Sample records for includes establishments manufacturing

  1. Establishing Greener Products and Manufacturing Processes

    E-Print Network [OSTI]

    Linke, Barbara; Huang, Yu-Chu; Dornfeld, David

    2012-01-01T23:59:59.000Z

    KEYWORDS: Life Cycle Assessment, LCA, Green manufacturing,cycle phases, Life Cycle Assessment (LCA). The followingimpact. 2.2 Life Cycle Assessment (LCA) and Related Metrics

  2. Establishing Greener Products and Manufacturing Processes

    E-Print Network [OSTI]

    Linke, Barbara; Dornfeld, David; Huang, Yu-Chu

    2011-01-01T23:59:59.000Z

    cycle phases, Life Cycle Assessment (LCA). The followingvs use phase [3] 2.2 Life Cycle Assessment (LCA) and Relatedused method is Life Cycle Assessment (LCA), including its

  3. Establishing a virtual manufacturing environment for military robots

    E-Print Network [OSTI]

    Andersen, Ryan J. (Ryan John)

    2007-01-01T23:59:59.000Z

    Recent advances in the robotics industry have given the military an opportunity to capitalize on industry's innovation. Not only has core robotics technology improved but robotics manufacturing technology has also made ...

  4. Four recent National Academy studies of materials and manufacturing [1-4] have identified the recently established field of Integrated

    E-Print Network [OSTI]

    Shull, Kenneth R.

    in a computational materials design team project in MSc390 Materials Design. [1] NRC 2003, Materials Research to MeetFour recent National Academy studies of materials and manufacturing [1-4] have identified the recently established field of Integrated Computational Materials Engineering (ICME) as the greatest

  5. Design and manufacture of a rear driveline package including limited slip differential for Formula SAE applications

    E-Print Network [OSTI]

    Yazicioglu, Tolga T

    2008-01-01T23:59:59.000Z

    This document describes the design and manufacture of a lightweight rear driveline package for a Formula SAE race car. The design focuses on all components needed to transfer power from the chain driven Honda CBR600 F4i ...

  6. ESTABLISHING SUSTAINABLE US HEV/PHEV MANUFACTURING BASE: STABILIZED LITHIUM METAL POWDER, ENABLING MATERIAL AND REVOLUTIONARY TECHNOLOGY FOR HIGH ENERGY LI-ION BATTERIES

    SciTech Connect (OSTI)

    Yakovleva, Marina

    2012-12-31T23:59:59.000Z

    FMC Lithium Division has successfully completed the project “Establishing Sustainable US PHEV/EV Manufacturing Base: Stabilized Lithium Metal Powder, Enabling Material and Revolutionary Technology for High Energy Li-ion Batteries”. The project included design, acquisition and process development for the production scale units to 1) produce stabilized lithium dispersions in oil medium, 2) to produce dry stabilized lithium metal powders, 3) to evaluate, design and acquire pilot-scale unit for alternative production technology to further decrease the cost, and 4) to demonstrate concepts for integrating SLMP technology into the Li- ion batteries to increase energy density. It is very difficult to satisfy safety, cost and performance requirements for the PHEV and EV applications. As the initial step in SLMP Technology introduction, industry can use commercially available LiMn2O4 or LiFePO4, for example, that are the only proven safer and cheaper lithium providing cathodes available on the market. Unfortunately, these cathodes alone are inferior to the energy density of the conventional LiCoO2 cathode and, even when paired with the advanced anode materials, such as silicon composite material, the resulting cell will still not meet the energy density requirements. We have demonstrated, however, if SLMP Technology is used to compensate for the irreversible capacity in the anode, the efficiency of the cathode utilization will be improved and the cost of the cell, based on the materials, will decrease.

  7. #include #include

    E-Print Network [OSTI]

    Campbell, Andrew T.

    process #12;#include #include pid_t pid = fork(); if (pid () failed */ } else if (pid == 0) { /* parent process */ } else { /* child process */ } #12;thread #12

  8. Feasibility studies to establish at the Kazakhstan Ulba metallurgical plant the manufacturing capability to produce low-enriched uranium certified reference materials

    SciTech Connect (OSTI)

    Kuzminski, Jozef [Los Alamos National Laboratory; Nesuhoff, J [NBL; Cratto, P [NBL; Pfennigwerth, G [Y12 NATIONAL SEC. COMPLEX; Mikhailenko, A [ULBA METALLURGICAL PLANT; Maliutina, I [ULBA METALLURGICAL PLANT; Nations, J [GREGG PROTECTION SERVICES

    2009-01-01T23:59:59.000Z

    One of the salient features of the transition plan that the United States Department of Energy/National Nuclear Security Administration (DOE/NNSA) is presently implementing in the Former Soviet Union countries is the availability of uranium certified reference materials for calibration of nondestructive assay (NDA) measurement equipment. To address this challenge, DOE/NNSA and U.S. national laboratories have focused their cooperative efforts on establishing a reliable source for manufacturing, certifying, and supplying of such standards. The Ulba Metallurgical Plant (UMP), Kazakhstan, which processes large quantities of low-enriched uranium to produce ceramic fuel pellets for nuclear-powered reactors, is well situated to become a key supplier of low-enriched uranium certified reference materials for the country and Central Asia region. We have recently completed Phase I of a feasibility study to establish at UMP capabilities of manufacturing these standards. In this paper we will discuss details of a proposed methodology for uranium down-blending, material selection and characterization, and a proposed methodology of measurement by destructive (DA) and non-destructive (NDA) analysis to form a database for material certification by the competent State authorities in the Republic of Kazakhstan. In addition, we will discuss the prospect for manufacturing of such standards at UMP.

  9. #include #include

    E-Print Network [OSTI]

    Poinsot, Laurent

    #include #include //Rappels : "getpid()" permet d'obtenir son propre pid // "getppid()" renvoie le pid du père d'un processus int main (void) { pid_t pid_fils; pid_fils = fork(); if(pid_fils==-1) { printf("Erreur de création du processus fils\

  10. MANUFACTURING Manufacturing and Biomanufacturing

    E-Print Network [OSTI]

    Magee, Joseph W.

    process improvements to manufacturing. In addition, the critical national need area of Manufacturing hasMANUFACTURING Manufacturing and Biomanufacturing: Materials Advances and Critical Processes NATIONAL NEED The proposed topics within "Manufacturing and Biomanufacturing: Materials Advances

  11. Advanced Technology Vehicles Manufacturing Incentive Program...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program This is an interim final rule that establishes the...

  12. RRR Niobium Manufacturing Experience

    SciTech Connect (OSTI)

    Graham, Ronald A. [ATI Wah Chang, An Allegheny Technologies Company, Albany, Oregon 97321 (United States)

    2007-08-09T23:59:59.000Z

    ATI Wah Chang has been manufacturing RRR niobium for more than 30 years using electron beam melting techniques. Fabricated forms include plate, sheet, foil, bar, rod and tubing. This paper provides manufacturing information.

  13. Posted 10/18/11 MANUFACTURING ENGINEER

    E-Print Network [OSTI]

    Heller, Barbara

    manufacturing processes in our Metal Fabrication and Assembly departments. Additional responsibilities includePosted 10/18/11 MANUFACTURING ENGINEER Kenall Manufacturing Gurnee, IL Kenall, a leading manufacturer of advanced lighting solutions for specialized environments, has exceptional opportunities

  14. Locating Chicago Manufacturing

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    Renaissance Council, is among the nation's leading public high schools focused on manufac- turing area's econ- omy, including how important manufacturing is to that economy, which manufac- turing

  15. Green Manufacturing

    SciTech Connect (OSTI)

    Patten, John

    2013-12-31T23:59:59.000Z

    Green Manufacturing Initiative (GMI): The initiative provides a conduit between the university and industry to facilitate cooperative research programs of mutual interest to support green (sustainable) goals and efforts. In addition to the operational savings that greener practices can bring, emerging market demands and governmental regulations are making the move to sustainable manufacturing a necessity for success. The funding supports collaborative activities among universities such as the University of Michigan, Michigan State University and Purdue University and among 40 companies to enhance economic and workforce development and provide the potential of technology transfer. WMU participants in the GMI activities included 20 faculty, over 25 students and many staff from across the College of Engineering and Applied Sciences; the College of Arts and Sciences' departments of Chemistry, Physics, Biology and Geology; the College of Business; the Environmental Research Institute; and the Environmental Studies Program. Many outside organizations also contribute to the GMI's success, including Southwest Michigan First; The Right Place of Grand Rapids, MI; Michigan Department of Environmental Quality; the Michigan Department of Energy, Labor and Economic Growth; and the Michigan Manufacturers Technical Center.

  16. Establishing Greener Products and Manufacturing Processes

    E-Print Network [OSTI]

    Linke, Barbara; Huang, Yu-Chu; Dornfeld, David

    2012-01-01T23:59:59.000Z

    in Indiana (IN), USA electricity is mostly generated byUSA, where gas, nuclear and hydro are the main sources of electricity.

  17. Establishing Greener Products and Manufacturing Processes

    E-Print Network [OSTI]

    Linke, Barbara; Dornfeld, David; Huang, Yu-Chu

    2011-01-01T23:59:59.000Z

    = LCI = Mfg = MRR = RoHS = WEEE = Application programmingelectronic products (RoHS, WEEE). Complementary metal oxide

  18. Establishing Greener Products and Manufacturing Processes

    E-Print Network [OSTI]

    Linke, Barbara; Huang, Yu-Chu; Dornfeld, David

    2012-01-01T23:59:59.000Z

    Hazardous Substances Directive WEEE = Waste Electrical andelectronic products (RoHS, WEEE). Complementary metal oxide

  19. 2.852 Manufacturing Systems Analysis, Spring 2004

    E-Print Network [OSTI]

    Gershwin, Stanley

    This course deals with the following topics: Models of manufacturing systems, including transfer lines and flexible manufacturing systems; Calculation of performance measures, including throughput, in-process inventory, ...

  20. Additive Manufacturing: Implications on Research and Manufacturing

    E-Print Network [OSTI]

    Crawford, T. Daniel

    Additive Manufacturing: Implications on Research and Manufacturing With recent developments, etc.), additive manufacturing (AM) has the potential to become a transformative technology in innovation-based manufacturing. Agencies such as the Department of Defense, the National Science Foundation

  1. Model-Based Engineering and Manufacturing CAD/CAM Benchmark.

    SciTech Connect (OSTI)

    Domm, T.C.; Underwood, R.S.

    1999-10-13T23:59:59.000Z

    The Benchmark Project was created from a desire to identify best practices and improve the overall efficiency and performance of the Y-12 Plant's systems and personnel supporting the manufacturing mission. The mission of the benchmark team was to search out industry leaders in manufacturing and evaluate their engineering practices and processes to determine direction and focus for Y-12 modernization efforts. The companies visited included several large established companies and a new, small, high-tech machining firm. As a result of this effort, changes are recommended that will enable Y-12 to become a more modern, responsive, cost-effective manufacturing facility capable of supporting the needs of the Nuclear Weapons Complex (NWC) into the 21st century. The benchmark team identified key areas of interest, both focused and general. The focus areas included Human Resources, Information Management, Manufacturing Software Tools, and Standards/Policies and Practices. Areas of general interest included Infrastructure, Computer Platforms and Networking, and Organizational Structure. The results of this benchmark showed that all companies are moving in the direction of model-based engineering and manufacturing. There was evidence that many companies are trying to grasp how to manage current and legacy data. In terms of engineering design software tools, the companies contacted were somewhere between 3-D solid modeling and surfaced wire-frame models. The manufacturing computer tools were varied, with most companies using more than one software product to generate machining data and none currently performing model-based manufacturing (MBM) from a common model. The majority of companies were closer to identifying or using a single computer-aided design (CAD) system than a single computer-aided manufacturing (CAM) system. The Internet was a technology that all companies were looking to either transport information more easily throughout the corporation or as a conduit for business, as the small firm was doing successfully.

  2. Bio-Manufacturing: A Strategic clean energy manufacturing opportunity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Better Plants Challenge Manufacturing R&D Facilities Manufacturing Demonstration Facility Manufacturing Institutes National Additive Manufacturing Innovation Institute - Pilot Now...

  3. Fuel Cell Manufacturing: American Energy and Manufacturing Competitive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit Presentation on...

  4. Manufacturing Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Manufacturing Laboratory at the Energy Systems Integration Facility. The Manufacturing Laboratory at NREL's Energy Systems Integration Facility (ESIF) focuses on developing methods and technologies that will assist manufacturers of hydrogen and fuel cell technologies, as well as other renewable energy technologies, to scale up their manufacturing capabilities to volumes that meet DOE and industry targets. Specifically, the manufacturing activity is currently focused on developing and validating quality control techniques to assist manufacturers of low temperature and high temperature fuel cells in the transition from low to high volume production methods for cells and stacks. Capabilities include initial proof-of-concept studies through prototype system development and in-line validation. Existing diagnostic capabilities address a wide range of materials, including polymer films, carbon and catalyst coatings, carbon fiber papers and wovens, and multi-layer assemblies of these materials, as well as ceramic-based materials in pre- or post-fired forms. Work leading to the development of non-contact, non-destructive techniques to measure critical dimensional and functional properties of fuel cell and other materials, and validation of those techniques on the continuous processing line. This work will be supported by materials provided by our partners. Looking forward, the equipment in the laboratory is set up to be modified and extended to provide processing capabilities such as coating, casting, and deposition of functional layers, as well as associated processes such as drying or curing. In addition, continuous processes are used for components of organic and thin film photovoltaics (PV) as well as battery technologies, so synergies with these important areas will be explored.

  5. China's Industrial Carbon Dioxide Emissions in Manufacturing Subsectors and in Selected Provinces

    E-Print Network [OSTI]

    Lu, Hongyou

    2013-01-01T23:59:59.000Z

    EIA) conducts the Manufacturing Energy Consumption Survey (survey conducted in 2011. The 2006 MECS surveyed industrial establishments, and allowed EIA

  6. Energy & Manufacturing Workforce Training Topics List - Version...

    Broader source: Energy.gov (indexed) [DOE]

    View this searchable list of the training programs in the areas of energy andor manufacturing. Information provided in this list includes: the subjects being taught, grantee,...

  7. Manufacturing Innovation in the DOE

    Broader source: Energy.gov (indexed) [DOE]

    Robert McEwan GE America Makes The National Accelerator for Additive Manufacturing & 3D Printing Advanced Manufacturing Office (AMO) manufacturing.energy.gov 13 Manufacturing...

  8. Lori Garver, NASA Deputy Administrator National Network for Manufacturing Innovation

    E-Print Network [OSTI]

    Lori Garver, NASA Deputy Administrator National Network for Manufacturing Innovation Cuyahoga discussion on the President's recently announced initiative, the National Network for Manufacturing the technologies we need for tomorrow's missions. These include projects to transform space laser communications

  9. The Advanced Manufacturing Partnership

    E-Print Network [OSTI]

    Das, Suman

    ;ve Manufacturing Technologies (led by Dow, Honeywell and MIT) Manufacturing Ins;tutes (led, Honeywell and MIT GOALS § To launch public-private ini:a:ves to advance transforma

  10. Manufacturing Battle Creek

    E-Print Network [OSTI]

    de Doncker, Elise

    to the manufacturing sector in Western Michigan. In addition to serving as director of the MRC, Dr. Patten is alsoManufacturing Research Center Kalamazoo Battle Creek The College of Engineering and Applied Sciences The Supporting manufacturing industries by providing opportunities for collaboration with faculty

  11. Manufacturing Development of the NCSX Modular Coil Windings

    SciTech Connect (OSTI)

    Chrzanowsk, J. H.; Fogarty, P. J.; Heitzenroeder, P. J.; Meighan, T.; Nelson, B.; Raftopoulos, S.; Williamson, D.

    2005-09-27T23:59:59.000Z

    The modular coils on the National Compact Stellarator Experiment (NCSX) present a number of significant engineering challenges due to their complex shapes, requirements for high dimensional accuracy and the high current density required in the modular coils due to space constraints. In order to address these challenges, an R&D program was established to develop the conductor, insulation scheme, manufacturing techniques, and procedures. A prototype winding named Twisted Racetrack Coil (TRC) was of particular importance in dealing with these challenges. The TRC included a complex shaped winding form, conductor, insulation scheme, leads and termination, cooling system and coil clamps typical of the modular coil design. Even though the TRC is smaller in size than a modular coil, its similar complex geometry provided invaluable information in developing the final design, metrology techniques and development of manufacturing procedures. In addition a discussion of the development of the copper rope conductor including "Keystoning" concerns; the epoxy impregnation system (VPI) plus the tooling and equipment required to manufacture the modular coils will be presented.

  12. Fuel Cell Manufacturing Diagnostic Techniques: IR Thermography with Reactive Flow through Excitation

    SciTech Connect (OSTI)

    Manak, A. J.; Ulsh, M.; Bender, G.

    2012-01-01T23:59:59.000Z

    While design and material considerations for PEMFCs have a large impact on cost, it is also necessary to consider a transition to high volume production of fuel cell systems, including MEA components, to enable economies of scale and reduce per unit cost. One of the critical manufacturing tasks is developing and deploying techniques to provide in?process measurement of fuel cell components for quality control. This effort requires a subsidiary task: The study of the effect of manufacturing defects on performance and durability with the objective to establish validated manufacturing tolerances for fuel cell components. This work focuses on the development of a potential quality control method for gas diffusion electrodes (GDEs). The method consists of infrared (IR) thermography combined with reactive flow through (RFT) excitation. Detection of catalyst loading reduction defects in GDE catalyst layers will be presented.

  13. Factory Models for Manufacturing Systems Engineering

    E-Print Network [OSTI]

    Gershwin, Stanley B.

    We review MIT research in manufacturing systems engineering, and we describe current and possible future research activities in this area. This includes advances in decomposition techniques, optimization, token-based control ...

  14. Wellbore manufacturing processes for in situ heat treatment processes

    DOE Patents [OSTI]

    Davidson, Ian Alexander; Geddes, Cameron James; Rudolf, Randall Lynn; Selby, Bruce Allen; MacDonald, Duncan Charles

    2012-12-11T23:59:59.000Z

    A method includes making coiled tubing at a coiled tubing manufacturing unit coupled to a coiled tubing transportation system. One or more coiled tubing reels are transported from the coiled tubing manufacturing unit to one or more moveable well drilling systems using the coiled tubing transportation system. The coiled tubing transportation system runs from the tubing manufacturing unit to one or more movable well drilling systems, and then back to the coiled tubing manufacturing unit.

  15. Agile manufacturing from a statistical perspective

    SciTech Connect (OSTI)

    Easterling, R.G. [Sandia National Labs., Albuquerque, NM (United States). New Initiatives Dept.

    1995-10-01T23:59:59.000Z

    The objective of agile manufacturing is to provide the ability to quickly realize high-quality, highly-customized, in-demand products at a cost commensurate with mass production. More broadly, agility in manufacturing, or any other endeavor, is defined as change-proficiency; the ability to thrive in an environment of unpredictable change. This report discusses the general direction of the agile manufacturing initiative, including research programs at the National Institute of Standards and Technology (NIST), the Department of Energy, and other government agencies, but focuses on agile manufacturing from a statistical perspective. The role of statistics can be important because agile manufacturing requires the collection and communication of process characterization and capability information, much of which will be data-based. The statistical community should initiate collaborative work in this important area.

  16. Manufacturing | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the production of clean energy technologies like electric vehicles, LED bulbs and solar panels. The Department is also working with manufacturers to increase their energy...

  17. Advanced Materials Manufacturing | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    existing manufacturing industries and result in creative new products. Stronger, more corrosion-resistant and lower cost steel alloys are being developed and commercialized to...

  18. MCM-C Multichip Module Manufacturing Guide

    SciTech Connect (OSTI)

    Blazek, R.J.; Kautz, D.R.; Galichia, J.V.

    2000-11-20T23:59:59.000Z

    Honeywell Federal Manufacturing & Technologies (FM&T) provides complete microcircuit capabilities from design layout through manufacturing and final electrical testing. Manufacturing and testing capabilities include design layout, electrical and mechanical computer simulation and modeling, circuit analysis, component analysis, network fabrication, microelectronic assembly, electrical tester design, electrical testing, materials analysis, and environmental evaluation. This document provides manufacturing guidelines for multichip module-ceramic (MCM-C) microcircuits. Figure 1 illustrates an example MCM-C configuration with the parts and processes that are available. The MCM-C technology is used to manufacture microcircuits for electronic systems that require increased performance, reduced volume, and higher density that cannot be achieved by the standard hybrid microcircuit or printed wiring board technologies. The guidelines focus on the manufacturability issues that must be considered for low-temperature cofired ceramic (LTCC) network fabrication and MCM assembly and the impact that process capabilities have on the overall MCM design layout and product yield. Prerequisites that are necessary to initiate the MCM design layout include electrical, mechanical, and environmental requirements. Customer design data can be accepted in many standard electronic file formats. Other requirements include schedule, quantity, cost, classification, and quality level. Design considerations include electrical, network, packaging, and producibility; and deliverables include finished product, drawings, documentation, and electronic files.

  19. Manufacturing of Plutonium Tensile Specimens

    SciTech Connect (OSTI)

    Knapp, Cameron M [Los Alamos National Laboratory

    2012-08-01T23:59:59.000Z

    Details workflow conducted to manufacture high density alpha Plutonium tensile specimens to support Los Alamos National Laboratory's science campaigns. Introduces topics including the metallurgical challenge of Plutonium and the use of high performance super-computing to drive design. Addresses the utilization of Abaqus finite element analysis, programmable computer numerical controlled (CNC) machining, as well as glove box ergonomics and safety in order to design a process that will yield high quality Plutonium tensile specimens.

  20. AMO Issues Request for Information on Clean Energy Manufacturing...

    Energy Savers [EERE]

    AMO Issues Request for Information on Clean Energy Manufacturing Topics, Including Fuel Cell and Hydrogen Applications AMO Issues Request for Information on Clean Energy...

  1. Center for Sustainable Industry and Manufacturing | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    system design, development, testing, and evaluation. Major R&D areas include large scale additive manufacturing as well as closed loop control; energy efficient and mesoscale...

  2. DOE and Federal Energy and Manufacturing Workforce Programs and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    cataloged by city and state. This list contains most of the programs included in our Energy & Manufacturing Topics list and Trade Adjustment Assistance Community College and...

  3. Developing the Manufacturing Process for Hylene MP Curing Agent

    SciTech Connect (OSTI)

    Eastwood, Eric

    2009-02-16T23:59:59.000Z

    This report details efforts to scale-up and re-establish the manufacturing process for the curing agent known as Hylene MP. First, small scale reactions were completed with varying conditions to determine key drivers for yielding high quality product. Once the optimum conditions were determined on the small scale, the scaled-up process conditions were determined. New equipment was incorporated into the manufacturing process to create a closed production system and improve chemical exposure controls and improve worker safety. A safe, efficient manufacturing process was developed to manufacture high quality Hylene MP in large quantities.

  4. Solder technology in the manufacturing of electronic products

    SciTech Connect (OSTI)

    Vianco, P.T.

    1993-08-01T23:59:59.000Z

    The electronics industry has relied heavily upon the use of soldering for both package construction and circuit assembly. The solder attachment of devices onto printed circuit boards and ceramic microcircuits has supported the high volume manufacturing processes responsible for low cost, high quality consumer products and military hardware. Defects incurred during the manufacturing process are minimized by the proper selection of solder alloys, substrate materials and process parameters. Prototyping efforts are then used to evaluate the manufacturability of the chosen material systems. Once manufacturing feasibility has been established, service reliability of the final product is evaluated through accelerated testing procedures.

  5. Manufacturing Licenses Available | Tech Transfer | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deposition Manufacturing 201303127 Methods and Materials for Room Temperature Polymer Additive Manufacturing 201303140 Reactive Polymer Fused Deposition Manufacturing 201303151...

  6. DEVELOPMENT OF LOW-COST MANUFACTURING PROCESSES FOR PLANAR, MULTILAYER SOLID OXIDE FUEL CELL ELEMENTS

    SciTech Connect (OSTI)

    Scott Swartz; Matthew Seabaugh; William Dawson; Harlan Anderson; Tim Armstrong; Michael Cobb; Kirby Meacham; James Stephan; Russell Bennett; Bob Remick; Chuck Sishtla; Scott Barnett; John Lannutti

    2004-06-12T23:59:59.000Z

    This report summarizes the results of a four-year project, entitled, ''Low-Cost Manufacturing Of Multilayer Ceramic Fuel Cells'', jointly funded by the U.S. Department of Energy, the State of Ohio, and by project participants. The project was led by NexTech Materials, Ltd., with subcontracting support provided by University of Missouri-Rolla, Michael A. Cobb & Co., Advanced Materials Technologies, Inc., Edison Materials Technology Center, Gas Technology Institute, Northwestern University, and The Ohio State University. Oak Ridge National Laboratory, though not formally a subcontractor on the program, supported the effort with separate DOE funding. The objective of the program was to develop advanced manufacturing technologies for making solid oxide fuel cell components that are more economical and reliable for a variety of applications. The program was carried out in three phases. In the Phase I effort, several manufacturing approaches were considered and subjected to detailed assessments of manufacturability and development risk. Estimated manufacturing costs for 5-kW stacks were in the range of $139/kW to $179/kW. The risk assessment identified a number of technical issues that would need to be considered during development. Phase II development work focused on development of planar solid oxide fuel cell elements, using a number of ceramic manufacturing methods, including tape casting, colloidal-spray deposition, screen printing, spin-coating, and sintering. Several processes were successfully established for fabrication of anode-supported, thin-film electrolyte cells, with performance levels at or near the state-of-the-art. The work in Phase III involved scale-up of cell manufacturing methods, development of non-destructive evaluation methods, and comprehensive electrical and electrochemical testing of solid oxide fuel cell materials and components.

  7. Manufactured Homes Simulated Thermal Analysis and Cost Effectiveness Report.

    SciTech Connect (OSTI)

    Baylon, David

    1990-05-17T23:59:59.000Z

    In 1988 and 1989, 150 manufactured homes were built to comply with Super Good Cents (SGC) specifications adapted from the existing specifications for site-built homes under the Residential Construction Demonstration Project (RCDP). Engineering calculations and computer simulations were used to estimate the effects of the SGC specifications on the thermal performance of the homes. These results were compared with consumer costs to establish the cost-effectiveness of individual measures. Heat loss U-factors for windows, walls, floors and ceilings were established using the standard ASHRAE parallel heat flow method. Adjustments resulted in higher U-factors for ceilings and floors than assumed at the time the homes were approved as meeting the SGC specifications. Except for those homes which included heat pumps, most of the homes did not meet the SGC compliance standards. Nonetheless these homes achieved substantial reductions in overall heat loss rate (UA) compared to UAs estimated for the same homes using the standard insulation packages provided by the manufacturers in the absence of the RCDP program. Homes with conventional electric furnaces showed a 35% reduction in total UA while homes with heat pumps had a 25% reduction. A regression analysis showed no significant relationship between climate zone, manufacturer and UA. A modified version of SUNDAY building simulation program which simulates duct and heat pump performance was used to model the thermal performance of each RCDP home as built and the same home as it would have been built without SGC specifications (base case). Standard assumptions were used for thermostat setpoint, thermal mass, internal gains and infiltration rates. 11 refs., 5 figs., 5 tabs.

  8. Establishing a Pivot profile

    E-Print Network [OSTI]

    Simaan, Nabil

    Establishing a Pivot profile and finding funding opportunities PIVOT.COS.COM #12;Expertise Database with Researcher Profiles Approx. 3.2M scholarly profiles Created from publications, public web sites Claim your profile and expand it Funding Opportunities Database Approx. 28k opportunities 70% domestic, 30

  9. Manufacturing Demonstration Facility Technology Collaborations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    advanced manufacturing and materials technologies for commercial applications related to additive manufacturing or carbon fiber and composites will have the highest likelihood of...

  10. Innovative Manufacturing Initiative Recognition Day

    Broader source: Energy.gov [DOE]

    The Innovative Manufacturing Initiative (IMI) Recognition Day (held in Washington, DC on June 20, 2012) showcased IMI projects selected by the Energy Department to help American manufacturers...

  11. CIMplementation™: Evaluating Manufacturing Automation

    E-Print Network [OSTI]

    Krakauer, J.

    management and labor. In the new shop, ma~? agers will be unable to succeed unless thet earn the respect and cooperation of their I subordinates. Managers need to address th~ fear and resistance of manufacturing emPlofees before and during a transition.... Managers are becoming more interested in these methods, but they should be aware that implementing them will be a slow, complex task. This technology will require changes in manufacturing organization. This paper discusses changes required...

  12. 2009 Cost Estimates of Establishing and

    E-Print Network [OSTI]

    Collins, Gary S.

    2009 Cost Estimates of Establishing and Producing Gala Apples in Washington WASHINGTON STATE include estimating 1) the costs of the equipment, materials, supplies, and labor required to establish for any particular orchard operation due to case-specific: · Capital, labor, and natural resources · Crop

  13. Manufacturing Demonstration Facilities Workshop Agenda, March...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Manufacturing Demonstration Facility Workshop Critical Materials Workshop Agenda Innovative Manufacturing Initiatives Recognition Day...

  14. Establish a User Agreement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-l 1, 13 DE@EnergyErnest D. Courant,SmartEstablish a

  15. Advanced Manufacture of Reflectors

    SciTech Connect (OSTI)

    Angel, Roger [University of Arizona

    2014-12-17T23:59:59.000Z

    The main project objective has been to develop an advanced gravity sag method for molding large glass solar reflectors with either line or point focus, and with long or short focal length. The method involves taking standard sized squares of glass, 1.65 m x 1.65 m, and shaping them by gravity sag into precision steel molds. The method is designed for high volume manufacture when incorporated into a production line with separate pre-heating and cooling. The performance objectives for the self-supporting glass mirrors made by this project include mirror optical accuracy of 2 mrad root mean square (RMS), requiring surface slope errors <1 mrad rms, a target not met by current production of solar reflectors. Our objective also included development of new methods for rapidly shaping glass mirrors and coating them for higher reflectivity and soil resistance. Reflectivity of 95% for a glass mirror with anti-soil coating was targeted, compared to the present ~94% with no anti-soil coating. Our mirror cost objective is ~$20/m2 in 2020, a significant reduction compared to the present ~$35/m2 for solar trough mirrors produced for trough solar plants. During the first year a custom batch furnace was built to develop the method with high power radiative heating to simulate transfer of glass into a hot slumping zone in a production line. To preserve the original high polish of the float glass on both front and back surfaces, as required for a second surface mirror, the mold surface is machined to the required shape as grooves which intersect the glass at cusps, reducing the mold contact area to significantly less than 1%. The mold surface is gold-plated to reflect thermal radiation. Optical metrology of glass replicas made with the system has been carried out with a novel, custom-built test system. This test provides collimated, vertically-oriented parallel beams from a linear array of co-aligned lasers translated in a perpendicular direction across the reflector. Deviations of each reflected beam from the paraboloid focus give a direct measure of surface slope error. Key findings • A gravity sag method for large (2.5 m2) second surface glass solar reflectors has been developed and demonstrated to a uniquely high level of accuracy. Mirror surface slope accuracy of 0.65 mrad in one dimension, 0.85 mrad in 2 dimensions (point focus) has been demonstrated by commercial partner REhnu using this process. This accuracy exceeds by a factor of two current solar reflector accuracy. Our replicas meet the Sunshot accuracy objective of 2 mrad optical, which requires better than 1 mrad rms slope error. • Point-focus as well as line-focus mirrors have been demonstrated at 1.65 m x 1.65 m square – a unique capability. • The new process using simple molds is economical. The molds for the 1.65 m square reflectors are bent and machined steel plates on a counter-weighted flotation support. To minimize thermal coupling by radiative heat transfer, the mold surface is grooved and gilded. The molds are simple to manufacture, and have minimal thermal stresses and distortion in use. Lapping and bending techniques have been developed to obtain better than 1 mrad rms surface mold accuracy. Float glass is sagged into the molds by rapid radiative heating, using a custom high power (350 kW) furnace. The method of manufacture is well suited for small as well as large volume production, and as it requires little capital investment and no high technology, it could be used anywhere in the world to make solar concentrating reflectors. • A novel slope metrology method for full 1.65 aperture has been demonstrated, with 25 mm resolution across the face of the replicas. The method is null and therefore inherently accurate: it can easily be reproduced without high-tech equipment and does not need sophisticated calibration. We find by cross calibration with reference trough reflectors from RioGlass that our null-test laser system yields a measurement accuracy better than 0.4 mrad rms slope error. Our system is inexpensive and could have broad application for test

  16. Establishing nuclear facility drill programs

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    The purpose of DOE Handbook, Establishing Nuclear Facility Drill Programs, is to provide DOE contractor organizations with guidance for development or modification of drill programs that both train on and evaluate facility training and procedures dealing with a variety of abnormal and emergency operating situations likely to occur at a facility. The handbook focuses on conducting drills as part of a training and qualification program (typically within a single facility), and is not intended to included responses of personnel beyond the site boundary, e.g. Local or State Emergency Management, Law Enforcement, etc. Each facility is expected to develop its own facility specific scenarios, and should not limit them to equipment failures but should include personnel injuries and other likely events. A well-developed and consistently administered drill program can effectively provide training and evaluation of facility operating personnel in controlling abnormal and emergency operating situations. To ensure the drills are meeting their intended purpose they should have evaluation criteria for evaluating the knowledge and skills of the facility operating personnel. Training and evaluation of staff skills and knowledge such as component and system interrelationship, reasoning and judgment, team interactions, and communications can be accomplished with drills. The appendices to this Handbook contain both models and additional guidance for establishing drill programs at the Department`s nuclear facilities.

  17. Advanced Manufacture of Reflectors

    Broader source: Energy.gov [DOE]

    The Advance Manufacture of Reflectors fact sheet describes a SunShot Initiative project being conducted research team led by the University of Arizona, which is working to develop a novel method for shaping float glass. The technique developed by this research team can drastically reduce the time required for the shaping step. By enabling mass production of solar concentrating mirrors at high speed, this project should lead to improved performance and as much as a 40% reduction in manufacturing costs for reflectors made in very high volume.

  18. ATS materials/manufacturing

    SciTech Connect (OSTI)

    Karnitz, M.A.; Wright, I.G.; Ferber, M.K. [and others

    1997-11-01T23:59:59.000Z

    The Materials/Manufacturing Technology subelement is a part of the base technology portion of the Advanced Turbine Systems (ATS) Program. The work in this subelement is being performed predominantly by industry with assistance from national laboratories and universities. The projects in this subelement are aimed toward hastening the incorporation of new materials and components in gas turbines. Work is currently ongoing on thermal barrier coatings (TBCs), the scale-up of single crystal airfoil manufacturing technologies, materials characterization, and technology information exchange. This paper presents highlights of the activities during the past year. 12 refs., 24 figs., 4 tabs.

  19. Manufacturing Success Stories

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction to EnergyDepartment of EnergyManagementORNL isManufacturingManufacturing6

  20. Ohio Advanced Energy Manufacturing Center

    SciTech Connect (OSTI)

    Kimberly Gibson; Mark Norfolk

    2012-07-30T23:59:59.000Z

    The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall industry health. To aid the overall advanced energy industry, EWI developed and launched an Ohio chapter of the non-profit Advanced Energy Economy. In this venture, Ohio joins with six other states including Colorado, Connecticut, Illinois, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont to help promote technologies that deliver energy that is affordable, abundant and secure. In a more specific arena, EWI's advanced energy group collaborated with the EWI-run Nuclear Fabrication Consortium to promote the nuclear supply chain. Through this project EWI has helped bring the supply chain up to date for the upcoming period of construction, and assisted them in understanding the demands for the next generation of facilities now being designed. In a more targeted manner, EWI worked with 115 individual advanced energy companies that are attempting to bring new technology to market. First, these interactions helped EWI develop an awareness of issues common to companies in different advanced energy sectors. By identifying and addressing common issues, EWI helps companies bring technology to market sooner and at a lower cost. These visits also helped EWI develop a picture of industry capability. This helped EWI provide companies with contacts that can supply commercial solutions to their new product development challenges. By providing assistance in developing supply chain partnerships, EWI helped companies bring their technology to market faster and at a lower cost than they might have been able to do by themselves. Finally, at the most granular level EWI performed dedicated research and development on new manufacturing processes for advanced energy. During discussions with companies participating in advanced energy markets, several technology issues that cut across market segments were identified. To address some of these issues, three crosscutting technology development projects were initiated and completed with Center support. This included reversible welds for batteries and high temperature heat exchangers. It also included a novel advanced weld trainer that EWI

  1. MANUFACTURING & SERVICE OPERATIONS MANAGEMENT

    E-Print Network [OSTI]

    Chiang, Wei-yu Kevin

    an upstream firm, as a result of charging a wholesale price above the marginal cost, induces its intermediary Dynamics and Channel Efficiency in Durable Product Pricing and Distribution Wei-yu Kevin Chiang College the single-period vertical price interaction in a manufacturer­retailer dyad to a multi- period setting

  2. Bolt Manufacture: Process Selection

    E-Print Network [OSTI]

    Colton, Jonathan S.

    file · Selective Laser Sintering (SLS) 3 D P i ti· 3-D Printing · Light Engineered Net Shaping (LENS Processes and Systems Prof. J.S. Colton © GIT 2009 20 #12;3D Printing Process (Soligen) ME 6222: Manufacturing Processes and Systems Prof. J.S. Colton © GIT 2009 21 #12;3D Printing Head (Soligen)3D Printing

  3. Bio-Manufacturing: A Strategic clean energy manufacturing opportunity

    Broader source: Energy.gov [DOE]

    Breakout Session 1: New Developments and Hot Topics Session 1-A: Biomass and the U.S. Competitive Advantages for Manufacturing Clean Energy Products Libby Wayman, Director, EERE Clean Energy Manufacturing Initiative

  4. Rotor assembly including superconducting magnetic coil

    DOE Patents [OSTI]

    Snitchler, Gregory L. (Shrewsbury, MA); Gamble, Bruce B. (Wellesley, MA); Voccio, John P. (Somerville, MA)

    2003-01-01T23:59:59.000Z

    Superconducting coils and methods of manufacture include a superconductor tape wound concentrically about and disposed along an axis of the coil to define an opening having a dimension which gradually decreases, in the direction along the axis, from a first end to a second end of the coil. Each turn of the superconductor tape has a broad surface maintained substantially parallel to the axis of the coil.

  5. College of Engineering MFS Manufacturing Systems Engineering

    E-Print Network [OSTI]

    MacAdam, Keith

    ) The topics will include fundamentals of concurrent engineering, product life cycle, product specificationCollege of Engineering MFS Manufacturing Systems Engineering KEY: # = new course * = course changed of these processes. Lecture, two hours; laboratory; two hours. Prereq: EM 302, EM 313, and engineering standing

  6. Thermal neutron shield and method of manufacture

    DOE Patents [OSTI]

    Metzger, Bert Clayton; Brindza, Paul Daniel

    2014-03-04T23:59:59.000Z

    A thermal neutron shield comprising boron shielding panels with a high percentage of the element Boron. The panel is least 46% Boron by weight which maximizes the effectiveness of the shielding against thermal neutrons. The accompanying method discloses the manufacture of boron shielding panels which includes enriching the pre-cursor mixture with varying grit sizes of Boron Carbide.

  7. Thermal neutron shield and method of manufacture

    DOE Patents [OSTI]

    Brindza, Paul Daniel; Metzger, Bert Clayton

    2013-05-28T23:59:59.000Z

    A thermal neutron shield comprising concrete with a high percentage of the element Boron. The concrete is least 54% Boron by weight which maximizes the effectiveness of the shielding against thermal neutrons. The accompanying method discloses the manufacture of Boron loaded concrete which includes enriching the concrete mixture with varying grit sizes of Boron Carbide.

  8. Advanced Manufacturing Office (Formerly Industrial Technologies Program)

    E-Print Network [OSTI]

    Advanced Manufacturing Office (Formerly Industrial Technologies Program) Leo Christodoulou Jamie August 11, 2011 #12;Background and Opportunity Background Industry accounts for 30% of energy consumption-value industries such as the renewable energy industry. Example materials include low-cost carbon fiber, low

  9. Low Cost Lithography Tool for High Brightness LED Manufacturing

    SciTech Connect (OSTI)

    Andrew Hawryluk; Emily True

    2012-06-30T23:59:59.000Z

    The objective of this activity was to address the need for improved manufacturing tools for LEDs. Improvements include lower cost (both capital equipment cost reductions and cost-ofownership reductions), better automation and better yields. To meet the DOE objective of $1- 2/kilolumen, it will be necessary to develop these highly automated manufacturing tools. Lithography is used extensively in the fabrication of high-brightness LEDs, but the tools used to date are not scalable to high-volume manufacturing. This activity addressed the LED lithography process. During R&D and low volume manufacturing, most LED companies use contact-printers. However, several industries have shown that these printers are incompatible with high volume manufacturing and the LED industry needs to evolve to projection steppers. The need for projection lithography tools for LED manufacturing is identified in the Solid State Lighting Manufacturing Roadmap Draft, June 2009. The Roadmap states that Projection tools are needed by 2011. This work will modify a stepper, originally designed for semiconductor manufacturing, for use in LED manufacturing. This work addresses improvements to yield, material handling, automation and throughput for LED manufacturing while reducing the capital equipment cost.

  10. Internship Contract (Includes Practicum)

    E-Print Network [OSTI]

    Thaxton, Christopher S.

    Internship Contract (Includes Practicum) Student's name-mail: _________________________________________ Internship Agency Contact Agency Name: ____________________________________ Address-mail: __________________________________________ Location of Internship, if different from Agency: ________________________________________________ Copies

  11. Additive Manufacturing for Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE)

    Blake Marshall, AMO's lead for Additive Manufacturing Technologies, will provide an overview of current R&D activities in additive manufacturing and its application to fuel cell prototyping and...

  12. Climate VISION: Private Sector Initiatives: Automobile Manufacturers...

    Office of Scientific and Technical Information (OSTI)

    of Automobile Manufacturers The Alliance of Automobile Manufacturers, Inc. is a trade association composed of 10 car and light truck manufacturers with about 600,000...

  13. Precision and Energy Usage for Additive Manufacturing

    E-Print Network [OSTI]

    Clemon, Lee; Sudradjat, Anton; Jaquez, Maribel; Krishna, Aditya; Rammah, Marwan; Dornfeld, David

    2013-01-01T23:59:59.000Z

    Sustainability of additive manufacturing: measuring theCommittee F42 on Additive Manufacturing Technologies," TheASTM Committee F42 on Additive Manufacturing Technologies. -

  14. Innovative Manufacturing Initiative Recognition Day, Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications Innovative Manufacturing Initiative Recognition Day Advanced Manufacturing Office Overview Unlocking the Potential of Additive Manufacturing in the Fuel Cells Industry...

  15. Precision and Energy Usage for Additive Manufacturing

    E-Print Network [OSTI]

    Clemon, Lee; Sudradjat, Anton; Jaquez, Maribel; Krishna, Aditya; Rammah, Marwan; Dornfeld, David

    2013-01-01T23:59:59.000Z

    Hague, "Sustainability of additive manufacturing: measuringASTM Committee F42 on Additive Manufacturing Technologies,"ASTM Committee F42 on Additive Manufacturing Technologies. -

  16. clean energy manufacturing | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Energy Manufacturing Initiative The Clean Energy Manufacturing Initiative is a strategic integration and commitment of manufacturing efforts across the DOE Office of Energy...

  17. Pump apparatus including deconsolidator

    DOE Patents [OSTI]

    Sonwane, Chandrashekhar; Saunders, Timothy; Fitzsimmons, Mark Andrew

    2014-10-07T23:59:59.000Z

    A pump apparatus includes a particulate pump that defines a passage that extends from an inlet to an outlet. A duct is in flow communication with the outlet. The duct includes a deconsolidator configured to fragment particle agglomerates received from the passage.

  18. ITP Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing...

    Energy Savers [EERE]

    ITP Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing Processes and Applications to Accelerate Commercial Use of Nanomaterials, January 2011 ITP Nanomanufacturing:...

  19. Flow Battery System Design for Manufacturability.

    SciTech Connect (OSTI)

    Montoya, Tracy Louise; Meacham, Paul Gregory; Perry, David; Broyles, Robin S.; Hickey, Steven; Hernandez, Jacquelynne

    2014-10-01T23:59:59.000Z

    Flow battery energy storage systems can support renewable energy generation and increase energy efficiency. But, presently, the costs of flow battery energy storage systems can be a significant barrier for large-scale market penetration. For cost- effective systems to be produced, it is critical to optimize the selection of materials and components simultaneously with the adherence to requirements and manufacturing processes to allow these batteries and their manufacturers to succeed in the market by reducing costs to consumers. This report analyzes performance, safety, and testing requirements derived from applicable regulations as well as commercial and military standards that would apply to a flow battery energy storage system. System components of a zinc-bromine flow battery energy storage system, including the batteries, inverters, and control and monitoring system, are discussed relative to manufacturing. The issues addressed include costs and component availability and lead times. A service and support model including setup, maintenance and transportation is outlined, along with a description of the safety-related features of the example flow battery energy storage system to promote regulatory and environmental, safety, and health compliance in anticipation of scale manufacturing.

  20. Manufacturing Technical Assistance Program FY 2014 Guidelines The University of Connecticut (UConn), a public research university with an academic health

    E-Print Network [OSTI]

    Alpay, S. Pamir

    . Applications for projects to be undertaken at UConn must be in the area of Additive Manufacturing only and equipment, including the state-of the-art additive manufacturing equipment at the new Additive Manufacturing with additive manufacturing challenges are especially encouraged to apply. Applications must (a) outline

  1. Living Expenses (includes approximately

    E-Print Network [OSTI]

    Maroncelli, Mark

    & engineering programs All other programs Graduate: MBA/INFSY at Erie & Harrisburg (12 credits) Business Guarantee 3 (Does not include Dependents Costs4 ) Altoona, Berks, Erie, and Harrisburg 12-Month Estimated

  2. Creation of a U.S. Phosphorescent OLED Lighting Panel Manufacturing Facility

    SciTech Connect (OSTI)

    Hack, Michael

    2013-09-30T23:59:59.000Z

    Universal Display Corporation (UDC) has pioneered high efficacy phosphorescent OLED (PHOLED™) technology to enable the realization of an exciting new form of high quality, energy saving solid-date lighting. In laboratory test devices, we have demonstrated greater than 100 lm/W conversion efficacy. In this program, Universal Display will demonstrate the scalability of its proprietary UniversalPHOLED technology and materials for the manufacture of white OLED lighting panels that meet commercial lighting targets. Moser Baer Technologies will design and build a U.S.- based pilot facility. The objective of this project is to establish a pilot phosphorescent OLED (PHOLED) manufacturing line in the U.S. Our goal is that at the end of the project, prototype lighting panels could be provided to U.S. luminaire manufacturers for incorporation into products to facilitate the testing of design concepts and to gauge customer acceptance, so as to facilitate the growth of the embryonic U.S. OLED lighting industry. In addition, the team will provide a cost of ownership analysis to quantify production costs including OLED performance metrics which relate to OLED cost such as yield, materials usage, cycle time, substrate area, and capital depreciation. This project was part of a new DOE initiative designed to help establish and maintain U.S. leadership in this program will support key DOE objectives by showing a path to meet Department of Energy Solid-State Lighting Manufacturing Roadmap cost targets, as well as meeting its efficiency targets by demonstrating the energy saving potential of our technology through the realization of greater than 76 lm/W OLED lighting panels by 2012.

  3. Seminar Title: Additive Manufacturing Advanced Manufacturing of Polymer and Composite Components

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    Seminar Title: Additive Manufacturing ­ Advanced Manufacturing of Polymer and Composite Components Manufacturing ­ Advanced Manufacturing of Polymer and Composite Components Additive manufacturing technologies Functionally Integrated Composite Structures, Augsburg, Germany ME Faculty Candidate Abstract: Additive

  4. Faculty Position in Mechanical Engineering Additive Manufacturing

    E-Print Network [OSTI]

    Faculty Position in Mechanical Engineering Additive Manufacturing University of Kansas of additive manufacturing. Exceptional candidates with outstanding qualifications could be considered using additive manufacturing in applications such as, but not limited to the net shape manufacture of

  5. Wind Turbine Manufacturing Process Monitoring

    SciTech Connect (OSTI)

    Waseem Faidi; Chris Nafis; Shatil Sinha; Chandra Yerramalli; Anthony Waas; Suresh Advani; John Gangloff; Pavel Simacek

    2012-04-26T23:59:59.000Z

    To develop a practical inline inspection that could be used in combination with automated composite material placement equipment to economically manufacture high performance and reliable carbon composite wind turbine blade spar caps. The approach technical feasibility and cost benefit will be assessed to provide a solid basis for further development and implementation in the wind turbine industry. The program is focused on the following technology development: (1) Develop in-line monitoring methods, using optical metrology and ultrasound inspection, and perform a demonstration in the lab. This includes development of the approach and performing appropriate demonstration in the lab; (2) Develop methods to predict composite strength reduction due to defects; and (3) Develop process models to predict defects from leading indicators found in the uncured composites.

  6. Manufactured caverns in carbonate rock

    DOE Patents [OSTI]

    Bruce, David A.; Falta, Ronald W.; Castle, James W.; Murdoch, Lawrence C.

    2007-01-02T23:59:59.000Z

    Disclosed is a process for manufacturing underground caverns suitable in one embodiment for storage of large volumes of gaseous or liquid materials. The method is an acid dissolution process that can be utilized to form caverns in carbonate rock formations. The caverns can be used to store large quantities of materials near transportation facilities or destination markets. The caverns can be used for storage of materials including fossil fuels, such as natural gas, refined products formed from fossil fuels, or waste materials, such as hazardous waste materials. The caverns can also be utilized for applications involving human access such as recreation or research. The method can also be utilized to form calcium chloride as a by-product of the cavern formation process.

  7. Material Design, Selection, and Manufacturing Methods for System Sustainment

    SciTech Connect (OSTI)

    David Sowder, Jim Lula, Curtis Marshall

    2010-02-18T23:59:59.000Z

    This paper describes a material selection and validation process proven to be successful for manufacturing high-reliability long-life product. The National Secure Manufacturing Center business unit of the Kansas City Plant (herein called KCP) designs and manufactures complex electrical and mechanical components used in extreme environments. The material manufacturing heritage is founded in the systems design to manufacturing practices that support the U.S. Department of Energy’s National Nuclear Security Administration (DOE/NNSA). Material Engineers at KCP work with the systems designers to recommend materials, develop test methods, perform analytical analysis of test data, define cradle to grave needs, present final selection and fielding. The KCP material engineers typically will maintain cost control by utilizing commercial products when possible, but have the resources and to develop and produce unique formulations as necessary. This approach is currently being used to mature technologies to manufacture materials with improved characteristics using nano-composite filler materials that will enhance system design and production. For some products the engineers plan and carry out science-based life-cycle material surveillance processes. Recent examples of the approach include refurbished manufacturing of the high voltage power supplies for cockpit displays in operational aircraft; dry film lubricant application to improve bearing life for guided munitions gyroscope gimbals, ceramic substrate design for electrical circuit manufacturing, and tailored polymeric materials for various systems. The following examples show evidence of KCP concurrent design-to-manufacturing techniques used to achieve system solutions that satisfy or exceed demanding requirements.

  8. Industrial Scale Demonstration of Smart Manufacturing Achieving...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scale Demonstration of Smart Manufacturing Achieving Transformational Energy Productivity Gains Development of an Open Architecture, Widely Applicable Smart Manufacturing...

  9. Industrial Scale Demonstration of Smart Manufacturing Achieving...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scale Demonstration of Smart Manufacturing Achieving Transformational Energy Productivity Gains Industrial Scale Demonstration of Smart Manufacturing Achieving...

  10. Clean Energy Manufacturing Initiative Midwest Regional Summit...

    Office of Environmental Management (EM)

    Clean Energy Manufacturing Initiative Midwest Regional Summit: Lightweighting Breakout Session Summary Clean Energy Manufacturing Initiative Midwest Regional Summit: Lightweighting...

  11. Manufacturing Energy Bandwidth Studies: Chemical, Peroleum Refining, Pulp and Paer, and Iron and Steel Sectors

    E-Print Network [OSTI]

    Brueske, S.; Cresko, J.; Capenter, A.

    2014-01-01T23:59:59.000Z

    on the chemical product results and other energy consumption details can be found in the bandwidth studies. MECS Data/Energy Footprints A large range of sources were consulted to provide data and insight on the manufacturing process and product energy... Consumption Survey (MECS) data, for the latest survey year of 2010 [1]. MECS is a national sample survey of U.S. manufacturing establishments conducted every four years. Information is collected and reported on U.S. manufacturing energy consumption...

  12. Manufacturing Demonstration Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9Novemberutilities and aHistoricMannManufacturing

  13. BIRCK NANOTECHNOLOGY CENTER ESTABLISHED MARCH, 2001

    E-Print Network [OSTI]

    Holland, Jeffrey

    BIRCK NANOTECHNOLOGY CENTER ESTABLISHED MARCH, 2001 As one of the first academic nanotechnology research centers in the US, the Birck Nanotechnology Center provides solutions to challenges in healthcare nanotechnology centers in the US; the 187,000 sq.ft. building includes a 25,000 sq. ft. cleanroom that is 45

  14. The Impact of Dr.Shigeo Shingo on Modern Manufacturing Practices

    E-Print Network [OSTI]

    Vardeman, Stephen B.

    1 The Impact of Dr.Shigeo Shingo on Modern Manufacturing Practices IE 361 Dr. Stephen B. Vardem manufacturing fundamentals. Biography Dr. Shigeo's expertise was a result of his vast experience and knowledge. In addition, by focusing on production rather than management alone, he was able to establish himself

  15. Cure Kinetics of Aqueous PhenolFormaldehyde Resins Used for Oriented Strandboard Manufacturing: Analytical

    E-Print Network [OSTI]

    Cure Kinetics of Aqueous Phenol­Formaldehyde Resins Used for Oriented Strandboard Manufacturing their manufacture.2 Differential scanning calorimetry (DSC) is a well-established technique to study the polymer. To evaluate the effect of lignin addition on the curing of phenolic resin, Barry et al.16 obtained

  16. Superior Processes at Industrial Equipment Manufacturers Benchmark best practices and performances for next-generation success

    E-Print Network [OSTI]

    Narasayya, Vivek

    Superior Processes at Industrial Equipment Manufacturers Benchmark best practices and performances invest time, effort and resources in establishing the best practices, technology systems and solutions at a pace faster than the competition. · Engaged people/human capital acquisition, development

  17. Manufacturing consumption of energy 1991

    SciTech Connect (OSTI)

    Not Available

    1994-12-01T23:59:59.000Z

    This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

  18. Sandia National Laboratories: wind manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the Wind Energy Manufacturing Laboratory-a joint effort of researchers from TPI Composites, a Scottsdale, Arizona-based company that operates a turbine blade factory in...

  19. Manufacturing Spotlight: Boosting American Competitiveness

    Office of Energy Efficiency and Renewable Energy (EERE)

    Find out how the Energy Department is helping bring new clean energy technologies to the marketplace and make manufacturing processes more energy efficient.

  20. Manufacturing Demonstration Facility Workshop Videos

    Broader source: Energy.gov [DOE]

    Session recordings from the Manufacturing Demonstration Facility Workshop held in Chicago, Illinois, on March 12, 2012, and simultaneously broadcast as a webinar.

  1. Wireless technology for integrated manufacturing

    SciTech Connect (OSTI)

    Manges, W.W.; Allgood, G.O.; Shourbaji, A.A.

    1996-08-01T23:59:59.000Z

    This paper describes the ground breaking work in Oak Ridge facilities that now leads us to the brink of the wireless revolution in manufacturing. The focus is on solving tough technological problems necessary for success and addressing the critical issues of throughput, security, reliability, and robustness in applying wireless technology to manufacturing processes. Innovative solutions to these problems are highlighted through detailed designs and testbed implementations that demonstrate key concepts. The DOE-Oak Ridge complex represented by the Oak Ridge Centers for Manufacturing Technologies (ORCMT) continues to develop these technologies and will continue to focus on solving tough manufacturing problems.

  2. Solar collector manufacturing activity 1993

    SciTech Connect (OSTI)

    Not Available

    1994-08-15T23:59:59.000Z

    The report presents national and State-level data on the U.S. solar thermal collector and photovoltaic cell and module manufacturing industry.

  3. Survey of US Department of Defense Manufacturing Technology Program activities applicable to civilian manufacturing industries. Final report

    SciTech Connect (OSTI)

    Azimi, S.A.; Conrad, J.L.; Reed, J.E.

    1985-03-01T23:59:59.000Z

    Intent of the survey was to identify and characterize activities potentially applicable to improving energy efficiency and overall productivity in the civilian manufacturing industries. The civilian industries emphasized were the general manufacturing industries (including fabricated metals, glass, machinery, paper, plastic, textile, and transportation equipment manufacturing) and the primary metals industries (including primary aluminum, copper, steel, and zinc production). The principal steps in the survey were to: develop overview taxonomies of the general manufacturing and primary metals industries as well as specific industry taxonomies; identify needs and opportunities for improving process energy efficiency and productivity in the industries included; identify federal programs, capabilities, and special technical expertise that might be relevant to industry's needs and opportunities; contact federal laboratories/facilities, through visits and other forms of inquiry; prepare formatted profiles (descriptions) potentially applicable work efforts; review findings with industry; and compile and evaluate industry responses.

  4. Cost and Energy Consumption Optimization of Product Manufacture in a Flexible Manufacturing System

    E-Print Network [OSTI]

    Diaz, Nancy; Dornfeld, David

    2012-01-01T23:59:59.000Z

    Product Manufacture in a Flexible Manufacturing System Nancypart production under flexible process routings is studiedMachining; Cost; Energy; Flexible Manufacturing INTRODUCTION

  5. Petrick Technology Trends Of Manufacturing

    E-Print Network [OSTI]

    #12;323 Petrick Technology Trends chapter 9 The Future Of Manufacturing Irene Petrick Technology Trends This chapter is a story about the future of manufacturing based on three predictions: · that firms sophisticated modeling and simulation of both new products and production processes; · that additive

  6. 2010 Manufacturing Readiness Assessment Update to the 2008 Report for Fuel Cell Stacks and Systems for the Backup Power and Materials Handling Equipment Markets

    SciTech Connect (OSTI)

    Wheeler, D.; Ulsh, M.

    2012-08-01T23:59:59.000Z

    In 2008, the National Renewable Energy Laboratory (NREL), under contract to the US Department of Energy (DOE), conducted a manufacturing readiness assessment (MRA) of fuel cell systems and fuel cell stacks for back-up power and material handling applications (MHE). To facilitate the MRA, manufacturing readiness levels (MRL) were defined that were based on the Technology Readiness Levels previously established by the US Department of Energy (DOE). NREL assessed the extensive existing hierarchy of MRLs developed by Department of Defense (DoD) and other Federal entities, and developed a MRL scale adapted to the needs of the Fuel Cell Technologies Program (FCTP) and to the status of the fuel cell industry. The MRL ranking of a fuel cell manufacturing facility increases as the manufacturing capability transitions from laboratory prototype development through Low Rate Initial Production to Full Rate Production. DOE can use MRLs to address the economic and institutional risks associated with a ramp-up in polymer electrolyte membrane (PEM) fuel cell production. In 2010, NREL updated this assessment, including additional manufacturers, an assessment of market developments since the original report, and a comparison of MRLs between 2008 and 2010.

  7. Establishing a Comprehensive Wind Energy Program

    SciTech Connect (OSTI)

    Fleeter, Sanford [Purdue University

    2012-09-30T23:59:59.000Z

    This project was directed at establishing a comprehensive wind energy program in Indiana, including both educational and research components. A graduate/undergraduate course ME-514 - Fundamentals of Wind Energy has been established and offered and an interactive prediction of VAWT performance developed. Vertical axis wind turbines for education and research have been acquired, instrumented and installed on the roof top of a building on the Calumet campus and at West Lafayette (Kepner Lab). Computational Fluid Dynamics (CFD) calculations have been performed to simulate these urban wind environments. Also, modal dynamic testing of the West Lafayette VAWT has been performed and a novel horizontal axis design initiated. The 50-meter meteorological tower data obtained at the Purdue Beck Agricultural Research Center have been analyzed and the Purdue Reconfigurable Micro Wind Farm established and simulations directed at the investigation of wind farm configurations initiated. The virtual wind turbine and wind turbine farm simulation in the Visualization Lab has been initiated.

  8. Out of Bounds Additive Manufacturing Christopher

    E-Print Network [OSTI]

    Pennycook, Steve

    #12;Out of Bounds Additive Manufacturing Christopher Holshouser, Clint Newell, and Sid Palas, Tenn. The Big Area Additive Manufacturing system has the potential to manufacture parts completely) are working on an additive manufacturing (AM) system (Big Area Additive Manufacturing, or BAAM) capable

  9. Additive Manufacturing Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    market by industrial companies, 58 including the Electro Optical Systems (EOS) in Germany, Arcam in Sweden, MCP Tooling Technologies in 59 the UK, and Stratasys, 3D Systems,...

  10. MANUFACTURING ACCELERATING THE INCORPORATION OF MATERIALS

    E-Print Network [OSTI]

    Magee, Joseph W.

    MANUFACTURING ACCELERATING THE INCORPORATION OF MATERIALS ADVANCES INTO MANUFACTURING PROCESSES NATIONAL NEED The proposed topic "Accelerating the Incorporation of Materials Advances into Manufacturing organizations, leading researchers from academic institutions, and others. Materials performance is often

  11. Additive Manufacturing Cluster Strategy | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additive Manufacturing Cluster Strategy SHARE Additive Manufacturing Cluster Strategy As the nation's premier research laboratory, ORNL is one of the world's most capable resources...

  12. Advanced Qualification of Additive Manufacturing Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Events Additive Manufacturing Workshop Poster Abstract Submission - deadline July 10, 2015 Advanced Qualification of Additive Manufacturing Materials using in situ sensors,...

  13. Welcome and Advanced Manufacturing Partnership (Text Version...

    Broader source: Energy.gov (indexed) [DOE]

    200 school aged students go into this manufacturing demonstration facility and make 3D printing or other manufacturing parts. Design and make parts for their robots. For their...

  14. National Electrical Manufacturers Association (NEMA) Response...

    Energy Savers [EERE]

    Electrical Manufacturers Association (NEMA) Response to Smart Grid RFI National Electrical Manufacturers Association (NEMA) Response to Smart Grid RFI The National Electrical...

  15. Technologies Enabling Agile Manufacturing (TEAM) ? an ORCMT...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies Enabling Agile Manufacturing (TEAM) - An ORCMT success story Technologies Enabling Agile Manufacturing (TEAM) was one of the larger programs to come from the...

  16. Alternative Energy Product Manufacturers Tax Credit | Department...

    Broader source: Energy.gov (indexed) [DOE]

    and Revenue Provider New Mexico Energy, Minerals and Natural Resources Department The Alternative Energy Product Manufacturers tax credit may be claimed for manufacturing...

  17. Industrial Activities at DOE: Efficiency, Manufacturing, Process...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials R&D More Documents & Publications Fiber Reinforced Polymer Composite Manufacturing Workshop Advanced Manufacturing Office Overview Microwave and Radio Frequency Workshop...

  18. Additive Manufacturing Opportunities for Transportation | ornl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additive Manufacturing Opportunities for Transportation Mar 13 2015 10:00 AM - 11:00 AM Lonnie Love, Manufacturing Systems Research Group Transportation Science Seminar Series...

  19. Clean Energy Manufacturing Initiative: Increasing American Competitive...

    Broader source: Energy.gov (indexed) [DOE]

    for a Clean Energy Manufacturing Innovation Institute related to composite materials and structures. The Manufacturing Demonstration Facility at Oak Ridge National...

  20. Vehicle Technologies Office Merit Review 2014: Manufacturability...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturability Study and Scale-Up for Large Format Lithium Ion Batteries Vehicle Technologies Office Merit Review 2014: Manufacturability Study and Scale-Up for Large Format...

  1. Advanced Manufacturing Initiative Improves Turbine Blade Productivity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Manufacturing Initiative Improves Turbine Blade Productivity Advanced Manufacturing Initiative Improves Turbine Blade Productivity May 20, 2011 - 2:56pm Addthis This is an...

  2. Manufacturing Barriers to High Temperature PEM Commercialization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Barriers to High Temperature PEM Commercialization Manufacturing Barriers to High Temperature PEM Commercialization Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D...

  3. 2010 Manufacturing Energy and Carbon Footprints: Definitions...

    Broader source: Energy.gov (indexed) [DOE]

    key terms and details assumptions and references used in the Manufacturing Energy and Carbon Footprints (2010 MECS) Definitions and Assumptions for the Manufacturing Energy and...

  4. Understanding Manufacturing Energy and Carbon Footprints, October...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Understanding the 2010 Manufacturing Energy and Carbon Footprints U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis Cement...

  5. Process systems engineering of continuous pharmaceutical manufacturing

    E-Print Network [OSTI]

    Abel, Matthew J

    2010-01-01T23:59:59.000Z

    Continuous manufacturing offers a number of operational and financial benefits to pharmaceutical companies. This research examines the critical blending step for continuous pharmaceutical manufacturing and the characteristics ...

  6. Visualization of information with an established order

    DOE Patents [OSTI]

    Wong, Pak Chung (Richland, WA); Foote, Harlan P. (Richmond, WA); Thomas, James J. (Richland, WA); Wong, Kwong-Kwok (Sugar Land, TX)

    2007-02-13T23:59:59.000Z

    Among the embodiments of the present invention is a system including one or more processors operable to access data representative of a biopolymer sequence of monomer units. The one or more processors are further operable to establish a pattern corresponding to at least one fractal curve and generate one or more output signals corresponding to a number of image elements each representative of one of the monomer units. Also included is a display device responsive to the one or more output signals to visualize the biopolymer sequence by displaying the image elements in accordance with the pattern.

  7. Deputy Director, Advanced Manufacturing Office

    Broader source: Energy.gov [DOE]

    This position is located in the Advanced Manufacturing Office (AMO), within the Office of Energy Efficiency and Renewable Energy (EERE). EERE leads the U.S. Department of Energy's efforts to...

  8. Wind Energy Manufacturing Tax Incentive

    Broader source: Energy.gov [DOE]

    With the passage of [http://www.arkansasenergy.org/media/261385/act736.pdf HB 2230 (2009)] in April 2009, the Arkansas Legislature expanded a tax incentive for manufacturers of windmill blades or...

  9. Manufacturing System Design Framework Manual

    E-Print Network [OSTI]

    Vaughn, Amanda

    2002-01-01T23:59:59.000Z

    Previous Lean Aerospace Initiative research in factory operations had indicated that the greatest performance gains are realized when the manufacturing system is designed from the top down and from supplier to the customer. ...

  10. CFL Manufacturers: ENERGY STAR Letters

    Broader source: Energy.gov [DOE]

    DOE issued letters to 25 manufacturers of compact fluorescent lamps (CFLs) involving various models after PEARL Cycle 9 testing indicated that the models do not meet the ENERGY STAR specification and, therefore, are disqualified from the ENERGY STAR Program.

  11. SSL Manufacturing Roadmap

    Broader source: Energy.gov (indexed) [DOE]

    than that of the substrate. Some low-index materials being explored include Teflon, aerogels, graded films of SiO 2 and TiO 2 , and layers of SiO 2 . Very good results have been...

  12. Manufacturing development of low activation vanadium alloys

    SciTech Connect (OSTI)

    Smith, J.P.; Johnson, W.R.; Baxi, C.B.

    1996-10-01T23:59:59.000Z

    General Atomics is developing manufacturing methods for vanadium alloys as part of a program to encourage the development of low activation alloys for fusion use. The culmination of the program is the fabrication and installation of a vanadium alloy structure in the DIII-D tokamak as part of the Radiative Divertor modification. Water-cooled vanadium alloy components will comprise a portion of the new upper divertor structure. The first step, procuring the material for this program has been completed. The largest heat of vanadium alloy made to date, 1200 kg of V-4Cr-4Ti, has been produced and is being converted into various product forms. Results of many tests on the material during the manufacturing process are reported. Research into potential fabrication methods has been and continues to be performed along with the assessment of manufacturing processes particularly in the area of joining. Joining of vanadium alloys has been identified as the most critical fabrication issue for their use in the Radiative Divertor Program. Joining processes under evaluation include resistance seam, electrodischarge (stud), friction and electron beam welding. Results of welding tests are reported. Metallography and mechanical tests are used to evaluate the weld samples. The need for a protective atmosphere during different welding processes is also being determined. General Atomics has also designed, manufactured, and will be testing a helium-cooled, high heat flux component to assess the use of helium cooled vanadium alloy components for advanced tokamak systems. The component is made from vanadium alloy tubing, machined to enhance the heat transfer characteristics, and joined to end flanges to allow connection to the helium supply. Results are reported.

  13. Review of the thermal energy standards for manufactured housing proposed by the Manufactured Housing Institute Consensus Committee

    SciTech Connect (OSTI)

    Conner, C.C.

    1992-02-01T23:59:59.000Z

    Congress passed legislation that requires the US Department of Housing and Urban Development (HUD) to revise the energy efficiency standards for manufactured housing contained in the Manufactured Home Construction and Safety Standards (MHCSS). The Manufactured Housing Institute's Consensus Committee (MHICC) proposed revised standards to HUD based on an analysis contained in a 1989 report by E. Levy. This document is primarily a review of the Levy report, including the methods and inputs to that analysis. The approach to be used in developing the revised standard was specified by Congress as a cost-benefit analysis in which the costs of energy efficiency measures (EEM) were balanced against the benefits of energy savings. The resulting optimum specified an overall level of energy efficiency in terms of a maximum allowable building shell U-value (overall thermal transmittance) that produced the lowest life-cycle cost to the owner of a manufactured home. In his 1989 analysis, this was the general approach used by Levy.

  14. manufacturing 7%government

    E-Print Network [OSTI]

    Seamons, Kent E.

    magnetic resonance spectrometers, all of which are used by undergraduate chemistry stu- dents at Byu test tubes and beakers. It includes working with a variety of apparatus and instruments such as mass spectrometers, calorimeters, chromatographs, ultracentrifuges, lasers, X-ray diffracto- meters, and nuclear

  15. Designing a National Network for Manufacturing Innovation

    E-Print Network [OSTI]

    Designing a National Network for Manufacturing Innovation NNMI and The Additive Manufacturing Pilot Introduction · NNMI principles · Public NMMI Design · Pilot Institute on Additive Manufacturing #12;IMI Mission Process, such as Additive Manufacturing An Advanced Material ­ e.g. lightweight, low cost carbon fiber

  16. Method of manufacturing a large-area segmented photovoltaic module

    DOE Patents [OSTI]

    Lenox, Carl

    2013-11-05T23:59:59.000Z

    One embodiment of the invention relates to a segmented photovoltaic (PV) module which is manufactured from laminate segments. The segmented PV module includes rectangular-shaped laminate segments formed from rectangular-shaped PV laminates and further includes non-rectangular-shaped laminate segments formed from rectangular-shaped and approximately-triangular-shaped PV laminates. The laminate segments are mechanically joined and electrically interconnected to form the segmented module. Another embodiment relates to a method of manufacturing a large-area segmented photovoltaic module from laminate segments of various shapes. Other embodiments relate to processes for providing a photovoltaic array for installation at a site. Other embodiments and features are also disclosed.

  17. Development of High Temperature Capacitor Technology and Manufacturing Capability

    SciTech Connect (OSTI)

    None

    2011-05-15T23:59:59.000Z

    The goal of the Development of High Temperature Capacitor Technology and Manufacturing Capability program was to mature a production-ready supply chain for reliable 250°C FPE (fluorinated polyester) film capacitors by 2011. These high-temperature film capacitors enable both the down hole drilling and aerospace industries by enabling a variety of benefits including: ? Deeper oil exploration in higher temperature and pressure environments ? Enabling power electronic and control equipment to operate in higher temperature environments ? Enabling reduced cooling requirements of electronics ? Increasing reliability and life of capacitors operating below rated temperature ? Enabling capacitors to handle higher electrical losses without overheating. The key challenges to bringing the FPE film capacitors to market have been manufacturing challenges including: ? FPE Film is difficult to handle and wind, resulting in poor yields ? Voltage breakdown strength decreases when the film is wound into capacitors (~70% decrease) ? Encapsulation technologies must be improved to enable higher temperature operation ? Manufacturing and test cycle time is very long As a direct result of this program most of the manufacturing challenges have been met. The FPE film production metalization and winding yield has increased to over 82% from 70%, and the voltage breakdown strength of the wound capacitors has increased 270% to 189 V/?m. The high temperature packaging concepts are showing significant progress including promising results for lead attachments and hermetic packages at 200°C and non-hermetic packages at 250°C. Manufacturing and test cycle time will decrease as the market for FPE capacitors develops.

  18. Manufacturing Energy and Carbon Footprints (2006 MECS)

    Broader source: Energy.gov [DOE]

    Energy and Carbon Footprints provide a mapping of energy from supply to end use in manufacturing. They show us where energy is used and lost—and where greenhouse gases (GHGs) are emitted. Footprints are available below for 15 manufacturing sectors (representing 94% of all manufacturing energy use) and for U.S. manufacturing as a whole. Analysis of these footprints is also available in the U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis report.

  19. Study of the Heating Load of a Manufactured Space with a Gas-fired Radiant Heating System

    E-Print Network [OSTI]

    Zheng, X.; Dong, Z.

    2006-01-01T23:59:59.000Z

    A thermal balance mathematics model of a manufactured space with a gas-fired radiant heating system is established to calculate the heating load. Computer programs are used to solve the model. Envelope internal surface temperatures under different...

  20. Study of the Heating Load of a Manufactured Space with a Gas-fired Radiant Heating System 

    E-Print Network [OSTI]

    Zheng, X.; Dong, Z.

    2006-01-01T23:59:59.000Z

    A thermal balance mathematics model of a manufactured space with a gas-fired radiant heating system is established to calculate the heating load. Computer programs are used to solve the model. Envelope internal surface temperatures under different...

  1. Power Quality from the Manufacturer’s Standpoint

    E-Print Network [OSTI]

    McEachern, A.

    Power quality is an unstable field (if you'll pardon the double meaning). It's in its infancy; there isn't general agreement on much, not even terminology. As an instrument manufacturer in the field, I'm particularly concerned with two philosophical...

  2. Manufacturing for the Hydrogen Economy Manufacturing Research & Development

    E-Print Network [OSTI]

    to coordinate and leverage the current federal efforts focused on manufacturability issues such as low-cost of the hydrogen and fuel cell technologies needed to move the United States toward a future hydrogen economy of a hydrogen energy economy, moving from today's laboratory-scale fabrication technologies to high

  3. Conducting a Motor Survey: Key Step for Establishing a Motor Management Policy

    E-Print Network [OSTI]

    Miller, R. B.

    Roughly 70% of the energy consumed by manufacturing processes is used by electric motors. According to the U.S. Department of Energy, greater attention to motor systems management can reduce motor-related energy costs by 18%. Establishing a motor...

  4. Air cathode structure manufacture

    DOE Patents [OSTI]

    Momyer, William R. (Palo Alto, CA); Littauer, Ernest L. (Los Altos Hills, CA)

    1985-01-01T23:59:59.000Z

    An improved air cathode structure for use in primary batteries and the like. The cathode structure includes a matrix active layer, a current collector grid on one face of the matrix active layer, and a porous, nonelectrically conductive separator on the opposite face of the matrix active layer, the collector grid and separator being permanently bonded to the matrix active layer. The separator has a preselected porosity providing low IR losses and high resistance to air flow through the matrix active layer to maintain high bubble pressure during operation of the battery. In the illustrated embodiment, the separator was formed of porous polypropylene. A thin hydrophobic film is provided, in the preferred embodiment, on the current collecting metal grid.

  5. Manufacturing Energy and Carbon Footprints 

    E-Print Network [OSTI]

    Brueske, S.; Lorenz, T.

    2012-01-01T23:59:59.000Z

    Significant opportunities exist for improving energy efficiency in U.S. manufacturing. A first step in realizing these opportunities is to identify how industry is using energy. Where does it come from? What form is it in? Where is it used? How much...

  6. Additive manufacturing method of producing

    E-Print Network [OSTI]

    Painter, Kevin

    Additive manufacturing method of producing silver or copper tracks on polyimide film Problem/stripping) using an additive process support by a novel bio- degradable photo-initiator package. technology. Building on previous work by Hoyd- Gigg Ng et al. [1,2], Heriot-Watt has developed an additive film

  7. Manufacture of finely divided carbon

    SciTech Connect (OSTI)

    Walker, D.G.

    1980-01-22T23:59:59.000Z

    Finely divided carbon is manufactured by a process producing a gaseous stream containing carbon monoxide by reacting coal and air in a slagging ash gasifier, separating carbon monoxide from the gaseous mixture, and disproportionating the carbon monoxide to produce finely divided carbon and carbon dioxide, the latter of which is recycled to the gasifier.

  8. Optimizing Manufactured Housing Energy Use

    E-Print Network [OSTI]

    McGinley, W. M.; Jones, A.; Turner, C.; Chandra, S.; Beal, D.; Parker, D. S.; Moyer, N.; McIlvaine, J.

    2004-01-01T23:59:59.000Z

    In partnership with the Florida Solar Energy Center (FSEC), two manufactured homes were located on North Carolina A&T State University's campus in Greensboro, NC and used in a side-by-side energy consumption comparison. One of the homes was built...

  9. Process for manufacturing multilayer capacitors

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); Holcombe, Cressie E. (Knoxville, TN); Dykes, Norman L. (Oak Ridge, TN)

    1996-01-01T23:59:59.000Z

    The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation.

  10. Manufacturing Energy and Carbon Footprints

    E-Print Network [OSTI]

    Brueske, S.; Lorenz, T.

    2012-01-01T23:59:59.000Z

    Significant opportunities exist for improving energy efficiency in U.S. manufacturing. A first step in realizing these opportunities is to identify how industry is using energy. Where does it come from? What form is it in? Where is it used? How much...

  11. Establishing Design Requirements for Energy

    Broader source: Energy.gov [DOE]

    Programming defines details about the project, including square footage, types of building space, and use. The team should make decisions to define the energy needs of the building. Beyond...

  12. Center for Nano and Micro Manufacturing Chemical Hygiene Plan

    E-Print Network [OSTI]

    Woodall, Jerry M.

    Center for Nano and Micro Manufacturing Chemical Hygiene Plan Vers. 12/13 Page 1 Chemical Hygiene have a written Chemical Hygiene Plan. The Chemical Hygiene Plan includes laboratory-specific hazards. If you have any questions about this Chemical Hygiene Plan, please email Corey Wolin at cdwolin

  13. Advanced Battery Manufacturing (VA)

    SciTech Connect (OSTI)

    Stratton, Jeremy

    2012-09-30T23:59:59.000Z

    LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATT’s products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATT’s work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease payments for space to the IDA. A commercial venture is being formed to utilize the LiFeBATT product for consumer use in enabling photovoltaic powered boat lifts. Field tests of the system have proven to be very effective and commercially promising. This venture is expected to result in significant sales within the next six months.

  14. Including costs of supply chain risk in strategic sourcing decisions

    E-Print Network [OSTI]

    Jain, Avani

    2009-01-01T23:59:59.000Z

    Cost evaluations do not always include the costs associated with risks when organizations make strategic sourcing decisions. This research was conducted to establish and quantify the impact of risks and risk-related costs ...

  15. A Road Map for Success: How Northwest Manufactured Housing Conservation Efforts Revolutionized an Industry.

    SciTech Connect (OSTI)

    Gilbertson, William L.

    1993-04-01T23:59:59.000Z

    The evolution of an ongoing Bonneville Power Administration effort to improve the energy efficiency of manufactured homes is chronicled in this informal history. Over the past nine years, Bonneville`s manufactured housing project has undertaken many activities, including technical studies, cooperative ventures, design studies, and information dissemination. These activities are covered.

  16. Marketing energy conservation options to Northwest manufactured home buyers. Revision 1

    SciTech Connect (OSTI)

    Hendrickson, P.L.; Mohler, B.L.; Taylor, Z.T.; Lee, A.D.; Onisko, S.A.

    1985-10-01T23:59:59.000Z

    Manufactured, or HUD-Code, homes comprise a growing share of the housing stock in the Northwest, as well as nationally. Their relatively low cost has made them especially attractive to lower income families, first-time home-buyers, and retired persons. The characteristics of manufactured home (MH) buyers, the unique energy consumption characteristics of the homes, and their increasing market share make this market an especially critical one for energy consumption and conservation planning in the Northwest. This study relies on extensive, existing survey data and new analyses to develop information that can potentially assist the design of a marketing plan to achieve energy conservation in new manufactured homes. This study has the objective of assisting BPA in the development of a regional approach in which numerous organizations and parties would participate to achieve conservation in new manufactured homes. A previous survey and information collected for this study from regional dealers and manufacturers provide an indication of the energy conservation options being sold to manufactured home buyers in the PNW. Manufacturers in the Northwest appear to sell homes that usually exceed the HUD thermal requirements. Manufacturers typically offer efficiency improvements in packages that include fixed improvements in insulation levels, glazing, and infiltration control. Wholesale costs of these packages range from about $100 to $1500. Typical packages include significant upgrades in floor insulation values with modest upgrades in ceilings and walls. This study identifies trends and impacts that a marketing plan should consider to adequately address the financial concerns of manufactured home buyers.

  17. Manufactured Home Testing in Simulated and Naturally Occurring High Winds

    SciTech Connect (OSTI)

    W. D. Richins; T. K. Larson

    2006-08-01T23:59:59.000Z

    A typical double-wide manufactured home was tested in simulated and naturally occurring high winds to understand structural behavior and improve performance during severe windstorms. Seven (7) lateral load tests were conducted on a double-wide manufactured home at a remote field test site in Wyoming. An extensive instrumentation package monitored the overall behavior of the home and collected data vital to validating computational software for the manufactured housing industry. The tests were designed to approach the design load of the home without causing structural damage, thus allowing the behavior of the home to be accessed when the home was later exposed to high winds (to 80-mph). The data generally show near-linear initial system response with significant non-linear behavior as the applied loads increase. Load transfer across the marriage line is primarily compression. Racking, while present, is very small. Interface slip and shear displacement along the marriage line are nearly insignificant. Horizontal global displacements reached 0.6 inch. These tests were designed primarily to collect data necessary to calibrate a desktop analysis and design software tool, MHTool, under development at the Idaho National Laboratory specifically for manufactured housing. Currently available analysis tools are, for the most part, based on methods developed for “stick built” structures and are inappropriate for manufactured homes. The special materials utilized in manufactured homes, such as rigid adhesives used in the connection of the sheathing materials to the studs, significantly alter the behavior of manufactured homes under lateral loads. Previous full scale tests of laterally loaded manufactured homes confirm the contention that conventional analysis methods are not applicable. System behavior dominates the structural action of manufactured homes and its prediction requires a three dimensional analysis of the complete unit, including tiedowns. This project was sponsored by the US Department of Energy, US Department of Housing and Urban Development, and the Manufactured Housing Institute. The results of this research can lead to savings in annual losses of life and property by providing validated information to enable the advancement of code requirements and by developing engineering software that can predict and optimize wind resistance.

  18. An analysis of buildings-related energy use in manufacturing

    SciTech Connect (OSTI)

    Niefer, M.J.; Ashton, W.B.

    1997-04-01T23:59:59.000Z

    This report presents research by the Pacific Northwest National Laboratory (PNNL) to develop improved estimates of buildings-related energy use in US manufacturing facilities. The research was supported by the Office of Building Technology, State and Community Programs (BTS), Office of Energy Efficiency and Renewable Energy (EERE), US Department of Energy (DOE). The research scope includes only space conditioning and lighting end uses. In addition, this study also estimates the energy savings potential for application of selected commercial buildings technologies being developed by the BTS office to manufacturing and other industrial process facilities. 17 refs., 2 figs., 19 tabs.

  19. Artisan Manufacturing: Order (2010-CW-0712)

    Broader source: Energy.gov [DOE]

    DOE ordered Artisan Manufacturing Company, Inc., to pay a $5,000 civil penalty after finding Artisan Manufacturing had failed to certify that certain models of faucets comply with the applicable water conservation standard.

  20. Solid Oxide Fuel Cell Manufacturing Overview

    E-Print Network [OSTI]

    Solid Oxide Fuel Cell Manufacturing Overview Hydrogen and Fuel Cell Technologies Manufacturing R Reserved. 3 The Solid Oxide Fuel Cell Electrochemistry #12;Copyright © 2011 Versa Power Systems. All Rights

  1. Manufacturing Metallic Parts with Designed Mesostructure

    E-Print Network [OSTI]

    Additive Manufacturing Laser Engineered Net Shaping Electron Beam Melting Williams, C. B., F. M. Mistree, D Additive Manufacturing © Christopher B. Williams Electron Beam Melting Electron Beam Melting Direct Metal

  2. Mechanics and Design, Manufacturing Professor Hani Naguib

    E-Print Network [OSTI]

    Mechanical and Industrial Engineering Manufacturing What is Manufacturing? The transformation of materials. Apple Canada(Se12), Revenue: $5,067,109 9. CGI Group(Se12), Revenue: $4,786,857 10. Siemens Canada(Se12

  3. Clean Energy Manufacturing Incentive Grant Program

    Broader source: Energy.gov [DOE]

    "Clean energy manufacturer" is defined as a biofuel producer, a manufacturer of renewable energy or nuclear equipment/products, or "products used for energy conservation, storage, or grid efficie...

  4. Clean Energy Manufacturing Incentive Program (Virginia)

    Broader source: Energy.gov [DOE]

    In April 2011, Virginia created the Clean Energy Manufacturing Incentive Grant Program. The program is meant to replace the [http://en.openei.org/wiki/Solar_Manufacturing_Incentive_Grant_%28SMIG%29...

  5. Arnold Schwarzenegger HIGH-VOLUME MANUFACTURING FOR

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor HIGH-VOLUME MANUFACTURING FOR LOW-COST, FLEXIBLE SOLAR CELL Prepared-VOLUME MANUFACTURING FOR LOW-COST, FLEXIBLE SOLAR CELL EISG AWARDEE InterPhases Research 166 N. Moorpark Rd. Suite 204

  6. USA Manufacturing: Order (2013-CE-5336)

    Broader source: Energy.gov [DOE]

    DOE ordered USA Manufacturing to pay a $8,000 civil penalty after finding USA Manufacturing had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  7. Goodman Manufacturing: Order (2012-CE-1509)

    Broader source: Energy.gov [DOE]

    DOE ordered Goodman Manufacturing Company L.P. to pay an $8,000 civil penalty after finding Goodman Manufacturing had failed to certify that certain room air conditioners comply with the applicable energy conservation standard.

  8. Goodman Manufacturing: Proposed Penalty (2011-SE-4301)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Goodman Manufacturing manufactured and distributed noncompliant basic model CPC180* commercial package air conditioners in the U.S.

  9. Mechanical and Manufacturing Engineering Petroleum Engineering Minor

    E-Print Network [OSTI]

    Calgary, University of

    of Chemical and Petroleum Engineering for their petroleum engineering minor. As well, mechanical engineeringMechanical and Manufacturing Engineering Petroleum Engineering Minor The Department of Mechanical and Manufacturing Engineering offers a minor in petroleum engineering within the mechanical engineering major

  10. INFORMATION SYSTEMS SUPPORT FOR MANUFACTURING PROCESSES

    E-Print Network [OSTI]

    activities. The feature overlapping of production planning and quality control between both systems raises and distribution (Merrit1999) and have extend their scope to support quality control and production tracking: Manufacturing Enterprises, Enterprise Resource Planning, Manufacturing Execution Systems, Discrete Processes

  11. Objective assessment of manufacturing technology investments

    E-Print Network [OSTI]

    Rothman, Craig Jeremy

    2012-01-01T23:59:59.000Z

    Amgen is a biotechnology company with manufacturing plants throughout the world. New manufacturing technologies are constantly being developed and implemented in order to address cost, quality, regulation, and competitive ...

  12. Refrigerator Manufacturers: Order (2013-CE-5341)

    Broader source: Energy.gov [DOE]

    DOE ordered Refrigerator Manufacturers, LLC to pay a $8,000 civil penalty after finding Refrigerator Manufacturers had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  13. Creation and sustainment of manufacturing technology roadmaps

    E-Print Network [OSTI]

    Grillon, Louis S

    2012-01-01T23:59:59.000Z

    Manufacturing technology roadmaps align manufacturing capability development to product development and the driving business need. Roadmaps allow an executable business strategy to be communicated to all levels of an ...

  14. A Review of Engineering Research in Sustainable Manufacturing

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    shape part, e.g. , additive manufacturing, Transactions offace operations. Additive manufacturing of metal componentsenvironmen- tal merits of additive manufacturing relative to

  15. Additive Manufacturing in China: Aviation and Aerospace Applications (Part 2)

    E-Print Network [OSTI]

    ANDERSON, Eric

    2013-01-01T23:59:59.000Z

    Analysis May 2013 Additive Manufacturing in China: Aviationan overview of China’s additive manufacturing industry wasmilitary achievements in additive manufacturing. 2 Initial

  16. Manufacturing Fuel Cell Manhattan Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Fuel Cell Manhattan Project Manufacturing Fuel Cell Manhattan Project The Office of Naval Research recently sponsored and completed the Manufacturing Fuel Cell...

  17. Additive Manufacturing in China: Aviation and Aerospace Applications (Part 2)

    E-Print Network [OSTI]

    ANDERSON, Eric

    2013-01-01T23:59:59.000Z

    Bulletin Analysis May 2013 Additive Manufacturing in China:an overview of China’s additive manufacturing industry wasmilitary achievements in additive manufacturing. 2 Initial

  18. Worldwide Energy and Manufacturing USA Inc formerly Worldwide...

    Open Energy Info (EERE)

    USA Inc formerly Worldwide Manufacturing USA Jump to: navigation, search Name: Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA) Place: San Bruno,...

  19. Multiverse rate equation including bubble collisions

    E-Print Network [OSTI]

    Michael P. Salem

    2013-02-19T23:59:59.000Z

    The volume fractions of vacua in an eternally inflating multiverse are described by a coarse-grain rate equation, which accounts for volume expansion and vacuum transitions via bubble formation. We generalize the rate equation to account for bubble collisions, including the possibility of classical transitions. Classical transitions can modify the details of the hierarchical structure among the volume fractions, with potential implications for the staggering and Boltzmann-brain issues. Whether or not our vacuum is likely to have been established by a classical transition depends on the detailed relationships among transition rates in the landscape.

  20. Webinar: Additive Manufacturing for Fuel Cells

    Broader source: Energy.gov [DOE]

    Video recording and text version of the webinar titled "Additive Manufacturing for Fuel Cells," originally presented on February 11, 2014.

  1. FY 2011 Honeywell Federal Manufacturing & Technologies, LLC,...

    National Nuclear Security Administration (NNSA)

    Honeywell Federal Manufacturing & Technologies, LLC, PER Summary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  2. Clean Energy Manufacturing Initiative Industrial Efficiency and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Addthis Description Industrial...

  3. FY 2009 Honeywell Federal Manufacturing & Technologies, LLC,...

    National Nuclear Security Administration (NNSA)

    Honeywell Federal Manufacturing & Technologies, LLC, PER Summary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  4. FY 2010 Honeywell Federal Manufacturing & Technologies, LLC,...

    National Nuclear Security Administration (NNSA)

    Honeywell Federal Manufacturing & Technologies, LLC, PER Summary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  5. FY 2007 Honeywell Federal Manufacturing & Technologies, LLC,...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Honeywell Federal Manufacturing & Technologies, LLC, PER Summary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  6. FY 2008 Honeywell Federal Manufacturing & Technologies, LLC,...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Honeywell Federal Manufacturing & Technologies, LLC, PER Summary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  7. FY 2006 Honeywell Federal Manufacturing & Technologies, LLC,...

    National Nuclear Security Administration (NNSA)

    Honeywell Federal Manufacturing & Technologies, LLC, PER Summary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  8. Clean Energy Manufacturing Innovation Institute for Composite...

    Broader source: Energy.gov (indexed) [DOE]

    and Fuel Cell Technologies Research, Development, and Demonstrations Funding Opportunity Announcement Webinar Slides Fiber Reinforced Polymer Composite Manufacturing Workshop...

  9. Lightweight Key Establishment for Distributed Networking Environments

    E-Print Network [OSTI]

    Martin, Keith

    / COSIC Seminar 2007 Keith Martin #12;Lightweight Key Establishment/Introduction The plan 1. Wireless sensor networks 2. A key establishment framework 3. Key establishment for grids COSIC Seminar 2007 Keith Establishment/Wireless sensor networks The "classical" scenario COSIC Seminar 2007 Keith Martin #12;Lightweight

  10. Pseudomonas fluorescens -A robust manufacturing platform

    E-Print Network [OSTI]

    Lebendiker, Mario

    Pseudomonas fluorescens -A robust manufacturing platform Reprinted from July/August 2004 Speciality at efficient- ly transporting single chain antibodies and other mammalian-derived proteins. In addition production. Dowpharma, a contract manufacturing services unit of Dow Chemical, has developed a manufacturing

  11. Additive manufacturing of metallic tracks on

    E-Print Network [OSTI]

    Painter, Kevin

    Additive manufacturing of metallic tracks on green ceramic/dielectrics Problem this technology (note: may require additional tooling/ set up time) · Rapid Prototyping & small scale manufacture microelectronics such as manufacture of LTCC ceramic/ Dielectric antenna and rapid PCB prototyping or repair

  12. ICME & MGI Big Area Additive Manufacturing

    E-Print Network [OSTI]

    ICME & MGI · Big Area Additive Manufacturing · Neutron Characterization for AM · Materials problems in additive manu- facturing (AM). Additive manufacturing, or three-dimensional (3-D) printing of the world's most advanced neu- tron facilities, the HFIR and SNS, to characterize additive manufactured

  13. Energy Manufacturing Matthew Realff and Steven Danyluk

    E-Print Network [OSTI]

    Das, Suman

    Energy Manufacturing Matthew Realff and Steven Danyluk Georgia Institute of Technology This white Foundation and held in Arlington VA, on March 24-25, 2009 on Energy Manufacturing. The workshop attendees participated in discussions and presented their views on energy manufacturing and the presentations

  14. EFFECTIVE STRUCTURAL HEALTH MONITORING WITH ADDITIVE MANUFACTURING

    E-Print Network [OSTI]

    Boyer, Edmond

    will be presented for components that can be processed by additive manufacturing (AM) or 3D printing. The origin structures. KEYWORDS : structural health monitoring methodology, 3D printing, additive manufacturing, fatigue, intelligent structure INTRODUCTION Additive manufacturing (AM), also known as 3D Printing or Rapid

  15. Manufacturing Research & Development for Systems that will

    E-Print Network [OSTI]

    focused on manufacturability issues such as low-cost, high-volume manufacturing systems, advanced to move the United States toward a future hydrogen economy. While many scientific, technical's laboratory-scale fabrication technologies to high-volume commercial manufacturing has been identified as one

  16. Method for automatically evaluating a transition from a batch manufacturing technique to a lean manufacturing technique

    DOE Patents [OSTI]

    Ivezic, Nenad; Potok, Thomas E.

    2003-09-30T23:59:59.000Z

    A method for automatically evaluating a manufacturing technique comprises the steps of: receiving from a user manufacturing process step parameters characterizing a manufacturing process; accepting from the user a selection for an analysis of a particular lean manufacturing technique; automatically compiling process step data for each process step in the manufacturing process; automatically calculating process metrics from a summation of the compiled process step data for each process step; and, presenting the automatically calculated process metrics to the user. A method for evaluating a transition from a batch manufacturing technique to a lean manufacturing technique can comprise the steps of: collecting manufacturing process step characterization parameters; selecting a lean manufacturing technique for analysis; communicating the selected lean manufacturing technique and the manufacturing process step characterization parameters to an automatic manufacturing technique evaluation engine having a mathematical model for generating manufacturing technique evaluation data; and, using the lean manufacturing technique evaluation data to determine whether to transition from an existing manufacturing technique to the selected lean manufacturing technique.

  17. "Parametric Process Optimization to Improve the Accuracy of Rapid Prototyped Stereolithography Parts," Jack Zhou, Dan Herscovici & Calvin Chen, International Journal of Machine Tools and Manufacture, No.40, 1-17,1999

    E-Print Network [OSTI]

    Zhou, Jack

    are integrated manufacturing processes that include CAD/CAM, control of laser devices, materials, manufacturing Parts," Jack Zhou, Dan Herscovici & Calvin Chen, International Journal of Machine Tools and Manufacture defaulted and user selected manufacturing parameters. Accuracy is evaluated by dimensional errors, form

  18. Manufacturing

    Office of Environmental Management (EM)

    674 Academy Press. Washington, DC. 675 Pre. 2014. SimaPro Database Manual - Methods Library (2.7). Available at: www.pre- 676 sustainability.comdownload...

  19. Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomyDr.Energy UniversityOversightFlow of Materials

  20. Research on advanced photovoltaic manufacturing technology

    SciTech Connect (OSTI)

    Jester, T.; Eberspacher, C. (Siemens Solar Industries, Camarillo, CA (United States))

    1991-11-01T23:59:59.000Z

    This report outlines opportunities for significantly advancing the scale and economy of high-volume manufacturing of high-efficiency photovoltaic (PV) modules. We propose to pursue a concurrent effort to advance existing crystalline silicon module manufacturing technology and to implement thin film CuInSe{sub 2} (CIS) module manufacturing. This combination of commercial-scale manufacturing of high-efficiency crystalline silicon modules and of pilot-scale manufacturing of low-cost thin film CIS technology will support continued, rapid growth of the US PV industry.

  1. Manufacturing Demonstration Facility Technology Collaborations for US Manufacturers in Advanced

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9Novemberutilities and aHistoricMannManufacturing

  2. Manufacturability Study and Scale-Up for Large Format Lithium...

    Broader source: Energy.gov (indexed) [DOE]

    integrators - Original equipment manufacturers * Development of processes, process optimization, manufacturing schemes, materials improvements, diagnostics, and production yield...

  3. Manufacturing Energy and Carbon Footprint Definitions and Assumptions...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Understanding Manufacturing Energy and Carbon Footprints, October 2012 2010 Manufacturing Energy and Carbon Footprints: Definitions...

  4. U.S. Wind Energy Manufacturing and Supply Chain: A Competitiveness Analysis

    SciTech Connect (OSTI)

    Fullenkamp, Patrick H; Holody, Diane S

    2014-06-15T23:59:59.000Z

    The goal of the project was to develop a greater understanding of the key factors determining wind energy component manufacturing costs and pricing on a global basis in order to enhance the competitiveness of U.S. manufacturers, and to reduce installed systems cost. Multiple stakeholders including DOE, turbine OEMs, and large component manufactures will all benefit by better understanding the factors determining domestic competitiveness in the emerging offshore and next generation land-based wind industries. Major objectives of this project were to: 1. Carry out global cost and process comparisons for 5MW jacket foundations, blades, towers, and permanent magnet generators; 2. Assess U.S. manufacturers’ competitiveness and potential for cost reduction; 3. Facilitate informed decision-making on investments in U.S. manufacturing; 4. Develop an industry scorecard representing the readiness of the U.S. manufacturers’ to produce components for the next generations of wind turbines, nominally 3MW land-based and 5MW offshore; 5. Disseminate results through the GLWN Wind Supply Chain GIS Map, a free website that is the most comprehensive public database of U.S. wind energy suppliers; 6. Identify areas and develop recommendations to DOE on potential R&D areas to target for increasing domestic manufacturing competitiveness, per DOE’s Clean Energy Manufacturing Initiative (CEMI). Lists of Deliverables 1. Cost Breakdown Competitive Analyses of four product categories: tower, jacket foundation, blade, and permanent magnet (PM) generator. The cost breakdown for each component includes a complete Bill of Materials with net weights; general process steps for labor; and burden adjusted by each manufacturer for their process categories of SGA (sales general and administrative), engineering, logistics cost to a common U.S. port, and profit. 2. Value Stream Map Competitiveness Analysis: A tool that illustrates both information and material flow from the point of getting a customer order at the manufacturing plant; to the orders being forwarded by the manufacturing plant to the material suppliers; to the material being received at the manufacturing plant and processed through the system; to the final product being shipped to the Customer. 3. Competitiveness Scorecard: GLWN developed a Wind Industry Supply Chain Scorecard that reflects U.S. component manufacturers’ readiness to supply the next generation wind turbines, 3MW and 5MW, for land-based and offshore applications. 4. Wind Supply Chain Database & Map: Expand the current GLWN GIS Wind Supply Chain Map to include offshore elements. This is an on-line, free access, wind supply chain map that provides a platform for identifying active and emerging suppliers for the land-based and offshore wind industry, including turbine component manufacturers and wind farm construction service suppliers.

  5. RECOMMENDATIONS FOR ESTABLISHING AN IDENTITY ECOSYSTEM GOVERNANCE

    E-Print Network [OSTI]

    Perkins, Richard A.

    RECOMMENDATIONS FOR ESTABLISHING AN IDENTITY ECOSYSTEM GOVERNANCE STRUCTURE THE DEPARTMENT an Identity Ecosystem Governance Structure This page is intentionally left blank. #12;Recommendations for Establishing an Identity Ecosystem Governance Structure Foreword The Internet is one of the most

  6. Manufacturing method of photonic crystal

    DOE Patents [OSTI]

    Park, In Sung; Lee, Tae Ho; Ahn, Jin Ho; Biswas, Rana; Constant, Kristen P.; Ho, Kai-Ming; Lee, Jae-Hwang

    2013-01-29T23:59:59.000Z

    A manufacturing method of a photonic crystal is provided. In the method, a high-refractive-index material is conformally deposited on an exposed portion of a periodic template composed of a low-refractive-index material by an atomic layer deposition process so that a difference in refractive indices or dielectric constants between the template and adjacent air becomes greater, which makes it possible to form a three-dimensional photonic crystal having a superior photonic bandgap. Herein, the three-dimensional structure may be prepared by a layer-by-layer method.

  7. Method for manufacturing magnetohydrodynamic electrodes

    DOE Patents [OSTI]

    Killpatrick, D.H.; Thresh, H.R.

    1980-06-24T23:59:59.000Z

    A method of manufacturing electrodes for use in a magnetohydrodynamic (MHD) generator is described comprising the steps of preparing a billet having a core of a first metal, a tubular sleeve of a second metal, and an outer sheath of an extrusile metal; evacuating the space between the parts of the assembled billet; extruding the billet; and removing the outer jacket. The extruded bar may be made into electrodes by cutting and bending to the shape required for an MHD channel frame. The method forms a bond between the first metal of the core and the second metal of the sleeve strong enough to withstand a hot and corrosive environment.

  8. Process for manufacturing tantalum capacitors

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); Holcombe, Cressie E. (Knoxville, TN); Dykes, Norman L. (Oak Ridge, TN)

    1993-01-01T23:59:59.000Z

    A process for manufacturing tantalum capacitors in which microwave energy is used to sinter a tantalum powder compact in order to achieve higher surface area and improved dielectric strength. The process comprises cold pressing tantalum powder with organic binders and lubricants to form a porous compact. After removal of the organics, the tantalum compact is heated to 1300.degree. to 2000.degree. C. by applying microwave radiation. Said compact is then anodized to form a dielectric oxide layer and infiltrated with a conductive material such as MnO.sub.2. Wire leads are then attached to form a capacitor to said capacitor is hermetically packaged to form the finished product.

  9. Process for manufacturing tantalum capacitors

    DOE Patents [OSTI]

    Lauf, R.J.; Holcombe, C.E.; Dykes, N.L.

    1993-02-02T23:59:59.000Z

    A process for manufacturing tantalum capacitors in which microwave energy is used to sinter a tantalum powder compact in order to achieve higher surface area and improved dielectric strength. The process comprises cold pressing tantalum powder with organic binders and lubricants to form a porous compact. After removal of the organics, the tantalum compact is heated to 1,300 to 2,000 C by applying microwave radiation. Said compact is then anodized to form a dielectric oxide layer and infiltrated with a conductive material such as MnO[sub 2]. Wire leads are then attached to form a capacitor to said capacitor is hermetically packaged to form the finished product.

  10. Sandia Energy - Manufacturing Supply Chain

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-VoltagePowerUpdates Techno-EconomicLaunchManufacturing

  11. Manufacturing Innovation in the DOE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketingSmartManufacturing Innovation in the DOE

  12. Manufacturing R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), October 2012 (MECS 2006)R&D The Manufacturing

  13. The Photovoltaic Manufacturing Technology Project: Phase 1 subcontractors

    SciTech Connect (OSTI)

    Not Available

    1992-07-01T23:59:59.000Z

    The Phase I portion of the Photovoltaic Manufacturing Technology (PVMaT) Project, the problem identification phase, was completed in mid-1991. This work involved competitive bidding that was open to any US firm with existing manufacturing capabilities, regardless of material or module design. In early 1991, subcontracts were awarded to 22 of approximately 40 bidders. Each subcontract was funded at a level of up to $50,000 and a duration of three months. The problems identified by the research in this phase of the program represent opportunities for industrial participants to improve their manufacturing processes, reduce manufacturing costs, increase product performance, or develop a foundation for scaling up US-based manufacturing plant capacities. Many of these opportunities have since been detailed in the approaches that these organizations suggested for Phase 2 (the problem solution phase) research and development (R&D). It is not. anticipated that any additional Phase I solicitation will be issued because Phase I was intended to help the US Department of Energy (DOE) characterize the status and needs of the US photovoltaic (PV) industry and encourage the industry to examine and prioritize required manufacturing line improvements. Phase I subcontracted research included five subcontractors working on flat-plate crystalline silicon technology, eleven working on flat-plate thin-film modules (one in thin-film crystalline silicon, six in amorphous silicon. and four in polycrystalline thin films), six working on concentrator systems, and two working on general equipment/production options. (Two of the participants each worked in two areas).

  14. The Photovoltaic Manufacturing Technology Project: Phase 1 subcontractors

    SciTech Connect (OSTI)

    Not Available

    1992-07-01T23:59:59.000Z

    The Phase I portion of the Photovoltaic Manufacturing Technology (PVMaT) Project, the problem identification phase, was completed in mid-1991. This work involved competitive bidding that was open to any US firm with existing manufacturing capabilities, regardless of material or module design. In early 1991, subcontracts were awarded to 22 of approximately 40 bidders. Each subcontract was funded at a level of up to $50,000 and a duration of three months. The problems identified by the research in this phase of the program represent opportunities for industrial participants to improve their manufacturing processes, reduce manufacturing costs, increase product performance, or develop a foundation for scaling up US-based manufacturing plant capacities. Many of these opportunities have since been detailed in the approaches that these organizations suggested for Phase 2 (the problem solution phase) research and development (R D). It is not. anticipated that any additional Phase I solicitation will be issued because Phase I was intended to help the US Department of Energy (DOE) characterize the status and needs of the US photovoltaic (PV) industry and encourage the industry to examine and prioritize required manufacturing line improvements. Phase I subcontracted research included five subcontractors working on flat-plate crystalline silicon technology, eleven working on flat-plate thin-film modules (one in thin-film crystalline silicon, six in amorphous silicon. and four in polycrystalline thin films), six working on concentrator systems, and two working on general equipment/production options. (Two of the participants each worked in two areas).

  15. Nuclear Radiological Threat Task Force Established | National...

    National Nuclear Security Administration (NNSA)

    Radiological Threat Task Force Established | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  16. California - Establishing Transmission Project Review Streamlining...

    Open Energy Info (EERE)

    LibraryAdd to library PermittingRegulatory Guidance - Supplemental Material: California - Establishing Transmission Project Review Streamlining DirectivesPermitting...

  17. Study to establish cost projections for production of redox chemicals

    SciTech Connect (OSTI)

    Walther, J.F.; Greco, C.C.; Rusinko, R.N.; Wadsworth, A.L. III

    1982-11-01T23:59:59.000Z

    A cost study of four proposed manufacturing processes for redox chemicals for the NASA REDOX Energy Storage System yielded favorable selling prices in the range $0.99 to $1.91/kg of chromic chloride, anhydrous basis, including ferrous chloride. The prices corresponded to specific energy storage costs from under $9 to $17/kWh. A refined and expanded cost analysis of the most favored process yielded a price estimate corresponding to a storage cost of $11/kWh. The findings supported the potential economic viability of the NASA REDOX system.

  18. Countries Gasoline Prices Including Taxes

    Gasoline and Diesel Fuel Update (EIA)

    Selected Countries (U.S. dollars per gallon, including taxes) Date Belgium France Germany Italy Netherlands UK US 51115 6.15 6.08 6.28 6.83 6.96 6.75 3.06 5415 6.14 6.06...

  19. Sponsorship includes: Agriculture in the

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    Sponsorship includes: · Agriculture in the Classroom · Douglas County Farm Bureau · Gifford Farm · University of Nebraska Agricultural Research and Development Center · University of Nebraska- Lincoln Awareness Coalition is to help youth, primarily from urban communities, become aware of agriculture

  20. Clean Energy Manufacturing: U.S. Competitiveness and State Policy Strategies (Presentation)

    SciTech Connect (OSTI)

    Lantz, E.

    2014-02-01T23:59:59.000Z

    The capital intensive nature of clean energy technologies suggests that manufacturing clean energy equipment has the potential to support state and local economic development efforts. However, manufacturing siting decisions tend to be complex and multi-variable decision processes that require in-depth knowledge of specific markets, the logistical requirements of a given technology, and insight into global clean tech trends. This presentation highlights the potential of manufacturing in supporting economic development opportunities while also providing examples of the financial considerations affecting manufacturing facility siting decisions for wind turbine blades and solar PV. The presentation also includes discussion of other more qualitative drivers of facility siting decisions as gleaned from NREL industry interviews and discusses strategies state and local policymakers may employee to bolster their chances of successfully attracting clean energy manufacturers to their localities.

  1. The Second Annual DOE Solid-State Lighting Manufacturing R&D Workshop

    Broader source: Energy.gov [DOE]

    More than 250 industry leaders from all corners of the supply chain – including chip makers, luminaire manufacturers, material and equipment suppliers, packagers, luminaire testers, and makers of testing equipment – gathered in San Jose, CA, April 21-22, 2010, to share insights, ideas, and updates at the second annual Solid-State Lighting (SSL) Manufacturing R&D Workshop, hosted by DOE. This workshop is a key part of an initiative launched by DOE in 2009 to enhance the quality and lower the cost of SSL products through improvements in manufacturing equipment and processes and to foster a significant manufacturing role in the U.S. This year in San Jose, attendees explored a wide range of related topics and focused on reexamining and updating the DOE Manufacturing R&D Roadmap.

  2. Sandia National Laboratories: Advanced Manufacturing Initiative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing Initiative (AMI) is a multiple-year, 3-way collaboration among TPI Composites, Iowa State University, and Sandia National Laboratories. The goal of this...

  3. Welcome and Advanced Manufacturing Partnership (Text Version)

    Broader source: Energy.gov [DOE]

    This is a text version of the Welcome and Advanced Manufacturing Partnership video, originally presented on March 12, 2012 at the MDF Workshop held in Chicago, Illinois.

  4. 2014 Manufacturing Energy and Carbon Footprints: Definitions...

    Broader source: Energy.gov (indexed) [DOE]

    and Assumptions A number of key terms are used to interpret the manufacturing energy and carbon footprints. The terms associated with the energy footprint analysis are...

  5. Green Manufacturing Initiative Annual Report 2010

    E-Print Network [OSTI]

    de Doncker, Elise

    Green Manufacturing Initiative Annual Report 2010 Dr. John Patten Dr. David Meade May 3, 2011 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Herman Miller Energy Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

  6. Tank Manufacturing, Testing, Deployment and Field Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Fuel and Pressure Vessel Forum on September 27 - 29, 2010, in Beijing, China. ihfpvnewhouse.pdf More Documents & Publications Fuel Tank Manufacturing, Testing,...

  7. Manufacturing Energy and Carbon Footprints Scope

    Office of Environmental Management (EM)

    involves one or more of the following activities: (1) fractionation; (2) straight distillation of crude oil; and (3) cracking. 325 - Chemical Manufacturing The Chemical...

  8. Solar Manufacturing Incentive Grant (SMIG) Program

    Broader source: Energy.gov [DOE]

    Created in 1995 and administered jointly by the Virginia Department of Mines, Minerals and Energy, and the Virginia Economic Development Partnership, the Solar Manufacturing Incentive Grant (SMIG)...

  9. President Obama's National Network for Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    material, to digital methods that use "additive" technologies. Often referred to as 3D printing, additive manufacturing is a way of making products and components of almost any...

  10. Advanced Battery Manufacturing Facilities and Equipment Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Equipment Program Advanced Battery Manufacturing Facilities and Equipment Program AVTA: 2010 Honda Civic HEV with Experimental Ultra Lead Acid Battery Testing Results...

  11. MANUFACTURING LOGISTICS RESEARCH: TAXONOMY AND DIRECTIONS

    E-Print Network [OSTI]

    Wu, David

    MANUFACTURING LOGISTICS RESEARCH: TAXONOMY AND DIRECTIONS S. DAVID WU Lehigh University, Bethlehem formed in the workshop. To convey this vision we suggest a taxonomy that characterizes research problems

  12. Manufacturing Ecosystems and Keystone Technologies (Text Version)

    Broader source: Energy.gov [DOE]

    This is a text version of the Manufacturing Ecosystems and Keystone Technologies video, originally presented on March 12, 2012 at the MDF Workshop held in Chicago, Illinois.

  13. American Energy and Manufacturing Competitiveness Summit

    Broader source: Energy.gov [DOE]

    The American Energy and Manufacturing Competitiveness Summit will bring together leaders and perspectives from industry, government, academia, national laboratories, labor, and policy organizations...

  14. Low Energy Ion Implantationin Semiconductor Manufacturing | U...

    Office of Science (SC) Website

    Low Energy Ion Implantation in Semiconductor Manufacturing Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science...

  15. Natural Fiber Composites: Retting, Preform Manufacture & Molding

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retting, Preform Manufacture & Molding (Start:06.22.07) PI: Jim Holbery Presenter: Mark Smith Pacific Northwest National Laboratory Wednesday, February 27, 2008 This presentation...

  16. Energy-Related Carbon Emissions in Manufacturing

    Reports and Publications (EIA)

    2000-01-01T23:59:59.000Z

    Energy-related carbon emissions in manufacturing analysis and issues related to the energy use, energy efficiency, and carbon emission indicators.

  17. Oak Ridge Centers for Manufacturing Technology ? testimonials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that the program did save jobs and did create opportunities for the American manufac- turing industry to grow and to continue to operate because of the tough manufacturing...

  18. Renewable Energy Manufacturing Tax Credit (South Carolina)

    Broader source: Energy.gov [DOE]

    South Carolina offers a ten percent income tax credit to the manufacturers of renewable energy operations* for tax years 2010 through 2015.

  19. Performance, Market and Manufacturing Constraints relevant to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Constraints relevant to the Industrialization of Thermoelectric Devices Market pricing of thermoelectric raw materials and processing, cost of manufacture of devices and...

  20. Innovative Manufacturing Initiative Recognition Day, Advanced...

    Broader source: Energy.gov (indexed) [DOE]

    Thrust Advanced Manufacturing Office Identify timely, high-impact, foundational clean energy technologies with the potential to transform energy use and accelerate their...

  1. New Sensor Network Technology Increases Manufacturing Efficiency...

    Energy Savers [EERE]

    Increases Manufacturing Efficiency April 11, 2013 - 12:00am Addthis EERE supported Eaton Corporation in the development and successful deployment of an electric motor...

  2. Advanced Materials and Manufacturing | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and characterization of ceramic materials for energy-related applications Process Development and Scale-up Program Argonne's Materials Synthesis and Manufacturing Research and...

  3. Company Name Tax Credit* Manufacturing Facility's

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    new, distributed, utility-scale hydropower projects, as well as for retrofitting dams and irrigation canals. With more than 2 million in 48C Advanced Energy Manufacturing Tax...

  4. Climate VISION: Private Sector Initiatives: Automobile Manufacturers...

    Office of Scientific and Technical Information (OSTI)

    Resources & Links Software Tools DOE BestPractices Software Tools DOE BestPractices offers a range of software tools and databases that help manufacturers assess their plant's...

  5. Project Profile: Improved Large Aperture Collector Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    feasibility demonstrations focused in three main areas: an aggressive manufacturing optimization of the collector sub-structures for lower input material costs & mechanized...

  6. Sandia National Laboratories: Materials & Manufacturing Reliability...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials & Manufacturing Reliability Program Biofouling Studies on Sandia's Marine Hydrokinetic Coatings Initiated at PNNL's Sequim Bay On June 26, 2014, in Energy, Materials...

  7. A Vehicle Manufacturer’s Perspective on Higher-Octane Fuels

    Broader source: Energy.gov [DOE]

    Breakout Session 1C—Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels A Vehicle Manufacturer’s Perspective on Higher-Octane Fuels Tom Leone, Technical Expert, Powertrain Evaluation and Analysis, Ford Motor Company

  8. Combining Representations from Manufacturing, Machine Planning, and Manufacturing Resource Planning (MRP)

    E-Print Network [OSTI]

    Cook, Diane J.

    -time controller. The controller uses four matrices: Fv and Sv describe ordering constraints between plan by allowing limited production capacity Inputs to Control System Researchers studying issues in intelligentCombining Representations from Manufacturing, Machine Planning, and Manufacturing Resource Planning

  9. Hypothesis analysis methods, hypothesis analysis devices, and articles of manufacture

    DOE Patents [OSTI]

    Sanfilippo, Antonio P. (Richland, WA); Cowell, Andrew J. (Kennewick, WA); Gregory, Michelle L. (Richland, WA); Baddeley, Robert L. (Richland, WA); Paulson, Patrick R. (Pasco, WA); Tratz, Stephen C. (Richland, WA); Hohimer, Ryan E. (West Richland, WA)

    2012-03-20T23:59:59.000Z

    Hypothesis analysis methods, hypothesis analysis devices, and articles of manufacture are described according to some aspects. In one aspect, a hypothesis analysis method includes providing a hypothesis, providing an indicator which at least one of supports and refutes the hypothesis, using the indicator, associating evidence with the hypothesis, weighting the association of the evidence with the hypothesis, and using the weighting, providing information regarding the accuracy of the hypothesis.

  10. Text analysis methods, text analysis apparatuses, and articles of manufacture

    DOE Patents [OSTI]

    Whitney, Paul D; Willse, Alan R; Lopresti, Charles A; White, Amanda M

    2014-10-28T23:59:59.000Z

    Text analysis methods, text analysis apparatuses, and articles of manufacture are described according to some aspects. In one aspect, a text analysis method includes accessing information indicative of data content of a collection of text comprising a plurality of different topics, using a computing device, analyzing the information indicative of the data content, and using results of the analysis, identifying a presence of a new topic in the collection of text.

  11. Microporous microchannel plates and method of manufacturing same

    SciTech Connect (OSTI)

    Beetz, C.P. Jr.; Boerstler, R.W.; Steinbeck, J.; Winn, D.R.

    2000-04-04T23:59:59.000Z

    A microchannel plate and method of manufacturing same is provided. The microchannel plate includes a plate consisting of an anodized material and a plurality of channels which are formed during the anodization of the material and extend between the two sides of the plate. Electrodes are also disposed on each side of the plate for generating an electrical field within the channels. Preferably, the material is alumina and the channels are activated such that the channel walls are conductive and highly secondary emissive.

  12. Microporous microchannel plates and method of manufacturing same

    DOE Patents [OSTI]

    Beetz, Jr., Charles P. (New Milford, CT); Boerstler, Robert W. (Woodbury, CT); Steinbeck, John (Fitzwilliam, NH); Winn, David R. (Wilton, CT)

    2000-01-01T23:59:59.000Z

    A microchannel plate and method of manufacturing same is provided. The microchannel plate includes a plate consisting of an anodized material and a plurality of channels which are formed during the anodization of the material and extend between the two sides of the plate. Electrodes are also disposed on each side of the plate for generating an electrical field within the channels. Preferably, the material is alumina and the channels are activated such that the channel walls are conductive and highly secondary emissive.

  13. Method for manufacturing a rotor having superconducting coils

    DOE Patents [OSTI]

    Driscoll, David I. (South Euclid, OH); Shoykhet, Boris A. (Beachwood, OH)

    2001-01-01T23:59:59.000Z

    A method and apparatus for manufacturing a rotor for use with a rotating machine is provided that employs a superconducting coil on the rotor. An adhesive is applied to an outer surface of the rotor body, which may include a groove disposed within an outer surface of the rotor body. A superconducting coil is then mounted onto the rotor body such that the adhesive bonds the superconducting coil to the rotor body.

  14. MANUFACTURING COMPLEXITY EVALUATION AT THE DESIGN STAGE FOR BOTH MACHINING AND LAYERED MANUFACTURING

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    and an additive process. Manufacturability indexes are calculated at the tool design stage, these indexes provide an accurate view of which areas of the tool will advantageously be machined or manufactured by an additiveMANUFACTURING COMPLEXITY EVALUATION AT THE DESIGN STAGE FOR BOTH MACHINING AND LAYERED

  15. Review of the thermal energy standards for manufactured housing proposed by the Manufactured Housing Institute Consensus Committee

    SciTech Connect (OSTI)

    Conner, C.C.

    1992-02-01T23:59:59.000Z

    Congress passed legislation that requires the US Department of Housing and Urban Development (HUD) to revise the energy efficiency standards for manufactured housing contained in the Manufactured Home Construction and Safety Standards (MHCSS). The Manufactured Housing Institute`s Consensus Committee (MHICC) proposed revised standards to HUD based on an analysis contained in a 1989 report by E. Levy. This document is primarily a review of the Levy report, including the methods and inputs to that analysis. The approach to be used in developing the revised standard was specified by Congress as a cost-benefit analysis in which the costs of energy efficiency measures (EEM) were balanced against the benefits of energy savings. The resulting optimum specified an overall level of energy efficiency in terms of a maximum allowable building shell U-value (overall thermal transmittance) that produced the lowest life-cycle cost to the owner of a manufactured home. In his 1989 analysis, this was the general approach used by Levy.

  16. Guidelines Establishing Criteria for Excluding Buildings from...

    Office of Environmental Management (EM)

    Establishing Criteria for Excluding Buildings from the Energy Performance Requirements of Section 543 of the National Energy Conservation Policy Act as Amended by the Energy Policy...

  17. Riso-M-1937 Research Establishment Riso

    E-Print Network [OSTI]

    I*- Riso-M-1937 Research Establishment Riso ri * ) · METALLURGY DEPARTMENT Void Formation illustrations Date May 1977 Department or group Metallurgy Group's own registration number($) Abstract Copies

  18. Proceedings: EPRI Manufactured Gas Plants 2003 Forum

    SciTech Connect (OSTI)

    None

    2004-02-01T23:59:59.000Z

    The EPRI Manufactured Gas Plants 2003 Forum covered a range of topics related to remediation and management of former manufactured gas plant (MGP) sites, with emphasis on technological advances and current issues associated with site cleanup. In specific, the forum covered MGP coal-tar delineation, soil and groundwater remediation technologies, improvements in air monitoring, and ecological risk characterization/risk management tools.

  19. Manufacturing Thomas W. Eagar, Guest Editor

    E-Print Network [OSTI]

    Eagar, Thomas W.

    Materials Manufacturing Thomas W. Eagar, Guest Editor The bt·h.n-ior of succl'ssful manufac- tunn;imos., t·m·ironment for mate- nab manufacturing changes, so too does our ml·a~un· ol matt·rials performance~·(·vt·r. as shown by Figure 1, there are sen·ral additional dimensions to perfor- mann·. In particular, successful

  20. Evaluating Energy Efficiency Improvements in Manufacturing Processes

    E-Print Network [OSTI]

    Boyer, Edmond

    Evaluating Energy Efficiency Improvements in Manufacturing Processes Katharina Bunse1 , Julia Sachs kbunse@ethz.ch, sachsj@student.ethz.ch, mvodicka@ethz.ch Abstract. Global warming, rising energy prices and increasing awareness of "green" customers have brought energy efficient manufacturing on top of the agenda

  1. Composite Tube Trailer Design/Manufacturing Needs

    E-Print Network [OSTI]

    composite tube trailers and can, therefore, address issues with: ­ Design ­ Materials ­ Manufacturing in the system ­ Lower cost of carbon fiber ($/strength) ­ Identify material with lower net cost ($/strength) ­ Identify lower cost resin system (raw material & manufacture) ­ Reduce carbon fiber safety factor

  2. Duracold Refrigeration Manufacturing: Order (2013-CE-5342)

    Broader source: Energy.gov [DOE]

    DOE ordered Duracold Refrigeration Manufacturing Company, LLC to pay a $8,000 civil penalty after finding Duracold Refrigeration Manufacturing had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  3. DURABILITY EVALUATION AND PRODUCTION OF MANUFACTURED AGGREGATES FROM COAL COMBUSTION BY-PRODUCTS

    SciTech Connect (OSTI)

    M. M. Wu

    2005-02-01T23:59:59.000Z

    Under the cooperative agreement with DOE, the Research and Development Department of CONSOL Energy (CONSOL R&D), teamed with Universal Aggregates, LLC, to conduct a systematic study of the durability of aggregates manufactured using a variety of flue gas desulfurization (FGD), fluidized-bed combustion (FBC) and fly ash specimens with different chemical and physical properties and under different freeze/thaw, wet/dry and long-term natural weathering conditions. The objectives of the study are to establish the relationships among the durability and characteristics of FGD material, FBC ash and fly ash, and to identify the causes of durability problems, and, ultimately, to increase the utilization of FGD material, FBC ash and fly ash as a construction material. Manufactured aggregates made from FGD material, FBC ash and fly ash, and products made from those manufactured aggregates were used in the study. The project is divided into the following activities: sample collection and characterization; characterization and preparation of manufactured aggregates; determination of durability characteristics of manufactured aggregates; preparation and determination of durability characteristics of manufactured aggregate products; and data evaluation and reporting.

  4. Manufacturing fuel-switching capability, 1988

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    Historically, about one-third of all energy consumed in the United States has been used by manufacturers. About one-quarter of manufacturing energy is used as feedstocks and raw material inputs that are converted into nonenergy products; the remainder is used for its energy content. During 1988, the most recent year for which data are available, manufacturers consumed 15.5 quadrillion British thermal units (Btu) of energy to produce heat and power and to generate electricity. The manufacturing sector also has widespread capabilities to switch from one fuel to another for either economic or emergency reasons. There are numerous ways to define fuel switching. For the purposes of the Manufacturing Energy Consumption Survey (MECS), fuel switching is defined as the capability to substitute one energy source for another within 30 days with no significant modifications to the fuel-consuming equipment, while keeping production constant. Fuel-switching capability allows manufacturers substantial flexibility in choosing their mix of energy sources. The consumption of a given energy source can be maximized if all possible switching into that energy source takes place. The estimates in this report are based on data collected on the 1988 Manufacturing Energy Consumption Survey (MECS), Forms 846 (A through C). The EIA conducts this national sample survey of manufacturing energy consumption on a triennial basis. The MECS is the only comprehensive source of national-level data on energy-related information for the manufacturing industries. The MECS was first conducted in 1986 to collect data for 1985. This report presents information on the fuel-switching capabilities of manufacturers in 1988. This report is the second of a series based on the 1988 MECS. 8 figs., 31 tabs.

  5. Manufacturing Technical Assistance Program Guidelines The University of Connecticut (UConn), a public research university with an academic health center, and

    E-Print Network [OSTI]

    Alpay, S. Pamir

    's manufacturing problems or will support a company's ability to begin the manufacturing of new products for technology transition when applicable. Specific project areas will include: · Machining process improvements (MTA) award from UConn and/or CCAT. Ideal projects will utilize technology solutions to solve a company

  6. 2014-06-09 Issuance: Manufactured Housing Working Group; Notice of Intent

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register? notice of intent to establish the manufactured housing working group to negotiate a notice of proposed rulemaking for energy efficiency standards for manufactured housing, as issued by the Deputy Assistant Secretary for Energy Efficiency on June 9, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  7. Education for the ManufacturingEducation for the Manufacturing Industries of the FutureIndustries of the Future

    E-Print Network [OSTI]

    Brock, David

    Growth. Every $1.00 in manufactured goods generates an additional $1.43 worth of additional economic© ATI 2006 Education for the ManufacturingEducation for the Manufacturing Industries of the FutureIndustries of the Future presented to thepresented to the 2006 MIT Manufacturing Summit:2006 MIT Manufacturing Summit

  8. Proceedings of the 1998 NSF Design and Manufacturing Grantees Conferences Manufacturing Logistics Workshop: A Summary of Research Directions

    E-Print Network [OSTI]

    Wu, David

    Proceedings of the 1998 NSF Design and Manufacturing Grantees Conferences Manufacturing Logistics Louis A. Martin-Vega Lehigh University Abstract: A workshop sponsored by NSF on Manufacturing Logistics for Manufacturing Logistics was defined. In this paper, we summarize future research directions in manufacturing

  9. Writing Motor Specifications - How to Include Efficiency 

    E-Print Network [OSTI]

    Quartermaine, B. J.

    1980-01-01T23:59:59.000Z

    be as low as 50% load. EFFICIENCY EVALUATION Unless advised otherwise, a motor manufacturer will not know that effiency is to be evaluated and as a result is likely to offer the least cost motor when tendering for a specific application. Hence...

  10. Rapid prototyping applications for manufacturing

    SciTech Connect (OSTI)

    Atwood, C.L.; Maguire, M.C.; Pardo, B.T.; Bryce, E.A. [Sandia National Labs., Albuquerque, NM (United States)

    1996-01-01T23:59:59.000Z

    Recent advances in stereolithography and selective laser sintering have had a significant impact on the overall quality of parts produced using these rapid prototyping processes. The development and implementation of 3D System`s QuickCast{sup TM} resin and software for building investment casting patterns have proven to be major steps toward fabricating highly accurate patterns with very good surface finishes. As participants in the Beta test program for QuickCast{sup TM} resin and software, we experienced a steep learning curve and were able to build accurate parts in a short period of time. It is now possible using this technology to produce highly accurate prototype parts as well as acceptable first article and small lot size production parts. We use the Selective Laser Sintering (SLS) process to fabricate prototype wax patterns for investment casting. DTM Corporation recently introduced the use of their polycarbonate material for fabricating investment casting patterns. The polycarbonate material is processed significantly faster with improved strength, dimensional stability, and without a support structure during the build process. Sandia is currently changing from investment casting wax to polycarbonate for the fabrication of investment casting patterns using the SLS process. This report will focus on our successes with these new materials from the standpoints of application, accuracy, surface finish, and post processing. Also presented will be examples of parts manufactured by these processes. 6 refs., 10 figs.

  11. 1961 Founding faculty, including Robert Gross and C.K. (John) Chu, establish the Plasma Physics Laboratory,

    E-Print Network [OSTI]

    Yang, Junfeng

    Mauel complete the High Beta Tokamak-Extended Pulse (HBT-EP), the third and largest in a series to the General Atomics DIII-D tokamak, bringing practical fusion energy a step closer, and whic

  12. Innovations in the Use of Nuclear Energy for Sustainable Manufacturing

    SciTech Connect (OSTI)

    J. Stephen Herring

    2010-10-01T23:59:59.000Z

    Abstract Over the next 50 years, nuclear energy will become increasingly important in providing the electricity and heat needed both by the presently industrialized countries and by those countries which are now developing their manufacturing industries. The twin concerns of global climate change and of the vulnerability of energy supplies caused by increasing international competition will lead to a greater reliance on nuclear energy for both electricity and process heat. Conservative estimates of new nuclear construction indicate a 50% increase in capacity by 2030. Other estimates predict a tripling of present capacity. Required machine tool technologies will include the improvements in the manufacture of standard LWR components, such as pressure vessels and pumps. Further in the future, technologies for working high temperature metals and ceramics will be needed and will require new machining capabilities.

  13. Limited Personal Use of Government Office Equipment including Information Technology

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-01-07T23:59:59.000Z

    The Order establishes requirements and assigns responsibilities for employees' limited personal use of Government resources (office equipment and other resources including information technology) within DOE, including NNSA. The Order is required to provide guidance on appropriate and inappropriate uses of Government resources. This Order was certified 04/23/2009 as accurate and continues to be relevant and appropriate for use by the Department. Certified 4-23-09. No cancellation.

  14. Additive Manufacturing in China: Threats, Opportunities, and Developments (Part I)

    E-Print Network [OSTI]

    ANDERSON, Eric

    2013-01-01T23:59:59.000Z

    Wang Huaming Laser additive manufacturing (LAM) Huanglaser metal deposition (LMD), a type of additive manufacturing,Manufacturing Center) http://mat.hust.edu.cn:8080/3d/ Wuhan Yu Shengshi Selective laser

  15. MECH 502: Advanced/Additive Manufacturing Engineering COURSE DESCRIPTION

    E-Print Network [OSTI]

    Schumacher, Russ

    MECH 502: Advanced/Additive Manufacturing Engineering COURSE DESCRIPTION In this course you product development and innovation. You will develop a rich knowledge of additive manufacturing processes enabling advanced/additive manufacturing and personal fabrication. You will have the opportunity

  16. Faculty Position in Ultra High Precision Robotics & Manufacturing

    E-Print Network [OSTI]

    Candea, George

    , manipulation and metrology systems targeting additive manufacturing; · New kinematics, quasi-perfect guidings, actuators, transmission systems, sensors and methods targeting ultra-high precision additive manufacturingFaculty Position in Ultra High Precision Robotics & Manufacturing at the Ecole Polytechnique

  17. Additive Manufacturing in China: Threats, Opportunities, and Developments (Part I)

    E-Print Network [OSTI]

    ANDERSON, Eric

    2013-01-01T23:59:59.000Z

    application of additive manufacturing in China’s aviationAnalysis May 2013 Additive Manufacturing in China: Threats,an overview of China’s additive manufacturing industry is

  18. Additive Manufacturing in China: Threats, Opportunities, and Developments (Part I)

    E-Print Network [OSTI]

    ANDERSON, Eric

    2013-01-01T23:59:59.000Z

    examine the application of additive manufacturing in China’sBulletin Analysis May 2013 Additive Manufacturing in China:an overview of China’s additive manufacturing industry is

  19. High Temperature Fuel Cell (Phosphoric Acid) Manufacturing R...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell (Phosphoric Acid) Manufacturing R&D High Temperature Fuel Cell (Phosphoric Acid) Manufacturing R&D Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop...

  20. Manufacturing Facility Opened Using EERE-Supported Low-Cost Fuel...

    Office of Environmental Management (EM)

    Manufacturing Facility Opened Using EERE-Supported Low-Cost Fuel Cell Manufacturing Methods Manufacturing Facility Opened Using EERE-Supported Low-Cost Fuel Cell Manufacturing...

  1. Progress of DOE Materials, Manufacturing Process R&D, and ARRA...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of DOE Materials, Manufacturing Process R&D, and ARRA Battery Manufacturing Grants Progress of DOE Materials, Manufacturing Process R&D, and ARRA Battery Manufacturing Grants 2011...

  2. Metrology Challenges for High Energy Density Science Target Manufacture

    SciTech Connect (OSTI)

    Seugling, R M; Bono, M J; Davis, P

    2009-02-19T23:59:59.000Z

    Currently, High Energy Density Science (HEDS) experiments are used to support and qualify predictive physics models. These models assume ideal conditions such as energy (input) and device (target) geometry. The experiments rely on precision targets constructed from components with dimensions in the millimeter range, while having micrometer-scale, functional features, including planar steps, sine waves, and step-joint geometry on hemispherical targets. Future target designs will likely have features and forms that rival or surpass current manufacturing and characterization capability. The dimensional metrology of these features is important for a number of reasons, including qualification of sub-components prior to assembly, quantification of critical features on the as-built assemblies and as a feedback mechanism for fabrication process development. Variations in geometry from part to part can lead to functional limitations, such as unpredictable instabilities during an experiment and the inability to assemble a target from poorly matched sub-components. Adding to the complexity are the large number and variety of materials, components, and shapes that render any single metrology technique difficult to use with low uncertainty. Common materials include metal and glass foams, doped transparent and opaque plastics and a variety of deposited and wrought metals. A suite of metrology tools and techniques developed to address the many critical issues relevant to the manufacture of HEDS targets including interferometry, x-ray radiography and contact metrology are presented including two sided interferometry for absolute thickness metrology and low force probe technology for micrometer feature coordinate metrology.

  3. Breaking Barriers in Polymer Additive Manufacturing

    SciTech Connect (OSTI)

    Love, Lonnie J [ORNL; Duty, Chad E [ORNL; Post, Brian K [ORNL; Lind, Randall F [ORNL; Lloyd, Peter D [ORNL; Kunc, Vlastimil [ORNL; Peter, William H [ORNL; Blue, Craig A [ORNL

    2015-01-01T23:59:59.000Z

    Additive Manufacturing (AM) enables the creation of complex structures directly from a computer-aided design (CAD). There are limitations that prevent the technology from realizing its full potential. AM has been criticized for being slow and expensive with limited build size. Oak Ridge National Laboratory (ORNL) has developed a large scale AM system that improves upon each of these areas by more than an order of magnitude. The Big Area Additive Manufacturing (BAAM) system directly converts low cost pellets into a large, three-dimensional part at a rate exceeding 25 kg/h. By breaking these traditional barriers, it is possible for polymer AM to penetrate new manufacturing markets.

  4. The Federal manufactured home construction and safety standards -- implications for foam panel construction

    SciTech Connect (OSTI)

    Lee, A.D.; Schrock, D.W.; Flintoft, S.A.

    1997-03-01T23:59:59.000Z

    This report reviews the U.S. Department of Housing and Urban Development construction code for (HUD-code) manufactured homes, Part 3280: Manufactured Home Construction and Safety Standards (the HUD Code), to identify sections that might be relevant in determining if insulated foam core panels (or structural insulated panels, SIPs) meet the requirements of Part 3280 for use in manufactured home construction. The U.S. Department of Energy and other parties are interested in the use of SIPs in residential construction, including HUD-Code manufactured homes, because the foam panels can have a higher effective insulation value than standard stud-framed construction and use less dimensional lumber. Although SIPs have not been used in manufactured housing, they may be well suited to the factory production process used to manufacture HUD-Code homes and the fact that they require less virgin timber may reduce the effect of volatile and increasing timber prices. Part 3280 requirements for fire resistance, wind resistance, structural load strength, ventilation, transportation shock, and thermal protection are reviewed. A brief comparison is made between the HUD Code requirements and data collected from foam panel manufacturers. 8 refs.

  5. Lightweighting Automotive Materials for Increased Fuel Efficiency and Delivering Advanced Modeling and Simulation Capabilities to U.S. Manufacturers

    SciTech Connect (OSTI)

    Hale, Steve

    2013-09-11T23:59:59.000Z

    Abstract The National Center for Manufacturing Sciences (NCMS) worked with the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), to bring together research and development (R&D) collaborations to develop and accelerate the knowledgebase and infrastructure for lightweighting materials and manufacturing processes for their use in structural and applications in the automotive sector. The purpose/importance of this DOE program: • 2016 CAFÉ standards. • Automotive industry technology that shall adopt the insertion of lightweighting material concepts towards manufacturing of production vehicles. • Development and manufacture of advanced research tools for modeling and simulation (M&S) applications to reduce manufacturing and material costs. • U.S. competitiveness that will help drive the development and manufacture of the next generation of materials. NCMS established a focused portfolio of applied R&D projects utilizing lightweighting materials for manufacture into automotive structures and components. Areas that were targeted in this program: • Functionality of new lightweighting materials to meet present safety requirements. • Manufacturability using new lightweighting materials. • Cost reduction for the development and use of new lightweighting materials. The automotive industry’s future continuously evolves through innovation, and lightweight materials are key in achieving a new era of lighter, more efficient vehicles. Lightweight materials are among the technical advances needed to achieve fuel/energy efficiency and reduce carbon dioxide (CO2) emissions: • Establish design criteria methodology to identify the best materials for lightweighting. • Employ state-of-the-art design tools for optimum material development for their specific applications. • Match new manufacturing technology to production volume. • Address new process variability with new production-ready processes.

  6. 2014-07-08 Issuance: ASRAC Manufactured Housing Working Group...

    Energy Savers [EERE]

    4-07-08 Issuance: ASRAC Manufactured Housing Working Group; Notice of Membership 2014-07-08 Issuance: ASRAC Manufactured Housing Working Group; Notice of Membership This document...

  7. DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program...

    Energy Savers [EERE]

    DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program Presented at the NREL Hydrogen and Fuel Cell...

  8. Unlocking the Potential of Additive Manufacturing in the Fuel...

    Energy Savers [EERE]

    Manufacturing in the Fuel Cells Industry Download presentation slides from the DOE Fuel Cell Technologies Office webinar "Additive Manufacturing for Fuel Cells" held on...

  9. An exploration of materials and methods in manufacturing : shoreline membranes

    E-Print Network [OSTI]

    Chin, Ryan C. C., 1974-

    2000-01-01T23:59:59.000Z

    This thesis is an investigation into the design methodologies and ideologies of manufacturing processes specifically related to automotive design. The conceptualization, prototyping, testing, and manufacturing of cars is ...

  10. AMO Industry Day Workshop on Upcoming Smart Manufacturing FOA

    Broader source: Energy.gov [DOE]

    AMO will host an Industry Day workshop to explain the concept, vision, and technology needs associated with support for a Clean Energy Manufacturing Innovation Institute on Smart Manufacturing.

  11. Celebrating Two Years of Building America's Clean Energy Manufacturing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing Office to print the car chassis using a new machine called Big Area Additive Manufacturing. We're building collaborative facilities where experts can work...

  12. U.S. Advanced Manufacturing and Clean Energy Technology Challenges

    Broader source: Energy.gov (indexed) [DOE]

    Technical Assistance 12 Advanced Manufacturing Office (AMO): Purpose Laser Processing for Additive Manufacturing Carbon Fiber from Microwave Assisted Plasma Process AMO's Purpose...

  13. Contact Manufacturing Demonstration Facility Craig Blue, Ph.D...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    capacity, jobs for American workers and regional economic development. Technology Areas * Additive Manufacturing utilizing a broad range of direct manufacturing technologies,...

  14. Sustainable Manufacturing via Multi-Scale, Physics-Based Process...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    present opportunities to improve casting, forging, stamping, extrusion, assembly, and additive manufacturing processes. The U.S. manufacturing supply base will benefit from...

  15. Upcoming Webinar February 11: Additive Manufacturing for Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    February 11: Additive Manufacturing for Fuel Cells Upcoming Webinar February 11: Additive Manufacturing for Fuel Cells February 6, 2014 - 12:00am Addthis On Tuesday, February 11,...

  16. 20% Wind Energy by 2030 - Chapter 3: Manufacturing, Materials...

    Energy Savers [EERE]

    3: Manufacturing, Materials, and Resources Summary Slides 20% Wind Energy by 2030 - Chapter 3: Manufacturing, Materials, and Resources Summary Slides Summary Slides for Chapter 3:...

  17. Wind Program Manufacturing Research Advances Processes and Reduces...

    Energy Savers [EERE]

    Wind Program Manufacturing Research Advances Processes and Reduces Costs Wind Program Manufacturing Research Advances Processes and Reduces Costs March 31, 2014 - 11:22am Addthis...

  18. Design for manufacturability with regular fabrics in digital integrated circuits

    E-Print Network [OSTI]

    Gazor, Mehdi (Seyed Mehdi)

    2005-01-01T23:59:59.000Z

    Integrated circuit design is limited by manufacturability. As devices scale down, sensitivity to process variation increases dramatically, making design for manufacturability a critical concern. Designers must identify the ...

  19. Letter from Plumbing Manufacturers Institute to Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Letter from Plumbing Manufacturers Institute to Department of Energy re: Ex Parte Communication More Documents & Publications Supplemental Comments of the Plumbing Manufacturers...

  20. automobile part manufacturers: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tax applies to the sale of manufacturing aids such as dies, patterns, jigs and tooling used in the manufacturing process notwithstanding the fact that the property used in...

  1. allergenic extract manufacturers: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tax applies to the sale of manufacturing aids such as dies, patterns, jigs and tooling used in the manufacturing process notwithstanding the fact that the property used in...

  2. alloy pv manufacturing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tax applies to the sale of manufacturing aids such as dies, patterns, jigs and tooling used in the manufacturing process notwithstanding the fact that the property used in...

  3. Metal and Glass Manufacturers Reduce Costs by Increasing Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in Process Heating Systems Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in...

  4. american manufacturing research: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hardships suffered by the unemployed. unknown authors 2003-01-01 4 Manufacturing for the Hydrogen Economy Manufacturing Research & Development Energy Storage, Conversion and...

  5. Electric Drive Component Manufacturing: Magna E-Car Systems of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Electric Drive Component Manufacturing: Magna E-Car Systems of America, Inc. Electric Drive Component Manufacturing: Magna E-Car Systems...

  6. DOE Initiates Enforcement Actions Against 4 Showerhead Manufacturers...

    Energy Savers [EERE]

    Against 4 Showerhead Manufacturers (Notice of Proposed Civil Penalty and Requests for Test Data Issued) DOE Initiates Enforcement Actions Against 4 Showerhead Manufacturers...

  7. AMO Requests Technical Topics Suitable for a Manufacturing Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovation Institute AMO Requests Technical Topics Suitable for a Manufacturing Innovation Institute April 17, 2014 - 12:23pm Addthis The Advanced Manufacturing Office...

  8. Celgard US Manufacturing Facilities Initiative for Lithium-ion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Celgard US Manufacturing Facilities Initiative for Lithium-ion Battery Separator Celgard US Manufacturing Facilities Initiative for Lithium-ion...

  9. Fiber Reinforced Polymer Composite Manufacturing - RFI Part 2...

    Broader source: Energy.gov (indexed) [DOE]

    1056 More Documents & Publications Fiber Reinforced Polymer Composite Manufacturing Workshop Fiber Reinforced Polymer Composite Manufacturing - RFI DE-FOA-0000980: Summary of...

  10. DOE - Office of Legacy Management -- Penn Salt Manufacturing...

    Office of Legacy Management (LM)

    Salt Manufacturing Co Whitemarsh Research Laboratories - PA 20 FUSRAP Considered Sites Site: PENN SALT MANUFACTURING CO., WHITEMARSH RESEARCH LABORATORIES (PA.20) Eliminated from...

  11. DOE - Office of Legacy Management -- Titanium Alloys Manufacturing...

    Office of Legacy Management (LM)

    Manufacturing Co Div of National Lead of Ohio - NY 41 FUSRAP Considered Sites Site: TITANIUM ALLOYS MANUFACTURING CO., DIV. OF NATIONAL LEAD OF OHIO (NY.41) Eliminated from...

  12. Join Us for the Clean Energy Manufacturing Initiative's Western...

    Energy Savers [EERE]

    resources, as well as best practices and cutting-edge technologies, to boost energy productivity across the entire U.S. manufacturing supply chain will make our manufacturing...

  13. Energy Use Loss and Opportunities Analysis: U.S. Manufacturing...

    Energy Savers [EERE]

    Use Loss and Opportunities Analysis: U.S. Manufacturing & Mining Energy Use Loss and Opportunities Analysis: U.S. Manufacturing & Mining energyuselossopportunitiesanalysis.pdf...

  14. Joint Fuel Cell Technologies and Advanced Manufacturing Webinar...

    Broader source: Energy.gov (indexed) [DOE]

    Joint Fuel Cell Technologies and Advanced Manufacturing Webinar Joint Fuel Cell Technologies and Advanced Manufacturing Webinar Presentation slides from the joint Fuel Cell...

  15. Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive Applications: Fuel Cell Tech Team Review Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive...

  16. Modular Process Equipment for Low Cost Manufacturing of High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Equipment for Low Cost Manufacturing of High Capacity Prismatic Li-Ion Cell Alloy Anodes Modular Process Equipment for Low Cost Manufacturing of High Capacity Prismatic...

  17. Technical support document: Energy conservation standards for consumer products: Dishwashers, clothes washers, and clothes dryers including: Environmental impacts; regulatory impact analysis

    SciTech Connect (OSTI)

    Not Available

    1990-12-01T23:59:59.000Z

    The Energy Policy and Conservation Act as amended (P.L. 94-163), establishes energy conservation standards for 12 of the 13 types of consumer products specifically covered by the Act. The legislation requires the Department of Energy (DOE) to consider new or amended standards for these and other types of products at specified times. This Technical Support Document presents the methodology, data and results from the analysis of the energy and economic impacts of standards on dishwashers, clothes washers, and clothes dryers. The economic impact analysis is performed in five major areas: An Engineering Analysis, which establishes technical feasibility and product attributes including costs of design options to improve appliance efficiency. A Consumer Analysis at two levels: national aggregate impacts, and impacts on individuals. The national aggregate impacts include forecasts of appliance sales, efficiencies, energy use, and consumer expenditures. The individual impacts are analyzed by Life-Cycle Cost (LCC), Payback Periods, and Cost of Conserved Energy (CCE), which evaluate the savings in operating expenses relative to increases in purchase price; A Manufacturer Analysis, which provides an estimate of manufacturers' response to the proposed standards. Their response is quantified by changes in several measures of financial performance for a firm. An Industry Impact Analysis shows financial and competitive impacts on the appliance industry. A Utility Analysis that measures the impacts of the altered energy-consumption patterns on electric utilities. A Environmental Effects analysis, which estimates changes in emissions of carbon dioxide, sulfur oxides, and nitrogen oxides, due to reduced energy consumption in the home and at the power plant. A Regulatory Impact Analysis collects the results of all the analyses into the net benefits and costs from a national perspective. 47 figs., 171 tabs. (JF)

  18. Cycle to Cycle Manufacturing Process Control

    E-Print Network [OSTI]

    Hardt, David E.

    Most manufacturing processes produce parts that can only be correctly measured after the process cycle has been completed. Even if in-process measurement and control is possible, it is often too expensive or complex to ...

  19. Cost Effective Cooling Strategies for Manufacturing Facilities

    E-Print Network [OSTI]

    Kumar, R.

    there are many similarities. In addition to the above environmental conditions for the process/machines and workers, cost effective design of manufacturing facilities must also address maintainability, sanitation, durability, energy conservation and budgetary...

  20. Level schedule implementation in unstable manufacturing environments

    E-Print Network [OSTI]

    López de Haro, Santiago

    2008-01-01T23:59:59.000Z

    American Axle & Manufacturing Inc. (AAM), headquartered in Detroit (MI) is one of the major Tier 1 suppliers in the automotive industry. The main challenge in AAM plant 2 is production rate unstability due to downtime, ...

  1. Manufacture of radiopharmaceuticals-recent advances

    SciTech Connect (OSTI)

    Krieger, J.K.

    1996-12-31T23:59:59.000Z

    Trends in radiopharmaceutical manufacturing have been influenced by the demands of the regulatory agencies, the demands of the customers, and the ever-increasing complexity of new products. Process improvements resulting from automation in the production of radionuclides for diagnostic imaging products, {sup 99m}/Tc generators, {sup 67}Ga, and {sup 201}Tl have been introduced to enhance compliance with current good manufacturing practices and to improve worker safety, both by reducing dose in accord with as low as reasonably achievable levels of radiation and by providing an ergonomically sound environment. Tighter process control has resulted in less lot-to-lot variability and ensures reliability of supply. Reduced manufacturing lapse time for {sup 99m}Tc generators minimizes decay and conserves the supply of {sup 99}Mo. Automation has resulted in an even greater degree of remote operation and has led to reductions in dose, improved process control, and faster throughput in the manufacture of radionuclides.

  2. Energy Efficient Manufactured Homes Incentive Tax Credit

    Broader source: Energy.gov [DOE]

    During the 2008 legislative session, South Carolina legislators passed [http://www.scstatehouse.gov/sess117_2007-2008/bills/1141.htm SB 1141], creating the ''Energy Efficient Manufactured Homes...

  3. 4D printing : towards biomimetic additive manufacturing

    E-Print Network [OSTI]

    Tsai, Elizabeth Yinling

    2013-01-01T23:59:59.000Z

    Inherent across all scales in Nature's material systems are multiple design dimensions, the existences of which are products of both evolution and environment. In human manufacturing where design must be preconceived and ...

  4. Climate VISION: Private Sector Initiatives: Automobile Manufacturers

    Office of Scientific and Technical Information (OSTI)

    emissions from their U.S. automotive manufacturing facilities, based on U.S. vehicle production, by 2012 from a base year of 2002. The following documents are available for...

  5. Manufacturing Tech Team | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find...

  6. Climate VISION: Private Sector Initiatives: Automobile Manufacturers...

    Office of Scientific and Technical Information (OSTI)

    GHG Information Energy Footprints DOE developed a series of Energy Footprints to map the flow of energy supply and demand in U.S. manufacturing industries. Identifying the sources...

  7. Climate VISION: Private Sector Initiatives: Chemical Manufacturing...

    Office of Scientific and Technical Information (OSTI)

    Energy Footprints DOE developed a series of Energy Footprints to map the flow of energy supply and demand in U.S. manufacturing industries. Identifying the sources and end uses of...

  8. Supplemental Comments of the Plumbing Manufacturers Instititute...

    Energy Savers [EERE]

    No. EERE-2010-BT-NOA-0016 Letter Response from the Plumbing Manufacturers Institute (PMI), Docket No. EERE-2010-BT-NOA-0016 - Notice of Availability of Interpretive Rule on the...

  9. Energy-Efficient Appliance Manufacturing Tax Credit

    Broader source: Energy.gov [DOE]

    '''''Note: This tax credit expired at the end of 2011. The American Taxpayer Relief Act of 2012 retroactively renewed this tax credit for certain appliances manufactured in 2012 and 2013. '''''

  10. Tax Credit for Renewable Energy Equipment Manufacturers

    Broader source: Energy.gov [DOE]

    The Tax Credit for Renewable Energy Resource Equipment Manufacturing Facilities was enacted as a part of Oregon's Business Energy Tax Credit (BETC) in July 2007, with the passage of HB 3201. The ...

  11. USA Manufacturing: Proposed Penalty (2013-CE-5336)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that USA Manufacturing failed to certify walk-in cooler or freezer components as compliant with the energy conservation standards.

  12. Goodman Manufacturing: Noncompliance Determination (2011-SE-4301)

    Broader source: Energy.gov [DOE]

    DOE issued a Notice of Noncompliance Determination to Goodman Manufacturing finding that model CPC180XXX3BXXXAA (CPC180*) of commercial package air conditioner does not comport with the energy conservation standards.

  13. Photographic lens manufacturing and production technologies

    E-Print Network [OSTI]

    Kubaczyk, Daniel Mark

    2011-01-01T23:59:59.000Z

    An investigation was conducted to determine the methods and processes required for the manufacture of photographic objective lenses. Production of photographic lenses requires incredible precision in the melting, mixing, ...

  14. Agenda: Fiber Reinforced Polymer Composite Manufacturing Workshop

    Office of Environmental Management (EM)

    12:00 pm - 1:30 pm Lunch - On Your Own 1:30pm - 3:45pm Breakout Sessions - 4 Groups Blue Team A (Washington I) - Manufacturing Process Technology Facilitators - Joe Cresko and...

  15. Analyzing sampling methodologies in semiconductor manufacturing

    E-Print Network [OSTI]

    Anthony, Richard M. (Richard Morgan), 1971-

    2004-01-01T23:59:59.000Z

    This thesis describes work completed during an internship assignment at Intel Corporation's process development and wafer fabrication manufacturing facility in Santa Clara, California. At the highest level, this work relates ...

  16. Refrigerator Manufacturers: Proposed Penalty (2013-CE-5341)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Refrigerator Manufacturers, LLC failed to certify a variety of walk-in cooler or freezer components as compliant with the applicable energy conservation standards.

  17. Diagnosing spatial variation patterns in manufacturing processes

    E-Print Network [OSTI]

    Lee, Ho Young

    2004-09-30T23:59:59.000Z

    This dissertation discusses a method that will aid in diagnosing the root causes of product and process variability in complex manufacturing processes when large quantities of multivariate in-process measurement data are available. As in any data...

  18. Steam System Improvements at a Manufacturing Plant

    E-Print Network [OSTI]

    Compher, J.; Morcom, B.

    BWX Technologies, Naval Nuclear Fuel Division (NNFD) is a manufacturing company with a steam system consisting of two Babcock & Wilcox boilers and approximately 350 steam traps. The steam system is used to produce and distribute steam for space...

  19. Clean Energy Technology Device Manufacturers' Credits (Delaware)

    Broader source: Energy.gov [DOE]

    Qualified manufacturers can apply for a tax break equal to 75% of the corporation income tax. The incentive is an increase from the Investment and Employment Credit Against Corporation Income Tax,...

  20. Alternative Energy Manufacturing Tax Credit

    Broader source: Energy.gov [DOE]

    The Alternative Energy Development Incentive (AEDI) is a post-performance non-refundable tax credit for up to 100% of new state tax revenues (including, state, corporate, sales and withholding...

  1. Manufacturing Environment in the Year 2000

    E-Print Network [OSTI]

    Slautterback, W. H.

    -line simulation of the manufacturing environment. An individual will define privrities and the system will report on an exception basis, what is required to meet the demands. Finite scheduling will replace infinite scheduling. Quality ... Inspection systems...; hundreds of machines have been replaced with several flexible manufacturing systems; large inventories and long lead times have been re laced with small inventories and short lead times that are managable; confusion created by scrap and rework have...

  2. Energetic additive manufacturing process with feed wire

    DOE Patents [OSTI]

    Harwell, Lane D. (Albuquerque, NM); Griffith, Michelle L. (Albuquerque, NM); Greene, Donald L. (Corrales, NM); Pressly, Gary A. (Sandia Park, NM)

    2000-11-07T23:59:59.000Z

    A process for additive manufacture by energetic wire deposition is described. A source wire is fed into a energy beam generated melt-pool on a growth surface as the melt-pool moves over the growth surface. This process enables the rapid prototyping and manufacture of fully dense, near-net shape components, as well as cladding and welding processes. Alloys, graded materials, and other inhomogeneous materials can be grown using this process.

  3. Utilizing Daylighting Controls in a Manufacturing Facility

    E-Print Network [OSTI]

    Shrestha, S. S.; Maxwell, G. M.

    Utilizing Daylighting Controls in a Manufacturing Facility Som S. Shrestha Dr. Gregory M. Maxwell PhD Candidate Associate Professor som@iastate.edu gmaxwell@iastate.edu Iowa State University Ames, IA ABSTRACT Opportunities exist... to reduce artificial lighting in manufacturing facilities which have skylights and/or fenestration that provide sufficient quantities of daylight to the work space. Using photometric sensors to measure the illuminance in the space, artificial lights can...

  4. SOLID OXIDE FUEL CELL MANUFACTURING COST MODEL: SIMULATING RELATIONSHIPS BETWEEN PERFORMANCE, MANUFACTURING, AND COST OF PRODUCTION

    SciTech Connect (OSTI)

    Eric J. Carlson; Yong Yang; Chandler Fulton

    2004-04-20T23:59:59.000Z

    The successful commercialization of fuel cells will depend on the achievement of competitive system costs and efficiencies. System cost directly impacts the capital equipment component of cost of electricity (COE) and is a major contributor to the O and M component. The replacement costs for equipment (also heavily influenced by stack life) is generally a major contributor to O and M costs. In this project, they worked with the SECA industrial teams to estimate the impact of general manufacturing issues of interest on stack cost using an activities-based cost model for anode-supported planar SOFC stacks with metallic interconnects. An earlier model developed for NETL for anode supported planar SOFCs was enhanced by a linkage to a performance/thermal/mechanical model, by addition of Quality Control steps to the process flow with specific characterization methods, and by assessment of economies of scale. The 3-dimensional adiabatic performance model was used to calculate the average power density for the assumed geometry and operating conditions (i.e., inlet and exhaust temperatures, utilization, and fuel composition) based on publicly available polarizations curves. The SECA team provided guidance on what manufacturing and design issues should be assessed in this Phase I demonstration of cost modeling capabilities. They considered the impact of the following parameters on yield and cost: layer thickness (i.e., anode, electrolyte, and cathode) on cost and stress levels, statistical nature of ceramic material failure on yield, and Quality Control steps and strategies. In this demonstration of the capabilities of the linked model, only the active stack (i.e., anode, electrolyte, and cathode) and interconnect materials were included in the analysis. Factory costs are presented on an area and kilowatt basis to allow developers to extrapolate to their level of performance, stack design, materials, seal and system configurations, and internal corporate overheads and margin goals.

  5. Status of Fuel Development and Manufacturing for Space Nuclear Reactors at BWX Technologies

    SciTech Connect (OSTI)

    Carmack, W.J.; Husser, D.L.; Mohr, T.C.; Richardson, W.C. [BWX Technologies, PO Box 785, Lynchburg, VA 24505-0785 (United States)

    2004-02-04T23:59:59.000Z

    New advanced nuclear space propulsion systems will soon seek a high temperature, stable fuel form. BWX Technologies Inc (BWXT) has a long history of fuel manufacturing. UO2, UCO, and UCx have been fabricated at BWXT for various US and international programs. Recent efforts at BWXT have focused on establishing the manufacturing techniques and analysis capabilities needed to provide a high quality, high power, compact nuclear reactor for use in space nuclear powered missions. To support the production of a space nuclear reactor, uranium nitride has recently been manufactured by BWXT. In addition, analytical chemistry and analysis techniques have been developed to provide verification and qualification of the uranium nitride production process. The fabrication of a space nuclear reactor will require the ability to place an unclad fuel form into a clad structure for assembly into a reactor core configuration. To this end, BWX Technologies has reestablished its capability for machining, GTA welding, and EB welding of refractory metals. Specifically, BWX Technologies has demonstrated GTA welding of niobium flat plate and EB welding of niobium and Nb-1Zr tubing. In performing these demonstration activities, BWX Technologies has established the necessary infrastructure to manufacture UO2, UCx, or UNx fuel, components, and complete reactor assemblies in support of space nuclear programs.

  6. Accepted Manuscript Sustainable manufacturing: Evaluation and Modeling of

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    in additive manufacturing Florent Le Bourhisa · Olivier Kerbrata Jean-Yves Hascoeta · Pascal Mognola Accepted of manufacturing processes where great amounts of energy and materials are being consumed. Nowadays, additive manufacturing technologies such as Direct Additive Laser Manufac- turing allow us to manufacture functional

  7. Faculty Position in Multi-scale Manufacturing Technologies

    E-Print Network [OSTI]

    Psaltis, Demetri

    -precision additive manufacturing technologies; · multi-scale micro-precision manufacturing; · high throughput. Christian Enz Search Committee Chair E-mail: manufacturing-search@epfl.ch For additional information on EPFLFaculty Position in Multi-scale Manufacturing Technologies at the Ecole polytechnique fédérale de

  8. Precision and manufacturing at the Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Saito, T.T.; Wasley, R.J.; Stowers, I.F.; Donaldson, R.R.; Thompson, D.C.

    1993-11-01T23:59:59.000Z

    Precision Engineering is one of Lawrence Livermore National Laboratory`s core strengths. This paper discusses the past and present current technology transfer efforts of LLNL`s Precision Engineering program and the Livermore Center for Advanced Manufacturing and Productivity (LCAMP). More than a year ago the Precision Machining Commercialization project embodied several successful methods of transferring high technology from the National Laboratories to industry. Currently LCAMP has already demonstrated successful technology transfer and is involved in a broad spectrum of current programs. In addition this paper discusses other technologies ripe for future transition including the Large Optics Diamond Turning Machine.

  9. The Journal of Supercomputing, 31, 7999, 2005 C 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

    E-Print Network [OSTI]

    Záruba, Gergely

    . Manufactured in The Netherlands. Mobile Agent Connection Establishment and Management (CEMA)--Message Exchange Connection Estab- lishment and Management Algorithm CEMA for message passing among mobile agents in he is an emerging technology that offers new possibilities to distributed computing and computer networking

  10. Simultaneous Tolerance Synthesis for Manufacturing and Quality B. Ye, Department of Industrial and Manufacturing Systems Engineering

    E-Print Network [OSTI]

    Salustri, Filippo A.

    to component dimension i CT total cost of manufacturing and quality Cpi capability index of last process, and quality, for the sake of achieving a minimal total cost and reducing lead-time. However, in existing workSimultaneous Tolerance Synthesis for Manufacturing and Quality B. Ye, Department of Industrial

  11. Graduate Programs in Industrial and Manufacturing Engineering The industrial and manufacturing (IME) department at WSU

    E-Print Network [OSTI]

    ; occupational safety and other industrial hygiene issues; and ergonomics and human factors issues in aviationGraduate Programs in Industrial and Manufacturing Engineering The industrial and manufacturing (IME programs in industrial engineering (MSIE and PhDIE, respectively). The department also offers four graduate

  12. Manufacturing Engineering The research activities of the Manufacturing Engineering group are concerned with the

    E-Print Network [OSTI]

    Calgary, University of

    Planning and Control. Research in this area focuses on understanding the tradeoffs and improving of this research is to develop insights into the performance improvement of complex production systems. l Intelligent Manufacturing Systems. Use of advanced computing techniques in manufacturing. l Production

  13. Manufacture of annular cermet articles

    DOE Patents [OSTI]

    Forsberg, Charles W.; Sikka, Vinod K.

    2004-11-02T23:59:59.000Z

    A method to produce annular-shaped, metal-clad cermet components directly produces the form and avoids multiple fabrication steps such as rolling and welding. The method includes the steps of: providing an annular hollow form with inner and outer side walls; filling the form with a particulate mixture of ceramic and metal; closing, evacuating, and hermetically sealing the form; heating the form to an appropriate temperature; and applying force to consolidate the particulate mixture into solid cermet.

  14. Software Engineering, an established Accreditable Engineering Discipline

    E-Print Network [OSTI]

    Szabados, Barna

    Software Engineering, an established Accreditable Engineering Discipline By B.Szabados, P.Eng, Mc of the Canadian Engineering Accreditation Board (CEAB), as well as at a workshop at the NCDEAS meeting in September 1997. 1. INTRODUCTION In the late seventies, the discipline of Computer Engineering has evolved

  15. 2013 Cost Estimation of Establishing a

    E-Print Network [OSTI]

    Collins, Gary S.

    1 2013 Cost Estimation of Establishing a Cider Apple Orchard in Western Washington W A S H I N G factors: · Capital, labor, and natural resources · Crop yield · Cultural practices · Input prices Cost estimations in this enterprise budget also vary depending on the budget's intended use. To avoid

  16. Ris Report No. 354 Research Establishment Ris

    E-Print Network [OSTI]

    Risø Report No. 354 en O Z oo.o od Research Establishment Risø Metallurgy Department -- Progress Risø.. DK-4000 Roskilde, Denmark #12;I M S Dracripten FUEL ELEMENTS METALLURGY NONDESTRUCTIVE TESTING Metallurgy Department Progress Report for the period 1 January to 31 December 1976 #12;ABSTRACT

  17. BIODIVERSITY The contribution of newly established

    E-Print Network [OSTI]

    Bernatchez, Louis

    BIODIVERSITY RESEARCH The contribution of newly established populations to the dynamics of range River and estuary. We first determined genetic origins among several potential wild and cultured source, in Lake Memphremagog. Populations from the Maritime provinces and domestic strains do not contribute

  18. Advanced Blade Manufacturing Project - Final Report

    SciTech Connect (OSTI)

    POORE, ROBERT Z.

    1999-08-01T23:59:59.000Z

    The original scope of the project was to research improvements to the processes and materials used in the manufacture of wood-epoxy blades, conduct tests to qualify any new material or processes for use in blade design and subsequently build and test six blades using the improved processes and materials. In particular, ABM was interested in reducing blade cost and improving quality. In addition, ABM needed to find a replacement material for the mature Douglas fir used in the manufacturing process. The use of mature Douglas fir is commercially unacceptable because of its limited supply and environmental concerns associated with the use of mature timber. Unfortunately, the bankruptcy of FloWind in June 1997 and a dramatic reduction in AWT sales made it impossible for ABM to complete the full scope of work. However, sufficient research and testing were completed to identify several promising changes in the blade manufacturing process and develop a preliminary design incorporating these changes.

  19. Photovoltaic Manufacturing Technology, Phase 1, Final report

    SciTech Connect (OSTI)

    Easoz, J.R.; Herlocher, R.H. (Westinghouse Electric Corp., Pittsburgh, PA (United States))

    1991-12-01T23:59:59.000Z

    This report examines the cost-effective manufacture of dendritic-web-based photovoltaic modules. It explains how process changes can increase production and reduce manufacturing costs. Long-range benefits of these improved processes are also discussed. Problems are identified that could impede increasing production and reducing costs; approaches to solve these problems are presented. These approaches involve web growth throughput, cell efficiency, process yield, silicon use, process control, automation, and module efficiency. Also discussed are the benefits of bifacial module design, unique to the dendritic web process.

  20. Manufacturing improvements in the Photovoltaic Manufacturing Technology (PVMaT) Project

    SciTech Connect (OSTI)

    Witt, C.E.; Mitchell, R.L.; Thomas, H.P.; Symko, M.I. [National Renewable Energy Lab., Golden, CO (United States); King, R. [Dept. of Energy, Washington, DC (United States); Ruby, D.S. [Sandia National Labs., Albuquerque, NM (United States)

    1998-08-01T23:59:59.000Z

    The Photovoltaic Manufacturing Technology Project (PVMaT) is a government/industry research and development (R and D) partnership between the US federal government (through the US Department of Energy [DOE]) and members of the US PV industry. The goals of PVMaT are to help the US PV industry improve module manufacturing processes and equipment; accelerate manufacturing cost reductions for PV modules, balance-of-systems components, and integrated systems; increase commercial product performance and reliability; and enhance the investment opportunities for substantial scale-ups of US-based PV manufacturing plant capacities. The approach for PVMaT has been to cost-share risk taking by industry as it explores new manufacturing options and ideas for improved PV modules and other components, advances system and product integration, and develops new system designs, all of which will lead to overall reduced system life-cycle costs for reliable PV end products. The PVMaT Phase 4A module manufac turing R and D projects are just being completed, and initial results for the work directed primarily to module manufacture are reported in this paper. Fourteen new Phase 5A subcontracts have also just been awarded, and planned R and D areas for the ten focused on module manufacture are described. Finally, government funding, subcontractor cost-sharing, and a comparison of the relative efforts by PV technology throughout the PVMaT project are presented.

  1. Large-Scale PV Module Manufacturing Using Ultra-Thin Polycrystalline Silicon Solar Cells: Final Subcontract Report, 1 April 2002--28 February 2006

    SciTech Connect (OSTI)

    Wohlgemuth, J.; Narayanan, M.

    2006-07-01T23:59:59.000Z

    The major objectives of this program were to continue advances of BP Solar polycrystalline silicon manufacturing technology. The Program included work in the following areas. (1) Efforts in the casting area to increase ingot size, improve ingot material quality, and improve handling of silicon feedstock as it is loaded into the casting stations. (2) Developing wire saws to slice 100-..mu..m-thick silicon wafers on 290-..mu..m-centers. (3) Developing equipment for demounting and subsequent handling of very thin silicon wafers. (4) Developing cell processes using 100-..mu..m-thick silicon wafers that produce encapsulated cells with efficiencies of at least 15.4% at an overall yield exceeding 95%. (5) Expanding existing in-line manufacturing data reporting systems to provide active process control. (6) Establishing a 50-MW (annual nominal capacity) green-field Mega-plant factory model template based on this new thin polycrystalline silicon technology. (7) Facilitating an increase in the silicon feedstock industry's production capacity for lower-cost solar-grade silicon feedstock..

  2. Temporal pulse tailoring in laser manufacturing technologies

    E-Print Network [OSTI]

    Peinke, Joachim

    5 Temporal pulse tailoring in laser manufacturing technologies Razvan Stoian1 , Matthias. Ultrafast lasers have gained momentum in material processing technolo- gies in response to requirements for quality material processing. 5.1 Introduction The demand for precision in laser material processing

  3. Manufacturability-Aware Physical Layout Optimizations

    E-Print Network [OSTI]

    Pan, David Z.

    design. To really bridge the gap between design and manufacturing, it is important to model and feed As VLSI technology continues to scale down to nanometer dimensions, the semiconductor industry is greatly reason is due to extensive usage of RET. The semiconductor industry is adopting the immersion lithography

  4. DOE's Hydrogen and Fuel Cells Technologies Manufacturing

    E-Print Network [OSTI]

    · Advanced fuel cell testing & diagnostics Wet Direct coated Anode #1 Direct coated Anode #2 Control Anode #3DOE's Hydrogen and Fuel Cells Technologies Manufacturing Sub-program Nancy L. Garland, Ph.D. U for fuel cells, and hydrogen production, delivery, and storage; grow the domestic supplier base

  5. Manufacturing Fuel Pellets from Biomass Introduction

    E-Print Network [OSTI]

    Boyer, Elizabeth W.

    Manufacturing Fuel Pellets from Biomass Introduction Wood pellets have increased tremendously pellet stoves or boilers over traditional wood-fired equipment due to their relative ease of use. As a result, the demand for fuel pellets has also grown quickly. However, wood is not the only suitable

  6. Montana Manufacturing Center www.mtmanufacturingcenter.com

    E-Print Network [OSTI]

    Dyer, Bill

    on. A Six Sigma project guided by a Field Engi- neer from the Montana Manufacturing Extension Center with Worrest serving as project lead and Six Sigma Coach. Reid considers Worrest a business coach and has used is much better, the company is carrying less inventory, and it is benefiting in other ways. Six Sigma

  7. REMEDIAT1NG AT MANUFACTURED GAS

    E-Print Network [OSTI]

    Peters, Catherine A.

    , comhusti- hle gas manufactured Pfrom coke, coal, and oil 1 served as the major gas- eous fuel for urban for the three primary gas production meth- ods: coal carbonization, carbureted water gas production, and oil gas, and metals. Tar resid- uals were produced from the vola- tiIe component of bituminous coals in coal

  8. Faculty of Engineering Industrial and Manufacturing

    E-Print Network [OSTI]

    Faculty of Engineering Industrial and Manufacturing Systems Engineering Industrial engineers answer the needs of organizations to operate efficiently and cost effectively. As an industrial engineer, you may of Windsor is one of only a few institutions in Ontario to offer industrial engineering. Your education

  9. Advanced Manufacturing: Using Composites for Clean Energy

    Broader source: Energy.gov [DOE]

    Advanced fiber-reinforced polymer composites, which combine strong fibers with tough plastics, are lighter and stronger than steel. These materials could lower overall production costs in U.S. manufacturing and ultimately drive the adoption of a new clean energy way of life.

  10. Optimal Preventive Maintenance Scheduling in Semiconductor Manufacturing

    E-Print Network [OSTI]

    Marcus, Steven I.

    1 Optimal Preventive Maintenance Scheduling in Semiconductor Manufacturing Xiaodong Yao, Emmanuel on Control Applications in 2001. #12;2 Abstract Preventive Maintenance (PM) scheduling is a very challenging schedule with that of a baseline reference schedule are also presented. Index Terms preventive maintenance

  11. Pollution Prevention and Lean Manufacturing Paper # 360

    E-Print Network [OSTI]

    Pollution Prevention and Lean Manufacturing Paper # 360 Harry W. Edwards and Jason M. Jonkman, the CSU IAC promotes energy conservation, pollution prevention, and productivity improvement. During that generated a total of 467 assessment recommendations (ARs) with pollution prevention benefits. Such benefits

  12. 8th Global Conference on Sustainable Manufacturing

    E-Print Network [OSTI]

    Berlin,Technische Universität

    8th Global Conference on Sustainable Manufacturing Architecture for Sustainable Engineering to competent partners in the global village. Sustainability engineering has evolved as a means to meet mankind, Germany Co-Chairman Prof. Dr. N. Ibrahim Abu Dhabi University, UAE for a sustainable product and process

  13. Method and apparatus for manufacturing gas tags

    DOE Patents [OSTI]

    Gross, Kenny C. (Bolingbrook, IL); Laug, Matthew T. (Idaho Falls, ID)

    1996-01-01T23:59:59.000Z

    For use in the manufacture of gas tags employed in a gas tagging failure detection system for a nuclear reactor, a plurality of commercial feed gases each having a respective noble gas isotopic composition are blended under computer control to provide various tag gas mixtures having selected isotopic ratios which are optimized for specified defined conditions such as cost. Using a new approach employing a discrete variable structure rather than the known continuous-variable optimization problem, the computer controlled gas tag manufacturing process employs an analytical formalism from condensed matter physics known as stochastic relaxation, which is a special case of simulated annealing, for input feed gas selection. For a tag blending process involving M tag isotopes with N distinct feed gas mixtures commercially available from an enriched gas supplier, the manufacturing process calculates the cost difference between multiple combinations and specifies gas mixtures which approach the optimum defined conditions. The manufacturing process is then used to control tag blending apparatus incorporating tag gas canisters connected by stainless-steel tubing with computer controlled valves, with the canisters automatically filled with metered quantities of the required feed gases.

  14. Method and apparatus for manufacturing gas tags

    DOE Patents [OSTI]

    Gross, K.C.; Laug, M.T.

    1996-12-17T23:59:59.000Z

    For use in the manufacture of gas tags employed in a gas tagging failure detection system for a nuclear reactor, a plurality of commercial feed gases each having a respective noble gas isotopic composition are blended under computer control to provide various tag gas mixtures having selected isotopic ratios which are optimized for specified defined conditions such as cost. Using a new approach employing a discrete variable structure rather than the known continuous-variable optimization problem, the computer controlled gas tag manufacturing process employs an analytical formalism from condensed matter physics known as stochastic relaxation, which is a special case of simulated annealing, for input feed gas selection. For a tag blending process involving M tag isotopes with N distinct feed gas mixtures commercially available from an enriched gas supplier, the manufacturing process calculates the cost difference between multiple combinations and specifies gas mixtures which approach the optimum defined conditions. The manufacturing process is then used to control tag blending apparatus incorporating tag gas canisters connected by stainless-steel tubing with computer controlled valves, with the canisters automatically filled with metered quantities of the required feed gases. 4 figs.

  15. International photovoltaic products and manufacturers directory, 1995

    SciTech Connect (OSTI)

    Shepperd, L.W. [ed.] [Florida Solar Energy Center, Cocoa, FL (United States)] [ed.; Florida Solar Energy Center, Cocoa, FL (United States)

    1995-11-01T23:59:59.000Z

    This international directory of more than 500 photovoltaic-related manufacturers is intended to guide potential users of photovoltaics to sources for systems and their components. Two indexes help the user to locate firms and materials. A glossary describes equipment and terminology commonly used in the photovoltaic industry.

  16. Manufacturing Environment in the Year 2000 

    E-Print Network [OSTI]

    Slautterback, W. H.

    1985-01-01T23:59:59.000Z

    Manufacturing will change more in the next 15 years than it has in the last 75 years. The reasons are clear ... survival and technology. Unless U.S. companies can compete in a world economy on price, quality, design and delivery, our companies...

  17. The University of Padova, established in 1222, is one of

    E-Print Network [OSTI]

    Cesare, Bernardo

    engineering and manufacturing engineering. The INTERAQCT project is a pan- European industrial-based quality optimization of micro manufacturing processes (ESR 11) More information: http salary) and, in addition, 700 to 1000 Euro/month (mobility allowance). To apply, provide: 1) a letter

  18. Regulatory practices in India for establishing nuclear power stations

    SciTech Connect (OSTI)

    De, A.K. [Atomic Energy Regulatory Board, Calcutta (India); Singh, S.P. [Atomic Energy Regulatory Board, Bombay (India)

    1991-07-01T23:59:59.000Z

    The Atomic Energy Regulatory Board (AERB) of India was established as an independent regulatory authority charged with regulating radiation protection and nuclear safety. This article reviews the current state of India`s nuclear power reactor program and discusses the makeup of functions of the AERB, including the preparation of issuance of safety codes, guides, and other standards, with special recent emphasis on pressurized-heavy-water reactors (PHWRs). The AERB`s relationship to nuclear plant owners is discussed, as are the inspection and control functions the AERB performs, both for the construction and operation of nuclear plants and the licensing of operating personnel. 8 refs., 2 figs.

  19. The Method of Manufactured Solutions for RattleSnake A SN Radiation Transport Solver Inside the MOOSE Framework

    SciTech Connect (OSTI)

    Yaqi Wang

    2012-06-01T23:59:59.000Z

    The Method of Manufactured Solutions (MMS) is an accepted technique to verify that a numerical discretization for the radiation transport equation has been implemented correctly. This technique offers a few advantages over other methods such as benchmark problems or analytical solutions. The solution can be manufactured such that properties for the angular flux are either stressed or preserved. For radiation transport, these properties can include desired smoothness, positiveness and arbitrary order of anisotropy in angle. Another advantage is that the angular flux solution can be manufactured for multidimensional problems where analytical solutions are difficult to obtain in general.

  20. Radiation analysis devices, radiation analysis methods, and articles of manufacture

    DOE Patents [OSTI]

    Roybal, Lyle Gene

    2010-06-08T23:59:59.000Z

    Radiation analysis devices include circuitry configured to determine respective radiation count data for a plurality of sections of an area of interest and combine the radiation count data of individual of sections to determine whether a selected radioactive material is present in the area of interest. An amount of the radiation count data for an individual section is insufficient to determine whether the selected radioactive material is present in the individual section. An article of manufacture includes media comprising programming configured to cause processing circuitry to perform processing comprising determining one or more correction factors based on a calibration of a radiation analysis device, measuring radiation received by the radiation analysis device using the one or more correction factors, and presenting information relating to an amount of radiation measured by the radiation analysis device having one of a plurality of specified radiation energy levels of a range of interest.

  1. DURABILITY COMPARISON AND LIFE PREDICTIONS OF COMPETING MANUFACTURING PROCESSES: AN EXPERIMENTAL STUDY OF

    E-Print Network [OSTI]

    Fatemi, Ali

    processes. These include forged steel, cast aluminum, and cast iron knuckles. Fatigue behavior is a key steel and cast aluminum knuckles. Finite element analysis of the steering knuckles was also conducted with the experimental component test results. INTRODUCTION Manufacturing processes face major competitions in automotive

  2. Apparatus with moderating material for microwave heat treatment of manufactured components

    DOE Patents [OSTI]

    Ripley, Edward B. (Knoxville, TN)

    2011-05-10T23:59:59.000Z

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.

  3. Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture

    DOE Patents [OSTI]

    West, Phillip B. (Idaho Falls, ID); Novascone, Stephen R. (Idaho Falls, ID); Wright, Jerry P. (Idaho Falls, ID)

    2012-05-29T23:59:59.000Z

    Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture are described. According to one embodiment, an earth analysis method includes engaging a device with the earth, analyzing the earth in a single substantially lineal direction using the device during the engaging, and providing information regarding a subsurface feature of the earth using the analysis.

  4. Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture

    DOE Patents [OSTI]

    West, Phillip B. (Idaho Falls, ID); Novascone, Stephen R. (Idaho Falls, ID); Wright, Jerry P. (Idaho Falls, ID)

    2011-09-27T23:59:59.000Z

    Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture are described. According to one embodiment, an earth analysis method includes engaging a device with the earth, analyzing the earth in a single substantially lineal direction using the device during the engaging, and providing information regarding a subsurface feature of the earth using the analysis.

  5. Tokamak Physics EXperiment (TPX): Toroidal field magnet design, development and manufacture. SDRL 15, System design description. Volume 1

    SciTech Connect (OSTI)

    NONE

    1995-09-22T23:59:59.000Z

    This System Design Description, prepared in accordance with the TPX Project Management Plan provides a summary or TF Magnet System design features at the conclusion of Phase I, Preliminary Design and Manufacturing Research. The document includes the analytical and experimental bases for the design, and plans for implementation in final design, manufacturing, test, and magnet integration into the tokamak. Requirements for operation and maintenance are outlined, and references to sources of additional information are provided.

  6. Fuel cell repeater unit including frame and separator plate

    DOE Patents [OSTI]

    Yamanis, Jean; Hawkes, Justin R; Chiapetta, Jr., Louis; Bird, Connie E; Sun, Ellen Y; Croteau, Paul F

    2013-11-05T23:59:59.000Z

    An example fuel cell repeater includes a separator plate and a frame establishing at least a portion of a flow path that is operative to communicate fuel to or from at least one fuel cell held by the frame relative to the separator plate. The flow path has a perimeter and any fuel within the perimeter flow across the at least one fuel cell in a first direction. The separator plate, the frame, or both establish at least one conduit positioned outside the flow path perimeter. The conduit is outside of the flow path perimeter and is configured to direct flow in a second, different direction. The conduit is fluidly coupled with the flow path.

  7. Environmental research brief: Pollution prevention assessment for a manufacturer of automotive lighting equipment and accessories

    SciTech Connect (OSTI)

    Fleischman, M.; Couch, B.; Handmaker, A. [Tennessee Univ., Knoxville, TN (United States). Dept. of Engineering Science and Mechanics; Looby, G.P. [University City Science Center, Philadelphia, PA (United States)

    1995-08-01T23:59:59.000Z

    The US Environmental Protection Agency (EPA) has funded a Pilot project to assist small and medium-size manufacture who want to minimize their generation of waste but who lac the expertise to do so. In an effort to assist these manufacturers Waste Minimization Assessment Centers (WMACs) we established at selected universities and procedures were adapted from the EPA Waste Minimization Opportunity Assessment Manual. The WMAC team at the University of Tennessee performed an assessment at a plant that manufactures outboard motors for water craft. Three basic subunits received from other manufacturing plants undergo primarily painting and assembly operations in order to produce the final product. The team`s report, detailing findings and recommendations, indicated that paint overspray waste and spent clean-up solvent are generated in large quantities and that significant cost savings could be achieved by installing robotic paint application equipment. This Research Brief was developed by the principal investigators and EPA`s National Risk Management Research Laboratory, Cincinnati, OH, to announce key findings of an ongoing research project that is fully documented in a separate report of the same title available from University City Science Center.

  8. Chemical vapor deposition techniques and related methods for manufacturing microminiature thermionic converters

    DOE Patents [OSTI]

    King, Donald B. (Albuquerque, NM); Sadwick, Laurence P. (Salt Lake City, UT); Wernsman, Bernard R. (Clairton, PA)

    2002-06-25T23:59:59.000Z

    Methods of manufacturing microminiature thermionic converters (MTCs) having high energy-conversion efficiencies and variable operating temperatures using MEMS manufacturing techniques including chemical vapor deposition. The MTCs made using the methods of the invention incorporate cathode to anode spacing of about 1 micron or less and use cathode and anode materials having work functions ranging from about 1 eV to about 3 eV. The MTCs also exhibit maximum efficiencies of just under 30%, and thousands of the devices can be fabricated at modest costs.

  9. Manufacturing buildings in Massachusetts : the legacy and the future

    E-Print Network [OSTI]

    Traynor, Callie

    1983-01-01T23:59:59.000Z

    Manufacturing buildings are found in most towns and cities in Massachusetts. Standing in dominant isolation, or as part of an urban district, their presence is the built testimony to the role manufacturing played in so ...

  10. EERE and Auto Manufacturers Demonstrate and Evaluate Fuel Cell...

    Office of Environmental Management (EM)

    EERE and Auto Manufacturers Demonstrate and Evaluate Fuel Cell Vehicles EERE and Auto Manufacturers Demonstrate and Evaluate Fuel Cell Vehicles April 18, 2013 - 12:00am Addthis The...

  11. Fact #871: May 4, 2015 Most Manufacturers Have Positive CAFE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: May 4, 2015 Most Manufacturers Have Positive CAFE Credit Balances at the End of Model Year 2013 Fact 871: May 4, 2015 Most Manufacturers Have Positive CAFE Credit Balances at...

  12. Roadmap: Applied Engineering Manufacturing Systems Bachelor of Science

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Applied Engineering ­ Manufacturing Systems ­ Bachelor of Science [AT 15000 Introduction to Human Communication 3 Fulfills Kent Core Additional Kent Core Requirement 3 See #12;Roadmap: Applied Engineering ­ Manufacturing Systems ­ Bachelor of Science [AT

  13. Event Registration Form International Good Manufacturing Practices Conference -#71683

    E-Print Network [OSTI]

    Arnold, Jonathan

    Event Registration Form International Good Manufacturing Practices Conference - #71683 03 No Total $______ Please specify any additional dietary restrictions or allergies-884-1419 -- Credit Card Only Mail: International Good Manufacturing Practices Conference ­ #71683 The Georgia Center

  14. East Penn Manufacturing Keeps Moving Forward After 65 Years

    Broader source: Energy.gov [DOE]

    How East Penn Manufacturing went from a small business, founded by a father and son just after the close of World War II, to an expanding manufacturer of advanced batteries for hybrid electric vehicles.

  15. Exploration of large scale manufacturing of polydimethylsiloxane (PDMS) microfluidic devices

    E-Print Network [OSTI]

    Hum, Philip W. (Philip Wing-Jung)

    2006-01-01T23:59:59.000Z

    Discussion of the current manufacturing process of polydimethylsiloxane (PDMS) parts and the emergence of PDMS use in biomedical microfluidic devices addresses the need to develop large scale manufacturing processes for ...

  16. Manufacturing of Protected Lithium Electrodes for Advanced Lithium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steven J. Visco, CEO & CTO, PolyPlus Battery Company U.S. DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C. May 28-29, 2015 Manufacturing of Protected Lithium...

  17. An Interdisciplinary Undergraduate Manufacturing Option for Chemical Engineering, page

    E-Print Network [OSTI]

    Lamancusa, John S.

    institutions: Product Dissection, Concurrent Engineering, and Entrepreneurship. The sequence of coursesAn Interdisciplinary Undergraduate Manufacturing Option for Chemical Engineering, page ASEE Conference Summer 1996 1 An Interdisciplinary Undergraduate Manufacturing Engineering Option for Chemical

  18. Energy Report: U.S. Wind Energy Production and Manufacturing...

    Energy Savers [EERE]

    Report: U.S. Wind Energy Production and Manufacturing Surges, Supporting Jobs and Diversifying U.S. Energy Economy Energy Report: U.S. Wind Energy Production and Manufacturing...

  19. An Energy Conservation Program at a Large Cable Manufacturing Plant

    E-Print Network [OSTI]

    Reale, P. J.

    1983-01-01T23:59:59.000Z

    The Atlanta Works is the largest telephone cable manufacturing plant in the world plus the manufacturing center for fiber optic cable for the Western Electric Company and exemplifies how an effective energy conservation program can work...

  20. Springfield Utility Board- Super Good Cents Manufactured Homes Rebate Program

    Broader source: Energy.gov [DOE]

    The Springfield Utility Board offers a $600 incentive for the purchase of a Super Good Cents Manufactured Home. Super Good Cents Manufactured Homes offer improve comfort and efficiency. The...

  1. New urban manufacturing neo-industrial design in Louisville, Kentucky

    E-Print Network [OSTI]

    Rhie, Christopher

    2014-01-01T23:59:59.000Z

    American manufacturing is experiencing a modest renaissance. U.S. firms are choosing to re-shore manufacturing jobs not out of their sense of patriotism, but because it makes good business sense. The costs of transportation ...

  2. Fiber Reinforced Polymer Composite Manufacturing Workshop “Save the Date”

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy’s Advanced Manufacturing Office plans to host a Fiber Reinforced Polymer Composite Manufacturing Workshop in the Washington D.C. area on Monday January 13, 2014.

  3. Lean manufacturing in a semiconductor environment : production leveling

    E-Print Network [OSTI]

    Subramanian, Nima

    2007-01-01T23:59:59.000Z

    Intel Corporation's Fab17 located at Hudson, MA underwent a large scale manufacturing ramp-up, increasing its production volume by over 50%. As a result of this manufacturing ramp-up, the factory is faced with various ...

  4. Center for Advanced Design & Manufacturing of Integrated Microfluidics (CADMIM)

    E-Print Network [OSTI]

    Mease, Kenneth D.

    Center for Advanced Design & Manufacturing of Integrated Microfluidics (CADMIM) Mission Statement: The Center for Advanced Design and Manufacturing of Integrated Microfluidics will develop design tools microfluidics targeting costeffective, quick, and easy diagnosis of the environment, agriculture, and human

  5. Commercial assessment of roll to roll manufacturing of electronic displays

    E-Print Network [OSTI]

    Randolph, Michael Aaron

    2006-01-01T23:59:59.000Z

    The cost of manufacturing electronic displays currently limits the range of applications and markets into which it is currently economically feasible to adopt displays. Roll-to-roll manufacturing has been identified by the ...

  6. Inbound freight consolidation for US manufacturers at China

    E-Print Network [OSTI]

    Fang, Yi, M. Eng. Massachusetts Institute of Technology

    2006-01-01T23:59:59.000Z

    In recent years, China has become the world factory for a sizable portion of products. Most manufacturing conglomerates in the United States now have contract manufacturing plants in China. Because many of these US companies ...

  7. Posted 5/10/12 Manufacturing /Process Engineer

    E-Print Network [OSTI]

    Heller, Barbara

    . Plymouth Tube Company is committed to providing products and services that meet or exceed customers to improve safety, quality, and manufacturing efficiency throughout the manufacturing area. Utilization, reduce cycle times, improve productivity, create and find capacity, improve process reliability

  8. Developing an inventor support service which performs early stage market and manufacturing evaluations. [Final Report

    SciTech Connect (OSTI)

    Not Available

    1991-10-01T23:59:59.000Z

    American businesses are learning the difficult high cost lesson of ignoring production and market factors (producibility, unit product cost (UPC), marketability, etc) during the engineering design phase of product development. Studies have shown that the Japanese spend three times as long as Americans in the design feasibility and decision process of new product introductions and one third the amount of time in the implementation of those products. There is a 20 to 1 cost benefit on effort applied in the design phase versus the production phase of the product life cycle. The number one goal of this project was to establish an organization that has, as one of its purposes, the providing of services responsive to the needs of independent inventors. The number two goal was to demonstrate the value of providing marketing and manufacturing counsel at an early stage in the product development process. The first study goal was met by providing the materials and information necessary to establish an evaluation team and an organization to handle such evaluations. The second study goal was met by demonstrating the impact of early market analysis and manufacturing considerations on product design and therefore on the description of the invention for four different inventions. These inventions were selected at various stages of development. Regardless of stage of development, the marketing and manufacturing reviews resulted in significant changes in design and/or market positioning.

  9. Developing an inventor support service which performs early stage market and manufacturing evaluations. Final report

    SciTech Connect (OSTI)

    Not Available

    1991-10-01T23:59:59.000Z

    American businesses are learning the difficult high cost lesson of ignoring production and market factors (producibility, unit product cost (UPC), marketability, etc) during the engineering design phase of product development. Studies have shown that the Japanese spend three times as long as Americans in the design feasibility and decision process of new product introductions and one third the amount of time in the implementation of those products. There is a 20 to 1 cost benefit on effort applied in the design phase versus the production phase of the product life cycle. The number one goal of this project was to establish an organization that has, as one of its purposes, the providing of services responsive to the needs of independent inventors. The number two goal was to demonstrate the value of providing marketing and manufacturing counsel at an early stage in the product development process. The first study goal was met by providing the materials and information necessary to establish an evaluation team and an organization to handle such evaluations. The second study goal was met by demonstrating the impact of early market analysis and manufacturing considerations on product design and therefore on the description of the invention for four different inventions. These inventions were selected at various stages of development. Regardless of stage of development, the marketing and manufacturing reviews resulted in significant changes in design and/or market positioning.

  10. Towards Energy and Resource Efficient Manufacturing: A Processes and Systems Approach

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    609 considered manufacturing processes are laser cutting asdie manufacturing comes from its ability to enable laser-of Laser-Based and Conventional Tool and Die Manufacturing.

  11. Comparing Environmental Impacts of Additive Manufacturing vs. Traditional Machining via Life-Cycle Assessment

    E-Print Network [OSTI]

    Faludi, Jeremy; Bayley, Cindy; Bhogal, Suraj; Iribarne, Myles

    2014-01-01T23:59:59.000Z

    Impacts of Additive Manufacturing vs. Traditional MachiningSocial Impacts of Additive Manufacturing vs CNC Machiningcutting! Impacts of Additive Manufacturing in Literature

  12. A Unified Approach for Integrated Computer-Aided Design and Manufacturing

    E-Print Network [OSTI]

    Huang, Bin

    2013-01-01T23:59:59.000Z

    different types of additive manufacturing technologies, suchbe used to model the additive manufacturing process as well.composite manufacturing and 3D printing, are additive. They

  13. The role of lean manufacturing principles and strategic alternatives in achieving business goals

    E-Print Network [OSTI]

    Ramaswamy, Dhananjay

    2006-01-01T23:59:59.000Z

    Lean Manufacturing is widely accepted as a proven method to achieve operational excellence. Many manufacturers undertake lean manufacturing implementations as a strategy to improve competitiveness and realize business ...

  14. Comparing Environmental Impacts of Additive Manufacturing vs. Traditional Machining via Life-Cycle Assessment

    E-Print Network [OSTI]

    Faludi, Jeremy; Bayley, Cindy; Bhogal, Suraj; Iribarne, Myles

    2014-01-01T23:59:59.000Z

    Social Impacts of Additive Manufacturing vs CNC MachiningImpacts of Additive Manufacturing vs. Traditional Machiningcutting! Impacts of Additive Manufacturing in Literature

  15. A Decision-Based Analysis of Compressed Air Usage Patterns in Automotive Manufacturing

    E-Print Network [OSTI]

    Yuan, Chris; Zhang, Teresa; Rangarajan, Arvind; Dornfeld, David; Ziemba, Bill; Whitbeck, Rod

    2006-01-01T23:59:59.000Z

    Air Usage Patterns in Automotive Manufacturing Chris Y. Yuanper vehicle built from automotive manufacturing facilities,2004). Compressed Air in Automotive Manufacturing Compressed

  16. A Review of Engineering Research in Sustainable Manufacturing

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    manufacturing of metal components suffers from low production rates and high energy intensity due to the use of lasers

  17. 2007 Status of Manufacturing: Polymer Electrolyte Membrane (PEM) Fuel Cells

    SciTech Connect (OSTI)

    Wheeler, D.; Sverdrup, G.

    2008-03-01T23:59:59.000Z

    In this document we assess the North American industry's current ability to manufacture polymer electrolyte membrane (PEM) fuel cells.

  18. Modular Process Equipment for Low Cost Manufacturing of High...

    Broader source: Energy.gov (indexed) [DOE]

    information Energy & Environmental Solutions Alternative Energy Products Overview 2 Cost of manufacturing Cycling lifetime of high capacity materials Prismatic cell...

  19. Quantifying Energy Savings from Lean Manufacturing Productivity Increases

    E-Print Network [OSTI]

    Seryak, J.; Epstein, G.; D'Antonio, M.

    2006-01-01T23:59:59.000Z

    from existing use due to additional equipment or operating hours. Alternately, in the post-event scenario, Lean Manufacturing techniques enable production gains without increasing operating hours or adding manufacturing equipment. Hence.... The Lean Manufacturing techniques listed above improve productivity in several ways, which may or may not have impacts on energy use. Additionally, Lean Manufacturing techniques can also improve energy use in ways that have no relation to productivity...

  20. Manufacture of thermoelectric generator structures by fiber drawing

    DOE Patents [OSTI]

    McIntyre, Timothy J; Simpson, John T; West, David L

    2014-11-18T23:59:59.000Z

    Methods of manufacturing a thermoelectric generator via fiber drawing and corresponding or associated thermoelectric generator devices are provided.

  1. Structured Reactive Controllers and Transformational Planning for Manufacturing

    E-Print Network [OSTI]

    Cremers, Daniel

    ¨unchen {ruehr,pangerci,beetz}@cs.tum.edu Michael Beetz Abstract While current manufacturing systems are built

  2. Proceedings from the Wind Manufacturing Workshop: Achieving 20...

    Energy Savers [EERE]

    Technology Summary Slides Testing, Manufacturing, and Component Development Projects Offshore Wind Projects Wind Program Home About the Program Research & Development...

  3. Performance of the biose cascade-INEL manufactured solar home

    SciTech Connect (OSTI)

    Lau, A S; Liebelt, K H; Scofield, M P; Shinn, N R

    1980-01-01T23:59:59.000Z

    Two manufactured active solar homes using air collectors and rock storage were designed, bult and are being tested. The cooperative, DOE-funded project involves. Boise Cascade Corporation and the Idaho National Engineering Laboratory (INEL). The two primary goals of the project are to develop an active solar heating system that is cost-effective now, and to provide significant market penetration through the involvement of Boise Cascade, a major manufacturer of factory built houses. A brief discussion of the houses and solar systems is included, with more detailed discussion of the desktop-computer based data acquisition system and initial performance results. The 1979 cooling season data indicated a need for modifications to achieve adequate cooling system performance. Data from the heating season showed good agreement with calculations, especially the house heat loss coefficient. However, solar heating fractions were lower than predicted and an examination of the collector operating efficiency showed the collector losses to be approximately three times higher than predicted. Tests are underway to better understand the large collection losses. Comparison of the performance data and f-chart predictions shows significant differences, with predicted solar fractions being lower than actual. The solar domestic hot water preheating system performed reasonably well, with significant thermal losses noticed from the auxiliary hot water heater. Recommendations are made for the design of solar air-heating systems.

  4. Journal of Manufacturing Processes Vol. 9/No. 1

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    laser thermal forming, is a flexible rapid prototyping and low-vol- ume manufacturing process that usesJournal of Manufacturing Processes Vol. 9/No. 1 2007 1 Journal of Manufacturing Processes Vol. 9/No. 1 2007 Energy-Level Effects on the Deformation Mechanism in Microscale Laser Peen Forming Youneng

  5. Journal of Mechanisms and Robotics Hybrid Deposition Manufacturing: Design

    E-Print Network [OSTI]

    Dollar, Aaron M.

    combines additive manufacturing (AM) processes such as FDM with material deposition and embedded components applications. Additive manufacturing techniques are used to print both permanent components and sacrificial, leveraging the benefits of additive manufacturing and expanding the range of design options for robotic

  6. Advanced Manufacturing Use Cases and Early Results in GENI Infrastructure

    E-Print Network [OSTI]

    Calyam, Prasad

    for controlling remote processes in manufacturing facilities. In addition, there is a need to suitably configureAdvanced Manufacturing Use Cases and Early Results in GENI Infrastructure Alex Berryman, Prasad to advanced manufacturing communities are exciting prospects due to the growth of the global marketplace

  7. MANUFACTURABILITY ANALYSIS TO COMBINE ADDITIVE AND SUBTRACTIVE PROCESSES

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    MANUFACTURABILITY ANALYSIS TO COMBINE ADDITIVE AND SUBTRACTIVE PROCESSES Authors: Olivier Kerbrat of the tool may advantageously be machined or manufactured by an additive process. Originality/value: Nowadays is proposed to combine additive and subtractive processes, for tooling design and manufacturing

  8. Introduction! Low Cost, High Volume, Scale-up Photovoltaic Manufacturing!

    E-Print Network [OSTI]

    Das, Suman

    mechanical strength and! solar cell integrity! q Silicon wafering (diamond wire sawing)! q Silicon waferIntroduction! Low Cost, High Volume, Scale-up Photovoltaic Manufacturing! Prof. Shreyes Melkote volume PV manufacturing, therefore to reduce manufacturing cost and accelerate PV use. ! q Silicon wafer

  9. Low Cost Carbon Fiber Production Carbon Fiber Manufacturing Cost Modeling

    E-Print Network [OSTI]

    to bond with composite matrix material. It is important that a carbon fiber manufacturing cost model manufactured with carbon fiber as opposed to traditional materials such as steel, automotive parts are able associated with both the manufacture of carbon fibers themselves as well as their composites. Traditional

  10. Manufactured solutions for the three-dimensional Euler equations with relevance to Inertial Confinement Fusion

    SciTech Connect (OSTI)

    Waltz, J., E-mail: jwaltz@lanl.gov [Computational Physics Division, Los Alamos National Laboratory, Los Alamos, NM (United States); Canfield, T.R. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM (United States); Morgan, N.R. [Computational Physics Division, Los Alamos National Laboratory, Los Alamos, NM (United States); Risinger, L.D.; Wohlbier, J.G. [Computational and Computer Sciences Division, Los Alamos National Laboratory, Los Alamos, NM (United States)

    2014-06-15T23:59:59.000Z

    We present a set of manufactured solutions for the three-dimensional (3D) Euler equations. The purpose of these solutions is to allow for code verification against true 3D flows with physical relevance, as opposed to 3D simulations of lower-dimensional problems or manufactured solutions that lack physical relevance. Of particular interest are solutions with relevance to Inertial Confinement Fusion (ICF) capsules. While ICF capsules are designed for spherical symmetry, they are hypothesized to become highly 3D at late time due to phenomena such as Rayleigh–Taylor instability, drive asymmetry, and vortex decay. ICF capsules also involve highly nonlinear coupling between the fluid dynamics and other physics, such as radiation transport and thermonuclear fusion. The manufactured solutions we present are specifically designed to test the terms and couplings in the Euler equations that are relevant to these phenomena. Example numerical results generated with a 3D Finite Element hydrodynamics code are presented, including mesh convergence studies.

  11. Steps to Establish a Real-Time Transmission Monitoring System...

    Broader source: Energy.gov (indexed) [DOE]

    evaluation of how such a system could be established if one is to be pursued. This joint report merely describes the steps necessary to establish and implement an...

  12. New Executive Order Establishes a Federal Flood Risk Management...

    Energy Savers [EERE]

    New Executive Order Establishes a Federal Flood Risk Management Standard New Executive Order Establishes a Federal Flood Risk Management Standard February 5, 2015 - 10:55am Addthis...

  13. San Jose, California, Partners With Established Community Groups...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California, Partners With Established Community Groups to Win Over Homeowners San Jose, California, Partners With Established Community Groups to Win Over Homeowners A photo of a...

  14. Guidance for Federal Departments and Agencies on Establishing...

    Energy Savers [EERE]

    on Establishing, Applying, and Revising Categorical Exclusions Under the National Environmental Policy Act Guidance for Federal Departments and Agencies on Establishing,...

  15. Design and Manufacture of Energy Absorbing Materials

    ScienceCinema (OSTI)

    Duoss, Eric

    2014-05-30T23:59:59.000Z

    Learn about an ordered cellular material that has been designed and manufactured using direct ink writing (DIW), a 3-D printing technology being developed at LLNL. The new material is a patterned cellular material that can absorb mechanical energy-a cushion-while also providing protection against sheering. This material is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

  16. Design and Manufacture of Energy Absorbing Materials

    SciTech Connect (OSTI)

    Duoss, Eric

    2014-05-28T23:59:59.000Z

    Learn about an ordered cellular material that has been designed and manufactured using direct ink writing (DIW), a 3-D printing technology being developed at LLNL. The new material is a patterned cellular material that can absorb mechanical energy-a cushion-while also providing protection against sheering. This material is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

  17. Integrating Energy Management and Lean Manufacturing

    E-Print Network [OSTI]

    Stocki, M.

    Reduced Building Energy through Lean Case Study Facility floor space typically must be heated, ventilated, and illuminated. When space runs outs, a facility usually looks to expand by adding floor space. A farm equipment manufacturer was facing just... Procedures to optimize operational and production tasks ? Encouraging energy efficiency through the use of Visual Dashboards (sample in Figure 3). ? Root cause analysis to determine the underlying causes (and possible solutions) of energy wastes in a...

  18. Manufacturing Demonstration Facility Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomyDr.EnergyManufacturing

  19. Revision of the energy conservation requirements in the manufactured home construction and safety standards

    SciTech Connect (OSTI)

    Conner, C C; Lee, A D; Lucas, R G; Taylor, Z T

    1992-02-01T23:59:59.000Z

    Thermal requirements were developed for manufactured (mobile) homes in response to legislation requiring the US Department of Housing and Urban Development (HUD) to revise its thermal standards for manufactured homes. A life-cycle cost minimization from the home owner's perspecetive was used to establish an optimum in a large number of cities for several prototype homes. The development of the economic, financial, and energy conservation measure parameters input into the life-cycle cost analysis was documented. The optimization results were aggregated to zones which were expressed as a maximum overall home U-value (thermal transmittance) requirement. The revised standard's costs, benefits, and net value to the consumer were quantified. 50 refs.

  20. ABE Complex Funding Establishing a new home for the Department of Agricultural and Biosystems Engineering (ABE) is the

    E-Print Network [OSTI]

    Lin, Zhiqun

    , Pella, Grain Processing Corp., SoyWorks, Tone's Spices, and Kinze Manufacturing. Bioeconomy. ABE is a linchpin in how science and technology link to future prosperity in the bioeconomy. ABE is providing-moving, competitive bioeconomy. Recent ABE advances include: a technology licensed by John Deere to collect corn cobs

  1. MHK technologies include current energy conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research leverages decades of experience in engineering and design and analysis (D&A) of wind power technologies, and its vast research complex, including high-performance...

  2. Text analysis devices, articles of manufacture, and text analysis methods

    DOE Patents [OSTI]

    Turner, Alan E; Hetzler, Elizabeth G; Nakamura, Grant C

    2013-05-28T23:59:59.000Z

    Text analysis devices, articles of manufacture, and text analysis methods are described according to some aspects. In one aspect, a text analysis device includes processing circuitry configured to analyze initial text to generate a measurement basis usable in analysis of subsequent text, wherein the measurement basis comprises a plurality of measurement features from the initial text, a plurality of dimension anchors from the initial text and a plurality of associations of the measurement features with the dimension anchors, and wherein the processing circuitry is configured to access a viewpoint indicative of a perspective of interest of a user with respect to the analysis of the subsequent text, and wherein the processing circuitry is configured to use the viewpoint to generate the measurement basis.

  3. Solid electrolyte material manufacturable by polymer processing methods

    DOE Patents [OSTI]

    Singh, Mohit; Gur, Ilan; Eitouni, Hany Basam; Balsara, Nitash Pervez

    2012-09-18T23:59:59.000Z

    The present invention relates generally to electrolyte materials. According to an embodiment, the present invention provides for a solid polymer electrolyte material that is ionically conductive, mechanically robust, and can be formed into desirable shapes using conventional polymer processing methods. An exemplary polymer electrolyte material has an elastic modulus in excess of 1.times.10.sup.6 Pa at 90 degrees C. and is characterized by an ionic conductivity of at least 1.times.10.sup.-5 Scm-1 at 90 degrees C. An exemplary material can be characterized by a two domain or three domain material system. An exemplary material can include material components made of diblock polymers or triblock polymers. Many uses are contemplated for the solid polymer electrolyte materials. For example, the present invention can be applied to improve Li-based batteries by means of enabling higher energy density, better thermal and environmental stability, lower rates of self-discharge, enhanced safety, lower manufacturing costs, and novel form factors.

  4. Consortia Focused on Photovoltaic R&D, Manufacturing, and Testing: A Review of Existing Models and Structures

    SciTech Connect (OSTI)

    Coggeshall, C.; Margolis, R. M.

    2010-03-01T23:59:59.000Z

    As the U.S. Department of Energy's (DOE's) Solar Energy Technologies Program prepares to initiate a new cost-shared research and development (R&D) effort on photovoltaic (PV) manufacturing, it is useful to review the experience to date with consortia focused on PV R&D, manufacturing, and testing. Information was gathered for this report by conducting interviews and accessing Web sites of 14 U.S. consortia and four European consortia, each with either a primary focus on or an emerging interest in PV technology R&D, manufacturing, or testing. Additional input was collected from several workshops held by the DOE and National Academy of Sciences (NAS) in 2009, which examined the practical steps -- including public-private partnerships and policy support -- necessary to enhance the United States' capacity to competitively manufacture photovoltaics. This report categorizes the 18 consortia into three groups: university-led consortia, industry-led consortia, and manufacturing and testing facilities consortia. The first section summarizes the organizations within the different categories, with a particular focus on the key benefits and challenges for each grouping. The second section provides a more detailed overview of each consortium, including the origins, goals, organization, membership, funding sources, and key contacts. This survey is a useful resource for stakeholders interested in PV manufacturing R&D, but should not imply endorsement of any of these groups.

  5. A Unified Approach for Integrated Computer-Aided Design and Manufacturing

    E-Print Network [OSTI]

    Huang, Bin

    2013-01-01T23:59:59.000Z

    composite manufacturing and 3D printing, are additive. Theycomposite manufacturing or 3D-printing. Based on the base

  6. A Unified Approach for Integrated Computer-Aided Design and Manufacturing

    E-Print Network [OSTI]

    Huang, Bin

    2013-01-01T23:59:59.000Z

    composite manufacturing or 3D-printing. Based on the basecomposite manufacturing and 3D printing, are additive. They

  7. Northwest Energy Efficient Manufactured Housing Program: High Performance Manufactured Home Prototyping and Construction Development

    SciTech Connect (OSTI)

    Hewes, T.; Peeks, B.

    2013-11-01T23:59:59.000Z

    The Building America Partnership for Improved Residential Construction, the Bonneville Power Administration (BPA), and Northwest Energy Works (NEW), the current Northwest Energy Efficient Manufactured Housing Program (NEEM) administrator, have been collaborating to conduct research on new specifications that would improve on the energy requirements of a NEEM home. In its role as administrator, NEW administers the technical specs, performs research and engineering analysis, implements ongoing construction quality management procedures, and maintains a central database with home tracking. This project prototyped and assessed the performances of cost-effective high performance building assemblies and mechanical systems that are not commonly deployed in the manufacturing setting. The package of measures is able to reduce energy used for space conditioning, water heating and lighting by 50 percent over typical manufactured homes produced in the northwest.

  8. Technology Solutions for New Manufactured Homes: Idaho, Oregon, and Washington Manufactured Home Builders (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01T23:59:59.000Z

    The Building America Partnership for Improved Residential Construction, the Bonneville Power Administration (BPA), and Northwest Energy Works (NEW), the current Northwest Energy Efficient Manufactured Housing Program (NEEM) administrator, have been collaborating to conduct research on new specifications that would improve on the energy requirements of a NEEM home. In its role as administrator, NEW administers the technical specs, performs research and engineering analysis, implements ongoing construction quality management procedures, and maintains a central database with home tracking. This project prototyped and assessed the performances of cost-effective high performance building assemblies and mechanical systems that are not commonly deployed in the manufacturing setting. The package of measures is able to reduce energy used for space conditioning, water heating and lighting by 50 percent over typical manufactured homes produced in the northwest.

  9. Hydrogen manufacturing using plasma reformers. [Annual progress report], May 1, 1995--December 31, 1995

    SciTech Connect (OSTI)

    Cohn, D.R.; Bromberg, L.; Hochgreb, S.; O`Brien, C.; Rabinovich, A.

    1995-12-31T23:59:59.000Z

    Manufacturing of hydrogen from hydrocarbon fuels is needed for a variety of applications. These applications include fuel cells used in stationary electric power production and in vehicular propulsion. Hydrogen can also be used for various combustion engine systems. There is a wide range of requirements on the capacity of the hydrogen manufacturing system, the purity of the hydrogen fuel, and capability for rapid response. The overall objectives of a hydrogen manufacturing facility are to operate with high availability at the lowest possible cost and to have minimal adverse environmental impact. Plasma technology has potential to significantly alleviate shortcomings of conventional means of manufacturing hydrogen. These shortcomings include cost and deterioration of catalysts; limitations on hydrogen production from heavy hydrocarbons; limitations on rapid response; and size and weight requirements. In addition, use of plasma technology could provide for a greater variety of operating modes in particular the possibility of virtual elimination Of C0{sub 2} production by pyrolytic operation. This mode of hydrogen production may be of increasing importance due to recent additional evidence of global warming.

  10. Food equipment manufacturer takes a slice out of its scrap rate

    SciTech Connect (OSTI)

    Bernard, D.; Hannahs, J. [PMI Food Equipment Group, Troy, OH (United States); Carter, M. [MicroWeld Engineering, Worthington, OH (United States)

    1996-09-01T23:59:59.000Z

    The PMI Food Equipment Group began manufacturing circular slicer knives for its commercial Hobart line of slicers in the early 1930s. The company manufacturers the only cast knife in the food industry. The cast knives offer superior edge retention and overall corrosion resistance. The slicer knives are cast in PMI`s foundry. The casting process sometimes produces shrinkage voids or gas bubbles in the knife blank. Surface discontinuities often do not appear until rough cutting or final machining, i.e., after several hours of value-added manufacturing. Knife blanks with these discontinuities were scrapped and sent back to the foundry for remelting. To scrap the knives at that point meant the cost for casting plus the value-added machining added up to a considerable amount. Weld repair allows the recovery of casting and machining expenses equal to a significant percentage of the total manufacturing cost of slicer knives. Repair costs include welding, grinding, shipping, surface finishing and material handling. Other good applications for this GMAW-P process include repair of jet engine components, rotating process industry equipment, and hardfacing of cutting tools and dies. In addition, dissimilar metals and any material that is heat treated to develop its properties such as precision investment castings are excellent applications. The low resultant distortion, elimination of postweld heat treatment and non-line-of-site welding capability solves thin wall, limited access and precision machined component repair challenges.

  11. Manufacturing Energy and Carbon Footprint - Sector: All Manufacturing (NAICS 31-33), January 2014 (MECS 2010)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomyDr.EnergyManufacturingAll Manufacturing (NAICS

  12. Interim performance criteria for photovoltaic energy systems. [Glossary included

    SciTech Connect (OSTI)

    DeBlasio, R.; Forman, S.; Hogan, S.; Nuss, G.; Post, H.; Ross, R.; Schafft, H.

    1980-12-01T23:59:59.000Z

    This document is a response to the Photovoltaic Research, Development, and Demonstration Act of 1978 (P.L. 95-590) which required the generation of performance criteria for photovoltaic energy systems. Since the document is evolutionary and will be updated, the term interim is used. More than 50 experts in the photovoltaic field have contributed in the writing and review of the 179 performance criteria listed in this document. The performance criteria address characteristics of present-day photovoltaic systems that are of interest to manufacturers, government agencies, purchasers, and all others interested in various aspects of photovoltaic system performance and safety. The performance criteria apply to the system as a whole and to its possible subsystems: array, power conditioning, monitor and control, storage, cabling, and power distribution. They are further categorized according to the following performance attributes: electrical, thermal, mechanical/structural, safety, durability/reliability, installation/operation/maintenance, and building/site. Each criterion contains a statement of expected performance (nonprescriptive), a method of evaluation, and a commentary with further information or justification. Over 50 references for background information are also given. A glossary with definitions relevant to photovoltaic systems and a section on test methods are presented in the appendices. Twenty test methods are included to measure performance characteristics of the subsystem elements. These test methods and other parts of the document will be expanded or revised as future experience and needs dictate.

  13. Method for indexing and retrieving manufacturing-specific digital imagery based on image content

    DOE Patents [OSTI]

    Ferrell, Regina K.; Karnowski, Thomas P.; Tobin Jr., Kenneth W.

    2004-06-15T23:59:59.000Z

    A method for indexing and retrieving manufacturing-specific digital images based on image content comprises three steps. First, at least one feature vector can be extracted from a manufacturing-specific digital image stored in an image database. In particular, each extracted feature vector corresponds to a particular characteristic of the manufacturing-specific digital image, for instance, a digital image modality and overall characteristic, a substrate/background characteristic, and an anomaly/defect characteristic. Notably, the extracting step includes generating a defect mask using a detection process. Second, using an unsupervised clustering method, each extracted feature vector can be indexed in a hierarchical search tree. Third, a manufacturing-specific digital image associated with a feature vector stored in the hierarchicial search tree can be retrieved, wherein the manufacturing-specific digital image has image content comparably related to the image content of the query image. More particularly, can include two data reductions, the first performed based upon a query vector extracted from a query image. Subsequently, a user can select relevant images resulting from the first data reduction. From the selection, a prototype vector can be calculated, from which a second-level data reduction can be performed. The second-level data reduction can result in a subset of feature vectors comparable to the prototype vector, and further comparable to the query vector. An additional fourth step can include managing the hierarchical search tree by substituting a vector average for several redundant feature vectors encapsulated by nodes in the hierarchical search tree.

  14. Establishment of the Northeast Coastal Watershed Geospatial Data Network (NECWGDN)

    SciTech Connect (OSTI)

    Hannigan, Robyn [University of Massachusetts Boston] [University of Massachusetts Boston

    2014-02-17T23:59:59.000Z

    The goals of NECWGDN were to establish integrated geospatial databases that interfaced with existing open-source (water.html) environmental data server technologies (e.g., HydroDesktop) and included ecological and human data to enable evaluation, prediction, and adaptation in coastal environments to climate- and human-induced threats to the coastal marine resources within the Gulf of Maine. We have completed the development and testing of a "test bed" architecture that is compatible with HydroDesktop and have identified key metadata structures that will enable seamless integration and delivery of environmental, ecological, and human data as well as models to predict threats to end-users. Uniquely this database integrates point as well as model data and so offers capacities to end-users that are unique among databases. Future efforts will focus on the development of integrated environmental-human dimension models that can serve, in near real time, visualizations of threats to coastal resources and habitats.

  15. Method for manufacture of neutron absorbing articles

    SciTech Connect (OSTI)

    Owens, D.

    1980-07-22T23:59:59.000Z

    A one-step curing method for the manufacture of a neutron absorbing article which comprises irreversibly curing, in desired article form, a form-retaining mixture of boron carbide particles, curable phenolic resin in solid state and in particula te form and a minor proportion of a liquid medium, which boils at a temperature below 200*c., at an elevated temperature so as to obtain bonding of the irreversibly cured phenolic polymer resulting to the boron carbide particles and production of the neutron absorbing article in desired form.

  16. Regulation changes create opportunities for pipeline manufacturers

    SciTech Connect (OSTI)

    Santon, J.

    1999-09-01T23:59:59.000Z

    The US Department of Transportation`s (DOT) Research and Special Programs Administration (RSPA) is proposing to change its safety standards for the repair of corroded or damaged steel pipe in gas and hazardous liquid pipelines. For pipeline operators, the expected revisions will allow new flexibility in approaches to pipeline repair. Less costly and less disruptive procedures will be acceptable. For manufacturers, the changes will open opportunities for development of corrosion repair technology. A highly competitive market in new repair technology can be expected to arise. Current regulations, new technologies, and proposed safety standards are described.

  17. Clean Energy Manufacturing Initiative | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamosCharacterization2 PermitClean Energy Manufacturing

  18. Manufacturing Success Stories | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov.Energy02.pdf7Processes to TheirEnergy Midwest MIEMakingManagingManufacturing

  19. LightManufacturing | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano,Lakefront Tow(RedirectedLightManufacturing Jump to:

  20. Manufacturing Demonstration Facilities Workshop Agenda, March 2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomyDr.Energy UniversityOversightFlowManufacturing

  1. Manufacturing Demonstration Facilities Workshop, March 12, 2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomyDr.EnergyManufacturing Demonstration Facilities

  2. Manufacturing Demonstration Facilities Workshop, March 12, 2012 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomyDr.EnergyManufacturing Demonstration

  3. Advanced Manufacturing Office | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613Portsmouth SitePresentations |State WindEconomicApplicationAdvanced Manufacturing

  4. Additive Manufacturing: Going Mainstream | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is alwaysISO 50001 Energy26.1U.S.-BrazilAdditive Manufacturing: Going

  5. Manufacturing Licenses Available | Tech Transfer | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electronEnergy Manufacturing Energy and

  6. Manufacturing Research and Development | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electronEnergy Manufacturing Energy andYou are here Home

  7. Aurora Photovoltaics Manufacturing | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc Jump to:Auriga Energy Jump to:Photovoltaics Manufacturing

  8. Solar Manufacturing Technology | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,Zaleski - PolicyWorkSunShot Solar Manufacturing Technology (SolarMat)

  9. EE Regional Technology Roadmap Includes comparison

    E-Print Network [OSTI]

    EE Regional Technology Roadmap Includes comparison against 6th Power Plan (Update cyclically Data Clearinghouse BPA/RTF NEEA/Regional Programs Group Update Regional EE Technology Roadmap Lighting

  10. DIDACTICAL HOLOGRAPHIC EXHIBIT INCLUDING (HOLOGRAPHIC TELEVISION)

    E-Print Network [OSTI]

    de Aguiar, Marcus A. M.

    DIDACTICAL HOLOGRAPHIC EXHIBIT INCLUDING HoloTV (HOLOGRAPHIC TELEVISION) José J. Lunazzi , DanielCampinasSPBrasil Abstract: Our Institute of Physics exposes since 1980 didactical exhibitions of holography in Brazil where

  11. Sessions include: Beginning Farmer and Rancher

    E-Print Network [OSTI]

    Watson, Craig A.

    Sessions include: ­ Beginning Farmer and Rancher ­ New Markets and Regulations ­ Food Safety ­ Good Bug, Bad Bug ID ­ Horticulture ­ Hydroponics ­ Livestock and Pastured Poultry ­ Mushrooms ­ Organic ­ Live animal exhibits ­ Saturday evening social, and ­ Local foods Florida Small Farms and Alternative

  12. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2014-11-25T23:59:59.000Z

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  13. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19T23:59:59.000Z

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  14. Predicting regeneration establishment with the prognosis model. Forest Service research paper

    SciTech Connect (OSTI)

    Ferguson, D.E.; Carlson, C.E.

    1993-08-01T23:59:59.000Z

    The conifer establishment following regeneration timber harvests is predicted by version 2 of the Regeneration Establishment Model, a submodel of the Prognosis Model. The regeneration model covers 10 species for forests in Montana, central Idaho, and northern Idaho. Most harvest and site preparation methods can be simulated so that alternative treatments can be evaluated. Also included in the model is the influence of western spruce budworm (Choristoneura occidentalis) on regeneration success. The model predicts the probability of stocking, seedling density, species composition, and seedling heights 2 to 20 years after harvest. The paper describes the study design, equation development, model formulation, and model behavior for the Regeneration Establishment Model.

  15. EA-1869: Supplement to General Motors Corp., Electric Vehicle/Battery Manufacturing Application, White Marsh, Maryland, and Wixom, Michigan (DOE/EA-1723-S1)

    Broader source: Energy.gov [DOE]

    Based on the analysis in the Environmental Assessment DOE determined that its proposed action, to award a federal grant to General Motors to establish an electric motor components manufacturing and electric drive assembly facility would result in no significant adverse impacts.

  16. Abstract--The increasing competitiveness in manufacturing industry is forcing manufacturers to seek effective processing

    E-Print Network [OSTI]

    Mustakerov, Ivan

    plant problem. Different processing schedules variants for different technological restrictions were, so they must rely on innovative approaches in all aspects of manufacturing technology. As a result existing results in the literature focus on either a single machine or several identical machines [5

  17. NREL Manufacturing R&D Workshop NREL H2/FC Manufacturing R&D Workshop

    E-Print Network [OSTI]

    Trimming · Automated Dispensing · X-ray Wind PMD has built components for the wind industry focused In the following areas: · Blade Manufacturing · Tower component design and detailing · Tower component machining-part solar assemblies · Chip Placement ­ high speed and high precision · Curing · Flat glass material

  18. Precision replenishable grinding tool and manufacturing process

    DOE Patents [OSTI]

    Makowiecki, Daniel M. (Livermore, CA); Kerns, John A. (Livermore, CA); Blaedel, Kenneth L. (Livermore, CA); Colella, Nicholas J. (Livermore, CA); Davis, Pete J. (Pleasanton, CA); Juntz, Robert S. (Hayward, CA)

    1998-01-01T23:59:59.000Z

    A reusable grinding tool consisting of a replaceable single layer of abrasive particles intimately bonded to a precisely configured tool substrate, and a process for manufacturing the grinding tool. The tool substrate may be ceramic or metal and the abrasive particles are preferably diamond, but may be cubic boron nitride. The manufacturing process involves: coating a configured tool substrate with layers of metals, such as titanium, copper and titanium, by physical vapor deposition (PVD); applying the abrasive particles to the coated surface by a slurry technique; and brazing the abrasive particles to the tool substrate by alloying the metal layers. The precision control of the composition and thickness of the metal layers enables the bonding of a single layer or several layers of micron size abrasive particles to the tool surface. By the incorporation of an easily dissolved metal layer in the composition such allows the removal and replacement of the abrasive particles, thereby providing a process for replenishing a precisely machined grinding tool with fine abrasive particles, thus greatly reducing costs as compared to replacing expensive grinding tools.

  19. Precision replenishable grinding tool and manufacturing process

    DOE Patents [OSTI]

    Makowiecki, D.M.; Kerns, J.A.; Blaedel, K.L.; Colella, N.J.; Davis, P.J.; Juntz, R.S.

    1998-06-09T23:59:59.000Z

    A reusable grinding tool consisting of a replaceable single layer of abrasive particles intimately bonded to a precisely configured tool substrate, and a process for manufacturing the grinding tool are disclosed. The tool substrate may be ceramic or metal and the abrasive particles are preferably diamond, but may be cubic boron nitride. The manufacturing process involves: coating a configured tool substrate with layers of metals, such as titanium, copper and titanium, by physical vapor deposition (PVD); applying the abrasive particles to the coated surface by a slurry technique; and brazing the abrasive particles to the tool substrate by alloying the metal layers. The precision control of the composition and thickness of the metal layers enables the bonding of a single layer or several layers of micron size abrasive particles to the tool surface. By the incorporation of an easily dissolved metal layer in the composition such allows the removal and replacement of the abrasive particles, thereby providing a process for replenishing a precisely machined grinding tool with fine abrasive particles, thus greatly reducing costs as compared to replacing expensive grinding tools. 11 figs.

  20. U.S. Offshore Wind Manufacturing and Supply Chain Development

    SciTech Connect (OSTI)

    Hamilton, Bruce Duncan [Navigant Consulting, Inc.

    2013-02-22T23:59:59.000Z

    The objective of the report is to provide an assessment of the domestic supply chain and manufacturing infrastructure supporting the U.S. offshore wind market. The report provides baseline information and develops a strategy for future development of the supply chain required to support projected offshore wind deployment levels. A brief description of each of the key chapters includes: » Chapter 1: Offshore Wind Plant Costs and Anticipated Technology Advancements. Determines the cost breakdown of offshore wind plants and identifies technical trends and anticipated advancements in offshore wind manufacturing and construction. » Chapter 2: Potential Supply Chain Requirements and Opportunities. Provides an organized, analytical approach to identifying and bounding the uncertainties associated with a future U.S. offshore wind market. It projects potential component-level supply chain needs under three demand scenarios and identifies key supply chain challenges and opportunities facing the future U.S. market as well as current suppliers of the nation’s land-based wind market. » Chapter 3: Strategy for Future Development. Evaluates the gap or competitive advantage of adding manufacturing capacity in the U.S. vs. overseas, and evaluates examples of policies that have been successful . » Chapter 4: Pathways for Market Entry. Identifies technical and business pathways for market entry by potential suppliers of large-scale offshore turbine components and technical services. The report is intended for use by the following industry stakeholder groups: (a) Industry participants who seek baseline cost and supplier information for key component segments and the overall U.S. offshore wind market (Chapters 1 and 2). The component-level requirements and opportunities presented in Section 2.3 will be particularly useful in identifying market sizes, competition, and risks for the various component segments. (b) Federal, state, and local policymakers and economic development agencies, to assist in identifying policies with low effort and high impact (Chapter 3). Section 3.3 provides specific policy examples that have been demonstrated to be effective in removing barriers to development. (c) Current and potential domestic suppliers in the offshore wind market, in evaluating areas of opportunity and understanding requirements for participation (Chapter 4). Section 4.4 provides a step-by-step description of the qualification process that suppliers looking to sell components into a future U.S. offshore wind market will need to follow.

  1. Strategies to improve energy efficiency in semiconductor manufacturing

    SciTech Connect (OSTI)

    Robertson, C.; Stein, J; Harris, J.; Cherniack, M.

    1997-07-01T23:59:59.000Z

    The global semiconductor industry is growing at an astounding rate. In the next few years, the industry is expected to invest some $169 billion to build more than 36 million square feet of clean room floor space. Electric loads in these new plants are expected to total more than 5,000 MW and 40,000 GWH per year. This paper summarizes the results of studies to identify opportunities for improved energy efficiency in the semiconductor industry. The genesis of this work came about as the authors observed the rapid growth of the semiconductor industry in the Pacific Northwest. Industry observers report that some $20 billion in new facilities could be build in the Northwest in the nest few years, with a combined electric load in excess of 500 to 600 MW. The research results reported in this paper have been supported in part by the Bonneville Power Administration, the Northwest Power Planning Council, the Oregon Office of Energy, New England Electric System and the Conservation Law Foundation of New England. With their support the authors interviewed numerous industry participants, reviewed key literature, and met extensively with industry engineering firms. manufacturers, vendors and suppliers of manufacturing equipment and materials, and others with interests in this industry. Significant opportunities to improve energy efficiency in the semiconductor industry have been reported to us; perhaps 50 percent or greater aggregate improvement appears possible. Equally significant market barriers constrain the industry from achieving these savings. Yet, because of his industry's concentration, competitiveness, and existing research consortia such as SEMATECH, the authors believe the substantial market barriers to energy efficiency can be addressed with carefully formulated strategies to demonstrate, document and communicate the business and technical case for advanced energy efficiency, including potential benefits in finance, manufacturing and corporate environmental performance. This paper describes how the industry plans research and development investments, examines energy use intensities, summarizes key market barriers which constrain energy efficient design, identifies interests in the industry that may be changing energy efficiency perceptions, lists activities to move energy efficiency to a higher priority, gives examples of energy efficiency opportunities, and reviews activities planned by a coalition of Northwest interests to accelerate the adoption of energy efficient design strategies.

  2. A new DFM approach to combine machining and additive manufacturing

    E-Print Network [OSTI]

    Kerbrat, Olivier; Hascoët, Jean-Yves; 10.1016/j.compind.2011.04.003

    2011-01-01T23:59:59.000Z

    Design For Manufacturing (DFM) approaches aim to integrate manufacturability aspects during the design stage. Most of DFM approaches usually consider only one manufacturing process, but products competitiveness may be improved by designing hybrid modular products, in which products are seen as 3-D puzzles with modules realized aside by the best manufacturing process and further gathered. A new DFM system is created in order to give quantitative information during the product design stage of which modules will benefit in being machined and which ones will advantageously be realized by an additive process (such as Selective Laser Sintering or laser deposition). A methodology for a manufacturability evaluation in case of a subtractive or an additive manufacturing process is developed and implemented in a CAD software. Tests are carried out on industrial products from automotive industry.

  3. Role of the DAPIA in the manufactured housing process

    SciTech Connect (OSTI)

    Balistocky, S.; Lee, A.D.; Onisko, S.A.

    1986-02-01T23:59:59.000Z

    This paper describes the function of Design Approval Primary Inspection Agencies (DAPIAs) and provides some insights into the design approval process for manufacturing housing units. DAPIAs play a key role in assuring that the designs for manufactured housing units are in compliance with HUD's Manufactured Housing Constructing and Safety Standards. There are five DAPIAs performing plan checks and design reviews for the manufacturing operating in the Pacific Northwest region. The costs to a manufacturer for DAPIA services ranges from $100 to $250 to approve modifications to existing designs and $700 to $1200 to approve a totally new design. Each DAPIA indicated that they would be willing to work with BPA in some way to assist manufacturers produce units which can achieve MCS levels. They would be available for energy design consultation on an informal basis. In addition they would be willing to consider formal certifications of MCS designs if BPA develops evaluation criteria which they can apply.

  4. Electric Power Monthly, August 1990. [Glossary included

    SciTech Connect (OSTI)

    Not Available

    1990-11-29T23:59:59.000Z

    The Electric Power Monthly (EPM) presents monthly summaries of electric utility statistics at the national, Census division, and State level. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data includes generation by energy source (coal, oil, gas, hydroelectric, and nuclear); generation by region; consumption of fossil fuels for power generation; sales of electric power, cost data; and unusual occurrences. A glossary is included.

  5. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    SciTech Connect (OSTI)

    Wei-Ping Pan; Andy Wu; John T. Riley

    2005-07-30T23:59:59.000Z

    This purpose of this report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period April 1, 2005 through June 30, 2005. The following tasks have been completed. First, the new Combustion Laboratory was occupied on June 15, 2005, and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building is in the final painting stage. Second, the fabrication and manufacturing contract for the CFBC Facility was awarded to Sterling Boiler & Mechanical, Inc. of Evansville, Indiana. Sterling is manufacturing the assembly and component parts of the CFBC system. The erection of the CFBC system is expected to start September 1, 2005. Third, mercury emissions from the cofiring of coal and chicken waste was studied experimentally in the laboratory-scale simulated fluidized-bed combustion facility. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described.

  6. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    SciTech Connect (OSTI)

    Wei-Ping Pan; Yan Cao; Songgeng Li

    2006-04-01T23:59:59.000Z

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period January 1, 2006 through March 31, 2006. Work was performed on the following activities. First, the fabrication and manufacture of the CFBC Facility were completed. The riser, primary cyclone and secondary cyclone of Circulating Fluidized Bed (CFB) Combustor have been erected. Second, the Mercury Control Workshop and the Grand Opening of Institute for Combustion Science and Environmental Technology (ICSET) were successfully held on February 22 and 23, 2006, respectively. Third, effects of hydrogen chlorine (HCl) and sulfur dioxide (SO{sub 2}) on mercury oxidation were studied in a drop tube reactor. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described in this report.

  7. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    SciTech Connect (OSTI)

    Wei-Ping Pan; Songgeng Li

    2006-01-01T23:59:59.000Z

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period October 1, 2005 through December 31, 2005. Work was performed on the following activities. First, the fabrication and manufacture of the CFBC Facility is nearly completed. The erection of the CFBC facility is expected to start in the second week of February, 2006. Second, effect of flue gas components on mercury oxidation was investigated in a drop tube reactor. As a first step, experiment for mercury oxidation by chlorine was investigated. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described in this report.

  8. Departments of State and Energy Establish Global Partnership...

    Office of Environmental Management (EM)

    State and Energy Establish Global Partnership to Green U.S. Embassies and Consulates Departments of State and Energy Establish Global Partnership to Green U.S. Embassies and...

  9. Wind Turbine Towers Establish New Height Standards and Reduce...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Turbine Towers Establish New Height Standards and Reduce Cost of Wind Energy Wind Turbine Towers Establish New Height Standards and Reduce Cost of Wind Energy Case study that...

  10. Communication in automation, including networking and wireless

    E-Print Network [OSTI]

    Antsaklis, Panos

    Communication in automation, including networking and wireless Nicholas Kottenstette and Panos J and networking in automation is given. Digital communication fundamentals are reviewed and networked control are presented. 1 Introduction 1.1 Why communication is necessary in automated systems Automated systems use

  11. Electrochemical cell including ribbed electrode substrates

    SciTech Connect (OSTI)

    Breault, R.D.; Goller, G.J.; Roethlein, R.J.; Sprecher, G.C.

    1981-07-21T23:59:59.000Z

    An electrochemical cell including an electrolyte retaining matrix layer located between and in contact with cooperating anode and cathode electrodes is disclosed herein. Each of the electrodes is comprised of a ribbed (or grooved) substrate including a gas porous body as its main component and a catalyst layer located between the substrate and one side of the electrolyte retaining matrix layer. Each substrate body includes a ribbed section for receiving reactant gas and lengthwise side portions on opposite sides of the ribbed section. Each of the side portions includes a channel extending along its entire length from one surface thereof (e.g., its outer surface) to but stopping short of an opposite surface (e.g., its inner surface) so as to provide a web directly between the channel and the opposite surface. Each of the channels is filled with a gas impervious substance and each of the webs is impregnated with a gas impervious substance so as to provide a gas impervious seal along the entire length of each side portion of each substrate and between the opposite faces thereof (e.g., across the entire thickness thereof).

  12. Prices include compostable serviceware and linen tablecloths

    E-Print Network [OSTI]

    California at Davis, University of

    & BLACK BEAN ENCHILADAS Fresh corn tortillas stuffed with tender brown butter sautéed butternut squash, black beans and yellow on- ions, garnished with avocado and sour cream. $33 per person EDAMAME & CORN SQUASH & BLACK BEAN ENCHILADA FREE RANGE CHICK- EN SANDWICH PLATED ENTREES All plated entrees include

  13. Energy Consumption of Personal Computing Including Portable

    E-Print Network [OSTI]

    Namboodiri, Vinod

    Energy Consumption of Personal Computing Including Portable Communication Devices Pavel Somavat1 consumption, questions are being asked about the energy contribution of computing equipment. Al- though studies have documented the share of energy consumption by this type of equipment over the years, research

  14. Establishment of an Institute for Fusion Studies

    SciTech Connect (OSTI)

    Hazeltine, R.D.

    1992-07-01T23:59:59.000Z

    The Institute for Fusion Studies is a national center for theoretical fusion plasma physics research. Its purposes are: (1) to conduct research on theoretical questions concerning the achievement of controlled fusion energy by means of magnetic confinement--including both fundamental problems of long-range significance, as well as shorter-term issues; (2) to serve as a center for information exchange, nationally and internationally, by hosting exchange visits, conferences, and workshops; (3) and to train students and postdoctoral research personnel for the fusion energy program and plasma physics research areas. The theoretical research results that are obtained by the Institute contribute mainly to the progress of national and international efforts in nuclear fusion research, whose goal is the development of fusion power.as a basic energy source. In addition to its primary focus on fusion physics, the Institute is also involved with research in related fields, such as advanced computing techniques, nonlinear dynamics, plasma astrophysics, and accelerator physics. The work of EFS scientists continued to receive national and international recognition. Numerous invited papers were given during the past year at workshops, conferences, and scientific meetings. Last year IFS scientists published 95 scientific articles in technical journals and monographs.

  15. President Obama Announces Two New Public-Private Manufacturing...

    Energy Savers [EERE]

    advanced fiber-reinforced polymer composites, which combine strong fibers with tough plastics to cost-effectively manufacture materials that are lighter and stronger than steel....

  16. Energy-Saving Homes, Buildings, and Manufacturing Success Stories...

    Broader source: Energy.gov (indexed) [DOE]

    solutions for our nation's buildings and manufacturing supply lines mean large-scale energy and cost savings. Learn how EERE's investments in energy solutions for homes,...

  17. Energy-Saving Homes, Buildings, & Manufacturing (Fact Sheet)...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy-Saving Homes, Buildings, & Manufacturing (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE) Energy-Saving Homes, Buildings, &...

  18. Solid-State Lighting Manufacturing Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and to help define a new DOE manufacturing initiative to reduce the cost of light-emitting diode (LED) products to competitive levels, ensure high product quality and...

  19. Clean Energy Manufacturing Initiative: Increasing American Competitiveness Through Innovation

    Office of Energy Efficiency and Renewable Energy (EERE)

    Find out how the Energy Department's Clean Energy Manufacturing Initiative is helping to boost American competitiveness, grow the economy and protect the environment.

  20. Sandia National Laboratories: reduced the cycle time to manufacture...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    time to manufacture a blade Sandia Participated in AMII to Support American-Made Wind-Turbine Blades On December 3, 2014, in Computational Modeling & Simulation, Energy, Materials...