ORNL; Watkins, Thomas R [ORNL; More, Karren [Oak Ridge National Laboratory (ORNL)
2012-01-01T23:59:59.000Z
The properties that determine the thermal shock resistance in materials are reported for porous cordierite, a leading candidate material for the fabrication of diesel particulate filters. Fracture toughness and slow crack growth tests were performed on test specimens obtained from the walls of diesel particulate filter monolithic substrates using the double-torsion test method at temperatures between 20 C and 900 C. The thermal expansion and elastic properties were characterized between 20 C and 1000 C. The role of the microstructure of porous cordierite in determining its unusual thermal expansion and elevated temperature Young's modulus and fracture toughness are discussed.
Microscale fluid flow induced by thermoviscous expansion along a traveling wave
Franz M. Weinert; Jonas A. Kraus; Thomas Franosch; Dieter Braun
2008-04-02T23:59:59.000Z
The thermal expansion of a fluid combined with a temperature-dependent viscosity introduces nonlinearities in the Navier-Stokes equations unrelated to the convective momentum current. The couplings generate the possibility for net fluid flow at the microscale controlled by external heating. This novel thermo-mechanical effect is investigated for a thin fluid chamber by a numerical solution of the Navier-Stokes equations and analytically by a perturbation expansion. A demonstration experiment confirms the basic mechanism and quantitatively validates our theoretical analysis.
Nonlinear spinor field in Bianchi type-I cosmology: accelerated regimes
Bijan Saha
2006-08-09T23:59:59.000Z
A self-consistent system of interacting nonlinear spinor and scalar fields within the scope of a Bianchi type-I cosmological model filled with perfect fluid is considered. Exact self-consistent solutions to the corresponding field equations are obtained. The role of spinor field in the evolution of the Universe is studied. It is shown that the spinor field gives rise to an accelerated mode of expansion of the Universe. At the early stage of evolution the spinor field nonlinearity generates the acceleration while at the later stage it is done by the nonzero spinor mass.
Toru Miyazawa
2011-12-26T23:59:59.000Z
A new formalism is presented for high-energy analysis of the Green function for Fokker-Planck and Schr\\"odinger equations in one dimension. Formulas for the asymptotic expansion in powers of the inverse wave number are derived, and conditions for the validity of the expansion are studied through the analysis of the remainder term. The short-time expansion of the Green function is also discussed.
Magnetic Field Safety Magnetic Field Safety
McQuade, D. Tyler
Magnetic Field Safety Training #12;Magnetic Field Safety Strong Magnetic Fields exist around energized magnets. High magnetic fields alone are a recognized hazard only for personnel with certain medical conditions such as pacemakers, magnetic implants, or embedded shrapnel. In addition, high magnetic
Hydraulic engine valve actuation system including independent feedback control
Marriott, Craig D
2013-06-04T23:59:59.000Z
A hydraulic valve actuation assembly may include a housing, a piston, a supply control valve, a closing control valve, and an opening control valve. The housing may define a first fluid chamber, a second fluid chamber, and a third fluid chamber. The piston may be axially secured to an engine valve and located within the first, second and third fluid chambers. The supply control valve may control a hydraulic fluid supply to the piston. The closing control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the second fluid chamber to the supply control valve. The opening control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the supply control valve to the second fluid chamber.
Electra-optical device including a nitrogen containing electrolyte
Bates, John B. (Oak Ridge, TN); Dudney, Nancy J. (Knoxville, TN); Gruzalski, Greg R. (Oak Ridge, TN); Luck, Christopher F. (Knoxville, TN)
1995-01-01T23:59:59.000Z
Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between -15.degree. C. and 150.degree. C.
Dye laser amplifier including a specifically designed diffuser assembly
Davin, James (Gilroy, CA); Johnston, James P. (Stanford, CA)
1992-01-01T23:59:59.000Z
A large (high flow rate) dye laser amplifier in which a continuous replened supply of dye is excited by a first light beam, specifically a copper vapor laser beam, in order to amplify the intensity of a second different light beam, specifically a dye beam, passing through the dye is disclosed herein. This amplifier includes a dye cell defining a dye chamber through which a continuous stream of dye is caused to pass at a relatively high flow rate and a specifically designed diffuser assembly for slowing down the flow of dye while, at the same time, assuring that as the dye stream flows through the diffuser assembly it does so in a stable manner.
Electra-optical device including a nitrogen containing electrolyte
Bates, J.B.; Dudney, N.J.; Gruzalski, G.R.; Luck, C.F.
1995-10-03T23:59:59.000Z
Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode. Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between {minus}15 C and 150 C.
Fuel cell repeater unit including frame and separator plate
Yamanis, Jean; Hawkes, Justin R; Chiapetta, Jr., Louis; Bird, Connie E; Sun, Ellen Y; Croteau, Paul F
2013-11-05T23:59:59.000Z
An example fuel cell repeater includes a separator plate and a frame establishing at least a portion of a flow path that is operative to communicate fuel to or from at least one fuel cell held by the frame relative to the separator plate. The flow path has a perimeter and any fuel within the perimeter flow across the at least one fuel cell in a first direction. The separator plate, the frame, or both establish at least one conduit positioned outside the flow path perimeter. The conduit is outside of the flow path perimeter and is configured to direct flow in a second, different direction. The conduit is fluidly coupled with the flow path.
Pulse transmission transmitter including a higher order time derivate filter
Dress Jr., William B.; Smith, Stephen F.
2003-09-23T23:59:59.000Z
Systems and methods for pulse-transmission low-power communication modes are disclosed. A pulse transmission transmitter includes: a clock; a pseudorandom polynomial generator coupled to the clock, the pseudorandom polynomial generator having a polynomial load input; an exclusive-OR gate coupled to the pseudorandom polynomial generator, the exclusive-OR gate having a serial data input; a programmable delay circuit coupled to both the clock and the exclusive-OR gate; a pulse generator coupled to the programmable delay circuit; and a higher order time derivative filter coupled to the pulse generator. The systems and methods significantly reduce lower-frequency emissions from pulse transmission spread-spectrum communication modes, which reduces potentially harmful interference to existing radio frequency services and users and also simultaneously permit transmission of multiple data bits by utilizing specific pulse shapes.
Copper laser modulator driving assembly including a magnetic compression laser
Cook, Edward G. (Livermore, CA); Birx, Daniel L. (Oakley, CA); Ball, Don G. (Livermore, CA)
1994-01-01T23:59:59.000Z
A laser modulator (10) having a low voltage assembly (12) with a plurality of low voltage modules (14) with first stage magnetic compression circuits (20) and magnetic assist inductors (28) with a common core (91), such that timing of the first stage magnetic switches (30b) is thereby synchronized. A bipolar second stage of magnetic compression (42) is coupled to the low voltage modules (14) through a bipolar pulse transformer (36) and a third stage of magnetic compression (44) is directly coupled to the second stage of magnetic compression (42). The low voltage assembly (12) includes pressurized boxes (117) for improving voltage standoff between the primary winding assemblies (34) and secondary winding (40) contained therein.
Andren, Julie C
2013-01-01T23:59:59.000Z
This research applies an implementation framework derived from enterprise systems thinking to the Veterans Health Administration (VHA) Telehealth Expansion in order to characterize and evaluate the implementation methods ...
Lynn, Alan [University of New Mexico
2011-02-18T23:59:59.000Z
Final report for project "Experimental study of magnetic bubble expansion as a model for extragalactic radio lobes" supported by NSF/DOE Joint Program in Basic Plasma Science.
Increasing Well Productivity in Gas Condensate Wells in Qatar's North Field
Miller, Nathan
2010-07-14T23:59:59.000Z
Condensate blockage negatively impacts large natural gas condensate reservoirs all over the world; examples include Arun Field in Indonesia, Karachaganak Field in Kazakhstan, Cupiagua Field in Colombia,Shtokmanovskoye Field in Russian Barents Sea...
Combined cosmological tests of a bivalent tachyonic dark energy scalar field model
Zoltán Keresztes; László Á. Gergely
2014-12-25T23:59:59.000Z
A recently investigated tachyonic scalar field dark energy dominated universe exhibits a bivalent future: depending on initial parameters can run either into a de Sitter exponential expansion or into a traversable future soft singularity followed by a contraction phase. We also include in the model (i) a tiny amount of radiation, (ii) baryonic matter ($\\Omega _{b}h^{2}=0.022161$, where the Hubble constant is fixed as $h=0.706$) and (iii) cold dark matter (CDM). Out of a variety of six types of evolutions arising in a more subtle classification, we identify two in which in the past the scalar field effectively degenerates into a dust (its pressure drops to an insignificantly low negative value). These are the evolutions of type IIb converging to de Sitter and type III hitting the future soft singularity. We confront these background evolutions with various cosmological tests, including the supernova type Ia Union 2.1 data, baryon acoustic oscillation distance ratios, Hubble parameter-redshift relation and the cosmic microwave background (CMB) acoustic scale. We determine a subset of the evolutions of both types which at 1$\\sigma $ confidence level are consistent with all of these cosmological tests. At perturbative level we derive the CMB temperature power spectrum to find the best agreement with the Planck data for $\\Omega _{CDM}=0.22$. The fit is as good as for the $\\Lambda $CDM model at high multipoles, but the power remains slightly overestimated at low multipoles, for both types of evolutions. The rest of the CDM is effectively generated by the tachyonic field, which in this sense acts as a combined dark energy and dark matter model.
cDNA encoding a polypeptide including a hevein sequence
Raikhel, Natasha V. (Okemos, MI); Broekaert, Willem F. (Dilbeek, BE); Chua, Nam-Hai (Scarsdale, NY); Kush, Anil (New York, NY)
1999-05-04T23:59:59.000Z
A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74-79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli.
CDNA encoding a polypeptide including a hevein sequence
Raikhel, Natasha V. (Okemos, MI); Broekaert, Willem F. (Dilbeek, BE); Chua, Nam-Hai (Scarsdale, NY); Kush, Anil (New York, NY)
1995-03-21T23:59:59.000Z
A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74-79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli.
cDNA encoding a polypeptide including a hevein sequence
Raikhel, N.V.; Broekaert, W.F.; Chua, N.H.; Kush, A.
1999-05-04T23:59:59.000Z
A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74--79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli. 12 figs.
cDNA encoding a polypeptide including a hevein sequence
Raikhel, N.V.; Broekaert, W.F.; Chua, N.H.; Kush, A.
1995-03-21T23:59:59.000Z
A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1,018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74--79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli. 11 figures.
Extractant composition including crown ether and calixarene extractants
Meikrantz, David H. (Idaho Falls, ID); Todd, Terry A. (Aberdeen, ID); Riddle, Catherine L. (Idaho Falls, ID); Law, Jack D. (Pocalello, ID); Peterman, Dean R. (Idaho Falls, ID); Mincher, Bruce J. (Idaho Falls, ID); McGrath, Christopher A. (Blackfoot, ID); Baker, John D. (Blackfoot, ID)
2009-04-28T23:59:59.000Z
An extractant composition comprising a mixed extractant solvent consisting of calix[4] arene-bis-(tert-octylbenzo)-crown-6 ("BOBCalixC6"), 4',4',(5')-di-(t-butyldicyclo-hexano)-18-crown-6 ("DtBu18C6"), and at least one modifier dissolved in a diluent. The DtBu18C6 may be present at from approximately 0.01M to approximately 0.4M, such as at from approximately 0.086 M to approximately 0.108 M. The modifier may be 1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol ("Cs-7SB") and may be present at from approximately 0.01M to approximately 0.8M. In one embodiment, the mixed extractant solvent includes approximately 0.15M DtBu18C6, approximately 0.007M BOBCalixC6, and approximately 0.75M Cs-7SB modifier dissolved in an isoparaffinic hydrocarbon diluent. The extractant composition further comprises an aqueous phase. The mixed extractant solvent may be used to remove cesium and strontium from the aqueous phase.
Making the Right Moves: Guiding Alpha-Expansion using Local Primal-Dual Gaps
Rajamani, Sriram K.
Making the Right Moves: Guiding Alpha-Expansion using Local Primal-Dual Gaps Dhruv Batra Toyota@microsoft.com Abstract This paper presents a new adaptive graph-cut based move-making algorithm for energy minimization-space to search over. At each step, it tries to greedily find the move-space that will lead to biggest de- crease
Limitations of polynomial chaos expansions in the Bayesian solution of inverse problems
Chorin, Alexandre J.
expensive, especially in high-dimensional problems. Polynomial chaos expansions (PCE) and generalized PCE,14,20,29]) which can be used to reduce the cost of Bayesian inverse problems [2,16Â18,21]. The PCE leads), the surrogate posterior can be very different from the posterior and PCE-based sampling is either inaccurate
The Spatial Expansion and Ecological Footprint of Fisheries (1950 to Present)
Pauly, Daniel
/longitude ocean grid system and trace the change in their status over the 56-year time period. This result highlights the global scale expansion in marine fisheries, from the coastal waters off North Atlantic population of flatfish and other bottom fish they were targeting, and they had to move offshore, gradually
ccsd00003019, Expansion of a lithium gas in the BEC-BCS
ccsd00003019, version 1 7 Oct 2004 Expansion of a lithium gas in the BEC-BCS crossover J. Zhang of the cloud in the BEC-BCS crossover region is measured. Finally we discuss the properties of p-wave Feshbach. Strongly interacting fermionic systems occur in a variety of physical processes, ranging from nuclear
Arie, Ady
reserved. Keywords: Moire´ interferometry; Ferroelectric; Thermal expansion 1. Introduction Lithium niobate-phase-matched interactions [46]. Design of such devices requires accurate knowledge of the relevant physi- cal parameters properties, as the thermo-optic coefficients [7]. Further- more, in quasi-phase-match nonlinear processes
Transmission System Expansion Plans in View Point of Deterministic, Probabilistic and Security control system as well as reasonable strength of grid originally. Because investment for power system the stability, and dynamic characteristics of the new system. A main reason of the separated work process
Supplementary information : Probing thermal expansion of graphene and modal dispersion at
Deshmukh, Mandar M.
Supplementary information : Probing thermal expansion of graphene and modal dispersion at low-temperature using graphene NEMS resonators Vibhor Singh1 , Shamashis Sengupta1 , Hari S. Solanki1 , Rohan Dhall1 spectroscopy of the suspended graphene devices We performed Raman spectroscopy to confirm the number of layers
The Effects of CO2 Abatement Policies on Power System Expansion
Victoria, University of
The Effects of CO2 Abatement Policies on Power System Expansion by Conrad Fox B.Sc.E., Queens means, without the permission of the author. #12;ii The Effects of CO2 Abatement Policies on Power abatement policies. The model proposes a novel approach for incorporating investment in non- #12;iv
Momentum-space Lippmann-Schwinger-Equation, Fourier-transform with Gauss-Expansion-Method
Th. A. Rijken
2014-09-19T23:59:59.000Z
In these notes we construct the momentum-space potentials from configuration-space using for the Fourier-transformation the Gaussian-Expansion-Method (GEM). This has the advantage that the Fourier-Bessel integrals can be performed analytically, avoiding possible problems with the oscillations in the Bessel functions for large r, in particular for $p_f \
Ecological and environmental footprint of 50 years of agricultural expansion in Argentina
Nacional de San Luis, Universidad
Ecological and environmental footprint of 50 years of agricultural expansion in Argentina E R N E GestioÂ´n Ambiental (GIGA), Av. Spinetto 785, 6300 Santa Rosa, La Pampa, Argentina, wINCITAP-CONICET, Ruta 35, km 335, 6300 Santa Rosa, La Pampa, Argentina, zUNLPam, Facultad de Ciencias Exactas y Naturales
Zabaras, Nicholas J.
is an important step towards the design of materials with exceptional prop- erties. Identification of stable alloy Sundararaghavan* and Nicholas Zabaras Materials Process Design and Control Laboratory, Sibley School of Mechanical to the method of cluster expansion, WMBE focuses on positional degrees of freedom and, hence, explicitly handles
Beyond the Grave: Facebook as a site for the expansion of death and
Hayes, Gillian R.
Beyond the Grave: Facebook as a site for the expansion of death-mortem, social network sites, Facebook Abstract: Online identities survive the deaths of those they represent its launch, Facebook has permeated the daily lives of its users. More than just a space in which
McCall, Benjamin J.
Design of a Continuous Supersonic Expansion Discharge Source for the Acquisition of a Rotationally-Cold. However, even when the walls of these discharge cells are cryogenically cooled, the ion temperatures ionization techniques are needed. In order to produce cold gas-phase ions for spectroscopy, many groups have
Ocean oxygen minima expansions and their biological impacts Lothar Stramma a,, Sunke Schmidtko a,b
Levin, Lisa
Ocean oxygen minima expansions and their biological impacts Lothar Stramma a,Ã?, Sunke Schmidtko a Keywords: Deoxygenation Oxygen minimum zones Ecosystem changes Hypoxia Tropical ocean Tropical Atlantic dissolved oxygen with global warming. In coastal regimes oxygen deficits represent acute ecosystem
Coexistence of individual and social learners during range-expansion Joe Yuichiro Wakano
Wakano, Joe Yuichiro
experienced rapid population growth and range expansion during "out-of-Africa." Here we model the spatial in regions where the population density is low. Due to this attenuation effect, the invasion speed of social essentially implies constant population size. Predictions from such "static" models may only be of partial
id phase can emerge from the analysis of the expansion of the gas.
Stephens, David W.
can emerge from the analysis of the expansion of the gas. Is it possible to probe directly the emer been realized with Bose-Einstein condensed gases, probing directly the quantization of circulation (16). Repeating such an experiment in a Fermi gas should provide a stringent test of superfluidity. References
The orifice expansion correction for a 50 mm line size at various diameter ratios
Seidl, W. [Colorado Engineering Experiment Station, Inc., Nunn, CO (United States)
1995-12-31T23:59:59.000Z
The expansion coefficient or factor for a compressible flowmeter corrects for the change in pressure and density as the fluid is accelerated through the flowmeter. The expansion correction currently in use in the United States and also in other countries was developed over fifty years ago by Buckingham and Bean. More recent work reported by Kinghorn shows the equation currently in use to be in error. This paper describes the results of a test program to determine the expansion factors for flange-tapped sharp-edged orifices with diameter ratios between 0.242 and 0.726 in a nominal 50 mm (2 inch) line. Critical flow Venturis are used as the reference standards and dry air as the flowing fluid. The ratio of differential pressure to inlet static pressure is varied over a range of zero to about 0.2 at a constant Reynolds number. The expansion factor is determined form the apparent change in discharge coefficient at a constant Reynolds number.
Nucleosynthesis in Fast Expansions of High-Entropy, Proton Rich Matter
G. C. Jordan IV; B. S. Meyer
2004-06-29T23:59:59.000Z
We demonstrate that nucleosynthesis in rapid, high-entropy expansions of proton-rich matter from high temperature and density can result in a wider variety of abundance patterns than heretofore appreciated. In particular, such expansions can produce iron-group nuclides, p-process nuclei, or even heavy, neutron-rich isotopes. Such diversity arises because the nucleosynthesis enters a little explored regime in which the free nucleons are not in equilibrium with the abundant alpha particles. This allows nuclei significantly heavier than iron to form in t he presence of abundant free nucleons early in the expansion. As the temperature drops, nucleons increasingly assemble into alpha particles and heavier nuclei. If the assembly is efficient, the resulting depletion of free neutrons allows disintegrat ion flows to drive nuclei back down to iron and nickel. If this assembly is inefficient, then the large abundance of free nucleons prevents the disintegration flows and leaves a distribution of heavy nuclei after reaction freezeout. For cases in between, an intermediate abundance distribution, enriched in p-process isotopes, is frozen out. These last expansions may contribute to the solar system's supply of the p-process nuclides if mildly proton-rich, high-entropy matter is ejected from proto-neutron stars winds or other astrophysical sites. Also sign ificant is the fact that, because the nucleosynthesis is primary, the signature of this nucleosyn thesis may be evident in metal poor stars.
Investigation of collective radial expansion and stopping in heavy ion collisions at Fermi energies
Boyer, Edmond
Investigation of collective radial expansion and stopping in heavy ion collisions at Fermi energies in central Xe+Sn reactions at Fermi energies. Performing a comparison between the predictions central collisions at Fermi energies. However, considering the same central event selection
Ambient gas effects on the dynamics of laser-produced tin plume expansion
Tillack, Mark
Ambient gas effects on the dynamics of laser-produced tin plume expansion S. S. Harilal,a Beau O in the development of an extreme ultraviolet lithographic light source. An ambient gas that is transparent to 13.5 nm and deceleration of plume species, the addition of ambient gas leads to other events such as double peak formation
Thermal Expansion Models of Viscous Fluids Based on Limits of Free Energy
Aluffi, Paolo
Thermal Expansion Models of Viscous Fluids Based on Limits of Free Energy S.E. Bechtel Department March 25, 2002 Abstract Many viscous uid ows are mechanically incompressible, yet thermally expand associated with sound waves. The Boussi- nesq model for laboratory-scale, buoyancy-driven thermal convection
Detecting acute myocardial infarction in the 12-lead ECG using Hermite expansions
Lunds Universitet,
Detecting acute myocardial infarction in the 12-lead ECG using Hermite expansions and neural-lead ECG, together with patient history and biochemical markers, are usually used at the emergency to rely on the 12-lead ECG together with patient history. The 12-lead ECG has the advantage of always
Silver Blaze Puzzle in 1/Nc Expansions of Cold and Dense QCD Matter
Adi Armoni; Kenji Fukushima
2014-03-10T23:59:59.000Z
We consider quantum chromodynamics (QCD) with Nc colors and Nf quark flavors at finite quark chemical potential mu_q or isospin chemical potential mu_I. We specifically address the nature of the ``Silver Blaze'' behavior in the framework of 1/Nc expansion. Starting with the QCD partition function, we implement Veneziano's Nf/Nc expansion to identify the density onset. We find the baryon mass M_B and the pion mass m_pi appearing from different order of Veneziano's expansion. We argue that the confining properties are responsible for the Silver Blaze in the region of m_pi/2 < mu_q < M_B/Nc. We point out, however, that Veneziano's expansion brings about a puzzling subtlety along the same line as the baryon problem in finite-density quenched simulations. We emphasize that the large-Nc limit can allow for the physical ordering of M_B and m_pi thanks to the similarity to the quenched approximation, while the unphysical ghost quarks contaminate the baryon sector if Nc is finite. We also discuss the ``orientifold'' large-Nc limit that does not quench quark loops.
New infrared cut-off for the holographic scalar fields models of dark energy
L. N. Granda; A. Oliveros
2008-10-23T23:59:59.000Z
Introducing a new infrared cut-off for the holographic dark-energy, we study the correspondence between the quintessence, tachyon, K-essence and dilaton energy density with this holographic dark energy density in the flat FRW universe. This correspondence allows to reconstruct the potentials and the dynamics for the scalar fields models, which describe accelerated expansion.
Discrepancies in the Prediction of Solar Wind using Potential Field Source Surface Model: An
Zhao, Xuepu
Discrepancies in the Prediction of Solar Wind using Potential Field Source Surface Model. This inverse relation has been made use of in the prediction of solar wind speed at 1 AU using a potential between the magnetic flux tube expansion factor (FTE) at the source surface and the solar wind speed
Community Assessment Tool for Public Health Emergencies Including Pandemic Influenza
HCTT-CHE
2011-04-14T23:59:59.000Z
The Community Assessment Tool (CAT) for Public Health Emergencies Including Pandemic Influenza (hereafter referred to as the CAT) was developed as a result of feedback received from several communities. These communities participated in workshops focused on influenza pandemic planning and response. The 2008 through 2011 workshops were sponsored by the Centers for Disease Control and Prevention (CDC). Feedback during those workshops indicated the need for a tool that a community can use to assess its readiness for a disaster—readiness from a total healthcare perspective, not just hospitals, but the whole healthcare system. The CAT intends to do just that—help strengthen existing preparedness plans by allowing the healthcare system and other agencies to work together during an influenza pandemic. It helps reveal each core agency partners' (sectors) capabilities and resources, and highlights cases of the same vendors being used for resource supplies (e.g., personal protective equipment [PPE] and oxygen) by the partners (e.g., public health departments, clinics, or hospitals). The CAT also addresses gaps in the community's capabilities or potential shortages in resources. While the purpose of the CAT is to further prepare the community for an influenza pandemic, its framework is an extension of the traditional all-hazards approach to planning and preparedness. As such, the information gathered by the tool is useful in preparation for most widespread public health emergencies. This tool is primarily intended for use by those involved in healthcare emergency preparedness (e.g., community planners, community disaster preparedness coordinators, 9-1-1 directors, hospital emergency preparedness coordinators). It is divided into sections based on the core agency partners, which may be involved in the community's influenza pandemic influenza response.
Wright, Dawn Jeannine
and distribution of the dark colored igneous rock outcrops of Elephant Rock and offshore. Elephant Rock (Source: D. Wright). Offshore rock outcrops extending south from Elephant Rock (Source: Oregon Coastal Atlas, www your report in to your TA! TWO MAIN SITES TO VISIT: 1. Geology and Tide pools at Seal Rock State Park a
Danielewicz, P. (National Superconducting Cyclotron Laboratory and Department of Physics Astronomy, Michigan State University, East Lansing, Michigan 48824 (United States))
1995-02-01T23:59:59.000Z
Conditions under which compression occurs and collective expansion develops in energetic symmetric reactions of heavy nuclei are analyzed, together with their effects on emitted light baryons and pions. Within transport simulations, it is shown that shock fronts perpendicular to beam axis form in head-on reactions. The fronts separate hot compressed matter from normal matter and propagate into the projectile and target. As the impact parameter increases, the angle of inclination of the fronts relative to beam axis decreases, and in between the fronts a weak tangential discontinuity develops. Hot matter exposed to the vacuum in directions perpendicular to shock motion (and parallel to fronts) starts to expand sideways early within the reactions. Expansion in the direction of shock motion follows after the shocks propagate through nuclei, but due to the delay does not acquire the same strength. Expansion affects angular distributions, mean-energy components, shapes of spectra, and mean energies of different particles emitted into any one direction and further particle yields. Both the anisotropy in the expansion and a collective motion associated with the weak discontinuity affect the magnitude of sideward flow within the reaction plane. Differences in mean particle energy components in and out of the reaction plane in semicentral collisions depend sensitively on the relative magnitude of shock speed in normal matter and speed of sound in hot matter. The missing energy, considered in the past in association with low measured pion multiplicity in central reactions, may be identified with the energy of collective expansion. Relations are established which govern approximately the behavior of density and entropy in the compressed region in reactions with beam energy and impact parameter.
Effect of irradiation on thermal expansion of SiC{sub f}/SiC composites
Senor, D.J. [Pacific Northwest Lab., Richland, WA (United States); Trimble, D.J. [Westinghouse Hanford Co., Richland, WA (United States); Woods, J.J. [Lockheed Martin, Schenectady, NY (United States)
1996-06-01T23:59:59.000Z
Linear thermal expansion was measured on five different SiC-fiber-reinforced/SiC-matrix (SiC{sub f}/SiC) composite types in the unirradiated and irradiated conditions. Two matrices were studied in combination with Nicalon CG reinforcement and a 150 nm PyC fiber/matrix interface: chemical vapor infiltrated (CVI) SiC and liquid-phase polymer impregnated precursor (PIP) SiC. Composites of PIP SiC with Tyranno and HPZ fiber reinforcement and a 150 nm PyC interface were also tested, as were PIP SiC composites with Nicalon CG reinforcement and a 150 nm BN fiber/matrix interface. The irradiation was conducted in the Experimental Breeder Reactor-II at a nominal temperature of 1,000 C to doses of either 33 or 43 dpa-SiC. Irradiation caused complete fiber/matrix debonding in the CVI SiC composites due to a dimensional stability mismatch between fiber and matrix, while the PIP SiC composites partially retained their fiber/matrix interface after irradiation. However, the thermal expansion of all the materials tested was found to be primarily dependent on the matrix and independent of either the fiber or the fiber/matrix interface. Further, irradiation had no significant effect on thermal expansion for either the CVI SiC or PIP SiC composites. In general, the thermal expansion of the CVI SiC composites exceeded that of the PIP SiC composites, particularly at elevated temperatures, but the expansion of both matrix types was less than chemical vapor deposited (CVD) {beta}-SiC at all temperatures.
A two-dimensional, semi-analytic expansion method for nodal calculations
Palmtag, S.P. [Univ. of Missouri, Rolla, MO (United States). Dept. of Nuclear Engineering
1995-08-01T23:59:59.000Z
Most modern nodal methods used today are based upon the transverse integration procedure in which the multi-dimensional flux shape is integrated over the transverse directions in order to produce a set of coupled one-dimensional flux shapes. The one-dimensional flux shapes are then solved either analytically or by representing the flux shape by a finite polynomial expansion. While these methods have been verified for most light-water reactor applications, they have been found to have difficulty predicting the large thermal flux gradients near the interfaces of highly-enriched MOX fuel assemblies. A new method is presented here in which the neutron flux is represented by a non-seperable, two-dimensional, semi-analytic flux expansion. The main features of this method are (1) the leakage terms from the node are modeled explicitly and therefore, the transverse integration procedure is not used, (2) the corner point flux values for each node are directly edited from the solution method, and a corner-point interpolation is not needed in the flux reconstruction, (3) the thermal flux expansion contains hyperbolic terms representing analytic solutions to the thermal flux diffusion equation, and (4) the thermal flux expansion contains a thermal to fast flux ratio term which reduces the number of polynomial expansion functions needed to represent the thermal flux. This new nodal method has been incorporated into the computer code COLOR2G and has been used to solve a two-dimensional, two-group colorset problem containing uranium and highly-enriched MOX fuel assemblies. The results from this calculation are compared to the results found using a code based on the traditional transverse integration procedure.
K. Beuermann; F. Euchner; K. Reinsch; S. Jordan; B. T. Gaensicke
2006-10-26T23:59:59.000Z
The magnetic fields of the accreting white dwarfs (WDs) in magnetic cataclysmic variables (mCVs) determine the accretion geometries, the emission properties, and the secular evolution of these objects. We determine the structure of the surface magnetic fields of the WDs primaries in magnetic CVs using Zeeman tomography. Our study is based on orbital-phase resolved optical flux and circular polarization spectra of the polars EF Eri, BL Hyi, and CP Tuc obtained with FORS1 at the ESO VLT. An evolutionary algorithm is used to synthesize best fits to these spectra from an extensive database of pre-computed Zeeman spectra. The general approach has been described in previous papers of this series. The results achieved with simple geometries as centered or offset dipoles are not satisfactory. Significantly improved fits are obtained for multipole expansions that are truncated at degree l(max)=3 or 5 and include all tesseral and sectoral components with 0<=m<=l. The most frequent field strengths of 13, 18, and 10MG for EF Eri, BL Hyi, CP Tuc and the ranges of field strength covered are similar for the dipole and multipole models, but only the latter provide access to accreting matter at the right locations on the WD. The results suggest that the field geometries of the WDs in short-period mCVs are quite complex with strong contributions from multipoles higher than the dipole in spite of a typical age of the WDs in CVs in excess of 1 Gyr. It is feasible to derive the surface field structure of an accreting WD from phase-resolved low-state circular spectropolarimetry of sufficiently high signal-to-noise ratio. The fact that independent information is available on the strength and direction of the field in the accretion spot from high-state observations helps in unraveling the global field structure.
Snider, Anna C.; Rautman, Christopher Arthur; Looff, Karl M. (Geologic Consultant, Lovelady, TX)
2006-03-01T23:59:59.000Z
The Chacahoula salt dome, located in southern Louisiana, approximately 66 miles southwest of New Orleans, appears to be a suitable site for a 160-million-barrel-capacity expansion facility for the U.S. Strategic Petroleum Reserve, comprising sixteen 10-million barrel underground storage caverns. The overall salt dome appears to cover an area of some 1800 acres, or approximately 2.8 square miles, at a subsea elevation of 2000 ft, which is near the top of the salt stock. The shallowest known salt is present at 1116 ft, subsea. The crest of the salt dome is relatively flatlying, outward to an elevation of -4000 ft. Below this elevation, the flanks of the dome plunge steeply in all directions. The dome appears to comprise two separate spine complexes of quasi-independently moving salt. Two mapped areas of salt overhang, located on the eastern and southeastern flanks of the salt stock, are present below -8000 ft. These regions of overhang should present no particular design issues, as the conceptual design SPR caverns are located in the western portion of the dome. The proposed cavern field may be affected by a boundary shear zone, located between the two salt spines. However, the large size of the Chacahoula salt dome suggests that there is significant design flexibility to deal with such local geologic issues.
Catholic University of Chile (Universidad CatÃ³lica de Chile)
and implementation of policies to develop Non-Conventional Renewable Energies (NCRE), they can be seen as a mechanism for the harmonious development of the expansion network. From the economic viewpoint, NCREs usually are considered development or equipment repowering within a coordinated network expansion investment plan, both in AC
Thermodynamic States in Explosion Fields
Kuhl, A L
2009-10-16T23:59:59.000Z
Here we investigate the thermodynamic states occurring in explosion fields from the detonation of condensed explosives in air. In typical applications, the pressure of expanded detonation products gases is modeled by a Jones-Wilkins-Lee (JWL) function: P{sub JWL} = f(v,s{sub CJ}); constants in that function are fit to cylinder test data. This function provides a specification of pressure as a function of specific volume, v, along the expansion isentrope (s = constant = s{sub CJ}) starting at the Chapman-Jouguet (CJ) state. However, the JWL function is not a fundamental equation of thermodynamics, and therefore gives an incomplete specification of states. For example, explosions inherently involve shock reflections from surfaces; this changes the entropy of the products, and in such situations the JWL function provides no information on the products states. In addition, most explosives are not oxygen balanced, so if hot detonation products mix with air, they after-burn, releasing the heat of reaction via a turbulent combustion process. This raises the temperature of explosion products cloud to the adiabatic flame temperature ({approx}3,000K). Again, the JWL function provides no information on the combustion products states.
Lucky Mound field: A new Mississippian Sherwood shoreline field
Fisher, R.W. (Balcron Oil, Billings, MT (United States)); Hendricks, M.L. (Hendricks and Associates, Inc., Denver, CO (United States))
1991-06-01T23:59:59.000Z
Lucky Mound field produces oil and gas from the Sherwood interval of the Mississippian Mission Canyon Formation. Presently, eight wells are producing with development ongoing. Extensive coring, testing, logging, and petrographic evaluations throughout the field have allowed for detailed analysis of reservoir characteristics and paleoenvironmental interpretation. Sherwood shoreline fields typically produce from reservoir-quality packstones and grainstones trapped by a lateral facies changes into impermeable dolomite and anhydrite. At Lucky Mound, packstones, grainstones, and a productive dolomite facies all contribute to the producing interval. The productive dolomite facies is generally found in the upper portion of the Sherwood along the eastern margin of the field. Porosity as high as 22% and permeability values up to 16 md are present in the dolomite facies. These dolomites are the result of complete to partial replacement of micrite. In addition, the dolomitization process has enhanced intercrystalline and intraparticle porosity throughout the Sherwood interval. Pore types present include vuggy, intergranular, intraparticle, and intercrystalline. Pore occluding and replacive cements include fibrous calcite, prismatic calcite spar, baroque dolomite, anhydrite, celestite, pyrite, and chert. An understanding of carbonate depositional environments, diagenetic processes, Williston basin structural development, and Sherwood reservoir behavior is essential in the exploration for new Sherwood fields.
Smirnov, V.N.; Strokovskii, G.A. [St. Petersburg State Univ. (Russian Federation)
1994-10-01T23:59:59.000Z
An analytical form of expansion coefficients of a diffracted field for an arbitrary Hermite-Gaussian beam in an alien Hermite-Gaussian basis is obtained. A possible physical interpretation of the well-known Young phenomenological diffraction principle and experiments on diffraction of Hermite-Gaussian beams of the lowest types (n = 0 - 5) from half-plane are discussed. The case of nearly homogenous expansion corresponding to misalignment and mismatch of optical systems is also analyzed. 7 refs., 2 figs.
Swozzle based burner tube premixer including inlet air conditioner for low emissions combustion
Tuthill, Richard Sterling (Bolton, CT); Bechtel, II, William Theodore (Scotia, NY); Benoit, Jeffrey Arthur (Scotia, NY); Black, Stephen Hugh (Duanesburg, NY); Bland, Robert James (Clifton Park, NY); DeLeonardo, Guy Wayne (Scotia, NY); Meyer, Stefan Martin (Troy, NY); Taura, Joseph Charles (Clifton Park, NY); Battaglioli, John Luigi (Glenville, NY)
2002-01-01T23:59:59.000Z
A burner for use in a combustion system of a heavy-duty industrial gas turbine includes a fuel/air premixer having an air inlet, a fuel inlet, and an annular mixing passage. The fuel/air premixer mixes fuel and air into a uniform mixture for injection into a combustor reaction zone. The burner also includes an inlet flow conditioner disposed at the air inlet of the fuel/air premixer for controlling a radial and circumferential distribution of incoming air. The pattern of perforations in the inlet flow conditioner is designed such that a uniform air flow distribution is produced at the swirler inlet annulus in both the radial and circumference directions. The premixer includes a swozzle assembly having a series of preferably air foil shaped turning vanes that impart swirl to the airflow entering via the inlet flow conditioner. Each air foil contains internal fuel flow passages that introduce natural gas fuel into the air stream via fuel metering holes that pass through the walls of the air foil shaped turning vanes. By injecting fuel in this manner, an aerodynamically clean flow field is maintained throughout the premixer. By injecting fuel via two separate passages, the fuel/air mixture strength distribution can be controlled in the radial direction to obtain optimum radial concentration profiles for control of emissions, lean blow outs, and combustion driven dynamic pressure activity as machine and combustor load are varied.
Heavy quarks in effective field theories
Jain, Ambar
2009-01-01T23:59:59.000Z
Heavy quark physics serves as a probe to understand QCD, measure standard model parameters, and look for signs of new physics. We study several aspects of heavy quark systems in an effective field theory framework, including ...
Fincke, James R.
2003-09-23T23:59:59.000Z
Oil field management systems and methods for managing operation of one or more wells producing a high void fraction multiphase flow. The system includes a differential pressure flow meter which samples pressure readings at various points of interest throughout the system and uses pressure differentials derived from the pressure readings to determine gas and liquid phase mass flow rates of the high void fraction multiphase flow. One or both of the gas and liquid phase mass flow rates are then compared with predetermined criteria. In the event such mass flow rates satisfy the predetermined criteria, a well control system implements a correlating adjustment action respecting the multiphase flow. In this way, various parameters regarding the high void fraction multiphase flow are used as control inputs to the well control system and thus facilitate management of well operations.
Interplay of anisotropies of momentum distribution and mean field in heavy-ion collisions
C. H. Simon; P. Danielewicz
2012-12-18T23:59:59.000Z
Two important parametrizations of momentum-dependent nucleonic fields, proposed for the simulations of central heavy-ion collisions, one by Gale et al. and the other by Welke et al., suffer from practical limitations. The first gives rise to mean fields isotropic in momentum, even when underlying momentum distributions are anisotropic, making descriptions of early nonequilibrium stages of collisions unrealistic. The second parametrization gives rise to anisotropic mean fields, but is computationally expensive, because the mean field has to be computed separately for every location of a nucleon in phase space, through folding. Here we construct a parametrization of the nucleonic mean field that yields an anisotropic mean field for an anisotropic momentum distribution and is inexpensive computationally. To demonstrate the versatility of our parametrization, we take the case of results from the parametrization by Welke et al. and attempt to approximate them. In arriving at a suitable anisotropic mean-field potential, we draw, on one hand, from the idea behind the parametrization of Gale et al., of a separable expansion of the potential energy, and, on the other, from the idea of a parallel expansion of the energy and mean field in anisotropy. We show that using our novel parametrization we can qualitatively and partially quantitatively reproduce the features of the mean-field parametrization of Welke et al.. This opens up the possibility of exploring the effects of mean-field anisotropy in collisions, without the penalty of computational cost behind the folding parametrization.
Field Monitoring Protocol: Heat Pump Water Heaters
Sparn, B.; Earle, L.; Christensen, D.; Maguire, J.; Wilson, E.; Hancock, E.
2013-02-01T23:59:59.000Z
This document provides a standard field monitoring protocol for evaluating the installed performance of Heat Pump Water Heaters in residential buildings. The report is organized to be consistent with the chronology of field test planning and execution. Research questions are identified first, followed by a discussion of analysis methods, and then the details of measuring the required information are laid out. A field validation of the protocol at a house near the NREL campus is included for reference.
Representation of the Solar Capacity Value in the ReEDS Capacity Expansion Model: Preprint
Sigrin, B.; Sullivan, P.; Ibanez, E.; Margolis, R.
2014-08-01T23:59:59.000Z
An important emerging issue is the estimation of renewables' contributions to reliably meeting system demand, or their capacity value. While the capacity value of thermal generation can be estimated easily, assessment of wind and solar requires a more nuanced approach due to resource variability. Reliability-based methods, particularly, effective load-carrying capacity (ELCC), are considered to be the most robust techniques for addressing this resource variability. The Regional Energy Deployment System (ReEDS) capacity expansion model and other long-term electricity capacity planning models require an approach to estimating CV for generalized PV and system configurations with low computational and data requirements. In this paper we validate treatment of solar photovoltaic (PV) capacity value by ReEDS capacity expansion model by comparing model results to literature for a range of energy penetration levels. Results from the ReEDS model are found to compare well with both comparisons--despite not being resolved at an hourly scale.
Crystal structure and thermal expansion of (Mg,Fe)SiO sub 3 perovskite
Parise, J.B.; Wang, Y.; Yenganeh-Haeri, A. (State Univ. of New York, Stony Brook (USA)); Cox, D.E. (Brookhaven National Lab., Upton, NY (USA)); Fei, Y. (Carnegie Institution of Washington, DC (USA))
1990-11-01T23:59:59.000Z
High-resolution x-ray diffraction data were collected from 10 to 433K on a homogeneous polycrystalline specimen of Mg{sub 0.9}Fe{sub 0.1}SiO{sub 3}-perovskite. Rietveld structural refinement and x-ray absorption fluorescence measurements demonstrate that Fe substitutes for Mg and not Si. The thermal expansion behavior is anisotropic, with the orthorhombic distortion becoming less with increasing temperature. The volumetric thermal expansion, which is dominated by the decrease in octahedral tilts, is 1.9 {times} 10{sup {minus}5} K{sup {minus}1} between 150 and 373K. No evidence of conversion to enstatite could be found up to 873 K.
Exact Stochastic Unraveling of an Optical Coherence Dynamics by Cumulant Expansion
Jan Olsina; Tobias Kramer; Christoph Kreisbeck; Tomas Mancal
2014-08-25T23:59:59.000Z
A numerically exact Monte Carlo scheme for calculation of open quantum system dynamics is proposed and implemented. The method consists of a Monte-Carlo summation of a perturbation expansion in terms of trajectories in Liouville phase-space with respect to the coupling between the excited states of the molecule. The trajectories are weighted by a complex decoherence factor based on the second-order cumulant expansion of the environmental evolution. The method can be used with an arbitrary environment characterized by a general correlation function and arbitrary coupling strength. It is formally exact for harmonic environments, and it can be used with arbitrary temperature. Time evolution of an optically excited Frenkel exciton dimer representing a molecular exciton interacting with a charge transfer state is calculated by the proposed method. We calculate the evolution of the optical coherence elements of the density matrix and linear absorption spectrum, and compare them with the predictions of standard simulation methods.
Notes on the delta-expansion approach to the 2D Ising susceptibility scaling
Hirofumi Yamada
2014-09-10T23:59:59.000Z
We study the scaling of the magnetic susceptibility in the square Ising model based upon the delta-expansion in the high temperature phase. The susceptibility chi is expressed in terms of the mass M and expanded in powers of 1/M. The dilation around M=0 by the delta expansion and the parametric extension of the ratio of derivatives of chi, chi^{(ell+1)}/chi^{(ell)} is used as a test function for the estimation of the critical exponent gamma with no bias from information of the critical temperature. Estimation is done with the help of the principle of minimum sensitivity and detailed analysis revealed that ell=0,1 cases provide us accurate estimation results. Critical exponent of the sub-leading scaling term is also estimated.
Wu, Jian; Wei, Wenfu; Li, Xingwen; Jia, Shenli; Qiu, Aici [State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Shaanxi 710049 (China)] [State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Shaanxi 710049 (China)
2013-04-22T23:59:59.000Z
We have investigated the dynamics of the nanosecond laser ablated plasma within and after the laser pulse irradiation using fast photography. A 1064 nm, 15 ns laser beam was focused onto a target made from various materials with an energy density in the order of J/mm{sup 2} in atmosphere. The plasma dynamics during the nanosecond laser pulse were observed, which could be divided into three stages: fast expansion, division into the primary plasma and the front plasma, and stagnation. After the laser terminated, a critical moment when the primary plasma expansion transited from the shock model to the drag model was resolved, and this phenomenon could be understood in terms of interactions between the primary and the front plasmas.
Seeking Mountains Field Trip Jasper National Park
MacMillan, Andrew
Seeking Mountains Field Trip Jasper National Park December 14-15, 2012 Jasper National Park of Jasper is one of only four communities located in a Canadian national park. We have arranged a special. The field trip includes as follows: a welcome reception at the Jasper Yellowhead Museum and Archives
APPLIED GEOPHYSICS FIELD CLASS GEOLOGY 437
Nickrent, Daniel L.
APPLIED GEOPHYSICS FIELD CLASS GEOLOGY 437 SPRING 2014 OF NATURAL RESOURCES INCLUDING OIL, COAL, MINERALS AND GROUNDWATER. OTHER APPLICATIONS OF GEOPHYSICS MAY, IF AVAILABLE, WE WILL VISIT AN OIL DRILLING RIG IN OPERATION. DATES FOR FIELD TRIPS WILL DEPEND ON THE WEATHER
Guo Zehua; Tang Xianzhu [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)
2012-08-15T23:59:59.000Z
Parallel transport of long mean-free-path plasma along an open magnetic field line is characterized by strong temperature anisotropy, which is driven by two effects. The first is magnetic moment conservation in a non-uniform magnetic field, which can transfer energy between parallel and perpendicular degrees of freedom. The second is decompressional cooling of the parallel temperature due to parallel flow acceleration by conventional presheath electric field which is associated with the sheath condition near the wall surface where the open magnetic field line intercepts the discharge chamber. To the leading order in gyroradius to system gradient length scale expansion, the parallel transport can be understood via the Chew-Goldbeger-Low (CGL) model which retains two components of the parallel heat flux, i.e., q{sub n} associated with the parallel thermal energy and q{sub s} related to perpendicular thermal energy. It is shown that in addition to the effect of magnetic field strength (B) modulation, the two components (q{sub n} and q{sub s}) of the parallel heat flux play decisive roles in the parallel variation of the plasma profile, which includes the plasma density (n), parallel flow (u), parallel and perpendicular temperatures (T{sub Parallel-To} and T{sub Up-Tack }), and the ambipolar potential ({phi}). Both their profile (q{sub n}/B and q{sub s}/B{sup 2}) and the upstream values of the ratio of the conductive and convective thermal flux (q{sub n}/nuT{sub Parallel-To} and q{sub s}/nuT{sub Up-Tack }) provide the controlling physics, in addition to B modulation. The physics described by the CGL model are contrasted with those of the double-adiabatic laws and further elucidated by comparison with the first-principles kinetic simulation for a specific but representative flux expander case.
Chavanis, Pierre-Henri [Laboratoire de Physique Théorique (IRSAMC), CNRS and UPS, Université de Toulouse (France)] [Laboratoire de Physique Théorique (IRSAMC), CNRS and UPS, Université de Toulouse (France)
2013-07-23T23:59:59.000Z
We construct a simple model of universe which 'unifies' vacuum energy and radiation on the one hand, and matter and dark energy on the other hand in the spirit of a generalized Chaplygin gas model. Specifically, the phases of early inflation and late accelerated expansion are described by a generalized equation of state p/c{sup 2} = ??+k?{sup 1+1/n} having a linear component p = ??c{sup 2} and a polytropic component p = k?{sup 1+1/n}c{sup 2}. For ?= 1/3, n= 1 and k=?4/(3?{sub P}), where ?{sub P}= 5.1610{sup 99} g/m{sup 3} is the Planck density, this equation of state describes the transition between the vacuum energy era and the radiation era. For t? 0, the universe undergoes an inflationary expansion that brings it from the Planck size l{sub P}= 1.6210{sup ?35} m to a size a{sub 1}= 2.6110{sup ?6} m on a timescale of about 23.3 Planck times t{sub P}= 5.3910{sup ?44} s (early inflation). When t > t{sub 1}= 23.3t{sub P}, the universe decelerates and enters in the radiation era. We interpret the transition from the vacuum energy era to the radiation era as a second order phase transition where the Planck constant ? plays the role of finite size effects (the standard Big Bang theory is recovered for ?= 0). For ?= 0, n=?1 and k=??{sub ?}, where ?{sub ?}= 7.0210{sup ?24} g/m{sup 3} is the cosmological density, the equation of state p/c{sup 2} = ??+k?{sup 1+1/n} describes the transition from a decelerating universe dominated by pressureless matter (baryonic and dark matter) to an accelerating universe dominated by dark energy (late inflation). This transition takes place at a size a{sub 2}= 0.204l{sub ?}. corresponding to a time t{sub 2}= 0.203t{sub ?} where l{sub ?}= 4.38 10{sup 26} m is the cosmological length and t{sub ?}= 1.46 10{sup 18} s the cosmological time. The present universe turns out to be just at the transition between these two periods (t{sub 0}?t{sub 2}). Our model gives the same results as the standard ?CDM model for t?t{sub P} and completes it by incorporating a phase of early inflation for t < 23.3t{sub P} in a very natural manner. Furthermore, it reveals a nice 'symmetry' between the early and the late evolution of the universe. The early universe is modeled by a polytrope n=+ 1 and the late universe by a polytrope n=?1. Furthermore, the cosmological constant ? in the late universe plays a role similar to the Planck constant ? in the early universe. The mathematical formulae in the early and in the late universe are then strikingly symmetric. We interpret the cosmological constant as a fundamental constant of Nature describing the 'cosmophysics' just like the Planck constant describes the 'microphysics'. The Planck density and the cosmological density represent fundamental upper and lower bounds differing by 122 orders of magnitude. The cosmological constant 'problem' may be a false problem. Finally, we show that our model admits a scalar field interpretation based on a quintessence field or a tachyon field.
Multi-leg One-loop Massive Amplitudes from Integrand Reduction via Laurent Expansion
Hans van Deurzen; Gionata Luisoni; Pierpaolo Mastrolia; Edoardo Mirabella; Giovanni Ossola; Tiziano Peraro
2014-11-18T23:59:59.000Z
We present the application of a novel reduction technique for one-loop scattering amplitudes based on the combination of the integrand reduction and Laurent expansion. We describe the general features of its implementation in the computer code NINJA, and its interface to GoSam. We apply the new reduction to a series of selected processes involving massive particles, from six to eight legs.
Direct-Expansion Air-Conditioning System Performance in Low Humidity Applications: A Case Study
Khattar, M. K.; Keebaugh, D.
1987-01-01T23:59:59.000Z
DIRECT-EXPANSION AIR-CONDITIONING SYSTEM PERFORMANCE IN LOW HUMIDITY APPLICATIONS: A CASE STUDY MUKESH K. KHATTAR, P.E. DENNIS KEEBAUGH, P.E. Senior Systems Engineer Senior Research Engineer Florida Solar Energy Center Shenandoah Solar Center... warehouse. The flat gravel roof is exposed to sun. The 16' ceiling is insulated with two inch spray foam. Entrance to the warehouse is through sealed and insulated doors located on the west partition wall. The air -conditioning sys tem on this leased...
Expansion schemes for gravitational clustering: computing two-point and three-point functions
P. Valageas
2008-10-24T23:59:59.000Z
We describe various expansion schemes that can be used to study gravitational clustering. Obtained from the equations of motion or their path-integral formulation, they provide several perturbative expansions that are organized in different fashion or involve different partial resummations. We focus on the two-point and three-point correlation functions, but these methods also apply to all higher-order correlation and response functions. We present the general formalism, which holds for the gravitational dynamics as well as for similar models, such as the Zeldovich dynamics, that obey similar hydrodynamical equations of motion with a quadratic nonlinearity. We give our explicit analytical results up to one-loop order for the simpler Zeldovich dynamics. For the gravitational dynamics, we compare our one-loop numerical results with numerical simulations. We check that the standard perturbation theory is recovered from the path integral by expanding over Feynman's diagrams. However, the latter expansion is organized in a different fashion and it contains some UV divergences that cancel out as we sum all diagrams of a given order. Resummation schemes modify the scaling of tree and one-loop diagrams, which exhibit the same scaling over the linear power spectrum (contrary to the standard expansion). However, they do not significantly improve over standard perturbation theory for the bispectrum, unless one uses accurate two-point functions (e.g. a fit to the nonlinear power spectrum from simulations). Extending the range of validity to smaller scales, to reach the range described by phenomenological models, seems to require at least two-loop diagrams.
The Magnus expansion and the in-medium similarity renormalization group
Morris, T. D.; Bogner, S. K. [National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48844 (United States)
2014-10-15T23:59:59.000Z
We present a variant of the in-medium similarity renormalization group(IMSRG) based on the Magnus expansion. In this new variant, the unitary transformation of the IMSRG is constructed explicitly, which allows for the transformation of observables quickly and easily. Additionally, the stiffness of equations encountered by the traditional solution of the IMSRG can be alleviated greatly. We present results and comparisons for the 3d electron gas.
Towards a proof of the equivalence between FRW background expansion and statistical isotropy
Rodriguez, Yeinzon; Nieto, Carlos M
2015-01-01T23:59:59.000Z
We will expose in this paper our advances towards a proof of the equivalence between FRW background expansion, during some period of time that contains primordial inflation, and the statistical isotropy of the primordial curvature perturbation $\\zeta$ at the end of this period of time. Our motivation rests on the growing interest in the existence of a preferred direction in the Universe hinted by the continuous presence of anomalies in the CMB data.
An Interacting Dark Energy Model for the Expansion History of the Universe
Micheal S. Berger; Hamed Shojaei
2006-08-16T23:59:59.000Z
We explore a model of interacting dark energy where the dark energy density is related by the holographic principle to the Hubble parameter, and the decay of the dark energy into matter occurs at a rate comparable to the current value of the Hubble parameter. We find this gives a good fit to the observational data supporting an accelerating Universe, and the model represents a possible alternative interpretation of the expansion history of the Universe.
subsurface geological field | EMSL
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
field subsurface geological field Leads No leads are available at this time. Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide. Abstract: As a...
Quantum Field Theory & Gravity
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Field Theory & Gravity Quantum Field Theory & Gravity Understanding discoveries at the Energy, Intensity, and Cosmic Frontiers Get Expertise Rajan Gupta (505) 667-7664 Email...
atom-probe field ion: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
by High-Field Ion Mobility ions, including isotopomers and isobars, using ion mobility spectrometry (IMS), specifically, the field) and ion mobility spectrometry (IMS).1,2...
A linear helicon plasma device with controllable magnetic field gradient
Barada, Kshitish K.; Chattopadhyay, P. K.; Ghosh, J.; Kumar, Sunil; Saxena, Y. C. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India)
2012-06-15T23:59:59.000Z
Current free double layers (CFDLs) are localized potential structures having spatial dimensions - Debye lengths and potential drops of more than local electron temperature across them. CFDLs do not need a current for them to be sustained and hence they differ from the current driven double layers. Helicon antenna produced plasmas in an expanded chamber along with an expanding magnetic field have shown the existence of CFDL near the expansion region. A helicon plasma device has been designed, fabricated, and installed in the Institute for Plasma Research, India to study the role of maximum magnetic field gradient as well as its location with respect to the geometrical expansion region of the chamber in CFDL formation. The special feature of this machine consisting of two chambers of different radii is its capability of producing different magnetic field gradients near the physical boundary between the two chambers either by changing current in one particular coil in the direction opposite to that in other coils and/or by varying the position of this particular coil. Although, the machine is primarily designed for CFDL experiments, it is also capable of carrying out many basic plasma physics experiments such as wave propagation, wave coupling, and plasma instabilities in a varying magnetic field topology. In this paper, we will present the details of the machine construction, its specialties, and some preliminary results about the production and characterization of helicon plasma in this machine.
Effects of carbon dioxide enrichment on the expansion and size of kudzu (pueraria lobata) leaves
Sasek, T.W.; Strain, B.R.
1989-01-01T23:59:59.000Z
Seedlings of kudzu were grown at 350, 675, or 1000 ..mu..l/L CO/sub 2/ in controlled-environment chambers. At elevated CO/sub 2/ in controlled-environment chambers. At elevated CO/sub 2/ concentrations, maximum leaf expansion rates were approximately 40% greater, leaves were fully expanded several days sooner, fully expanded leaves were larger at each leaf position, and leaf production rates were increased 12%. Peak starch accumulation was much greater in plants grown at elevated CO/sub 2/ concentrations. Total xylem water potentials were higher (less negative) at full hydration, and osmotic potentials were decreased (more negative) by CO/sub 2/ enrichment. At 1000 ..mu..l/L CO/sub 2/, leaf trigger pressure was twice that at 350 ..mu..l/L CO/sub 2/. Results suggest that leaf expansion rates and leaf expansivity may have been increased due to higher trigger pressure at the higher CO/sub 2/ concentrations. The potential for successful seedling establishment may be enhanced as the atmospheric CO/sub 2/ concentration continues to rise, increasing kudzu invasiveness.
ISW effect as probe of features in the expansion history of the Universe
Das, Santanu; Souradeep, Tarun [Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411 007 (India); Shafieloo, Arman, E-mail: santanud@iucaa.ernet.in, E-mail: arman@apctp.org, E-mail: tarun@iucaa.ernet.in [Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk 790-784 (Korea, Republic of)
2013-10-01T23:59:59.000Z
In this paper, using and implementing a new line of sight CMB code, called CMBAns [1], that allows us to modify H(z) for any given feature at any redshift we study the effect of changes in the expansion history of the Universe on the CMB power spectrum. Motivated by the detailed analytical calculations of the effects of the changes in H(z) on ISW plateau and CMB low multipoles, we study two phenomenological parametric form of the expansion history using WMAP data and through MCMC analysis. Our MCMC analysis shows that the standard ?CDM cosmological model is consistent with the CMB data allowing the expansion history of the Universe vary around this model at different redshifts. However, our analysis also shows that a decaying dark energy model proposed in [2] has in fact a marginally better fit than the standard cosmological constant model to CMB data. Concordance of our studies here with the previous analysis showing that Baryon Acoustic Oscillation (BAO) and supernovae data (SN Ia) also prefer mildly this decaying dark energy model to ?CDM, makes this finding interesting and worth further investigation.
Omar, M.S., E-mail: dr_m_s_omar@yahoo.com [Department of Physics, College of Science, University of Salahaddin-Erbil, Arbil, Kurdistan (Iraq)
2012-11-15T23:59:59.000Z
Graphical abstract: Three models are derived to explain the nanoparticles size dependence of mean bonding length, melting temperature and lattice thermal expansion applied on Sn, Si and Au. The following figures are shown as an example for Sn nanoparticles indicates hilly applicable models for nanoparticles radius larger than 3 nm. Highlights: ? A model for a size dependent mean bonding length is derived. ? The size dependent melting point of nanoparticles is modified. ? The bulk model for lattice thermal expansion is successfully used on nanoparticles. -- Abstract: A model, based on the ratio number of surface atoms to that of its internal, is derived to calculate the size dependence of lattice volume of nanoscaled materials. The model is applied to Si, Sn and Au nanoparticles. For Si, that the lattice volume is increases from 20 ?{sup 3} for bulk to 57 ?{sup 3} for a 2 nm size nanocrystals. A model, for calculating melting point of nanoscaled materials, is modified by considering the effect of lattice volume. A good approach of calculating size-dependent melting point begins from the bulk state down to about 2 nm diameter nanoparticle. Both values of lattice volume and melting point obtained for nanosized materials are used to calculate lattice thermal expansion by using a formula applicable for tetrahedral semiconductors. Results for Si, change from 3.7 × 10{sup ?6} K{sup ?1} for a bulk crystal down to a minimum value of 0.1 × 10{sup ?6} K{sup ?1} for a 6 nm diameter nanoparticle.
X-ray Fading and Expansion in the "Miniature Supernova Remnant" of GK Persei
Takei, D; Yamaguchi, H; Slane, P; Uchiyama, Y; Katsuda, S
2015-01-01T23:59:59.000Z
We report on a second epoch of Chandra X-ray imaging spectroscopy of the spatially-resolved old nova remnant GK Persei. An ACIS-S3 observation of 97.4 ks was conducted in November 2013 after a lapse of 13.8 years from the last visit in 2000. The X-ray emitting nebula appeared more faint and patchy compared with the first epoch. The flux decline was particularly evident in fainter regions and the mean decline was 30-40 % in the 0.5-1.2 keV energy band. A typical expansion of the brightest part of the remnant was 1.9 arcsec, which corresponds to an expansion rate of 0.14 arcsec yr^{-1}. The soft X-ray spectra extracted from both the 2000 and 2013 data can be explained by a non-equilibrium ionization collisional plasma model convolved with interstellar absorption, though do not allow us to constrain the origin of the flux evolution. The plasma temperature has not significantly evolved since the 2000 epoch and we conclude that the fading of the X-ray emission is due largely to expansion. This implies that recent ...